
Architecture-based Hybrid Approach to Verify Safety-critical Automotive System
Functions by Combining Data-driven and Formal Methods

Adina Aniculaesei, Andreas Vorwald, Meng Zhang, Andreas Rausch

Institute for Software and Systems Engineering

Technische Universität Clausthal

Clausthal-Zellerfeld, Germany

{adina.aniculaesei, andreas.vorwald, meng.zhang, andreas.rausch}@tu-clausthal.de

Abstract—Safety-critical automotive functions are required to
satisfy stringent safety requirements. To guarantee the safety of
such functions, their conformance with industry approved
standards as well as statutory regulations must be ensured.
Testing is the main method for checking automotive system
functions, yet testing is incomplete and cannot show correctness.
Inherent uncertainties in the physical environment introduce
non-determinism in testing, increasing the difficulty of
replicating environmental stimuli relevant for edge cases, and
thus, the effort invested in road tests to produce statistical
significance. Formal verification techniques are able to show
correctness and are recommended for functions with higher
automotive safety integrity levels (ASIL), e.g. for ASIL D.
However, formal verification has scalability issues in case of
highly complex automotive systems and heterogeneous sensor
data received as inputs. To address these challenges, this paper
proposes a novel architecture-based approach, which combines
data-driven methods with formal methods for the verification of
safety-critical automotive functions, with consideration of the
system decomposition within the functional system architecture.
We illustrate the application of our concept on two industrial
automotive functions, speed estimation and exhaust
aftertreatment, and report on results and lessons learned.

Keywords-safety-critical automotive functions; data-driven
methods; formal verification methods; automotive software
architectures; system verification test

I. INTRODUCTION

Safety-critical automotive functions are subject to
stringent safety requirements, since any error in the function's
behavior can cause a system failure, and thus in worst case,
can endanger the safety of the vehicle's occupants and the
integrity of the physical environment. In order to guarantee
the safety of such functions, their conformance to the industry
approved standards and norms as well as to the statutory
regulations must be ensured.

Testing is the main method for the verification of
automotive functions, as required by the automotive standard
ISO 26262 (cf. [17], [18]). However, testing can show the
presence of errors in a system, but is not adequate to show
their absence (cf. [11]). Thus, testing is incomplete and cannot
prove the correctness of the system under test with respect to
the defined safety requirements. To be certified as safe with
fulfillment of its designated ASIL, a safety-critical automotive
function must pass specific tests, e.g. road tests required by
ASIL C/D. The inherent uncertainties in the physical

environment contribute to non-determinism in testing, making
it more difficult to replicate inputs relevant for edge cases.
This phenomenon increases the level of effort necessary to be
invested in road tests in order to produce statistical
significance.

In contrast to testing, formal verification methods can
prove correctness (cf. [9]) and are recommended by the
standard ISO 26262 for the verification of automotive
functions with higher ASIL (cf. [18]). However, formal
verification suffers from scalability issues in the case of highly
complex automotive functions, which receive heterogeneous
sensor data as input from their environment. During the
vehicle's operation, an automotive function exchanges
constantly data with the other hardware and software systems
in the vehicle's technical environment, but may also receive
input via external perception sensors from the vehicle's
surrounding physical environment. For example, the data
exchange between the function under investigation and the
other vehicle systems relies on the communication bus system
including its process of data quantization, which can lead to
deviations from the original data. Furthermore, the quality of
the sensor data received from the physical environment can
vary time-dependently due to changes in the environmental
conditions. A typical example here is the global positioning
system (GPS) data quality, which depends on the vehicle's
signal reception from the satellites of the global navigation
satellite system (GNSS). The GNSS signal reception can be
susceptible to errors due to the presence of obstacles between
the vehicle and the GNSS satellites, e.g. large buildings in
urban area or tunnels.

Research Focus. In order to address the challenges
presented by testing and formal verification methods, this
paper proposes a novel hybrid approach which combines data-
driven and formal methods for the verification of safety-
critical automotive functions. Our approach is embedded
within the development process of safety-critical automotive
functions and uses the development artefacts as inputs for the
verification of these functions. Thus, the approach takes the
functional architecture of the automotive function as a basis
and splits up the modules, which are later analyzed with data-
driven techniques from the modules investigated with help of
formal methods. The data-driven techniques are applied on
modules, which handle sensor inputs with uncertain data
quality, in order to obtain a worst-case estimation of the
module result based on assumptions about the sensor inputs
and constraints with consideration of physics laws. The formal

139

2021 IEEE International Conference on Software Architecture Companion (ICSA-C)

978-0-7381-3356-0/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSA-C52384.2021.00036

methods are used to check system modules with deterministic
computations against the defined system-level safety
requirements. Through text substitution similar to Hoare
calculus (cf. [16]), the safety requirement of the automotive
function is gradually refined into sub-requirements for the
worst-case estimation. The results of the worst-case
estimation are checked against the derived safety requirement.
If the derived sub-requirements are satisfied, then it can be
said that the automotive function is conform with respect to
the original system-level safety requirement. In order to
evaluate the proposed concept, we have constructed two case
studies about two industrial automotive functions, speed
estimation and exhaust aftertreatment, and report on results
and lessons learned in the following sections of this work.

II. RELATED WORK

The interaction of automotive functions with their
environment as well as the wear and tear suffered by the
hardware components on which these functions are executed
can cause faults in the automotive system and in time can lead
to a degradation of its performance. Fault diagnosis can be
used to preempt the effects which faults have on the system's
performance, by identifying and compensating for fault
conditions, regardless of the system's operational mode (cf.
[24]). Various works have surveyed the field of fault diagnosis
and fault-tolerant techniques. Although these surveys present
slightly different taxonomies by which they classify the
research done in this area, a few categories of fault diagnosis
approaches stand out: signal-based (cf. [14], [19]), model-
based (cf. [23], [24], [19]) and data-driven (cf. [23], [13], [19])
or knowledge-based (cf. [13]). Model-based fault diagnosis
relies on models that describe a relationship between the
measured inputs and outputs of the function under analysis.
This is often modeled with equations which describe the
physical phenomenon taken into consideration in the
automotive function (cf. [24]). Signal-based methods extract
features from measured signals and base their diagnostic
decision on analysis of signal patterns and on prior knowledge
of what signal patterns look like in healthy systems (cf. [14]).
Instead of using models which characterize physical
phenomena, data-driven fault diagnosis uses historic data to
generate a model, that mathematically relates system inputs
with the system outputs (cf. [24], [13]). Regardless of the
method, fault diagnosis detect faults, which originate in the
system's hardware and software, thus contributing to the
improvement of the system's functional safety. However,
diagnosis methods cannot detect errors, which occur due to
the unforeseen environmental conditions and cannot ensure
the correctness of the system with respect to the system-level
requirements.

Formal verification can ensure correctness with respect to
defined requirements. The verification approaches range from
theorem proving to model checking. Theorem provers like
ISABELLE/HOL [4] can handle infinite state spaces, but are
semi-automated, due to the user input needed to carry out the
proof. Model checking tools are fully automated, but can work
only on finite state models. Some model checkers can verify
formal system models against their system-level
requirements, e.g. UPPAAL [3]. Other model checkers execute

the source code of the system in order to verify it, e.g.
PATHFINDER [27], requiring appropriate orchestration in order
to execute all possible situations. PRISM [22] and STORM [10]
offer mechanisms to handle stochastic system inputs and non-
deterministic system behavior. Although it has achieved
important results throughout the years, highly complex
industrial systems represent a challenge for formal
verification due to the scalability issues.

III. VERIFICATION OF SAFETY-CRITICAL AUTOMOTIVE

FUNCTIONS BY A COMBINATION OF DATA-DRIVEN AND

FORMAL METHODS

An overview of our concept is depicted in Figure 3. The
proposed approach for the verification of safety-critical
automotive functions is integrated with the V-model, which is
the standard system development process also used in the
automotive industry. To illustrate our concept, a simple
function, called FM, is used as an example. The function has
two inputs and , and computes one output parameter

. Based on the input , the function under analysis
estimates the parameter , which is then checked for
plausibility. Based on the result of the plausibility check

 and on the input the function FM computes the
final result . The architecture of the function under
analysis depicts five modules M1 to M5, which are used for
the realization of the function's computations. The five
modules are connected to each other through their respective
interfaces. The concept shows based on this example function
the steps necessary for the verification of safety-critical
automotive functions. These steps represent intuitively the
respective development phases of the V-model.

Requirements Analysis. In this phase, the standards and
norms as well as the statutory regulations with which the
automotive function under analysis must comply are
analyzed. The goal of this phase is to derive the system-level
safety requirements as well as the assumptions and the
physical constraints under which the function is supposed to
operate. For the example function in Figure 3, the system-
level safety requirement is formulated on the computation
result , as shown in (1):

. (1)

There are several assumptions placed on the inputs of the

function under analysis, shown in (2) and (3):

 (2)
, (3)

meaning that the input is situated in the interval [-1, 10]
with a probability of 0.75 and a uniform probability
distribution, while the input parameter takes values in the
interval [-2, 2]. Furthermore, there are lower and upper bounds
defined for the estimated parameters and

:

. (4)

140

These bounds are understood as physical constraints
enforced by the laws of physics or due to the chosen vehicle
configuration.

Construction of the Abstract System Model. The
verification process is not carried out directly on the
implementation of the investigated automotive function.
Instead, a functional abstraction of the function's
implementation is created using mathematical functions,
which can work on infinite domains. Stream processing
functions, introduced by Broy [6], can receive as inputs and
produce as outputs infinite data streams. For these reason we
consider stream-processing functions to be an appropriate
computational model for the description of the automotive
function's abstraction. Each of the modules in the function
under analysis as well as the entire function are modeled as
stream processing functions as defined in [6]. Figure 1 gives a
visual intuition of this notion, using the mathematical function

 as an example.

Figure 1. Visual intuition of stream processing functions. In this example, the
function f() = 2.

Time is a further issue addressed in the abstract system

model of the function under analysis. Automotive functions
are often composed of modules, which have different clock
cycles. In order to simplify the verification of the function
under analysis, its abstract model introduces a representation
of time as a sequence of system states (see Figure 2). Such an
approach guarantees that different clock periods of the
modules in the function can be handled in a uniform manner.

Figure 2. Modeling time in the abstract system model.

The final concern in the modeling process of the

automotive function is finding a consistent systematic which
serves as a guiding principle in this process. Our systematic
consists of six parts, which is carried out for each of the
function's modules as well as for the entire function under
analysis: (1) data type definitions for function's inputs, (2) data
type definitions for function's outputs, (3) data type definitions
for function's intermediary results, (4) definitions of function's
application parameters, (5) declaration or signature of the
corresponding abstract mathematical function, and (6)
definition of the abstract mathematical function. The defined
data types built an abstract data type system, with operations,
which abide by mathematical laws, independently of how the
concrete data types are implemented in the automotive

function and represented on the target system. Notice that the
declaration and the definition of an abstract mathematical
function are the same notions as in programming. Thus, the
declaration of a function is in fact its signature, while the
definition of the function constitutes its block in which the
function's computation steps are described.

In order to demonstrate how our systematics works, we
apply it on the automotive function FM, introduced as an
example in Figure 3. The data type definitions for the inputs

 and and the output are given in (5) – (7).

 (5)
 (6)

. (7)

The data types for the intermediary results and

 of the function FM are given in (8) and (9).

 (8)
. (9)

Following the definition of the data types, (10) and (11)

give the declaration or the signature of the corresponding
mathematical function

 (10)

, (11)

while its definition is shown in (12) – (15):

 (12)
 (13)

 (14)

. (15)

Notice that the definition of the mathematical function FM
is formulated through a \emph{walk back} from the function's
output towards its inputs, which is similar to the notation in
functional programming. The intermediary results described
in the definition of the function FM are directly associated
with the interfaces of the function's modules. Thus, the formal
description of the abstract system model is intuitively linked
to the architecture of the automotive function under analysis,
which plays a central role later in the system verification test.
System Validation Test. The system validation test consists of
road tests carried out with the test vehicle in the real physical
environment. Besides testing the fully assembled test vehicle
in the real environment, a further goal of the system validation
test is to gather sensor data, which can be used to validate the
assumptions derived during requirements analysis.

System Verification Test. The system verification test is
realised through the hybrid approach proposed by this paper,
which combines data-driven worst-case estimation with
formal methods in order to verify the automotive function
under analysis. The worst-case analysis is carried out on those

- Input Data Stream
- Output Data Stream

……

Past of state Future of state

…

Initial state Current state

141

modules of the automotive function, which handle non-
determinism and inputs with uncertain data quality, while
formal verification methods are applied on the modules with
deterministic behavior. Since the abstract model description is
linked to the architecture of the function under analysis, the
separation of the application of the data-driven approach and
the formal methods approach at module level follows the
modules' interfaces defined in the function's architecture. In
the example function displayed in Figure 3 the data-driven
analysis is carried out over the modules M1 to M4. Firstly,
module M1 estimates the quantity based on input

. As shown in (2), is situated in the interval [-1, 10] in
75% of the time with a uniform probability distribution.
Applying the computation of module M1, it follows that the
quantity is in the interval [0, 11] with a probability
of 0.75. Next, the estimated value is checked for plausibility
against the physical constraints defined in the requirements
analysis phase. Only the plausible values, which are strictly
situated between the lower bound and the upper bound

 are taken into consideration, while all the other values
are discarded. Thus, modules M3 and M4 are cut off from
further computations of the function under analysis. Through
the computation of the module M2, is in the interval
[0, 11] with a probability of 0.75.

The formal methods approach starts from the system
requirement imposed on the output parameter and is
applied on the module M5. This is where the definition of the
mathematical function FM from the function's output towards
its inputs plays a decisive role. It allows the usage of text
substitution in a similar way to the Hoare calculus [16], in
order to derive the requirement for . Starting with the
system-level requirement in (1), we apply text substitution and
obtain the implication in (16):

. (16)

In this way, we have derived the requirement for

which can be checked against the worst-case
estimation delivered by the data-driven approach. It is fairly
easy to observe that for the estimated interval is a
subset of the required value interval: ,
meaning that the worst-case estimation for satisfies
its derived requirement. Due to the uncertainty in the
estimation expressed through the probability distribution, the
derived requirement, and by transitivity, the system-level
requirement are satisfied with a confidence level of 75%.

Notice that the method of text substitution can be applied
manually to fairly simple examples of software modules.
However, in the automotive domain, system functions are
often composed of a large number of modules, sometimes
with several hierarchy levels in their architecture. Although
the modules selected for the formal methods approach may
have deterministic behavior, they can still be very complex so
that it is not feasible anymore to apply formal methods
manually. Instead, an automated verification method is
employed. For this purpose, the corresponding mathematical
functions are translated into the suitable modeling language of
the verification tool of choice, thus building a stand-alone
system model. The system-level requirements are formulated
into the specification language that is accepted by the
verification tool. The results of the data-driven estimation are
taken as assumptions for the modules under formal
verification. The goal of formal verification is to answer the
question whether the system model satisfies the given system
requirement under the estimated assumptions.

IV. CASE STUDY 1: AUTOMOTIVE FUNCTION FOR SPEED

ESTIMATION

The first case study is based on an industrial automotive
function for speed estimation. From the perspective of

Figure 3. System development process enhanced with data-driven analysis and formal methods.

142

technical feasibility, precise measurements of a vehicle's
speed are already possible with high-quality reference
measurement systems, e.g. inertial measurement units (IMU)
or differential GPS (D-GPS). However, the usage of such
measurement systems is expensive for the automotive original
equipment manufacturers (OEMs), and if mounted in series
vehicles, cost-prohibitive for their end users. Therefore, in
commercialized series vehicles the speed estimation is
performed with an accepted tolerance level, without using a
reference measurement system. Vehicle speed estimation is a
safety-critical automotive function, since the estimated speed
is used as input to other driving assistance systems relevant
for the vehicle's safety, e.g. adaptive cruise control (ACC) or
speedometer. Recent algorithms for the vehicle speed
estimation strongly rely on vehicle's wheel speed, which can
be measured with onboard sensors. However, for the
calculation of the vehicle speed, the estimation algorithm also
requires the tire circumference of the vehicle. The vehicle’s
tires have diverse deformations in different driving situations,
due to the inherent elasticity of rubber. Furthermore, this
deformation is influenced by other non-deterministic
environmental factors, e.g. the temperature in the physical
environment or the road conditions, making it impossible to
obtain an exact value for the tire circumference of a driving
vehicle. Thus, a precise approximation of the tire
circumference becomes a fundamental point for the vehicle
speed estimation. Automotive engineers have patented diverse
approaches to estimate the vehicle’s speed as precise as
possible (cf. [20], [12], [26], [21]). In the course of this case
study, an automotive OEM partner granted us access to their
speed estimation function. The function was designed with the
goal to fulfill relevant requirements defined in the European
New Car Assessment Program (Euro NCAP). In this function,
a redundant GPS system delivers a reference vehicle speed.
This reference speed has potentially a large deviation to the
ground truth speed, which can get exponentially higher due to
strong temporal dependencies, especially in the cases with
poor reception of GPS signal. For these reasons, the reference
speed is not used directly for the speed display on the vehicle's
instrument board. Instead, an estimation of a reference value
for the tire circumference is carried out. The reference tire
circumference is then integrated with an approximation of the
tire circumference carried out by additional mechanisms,
which rely on assumptions made about various sensor inputs
that are used depending on different situations. Due to the
non-disclosure agreement (NDA) signed with the OEM
partner, further details about this function are excluded from
this paper. The OEM partner provided us with the
implementation of the speed estimation function itself and
gave us access to a large amount of test data collected in field
tests with the respective vehicle sensors used in the speed
estimation function.

Requirements Analysis. Speedometers have been
integrated in the car at the beginning of the 20th century. The
role of the speedometer is to indicate the instantaneous speed
of the car in miles per hour (mph), kilometers per hour (kmh),
or both. The initial European regulation [25] has imposed the

1 https://www.euroncap.com/en/for-engineers/protocols/safety-assist/

following requirement for the deviation between the
visualized speed on the speedometer and the real ground truth
speed: under

the assumption that , where

is the speed displayed on the dashboard of the ego-vehicle,
and is the actual vehicle speed. A more restrictive
regulation has been passed in the Euro NCAP program1,
which requires for new vehicles that the speed estimation
function satisfies the requirement in (17):

, (17)

under the assumption that

. (18)

The lower bound of the deviation between and

 is set to zero, especially due to the safety reasons. This
means that the visualized vehicle speed should never undercut
the lower bound, since the driver or the assistance system
might decide a too conservative braking strategy, possibly
leading to collision risk, once the displayed speed is lower
than the ground truth. The Euro NCAP requirement in (17) is
considered the system-level requirement of the speed
estimation function. Further assumptions have been
formulated with respect to the quality and the availability of
the GPS signal and of the wheel speed data, the maximum tire
deformation per second as well as the error deviation due to
the quantization on the CAN bus. The physical constraints
with respect to the estimated tire circumference have been
derived from the configuration of the target vehicle. Concrete
examples of assumptions and physical constraints are
prohibited from publication by the signed NDA.

Construction of the Abstract System Model. The
implementation of the speed estimation function has been
realized in MATLAB/SIMULINK by the OEM partner. The
functionality of the function has been implemented in five
large modules which in turn contained 13 submodules situated
on four hierarchy levels. The abstract system model of the
speed estimation function is divided into four large modules,
which are responsible for (1) estimation of tire circumference,
(2) plausibility check of the tire circumference, (3)
computation of the vehicle speed, and (4) post processing of
the computed vehicle speed. The model has 14 input
parameters, 24 application parameters and one output
parameter. Further details about the abstract system model are
excluded from this paper. However, a high-level overview of
the speed estimation algorithm is given in Figure 4.

System Validation Test. The test data has been collected
with the wheel speed and GPS sensors used by the speed
estimation function in road tests carried out by the OEM
partner. Based on an analysis of the test data, we were able to

143

validate the assumptions and constraints formulated in the
requirements analysis phase.

System Verification Test. The system verification test
consists of the data-driven worst-case estimation of the tire
circumference and the formal methods approach for the
derivation of requirements for the estimated tire
circumference using the system-level requirement. The worst-
case estimation of the tire circumference is carried out based
on the assumptions made in the requirements analysis phase.
The requirement for the estimated tire circumference is
derived using the text substitution method introduced in
Section 3. The concept was applied iteratively on several
versions of the MATLAB/SIMULINK model of the speed
estimation function. The results of the system verification test
have shown that a first version of the speed estimation
function did not satisfy the Euro NCAP requirement.
However, the verification test results obtained on its first
MATLAB/SIMULINK model allowed us to make suggestions for
improvements of the speed estimation function. These
improvements focus on limiting the effect of non-
deterministic factors, e.g. quality of GPS signal, on the
estimation result by constraining the respective factor within
a certain value range through assumptions made during the
development process. The system engineers of the OEM
project partner took these suggestions and, based on them,
created a second version of the speed estimation function. The
improved model was again verified with the concept proposed
in Section 3, the results showing that the improved function
satisfies the system-level requirement with a confidence level
of 95%. The part of the abstract system model consisting of
deterministic modules has also been checked with the model
checker STORM against the system-level requirement. For this
purpose, this part of the abstract model has been translated
into the PRISM language and the system-level requirement has
been formalized in probabilistic computational-tree logic
(PCTL). Although PRISM is an expressive modeling language,
it does not support all concepts used in software development,
e.g. loops and division. In order to implement these
components, a preprocessor is developed in Python, which
reads the preformatted model with specific placeholders as an
input file and, depending on the application parameters,
generates a complete, verifiable PRISM model. Further
constraints are made on the input parameters of the model as

2 https://www.etas.com/de/

well as on their discretization step in order to make the PRISM
model verifiable. The verification results showed that the
constrained abstract system model satisfies the system-level
requirement.

V. CASE STUDY 2: AUTOMOTIVE FUNCTION FOR EHAUST

AFTERTREATMENT

The second case study of this paper is based on an
automotive system function provided by our automotive OEM
partner. This function is part of the overall exhaust
aftertreatment system in diesel engines, which controls the
returning of a portion of the exhaust gases back to the burning
process, in order to reduce the overall exhaust production of
the vehicle. An abstract overview of the automotive function
located in the low-pressure part of the exhaust aftertreatment
system is shown in Figure 5.

In general, engines in older vehicles use fresh air to burn fuel
in the engine and return all of the exhaust to the environment
(see Figure 5). However, this is bound to violate laws and
regulations regarding environment protection. In contrast,
modern engines return a portion of exhaust to the burning
process, so that the vehicle's overall production of exhaust
gases is reduced. Despite a portion of the exhaust gases being
returned to the burning process, the engine still has to deliver
the expected power during driving and efficiently burn fuel.
In order to keep the burning process efficient, a software-
controlled valve is used to deliver an optimal ratio between
fresh airflow and the returned exhaust gas flow.

Since we had no access to other technical components
communicating with the function under investigation, the
focus of this case study lied solely on the formal verification
of the software used to control the valve. The software is an
ASCET2 model organized in five modules, each with several
hierarchical layers, and using block diagrams and C code. The
ASCET model is executed cyclically to convert a potentially
infinite input stream to an output. The model calculates a set
value as a pressure instance based on an actual value

Figure 5. Abstract overview of the low pressure exhaust

aftertreatment subsystem (cf. [28]).

Figure 4. Abstract overview of the speed estimation algorithm (cf.

[1]).

144

 and several other inputs for the valve, which regulates
the returning of the mass flow of exhaust gas to the mass flow
of air. Due to its direct impact on environmental health, this
automotive function is considered as safety-critical.

Requirements Analysis. To start the verification process,
the system-level requirement needs to be formalized. We
received an informal requirement based on expert-knowledge
of the OEM project partner. The informal requirement
specifies, that the offset between the actual value and
the set value shall not differ by more than . Based on
the information received from the experts, this is a safety-
critical requirement since noncompliance with it reduces the
percent of exhaust gas returned to the burning process. This
leads on short term to violation of environment protection
laws and on long term may cause imbalance to natural
ecosystems and severe health issues for humans. The informal
safety requirement is then analyzed and refined into a
semiformal requirement, which requests that the distance
between and shall not be greater than .
The mathematical expression for the distance between
and is . A visual intuition of this
semiformal requirement is shown in Figure .

Since the components of the system are running with equal

clock periods, time is considered to be discrete, which makes
the formal verification easier. Linear temporal logic (LTL) is
a formal logic which uses a discrete representation of time (cf.
[2]). The LTL requirement of the exhaust aftertreatment
function is:

. (19)

Construction of the Abstract System Model. We created a

mathematical abstraction of the whole ASCET model. This
mathematical model is built by applying the rules proposed in
Section 3. Several decisions were taken during the
construction of the abstract model in order to reduce its
complexity. For example, several software design
conventions used by the OEM partner were left out, e.g.
replacing inputs passed by array elements with scalar
variables. The data type domains have been defined based on
the system documentation and expert knowledge, which also
includes specific data quantization factors. Once the abstract
system model was finished, we noticed that the formal
requirement in (19) refers only to one submodule , which
has just one hierarchy level in the abstract model, and with 14
input arguments and one output argument in total. Therefore,
we simplified further our abstract model, overapproximating
the results of the other four submodules, which served as
inputs to module , to reduce the overall space for formal
verification.

System Validation Test. In this case study, we had no
access to test data collected via vehicle sensors as in the first

case study. Instead, the OEM partner provided us with several
characteristic curves for the valve pressure.

System Verification Test. For a fully automated formal
verification, we used KIND2 [8] which is a modern SMT-
based model checker using the synchronous programming
language LUSTRE [15] to specify the system and COCOSPEC-
contracts [7] to express formal requirements. Due to LUSTRE's
functional way to describe systems, the system model
could be easily specified without losing the connection to the
underlying abstract mathematical description. The formal
requirement in Equation (19) was transformed into a
guarantee-specification by leaving out the G (Globally)
operator. The data type definitions of the mathematical
abstraction provided us with the input domains for

assumptions, expressed in LUSTRE language via assumes-
instructions.

Even with the overapproximation of the other four
submodules, KIND2 was not able to find a solution, due to the
non-linear arithmetic in the module . To make the system
verifiable, we cut out the part with non-linear arithmetic using
the rules introduced in Section 3. During this process of model
simplification, we analyzed a limiter with dynamic limits right
before the output, which can be mathematically described as
follows:

, (20)

with .

The analysis of the limiter function is depicted in Table 1.
This table presents all possible use cases, enumerating the
considered inputs and the total result of the composition of the

- and -operator. In four of six cases the outcome will
be . Further calculations of do not result in non-linear
arithmetic, therefore we verify this dataflow and consider it as

, which has just two inputs parameters and one output.
Additionally, we added functions for the quantization of
inputs and outputs based on the mathematical description and
functions that model the sensor errors within specific value
ranges.

TABLE 1. POSSIBLE DATAFLOWS ON THE LIMITER (CF. [28])

Case
1

2

3

4

5

6

The result of the formal verification of using KIND2 is

shown in Table 2. We had four different characteristic curves,
with different application parameters, one of which was
provided by the OEM partner. We used three setup
configurations for our evaluation: (1) no quantization errors
and no measurement errors, (2) only quantization errors, and
(3) quantization errors and measurement errors. The time
KIND2 needs for delivering a result is also presented. Only the
fourth characteristic curve was verified successfully under
consideration of quantization errors and measurement errors
(see experiment 12 in Table 2). The time it takes KIND2 to

Figure 6. Requirement from the viewpoint of the distance between

 and (cf. [28]).

145

deliver the verification result is quite low, with the experiment
12 as the most complex task needing 29.696 s to finish the
verification.

TABLE 2: RESULTS OF THE FORMAL VERIFICATION OF USING KIND2.

Exp. Setup Quanti-
zation

Meas.
Error

Result Duration

1 1 No No Falsifiable 0.144

2 2 No No Correct 0.225

3 3 No No Correct 0.268

4 4 No No Correct 0.479

5 1 Yes No Falsifiable 0.176

6 2 Yes No Falsifiable 0.297

7 3 Yes No Correct 17.776

8 4 Yes No Correct 19.301

9 1 Yes Yes Falsifiable 0.237

10 2 Yes Yes Falsifiable 1.883

11 3 Yes Yes Falsifiable 1.184

12 4 Yes Yes Correct 29.696

VI. DISCUSSION AND LESSONS LEARNED

Due to the complexity of the abstract model of the speed
estimation function, it was not possible to cover the original
value range for all input parameters during automated
verification. Instead, the lower and upper bounds defined for
the parameter ranges originally through application
parameters were adapted, and thus, more restricted versions of
the model have been created, albeit without losing the
characteristics of the abstract model. These constrained
versions of the speed estimation's abstract model were
successfully verified. The preprocessor allows setting up
different application parameters and discretization ratios so
that verifiable, albeit constrained, versions of the abstract
model were obtained. Even if the restricted versions of the
abstract model were successfully verified, the automated
verification took up a lot of resources, e.g. one restricted
version of the abstract model took 6898 s CPU time and 33.33
GB RAM space to verify successfully the system-level
requirement of the speed estimation function. This is because
the stochastic inputs and non-determinism were considered
important and were retained even in the constrained version
of the speed estimation abstract model. Although the initial
abstract model of the speed estimation function could not be
checked via automated verification in a single iteration due to
its complexity, the verification results obtained on the
constrained PRISM models are still applicable on the
unconstrained model. A constrained PRISM model can be
automatically generated with the Python preprocessor, on the
basis of a model input configuration. The model input
configuration is derived from the constraints imposed on the
input parameters of the unconstrained abstract system model.
The model input configurations of the constrained models can
be defined in such a way that the value ranges of the input
parameters in the constrained models cover the value range of
the respective input parameters in the unconstrained PRISM
model. Should all the constrained models be successfully
verified against the system-level requirement, then it can be

said that the unconstrained abstract model also satisfies this
requirement.

Proving correctness of functions in safety-critical domains
like automotive is a hard task due to the undecidable
verification problem, especially in the case of fully automated
formal verification, e.g. model checking. Automated
verification tools have in general difficulties in handling non-
linear arithmetic, which is often present in automotive
software. Even if verification is possible, the environment
model of the function under investigation must be taken into
account. Often, probabilistic inputs and non-determinism are
additional factors inherent to the function's environment
which increase the size of the state space and impact the
decision on which verification tool to use. Broman et al. [5]
introduce an approach to help system and verification
engineers choose the appropriate verification tool based on the
considered viewpoints of the system under investigation.

The choice of the verification tool depends strongly on the
viewpoints from which the system is analyzed, e.g. the
necessity to model the stochastic inputs and the non-
deterministic behavior of the speed estimation function led to
the choice of the probabilistic model checker STORM.

The proposed hybrid approach is driven by the functional
architecture of the system under analysis. Depending on the
types of modules in the system, the verification engineers
must find a balanced solution between the data-driven and
formal methods. Data-driven methods allow the elimination
of nondeterministic factors through worst-case estimation as
deterministic. Nevertheless, data-driven methods work on the
presumption that enough input data is available, that is the
assumptions made with respect to the probability distributions
of the input data are fulfilled. In case these assumptions are
not satisfied, because e.g. the necessary data cannot be
measured, then the issue posed for the formal verification by
the nondeterministic factors remains. In this case, the
investigation scope of the abstract model's behavior can be
reduced through overapproximation. Within the reduced
investigation scope, the formal verification provides the
mathematical proof to the question whether the abstract model
satisfies the system-level requirement. The proof of
correctness can be further used by the OEM's system
engineers to construct a safety argument for the purpose of the
automotive system certification and approval process.

In both case studies, the hybrid verification approach
provided additional information to the systems engineers of
the OEM partner with respect to the inner workings of the
automotive function under analysis and to possible design
improvements. In the speed estimation function, the
application of the proposed approach on different version of
the MATLAB/SIMULINK allowed us to make suggestions for
improvements in the design of the speed estimation function.
Based on these suggestions, the OEM was able to make the
appropriate settings in the vehicle so that the speed estimation
function satisfies the Euro NCAP requirements. The insights
gained with the help of the help of the hybrid verification
approach allowed us to develop an alternative concept for the
vehicle speed estimation to benchmark the verified approach
in this case study. Our alternative concept has been published
in a previous paper [1]. The exhaust aftertreatment function

146

has become increasingly complex over the years through a
large number of development iterations. This complexity
hindered the OEM's system engineers to obtain an informed
overview of this automotive function. Our approach helped
the system engineers to gain a better understanding of the
inner workings of the exhaust aftertreatment function.
Moreover, this approach allowed in both case studies the
finding of appropriate test cases and application parameters
which can be further used in the development and
improvement of the automotive function.

VII. CONCLUSION AND FUTURE WORK

This work proposed a hybrid approach, oriented along the
system development process and driven by the functional
system architecture, which brings together data-based
estimation techniques to retain statistical significance and
formal methods to ensure correctness of the function under
investigation with respect to system-level requirements. It
uses worst case approximations from the side of the system
input parameters and Hoare-calculus like substitutions and
automated formal verification from the side of the system-
level requirements. The system is split at the right place in
such a way that the verification is made simpler without losing
expressiveness.

For further work, we are looking at expanding the
verification in the second case study. We have verified one
dataflow completely, leaving out two data flows to be checked
in the future. Additionally, these data flows can be broken
down into more data flows, which can be verified separately
with different verification tools. An additional future work is
the automatization of the worst-case approximation and the
text substitutions, in order to avoid mistakes. Both part can be
implemented in a toolchain, in order to keep the system model
as consistent as possible to the original system and guide
verification engineers through our approach. The assembled
mathematical abstraction of the system can be represented in
a well-defined computer readable manner, so that it can be
used as an intermediate description for a verification tool. This
intermediate description can then be automatically translated
with an adequate compiler into the system description
language of the desired verification tool. This allows
verification engineers to maintain the abstract system model
consistent to the original system and to switch easily between
verification tools, if the selected one is not able to deliver a
result within a finite time window.

[1] Aniculaesei A, Zhang M, Rausch A. Data-driven Approach for

Accurate Estimation and Validation of the Ego-Vehicle Speed.
In: Knieke C, Mansouri M, Telleschi G, editors. ICONS 2020:
The Fifteenth International Conference on Systems: IARIA,
2020, pp. 72–77.

[2] Baier C, Katoen JP. Principles of Model Checking. Cambridge,
Massachusetts: The MIT Press, 2008.

[3] Bengtsson J, Larsen KG, Larsson F, Pettersson P, Yi W. Uppaal
in 1995. In: Margaria-Steffen T, Steffen B, editors. Tools and
algorithms for the construction and analysis of systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1996, pp. 431–434.

[4] Blanchette JC, Bulwahn L, Nipkow T. Automatic Proof and
Disproof in Isabelle/HOL. In: Tinelli C, Sofronie-Stokkermans

V, editors. Frontiers of combining systems. Heidelberg:
Springer, 2011, pp. 12–27.

[5] Broman D, Lee EA, Tripakis S, Törngren M. Viewpoints,
formalisms, languages, and tools for cyber-physical systems.
In: Hardebolle C, Syriani E, Sprinkle J, Mészáros T, editors.
Proceedings of the 6th International Workshop on Multi-
Paradigm Modeling (MPM’12). New York, NY, USA: ACM,
2012?, pp. 49–54.

[6] Broy M. Functional Specification of Time Sensitive
Communicating Systems. ACM Trans. Softw. Eng. Methodol.
1993;2(1):1–43.

[7] Champion A, Gurfinkel A, Kahsai T, Tinelli C. CoCoSpec: A
Mode-Aware Contract Language for Reactive Systems. In:
Nicola R de, Kühn E, editors. Software Engineering and Formal
Methods. Cham: Springer International Publishing, 2016, pp.
347–366.

[8] Champion A, Mebsout A, Sticksel C, Tinelli C. The Kind 2
Model Checker. In: Chaudhuri S, Farzan A, editors. Computer
Aided Verification. Cham: Springer International Publishing,
2016, pp. 510–517.

[9] Clarke EM, Henzinger TA, Veith H. Introduction to Model
Checking. In: Clarke EM, Henzinger TA, Veith H, Bloem R,
editors. Handbook of Model Checking. Cham: Springer
International Publishing, 2018.

[10] Dehnert C, Junges S, Katoen J-P, Volk M. A storm is Coming:
A Modern Probabilistic Model Checker. Available at:
https://arxiv.org/pdf/1702.04311.

[11] Dijkstra EW. The humble programmer. Communications of
ACM 1972;15(10):859–66.

[12] Dittrich H, Gärtner V, Rinck R, Wehren V. Method for
determining a vehicle reference speed(DE10254628A1), 2004.

[13] Gao Z, Cecati C, Ding S. A Survey of Fault Diagnosis and
Fault-Tolerant Techniques Part II: Fault Diagnosis with
Knowledge-Based and Hybrid/Active Approaches. IEEE
Transactions on Industrial Electronics 2015:1.

[14] Gao Z, Cecati C, Ding SX. A Survey of Fault Diagnosis and

Fault-Tolerant Techniques -Part I: Fault Diagnosis With

Model-Based and Signal-Based Approaches. IEEE

Transactions on Industrial Electronics 2015;62(6):3757 67.

[15] Halbwachs N, Caspi P, Raymond P, Pilaud D. The synchronous
data flow programming language LUSTRE. In: Proceedings of
the IEEE, 1991, pp. 1305–1320.

[16] Hoare CAR. An axiomatic basis for computer programming.
Communications of the ACM 1969;12(10):576–80.

[17] International Organization for Standardization. ISO 26262-
10:2011: Road vehicles - Functional safety: Part 10: Guideline
to ISO 26262. Geneva, Switzerland: ISO, 2011.

[18] International Organization for Standardization. ISO 26262-
6:2011: Road vehicles - Functional safety: Part 6: Product
development at the software level. Geneva, Switzerland: ISO,
2011.

[19] Kia SH, Henao H, Capolino G-A. Survey of real-time fault
diagnosis techniques for electromechanical systems. In: Staff I,
editor. 2017 IEEE Workshop on Electrical Machines Design,
Control and Diagnosis (WEMDCD). Piscataway: IEEE, 2017,
pp. 290–297.

[20] Kost F. Speed Estimation Process(EP0495030A1), 1994.
[21] Kruse ST, Wagstaff D, Palmer J. Systems and methods for

managing speed thresholds for vehicles(US10683017B1),
2020.

[22] Kwiatkowska M, Norman G, Parker D. PRISM: Probabilistic
Symbolic Model Checker. In: Field AJ, editor. Computer
performance evaluation. Berlin and London: Springer, 2002,
pp. 200–204.

147

[23] Mohammadpour J, Franchek M, Grigoriadis K. A survey on
diagnostic methods for automotive engines. International
Journal of Engine Research 2012;13(1):41–64.

[24] Mouzakitis A. Classification of Fault Diagnosis Methods for
Control Systems. Measurement and Control 2013;46(10):303–
8.

[25] Richtlinie 75/443/EWG des Rates vom 26. Juni 1975 zur
Angleichung der Rechtsvorschriften der Mitgliedstaaten über
den Rückwärtsgang und das Geschwindigkeitsmeßgerät in
Kraftfahrzeugen, 1975.

[26] Schmitt DP, Hasegawa A, Lachmayr S. Systems and methods
for determining a speed limit violation(US9536426B2), 2017.

[27] Visser W, Havelund K, Brat G, Park S, Lerda F. Model
Checking Programs. Automated Software Engineering
2003;10(2):203–32.

[28] Vorwald A. Formale Verifikation von Reaktiven System am
Beispiel einer Fahrfunktion. M.Sc. Clausthal-Zellerfeld,
Germany, 2020.

148

