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Abstract—Safety-critical automotive functions are required to 
satisfy stringent safety requirements. To guarantee the safety of 
such functions, their conformance with industry approved 
standards as well as statutory regulations must be ensured. 
Testing is the main method for checking automotive system 
functions, yet testing is incomplete and cannot show correctness. 
Inherent uncertainties in the physical environment introduce 
non-determinism in testing, increasing the difficulty of 
replicating environmental stimuli relevant for edge cases, and 
thus, the effort invested in road tests to produce statistical 
significance. Formal verification techniques are able to show 
correctness and are recommended for functions with higher 
automotive safety integrity levels (ASIL), e.g. for ASIL D. 
However, formal verification has scalability issues in case of 
highly complex automotive systems and heterogeneous sensor 
data received as inputs. To address these challenges, this paper 
proposes a novel architecture-based approach, which combines 
data-driven methods with formal methods for the verification of 
safety-critical automotive functions, with consideration of the 
system decomposition within the functional system architecture. 
We illustrate the application of our concept on two industrial 
automotive functions, speed estimation and exhaust 
aftertreatment, and report on results and lessons learned. 

Keywords-safety-critical automotive functions; data-driven 
methods; formal verification methods; automotive software 
architectures; system verification test 

I.  INTRODUCTION 

Safety-critical automotive functions are subject to 
stringent safety requirements, since any error in the function's 
behavior can cause a system failure, and thus in worst case, 
can endanger the safety of the vehicle's occupants and the 
integrity of the physical environment. In order to guarantee 
the safety of such functions, their conformance to the industry 
approved standards and norms as well as to the statutory 
regulations must be ensured. 

Testing is the main method for the verification of 
automotive functions, as required by the automotive standard 
ISO 26262 (cf. [17], [18]). However, testing can show the 
presence of errors in a system, but is not adequate to show 
their absence (cf. [11]). Thus, testing is incomplete and cannot 
prove the correctness of the system under test with respect to 
the defined safety requirements. To be certified as safe with 
fulfillment of its designated ASIL, a safety-critical automotive 
function must pass specific tests, e.g. road tests required by 
ASIL C/D. The inherent uncertainties in the physical 

environment contribute to non-determinism in testing, making 
it more difficult to replicate inputs relevant for edge cases. 
This phenomenon increases the level of effort necessary to be 
invested in road tests in order to produce statistical 
significance. 

In contrast to testing, formal verification methods can 
prove correctness (cf. [9]) and are recommended by the 
standard ISO 26262 for the verification of automotive 
functions with higher ASIL (cf. [18]). However, formal 
verification suffers from scalability issues in the case of highly 
complex automotive functions, which receive heterogeneous 
sensor data as input from their environment. During the 
vehicle's operation, an automotive function exchanges 
constantly data with the other hardware and software systems 
in the vehicle's technical environment, but may also receive 
input via external perception sensors from the vehicle's 
surrounding physical environment. For example, the data 
exchange between the function under investigation and the 
other vehicle systems relies on the communication bus system 
including its process of data quantization, which can lead to 
deviations from the original data. Furthermore, the quality of 
the sensor data received from the physical environment can 
vary time-dependently due to changes in the environmental 
conditions. A typical example here is the global positioning 
system (GPS) data quality, which depends on the vehicle's 
signal reception from the satellites of the global navigation 
satellite system (GNSS). The GNSS signal reception can be 
susceptible to errors due to the presence of obstacles between 
the vehicle and the GNSS satellites, e.g. large buildings in 
urban area or tunnels. 

Research Focus. In order to address the challenges 
presented by testing and formal verification methods, this 
paper proposes a novel hybrid approach which combines data-
driven and formal methods for the verification of safety-
critical automotive functions. Our approach is embedded 
within the development process of safety-critical automotive 
functions and uses the development artefacts as inputs for the 
verification of these functions. Thus, the approach takes the 
functional architecture of the automotive function as a basis 
and splits up the modules, which are later analyzed with data-
driven techniques from the modules investigated with help of 
formal methods. The data-driven techniques are applied on 
modules, which handle sensor inputs with uncertain data 
quality, in order to obtain a worst-case estimation of the 
module result based on assumptions about the sensor inputs 
and constraints with consideration of physics laws. The formal 
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methods are used to check system modules with deterministic 
computations against the defined system-level safety 
requirements. Through text substitution similar to Hoare 
calculus (cf. [16]), the safety requirement of the automotive 
function is gradually refined into sub-requirements for the 
worst-case estimation. The results of the worst-case 
estimation are checked against the derived safety requirement. 
If the derived sub-requirements are satisfied, then it can be 
said that the automotive function is conform with respect to 
the original system-level safety requirement. In order to 
evaluate the proposed concept, we have constructed two case 
studies about two industrial automotive functions, speed 
estimation and exhaust aftertreatment, and report on results 
and lessons learned in the following sections of this work. 

II. RELATED WORK 

The interaction of automotive functions with their 
environment as well as the wear and tear suffered by the 
hardware components on which these functions are executed 
can cause faults in the automotive system and in time can lead 
to a degradation of its performance. Fault diagnosis can be 
used to preempt the effects which faults have on the system's 
performance, by identifying and compensating for fault 
conditions, regardless of the system's operational mode (cf. 
[24]). Various works have surveyed the field of fault diagnosis 
and fault-tolerant techniques. Although these surveys present 
slightly different taxonomies by which they classify the 
research done in this area, a few categories of fault diagnosis 
approaches stand out: signal-based (cf. [14], [19]), model-
based (cf. [23], [24], [19]) and data-driven (cf. [23], [13], [19])  
or knowledge-based (cf. [13]). Model-based fault diagnosis 
relies on models that describe a relationship between the 
measured inputs and outputs of the function under analysis. 
This is often modeled with equations which describe the 
physical phenomenon taken into consideration in the 
automotive function (cf. [24]). Signal-based methods extract 
features from measured signals and base their diagnostic 
decision on  analysis of signal patterns and on prior knowledge 
of what signal patterns look like in healthy systems (cf. [14]). 
Instead of using models which characterize physical 
phenomena, data-driven fault diagnosis uses historic data to 
generate a model, that mathematically relates system inputs 
with the system outputs (cf. [24], [13]). Regardless of the 
method, fault diagnosis detect faults, which originate in the 
system's hardware and software, thus contributing to the 
improvement of the system's functional safety. However, 
diagnosis methods cannot detect errors, which occur due to 
the unforeseen environmental conditions and cannot ensure 
the correctness of the system with respect to the system-level 
requirements. 

Formal verification can ensure correctness with respect to 
defined requirements. The verification approaches range from 
theorem proving to model checking. Theorem provers like  
ISABELLE/HOL [4] can handle infinite state spaces, but are 
semi-automated, due to the user input needed to carry out the 
proof. Model checking tools are fully automated, but can work 
only on finite state models. Some model checkers can verify 
formal system models against their system-level 
requirements, e.g. UPPAAL [3]. Other model checkers execute 

the source code of the system in order to verify it, e.g. 
PATHFINDER [27], requiring appropriate orchestration in order 
to execute all possible situations. PRISM [22] and STORM [10] 
offer mechanisms to handle stochastic system inputs and non-
deterministic system behavior. Although it has achieved 
important results throughout the years, highly complex 
industrial systems represent a challenge for formal 
verification due to the scalability issues. 

III. VERIFICATION OF SAFETY-CRITICAL AUTOMOTIVE 

FUNCTIONS BY A COMBINATION OF DATA-DRIVEN AND 

FORMAL METHODS 

An overview of our concept is depicted in Figure 3. The 
proposed approach for the verification of safety-critical 
automotive functions is integrated with the V-model, which is 
the standard system development process also used in the 
automotive industry. To illustrate our concept, a simple 
function, called FM, is used as an example. The function has 
two inputs  and , and computes one output parameter 

. Based on the input , the function under analysis 
estimates the parameter , which is then checked for 
plausibility. Based on the result of the plausibility check 

 and on the input  the function FM computes the 
final result . The architecture of the function under 
analysis depicts five modules M1 to M5, which are used for 
the realization of the function's computations. The five 
modules are connected to each other through their respective 
interfaces. The concept shows based on this example function 
the steps necessary for the verification of safety-critical 
automotive functions. These steps represent intuitively the 
respective development phases of the V-model. 

Requirements Analysis. In this phase, the standards and 
norms as well as the statutory regulations with which the 
automotive function under analysis must comply are 
analyzed. The goal of this phase is to derive the system-level 
safety requirements as well as the assumptions and the 
physical constraints under which the function is supposed to 
operate. For the example function in Figure 3, the system-
level safety requirement is formulated on the computation 
result , as shown in (1):  

 
.                (1) 

 
There are several assumptions placed on the inputs of the 

function under analysis, shown in (2) and (3): 
 

              (2) 
,         (3) 

 
 
meaning that the input  is situated in the interval [-1, 10] 
with a probability of 0.75 and a uniform probability 
distribution, while the input parameter  takes values in the 
interval [-2, 2]. Furthermore, there are lower and upper bounds 
defined for the estimated parameters  and 

: 
 

.         (4) 
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These bounds are understood as physical constraints 
enforced by the laws of physics or due to the chosen vehicle 
configuration. 

Construction of the Abstract System Model. The 
verification process is not carried out directly on the 
implementation of the investigated automotive function. 
Instead, a functional abstraction of the function's 
implementation is created using mathematical functions, 
which can work on infinite domains. Stream processing 
functions, introduced by Broy [6], can receive as inputs and 
produce as outputs infinite data streams. For these reason we 
consider stream-processing functions to be an appropriate 
computational model for the description of the automotive 
function's abstraction. Each of the modules in the function 
under analysis as well as the entire function are modeled as 
stream processing functions as defined in [6]. Figure 1 gives a 
visual intuition of this notion, using the mathematical function 

 as an example. 

Figure 1. Visual intuition of stream processing functions. In this example, the 
function f( ) = 2. 

 
Time is a further issue addressed in the abstract system 

model of the function under analysis. Automotive functions 
are often composed of modules, which have different clock 
cycles. In order to simplify the verification of the function 
under analysis, its abstract model introduces a representation 
of time as a sequence of system states (see Figure 2). Such an 
approach guarantees that different clock periods of the 
modules in the function can be handled in a uniform manner. 

 

Figure 2. Modeling time in the abstract system model. 

 
The final concern in the modeling process of the 

automotive function is finding a consistent systematic which 
serves as a guiding principle in this process. Our systematic 
consists of six parts, which is carried out for each of the 
function's modules as well as for the entire function under 
analysis: (1) data type definitions for function's inputs, (2) data 
type definitions for function's outputs, (3) data type definitions 
for function's intermediary results, (4) definitions of function's 
application parameters, (5) declaration or signature of the 
corresponding abstract mathematical function, and (6) 
definition of the abstract mathematical function. The defined 
data types built an abstract data type system, with operations, 
which abide by mathematical laws, independently of how the 
concrete data types are implemented in the automotive 

function and represented on the target system. Notice that the 
declaration and the definition of an abstract mathematical 
function are the same notions as in programming. Thus, the 
declaration of a function is in fact its signature, while the 
definition of the function constitutes its block in which the 
function's computation steps are described. 

In order to demonstrate how our systematics works, we 
apply it on the automotive function FM, introduced as an 
example in Figure 3. The data type definitions for the inputs 

 and  and the output  are given in (5) – (7). 
 

         (5) 
         (6) 

.         (7) 

 
The data types for the intermediary results  and 

 of the function FM are given in (8) and (9). 
 

        (8) 
.        (9) 

 
Following the definition of the data types, (10) and (11) 

give the declaration or the signature of the corresponding 
mathematical function 

 
            (10) 

,      (11) 

 
while its definition is shown in (12) – (15): 
 

         (12) 
         (13) 

     (14) 

.         (15) 
 

Notice that the definition of the mathematical function FM 
is formulated through a \emph{walk back} from the function's 
output towards its inputs, which is similar to the notation in 
functional programming. The intermediary results described 
in the definition of the function FM are directly associated 
with the interfaces of the function's modules. Thus, the formal 
description of the abstract system model is intuitively linked 
to the architecture of the automotive function under analysis, 
which plays a central role later in the system verification test. 
System Validation Test. The system validation test consists of 
road tests carried out with the test vehicle in the real physical 
environment. Besides testing the fully assembled test vehicle 
in the real environment, a further goal of the system validation 
test is to gather sensor data, which can be used to validate the 
assumptions derived during requirements analysis. 

System Verification Test. The system verification test is 
realised through the hybrid approach proposed by this paper, 
which combines data-driven worst-case estimation with 
formal methods in order to verify the automotive function 
under analysis. The worst-case analysis is carried out on those  
 

- Input Data Stream 
- Output Data Stream

……

Past of state Future of state

…

Initial state Current state
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modules of the automotive function, which handle non-
determinism and inputs with uncertain data quality, while 
formal verification methods are applied on the modules with 
deterministic behavior. Since the abstract model description is 
linked to the architecture of the function under analysis, the 
separation of the application of the data-driven approach and 
the formal methods approach at module level follows the 
modules' interfaces defined in the function's architecture. In 
the example function displayed in Figure 3 the data-driven 
analysis is carried out over the modules M1 to M4. Firstly, 
module M1 estimates the quantity  based on input 

. As shown in (2),  is situated in the interval [-1, 10] in 
75% of the time with a uniform probability distribution. 
Applying the computation of module M1, it follows that the 
quantity  is in the interval [0, 11] with a probability 
of 0.75. Next, the estimated value is checked for plausibility 
against the physical constraints defined in the requirements 
analysis phase. Only the plausible values, which are strictly 
situated between the lower bound  and the upper bound 

 are taken into consideration, while all the other values 
are discarded. Thus, modules M3 and M4 are cut off from 
further computations of the function under analysis. Through 
the computation of the module M2, is in the interval 
[0, 11] with a probability of 0.75. 

The formal methods approach starts from the system 
requirement imposed on the output parameter  and is 
applied on the module M5. This is where the definition of the  
mathematical function FM from the function's output towards 
its inputs plays a decisive role. It allows the usage of text 
substitution in a similar way to the Hoare calculus [16], in 
order to derive the requirement for . Starting with the 
system-level requirement in (1), we apply text substitution and 
obtain the implication in (16): 

 

  

.       (16) 

 
In this way, we have derived the requirement for 

which can be checked against the worst-case 
estimation delivered by the data-driven approach. It is fairly 
easy to observe that for  the estimated interval is a 
subset of the required value interval: , 
meaning that the worst-case estimation for  satisfies 
its derived requirement. Due to the uncertainty in the 
estimation expressed through the probability distribution, the 
derived requirement, and by transitivity, the system-level 
requirement are satisfied with a confidence level of 75%. 

Notice that the method of text substitution can be applied 
manually to fairly simple examples of software modules. 
However, in the automotive domain, system functions are 
often composed of a large number of modules, sometimes 
with several hierarchy levels in their architecture. Although 
the modules selected for the formal methods approach may 
have deterministic behavior, they can still be very complex so 
that it is not feasible anymore to apply formal methods 
manually. Instead, an automated verification method is 
employed. For this purpose, the corresponding mathematical 
functions are translated into the suitable modeling language of 
the verification tool of choice, thus building a stand-alone 
system model. The system-level requirements are formulated 
into the specification language that is accepted by the 
verification tool. The results of the data-driven estimation are 
taken as assumptions for the modules under formal 
verification. The goal of formal verification is to answer the 
question whether the system model satisfies the given system 
requirement under the estimated assumptions. 

IV. CASE STUDY 1: AUTOMOTIVE FUNCTION FOR SPEED 

ESTIMATION 

The first case study is based on an industrial automotive 
function for speed estimation. From the perspective of 

Figure 3. System development process enhanced with data-driven analysis and formal methods. 
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technical feasibility, precise measurements of a vehicle's 
speed are already possible with high-quality reference 
measurement systems, e.g. inertial measurement units (IMU) 
or differential GPS (D-GPS). However, the usage of such 
measurement systems is expensive for the automotive original 
equipment manufacturers (OEMs), and if mounted in series 
vehicles, cost-prohibitive for their end users. Therefore, in 
commercialized series vehicles the speed estimation is 
performed with an accepted tolerance level, without using a 
reference measurement system. Vehicle speed estimation is a 
safety-critical automotive function, since the estimated speed 
is used as input to other driving assistance systems relevant 
for the vehicle's safety, e.g. adaptive cruise control (ACC) or 
speedometer. Recent algorithms for the vehicle speed 
estimation strongly rely on vehicle's wheel speed, which can 
be measured with onboard sensors. However, for the 
calculation of the vehicle speed, the estimation algorithm also 
requires the tire circumference of the vehicle. The vehicle’s 
tires have diverse deformations in different driving situations, 
due to the inherent elasticity of rubber. Furthermore, this 
deformation is influenced by other non-deterministic 
environmental factors, e.g. the temperature in the physical 
environment or the road conditions, making it impossible to 
obtain an exact value for the tire circumference of a driving 
vehicle. Thus, a precise approximation of the tire 
circumference becomes a fundamental point for the vehicle 
speed estimation. Automotive engineers have patented diverse 
approaches to estimate the vehicle’s speed as precise as 
possible (cf. [20], [12], [26], [21]). In the course of this case 
study, an automotive OEM partner granted us access to their 
speed estimation function. The function was designed with the 
goal to fulfill relevant requirements defined in the European 
New Car Assessment Program (Euro NCAP). In this function, 
a redundant GPS system delivers a reference vehicle speed. 
This reference speed has potentially a large deviation to the 
ground truth speed, which can get exponentially higher due to 
strong temporal dependencies, especially in the cases with 
poor reception of GPS signal. For these reasons, the reference 
speed is not used directly for the speed display on the vehicle's 
instrument board. Instead, an estimation of a reference value 
for the tire circumference is carried out. The reference tire 
circumference is then integrated with an approximation of the 
tire circumference carried out by additional mechanisms, 
which rely on assumptions made about various sensor inputs 
that are used depending on different situations. Due to the 
non-disclosure agreement (NDA) signed with the OEM 
partner, further details about this function are excluded from 
this paper. The OEM partner provided us with the 
implementation of the speed estimation function itself and 
gave us access to a large amount of test data collected in field 
tests with the respective vehicle sensors used in the speed 
estimation function. 

Requirements Analysis. Speedometers have been 
integrated in the car at the beginning of the 20th century. The 
role of the speedometer is to indicate the instantaneous speed 
of the car in miles per hour (mph), kilometers per hour (kmh), 
or both. The initial European regulation [25] has imposed the 

                                                           
1 https://www.euroncap.com/en/for-engineers/protocols/safety-assist/ 

following requirement for the deviation between the 
visualized speed on the speedometer and the real ground truth 
speed:  under 

the assumption that , where  

is the speed displayed on the dashboard of the ego-vehicle, 
and  is the actual vehicle speed. A more restrictive 
regulation has been passed in the Euro NCAP program1, 
which requires for new vehicles that the speed estimation 
function satisfies the requirement in (17): 

 
,        (17) 

 
under the assumption that 
 

.           (18) 

 
The lower bound of the deviation between  and 

 is set to zero, especially due to the safety reasons. This 
means that the visualized vehicle speed should never undercut 
the lower bound, since the driver or the assistance system 
might decide a too conservative braking strategy, possibly 
leading to collision risk, once the displayed speed is lower 
than the ground truth. The Euro NCAP requirement in (17) is 
considered the system-level requirement of the speed 
estimation function. Further assumptions have been 
formulated with respect to the quality and the availability of 
the GPS signal and of the wheel speed data, the maximum tire 
deformation per second as well as the error deviation due to 
the quantization on the CAN bus. The physical constraints 
with respect to the estimated tire circumference have been 
derived from the configuration of the target vehicle. Concrete 
examples of assumptions and physical constraints are 
prohibited from publication by the signed NDA. 

Construction of the Abstract System Model. The 
implementation of the speed estimation function has been 
realized in MATLAB/SIMULINK by the OEM partner. The 
functionality of the function has been implemented in five 
large modules which in turn contained 13 submodules situated 
on four hierarchy levels. The abstract system model of the 
speed estimation function is divided into four large modules, 
which are responsible for (1) estimation of tire circumference, 
(2) plausibility check of the tire circumference, (3) 
computation of the vehicle speed, and (4) post processing of 
the computed vehicle speed. The model has 14 input 
parameters, 24 application parameters and one output 
parameter. Further details about the abstract system model are 
excluded from this paper. However, a high-level overview of 
the speed estimation algorithm is given in Figure 4. 

System Validation Test. The test data has been collected 
with the wheel speed and GPS sensors used by the speed 
estimation function in road tests carried out by the OEM 
partner. Based on an analysis of the test data, we were able to 
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validate the assumptions and constraints formulated in the 
requirements analysis phase.  

System Verification Test. The system verification test 
consists of the data-driven worst-case estimation of the tire 
circumference and the formal methods approach for the 
derivation of requirements for the estimated tire 
circumference using the system-level requirement. The worst-
case estimation of the tire circumference is carried out based 
on the assumptions made in the requirements analysis phase. 
The requirement for the estimated tire circumference is 
derived using the text substitution method introduced in 
Section 3. The concept was applied iteratively on several 
versions of the MATLAB/SIMULINK model of the speed 
estimation function. The results of the system verification test  
have shown that a first version of the speed estimation 
function did not satisfy the Euro NCAP requirement. 
However, the verification test results obtained on its first 
MATLAB/SIMULINK model allowed us to make suggestions for 
improvements of the speed estimation function. These 
improvements focus on limiting the effect of non-
deterministic factors, e.g. quality of GPS signal, on the 
estimation result by constraining the respective factor within 
a certain value range through assumptions made during the 
development process. The system engineers of the OEM 
project partner took these suggestions and, based on them, 
created a second version of the speed estimation function. The 
improved model was again verified with the concept proposed 
in Section 3, the results showing that the improved function 
satisfies the system-level requirement with a confidence level 
of 95%. The part of the abstract system model consisting of 
deterministic modules has also been checked with the model 
checker STORM against the system-level requirement. For this 
purpose, this part of the abstract model has been translated 
into the PRISM language and the system-level requirement has 
been formalized in probabilistic computational-tree logic 
(PCTL). Although PRISM is an expressive modeling language, 
it does not support all concepts used in software development, 
e.g. loops and division. In order to implement these 
components, a preprocessor is developed in Python, which 
reads the preformatted model with specific placeholders as an 
input file and, depending on the application parameters, 
generates a complete, verifiable PRISM model. Further 
constraints are made on the input parameters of the model as 

                                                           
2 https://www.etas.com/de/ 

well as on their discretization step in order to make the PRISM 
model verifiable. The verification results showed that the 
constrained abstract system model satisfies the system-level 
requirement. 

V. CASE STUDY 2: AUTOMOTIVE FUNCTION FOR EHAUST 

AFTERTREATMENT 

The second case study of this paper is based on an 
automotive system function provided by our automotive OEM 
partner. This function is part of the overall exhaust 
aftertreatment system in diesel engines, which controls the 
returning of a portion of the exhaust gases back to the burning 
process, in order to reduce the overall exhaust production of 
the vehicle. An abstract overview of the automotive function 
located in the low-pressure part of the exhaust aftertreatment 
system is shown in Figure 5. 

 
In general, engines in older vehicles use fresh air to burn fuel 
in the engine and return all of the exhaust to the environment 
(see Figure 5). However, this is bound to violate laws and 
regulations regarding environment protection. In contrast, 
modern engines return a portion of exhaust to the burning 
process, so that the vehicle's overall production of exhaust 
gases is reduced. Despite a portion of the exhaust gases being 
returned to the burning process, the engine still has to deliver 
the expected power during driving and efficiently burn fuel. 
In order to keep the burning process efficient, a software-
controlled valve is used to deliver an optimal ratio between 
fresh airflow and the returned exhaust gas flow. 

Since we had no access to other technical components 
communicating with the function under investigation, the 
focus of this case study lied solely on the formal verification 
of the software used to control the valve. The software is an 
ASCET2 model organized in five modules, each with several 
hierarchical layers, and using block diagrams and C code. The 
ASCET model is executed cyclically to convert a potentially 
infinite input stream to an output. The model calculates a set 
value as a pressure instance  based on an actual value 

Figure 5. Abstract overview of the low pressure exhaust 

aftertreatment subsystem (cf. [28]). 

Figure 4. Abstract overview of the speed estimation algorithm (cf. 

[1]). 
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 and several other inputs for the valve, which regulates 
the returning of the mass flow of exhaust gas to the mass flow 
of air. Due to its direct impact on environmental health, this 
automotive function is considered as safety-critical. 

Requirements Analysis. To start the verification process, 
the system-level requirement needs to be formalized. We 
received an informal requirement based on expert-knowledge 
of the OEM project partner. The informal requirement 
specifies, that the offset between the actual value  and 
the set value  shall not differ by more than . Based on 
the information received from the experts, this is a safety-
critical requirement since noncompliance with it reduces the 
percent of exhaust gas returned to the burning process. This 
leads on short term to violation of environment protection 
laws and on long term may cause imbalance to natural 
ecosystems and severe health issues for humans. The informal 
safety requirement is then analyzed and refined into a 
semiformal requirement, which requests that the distance 
between  and  shall not be greater than . 
The mathematical expression for the distance between  
and  is . A visual intuition of this 
semiformal requirement is shown in Figure . 

 
Since the components of the system are running with equal 

clock periods, time is considered to be discrete, which makes 
the formal verification easier. Linear temporal logic (LTL) is 
a formal logic which uses a discrete representation of time (cf. 
[2]). The LTL requirement of the exhaust aftertreatment 
function is: 

 
.         (19) 

 
Construction of the Abstract System Model. We created a 

mathematical abstraction  of the whole ASCET model. This 
mathematical model is built by applying the rules proposed in 
Section 3. Several decisions were taken during the 
construction of the abstract model in order to reduce its 
complexity. For example, several software design 
conventions used by the OEM partner were left out, e.g. 
replacing inputs passed by array elements with scalar 
variables. The data type domains have been defined based on 
the system documentation and expert knowledge, which also 
includes specific data quantization factors. Once the abstract 
system model was finished, we noticed that the formal 
requirement in (19) refers only to one submodule , which 
has just one hierarchy level in the abstract model, and with 14 
input arguments and one output argument in total. Therefore, 
we simplified further our abstract model, overapproximating 
the results of the other four submodules, which served as 
inputs to module , to reduce the overall space for formal 
verification. 

System Validation Test. In this case study, we had no 
access to test data collected via vehicle sensors as in the first 

case study. Instead, the OEM partner provided us with several 
characteristic curves for the valve pressure. 

System Verification Test. For a fully automated formal 
verification, we used KIND2 [8] which is a modern SMT-
based model checker using the synchronous programming 
language LUSTRE [15] to specify the system and COCOSPEC-
contracts [7] to express formal requirements. Due to LUSTRE's 
functional way to describe systems, the system model  
could be easily specified without losing the connection to the 
underlying abstract mathematical description. The formal 
requirement in Equation (19) was transformed into a 
guarantee-specification by leaving out the G (Globally) 
operator. The data type definitions of the mathematical 
abstraction provided us with the input domains for 

assumptions, expressed in LUSTRE language via assumes-
instructions.  

Even with the overapproximation of the other four 
submodules, KIND2 was not able to find a solution, due to the 
non-linear arithmetic in the module . To make the system 
verifiable, we cut out the part with non-linear arithmetic using 
the rules introduced in Section 3. During this process of model 
simplification, we analyzed a limiter with dynamic limits right 
before the output, which can be mathematically described as 
follows: 

 
,         (20) 

 
with . 

The analysis of the limiter function is depicted in Table 1. 
This table presents all possible use cases, enumerating the 
considered inputs and the total result of the composition of the 

- and -operator. In four of six cases the outcome will 
be . Further calculations of  do not result in non-linear 
arithmetic, therefore we verify this dataflow and consider it as 

, which has just two inputs parameters and one output. 
Additionally, we added functions for the quantization of 
inputs and outputs based on the mathematical description and 
functions that model the sensor errors within specific value 
ranges. 

 

TABLE 1. POSSIBLE DATAFLOWS ON THE LIMITER (CF. [28]) 

# Case  
1   

2   

3   

4   

5   

6   

 
The result of the formal verification of using KIND2 is 

shown in Table 2. We had four different characteristic curves, 
with different application parameters, one of which was 
provided by the OEM partner. We used three setup 
configurations for our evaluation: (1) no quantization errors 
and no measurement errors, (2) only quantization errors, and 
(3) quantization errors and measurement errors. The time 
KIND2 needs for delivering a result is also presented. Only the 
fourth characteristic curve was verified successfully under 
consideration of quantization errors and measurement errors 
(see experiment 12 in Table 2). The time it takes KIND2 to 

Figure 6. Requirement from the viewpoint of the distance between 

 and  (cf. [28]). 
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deliver the verification result is quite low, with the experiment 
12 as the most complex task needing 29.696 s to finish the 
verification. 

TABLE 2: RESULTS OF THE FORMAL VERIFICATION OF  USING KIND2. 

Exp. Setup Quanti-
zation 

Meas.  
Error 

Result Duration 

1 1 No No Falsifiable 0.144 

2 2 No No Correct 0.225 

3 3 No No Correct 0.268 

4 4 No No Correct 0.479 

5 1 Yes No Falsifiable 0.176 

6 2 Yes No Falsifiable 0.297 

7 3 Yes No Correct 17.776 

8 4 Yes No Correct 19.301 

9 1 Yes Yes Falsifiable 0.237 

10 2 Yes Yes Falsifiable 1.883 

11 3 Yes Yes Falsifiable 1.184 

12 4 Yes Yes Correct 29.696 

 

VI. DISCUSSION AND LESSONS LEARNED 

Due to the complexity of the abstract model of the speed 
estimation function, it was not possible to cover the original 
value range for all input parameters during automated 
verification. Instead, the lower and upper bounds defined for 
the parameter ranges originally through application 
parameters were adapted, and thus, more restricted versions of 
the model have been created, albeit without losing the 
characteristics of the abstract model. These constrained 
versions of the speed estimation's abstract model were 
successfully verified. The preprocessor allows setting up 
different application parameters and discretization ratios so 
that verifiable, albeit constrained, versions of the abstract 
model were  obtained. Even if the restricted versions of the 
abstract model were successfully verified, the automated 
verification took up a lot of resources, e.g. one restricted 
version of the abstract model took 6898 s CPU time and 33.33 
GB RAM space to verify successfully the system-level 
requirement of the speed estimation function. This is because 
the stochastic inputs and non-determinism were considered 
important and were retained even in the constrained version 
of the speed estimation abstract model. Although the initial 
abstract model of the speed estimation function could not be 
checked via automated verification in a single iteration due to 
its complexity, the verification results obtained on the 
constrained PRISM models are still applicable on the 
unconstrained model. A constrained PRISM model can be 
automatically generated with the Python preprocessor, on the 
basis of a model input configuration. The model input 
configuration is derived from the constraints imposed on the 
input parameters of the unconstrained abstract system model. 
The model input configurations of the constrained models can 
be defined in such a way that the value ranges of the input 
parameters in the constrained models cover the value range of 
the respective input parameters in the unconstrained PRISM 
model. Should all the constrained models be successfully 
verified against the system-level requirement, then it can be 

said that the unconstrained abstract model also satisfies this 
requirement. 

Proving correctness of functions in safety-critical domains 
like automotive is a hard task due to the undecidable 
verification problem, especially in the case of fully automated 
formal verification, e.g. model checking. Automated 
verification tools have in general difficulties in handling non-
linear arithmetic, which is often present in automotive 
software. Even if verification is possible, the environment 
model of the function under investigation must be taken into 
account. Often, probabilistic inputs and non-determinism are 
additional factors inherent to the function's environment 
which increase the size of the state space and impact the 
decision on which verification tool to use. Broman et al. [5] 
introduce an approach to help system and verification 
engineers choose the appropriate verification tool based on the 
considered viewpoints of the system under investigation. 

The choice of the verification tool depends strongly on the 
viewpoints from which the system is analyzed, e.g. the 
necessity to model the stochastic inputs and the non-
deterministic behavior of the speed estimation function led to 
the choice of the probabilistic model checker STORM. 

The proposed hybrid approach is driven by the functional 
architecture of the system under analysis. Depending on the 
types of modules in the system, the verification engineers 
must find a balanced solution between the data-driven and 
formal methods. Data-driven methods allow the elimination 
of nondeterministic factors through worst-case estimation as 
deterministic. Nevertheless, data-driven methods work on the 
presumption that enough input data is available, that is the 
assumptions made with respect to the probability distributions 
of the input data are fulfilled. In case these assumptions are 
not satisfied, because e.g. the necessary data cannot be 
measured, then the issue posed for the formal verification by 
the nondeterministic factors remains. In this case, the 
investigation scope of the abstract model's behavior can be 
reduced through overapproximation. Within the reduced 
investigation scope, the formal verification provides the 
mathematical proof to the question whether the abstract model 
satisfies the system-level requirement. The proof of 
correctness can be further used by the OEM's system 
engineers to construct a safety argument for the purpose of the 
automotive system certification and approval process. 

In both case studies, the hybrid verification approach 
provided additional information to the systems engineers of 
the OEM partner with respect to the inner workings of the 
automotive function under analysis and to possible design 
improvements. In the speed estimation function, the 
application of the proposed approach on different version of 
the MATLAB/SIMULINK allowed us to make suggestions for 
improvements in the design of the speed estimation function. 
Based on these suggestions, the OEM was able to make the 
appropriate settings in the vehicle so that the speed estimation 
function satisfies the Euro NCAP requirements. The insights 
gained with the help of the help of the hybrid verification 
approach allowed us to develop an alternative concept for the 
vehicle speed estimation to benchmark the verified approach 
in this case study. Our alternative concept has been published 
in a previous paper [1]. The exhaust aftertreatment function 
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has become increasingly complex over the years through a 
large number of development iterations. This complexity 
hindered the OEM's system engineers to obtain an informed 
overview of this automotive function. Our approach helped 
the system engineers to gain a better understanding of the 
inner workings of the exhaust aftertreatment function. 
Moreover, this approach allowed in both case studies the 
finding of appropriate test cases and application parameters 
which can be further used in the development and 
improvement of the automotive function. 

VII. CONCLUSION AND FUTURE WORK 

This work proposed a hybrid approach, oriented along the 
system development process and driven by the functional 
system architecture, which brings together data-based 
estimation techniques to retain statistical significance and 
formal methods to ensure correctness of the function under 
investigation with respect to system-level requirements. It 
uses worst case approximations from the side of the system 
input parameters and Hoare-calculus like substitutions and 
automated formal verification from the side of the system-
level requirements. The system is split at the right place in 
such a way that the verification is made simpler without losing 
expressiveness. 

For further work, we are looking at expanding the 
verification in the second case study. We have verified one 
dataflow completely, leaving out two data flows to be checked 
in the future. Additionally, these data flows can be broken 
down into more data flows, which can be verified separately 
with different verification tools. An additional future work is 
the automatization of the worst-case approximation and the 
text substitutions, in order to avoid mistakes. Both part can be 
implemented in a toolchain, in order to keep the system model 
as consistent as possible to the original system and guide 
verification engineers through our approach. The assembled 
mathematical abstraction of the system can be represented in 
a well-defined computer readable manner, so that it can be 
used as an intermediate description for a verification tool. This 
intermediate description can then be automatically translated 
with an adequate compiler into the system description 
language of the desired verification tool. This allows 
verification engineers to maintain the abstract system model 
consistent to the original system and to switch easily between 
verification tools, if the selected one is not able to deliver a 
result within a finite time window. 
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