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Figure 1: Visualization of the developed concept, asserting functional equivalence between C code and a corresponding SCADE
model using the generation of white-box SCADE test scenarios during execution of a slightly modified C implementation

ABSTRACT
Model-based development is on the rise and tool chains employing
automated code generation from models using certified code gen-
erators are getting increasingly common. We present an approach
which enables the reverse operation and creates an ANSYS SCADE
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model that is functionally equivalent to the C code. The main mo-
tivation behind this development is to enable original equipment
manufacturers (OEMs) to further use and maintain legacy code in
new development environments, rather than having to re-develop
the respective functionality from scratch.

While the model transformation itself is performed manually,
the testing process is fully automated and enabled the transfer of
existing test cases for the C function to the SCADE Test Environ-
ment. The presented approach enables white-box testing of the
model, requiring the original C implementation and its original test
cases as well as a bi-directional mapping of variable names between
C code and SCADE model. This is done by extending the original
code in a way that generates SCADE test scenarios during runtime,
allowing to use these white-box test scenarios to assert functional
equivalence of code and model using empirical validation.
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1 INTRODUCTION
Software is growing increasingly complex and in safety-critical
domains, e.g. aerospace and automotive, the developed software is
subject to very strict safety requirements.

The complexity of software in safety-critical domains is best
observed in projects which have grown organically over the years.
In such projects, there is a high chance that legacy code is used in
order to keep the overall system running. Often, the legacy code
has been developed with toolchains for which technical support
might not be provided anymore. However, discarding the legacy
code and developing the respective functionality from scratch is in
most cases not cost-effective for organisations.

Integration of legacy code with model-based system components
and subsystems is a challenge for the OEMs. This is because legacy
code has often been implemented directly, only based on informal
textual requirements specification, while recent development in
safety-critical domains has become more model- and specification-
based. In the last years, software engineers in the automotive do-
main have turned to the model-driven engineering (MDE) approach
in order to develop formal models for the requested software system
early in the development lifecycle. The software implementation is
then tested against these models via back-to-back testing [3], [4].

There are various tools and toolchains which offer additional
support with the implementation of the designed formal models
via code generation facilities, e.g. ANSYS SCADE [8]. These code
generators often come with complex mechanisms which check
that the transformation from model to code has been performed
correctly. To accomodate the further usage of legacy code and to
reap the benefits of the model-based development approach, the
legacy code must be transformed into a functionally equivalent
formal model in the input language of the chosen MDE toolchain.

Research Question. To address this problem, this paper an-
swers the following research question: How can C source code be
transformed into a functionally equivalent SCADE model?

Note that to give an answer to the research question, two issues
have to be addressed: (1) transformation of C source code into a
SCADE model and (2) assessment of the functional equivalence of
the two artefacts.

This paper presents an approach to transform legacy C source
code into a functionally equivalent SCADE model. We outline a
systematic method of transforming C code into a SCADEmodel and
focus on automatically generating appropriate test cases, which
we use to assert the functional equivalence of the two artefacts.
To evaluate our approach, we have constructed a case study based
on an example system, henceforth denoted as system under test
(SUT), provided by an industrial project partner. The SUT is part of
automotive control softwarewidely deployed to production vehicles
and is accompanied by a comprehensive test suite, which provides
100% Modified Condition/Decision Coverage (MC/DC).

One method of assurance for safety-critical systems is valida-
tion of the SUT against its requirements. There are various ap-
proaches which address the problem of generating test cases from
formal requirements specifications, e.g. via model checking [3, 30].
Requirements-based test cases look at the SUT from a black-box
point of view, as they specify the test data for the input parameters
and the expected value for the output parameter. In this respect,
the test cases provided by our industrial partner are black-box test
cases.

However, checking whether the SCADE model is functionally
equivalent to the C code does not only involve checking that, for
the same inputs, the same outputs are produced by the C implemen-
tation and by the SCADE model respectively. Instead, it also means
checking the paths in the source code and in the model which are
exercised by the test inputs. Consider that a set of test inputs ac-
tivate the same path in the source code during test execution, but
different paths in the SCADE model, e.g. due to divergent handling
of conditional expressions. In such a case, the SCADE model cannot
be considered to be functionally equivalent to the C legacy code. For
this purpose, the black-box test cases do not suffice and additional
information from a white-box point of view is necessary.

To obtain additional information about the original implemen-
tation, we extract the runtime data, e.g. values of local variables
in consecutive computation cycles, and use it together with the
predefined test input data to derive SCADE test scenarios. On one
hand, we use the SCADE test scenarios to exercise and test the
SCADE model in the SCADE Test Environment. On the other hand,
we use the predefined test cases to test the C implementation of
the SUT and to verify the validity of the test suite generated for the
SCADE model with regard to the original specification. In order to
extract the runtime data, minimal changes have been carried out
on the original implementation source code. Neither the test cases
nor the test case execution process defined in advance by the test
experts of the industrial partner have been altered. Figure 1 shows
the overall concept of the developed approach, giving a high-level
overview of the generated artefacts and systematic transformations,
making a distinction between manual and automated processes.

Paper Outline. This paper is structured as follows: Section 2
gives an overview of related work relevant to the scope of this paper.
Section 3 gives an overview of the concept and details the approach,
while Section 4 presents the case study and an example appropriate
for the scope of this paper. In Section 5 the results are evaluated
and discussed. Section 6 concludes this paper with a summary of
this work and points out to future directions of research.
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2 RELATEDWORK
Regarding code-to-model-transformation, Holzmann and Smith de-
scribed an approach to extract verification models from source code
written in ANSI-C [18]. In an earlier work, they already described an
automated transfer from ANSI-C to the input language of the Spin
model checker [17]. Godefroid et al. used a controlled execution en-
vironment called VeriSoft to dynamically analyze the state space and
perform verification [16]. Smyth et al. presented an approach for
the automatic derivation of Sequentially Constructive Statecharts
(SCCharts) from C code. The resulting models could be used to
generate code in a different language and for other platforms. Their
main reason for the development of this approach was the high
maintenance effort required for legacy C code [28]. Izquierdo and
Molina described a similar case, defining the Grammar-to-Model
Transformation Language (Gra2Mol), a domain-specific language
designed to extract models from code. Its purpose is to serve as a
text-to-model transformation language suitable to any source code
conforming to formal grammar [21].

Rajan et al. described how requirements coverage metrics can be
used to determine how well code generated from a model conforms
to the actual model by ascertaining behavioral equivalence between
the model and the generated code [27]. Gay et al. warned that the
use of simple coverage metrics does not ensure a high fault finding
rate, with random tests often being more effective than generated
ones – though usage of e.g. MC/DC led to "the generation of test
suites achieving higher levels of fault detection than random test
suites of equal size" [15].

Coverage metrics are an important tool in measuring the validity
of a testing process, throughout this document two related coverage
metrics will be used.Modified Condition/Decision Coverage (MC/DC)
requires that for each decision, every condition is shown to affect
the outcome independently. This does not presume an exhaustive
evaluation of each decision, but it requires at least 𝑛 + 1 test cases
for a decision with 𝑛 conditions. With full MC/DC, the effect of
each condition is tested with regard to every other condition [22].
Whalen et al. presented the concept of observable modified condi-
tion/decision coverage (OMCDC), where MC/DC is combined with
a measurement of observability. It does not require more test cases
for full coverage than traditional MC/DC, but adds a path condition
intended to help reveal fault propagation [29]. This is the coverage
metric used by the ANSYS SCADE Test Environment.

Model-based development of automotive control software is a
core part in the dissertations of Zander-Nowicka [32] and Kugele
[23].While Zander-Nowicka proposes amodel-based framework for
testing based on MATLAB, Simulink and Stateflow called MiLEST,
Kugele presents the COLA automotive approach of integrated model-
based development in combination with a newly created modelling
language.

Miller et al. proposed a translator framework to allow for model
checking and theorem proving in combination with existing mod-
elling tools and complex systems [24]. Aniculaesei et al. developed
a process for automated test case generation and performed a case
study on an Automatic Cruise Control (ACC) system, that was
later successfully integrated into the SCADE toolchain [5]. The
model-checking based approach was successfully embedded into

the proprietary ANSYS SCADE development environment and pre-
sented a notable step forward in comparison to fully manual test
generation [4].

Empirical software validation using various methods has been a
topic of research for well over 40 years [19]. Research has shown
that the validity of the results obtained through empirical soft-
ware validation has been improving over the decades [33].With the
coverage metrics and the white-box testing approach used in this
paper, empirical validation can be performed with a high degree of
confidence.

Angius describes the interdependence of formal methods and
empirical verification. It is highlighted that ensuring program cor-
rectness is a twofold problem, evaluating whether both the logi-
cal model as well as the physical implementation conform to the
specification. Using formal methods and empirical validation in
conjunction with each other bridges domains that are mutually
dependent [2]. The works by Boulanger and Dao [9] and Braun
et al. [10] provide insight on the topic requirements engineering for
large automotive software projects, highlighting which problems
occur when working on systems of this scale and giving possible
mitigation strategies for lifecycle development.

Hutchinson et al. performed a survey on the state of practice
regarding MDE in the industry and found that, along other impor-
tant factors, integration of the MDE approach into existing process
plays an important role in the overall success of the adoption [20].
Whittle et al. found that MDE approaches are already widely used,
although often limited to certain components of a larger system
[31]. Similar results were observed by da Silva, which found MDE
to be on the rise and to be receiving increasing support both with
regard to industrial utilizations as well as tool development [13].

3 CONCEPT
The concept we have developed to transform the original C code
to a verified implementation in ANSYS SCADE is shown in Figure
1. The majority of the displayed process does not require manual
intervention, the two manual steps are described in this section. In
this paper we focus on the extension of the C code with automated
test case generation and will outline how to transform the code to
a model, which still requires several manual design decisions.

3.1 Transferring C Code to SCADE Models
Creating a model from code is a non-trivial task that currently has
to be performed manually. During this process, a representation of
the original program logic and data flow has to be created using
the tools provided by the modeling language. In ANSYS SCADE
for example, mathematical operations can be performed using the
same operators as in C, while logical branching can either be done
using one of the Choice-operators or an If-block. Adapting to the
idiomatic concepts of the modeling language might change how
some values are computed, but shall not alter the computation
result.

Readers unfamiliar with the MDE approach or the SCADE en-
vironment are directed to take a look at the SCADE Suite User
Manual [14], which introduces both the fundamentals of the de-
velopment environment and of the modeling language with its
intrinsic properties. In general, MDE approaches tend to be seen as
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more approachable compared to the manual creation of source code,
since the focus is on the actual computation logic rather than on the
implementation details in a specific programming language. But
transferring a logical model from source code to a model requires
the transfer of the underlying concepts from one domain to the
other and is bound to several individual design decisions. Just as
with writing source code, there are multiple ways to solve the same
problem and for any given source code, various different, but still
behaviourally equivalent models can be created.

The case study we worked with came from the automotive do-
main and consisted of a unit extracted from automotive control
software currently used in production vehicles. As long as a SCADE
model can be produced that is functionally equivalent to the origi-
nal code, the algorithm presented in the following subsection can
be applied to the original C code. Should the code in question not
be suitable for iterative execution, it also cannot be modeled in
ANSYS SCADE, which requires that the code is free of circular
dependencies in the data flow.

When creating both the interface and the local variables in AN-
SYS SCADE, the same data types as in the original C implementation
are to be used. During the model creation, a bi-directional mapping
between C variable names and ANSYS SCADE variable descriptors
has to be created. To be able to use the resulting scenario files for
simulation and testing, the SCADE descriptors used in the mapping
must either be the full paths to the variable or an alias file has to
be loaded, mapping the variable name to its fully qualified name
including the path.

For local variables to be available during testing, they have to
be connected to probes and they need to be exported by KCG
when generating the testing code. This enables KCG to produce
additional context information, forwarding the probes and thus the
local variables to the executable output.

When a first iteration of the model has been created, it can al-
ready be tested using the generated test suites as covered in the
upcoming subsection. With the aid of the white-box test scenar-
ios, development was sped up notably in our case study since re-
maining modeling errors could be fixed systematically, such that
we recommend a combined iterative development approach when
transferring the code to a model.

3.2 Extending the C Code with Test Generation
In order to automatically generate the SCADE test scenarios during
runtime, several modifications have to be made to the existing
C code. While this process can be automated, the modifications
required can be performed with low expenditure.

Algorithm 1 provides a pseudocode notation of the modifications
made to the existing C implementation used to execute the existing
test cases on the C code. The algorithm takes as input a test case
denoted as two functions 𝑡𝑐_𝑖𝑛 and 𝑡𝑐_𝑜𝑢𝑡 , mapping a cycle number
and a C variable name to an input or output value respectively. Each
variable to be set or checked has exactly one defined or expected
valuation in any given cycle.

We consider varnames𝐶,𝑖𝑛 to be the set of input variables and
varnames𝐶,𝑜𝑢𝑡 to be the set of output variables for a test case. The
set of C variable names that have a valid mapping to SCADE vari-
ables is denoted as varnames𝐶 . We label the set of C input variables

Input: 𝑡𝑐_𝑖𝑛 : N × varnames𝐶,𝑖𝑛 ↦→ values𝐶,𝑖𝑛,
𝑡𝑐_𝑜𝑢𝑡 : N × varnames𝐶,𝑜𝑢𝑡 ↦→ values𝐶,𝑜𝑢𝑡 ,
𝑣𝑎𝑟𝑚𝑎𝑝 : varnames𝐶 ↦→ varnames𝑆𝐶𝐴𝐷𝐸

Data: 𝑒𝑣𝑎𝑙_𝑎𝑡 : N × varnames𝐶 ↦→ values𝐶
Result: 𝑡𝑐_𝑟𝑒𝑠𝑢𝑙𝑡 : N × varnames𝐶,𝑜𝑢𝑡 ↦→ [𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒]
begin

𝑖 := 0
repeat

foreach var ∈ varnames𝐶,𝑖𝑛 do
var := 𝑡𝑐_𝑖𝑛(𝑖, var)
output "SSM::SET 𝑣𝑎𝑟𝑚𝑎𝑝 (var) 𝑡𝑐_𝑖𝑛(𝑖, var)"

end
foreach var ∈ varnames𝐶 \ varnames𝐶,𝑖𝑛 do

if end of scope for var or end of cycle then
if var ∈ varnames𝐶,𝑜𝑢𝑡 then

assert 𝑒𝑣𝑎𝑙_𝑎𝑡 (𝑖, text) = 𝑡𝑐_𝑜𝑢𝑡 (𝑖, var)
end
output "SSM::CHECK
𝑣𝑎𝑟𝑚𝑎𝑝 (var) 𝑒𝑣𝑎𝑙_𝑎𝑡 (𝑖, var)"

end
end
𝑖 := 𝑖 + 1
output "SSM::CYCLE"

until last cycle of input test case
end

Algorithm 1: Systematic extension of C code to enable the
generation of SCADE test scenarios during test case execution.

which are set at the beginning of each cycle during test case ex-
ecution to be varnames𝐶,𝑖𝑛 with varnames𝐶,𝑖𝑛 ⊂ varnames𝐶 and
varnames𝐶,𝑜𝑢𝑡 to be the set of C output variables which are checked
at the end of each cycle with varnames𝐶,𝑜𝑢𝑡 ⊂ varnames𝐶 . In ad-
dition, we assume varnames𝐶,𝑖𝑛 ∩ varnames𝐶,𝑜𝑢𝑡 = ∅ such that
input variables cannot be output variables at the same time. To
not require the variable identifiers in the SCADE model to exactly
resemble the ones in the original C code, we introduce the function
𝑣𝑎𝑟𝑚𝑎𝑝 , which maps C variable names to their respective path
names in the SCADE model – this mapping can be considered to
be a byproduct of the modeling process and usually is available
bidirectionally.

Further, we assume a function 𝑒𝑣𝑎𝑙_𝑎𝑡 that maps a cycle number
and a C variable name from the set of all C variable names to the
evaluation of the corresponding C variable at the end of the given
cycle, or at the end of the variable’s scope during the execution
cycle. The result of the algorithm shall be the same as that of the
original test case execution, in that information is returned about
whether the expected output variables were produced during the
execution given the designated input for the cycle. For this purpose,
we have defined a function 𝑡𝑐_𝑟𝑒𝑠𝑢𝑙𝑡 providing the result of the
assertion for a given cycle and output variable name as a boolean
value. This value is implicitly set by the assertion and shall always
be true, otherwise the original implementation does not pass the
used test suite, indicating problems with either the used source
code or test cases.
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In a cyclic execution pattern, the input variables of the function
are set at the very beginning of each cycle to the values specified
in the test case. This is directly followed by output in the form
"SSM::SET <PATH> <VALUE>", which reflects the same action in
a SCADE test scenario. For each of the remaining variables that
have a valid mapping to SCADE variables, either output variables
or locals, at the end of its scope or at the end of the current cycle,
the algorithm prints out a line "SSM::CHECK <PATH> <VALUE>".
Through this line it is checked whether the corresponding SCADE
variable matches the runtime evaluation of the current C variable
at the end of the cycle. Should the C variable be part of the test
case output variables, the algorithm asserts that the variable’s valu-
ation matches the expected value, as would be done by the original
black-box test cases. At the end of each cycle, the proposed algo-
rithm outputs "SSM::CYCLE" to end the cycle. These operations are
repeated for each cycle of the test case. The algorithm is applied
for every test case in the test suite.

This will generate valid output conforming to a SCADE scenario
file for every test case in the original C test suite. Regardless of
how the output is created, we recommend saving each test case
as a separate .sss file for easy integration into the SCADE test
environment. Using the SSM::ALIAS <path> <alias> statement,
paths can be aliased which can reduce the length of the identifier
used in the variable mapping.

The resulting tests also allow for black-box testing by limiting
the amount of checked variables to the original test case output
variables. Nevertheless, by default, white-box test scenarios are
created for the SCADE model, as it is important to not only to test
whether the model passes the original test suite, but also to check
whether all internal variables are equivalent to their valuation in
the C code during the respective computation cycle. Should each
variable evaluate to exactly the same value in the respective cycle
for a large enough test suite, then it can be said that, with a very high
confidence, the code and the model behave functionally equivalent.

4 CASE STUDY
For our case study, we had to migrate an existing legacy C imple-
mentation to a new MDE toolchain employing the ANSYS SCADE
Suite, a model-based development environment for embedded soft-
ware with a focus on safe and secure systems. Development in the
SCADE Suite can be performed using model-based development, as
the graphical diagrams are composed of blocks, connected by edges
representing the data flow between the blocks. These diagrams can
be converted to their textual Scade 6 [12] representation, which is
also a preprocessor step in the code generation process.

The formal background language Scade 6 is based on Lustre
[12], but incorporates features from Esterel [6, 7] and SyncChart
[1], functional language arrays and iterators [25] as well as Lucid
Synchrone [11]. SCADE features the certified KCG code generator,
which generates efficient, deterministic code. The execution order is
based on dependencies, not on the diagram’s layout or any hidden
properties.

The SUT consisted of an automotive control software unit, de-
signed to run inside a feedback loop. Since this is exactly the domain
which the ANSYS SCADE Suite is suited for, a manual transfer of
the model could be performed after the original implementation

was analyzed. Due to the non-disclosure agreement (NDA) signed
with the industrial partner, no further details can be given about the
unit implementation or the surrounding software architecture. Al-
though we are unable to share details about the original system, the
unit on which the case study was performed does surpass four-digit
source lines of code (SLOC) and is part of an integrated production
vehicle system. In a manual code-to-model transformation process
spanning three-digit man hours, small deviations in behavior oc-
curring mainly in edge cases, turned out to be the most time- and
thus cost-intensive issues.

As the SUT performed a lot of complex calculations, it was de-
termined that a white-box view into the original system would aid
in development and validation. Although a static transfer of the
black-box tests for the original system gave away information on
whether the function passes the original test cases, it did not allow
to deduce exactly where potential modeling errors did happen. Us-
ing the white-box scenarios generated during runtime, we were
able to effectively identify parts of the model that behave different
than the original implementation and adjust the model behavior
accordingly.

When transferring from C code to a SCADE model, the local
variables declared in the C implementation can be systematically
transferred to the model. By performing this mapping, test cases
can include variables that are not directly output. These test cases
were then generated by modifying the original unit source code,
printing a variable’s value at the end of its scope or at the end of
each cycle. Also including the variables that are set and checked in
the original test cases, the program output now provided a white-
box view into the system. By adapting the output to the SCADE
test scenario definition language, we had effectively created a low-
maintenance way to check for the functional equivalence of code
and model using the SCADE Test Suite.

In addition to this, we also managed to transfer the original test
cases developed for the C code automatically. By embedding the test
scenario generation into the unit implementation, the approach is
independent from the actual execution of the testing. How the unit’s
functions are actually triggered is not relevant, only which variables
are set to a specific value and which output values are expected for
which variable. Since this mapping is inherently present in every
defined test case, it does not need to be additionally produced.

Overall, this approach automated a good part of the required
workflow and we found it to be generally applicable. It has proven
to be adaptable, allowing for the systematic development of ANSYS
SCADE models from legacy C code with good test suites.

As we are unable to share the extensive case study performed,
we have worked out a small practical example to showcase the
approach. Several of the properties exhibited in the original system
are present in this example as well, although the scope is severely
reduced. Nonetheless, the example in the upcoming subsection
serves mainly to highlight which changes are required to the source
code, how a code-to-model transformation could look like in this
limited scope and which information is provided by the generated
test scenarios.
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1 uint8_t voltageViolationDetection(uint32_t d_voltage_component , uint32_t q_voltage_component) {

2 /* Output input variable values directly after they have been set */

3 WHITEBOX_INPUT_UI32("d_voltage_component", d_voltage_component);

4 WHITEBOX_INPUT_UI32("q_voltage_component", q_voltage_component);

5
6 /* Local variables declared only in this scope */

7 uint64_t feedback_voltage_vector;

8 uint64_t adjusted_voltage_feedback;

9
10 /* Checks to determine current operation point */

11 feedback_voltage_vector = (( uint64_t)d_voltage_component * (uint64_t)d_voltage_component)

12 + (uint64_t)q_voltage_component * (uint64_t)q_voltage_component));

13 adjusted_voltage_feedback = (feedback_voltage_vector * voltage_adjustment_factor)

14 >> FACTOR_PRECISION;

15
16 /* Check for voltage violation , set current cycle bit and shift register */

17 if (adjusted_voltage_feedback > allowed_voltage_feedback) {

18 voltage_violation_counter |= 1;

19 }

20 voltage_violation_counter <<= 1;

21
22 /* Output non -input variable values between last alteration and end of scope */

23 WHITEBOX_LOCAL_UI64("d_voltage_component", feedback_voltage_vector);

24 WHITEBOX_LOCAL_UI64("q_voltage_component", adjusted_voltage_feedback);

25
26 WHITEBOX_OUTPUT_UI8("voltage_violation_counter", voltage_violation_counter);

27 return voltage_violation_counter;

28 }

Listing 1: Example of C source code modified according to Algorithm 1

<company> C_Transfer_1/C_Transfer Fri Aug 07 08:24:31 2020 1

voltage_violation_counter

R ²

R ²

feedback_voltage_vector

FACTOR_PRECISION

adjusted_voltage_feedback

FBY

d_voltage_component

q_voltage_component

allowed_voltage_feedback

voltage_adjustment_factor

1

22 voltage_adjustment_factor

75000000

allowed_voltage_feedback

CAST

uint64

CAST

uint64

LSB_POSITION

CAST
3

uint64

CAST
4

uint64

1   0 0 l

Figure 2: SCADE implementation of the code shown in Listing 1

4.1 A Small Practical Example
Code listing 1 gives a small example of a C function implementa-
tion already extended as per Algorithm 1. In the given example, the
code snippet is separated as a function, which defines its scope. The
function parameters are input variables of the test case, such that
they are output directly in the beginning. Two local variables are de-
clared, feedback_voltage_vector and adjusted_voltage_feed

back, for which output statements are added after their last alter-
ation, but before the end of the scope. The function returns one
variable, voltage_violation_counter, which is not part of the
local scope but is used as output for the test case and as such is
returned after alteration and before the end of the cycle. Although
explicitly construed to showcase the approach, this example re-
sembles a rudimentary supervision function for the detection of
voltage violations in a system employing direct-quadrature-zero
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Figure 3: Excerpt of test results when executing generated white-box tests on the SCADE model in Figure 2

transformation on three-phase currents, utilized for motor control
[26].

The original source code for this scope block has only been
altered by application of the algorithm in the addition of lines 2–3,
22–23 and 25 calling header macros prefixed with WHITEBOX. The
macros expect a string representing the variable name and the
corresponding value, each macro is dependent on the data type and
as such has a postfix determining the type. We used header macros
that write to the standard output device (stdout), since the original
function did not produce any output there and it could easily be
captured and rewritten to a file.

Note that formally, this example defines: varnames𝐶,𝑖𝑛 = {d_com
ponent, q_component}, varnames𝐶,𝑜𝑢𝑡 = {voltage_violation_
counter} and varnames𝐶 = varnames𝐶,𝑖𝑛∪varnames𝐶,𝑜𝑢𝑡∪{feed
back_voltage_vector, adjusted_voltage_feedback}.

For variables that are considered to be input, output shall occur
directly after the variable is altered. Assertion of correct output
values are part of the original test execution process already and
require no modifications. The information on whether the test
case is completely passed by the original implementation is still
essential to the process. Variables that are to be checked and that
not part of the local execution scope are to be output at the end of
each cycle. In our implementation using the header definitions, the
macros WHITEBOX_LOCAL_<type> and WHITEBOX_OUTPUT_<type>
produce SSM::CHECK statements while the WHITEBOX_INPUTmacro
takes the same parameters, but outputs SSM::SET in the beginning.
The macro for local variables is simply an alias for the output macro,
added for better readability.

Figure 2 shows an excerpt of a SCADE model that shall be tested
for functional equivalency. This model is a result of the manual
code-to-model transfer process. Most of the used building blocks
are basic arithmetic operators or comparisons that resemble their
counterpart in the source code, since SCADE uses native C types,
even the numeric cast operations are the same. The main difference
of code and model is the use of the FBY-operator in SCADE, which
allows to reuse the variable value from a previous iteration. In
this example, it is used to make the voltage_violation_counter
stateful, in a way similar to C global variables preserving state
over several function calls and iterations. Note that the variables
voltage_adjustment_factor and allowed_voltage_feedback

are defined outside of the function scope in the C code and thus
the model references these from outside the shown scope as well.

By executing a test case using the modified implementation
from Listing 1, valid SCADE test files are generated which can be
executed in the SCADE test environment. In Figure 3 we show an
excerpt of four test cycles in the SCADE test environment using
the test scenario shown in Listing 2 as generated by the modified
implementation.

In the given figure, the output of the function is as expected and
the values of the local variables conform to those in the C imple-
mentation as well. The original black-box test case used here tests
the behavior around the boundaries of the maximum allowed feed-
back voltage, checking for the correct detection of errors, register
shifting and application of bitwise operations. The desired behavior
is thus, in this case, accurately reflected in the manually created
SCADE model.

Using the detailed method, the test case could be transferred
automatically and extended with runtime information, namely the
actual values of the local variables. As long as the variable mapping
as well as the set of input and output variables does not change,
no further modifications to the original source code are required.
Any number of tests can be run and valid SCADE test scenarios
will be output, allowing for the automated transfer of a large test
suite easily.

5 DISCUSSION
Before starting the project, we did extensive research on the topic
of code-to-model-transformation, program transformation in gen-
eral as methods to assert functional equivalency of code. We knew
that this was a rather unusual domain and that model-to-code-
transformations were a lot more common, as every major model-
based development suite ships with a certified code generator. But
that code-to-model transformations were not only uncommon, but
research about the topic was very rare and scarce limited us in
the beginning. We found the developed approach to be a resource-
ful way to solve the equivalence testing problem and having the
white-box information available helped immensely during the de-
velopment of the function.

In our experiments we have seen that the OMCDC coverage
of the SCADE tests correlates with the MC/DC coverage of the
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1 SSM::set C_Transfer/d_voltage_component 443000

2 SSM::set C_Transfer/q_voltage_component 434000

3 SSM:: check C_Transfer/feedback_voltage_vector_probe 384605000000

4 SSM:: check C_Transfer/adjusted_voltage_feedback_probe 2115327500000

5 SSM:: check C_Transfer/voltage_violation_counter 0

6 SSM:: cycle

7 SSM::set C_Transfer/d_voltage_component 455000

8 SSM::set C_Transfer/q_voltage_component 455000

9 SSM:: check C_Transfer/feedback_voltage_vector_probe 414050000000

10 SSM:: check C_Transfer/adjusted_voltage_feedback_probe 2277275000000

11 SSM:: check C_Transfer/voltage_violation_counter 1

12 SSM:: cycle

13 SSM::set C_Transfer/d_voltage_component 443000

14 SSM::set C_Transfer/q_voltage_component 434000

15 SSM:: check C_Transfer/feedback_voltage_vector_probe 384605000000

16 SSM:: check C_Transfer/adjusted_voltage_feedback_probe 2115327500000

17 SSM:: check C_Transfer/voltage_violation_counter 2

18 SSM:: cycle

19 SSM::set C_Transfer/d_voltage_component 455000

20 SSM::set C_Transfer/q_voltage_component 455000

21 SSM:: check C_Transfer/feedback_voltage_vector_probe 414050000000

22 SSM:: check C_Transfer/adjusted_voltage_feedback_probe 2277275000000

23 SSM:: check C_Transfer/voltage_violation_counter 5

24 SSM:: cycle

Listing 2: Excerpt of a test scenario generated by the modified implementation

C code test suite. With 100% MC/DC in the original test suite we
could achieve 100% OMCDC in the generated SCADE tests as well.
Following the original case study, the developed approach could be
generalized, such that it could be applied to future projects easily.

The initial intent was to automatically transfer the existing test
cases to SCADE scenario files, independent of the way the testing
is performed. Using runtime information allowed us to hook into
the processes that were being executed directly, regardless of how
they were triggered. This also enabled us to extract even more
valuable information showing not only input-output equivalence,
but providing a full assertion of functional equivalence.

Should black-box tests be preferred, the test scope can be reduced
to the original test suite. With the mapping reduced to the input
and output variables of the original test case only, the algorithm can
be further simplified and the modifications required to the original
source are reduced even further.

6 CONCLUSION AND FUTUREWORK
We acknowledge that the domain of code-to-model-transformation
is still rather small, but are convinced that it is a viable solution
with regard to the legacy problem. When the toolchain undergoes
a major change, in our example switching from a code-oriented
development approach to a model-based one, supporting an older
toolchain just for legacy modules becomes increasingly inefficient.

Transferring an implementation from one language to another
can be automated, source-to-source transformations between high-
level languages are performed by transpilers. These tend to focus on
a mapping of the abstract syntax trees (ASTs) between to languages,
adapting the syntax of one language to the other. For languages

that differ in the programming paradigm, some transfer of concepts
might be introduced.

The formal language behind the ANSYS SCADE Suite is a syn-
chronous, declarative programming language. By manually creat-
ing a model based on the C code, we have effectively manually
transferred a program from the C programming language into the
Scade 6 formal language. We have then shown that it is possible
to automate the testing for functional equivalency using empirical
validation that can be used fully independent of the way the test
cases are written or executed.

The listed Algorithm 1 has until now only been performed manu-
ally. Modifications required to the original source code are minimal
and straightforward and can usually be carried out in a matter of
minutes. But still, manual processes tend to be error-prone. The
algorithm has yet to be implemented, allowing for automatic adap-
tation of the source code. This could for example be done using a
combination of static code analysis or by running the executable in
an environment providing additional debugging hooks. This could
also enable to automatically determine whether the code can be
converted to a SCADE model or not, e.g. because of incompatible
control flow.

Ultimately, an automated transfer of C code to ANSYS SCADE
models could be developed. For this, the subset of C implemented
by the Scade 6 formal language needs to be identified exactly and a
full mapping of the C subset and the Scade 6 language needs to be
performed. By limiting the subset further, parts of this transforma-
tion could be developed independently, allowing for the automated
modelling of different concepts, which ideally could be merged
together.
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