
Dirk Niebuhr

Dependable Dynamic Adaptive
Systems

Approach, Model, and Infrastructure

SSE-Dissertation 1

Software
Systems
Engineering

Institut für Informatik
Lehrstuhl von Prof. Dr. Andreas Rausch

Dependable
Dynamic Adaptive
Systems —
Approach, Model,
and Infrastructure

Dissertation zur
Erlangung des Grades
eines Doktors der
Naturwissenschaften

vorgelegt von
Dirk Niebuhr
aus Celle

genehmigt von der
Fakultät für Mathematik /
Informatik und Maschinenbau
der Technischen Universität
Clausthal

Tag der mündlichen Prüfung
09.08.2010

Vorsitzender der Promotionskommission
Prof. Dr. Jürgen Dix

Hauptberichterstatter
Prof. Dr. Andreas Rausch

Berichterstatter
Prof. Dr. Jörg P. Müller

SSE-Dissertation 1, 2010

Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel
nicht benutzt und die aus anderen Quellen entnommenen Stellen als solche gekenn-
zeichnet habe.

Clausthal-Zellerfeld, am 22. Oktober 2010

Dirk Niebuhr

v

vi Erklärung

Contents

Erklärung v

Vorwort xiii

Kurzfassung xv

Abstract xvii

1 Introduction 1
1.1 Dynamic Adaptive System Visions 4

1.1.1 Ubiquitous Computing . 5
1.1.2 Ambient Intelligence . 7

1.2 Motivation . 8
1.3 Goals of the Thesis . 12
1.4 Reader’s Guide . 14

1.4.1 Structure of the Thesis . 14
1.4.2 The Thesis in the Context of a Software Systems Engineering

Methodology . 15
Formal System Model . 16
Description Techniques . 16
Iterative System Evolution Process 17
Standard Domain Architectures 17
Tool Support . 18

2 State of the Art 19
2.1 Dynamic Adaptive Systems . 19

2.1.1 Component-Based Systems 20
Component Definition . 20
Component Reuse . 21

2.1.2 Service Oriented Architecture 22
2.2 Dependability . 25

2.2.1 Static Techniques . 28

vii

viii Contents

2.2.2 Dynamic Techniques . 31
2.2.3 Standardization . 35

3 Application Example 37
3.1 Domain Description . 37
3.2 Emergency Assistance System . 38

3.2.1 Support of Triage Classification Process 39
3.2.2 Support of Medical Treatment 42
3.2.3 Support of Incident Command 43

3.3 Dependability Threats Derived from the Application Example . . . 45
3.4 A Software View on the Application Example 47

3.4.1 Domain Architecture for Emergency Assistance Systems . . . 47
3.4.2 Dynamic Adaptive Components Provided by a German

Vendor . 52
German C-Unit . 52
German P-Unit . 54

3.4.3 Dynamic Adaptive Components Provided by a Dutch Vendor 55
Dutch C-Units . 55
Dutch P-Unit . 56

3.4.4 Compatibility of Dynamic Adaptive Components in our Ex-
ample . 58
Syntactical Compatibility of Dynamic Adaptive Compo-

nents in our Example 58
Semantical Compatibility of Dynamic Adaptive Compo-

nents in our Example 59
3.5 Requirements Derived from the Example 60

3.5.1 Support for Adaptation . 60
3.5.2 Support of Decoupled Development 61
3.5.3 Detect Semantical Incompatibilities 62
3.5.4 Free of Side Effects . 63

4 Structural Model for Dependable Dynamic Adaptive Systems 65
4.1 Looking Back at the Application Example 67
4.2 Basic Sets . 68
4.3 Dependable Dynamic Adaptive System Structure 70
4.4 Dependable Dynamic Adaptive Component Structure 72
4.5 Dependable Component Configuration Structure 79
4.6 Binding Structure . 82
4.7 Dependable Service and Dependable Service Reference Structure 84
4.8 Service Interface Structure . 85

4.8.1 Method Declaration . 87

Contents ix

4.8.2 Attribute Declaration . 88
4.9 Syntactical Compatibility . 89
4.10 Structural Reconfiguration Triggers 94
4.11 Summary . 98

5 Behavioral Model for Dependable Dynamic Adaptive Systems 103
5.1 Looking Back at the Application Example 105
5.2 Basic Sets . 106
5.3 Dependable Service and Dependable Service Reference Behavior

Class . 106
5.4 Semantical Compatibility . 111
5.5 Binding Behavior Class . 113
5.6 Dependable Component Configuration Behavior Class 114
5.7 Dependable Dynamic Adaptive Component Behavior Class 116
5.8 Dependable Dynamic Adaptive System Behavior Class 118
5.9 Behavioral Reconfiguration Triggers 119
5.10 Summary . 122

6 Realization of an Infrastructure for Dependable Dynamic Adaptive Sys-
tems 125
6.1 Dependable Dynamic Adaptive System Infrastructure 127

6.1.1 Node Component . 128
Usage of DAiSI’s Node Component 128
Graphical User Interface 131

6.1.2 Dependable Configuration Component 132
Usage of DAiSI’s Configuration Component 137
Graphical User Interface 142
Realization . 145

6.2 Component Framework . 160
6.3 Tool Support During Implementation 167
6.4 Summary . 169

7 Summary 173
7.1 Conclusion . 174
7.2 Outlook . 176
7.3 Additional Material . 179

Appendices 183

Glossary 183

Index 196

x Contents

A Formal Specification of the Application Example 199
A.1 Type Specification . 199

A.1.1 Service Interface mUnitServiceIf 199
A.1.2 Service Interface cUnitServiceIf 200
A.1.3 Service Interface pUnitServiceIf 201

A.2 Instances at Dependability Checkpoint t0 201
A.3 Instances at Dependability Checkpoint t0 + 1 202

A.3.1 German M-Unit . 202
A.4 Instances at Dependability Checkpoint t0 + 2 202
A.5 Instances at Dependability Checkpoint t0 + 3 202

A.5.1 German M-Unit . 203
A.5.2 German C-Unit . 203
A.5.3 German P-Unit . 204
A.5.4 Semantical Compatibility 204

A.6 Instances at Dependability Checkpoint t0 + 4 204
A.6.1 German M-Unit . 204
A.6.2 German C-Unit . 205
A.6.3 German P-Unit . 205
A.6.4 Dutch M-Unit . 206
A.6.5 Semantical Compatibility 206

A.7 Instances at Dependability Checkpoint t0 + 5 206
A.7.1 German M-Unit . 207
A.7.2 German C-Unit . 207
A.7.3 German P-Unit . 208
A.7.4 Dutch M-Unit . 208
A.7.5 Dutch C-Unit . 208
A.7.6 Semantical Compatibility 209

A.8 Instances at Dependability Checkpoint t0 + 6 209
A.8.1 German M-Unit . 209
A.8.2 German C-Unit . 210
A.8.3 German P-Unit . 210
A.8.4 Dutch M-Unit . 210
A.8.5 Dutch C-Unit . 211
A.8.6 Dutch P-Unit . 211
A.8.7 Semantical Compatibility 211

A.9 Instances at Dependability Checkpoint tn 212
A.9.1 German M-Unit . 212
A.9.2 German C-Unit . 213
A.9.3 German P-Unit . 213
A.9.4 Dutch M-Unit . 214
A.9.5 Dutch C-Unit . 214

Contents xi

A.9.6 Second Dutch C-Unit . 215
A.9.7 Dutch P-Unit . 215
A.9.8 Semantical Compatibility 215

A.10 Instances at Dependability Checkpoint tn + 1 217
A.10.1 German M-Unit . 217
A.10.2 German C-Unit . 217
A.10.3 German P-Unit . 218
A.10.4 Second German P-Unit . 218
A.10.5 Dutch M-Unit . 218
A.10.6 Dutch C-Unit . 219
A.10.7 Second Dutch C-Unit . 219
A.10.8 Dutch P-Unit . 220
A.10.9 Semantical Compatibility 220

A.11 Instances at Dependability Checkpoint tn + 2 222
A.11.1 German M-Unit . 222
A.11.2 German C-Unit . 222
A.11.3 German P-Unit . 223
A.11.4 Second German P-Unit . 223
A.11.5 Dutch M-Unit . 223
A.11.6 Dutch C-Unit . 224
A.11.7 Second Dutch C-Unit . 224
A.11.8 Dutch P-Unit . 225
A.11.9 Semantical Compatibility 225

A.12 Mapping Instances To Types . 227
A.13 Syntactical Compatibility . 228

B Implementation of our Application Example 229
B.1 Dependable Dynamic Adaptive Components from our example . . 229

B.1.1 German P-Unit . 232
B.1.2 German C-Unit . 238
B.1.3 Dutch C-Unit . 245

B.2 Node Models . 247

Bibliography 249

List of Figures 261

List of Tables 265

List of Listings 266

xii Contents

Dankbarkeit macht das Leben erst reich.

Dietrich Bonhoeffer

Vorwort

Diese Ausarbeitung stellt das mit Abstand umfangreichste Werk meines bisherigen
wissenschaftlichen Werdegangs dar. Ohne die Unterstützung von zahlreichen Per-
sonen in meinem Umfeld hätte ich nicht die hierzu erforderliche Kraft aufbringen
können. Daher gilt mein tiefster Dank all denen, die mich bei der Fertigstellung der
Ausarbeitung unterstützt haben.

Ich bitte insbesondere diejenigen um Verständnis, die hier nicht namentlich ge-
nannt werden – eine solche Aufzählung wäre niemals wirklich vollständig, weshalb
ich mich darauf beschränkt habe, einige wenige hervorzuheben.

In erster Linie gilt mein Dank meiner Frau Sabine, der ich diese Arbeit widme.
Durch ihre schier unerschütterliche Geduld und das Ertragen meiner Launen in sämt-
lichen Phasen der Ausarbeitung hat sie den wesentlichen Anteil zu der vorliegenden
Arbeit beigetragen. Insbesondere auch das Ermutigen zu Arbeitstagen außerhalb
des Clausthaler Umfelds in Orlando, Trier oder Nienhagen haben letztlich maß-
geblich zum Erfolg beigetragen. Darüber hinaus hat sie durch Reviews und durch
die Hilfe bei der Umsetzung von Abbildungen nach meinen Vorstellungen – was mit
Sicherheit nicht immer leicht war – zum Gelingen der Arbeit beigetragen.

Sabine: Das wir alle diese Arbeit jetzt in den Händen halten können, ist Dein
Verdienst – Deine Unterstützung und Deine Liebe haben mir die dafür erforderli-
che Kraft gegeben. Es gibt keine Worte auf dieser Welt, welche die Dankbarkeit
ausdrücken, die ich Dir gegenüber empfinde. Danke, dass Du für mich da bist!

Darüber hinaus danke ich meinen Eltern, die mir meine universitäre Ausbildung
ermöglicht haben und somit die Grundsteine für diese Arbeit gelegt haben. Zusätz-
lich haben sie mir – ebenso wie meine Schwiegereltern – die Möglichkeit gegeben,
die Arbeit außerhalb der eigenen Wohnung fortzusetzen und mir dabei viel Ver-
ständnis und Unterstützung entgegengebracht.

Ich danke meinen
”
Doktorvater“ Andreas Rausch, sowie seinem

”
Stellvertreter“

Jörg Müller. Beide haben in zahlreichen Diskussionen den Ansatz hinterfragt und
dadurch schrittweise zu einer immer weiteren Verbesserung beigetragen. Andreas
Rausch danke ich darüber hinaus für das hervorragende Arbeitsumfeld, was er
geschaffen hat. Es ist mir ein Vergnügen bei ihm zu arbeiten und ich freue mich
darüber, dass wir diese Zusammenarbeit auch in Zukunft fortsetzen.

Besonderer Dank gilt auch meinen Kollegen der Abteilung für Software Systems

xiii

xiv Vorwort

Engineering – insbesondere denjenigen, mit denen ich in den vergangenen Jahren
publiziert habe. Hervorheben möchte ich an dieser Stelle Holger Klus, der es wirk-
lich lang mit mir in einem Büro ausgehalten hat und der gemeinsam mit mir zu den

”
Gründungsvätern“ der Lehrstuhlsäule Flexible Softwarearchitekturen gehört. Ich
hoffe, dass wir auch in Zukunft unsere erfolgreiche Zusammenarbeit in der einen
oder anderen Form fortsetzen können.

Neben wissenschaftlichen Diskussionen habe ich am Lehrstuhl stets auch fach-
fremde

”
Küchendiskussionen“ über Krokodillängen, Holzflugzeuge oder ähnlich ab-

surde Themen genossen (Danke, Christian!). Für unterhaltsame Stunden im Rahmen
zahlreicher Brettspiel-/ oder Tanzabende danke ich Hella Schäfer und Thomas
Ternité. Beide haben darüber hinaus gemeinsam mit Thomas Bravin, Holger Klus,
Sandra Lange, meiner Frau Sabine und Björn Schindler meine Zeit während der
Promotion auch musikalisch versüßt.

Thomas Bravin und Annett Panterodt haben mir stets mit Rat und Tat zur Seite
gestanden, und mir so die tägliche Arbeit erleichtert – vielen Dank für die stets
schnelle Hilfe und für die Geduld die ihr mir gegenüber aufgebracht habt!

Aus meiner
”
Kaiserslauterer Zeit“ danke ich insbesondere Marcus Trapp, der

mir durch zahlreiche Review-Anmerkungen enorm weitergeholfen hat – Diskussionen
mit ihm, sowie seine Ideen haben die Ausarbeitung substantiell verbessert. Darüber
hinaus, danke ich dem restlichen BelAmI Team. Im Kontext dieses Projekt konnte
ich den Grundstein der Implementierung der DAiSI legen. Ich drücke Euch – sofern
ihr fußballbegeistert seid – die Daumen, dass der FCK sich in der 1. Bundesliga
festsetzen kann.

Im Rahmen meiner Arbeit habe ich zahlreiche CeBIT-Auftritte begleitet. Mein
besonderer Dank gilt hierbei den HiWis, die jeden dieser Auftritte zu einem Erfolg
gemacht haben. Besonders hervorheben möchte ich an dieser Stelle vier HiWis,
die mir aufgrund ihres außergewöhnlichen Engagements besonders in Erinnerung
geblieben sind: Markus Heintz, Dirk Herrling, Mirco Schindler und Tim Schumann.

Zu guter Letzt danke ich den Partnern des RESIST Projekts bei Siemens: Cornel
Klein, Jürgen Reichmann und Reiner Schmid. Ihr habt mich auf die grundlegende
Idee der Verhaltensäquivalenzklassen gebracht und diese gemeinsam mit mir zur
Patentanmeldung ausgearbeitet.

Kurzfassung

Heutige komponentenbasierte Systeme sind geprägt von hoher Dynamik. Begüns-
tigt durch die zunehmendeMobilität von Geräten, auf denen Softwarekomponenten
ausgeführt werden, treten diese Komponenten Systemen zur Laufzeit bei oder ver-
lassen sie. Daher darf die Komponentenverschaltung innerhalb eines Systems nicht
statisch, zur Entwicklungszeit festgelegt sein, sondern muss dynamisch anpassbar
sein.

Die dynamische Anpassung der Systemverschaltung wirft Fragen bezüglich der
Verlässlichkeit des resultierenden dynamisch adaptiven Systems auf. Da die zu in-
tegrierenden Komponenten dem System nicht vorab bekannt sein müssen, ist die
Adressierung dieser Fragen komplex. Insbesondere ist es nicht möglich, im allge-
meinen Fall zu entscheiden, ob eine Systemverschaltung semantisch kompatibel ist.

Diese Arbeit diskutiert Ansätze, wie verlässliche dynamisch adaptive Systeme,
die zur Laufzeit aus unbekannten Komponenten verschaltet werden, ermöglicht wer-
den können. Diese Ansätze basieren auf einem formalen Modell für dynamisch ad-
aptive Systeme. Eine gangbare Lösung zur Etablierung von verlässlichen dynamisch
adaptiven Systemen basierend auf Laufzeittests wird vorgestellt.

Auch wenn eine formale Verifikation stärkere Aussagen macht als dieser An-
satz, ist dieser im Gegensatz zur formalen Verifikation auch zur Laufzeit eines ver-
lässlichen dynamisch adaptiven Systems anwendbar. Er erlaubt Laufzeitaussagen
darüber, ob eine Systemverschaltung semantisch kompatibel ist, bevor eine inkom-
patible Verschaltung zu Problemen in der Ausführung führt.

In der Ausarbeitung ist der Ansatz anhand eines Anwendungsbeispiel aus der
Katastrophenmanagementdomäne dargestellt. Die Infrastruktur DAiSI zur automati-
schen Verschaltung von verlässlichen dynamisch adaptiven Systemen wurde im Rah-
men der Arbeit realisiert. Basierend auf DAiSI wurde das Anwendungsbeispiel, in
Form von Einzelkomponenten, die von DAiSI zur Laufzeit zu einem Gesamtsystem
zusammengesetzt werden, implementiert.

Aus Komponentenentwicklersicht erfordert der Ansatz nur geringe Anpassungen
von vorhandenen Komponenten und schränkt die Implementierung nur minimal ein.
Diese Anpassungen, wie beispielsweise das Entwickeln von Testfällen für jede ver-
wendete unbekannte Komponente, führen jedoch zu einer höheren Verlässlichkeit
des zur Laufzeit verschalteten Systems.

xv

xvi Kurzfassung

Abstract

Today’s Component-based systems tend to be more and more dynamic. Due to
the increased mobility of devices hosting Components, Components are entering
respectively leaving a system at runtime. Therefore, a system’s Component Binding,
which is part of the System Configuration, needs to be changeable at runtime.

This dynamic adaptation of the System Configuration imposes Dependability
issues, which are hard to address, since Components which need to interact in a
system are not necessarily known to the system up-front. Therefore, it is not possible
to determine a semantically compatible System Configuration in general.

In this thesis we will discuss approaches how to achieve Dependable Dynamic
Adaptive Systems which are bound from unknown Dependable Dynamic Adap-
tive Components at runtime. These approaches are based on a formal model for
Dependable Dynamic Adaptive Systems. We come up with a feasible solution to
establish Dependable Dynamic Adaptive Systems, which is based on runtime test-
ing.

Although this approach does not provide statements about the system, that are
comparable with statements derived from formal verification, it is applicable in De-
pendable Dynamic Adaptive Systems at runtime of a system. It provides runtime-
statements, whether a Component Binding is incompatible, before such an incom-
patible binding can lead to problems during system execution.

We will motivate and describe our approach at an application example from
the emergency management domain. The infrastructure DAiSI – Dependable Dy-
namic Adaptive System Infrastructure – has been realized within this thesis. Based
on DAiSI we implemented the application example as single Dependable Dynamic
Adaptive Components. DAiSI binds these Components together at runtime resulting
in the Dependable Dynamic Adaptive System described in the application example.

From a Component vendor’s point of view, our approach only requires minimal
changes to existing Components and makes only few restrictions regarding Com-
ponent implementations. These few changes – like writing test cases for each used
unknown Component – however, result in a higher Dependability of the overall
system established at runtime.

xvii

xviii Abstract

Your task is not to foresee the future, but to enable it.

Antoine de Saint Exupéry

1
Introduction

To produce systems out of IT Components, Component-based development ap-
proaches have been elaborated and successfully applied over the past years.
These approaches are changing the predominant development paradigm: Sys- Systems are

composed of existing
Components.

tems are no longer redeveloped from scratch, but composed of existing Compo-
nents [Szy02,BRSV00].

Nowadays, these IT Components are used within an organically grown, hetero-
geneous, and dynamic IT environment. They are expected to collaborate on their
own without an explicit design of a system containing them. Thus, the System Con-
figuration – containing Components as well as their Component Bindings – of these
systems is not static anymore. It is neither explicitly defined at development time The System

Configuration
changes at runtime.

nor at deployment time. Instead these systems are expected to change their System
Configuration over time as new Components enter the system at runtime.

Ultra large scale systems [FGG+06] or IT Ecosystems [HKNR08] are only two
examples for future’s system generations which are expected to change their Sys-
tem Configuration over time. These systems cannot be designed and built by a
single Component vendor anymore. We will sum up these system generations in this
thesis under the notion Dynamic Adaptive Systems.

By Dynamic Adaptive Systems we understand IT systems built from Dynamic
Adaptive Components, which act as Service Partners meaning that they provide Ser- Dynamic Adaptive

Systems =
Components +
Bindings +
Adaptation.

vices to other Dynamic Adaptive Components respectively use Services provided by
other Dynamic Adaptive Components. Dynamic Adaptive Components are charac-
terized by their continuous adaptation to a System Context or a User Context. You
can think of a speech recognition Component, which adapts its speech recognition

1

2 1. Introduction

algorithm to the current physical stress of a speaking user (adaptation to the User
Context [KR06]) or a printer Component, which can provide a copy-function after
adaptation, whenever a scanner Component is present in the system (adaptation to
the System Context).

A Dynamic Adaptive System consists of such Dynamic Adaptive Components
connected via Component Bindings. A Dynamic Adaptive System is characterized
by its openness towards entering Dynamic Adaptive Components. This results in
a continuous adaptation of the System Configuration during runtime of the system
due to changes in the System Context (newly entering respectively leaving Dynamic
Adaptive Components) or in the User Context (a new user starts interacting with the
system or a user changes his1 interaction style ,for example, due to a new task).
The System Configuration in a Dynamic Adaptive System needs to be established
and updated at runtime since the context may change at any time during runtime.

Due to this continuous adaptation of the System Configuration, support by a
System Infrastructure capable of automatically establishing or updating a System
Configuration is necessary for these systems. A supporting System InfrastructureInfrastructure

support is necessary. enables developers of Dynamic Adaptive Components to focus on application fea-
tures of the Component instead of having to deal with configuration related issues
like Service discovery and binding as well.

Dynamic Adaptive Systems are expected to be bound from Dynamic Adaptive
Components developed by different vendors that only agree on a Domain Architec-
ture instead of a complete System Configuration and its specific Dynamic Adaptive
Components. The Domain Architecture describes Service Interfaces which specifyDifferent vendors

agree on a Domain
Architecture,

specifying Service
Interfaces.

interfaces between Dynamic Adaptive Components in applications of a specific do-
main. A Service Interface consist of a syntactical specification describing method
names, parameters, return types, or attributes. In addition a semantical specifi-
cation describing the behavior of methods or containing protocols constraining the
allowed order of method calls may complement this syntactical specification.

These Service Interface specifications from the Domain Architecture enable ven-
dors to develop Components which interact with third-party Dynamic Adaptive
Components in Dynamic Adaptive Systems. They do not need to know these third-
party Dynamic Adaptive Components in advance anymore – instead they can refer
to Service Interfaces specified in a Domain Architecture. However, if vendors do
not define Component Bindings explicitly anymore but only implicitly by depen-
dencies defined in terms of provided and required Service Interfaces, a System
Configuration is not defined at development time anymore.

In addition there is no single deployment time of the Dynamic Adaptive System,
since Dynamic Adaptive Components should be able to enter a Dynamic Adaptive

1This is not meant to be gender-specific. Wherever you read “he” within this thesis, “she / he” is
meant.

1. Introduction 3

System after the initial deployment of the system resulting in a changed System
Configuration. Due to these facts the integration of Dynamic Adaptive Components
into a Dynamic Adaptive System by updating the System Configuration needs to
be performed at system runtime.

A user of a Dynamic Adaptive System expects Dynamic Adaptive Components
to collaborate autonomously with each other and provide a real added value to
him. On the other hand, as Dynamic Adaptive Systems are prominent in many We depend on

Dynamic Adaptive
Systems – thus they
need to be
dependable.

system visions of the future, we will soon get in touch with Dynamic Adaptive Systems
in everyday life. Thus, we depend more and more on these organically grown
Dynamic Adaptive Systems. Hence their Dependability gains in importance even
though these systems have not been developed and tested in advance as motivated
before.

Therefore, the need for Dependable Dynamic Adaptive Systems comes up. They
have cope with dynamically entering and leaving Dynamic Adaptive Components
during runtime just like any Dynamic Adaptive System would. In addition they need We need to detect

semantical
incompatibilities.

to detect and avoid possible resulting semantically incompatible System Configu-
rations during runtime. In order to achieve this, Dynamic Adaptive Systems require
means to detect semantical incompatibilities between Components.

Whenever a Dynamic Adaptive Component has specified expectations regard-
ing a required Service, which contradict the specific behavior of a syntactically
compatible Service provided by another Dynamic Adaptive Component, we state
that these two Dynamic Adaptive Components have a semantical incompatibility
regarding this Service. Reasons, why these semantical incompatibilities occur in False assumptions

cause semantical
incompatibilities.

practice have been investigated in the context of architectural mismatch for sys-
tems which are built from existing parts at design-time [GAO95]. As a main reason
they identified, that those parts have implicit assumptions regarding their environ-
ment that don’t match the actual environment or conflict with the assumptions of
other parts.

If we look at Dynamic Adaptive Systems, we want to be able to change the
Component Binding at runtime while ruling out semantically incompatible System
Configurations. One way of getting there would be to specify these additional
assumptions in a Domain Architecture.

However, this does not help alone: vendors want to develop Components with
unique features – semantical underspecification of the Domain Architecture helps us
to achieve this. Underspecification of the Domain Architecture has the effect [Bro93, Domain

Architectures are
underspecified.

SS06], that we may face Components, which have additional assumptions regarding
their environment, that are not specified in the Domain Architecture. This leads
to semantical incompatibilities as other Dynamic Adaptive Components may not
fulfill these additional requirements. Another reason for semantical incompatibilities
is, that we cannot assume, that all Dynamic Adaptive Components adhere to the
Domain Architecture in terms of a formally correct implementation of a Service

4 1. Introduction

Interface [LTW+06].
If we allow, that Dynamic Adaptive Components may define additional require-

ments regarding required Services, we need to find a specification, which we canSemantical
incompatibilities

need to be detectable
at runtime.

evaluate at runtime. Otherwise we would not be able to benefit from the specifi-
cations, as we need to derive a valid System Configuration at runtime in Dynamic
Adaptive Systems.

Several research areas try to expose semantical incompatibilities. They address
this by different approaches, which can be classified into design-time approaches
and runtime approaches.

Design-time approaches like model checking or other design-time verification
techniques try to expose semantical incompatibilities before Component execution
by proving specific properties. Runtime approaches like runtime-testing require,
that the evaluated Components are executed [Lig02].

The approach presented here is a runtime approach using runtime-tests to ex-Runtime testing
enables us to detect

semantical
incompatibilities.

pose and prevent semantical incompatibilities. Specific about our approach is the
concept of Combined Behavior Equivalence Classes which are used in order to de-
termine which Compliance Test Cases are executed when during system runtime.

In the following we sketch several future system visions prominent today. These
system visions share the commonality that they focus on Dynamic Adaptive Systems.
Since there are so many of these system visions, we are convinced, that Dynamic
Adaptive Systems are the system generation of the future. Therefore, it is necessary
to take means to achieve Dependable Dynamic Adaptive Systems.

1.1 Dynamic Adaptive System Visions

Nowadays several visions from industry as well as from research deal with Dynamic
Adaptive Systems. All these visions have in common, that they assume, that it is notToday’s system

visions are Dynamic
Adaptive Systems.

possible anymore to design and develop these systems as a whole, instead they
need to evolve over time. Among them is the vision of Organic Computing, which
is characterized by the idea, that mechanics from biology can be used for the
establishment of Dynamic Adaptive Systems [fIGiVI03, BMMS+06]. By applying
principles from biology these systems should provide so called self-x properties
like self-configuration or self-healing.

Ultra Large Scale Systems [FGG+06] on the other hand deal with future sys-
tems, which exceed nowadays systems by far in terms of lines of code, amount of
processed data, and by the number of involved Components. Establishing these
systems, therefore, provides several challenges for the research community related
to scalability of today’s engineering approaches. In the following we will introduce
three visions – Ubiquitous Computing, Pervasive Computing, and Ambient Intelli-
gence – in more detail. All these visions deal with Dynamic Adaptive Systems,

1. Introduction 5

which emphasizes, that Dynamic Adaptive Systems consisting of Dynamic Adaptive
Components are relevant for future systems.

The vision of Pervasive Computing has been motivated mainly by industrial in-
terests. The Pervasive Computing vision tries to cover the whole life with (mainly
already existing) IT Components and use this coverage for creating economical
benefit. These Components may be immobile like a home server or mobile like
a personal digital assistant or a smartphone. Thus, we are talking of Dynamic
Adaptive Systems – with Components entering or leaving a system – in Pervasive
Computing as well.

The Pervasive Computing vision is highly correlated with privacy and security
issues: on the one hand users of pervasive systems do not want that all their personal
information is stored and processed electronically (privacy), on the other hand they
want to make sure, that only authorized people can access their data (security)
[Ken06].

If we want to achieve that systems following these visions are widespread in
everyday life, it is indispensable that we take care about Dependability of Dynamic
Adaptive Systems.

1.1.1 Ubiquitous Computing

The term Ubiquitous Computing was initially established by MarkWeiser in his essay
“The Computer for the 21st Century” in 1991 [Wei91]. The vision of ubiquitous com-
puting is shared among the American research community. By ubiquitous computing
Mark Weiser refers to the third era of computing: the ubiquitous computing-era
specified by the relation “one person, multiple computers”. In this era the technol-
ogy disappears for the users – it is becoming ubiquitous. This third era is also called
“Third Paradigm” Computing by Alan C. Kay and follows the PC-era (one person,
one computer) and the mainframe-era (multiple persons, one computer). The new
era is sometimes called “post-PC-era” [Mat07, Pre99] as well, since it follows the
PC-era. All three eras and the progress between them over the years are depicted
in Figure 1.1 by showing the trend in total revenue related to selling hardware
belonging to the three categories.

The post-PC-era is characterized by computing devices, which are embedded
almost everywhere in a small and inexpensive way, like RFID tags in clothes for
product identification, cups using sensors to monitor liquid consumption, or even
microchips implanted under the skin for secure authentication or payment by touch.
These distributed devices are expected to form larger systems by connecting over
a (preferably wireless) network.

From todays point of view you can see, that several parts of this vision of ubiquity
are already slowly becoming true:

6 1. Introduction

m
a
in
fr
a
m
e
-e
ra

P
C
-e
ra

p
o
st
-P

C
-e
ra

1950 1960 1970 1980 1990 2000

re
ve

n
u
e
/y

e
a
r

mainframe revenue

PC
 re

ve
nu

e

U
ďŝ

ƋƵ
ŝƚŽ

ƵƐ
ͲC

Žŵ
ƉƵ

ƟŶ
Ő

ƌĞ
ǀĞ

ŶƵ
Ğ

Figure 1.1: A Shift in the Computing Paradigm according to [Cor 6].

• RFID tags are already wide spread in high-priced products - this is currently
limited to high-priced products due to the costs of these tags. As tag prices
are currently steadily decreasing, heading towards a price of 5 /c per Tag
[SS03] they are becoming more and more common in everyday products as
well.

In Rheinberg, Germany the Metro Group Future Store Initiative established
an experimental store featuring RFID technology the so called Future Store
[Bla04]. The whole product chain was covered by RFID-Tags. In 2008 they
moved to a larger store in Tönisvorst for further evaluation. They also offer
a mobile shopping assistant – a cell-phone based application [Ini09] guiding
customers to products.

• Companies like Digital Angel [Ang10] sell microchips for identification of peo-
ple as well as for access control, which need to be implanted. On the other
hand, the movement of criminals may already be restricted by means like
electronic shackles to overcome the problem of filled prisons.

• Modern cellphones provide mobile internet access to everybody. The Apple
iPhone – the first cellphone featuring an affordable internet flatrate – gained
a global market share of about 17 percent within a single year [Gar09] and,
therefore, stressed the demand for mobile devices featuring an internet con-

1. Introduction 7

nection. This emphasizes, that nowadays we are tending to be “connected”
to a network wherever we are located.

Therefore, we recognize a progress towards the Ubiquitous Computing vision
at the moment – we get in touch with devices carrying computing power in almost
every situation of our everyday life without really recognizing them. The vision of Ubiquitous

Computing is
approaching.

Ubiquitous Computing requires the interaction paradigm to evolve, since the user
should interact with an Ubiquitous Computer in a very natural way. Instead of
interacting with a graphical user interface in a classical way he should interact
with a Ubiquitous Computer itself by gestures or direct movement of Ubiquitous
Computing devices.

We realize this change in the interaction paradigm slowly as motion sensors are
integrated in many devices today like game controllers (Nintendo Wii) or mobile
devices like the Apple iPhone or the iPod. They allow us to interact with a system
simply by moving the interaction device.

It is obvious, that Ubiquitous Computing does not deal with a single computing
device but with a bunch of devices featuring Dynamic Adaptive Components, which
are interconnected to build a Ubiquitous Computing system. Since these devices
may be mobile and may enter or leave a system at runtime, Ubiquitous Computing
systems are Dynamic Adaptive Systems in the sense of this thesis.

1.1.2 Ambient Intelligence

Ambient Intelligence (AmI) describes a vision from European research [AE06]. It
tries to combine the visions of Ubiquitous Computing and Pervasive Computing in
order to establish an environment, where computation power and network access
are available anywhere, embedded nearly invisible in everyday life and providing
easy means for interaction. The Ambient Intelligence vision focuses on intelligence,
that should be created by connecting several “dumb” Components. Establishing AmI
systems should provide the user with a real added value compared to the sum of
the values provided by each integrated Component. AmI systems try to achieve
this goal by focusing on developing software and it’s architecture.

First Ambient Intelligence systems have been established as prototypes
[NSRD08, dRA04] and some Components from these systems like the Philips Am-
bient Light Technology [otN09] product line have evolved into series-production in
recent years. Most of the prototypes cover the field of home automation where
a flat is equipped with an Ambient Intelligence System which enables its inhabi-
tants to query the contents of the refrigerator remotely or monitor its contents to
detect spoilt food [KNR07], for example. Other features of these smart homes are
mood recognizing lightning controls or multimedia applications like a visual mailbox
integrated into the house.

8 1. Introduction

Within systems from the Assisted Living domain sensors are attached to every-
day devices in order to keep elderly people longer in their own home. Within the
BelAmI project [fESE09] an elderly person’s flat has been established as the As-
sisted Living Lab [NBKL06]. Within this flat elderly persons are supported by an
Assisted Living system monitoring the fluid consumption of the elderly person which
is measured by an intelligent cup [BGS01], for example.

These features may enrich the live of their inhabitants or may even enable
inhabitants to live their life there. AmI systems are flexible regarding the specific
Components involved in a system and Components may enter or leave these systems
at runtime. Thus, AmI systems are Dynamic Adaptive Systems according to our
definition as well.

Next to those AmI systems sketched before, AmI system prototypes have been
developed within other so called Assistance-domains like Assisted Training [JTNK06]
or Assisted Working [GSQ07].

In the following we will look at some application domains of Dynamic Adap-
tive Systems in more detail to motivate our approach for Dependable Dynamic
Adaptive Systems.

1.2 Motivation

Nowadays, there are several trends towards Dynamic Adaptive Systems. Dynamic
Adaptive Systems face the problem, that Dynamic Adaptive Components need to
interact with heterogeneous and changing Service Partners (represented by third
party Dynamic Adaptive Components) at runtime. As already motivated in Sec-
tion 1.1 you can find these systems in several domains. We will introduce small
examples from different domains in the following to illustrate our meaning of Dy-
namic Adaptive Systems. We will use these examples, to stress why we think, that
Dependability is crucial for Dynamic Adaptive Systems.

One example for a Dynamic Adaptive System is a home entertainment sys-
tem. Home entertainment systems in modern households include various devices like
television sets, AV-Receivers, DVD-Recorders, cell phones, game consoles as well
as associated remote controls. These devices share the commonality, that they can
only use their full potential, if they interact with each other. Moreover you can rec-
ognize an increasing trend towards wireless communication among these devices.
For home entertainment systems in an average household, it is typical, that they
consist of devices manufactured by different vendors. Moreover they evolve over
time, as devices are exchanged with new generation devices (e.g. a DVD-player
is replaced by a BluRay-player) or new device types are added to the home en-
tertainment system (e.g. a video projector is installed in the living room).

Home entertainment systems today can be connected at runtime, since their

1. Introduction 9

interfaces are specified precisely. In the past these interfaces were mainly defined
by analog signals. However, recent times show a trend towards standardized digital Semantical

incompatibilities
show up in practice.

(software) interfaces like the High Definition Multimedia Interface HDMI between
the Components. Unfortunately, as a result of this trend, we can recognize numerous
situations, where the connection between home entertainment devices fails due to
the increased complexity of the standardized interfaces. It is not natural anymore,
that a BluRay player transmits its high definition video image to an LCD screen after
connecting them [Tos09].

Leaving the home entertainment domain, an interaction between different de-
vices improves the value of the overall system for the user as well. If you think of
a user shopping for groceries it would be a huge benefit, if his cell phone could
display a shopping list based on the contents of his refrigerator. Connecting the
cell phone to the shopping mall could enable it to display, where the next item on
his list can be found, like it is realized in the mobile shopping assistant in the Metro
Future Store [Ini09].

Integrating cell phones would increase the capabilities of a system in several
other domains as well. For example, many modern cell phones are capable of
GPS based turn-by-turn navigation on their own as well as of querying traffic in-
formation via mobile internet access. By integrating cell phones into a car system,
these services could improve the car system by large. On the one hand, you can
think of outputting route information and traffic jam warnings using the car stereo
or offering a handsfree set supporting radio mute during phone calls. On the other
hand you could offer turn-by-turn navigation, even if you are in areas where you
do not receive a GPS signal like, for example, a long tunnel, since the naviga-
tion application could use the speed or the steering angle measured by the car
telemetry.

Next to this, integrating personal communication devices like cell phones may of-
fer value-added services in public buildings. At an airport you can think of checking
in for a flight directly on your cell phone instead of having to enqueue with several
other passengers at the check-in counter. After check-in you could be guided to
your gate on your smartphone by using the infrastructure of the airport for indoor-
navigation. Within the airplane, integrating your luggage with the system of the
airplane could guarantee, that your luggage is really stored within the luggage
compartment of the airplane. If you think of public offices, integrating personal
communication devices could replace the registration at a front desk by a registra-
tion using your cell phone.

If you look at the previous examples, you can recognize, that all of them include
the integration of various Dynamic Adaptive Components. A remaining question is,
how this integration should be performed. The integration of Dynamic Adaptive
Components into a Dynamic Adaptive System may be an operation performed by
a system administrator or they may be seamlessly integrated without further user

10 1. Introduction

interaction. The integration of these Dynamic Adaptive Components into a Dynamic
Adaptive System should include as little user interaction as possible.This seamless
integration is indispensable, as a Dynamic Adaptive System is supposed to integrate
movable devices like smartphones, which may enter or leave a system at any time.
You do not want an administrator to manually update the System Configuration
each time a smartphone is entering the Dynamic Adaptive System.

Integrating cell phones into a system, however, is challenging, since they have
a very short life cycle. While systems in a car or in a public building usually last
for a long period, cell phones are replaced much more frequently. According to
a study from Telephia, about 60 percent of all European cell phone users replace
their phone within 2 years by a new one. 27 percent of the users even replace it
within the first year [Tel06].

Due to the different lifecycles of the Components integrated in Dynamic Adap-
tive Systems we cannot assume, that the Dynamic Adaptive Components know their
Service Partners at development time. For reasons of cost, an end user will only
in rare cases exchange all Dynamic Adaptive Components involved in a Dynamic
Adaptive System at a single point in time by a new generation. Even if he would
like to exchange all Dynamic Adaptive Components, he might not be able to do it,
as the operator of the airport cannot exchange the cellphones of all passengers.

Therefore, Dynamic Adaptive Components like cell phones can not know their
Service Partners at development time. Instead they can only interact with otherStandards are

required in Dynamic
Adaptive Systems.

Service Partners by using standardized interfaces (e.g. the Bluetooth specification
[SIG07] – to be more precise: its Hands-Free-Set profile [SIG05] in case of cell
phones).

Integrating Dynamic Adaptive Components into a Dynamic Adaptive System
at runtime can have several negative side-effects, that need to be avoided. For
example, no user would tolerate, that integrating his iPod into a system of his car
would lead to a malfunction of his seat control or even cause the airbags in his
cockpit to inflate. Although the speed information measured by the car is used by a
user’s cell phone, he would still want that the car displays the speed on its electronic
speedometer.

By looking at the past, we can find several software failures, like the automatedSoftware systems
are buggy – even if

they have been
developed as a

whole.

baggage system at Denver airport [Huc10]. Although these systems were built as
a whole, severe failures occurred. Some of them were explicitly caused by reusing
software Components like the Ariane 5 [Dow97] as programmers had a different
understanding of the interface.

In Dynamic Adaptive Systems the risk that these incompatibilities will occur is
even higher as in the examples for software failures before: vendors of DynamicDynamic Adaptive

Systems bear even
higher risks.

Adaptive Components only know a Service Partner in terms of his Service Interface
instead of having the Service Partner available for testing during development.
Therefore, they may not be able to recognize incompatibilities during development-

1. Introduction 11

time.
Therefore, we need to guarantee at runtime, that integrating a Dynamic Adap-

tive Component does not have negative side-effects on existing functionality of a
Dynamic Adaptive System. This is called Dependable Integration in this thesis. By A runtime

mechanism for
Dependability is
required.

performing Dependable Integration we are moving from Dynamic Adaptive Sys-
tems towards Dependable Dynamic Adaptive Systems. Dependable Integration
characterizes the process, how a Dependable Dynamic Adaptive System establishes
a System Configuration binding only Dependable Dynamic Adaptive Components
which are free of semantical incompatibilities.

Providing Dependable Integration is a hard task. Dynamic Adaptive Compo-
nents are developed at different point in time and – in addition – by different ven-
dors. Due to these facts, the specific System Configuration of a Dynamic Adaptive
System cannot be tested or even proven to be free of semantical incompatibilities
in advance. In this thesis, we assume, that there may be Dynamic Adaptive Com-
ponents, which offer Services referring to Service Interfaces although they do not
implement them correctly with respect to the Service Interface specification from
the Domain Architecture.

This is a realistic assumption, since there are so many different vendors of Dy-
namic Adaptive Components that we can hardly assume, that all Dynamic Adaptive
Components have been formally verified during development. Even if we would Formal verification

alone does not help.assume, that only correct implementations are available in the system drawbacks
would occur: Vendors want to provide Dynamic Adaptive Components which offer
semantically more specific behavior than specified in the Domain Architecture to
distinguish from Components provided by third-parties. These specific semantics
can only be exploited by other Dynamic Adaptive Components, if these have the
possibility to specify, what requirements they have in addition to the specification
from the Domain Architecture. In our approach, they could specify these additional
requirements by Compliance Test Cases.

This assumption increases the demand for a runtime mechanisms establishing
a Dependable System Configuration. Development mechanisms cannot provide a Service Partners are

not known upfront.solution on their own as Service Partners for which a Compatibility needs to be
proven are potentially unknown at development time.

In this thesis we try to achieve Dependable Integration by changing the way, how
Dynamic Adaptive Components specify their provided and required Services. They Behavior

Equivalence Classes
and Compliance Test
Cases enable us to
detect semantical
incompatibilities.

add Behavior Equivalence Classes defining state spaces, where a provided Service
behaves equivalently respectively where a required Service is expected to behave
equivalently. This enables us to provide a mechanism based on runtime-testing,
which is capable to decide, whether two Components are semantically compatible
regarding a specific Service Binding.

For our previous example of the BluRay player and the LCD screen our approach
would consider the BluRay Player as a Service Provider and the LCD screen as a

12 1. Introduction

Service User. The LCD screen could define, that it expects a high resolution image,
when a BluRay player plays a BluRay, whereas it expects a low resolution image,
when it plays a DVD. In this case the state spaces plays a BluRay respectively plays
a DVD are the Behavior Equivalence Classes from the Service User’s point of view.
The LCD screen could define a testcase for the Behavior Equivalence Class plays a
BluRay testing, whether the video image stream is formatted as expected.

The BluRay player could define that it provides different behavior depending
on whether it is playing a video or whether it is currently paused or stopped. In
this case, the state spaces plays a video, is paused, and is stopped would be the
Behavior Equivalence Classes from the Service Provider’s point of view.

At runtime, different combinations of these Behavior Equivalence Classes can
occur, like {plays a BluRay, plays a video} or {plays a DVD, is paused}. For each
combination the test cases defined by the Service User are executed to detect
incompatibilities. A Service User could define fallback strategies to enable graceful
degradation in case of a failed test.

In our example, the LCD screen would recognize, that the BluRay player out-
puts a high resolution video image, which is not formatted as expected. Thus, it
cannot use this Service provided by the BluRay player. As a consequence the LCD
screen could use the low resolution video image, provided by the BluRay player for
downwards compatibility.

Our approach can not only decide about the compatibility once (prior to Service
Binding) but instead monitor the compatibility as the states of the Dynamic Adap-
tive Components change during system runtime. However, due to this additionalSemantical

Compatibility
changes at runtime.

requirement regarding specification, we will call Dynamic Adaptive Components,
which specify their provided and required Services in that way, Dependable Dy-
namic Adaptive Components within this thesis.

1.3 Goals of the Thesis

The main goal of this thesis is, that we want to provide runtime support for Depend-
able Dynamic Adaptive Systems. Therefore, we need to achieve several subgoals:

• We need to gain a deep understanding of Dependable Dynamic Adaptive
Systems and the triggers, which threaten their Dependability. Thus, we want
to elaborate a system model as a formal basis, which on the one hand enablesSystem Model

us to describe the dynamics of these systems like the changing System Con-
figuration, and on the other hand enables us to provide a mechanism, which
maintains the Dependability of the resulting Dependable Dynamic Adaptive
System.

• We need to provide a methodology, how we can decide, whether an Un-

1. Introduction 13

known Service Partner2 and a Requesting Service Partner3 are semantically
compatible regarding an Service offered by the Unknown Service Partner.

This methodology needs to take into account, that Dependable Dynamic Methodology

Adaptive Components are developed by different vendors at different points
in time. Therefore, a methodology including a proof of semantical Com-
patibility during development-time is hardly applicable for this Compatibility
decision, on its own. A runtime mechanism, deciding about semantical Com-
patibility, is needed.

• We need to provide a proof of concept implementation of a Dependable
System Infrastructure, which is capable of establishing and updating a De-
pendable System Configuration of a Dependable Dynamic Adaptive System
containing Dependable Dynamic Adaptive Components, which are compliant
to our system model. This System Infrastructure needs to use the previously Sample

Implementationmentioned runtime mechanism during establishing respectively updating the
System Configuration to avoid, that semantically incompatible Dependable
Dynamic Adaptive Components are bound together.

• We need to provide a guideline for developers, how their Dynamic Adaptive
Components need to be designed in order to benefit from our methodology.
Therefore, we will provide an demonstrative application scenario and will Development

Guidelinesprovide example Dependable Dynamic Adaptive Components appearing in
this scenario.

These goals are targeted within the thesis at hand in order to enable, that we
can build Dependable Dynamic Adaptive Systems. In the following you will find a
reader’s guide, describing how the thesis is structured and how the different sections
of the thesis can be mapped to general building blocks of a software systems
engineering methodology.

2A Dynamic Adaptive Component acts as an Unknown Service Partner for other Dynamic Adaptive
Components (Requesting Service Partners) when it is bound to them since its Current Configuration
offers Services, which they requested.
It is unknown in terms of the implementation of the associated Service Interfaces, as Requesting

Service Partners need to ensure, that the behavior of the implementation provided by the Unknown
Service Partner is semantically compatible with the behavior they expected when they declared the
Service Reference.

3A Dynamic Adaptive Component acts as a Requesting Service Partner when it declares Service
References which may be bound to Services provided by other Dynamic Adaptive Components in
their Current Configurations.
A Dependable Dynamic Adaptive Component acting as a Requesting Service Partner in addition

needs to be able to decide, whether the specific Dependable Service to which its Dependable
Service Reference may be bound by a Dependable Service Binding fulfills its expectations regarding
the behavior.

14 1. Introduction

1.4 Reader’s Guide

The thesis you are currently reading is intended to be read as a whole. However,
we tried to make it as modular as possible giving the references to the previous
parts explicitly whenever required. Nevertheless there are at least two chapters
which are “mandatory to read” from our point of view.

We strongly suggest, that you read Chapter 3 as it describes an application
example, which is used throughout the thesis to depict the presented concepts. In ad-
dition you need to read Chapter 6 as it describes the main contribution of this thesis
– our approach to Dependable Dynamic Adaptive Systems by applying runtime-
testing. To gain a better understanding you may need to look up the references to
our formal system model given during the explanation of our approach in Chapters
4 and 5.

Several terms in this thesis are written in capital letters – like “Dependable
Dynamic Adaptive Component”. This way of expression specifies, that these are
terms, which are specifically defined in this thesis. Whenever you are not sure,Capital letters =

Glossary term. whether you precisely understand what is meant by a specific term, you can look
them up in the glossary – it contains all of these terms in alphabetical order. In
addition – if you are reading the digital PDF version of the thesis – these terms
are hyperlinked, enabling you to directly jump to the definition in the glossary by
simply clicking at them.

However, the glossary only provides a summary – no additional information
about these terms is included. If you are reading the thesis as a whole you, there-
fore, only need to look up terms, in cases when you are not sure what was meant
by a term anymore and don’t want to jump back to the previous explanation in the
thesis.

Next to this, you will stumble across some words written in Italics. This way of
expression just stresses these words in the specific sentence, there is no additional
semantics of these Italics.

In the following we will describe the structure of the thesis.

1.4.1 Structure of the Thesis

In this thesis you will find our approach of achieving Dependable Dynamic Adaptive
Systems by runtime testing.

In Chapter 2 you will find the current state of the art regarding technology,
which is required in order to establish Dynamic Adaptive Systems in general. It
describes the state of the art regarding Dependability and regarding Dynamic
Adaptive Systems. This chapter summarizes work, which is related to our approach.

Chapter 3 provides an application example from the emergency management
domain. This application example describes a Dynamic Adaptive System, which is

1. Introduction 15

used during the thesis to illustrate the introduced concept in more detail. We will
show for this application example, why it is necessary to talk about Dependability
when we want to bind such a Dynamic Adaptive System from Dynamic Adaptive
Components at runtime. The application example has been prototypically imple-
mented using our approach. We exhibited it at CeBIT 2009 [NSH09].

In Chapter 4 you can find a structural model for Dependable Dynamic Adap-
tive Systems introducing terms like system, Component, configuration or service in-
terface, which describe how a system respectively a Component is structured. We
capture how changes in the structure of a system respectively the structure of its
Components influence Dependability by introducing so-called structural reconfigu-
ration triggers.

In contrary to the structural part, the following Chapter 5 focuses on the be-
havioral part of the model. We capture how changes of the behavior of a system
respectively the behavior of its Components influence Dependability by introducing
so-called behavioral reconfiguration triggers.

In Chapter 6 we will explain our sample implementation of our infrastructure for
Dependable Dynamic Adaptive Systems DAiSI. We will describe, how DAiSI real-
izes our formal system model and especially how it implements the reconfiguration
triggers and the check of semantical Compatibility by runtime testing, which is the
main contribution of this thesis.

A short summary discussing further work will round up the thesis.
In addition, the appendix contains a complete specification of our application

example as well as its realization built as Dependable Dynamic Adaptive Compo-
nents running on top of DAiSI.

In the following we will explain, how the contributions of this thesis can be
mapped to basic building blocks of a Software System Engineering Methodology.

1.4.2 The Thesis in the Context of a Software Systems Engineer-
ing Methodology

Within the Software Systems Engineering research group at Clausthal University of
Technology we sketched a software systems engineering methodology [Rau05b].
This methodology consists of several building blocks, which need to provide solu-
tions in order to enable us to build Dependable Dynamic Adaptive Systems. These
building blocks of a software systems engineering methodology are depicted in
Figure 1.2.

In the following we will describe our contributions to these building blocks, which
are necessary to enable Dependable Dynamic Adaptive Systems.

16 1. Introduction

Figure 1.2: Building Blocks of a Software Systems Engineering Methodology.

Formal System Model

A well-defined conceptual framework of Dependable Dynamic Adaptive Systems
is required as a reliable foundation. It consists of a mathematical formal systemSystem model =

foundation for
approach and

System
Infrastructure.

model which is used to unambiguously express the basic notions and their relations,
like for instance Dependable Dynamic Adaptive Components and integration of
those within a Dependable Dynamic Adaptive System.

Within the thesis, Chapter 4 and Chapter 5 build the formal model for Depend-
able Dynamic Adaptive Systems. They are our contribution to the building block
formal system model.

Description Techniques

Description techniques for Dependable Dynamic Adaptive Systems are required to
describe the systems as well as the Components. The used description techniques
have to be formally founded using the formal system model as the descriptions
will be interpreted during runtime, like for instance to verify required guarantees
during Dependable Integration.

The building block description techniques is tackled during the chapters on theUML is used
throughout this

thesis.
formal system model (Chapter 4 and Chapter 5). Within this thesis we use the
graphical notation of the Unified Modeling Language (UML) and standards like

1. Introduction 17

TTCN-3 [Ins07] or the UML Testing Profile [Gro07] to describe Dependable Dynamic
Adaptive Systems by easily readable diagrams. We do not come up with our own
description techniques.

Iterative System Evolution Process

To develop Dependable Dynamic Adaptive Systems neither a pure top-down nor
a pure bottom-up development approach is sufficient. Usually, an iterative system
evolution process is more appropriate. Thereby not only the development activities A shift of activities

from design-time
towards runtime.

are organized, but also the complete life-cycle of the Dependable Dynamic Adap-
tive Systems is captured, like for instance analysis about the impacts of changes
to a system’s architecture. For Dependable Dynamic Adaptive Systems more and
more steps of this process need to be shifted from design-time to runtime.

Especially verification can hardly be performed at development time, as the
interaction partners are not necessarily known at development time in Dependable
Dynamic Adaptive Systems. Chapter 6 of this thesis addresses these verification
means, which are needed at runtime. These runtime verification means are our
contribution to the building block iterative system evolution process.

In addition, Chapter 7 contains a discussion of the impact, our approach may
have on a software development process for Dependable Dynamic Adaptive Sys-
tems.

Standard Domain Architectures

Dependable Dynamic Adaptive Systems are open for entering and leaving
Dependable Dynamic Adaptive Components, which were not known at the
development-time of other parts of the system. Such an open and dependable
system can only be realized based on a shared and open standard Domain Archi-
tecture designed from domain requirements. This Domain Architecture serves as a
common blueprint for all valid System Configurations.

In this thesis we assume, that vendors providing Dependable Dynamic Adaptive
Components for a specific domain have agreed on a standard Domain Architecture.
We show at an example, how such a Domain Architecture can look like for the
example in Chapter 3. This example captures syntactical as well as semantical
aspects of the Service Interfaces of the domain.

Next to this, there is no noteworthy contribution to the standard domain archi-
tecture building block. As Domain Architectures are typically underspecified, since
vendors want to provide Components with unique selling points, we concentrate on
behavior, that is not specified in a Domain Architecture. We want to be able to
check the semantical Compatibility of Components regarding this behavior, which
has not been specified during standardization, as well.

18 1. Introduction

Tool Support

All aspects should be empowered by tool support. The formal system model is re-
alized by a Dependable System Infrastructure for Dependable Dynamic Adaptive
Systems.

Our Dependable System Infrastructure DAiSI is a tool, which can be used to es-
tablish Dependable System Configurations within Dependable Dynamic Adaptive
Systems automatically at runtime. DAiSI also contains tools monitor and administer
a Dependable Dynamic Adaptive System. Thus, the description of DAiSI’s imple-
mentation in Chapter 6 is our contribution to the tool support building block.

In the following we will introduce the state of the art regarding Dependability
and Dynamic Adaptive Systems. We will distinguish our approach from related
work.

Anything that is in the world when you’re born is normal and ordinary and
is just a natural part of the way the world works. Anything that’s invented
between when you’re fifteen and thirty-five is new and exciting and revo-
lutionary and you can probably get a career in it. Anything invented after
you’re thirty-five is against the natural order of things.

Douglas Adams

2
State of the Art

In the following we will give an overview of the state of the art from two perspec-
tives: first of all, we will focus on state of the art dealing with Dynamic Adaptive
Systems. This includes paradigms like Component-based systems or service oriented
architecture.

The second perspective focuses on Dependability. We will discuss, how De-
pendability is defined, and how it can be achieved by different methodologies.

2.1 Dynamic Adaptive Systems

Dynamic Adaptive Systems in the sense of this thesis are characterized by the fact,
that they consist of a set of (software) parts. These systems are dynamic, meaning Dynamicity =

Components enter or
leave a system at
any time.

that Components may enter or leave the system at any time during runtime. Conse-
quently the binding between these parts needs to adapt during runtime. The parts
together with their bindings form the System Configuration.

Summed up the primary characteristic of a Dynamic Adaptive System in the
sense of this thesis is a System Configuration which dynamically changes at run-
time. The System Configuration must not be statically defined in advance during
development but needs to be established dynamically during runtime by a System
Infrastructure. Adaptation =

Different behavior
according to System
Context.

Dynamic Adaptive Systems are adaptive, meaning that they (respectively their
parts) may behave differently according to the current context of the system.
Thus, they adapt their behavior to fully benefit from entering Components, pro-

19

20 2. State of the Art

vide graceful degradation in case of leaving Components, or to adapt to a user’s
current needs.

According to the underlying system paradigm, the parts of a Dynamic Adaptive
System are called Components or services. We will investigate the well-known
paradigms of Component-based systems and service oriented architecture in the
following. We will discuss, how they can enable a dynamically changing System
Configuration.

2.1.1 Component-Based Systems

The basic idea behind Component-based software engineering is, that systems can
be composed of off-the-shelf third-party-Components. Therefore, it is first of all
necessary to define, what we mean when talking about a Component.

Component Definition

Several attempts were made to define a Component in the past [BDH+98]. We will
try to focus on the commonalities of these definitions in the following. A ComponentComponent =

independent
deployment +

subject to third-party
composition.

is the fundamental building block [Gro04a] of Component-based systems. Thus,
Components represent the parts of a System Configuration in Component-based
systems. According to [Szy02] a Component is a unit of independent deployment
and subject to third-party composition.

Since it is independently deployed it should not have external deployment re-
lationships towards other Components. This means, that it needs to be deployable
on its own without requiring additional Components. If a Component has external
relationships, these need to be made explicit, enabling third-parties to provide the
required deployment environment for this Component.

As a Component is subject to third-party composition, a Component vendor
needs to consider the use case, that Components provided by him are composed
to a system by third-parties, which do not have access to the source-code of theNo access to source

code. Component. Therefore, public interfaces of a Component need to be precisely
specified and this specification needs to be available to the public.

The interface specification needs to contain at least a syntactical specification
describing method signatures and exchanged datatypes. To give third-parties aInterface

specification =
syntax (mandatory)

+ semantics
(optional).

more precise understanding of capabilities of a Component, its Component vendor
can complement this interface specification with a semantical specification. The
semantical specification may specify the behavior of interface methods as well as
protocols defining the order of method calls.

Components need to be explicitly designed for reuse in order to benefit from
the ideas of Component-based software engineering.

2. State of the Art 21

Component Reuse

By reusing Components in several systems, the overall quality of a Component
should increase due to the many users, which may report faulty behavior to the
Component vendor.

In order to enable reuse, it needs to be considered during development of Com-
ponents. The interfaces need to be general enough allowing application in a large
set of systems. On the other hand, they need to be specific enough to be applica-
ble in systems of third-parties. Standardized domain architectures for applications Trade-off between

specific and general
interfaces.

of a specific domain may help during this trade-off between general and specific
interfaces, since they define a set of interfaces, which may be used or implemented
by Components targeting a specific domain. However, even standardization of
domain architectures bears the risk of multiple competing standards covering the
same domain [Szy02].

Component markets are an approach to facilitate Component-based software
engineering. They provide a marketplace, where Component vendors sell their
Components to third-parties or they acquire COTS (Commercial off-the-shelf) Com-
ponents to build own Components or compose whole systems. However, these mar-
kets still don’t fit the market participants’ needs very well. Amongst others, Compo-
nent vendors want to be able to discover, evaluate, and select COTS Components,
analyze their cost and value and manage the overall acquisition process [US04].

If you take a closer look at the idea of Component markets, you can recognize,
that they mainly are intended to sell COTS Components to vendors, which compose
a whole (sub-)system from these COTS Components. This enables vendors to bind
systems from COTS Components– optionally by adding self-developed glue-code
or own Components. As a result, they get a composed (sub-)system which they can
verify before selling it to customers.

In Dynamic Adaptive Systems, however, there is no single vendor, which may
integrate and verify the system. Instead Dynamic Adaptive Components sold by No system vendor in

Dynamic Adaptive
Systems –
integration is
performed by
end-users.

different vendors are integrated into a running system at the moment, a customers
starts them up by turning on a device hosting these Components. This is a very
important difference and a huge threat for Dependability, since vendors cannot
verify a (sub-)system as they cannot foresee each System Configuration occurring
at runtime.

There is a huge bunch of technology supporting the establishment of
Component-based systems varying regarding the programming language of Com-
ponents or regarding the underlying Component model. Prominent examples today
are J2EE [Mic07b], CORBA [Gro04b], COM [Mic93] respectively its distributed ver-
sion DCOM [Mic96], OSGi [All09], or .NET [Mic07a].

We will not discuss them further in the following. We will just highlight one
new feature – the Managed Extensibility Framework (MEF) [Mic09] – of the latest

22 2. State of the Art

version 4.0 of the .NET Framework, which stresses, that Component-based systems
deal with Dynamic Adaptive Systems.

To establish a System Configuration at runtime the MEF provides a discovery
and composition mechanism. An application in MEF is composed from so-calledMEF is made for

Dynamic Adaptive
Systems.

ComposableParts at runtime. Thus, MEF enables Dynamic Adaptive Systems. Com-
posableParts define required ComposableParts by so-called imports whereas the
define their provided features by so-called exports.

Contracts associated with these im- and exports act as a filter during discovery
of ComposableParts. Contracts in MEF are mainly defined by interfaces or abstract
types, which a ComposablePart im- respectively exports.

Next to this syntactical declaration of im- and exports, metadata can be added
to them. Metadata in MEF is a tag-value pair describing provided respectively
required capabilities. It is used in MEF to further filter the set of matching parts
during discovery.

Tag-value pairs are quite widespread to filter results during discovery. Amongst
others, you can find them in the Jini Lookup Service [New06] or in the Corba Trad-
ing Object Service [Gro00]. However, they provide only limited applicability toSemantical

Compatibility is only
considered by

tag-value pairs.

achieve Dependability: Obviously a (required respectively provided) behavior of
a Component can hardly be captured by tag-value pairs. Thus, additional means
are required to deal with Dependability of Component-based Dynamic Adaptive
Systems.

Formal models like DisCComp [Rau07, Rau01] describing Component instances
and their behavior in Component-based systems exist. DisCComp is capable of
describing systems with dynamically changing System Configurations as well by
describing snapshots of a synchronized system execution.

If we want to use these models, to decide about semantical Compatibility of twoMore powerful
models exist –

however, they are
hardly applicable at

runtime.

Components at runtime, we need to compare a specified provided and a specified
required behavior of Components to be bound. To be more precise, we need to
show, that the specification of provided behavior implies the one of the required
behavior.

This implication is not calculable in general [Rau02]. [Rau05a], therefore, mo-
tivates the need for system tests during runtime in Dependable Dynamic Adaptive
Systems. This approach is taken within this thesis.

2.1.2 Service Oriented Architecture

The Service oriented architecture (SOA) is characterized by the principle of service-
orientation. The idea is to realize applications composed of several services. Each
service is a so-called unit of logic [Erl05]. Thus, the underlying idea is separation

2. State of the Art 23

of concerns. According to [Erl05], services have the following characteristics1.

• Services are reusable.

• Services share a formal contract.

• Services are loosely coupled.

• Services abstract underlying logic.

• Services are composable.

• Services are autonomous.

• Services are stateless.

• Services are discoverable.

Comparing SOA to Component-based systems, we recognize, that a SOA ser-
vice is the equivalence of a Component in Component-based systems. Many of
the service characteristics are shared with those of Components. The main differ- Stateless Services

versus stateful
Components.

ence between them, is statelessness. While Components typically are stateful, a
service in the SOA interpretation is stateless, meaning that it behaves identical all
the time and its behavior is only influenced by passed parameters during a call
of the service. You can find a deeper discussion of differences between SOA and
Component-based systems in [Vog03].

The most important application of SOA today areWeb services. AWeb service Web Services

is defined using the Web Service Description Language (WSDL) [CCMW01]. A
service requester typically retrieves web services at a central registry and directly
communicates with these web services using SOAP (Simple Object Access Protocol)
[W3C07] messages in the following as depicted in Figure 2.1.

The discovery mechanism in Web Services is related to our approach: Dur-
ing discovery, the service requester needs to submit his requirements regarding a
service provider to the service registry. The registry needs to filter the registered
services according to these requirements and return the matching service provider(s)
to the service requester.

WSDL originally only provided a syntactical specification of a Web Service.
As semantical aspects also need to be considered to discover a matching service Semantical

Compatibility is not
addressed
sufficiently.

provider, this has been enhanced in specification languages like OWL-S [MBM+07]
or WSMO [RKL+05]. To enhance service matching with semantics, they focus on de-
scribing pre- and postconditions of services. However, using these specification lan-
guages for service matching does not guarantee semantical Compatibility: They do

1For a more detailed explanation of these characteristics, see [Erl05], pages 290 - 311.

24 2. State of the Art

Figure 2.1: The SOA Triangle According to [MRP+07] or [Erl05].

not ensure, that a service provider guarantees the specified postcondition assuming
that the precondition is fulfilled.

Summed up, Component-based systems as well as service oriented architecture
provide discovery mechanisms as means to deal with Dynamic Adaptive Systems.
However, these discovery mechanisms do only deal with semantical Compatibility
– if at all – in a rudimentary way during matching a discovery request to a set of
available Components respectively services. Moreover most discovery mechanisms
require application developers to deal with discovery themselves – they need to
submit their request and select a best fitting Component respectively service from
the result set.

Within our Dependable System Infrastructure we want to provide a discovery
and configuration mechanism, which extracts the provided and required Depend-
able Services of Dependable Dynamic Adaptive Components by a reflection mech-
anism and directly sets the Dependable Component Bindings between Components.

2. State of the Art 25

To be even more applicable for Dependable Dynamic Adaptive Systems, this
mechanism should support adaptation of the Components themselves by embed-
ding a Component model, which supports different configurations for a Component
where a configuration is a mapping between provided and required Dependable
Services.

Applying our discovery and configuration mechanism should consider the De-
pendability of the resulting system. This mechanism is implemented as a middleware
service provided by the Dependable Configuration Component in our Dependable A Dependability

mechanism is
required as a
middleware service.

System Infrastructure DAiSI (Dependable Dynamic Adaptive System Infrastructure).
Related to the definition of middleware services from [Ber96] this Dependable Con-
figuration Component deals with system management as it acts as a configuration
manager and as a fault detector within Dependable Dynamic Adaptive Systems.

To explain, how we want to address Dependability, we define the meaning of
Dependability in the sense of this thesis in the following.

2.2 Dependability

Dependability has been defined in [Sec92] as “the extent to which the system can
be relied upon to perform exclusively and correctly the system task(s) under de-
fined operational and environmental conditions over a defined period of time, or
at a given instant of time”. Some definitions of Trustworthiness refer to a similar
concept when they define Trustworthiness as “assurance that a system will perform
as expected” [ALR04].

[ALR04] gives an excellent overview of Dependability and the terms related
to it. They define Dependability based on service failures. They define a service Dependability =

ability to avoid
service failure.

failure as an “event that occurs, when the delivered service deviates from correct
service, either because the system does not comply with the specification, or because
the specification did not adequately describe its function”.

Consequently they define Dependability as the “ability to avoid service failures
that are more frequent or more severe than acceptable”. Within this thesis we want
to detect these service failures, occurring at a Dependable Component Binding, and
immediately change the System Configuration. We want to remove Dependable
Component Bindings with service failures respectively replace them with bindings
without service failures.

To achieve Dependability, [ALR04] distinguishes between three dimensions that
need to be considered: Attributes, Means and Threats. Attributes of Dependability Reliability =

continuity of correct
service.

are Availability, Reliability, Safety, Confidentiality, Integrity, and Maintainability.
In this thesis we focus on Reliability defined as “Continuity of correct service”.

We address it by detecting service failures and reconfiguring the system to
avoid catastrophic consequences and to reestablish correct service provision. Any-

26 2. State of the Art

how, since our approach is based on runtime testing, we cannot provide guarantees
of correctness. We can only detect incorrect System Configurations if they are cov-
ered by defined test cases.

Means of Dependability are fault prevention, fault tolerance, fault removal,
and fault forecasting. We concentrate on fault prevention – means to prevent theWe remove faults

and prevent error
propagation.

occurrence or introduction of faults – and fault removal – means to reduce the
number and severity of faults. By changing the System Configuration, whenever
we detect faults, we remove faults from the Dependable Dynamic Adaptive System
and prevent error propagation to other Components which could otherwise lead to
subsequent faults.

Threats to Dependability according to [ALR04] are faults, errors, and failures.
According to [Lev95] faults are defined as “conditions, that may cause a reduction,Faults cause errors,

which may lead to
failures.

or loss of, the capability of a functional unit to perform a required function”. Thus,
they act as triggers for software anomalies. An error describes a deviation of a
unit’s external state from its correct state. A failure is the inability of a unit to
perform its function.

Summed up you can relate the three notions as follows: Faults cause errors,
which may lead to failures.

In addition, the notion of failure is also defined explicitly for Services: A Service
failure is defined as “an event that occurs, when the delivered service deviates fromService failure,

Service outage,
Service restoration.

correct service. The period of delivery of incorrect service is a service outage. The
transition from incorrect service to correct service is a service restoration.”

Considering these definitions, we concentrate on detecting state changes, which
may act as faults. Whenever we recognize such a critical state change2, we execute
Compliance Test Cases to check, whether there is an error, which results in a Service
failure.

Since we immediately change the System Configuration, when a Service failure
is detected, we prevent Service outages and perform Service restoration as long
as redundant service providers are present in the Dependable Dynamic Adaptive
System. Even if no redundant service provider is present, we prevent the usage of
this incorrect Service assuming, that it is better not to use a Service instead of using
an incorrect one.

Thus, we focus on detecting errors recognizable as Service failures. To detectPotential faults are
defined by Behavior
Equivalence Classes.

these errors, we define potential faults by introducing state spaces of equivalent
(expected) behavior of a Service using our concept of Behavior Equivalence Classes.

Summed up, the taxonomy of Dependability as defined in [ALR04] is depicted in
Figure 2.2. Those aspects considered within this thesis are highlighted by depicting
them in green color. Note that Failure is depicted in lighter green, as we only
concentrate on service failures.

2In our approach such a change is characterized by the change of a Behavior Equivalence Class.

2. State of the Art 27

Figure 2.2: A Dependability Taxonomy According to [ALR04]. The Dependability
Attributes Addressed in this Thesis are Highlighted in Color.

28 2. State of the Art

Dependability can be considered during the development phase as well as
during the use phase. Since we cannot foresee the System Configurations in De-We need to deal with

Dependability at
runtime.

pendable Dynamic Adaptive Systems at development time anymore, we propose
to deal with Dependability at runtime of a Dependable Dynamic Adaptive System
to detect service failures in a specific system at runtime. Thus, we focus on Depend-
ability in the use phase. One failure class, that occurs at runtime are “operational,
external faults” resulting from interaction of a system with a third-party Component.

We address this failure class by detecting service failures between Dependable
Dynamic Adaptive Components within the Dependable Dynamic Adaptive System.
16 out of 18 failure types during operation of a system are operational, external
faults [ALR04], which stresses the importance to address these type of failures.

Another classification related to Dependability is the separation between ver-
ification and validation. While verification tries to answer the question “Are we
building the product right?”, validation focuses on the question “Are we building the
right product?” [Som06]. Thus, verification means checking, whether a product is
compliant to a specification, while validation checks, whether a product fulfills the
requirements of its users.

Since our approach uses runtime testing to establish Dependable Dynamic
Adaptive Systems, it depends on the Compliance Test Cases, whether we performVerification or

Validation? It
depends on the
Compliance Test

Cases.

verification or validation. If a Service User derives test cases based on his expecta-
tions of the functionality of a Service Provider, we perform validation. If he derives
them from a specification of a Service Provider’s behavior in a Domain Architecture,
we perform verification. By deriving test cases from these two sources, we perform
verification and validation.

To understand, which different verification and validation techniques exist, we
will highlight an excerpt of the most relevant techniques based on the classification
from [Lig02] in the following. This classification excerpt is depicted in Figure 2.3.

In general we can, therefore, distinguish between static and dynamic techniques
for verification and validation. These are explained in the following.

2.2.1 Static Techniques

The idea of static verification techniques is to prove that a system has specific prop-
erties without executing it respectively to reveal errors. We distinguish analyzing
techniques from verifying techniques.

Analyzing techniques like reviews or metrics, are performed without executing
a system. They try to rate the quality of a system and may reveal errors. However,
they do not provide general statements about Dependability of the system [Lig02]
and are, therefore, not further considered within this thesis.Verifying techniques

try to derive / prove
general statements.

The aim of verifying techniques is to provide such general statements about
the Dependability of a system. While verifying techniques like symbolic execution

2. State of the Art 29

Figure 2.3: A Classification of the Most Relevant Verification and Validation Tech-
niques According to [Lig02]. The Verification and Validation Technique Used in this
Thesis is Highlighted in Color.

or formal proof techniques may provide such statements, there are some draw-
backs, restricting us to use them as a single verification and validation technique in
Dependable Dynamic Adaptive Systems.

They try to prove the compliance of a system to its specification. Since De-
pendable Dynamic Adaptive Systems are not specified as a whole, when trying
to prove the correctness of a Dependable Dynamic Adaptive System, one needs
to compare the behavior of a Dependable Dynamic Adaptive Component to the
behavior desired by another Dependable Dynamic Adaptive Component.

The behavior of a Component is usually given by the Component binary itself, as
we cannot assume, that a Component vendor publishes the source code, as it would Comparing a system

to its specification is
hardly applicable at
runtime.

threaten his competitive advantage regarding other vendors. This is a challenge,
as static verification approaches assume, that the source code or at least a model
abstracting from the source code to facilitate verification by slicing the program for
verification [Wei81], is available [FLL+02].

Even if Component vendors offered their source code: This usually is a Turing-

30 2. State of the Art

complete description and application-specific properties may be Turing-complete
as well. Thus, two Turing-complete specifications need to be compared. This re-
quires the evaluation of implications using second-order logic which refers to the
decision problem. This has been proven to be not decidable in general by Turing
and Church in 1936 [Tur36,Chu36] – neither at runtime nor at development time.

Thus, these techniques are hardly executable at runtime: Depending on the un-
derlying specification that needs to be proven, these proofs may require human
interaction, may perform badly as they are NP-complete, or may even be unde-
cidable.

Without restricting the expressiveness of the specification language, we cannot
apply these techniques at runtime. Techniques, which could be applied at run-
time, therefore, do not use turing-complete specifications. By using specificationsTrade-off between

expressiveness and
decidability.

of limited expressiveness, they focus on proving general properties like absence
of deadlocks [BBSN08], whereas we want to check vendor-defined application-
specific properties of Dependable Component Bindings.

Many static techniques reduce the specification expressiveness by using finite
state automata [LPY97] or linear temporal logic for specification of the system
respectively its provable properties. Although this is indeed necessary in order
to be able to perform static verification, it is questionable, whether the remaining
abstraction still enables vendors to express all properties, they want to specify.

Behavioral types [BCP07] are one example for a static technique to verify
the correct interaction of software Components. They enhance syntactical type in-
formation by behavioral specifications like finite state machines or process calculi.
However, [BCP07] explicitly states, that a good trade-off between verifiability and
expressiveness needs to be found in order to make behavioral types applicable.

Next to this problem of finding the right trade-off, many static checkers ca-
pable of static verification are unsound (reporting failures, which cannot occur) or
incomplete (they miss failures). Users of static checkers like ESC/Java are annoyedMany static checkers

are unsound or
incomplete.

especially by excessive warnings about non-bugs [FLL+02].
While testing is incomplete as well, as it can only show the presence of failures,

instead of proving their absence, it will only report real failures as long as the test
cases are correct. Thus, some approaches like [CS05] combine static techniquesTesting cannot show

the absence of
failures.

with runtime testing by generating test cases to check, whether found failures really
exist. However, they once again detect very general failures like dereferences to
null, array-out-of-bound accesses, or divisions by zero.

Formal specification required for static verification and validation techniques
is seen as a heavy burden by Component vendors [FLL+02]. [CS05] moreoverFormal specification

is a heavy burden for
Component vendors.

stresses that testing is the “predominant way of discovering errors in software”.
Thus, our conclusion is, that using test cases to achieve Dependability in Dynamic
Adaptive Systems enhances the chances for Component vendors to be able to reuse
test cases they already used during Component development. At least they are

2. State of the Art 31

already capable of writing test cases and do not need to learn new specification Writing Compliance
Test Cases is well
known.

techniques, which would have been the case, if we settled our approach on proving
properties using any arbitrary formal specification language.

Next to these problems, static techniques in Dependable Dynamic Adaptive
Systems need to be performed at runtime, as the Components that are bound to Performance of

runtime verification
is bad.

each other within a specific System Configuration are not necessarily known at
development time. Static checkers like jStar do not perform very well, needing
about half a second to verify a program consisting of less than 100 lines of code
[DJ08]. Such a performance would hardly be sufficient to analyze Dependable
Dynamic Adaptive Systems at runtime.

2.2.2 Dynamic Techniques

In contrast to static techniques, dynamic techniques require the execution of a pro-
gram to reason about its Dependability. Dynamic techniques can be classified
further regarding the way, how test cases are derived for a system. In the context
of this thesis, we focus on the two most relevant types of test case derivation [Lig02]:
structure oriented techniques and function oriented techniques.

Structure oriented techniques in practice are used mainly during module tests Structure oriented
techniques can
hardly be used in
Dependable
Dynamic Adaptive
Systems.

[Lig02]. They focus on deriving test cases from the control flow of a system under
test to get a sufficient test case coverage. Thus, they require this control flow, which is
typically derived from the source code of the system respectively Component under
test. As for static verification and validation techniques, this is hardly applicable,
as we cannot assume, that the source code is available.

As a consequence, they cannot be used to derive test cases with a good test
coverage in Dependable Dynamic Adaptive Systems. However, dynamic techniques
can be used to generate so called Behavior Equivalence Classes for a Dependable
Service provided by a Dependable Dynamic Adaptive Component from the control
flow.

Function oriented techniques derive test cases by interpreting a specification
of the system under test. These techniques can be used for Dependable Dynamic Function oriented

techniques – like
equivalence class
testing – are
applicable.

Adaptive Systems. If a Component vendor develops a Dependable Dynamic Adap-
tive Component willing to access Dependable Services provided by an Unknown
Service Partner, he will have a specification3 for each required Dependable Service
describing its desired behavior. Thus, he is able to derive test cases for Unknown
Service Partners from these specifications.

One of the most known function oriented technique is equivalence class testing.
The motivation of equivalence class testing is, to find a reasonable sized set of test
cases, which still give a good chance to detect errors in the system under test. Thus,

3If this specification is not present explicitly as a document, then it will be at least in his head.

32 2. State of the Art

it decomposes the whole testing domain4 into several separate domains. The ideaEquivalence class
testing = test a single

representative of
each equivalence

class.

of this decomposition is, that the system behaves equivalently for all representatives
of the specific domain. Assuming that these so-called equivalence classes represent
the behavior of a Dependable Service adequately, you only need to test a single
representative of each equivalence class.

We applied the basic idea of equivalence class testing in our approach to De-
pendable Dynamic Adaptive Systems. As we need to execute tests at runtime, weWe transferred this

concept into runtime
for our approach.

want to reduce the set of test case executions. Thus, we introduced the concept
of Behavior Equivalence Classes. At runtime, for each Dependable Service ex-
actly one Behavior Equivalence Classes is active. In addition, for each Dependable
Service Binding between Service User and Service Provider, exactly one Behavior
Equivalence Classes is active.

Depending on the internal state of a Dependable Dynamic Adaptive Compo-Behavior
Equivalence Classes

are monitored at
runtime. Changes
cause execution of
Compliance Test

Cases.

nent, these Behavior Equivalence Classes can change at runtime. Such a change
is used as trigger for new test case execution. The Compliance Test Cases for a
Dependable Service are defined by the Component vendor willing to access this
Dependable Service. They may differ depending on the Behavior Equivalence
Class of the Service Binding. Summed up, our approach is a modified realization
of equivalence class testing at runtime.

A related approach that already applied functional testing at runtime is [BB03].
They use built-in tests, to ensure correct functionality after system deployment. To
test a specific function, they assume, that they can put a Component into a specific
state during testing by calling a set_to_state method. This assumes, that Ser-
vice User and Service Provider have an identical understanding of these states of
a Service Provider, which is not necessarily given, if the specific Service Provider is
not known at development time.

Another function oriented technique is monitoring. The idea of monitoring is,
that specific properties are defined, which need to hold during system execution.
This follows the Design by Contract methodology [Mey92]. In Design by Contract,Design by Contract

enables monitoring. a contract is defined between using and used Components. The used Components
defines preconditions which need to be fulfilled when it is called. As a countermove,
it guarantees a postcondition. In addition invariants may be specified, which hold
during the whole system execution.

There are many specification languages aiming at the specification of such con-
tracts for different programming languages, like JML [LBR06] or Spec# [BLS05].
They enable the specification of contracts and allow for generating monitors, that
recognize a violation of these contracts at runtime.

Some of these approaches are even capable of dealing with properties of real

4A testing domain can specify the domain of input or output values. Consequently, there are some
equivalence class testing techniques focusing on input values, while other focus on output values.

2. State of the Art 33

time systems like LARVA [CPS09]. However, they can only detect these violations Monitoring detects
incompatibilities at
the moment, when
they occur.

at the moment, when they occur. Testing in contrast allows us to discover violations
before they occur during system execution. However, monitors could be used as a
test oracle during testing to indicate, whether a test passed.

[BMP07] provide such a monitoring approach, which could be used both –
at development time as well as at runtime. Their approach is based on compar-
ing message sequence charts, which have been generated from system execution
traces, to a behavioral specification from a Component-based software architec-
ture. Instead of using their approach to change the System Configuration, they
only focus on detecting errors. Although they state, that this approach could be
used at runtime, it seems to be hardly applicable due to its bad performance, as
“the monitoring activity for a complex execution may require up to ten minutes”.

Most specification languages for Design by Contract can be used for static tech-
niques as well, as it is done in the Extended Static Checker for Java version 2
(ESC/Java2) [FLL+02].

By using dynamic techniques, a system’s vendor can test the integration of spe-
cific Service Partners in advance during system development. These communication Testing in advance

enables Dependable
Dynamic Adaptive
Systems – as long as
all Service Partners
are known upfront.

partners can then be integrated into the system at runtime, as the Compatibility
could be checked in advance. This approach obviously explicitly excludes the in-
tegration of Unknown Service Partners. Nevertheless this is a common approach in
practice. For example, automotive vendors like BMW define a set of cell phones,
for which an integration into the car system can be guaranteed. These cell phones
can be integrated and use the car stereo as a handsfree set.

BMW tests the integration of these specific cell phones during development of
the car or even proves, that the car’s systems are still correct after the integration
of the cell phone. Integrating cell phones, that have been developed after the car’s
development is a challenging task, if you follow this approach: After the release
of a new cell phone you need to test the integration of it and need to update the
in-car software of all cars on street when the cars are taken to a garage. This
results in tremendous costs.

Another slightly modified application of this approach can be found in the area
of personal computing, where the integration test is outsourced to the vendor of a
Service Partner to be integrated. It showed up in the past, that the integration of
device drivers into an operating system is a huge source of defect. If you look at
MS Windows XP, for example, about 85 percent of all reported system failures
were related to problems with drivers [SBL05].

Modern operating systems like MS Windows Vista, therefore, follow a special
approach during integration of Plug&Play Components like USB printers, for ex- Certification in

operating systems is
based on testing in
advance.

ample. As a precondition for the integration they require, that those drivers, that
are needed to integrate these new Components are certified by the vendor of the
operating system. At Microsoft, tests that need to be passed in order to receive the

34 2. State of the Art

certificate are defined by the Windows Hardware Quality Labs (WHQL) within the
Windows Logo Program [Cor08b].

A vendor of a new Component executes these tests and submits test protocols
at WHQL together with the driver. Microsoft then may execute additional tests
and finally issues the certificate. The driver will then be delivered to end users
together with this certificate by installation media or a mechanism like Windows
Update [Her05, Cor08c]. The operating system, therefore, is able to integrate
Unknown Service Partners, since it can be sure, that the integration has been tested
in advance.

However, this only tests, whether the integration of a new Component like a USB
printer has negative side-effects regarding the core-functionality of the operating
system. It cannot exclude negative side-effects regarding other integrated Com-Negative side-effects

are not ruled out by
testing in advance.

ponents. Therefore, it cannot guarantee, that a previously integrated USB scanner
still works without flaws after integration of a USB printer or that the combination
of USB printer and USB scanner offers a new feature “copy” in a dependable way.
Moreover, the time-span required for certification extends time-to-market for new
products.

Another option is letting the end user execute the integration test. For example,
an end user needs to initiate a test print after integration of a new printer to check,End user driven tests

postpone testing
towards deployment

time.

whether a newly integrated Component works properly. Another example can be
found during the installation of modems, where end users check by the push of a
button, whether physical communication with the modem is possible.

These end user driven integration tests have several disadvantages: In general
they work only properly with previously known Component types, as the integration
test is already built into the operating system as a Component-specific test.

Additionally end user driven tests transfer a part of the responsibility to the end
user. They need to evaluate the correct test execution – for example, they need toDisadvantage: The

end user is
responsible.

state, whether a test print is correct or whether a new software product installed
correctly as depicted in Figure 2.4.

Therefore, they assume pretty rudimentary communication protocols like sending
and receiving test strings, that can be evaluated by end users. Also these integra-
tion tests only check, whether newly integrated Components work properly while
neglecting negative side-effects regarding other Components. The integration test
after integrating a modem, for example, does not guarantee, that a printer still
works properly.

In operating systems tests of Service Partners are not only present when inte-
grating Plug&Play Components but also during installation of new software prod-
ucts. MSWindows Vista, for example, requires end users to confirm that a program
installed properly, whenever you install a software, that has been intended to work
with a previous version of MS Windows. For this reason the so called Program
Compatibility Assistant has been created.

2. State of the Art 35 Seite 1 von 1

24.06.2008file://D:\Dokumente\workspace\Dirk\Dissertation\Ausarbeitung\figures\ProgramCom...

Figure 2.4: The Program Compatibility Assistant Querying the End User After an
Installation of a Potentially Incompatible Software Product According to [Cor08a].

The Program Compatibility Assistant displays a dialog like you can see in Figure
2.4, where an end user needs to verify, whether the software Component has been
installed properly. If it has not been installed properly, the end user can adjust the
compatibility options of the operating system in order to make it behave according
to a previous version like Windows XP or Windows 98 to enable the integration of
this new software Component.

2.2.3 Standardization

Another approach enabling Dependability of Dynamic Adaptive Systems is stan-
dardization. In this case, vendors commit on common standards regarding interfaces Standards help

developers to get a
common
understanding.
Correct
implementation of a
standard is not
verified in advance.

of Dependable Dynamic Adaptive Components. These standards define syntactical
and semantical properties of interfaces for new Components. During integration of
new Components into a system using the standardization approach, it is assumed,
that these Components implement these standards correctly. However, a correct
implementation of the standard by a new Component is not guaranteed. There-
fore, negative side-effects of the integration due to an incorrect implementation of
the standard cannot be ruled out by using only the standardization approach.

There are several examples for standardization as an approach to dynamic

36 2. State of the Art

integration of Unknown Service Partners. One of them is the Bluetooth standard
[SIG07] which has been established as a standard for wireless connections between
devices. Different services, that may be used to connect Components are specified
as so called profiles. One example of such a profile is the Hands-free profile
[SIG05], which specifies how a car stereo (or a similar hands-free set) needs to
behave in order to enable a Bluetooth cell phone to use it as a hands-free set. It
is not checked, whether a device, which claims to support a Bluetooth profile, has a
correct implementation of this profile during integration.

Another example is the Universal Plug&Play (UPnP) standard [For06], which has
been established by Microsoft. This standard is targeted mainly at Components
from the home-entertainment domain. One of the features is the so called zero-
configuration enabling Components to connect to each other just by wiring them
together without any additional administration effort. The Components may query
the capabilities of other Components based on service descriptions in XML. By this
mechanism they can locate Components, which they can use for interaction by SOAP
[W3C07] messages. Similar as for the Bluetooth standard, no testing of a correct
service implementation is contained in the UPnP standard.

Summed up, at the moment there is no approach enabling us to integrate Un-
known Service Partners into a system at runtime while guaranteeing that it has noWe need:

Dependable
Integration without
side-effects on a

running Dependable
Dynamic Adaptive

System.

negative side-effects on the functionality of the system. A survey about Compo-
nent interoperability [VHT00] concluded, that “all previous approaches either only
partially capture the semantics of the objects they describe, or they make some
assumptions which restrict the general applicability of their solutions”. Anyhow such
an approach is needed to establish Dependable Dynamic Adaptive Systems. Thus,
we focus on providing such an approach within this thesis.

Grown-ups never understand anything by themselves, and it is tiresome for
children to be always and forever explaining things to them.

Antoine de Saint Exupéry

3
Application Example

This chapter describes our application example. It is a small extract of a system
assisting medical forces during a huge disaster. Our prototypical implementation
of the application example has been exhibited at CeBIT 2009 [Mes09].

This example has been cut down in order to motivate the contribution of this
thesis without distracting readers with unnecessary application details. If you are
interested in the application example, you can find a more detailed description
at the exhibit’s webpage [NSH09] or in a German talk given at CeBIT Future Talk
2009 [Nie09] respectively in a German video describing this system [Nie10].

The application example is used throughout the whole thesis to describe our The objective of our
application example
is to enhance the
readability of this
thesis by referring to
a vivid example.

approach to Dependable Dynamic Adaptive Systems more vividly. Nevertheless
our approach is not limited to building systems for Emergency Assistance Systems.
Instead you can use the approach, whenever you want to build a Dependable
Dynamic Adaptive System respectively whenever you want to build a Dependable
Dynamic Adaptive Component for such a system.

In the following we will describe the domain of Emergency Assistance Systems.

3.1 Domain Description

Imagine a huge disaster like the one, which occurred during an airshow in Ramstein
in 1988 [Dum09]. Two planes collided in air and crashed down into the audience.
In cases of such a disaster with a huge amount of seriously injured casualties, medics
need to get a quick overview of the whole situation.

37

38 3. Application Example

Since you will usually face much more casualties than medics in a disaster sce-In huge disasters,
medics classify all
casualties by Triage
Classes, before they

start treating
casualties.

nario, medics cannot start treating the casualties directly when they arrive. Instead
they need to figure out, which casualties need to be treated first due to the severity
of their injuries. A simplified overview of the overall rescue process during a huge
disaster is depicted in Figure 3.1.

As you can see in this figure, the medics start with triage classification before
they treat casualties. During this classification process they assign a so-called Triage
Class [Gro05] to each casualty specifying the severity of his injury. This Triage Class
is used as treatment priority during the following rescue operation.

In Germany and further countries, casualties are classified in five Triage Classes:
T I to T IV as well as EX.

T I: Triage Class T I characterizes casualties, which are severely wounded and need
to be treated immediately.

T II: A casualty classified as T II needs to be evacuated to a hospital for further
treatment.

T III: Casualties classified as T III are only slightly injured and are treated only
rudimentary on-site.

T IV: Triage Class T IV characterizes casualties, which have no chance to survive
and are only treated in terms of terminal care.

EX: An additional Triage Class EX denotes casualties which have died.

3.2 Emergency Assistance System

To provide an IT system supporting medical forces in disaster situations, we think of
three starting points in the context of this thesis:

1. Supporting the triage classification process by enabling automatic classifica-
tion of casualties.

2. Supporting medical treatment by providing live information about vital data
as well as about the treatment history.

3. Supporting an incident command by providing an overview of the disaster
situation.

In the following we will sketch, how an IT system can provide support for these
aspects.

3. Application Example 39

Emergency Call

Arriv
ing Medics

Triage Classification

Medical Treatment

Evacuation

Emergency

time

Figure 3.1: A sequence of events in case of a huge disaster.

3.2.1 Support of Triage Classification Process

The triage classification process can be supported by an IT system by capturing
the Triage Class of each casualty within the system. In today’s practice, medics in Casualty cards can

be replaced by their
digital equivalent:
C-Units.

Germany use a casualty card – a card with a neck strap – to classify casualties and
to capture treatment relevant information like administered drugs. Attached to this
card is a small leaflet representing the Triage Class by a color code as depicted in
Figure 3.2.

If a medic wants to assign a Triage Class to a casualty, he needs to fold this
leaflet in a way, that it shows the color representing the casualty’s Triage Class on Folding casualty

cards is
time-consuming and
error-prone.

top. In the following a medic needs to attach this folded leaflet to the casualty card.
The unfolded leaflet is depicted in Figure 3.3. As you can imagine, capturing the
Triage Class using a casualty card is a time-consuming, error-prone process. An IT
system could support this process by providing an easy-to-use user interface, where
a medic can easily assign a Triage Class to a casualty. M-Units are

interaction devices
used by medics to
assign Triage
Classes or to view
vital data
information of
casualties.

To provide this, our Emergency Assistance System contains two types of Com-
ponents: Medic Units (in the following abbreviated as M-Unit) and Casualty Units
(abbreviated as C-Unit). A M-Unit is the interaction device of a medic in our ap-
plication example. A medic can use a M-Unit to assign Triage Classes to casualties,
view their vital data or treatment history. You can think of a M-Unit as a smart-
phone or netbook application. A M-Unit prototypically realized by us is depicted

40 3. Application Example

Figure 3.2: A German Casualty Card’s Front and Rear View with a Triage Class
Leaflet Attached at the Bottom.

in Figure 3.4.

C-Units simply store data of a casualty like his Triage Class, gender, a treatment
history, or all other information shown in Figure 3.2. They may be small microcon-
trollers like Crossbow’s MICAz Motes [Tec09] or Sun SPOTs [SHDC06]. C-Units are
deployed by medics at casualties – one C-Unit for each casualty – and remain there
during the rescue operation. For our prototypical implementation of the Emergency
Assistance System’s C-Units, we chose Sun SPOTs and cased them with a neck strap
for easy application as depicted in Figure 3.5.

3. Application Example 41

Figure 3.3: An Unfolded Triage Class Leaflet – Triage Class EX is Represented by
the Black Color.

If C-Units only store information, low-cost Components like RFIDs would be suffi-
cient. However, the use of microcontrollers enables us to enhance their capabilities.
Our C-Units are, therefore, not only capable of storing information. In addition,
medics, which are not equipped with M-Units can toggle the Triage Class of a ca-
sualty by simply pushing a button at the casualty’s C-Unit. Therefore, our C-Units
provide a simple visualization of the current Triage Class by color LEDs. In addition
C-Units also may provide positioning information about the casualty by connecting
a GPS receiver.

Next to this, our C-Units are capable of assisting medics during the triage clas-
sification process even more: If an optional Peripheral Unit (abbreviated as P-Unit
in the following) is attached to a casualty and, therefore, enters the Dependable
Dynamic Adaptive System, the C-Unit can calculate the Triage Class of a casualty
based on his vital state. It has been shown in a clinical context in [PBC+06] that
such an electronical support during triage classification is meaningful.

A P-Unit features vital data sensors like a pulse rate sensor or a blood pressure P-Units measure
vital data of
casualties – using a
P-Unit, a C-Unit can
automatically
calculate a Triage
Class.

sensor. If a medic attaches these sensors to a casualty, vital data of the casualty
is transmitted to the corresponding C-Unit and can be monitored by a medic. You
can see our prototypical implementation of a P-Unit in Figure 3.6. It features a
pulse rate sensor and a blood pressure sensor. The pulse rate sensor can measure
aeration as well.

In our prototypical implementation the sensor values are collected by a Sun
SPOT as well, which is hidden inside the bag depicted in Figure 3.6. This Sun SPOT

42 3. Application Example

Figure 3.4: A M-Unit for the Emergency Assistance System.

acts as a proxy to the sensors and, therefore, represents the P-Unit in our example.
It transmits the sensor values wirelessly to the corresponding associated C-Unit.

3.2.2 Support of Medical Treatment

In order to support medics during medical treatment, the Emergency Assistance Sys-
tem’s M-Units are able to provide medics with the treatment history of each casualty
which is queried at the corresponding C-Unit. The history contains, which drugs have
been administered yet to prevent overdoses as well as reciprocal effects. Medics
can capture performed treatment steps easily by pushing a button on their M-Unit.

Moreover the history of a casualty’s vital data can be displayed on the M-
Unit. M-Units assist medics by recommending further treatment steps considering a
casualty’s vital state and treatment history.

3. Application Example 43

Figure 3.5: A Cased Sun SPOT Acting as a C-Unit in our Emergency Assistance
System.

3.2.3 Support of Incident Command

To support the incident command in a rescue operation, we provide an Incident
Command Unit (abbreviated as IC-Unit) in our application example. The IC-Unit
may be a large display mounted to the inside of an ambulance vehicle as depicted
in Figure 3.7. It enables an incident command, which coordinates the rescue oper- The incident

command assigns
medics to casualties
using the IC-Unit.

ation, to assign medics to casualties efficiently. Therefore, the IC-Unit displays a
general map, where all medics and casualties are represented as icons. It displays
current activities of all medics (queried from their M-Units) as well as vital data and
Triage Classes of all casualties (queried at the corresponding C-Units respectively
P-Units) on site.

Our prototypical IC-Unit implementation is capable of touch-based interaction
allowing intuitive operation by the incident command. By integrating C-Units and
P-Units into the Emergency Assistance System as described before, the incident com-
mand can recognize critical state changes of specific casualties even if no medic
is currently present at their place. This is a very important feature in a disaster
situation, as disasters are characterized by numbers of casualties which exceed the
numbers of medics by far.

44 3. Application Example

Figure 3.6: A Cased Sun SPOT With Vital Data Sensors Attached. It is Acting as a
P-Unit in our Emergency Assistance System.

Figure 3.7: AMountedWall Display Acting as an IC-Unit in our Emergency Assistance
System.

3. Application Example 45

M-UnitC-UnitP-Unit

IC-Unit

Figure 3.8: Overview of the Different Components Within our Application Example.

Since the IC-Unit provides an overview of all medics, their location and current
activities, it enables the incident command to assign medics to casualties very effi-
ciently on demand. The orders given to medics are transmitted to the corresponding
M-Units and displayed there, supplementing voice radio.

The Components involved in the overall scenario are depicted in Figure 3.8.
Our application example imposes threats to Dependability that need to be

faced in order to fully benefit from the different Components. These problems will
be discussed in the following by considering an excerpt from the application exam-
ple. We do not consider the IC-Unit during this discussion, since it does not introduce
additional Dependability threats, which are not already covered by considering M-
Units, C-Units, and P-Units.

3.3 Dependability Threats Derived from the Applica-
tion Example

First of all, Emergency Assistance Systems have to bind several Dynamic Adaptive Components of
different vendors
cause
incompatibilities.

Components like M-Units, C-Units, or P-Units at runtime. Medics may come along
with different versions of M-Units, C-Units, and P-Units, which are not compatible
with each other. For example, some medics may bring along C-Units, which cause

46 3. Application Example

problems, if they are connected to P-Units introduced by another medic. Therefore,
a mechanism needs to be available, which is capable of deciding, which Dynamic
Adaptive Components can be bound to each other.

Since it is very likely, that Dynamic Adaptive Components appearing in this sce-
nario have been developed independently from each other, their vendors need
to agree on a common Domain Architecture for the Emergency Assistance domain.
This Domain Architecture contains Service Interfaces, which may be required re-Matching syntax is

not sufficient –
semantics need to be
considered as well.

spectively provided by Components they implement. However, we can not assume
that they are semantical compatible whenever their required respectively provided
Service Interfaces are syntactically compatible. Dynamic Adaptive Components re-
quiring a Service Interface may assume a different (semantical) behavior than it is
provided by another Dynamic Adaptive Component although they refer to syntac-
tically compatible Service Interfaces. Therefore, an interoperability test has to be
performed, before two Dynamic Adaptive Components are bound.

In order to present our approach to Dependable Dynamic Adaptive Systems
capable of Dependable Integration we consider the following chain of events within
our example system:Our example

contains
Components

provided by a Dutch
and a German

vendor.

1. A large catastrophe occurs in Aachen (Germany) which is located near the
border to the Netherlands. Emergency forces of these two countries are
notified.

2. A German ambulance arrives at the catastrophe site first. The emergency
staff is equipped with M-Units. They move about and equip wounded casu-
alties with German C-Units and P-Units.

German P-Units consist of two physical sensors: a fingerclip measuring theGerman P-Units =
two physical

sensors.
pulse rate and a wrist cuff measuring the blood pressure. The M-Units of
bypassing medics connect to C-Units. A C-Unit may be connected to a P-Unit
for automatic Triage Class calculation. The resulting system configuration is
depicted in Figure 3.9 (1).

3. Now a Dutch ambulance arrives at the site. The Dutch medical forces come
along with P-Units, which differ physically from the German ones as theyDutch P-Units = a

single physical
sensor.

consist of a single physical sensor measuring pulse rate and blood pressure
at once. In addition Dutch medical forces introduce their own C-Units and
M-Units. Dutch M-Units, C-Units, and P-Units are designed to operate with
each other, while the interoperability between Dutch and German Dynamic
Adaptive Components has not been tested during development, since they
have been developed independently by different vendors.

Specific about Dutch C-Units is, that they behave differently than German C-
Units in some cases. Dutch C-Units assume during automatic Triage Class calculation,

3. Application Example 47

that the pulse rate measured by a P-Unit may only be equal to zero, if the blood
pressure is equal to zero at the same time. This assumption has been derived from Dutch C-Units

behave different
than German
C-Units.

the specific Dutch P-Unit: blood pressure and pulse rate are measured by the same
physical sensor – a wrist cuff. Thus, for Dutch P-Units this assumption holds. Due
to this assumption, the Dutch C-Units classify a casualty as dead (Triage Class EX),
whenever the pulse rate is equal to zero without considering the blood pressure in
addition.

Consider a situation, where a casualty is equipped with a Dutch C-Unit and a
German P-Unit. This may work without any problems most of the time. However, Binding a Dutch

C-Unit to a German
P-Unit may lead to
semantical
incompatibilities.

we may face problems if the fingerclip of this casualty slips off. In this moment the
Dutch C-Unit will recognize a pulse rate equal to zero and, therefore, classify the
casualty as dead because it does not take the blood pressure value into account. In
a disaster situation with a huge amount of casualties this would cause the effect, that
no medic would be sent to this casualty as casualties with better survival chances
need to be treated first.

Therefore, Dutch C-Units are semantically incompatible with German P-Units in
this situation. The incompatibility has an effect, whenever the pulse rate measured
by a P-Unit is equal to zero while the blood pressure measured by the P-Unit is not
equal to zero or vice versa – this corresponds to situations where a single sensor
slips off. Dutch C-Units must not rely on the sensor values of the German C-Units
in this case. They need to detect this incompatibility and need to fall back to a
configuration allowing medics to manually set the Triage Class of the casualty. The
overall possible Component Bindings in our example are depicted in Figure 3.9 (2).

3.4 A Software View on the Application Example

Looking at our example from a software point of view, each hardware unit in-
troduced before (IC-Unit, M-Unit, C-Unit, and P-Unit) is hosting a corresponding
software Component – a Dynamic Adaptive Component. These Dynamic Adap-
tive Component require respectively provide different Service Interfaces. These
Service Interfaces are standardized in a Domain Architecture for Emergency Assis-
tance Systems, which is introduced in the following.

3.4.1 Domain Architecture for Emergency Assistance Systems

Dynamic Adaptive Systems, like the Emergency Assistance System in our applica-
tion example, are based on a standardized Domain Architecture containing Service
Interface specifications. The standardized Service Interface specification of a Do-
main Architecture allows different vendors to implement Dynamic Adaptive Com-

48 3. Application Example

Figure 3.9: The Component BindingsWithin our Application Example and Their Com-
patibility.

ponents for Dynamic Adaptive Systems of this specific domain. They can do this
by developing Dynamic Adaptive Components, which require respectively provide
these specified Service Interfaces. In a specific Dynamic Adaptive System these
Components can be bound at runtime to Dynamic Adaptive Component built by
third-parties.

For our application example the Domain Architecture for Emergency AssistanceDependable
Dynamic Adaptive
Components of our
example are bound

using Service
Interfaces from a

Domain Architecture.

Systems contains Service Interface PeripheralUnitIf extending the Service
Interfaces BloodPressureSensorIf and PulseRateSensorIf for the
P-Units as depicted in Figure 3.10. This Service Interface provides access to the
vital data of a casualty.

C-Units may use this Service Interface in order to calculate the Triage Class of
a casualty and to provide their Service Interface CasualtyUnitIf. M-Units
provide Service Interface MedicUnitIf where the IC-Unit can query, where a
medic is located and what he is currently doing.

The syntactical specification of these Service Interfaces is sketched in the upper
part of Figure 3.10. In the lower left part of the figure you can see the specifica-
tion of datatypes occurring in these Service Interfaces, while the lower right part
contains a specification of typical Dynamic Adaptive Components prominent in this
domain like P-Units.

A Component specification is not mandatory in Dynamic Adaptive Systems, since
we assume, that an infrastructure is available in these systems. This infrastructure
needs to be capable of binding Dynamic Adaptive Components at runtime based on

3. Application Example 49

EmergencyAssistanceSystemDomainArchitecturepackage []

ServiceInterfaces

+getTriageClass() : TriageClass
+setTriageClass(triageClass : TriageClass) : Boolean
+getAssignedPeripheralUnit() : PUnitServiceIf

CUnitServiceIf

+getActivity() : Activity
+getAssignedCasualty() : CUnitServiceIf

MUnitServiceIf

+getSystolicBloodPressure() : int
+getDiastolicBloodPressure() : int

BloodPressureSensorIf

+getLongitude() : int
+getLatitude() : int

PositionIf

+getPulseRate() : int

PulseRateSensorIf

PUnitServiceIf

ComponentsDatatypes

Unknown

T IV
T III
T II

EX

T I

<<enumeration>>

TriageClass

ApproachingCasualty
TreatsCasualty

Idle

<<enumeration>>

Activity <<component>>

IncidentCommandUnit

<<component>>

PeripheralUnit

<<component>>

CasualtyUnit

<<component>>

MedicUnit

PUnitServiceIf

PUnitServiceIf

MUnitServiceIf

MUnitServiceIf

CUnitServiceIf

CUnitServiceIf

CUnitServiceIf

Figure 3.10: A Domain Architecture for Emergency Assistance Systems.

provided and required Service Interfaces. However, a Component specification can
help developers to understand the domain and how Dynamic Adaptive Components
were intended to look like during standardization.

Since we want to build a Dependable Dynamic Adaptive System from Depend-
able Dynamic Adaptive Components developed by different vendors, a Domain
Architecture does not only contain syntactical information like method signatures
or datatypes occurring in the Service Interfaces provided or required by Depend-
able Dynamic Adaptive Components. It also may contain a semantical specification
following the Design by Contract [Mey92] approach. To specify pre- and post-
conditions and invariants in our example we used the Java Modeling Language
(JML) [LBR06], since it is a very mature specification technique.

The specifications for the Service Interfaces provided by the P-Unit in our appli-
cation example are straightforward. Service Interface PulseRateSensorIf

50 3. Application Example

specifies a single method getPulseRate(), which must not return1 a negative
value, indicated by a postcondition depicted in line 4 of Listing 3.1.

1 package domainModel.pulseRateSensor;
2

3 public interface PulseRateSensorIf {
4 /*@ ensures (\result >=0); @*/
5 public /*@ pure @*/ int getPulseRate();
6 }

Listing 3.1: Semantical Specification of Service Interface PulseRateSensorIf.

The same postcondition is specified for the two
methods getSystolicBloodPressure() and
getDiastolicBloodPressure() (lines 7, 10 in Listing 3.2) contained in
Service Interface BloodPressureSensorIf. Moreover an invariant may
state medicine’s knowledge, that the systolic blood pressure must be greater than
or equal to the diastolic blood pressure (lines 4–5 in Listing 3.2).

1 package domainModel.bloodPressureSensor;
2

3 public interface BloodPressureSensorIf {
4 /*@ public invariant getSystolicBloodPressure()
5 @ >= getDiastolicBloodPressure(); @*/
6

7 /*@ ensures (\result >=0) @*/
8 public /*@ pure @*/ int getSystolicBloodPressure();
9

10 /*@ ensures (\result >=0) @*/
11 public /*@ pure @*/ int getDiastolicBloodPressure();
12 }

Listing 3.2: Semantical Specification of Service Interface BloodPressureSensorIf.

More complex is the specification of Service Interface CasualtyUnitIf
. This interface contains the specification of the getTriageClass() method,
which will be used subsequently to illustrate the need for Dependable Dynamic
Adaptive Systems. Method getTriageClass() returns the Triage Class of a
casualty based on the pulse rate and blood pressure2 if a P-Unit is connected. If
no P-Unit is present, it returns the Triage Class which has been manually set by a
medic before.

Especially important about this specification is, that TriageClass.EX should
only be returned, whenever the pulse rate as well as the systolic blood pressure is

1\result is a JML notation referring to the return value of the method for which a postcondition
is specified.

2Note that the values for the vital conditions occurring in the specification are rather arbitrary
to give you a clue, so don’t expect them to be meaningful in medicine’s sense.

3. Application Example 51

zero, which is specified in lines 13–14 in Listing 3.3. If only one of these sensor
values is zero, this may mean, that this sensor might have slipped off. Consequently A casualty must not

be classified as
TriageClass.EX,
if pulse rate or blood
pressure are above
zero.

TriageClass.Unknown should be returned. This is specified in lines 16–20 in
Listing 3.3.

1 package domainModel.casualtyUnit;
2

3 import domainModel.peripheralUnit.PeripheralUnitIf;
4 import domainModel.casualtyData.TriageClass;
5

6 public interface CasualtyUnitIf {
7 public /*@ pure @*/ PeripheralUnitIf

getAssignedPeripheralUnit();
8 // ... further methods operating with personal data of the

casualty
9

10 /*@
11 @ requires peripheralUnit!=null;
12 @ {|
13 @ requires peripheralUnit.getPulseRate()==0 &&

peripheralUnit.getSystolicBloodPressure()==0;
14 @ ensures \result == TriageClass.EX;
15 @ also
16 @ requires peripheralUnit.getPulseRate()==0 &&

peripheralUnit.getSystolicBloodPressure()!=0;
17 @ ensures \result == TriageClass.Unknown;
18 @ also
19 @ requires peripheralUnit.getPulseRate()!=0 &&

peripheralUnit.getSystolicBloodPressure()==0;
20 @ ensures \result == TriageClass.Unknown;
21 @ also
22 @ {|
23 @ requires peripheralUnit.getPulseRate()>0;
24 @ requires peripheralUnit.getPulseRate()<=30;
25 @ ensures \result == TriageClass.T_IV;
26 @ also
27 @ [...]
28 @ |}
29 @ |}
30 @ also
31 @ [...]
32 @*/
33 public /*@ pure @*/ TriageClass getTriageClass();
34

35 /*@ ensures setTriageClass == triageClass; @*/
36 public void setTriageClass(TriageClass triageClass);

52 3. Application Example

37 }
Listing 3.3: Semantical Specification of Service Interface CasualtyUnitIf in the
Domain Architecture.

Now that we have a Domain Architecture, vendors can implement Dynamic
Adaptive Components for Emergency Assistance Systems. In the following we will
have a look at Dynamic Adaptive Components built by different vendors repre-
sented by different countries from our example sketched before in Section 3.33.
We will take a close look at the implementation of the getTriageClass()
method as it is used to show, why some of these Dynamic Adaptive Components are
not compatible with each other.

3.4.2 Dynamic Adaptive Components Provided by a German
Vendor

A German vendor has developed two Components for German medical forces that
may remain at each casualty: a German C-Unit and a German P-Unit. We will
describe the implementation of the Service Interfaces from the Domain Architecture
described in Section 3.4.1 provided by these German Dynamic Adaptive Compo-
nents in the following.

German C-Unit

The German C-Unit implements Service Interface CasualtyUnitIf, to enable
M-Units and the IC-Unit to display the Triage Class of its casualty.

While analyzing required Service Interfaces the German vendor had two dif-
ferent Component Configurations in mind:

1. Component Configuration 1, where no Service Interface is required. This
represents a casualty, where the medic manually sets the Triage Class – no
vital data sensors are present.

2. Component Configuration 2, where Service Interface
PeripheralUnitIf is required. This represents a casualty, which
is currently equipped with vital data sensors monitoring his physical
condition. Therefore, his Triage Class can be calculated automatically.

The implementation of the German C-Unit is directly derived from the specifica-The German C-Unit
is a straightforward
implementation of

the Domain
Architecture.

tion. The German vendor implemented the getTriageClass()method exactly
the way, as it had been specified in the domain architecture, considering the two

3The implementations of the M-Unit as well as the IC-Unit are not considered in the following, as
they are not required to motivate Dependable Dynamic Adaptive Systems.

3. Application Example 53

relevant cases: If both sensor values are equal to zero TriageClass.EX is re-
turned (cf. lines 32 – 34 of Listing 3.4) whereas TriageClass.Unknown is
returned if only a single sensor value is zero (cf. lines 35 – 37 of Listing 3.4).

1 package germanVendor.casualtyUnit;
2

3 import domainModel.peripheralUnit.PeripheralUnitIf;
4 import domainModel.casualtyData.TriageClass;
5 import germanVendor.ConfigurableCasualtyUnitIf;
6

7 public class CasualtyUnitImpl implements
ConfigurableCasualtyUnitIf{

8 private /*@ spec_public nullable @*/ PeripheralUnitIf
myPeripheralUnit = null;

9 private TriageClass myTriageClass = TriageClass.Unknown;
10

11 public CasualtyUnitImpl(){
12 }
13

14 /*@
15 @ assignable myPeripheralUnit;
16 @ ensures (myPeripheralUnit == peripheralUnit);
17 @*/
18 public CasualtyUnitImpl(PeripheralUnitIf peripheralUnit){
19 myPeripheralUnit = peripheralUnit;
20 }
21

22 public PeripheralUnitIf getAssignedPeripheralUnit() {
23 return myPeripheralUnit;
24 }
25

26 public void setAssignedPeripheralUnit(PeripheralUnitIf
peripheralUnit) {

27 myPeripheralUnit = peripheralUnit;
28 }
29

30 public TriageClass getTriageClass() {
31 if (myPeripheralUnit!=null){
32 if ((myPeripheralUnit.getSystolicBloodPressure()==0) && (

myPeripheralUnit.getPulseRate()==0)){
33 return TriageClass.EX;
34 }
35 if (((myPeripheralUnit.getSystolicBloodPressure()==0) &&

(myPeripheralUnit.getPulseRate()>0)) || ((
myPeripheralUnit.getSystolicBloodPressure()>0) && (
myPeripheralUnit.getPulseRate()==0))){

36 return TriageClass.Unknown;
37 }
38 [...]

54 3. Application Example

Figure 3.11: The German P-Unit – Two Separate Sensors.

39 }
40 [...]
41 }
42

43 public void setTriageClass(TriageClass triageClass) {
44 /*@ set setVitalCondition = vitalCondition; @*/
45 myTriageClass = triageClass;
46 }
47 }

Listing 3.4: Implementation of the German C-Unit.

German P-Unit

The German P-Unit implements Service Interface PeripheralUnitIf, to en-
able C-Units, M-Units, and the IC-Unit to query vital data of a casualty. The Ger-
man P-Unit consists of two separate physical sensors – a fingerclip measuring pulse
rate and aeration of the casualty and a wrist cuff measuring the blood pressure.
Thus, the pulse rate of a German P-Unit can be equal to zero while the blood pres-
sure is still above zero. This is the case if the fingerclip slips off, for example. An
example of such a German P-Unit is depicted in Figure 3.11.

3. Application Example 55

3.4.3 Dynamic Adaptive Components Provided by a Dutch Ven-
dor

A Dutch vendor has developed two Components for Dutch medical forces that may
remain at each casualty: a Dutch C-Unit and a Dutch P-Unit. We will describe the
implementation of the Service Interfaces from the Domain Architecture described in
Section 3.4.1 provided by the Dutch Dynamic Adaptive Components in the following.

Dutch C-Units

The Dutch vendor has implemented C-Units which calculate the Triage Class slightly
different than specified in the Domain Architecture: as the Dutch vendor had a
P-Unit in mind, which has only a single combined physical sensor which measures
blood pressure, pulse rate, and aeration. Therefore, the case, that only a single
value is equal to zero is irrelevant, as it may not happen.

Thus, Dutch C-Units only consider the pulse rate, when deciding whether a person Dutch C-Units do not
consider blood
pressure to decide,
whether a casualty
is dead.

is dead or not, as depicted in Listing 3.5 in lines 28–30. The Dutch vendor does not
consider this as a violation of the Domain Architecture, as the implementation of the
Dutch P-Unit guarantees, a single sensor value will never be zero. However, it is an
incorrect implementation of the Domain Architecture, as Dutch C-Units may violate
the Service Interface specification, when they are bound to P-Units provided by
other vendors4.

1 package dutchVendor.casualtyUnit;
2

3 import domainModel.peripheralUnit.PeripheralUnitIf;
4 import domainModel.casualtyData.TriageClass;
5

6 public class CasualtyUnitImpl implements CasualtyUnitIf {
7 private /*@ spec_public nullable @*/ PeripheralUnitIf

myPeripheralUnit = null;
8 private TriageClass myTriageClass = TriageClass.Unknown;
9

10 public CasualtyUnitImpl(){
11 }
12

13 /*@ ensures (myPeripheralUnit == peripheralUnit); @*/
14 public CasualtyUnitImpl(PeripheralUnitIf peripheralUnit){
15 myPeripheralUnit = peripheralUnit;
16 }
17

4Such a situation could occur even without an incorrect implementation of the Domain Architecture.
In our example this would directly be the case, if the Domain Architecture does not specify the se-
mantics of the getTriageClass() method. Domain Architectures are typically underspecified,
since vendors want to provide Components with unique selling points.

56 3. Application Example

18 public PeripheralUnitIf getAssignedPeripheralUnit() {
19 return myPeripheralUnit;
20 }
21

22 public void setAssignedPeripheralUnit(PeripheralUnitIf
peripheralUnit){

23 myPeripheralUnit = peripheralUnit;
24 }
25

26 public TriageClass getTriageClass() {
27 if (myPeripheralUnit!=null){
28 if (myPeripheralUnit.getPulseRate()==0){
29 return TriageClass.EX;
30 }
31 [...]
32 }
33 [...]
34 }
35

36 public void setTriageClass(TriageClass triageClass) {
37 /*@ set setVitalCondition = vitalCondition; @*/
38 myTriageClass = triageClass;
39 }
40 }

Listing 3.5: Implementation of the Dutch C-Units.

Dutch P-Unit

The Dutch P-Unit is a combined sensor which may be built as a wrist cuff and,Dutch P-Units
guarantee, that a
pulse rate of zero
implies a blood
pressure of zero.

therefore, cannot slip off during usage – especially pulse rate and blood pressure
can only be equal to zero at the same time5. An example of such a Dutch P-Unit is
depicted in Figure 3.12.

Consequently the Dutch vendor adds an invariant to describe this additional
property of the combined sensor as depicted in the invariant in lines 10–11 of
Listing 3.6.

1 package dutchVendor.peripheralUnit;
2

3 import domainModel.PeripheralUnitIf;
4

5 public class PeripheralUnitImpl implements PeripheralUnitIf {
6 /**
7 * NOTE: Physical pulse sensor is a wrist cuff, which cannot

slip off.
8 */

5We assume, that the sensor unit is not broken.

3. Application Example 57

Figure 3.12: The Dutch P-Unit – a Combined Sensor.

9

10 /*@ public invariant getPulseRate()==0 <==>
getDiastolicBloodPressure()==0; @*/

11 /*@ public invariant getDiastolicBloodPressure()==0 <==>
getSystolicBloodPressure()==0; @*/

12

13 /**
14 * Calculates current pulse rate based on physical pulse

sensor data. Left out here intentionally.
15 */
16 public int getPulseRate() {
17 [...]
18 }
19

20 /**
21 * Calculates current diastolic blood pressure based on

physical blood pressure sensor data. Left out here
intentionally.

22 */
23 public int getDiastolicBloodPressure() {
24 [...]
25 }
26

58 3. Application Example

27 /**
28 * Calculates current systolic blood pressure based on

physical blood pressure sensor data. Left out here
intentionally.

29 */
30 public int getSystolicBloodPressure() {
31 [...]
32 }
33 }

Listing 3.6: Implementation of the Dutch P-Unit.

In the following we will analyze, whether C-Units and P-Units provided by these
two vendors in our example are compatible with each other.

3.4.4 Compatibility of Dynamic Adaptive Components in our Ex-
ample

When looking at the C-Units and P-Units from our example, C-Units act as
Service Providers for the M-Units as C-Units provide the Service Interface
CasualtyUnitIf required by the M-Units. C-Units act as Service Users re-
quiring the Service Interface PeripheralUnitIf, which is provided by P-Units
which act as Service Providers. Summed up, in our example M-Units use C-Units
while C-Units use P-Units. In the following we will have a look at the Compatibil-
ity between the C-Units and P-Units provided by the two different vendors in our
application example.

The Compatibility of a Dynamic Adaptive Component acting as Service ProviderCompatibility can be
split into syntactical

and semantical
Compatibility.

and a Dynamic Adaptive Component acting as Service User can be seen at two
levels:

1. Syntactical Compatibility: This means, that all methods and attributes required
by a Service Reference of a Service User are syntactically compatible with
those provided by a Service of a Service Provider.

2. Semantical Compatibility: A Service Provider and a Service User are semanti-
cally compatible, when the Service provided by the Service Provider behaves
as expected by the Service User.M-Units are

syntactically
compatible with

C-Units; C-Units are
syntactically

compatible with
P-Units.

Syntactical Compatibility of Dynamic Adaptive Components in our Example

For syntactical Compatibility between C-Units and P-Units within our example, we
can derive, that both C-Units are syntactically compatible with each P-Unit, as the
P-Units all provide Service Interface PeripheralUnitIf, which is required by
the C-Units. In this case, this is trivial, as Service User and Service Provider refer

3. Application Example 59

to the same Service Interface from the Domain Architecture. However, syntactical
Compatibility becomes more complex, if we consider inheritance relations of Ser-
vice Interfaces as well. This is done in our system model in Chapter 4 by the relation
≃Syntactical.

Next to syntactical Compatibility, we have to decide, whether Components fit
together in terms of semantics as well when we want to bind a system from Dynamic
Adaptive Components at runtime. For example, we have to check, whether the
Dutch C-Unit is semantically compatible with a German P-Unit. The German P-Unit
providing a Service implementing Service Interface PeripheralUnitIf needs
to behave as it is supposed to by the Dutch C-Unit. In the following we will look
at the semantical Compatibility of bindings between C-Units and P-Units within our
application example.

Semantical Compatibility of Dynamic Adaptive Components in our Example

The semantical Compatibility between C-Units and P-Units in our example is de-
picted in Table 3.1. Dutch C-Units are partially incompatible with German P-Units. There is a semantical

incompatibility
between Dutch
C-Units and German
P-Units, if the
fingerclip of the P-Unit
slips off.

This is due to the fact, that Dutch C-Units assume, that pulse rate and blood pres-
sure can only be equal to zero at the same time. Since this is not mandatory for
German P-Units as, for example, the fingerclip measuring the pulse rate may slip
off, they are semantically incompatible in these situations. The different situations
measured by P-Units and the corresponding Triage Classes calculated by C-Units
are depicted in Figure 3.13.

↓ C-Unit / P-Unit→ German Dutch
German Compatible Compatible
Dutch Partial Incompatible Compatible

Table 3.1: Semantical Compatibility of C-Units and P-Units in our Example.

The reason for the semantical incompatibility occurring here is the
fact, that the Dutch C-Unit has an implicit assumption regarding P- The Dutch vendor

needs to make his
assumptions explicit.

Units, namely that they must fulfill the invariant getPulseRate
()==0 <==> getDiastolicBloodPressure()==0 <==>
getSystolicBloodPressure()==0. As they did not make this assumption
explicit, a System Infrastructure for Dependable Dynamic Adaptive Systems
cannot detect this semantical incompatibility and change the Component Binding
accordingly.

60 3. Application Example

ususal
ŽƉĞƌĂƟŽŶ

ĮŶŐĞƌĐů ŝƉ
Ɛ ů ŝƉƐ Žī

dead
p

u
ls

e

ƟŵĞ

ƟŵĞ

ƟŵĞ

b
lo

o
d

 p
re

ss
u

re
tr

ia
g

e
 c

la
ss

SYS

DIA

NL

GER

UŶŬŶŽǁŶ

T3
T2
T1
T4
EX

ǀŝ
ƚĂ

ů
Ě

Ă
ƚĂ

ŵ

Ğ
Ă

ƐƵ
ƌĞ

Ě
 ď

Ǉ
 G

Ğ
ƌŵ

Ă
Ŷ

 P
ͲU

Ŷ
ŝƚ

ƚƌ
ŝĂ

ŐĞ
 Đ

ůĂ
ƐƐ

Ğ
Ɛ

ĐĂ
ůĐ

Ƶ
ůĂ

ƚĞ
Ě

 ď
Ǉ

 C
ͲU

Ŷ
ŝƚ

Ɛ

Diff

Figure 3.13: Compatibility Between the Different C-Units and P-Units Depending on
Their Internal State.

3.5 Requirements Derived from the Example

We now take a closer look at the example and derive requirements, that need to
be fulfilled by our approach provided in this thesis to enable Dependable Dynamic
Adaptive Systems and to avoid the problems described before. These requirements
are introduced and explained in the following.

3.5.1 Support for Adaptation

Since we are talking about Dependable Dynamic Adaptive Systems, we need to
provide means for developers to express adaptation capabilities. Therefore, the
system model needs to enable adaptation of Dependable Dynamic Adaptive Com-

3. Application Example 61

ponents (local adaptation) as well as adaptation of Dependable Dynamic Adaptive
Systems (global adaptation).

A first requirement of the overall approach to Dependable Dynamic Adaptive
Systems, therefore, is that we need a system model, which supports runtime binding We need a system

model and an
infrastructure that
support adaptation.

of Dependable Dynamic Adaptive Components. Since we want to achieve systems,
which change this Component Binding at runtime in order to integrate Components
or remove Components from a system, this is a prerequisite of our approach. Next
to the system model we need to provide a System Infrastructure, which automates
this Component Binding and, therefore, enables us to build Dependable Dynamic
Adaptive Systems from Dependable Dynamic Adaptive Components easily.

The application example introduced before needs to be executable based on
this System Infrastructure. The system model should be able to describe, whether Syntactical

Compatibility needs
to be defined in the
system model.

Components are syntactically compatible. This syntactical Compatibility should be
considered on method level, meaning that two Components are considered as syn-
tactically compatible, if for each method respectively attribute in the required Ser-
vice Interface exists a syntactically compatible method respectively attribute in the
provided Service Interface.

Thus, two Components should be treated as syntactically compatible although
they are not syntactically identical if the provided Service Interface contains addi-
tional methods or attributes, which are not contained in the required Service Inter-
face.

Local adaptation capability may be provided by enabling Dependable Dy-
namic Adaptive Components to support different sets of provided respectively re-
quired Services – so called Component Configurations – that can be activated at
runtime alternatively. Global adaptation capability may be provided by dynami-
cally changing Component Bindings within a Dependable Dynamic Adaptive System
which is one of the key features of our system model.

The System Infrastructure needs to take advantage of this adaptation support.
Thus, it needs to be able to switch between Component Configurations of a Depend-
able Dynamic Adaptive Component and dynamically change Component Bindings
as well.

3.5.2 Support of Decoupled Development

Our hypothesis is that the targeted Dependable Dynamic Adaptive Systems are
not developed as a whole but evolve over time instead. Therefore, we need to
take into account, that no single vendor is developing all Dependable Dynamic Our approach must

not require a system
vendor.

Adaptive Components for such a system. Instead we have multiple vendors, which
develop Components at different points in time. Moreover these vendors do not
target a single system with the Components to be developed but a set of similar
systems. Thus, a Domain Architecture specifying Service Interfaces is needed to

62 3. Application Example

enable Dependable Dynamic Adaptive Systems.
Due to decoupled development we need to provide a guideline for Compo-

nent vendors describing, what they need to specify for their Dependable Dynamic
Adaptive Components in order to achieve a Dependable Dynamic Adaptive System
by following our approach. Due to the nature of Dependable Dynamic Adaptive
Systems the specification of required Service Interfaces by a Service User needs
to be independent from specific realizations by Service Providers – otherwise a
Service User would be restricted to a specific Service Provider which contradicts
the idea of Dependable Dynamic Adaptive Systems.

3.5.3 Detect Semantical Incompatibilities

The probably most challenging requirement is, that we want to be able to detect
semantical incompatibilities at runtime by using our approach. These semanticalWe want to detect

semantical
incompatibilities,
before they occur.

incompatibilities need to be detected before they may cause an effect on the sys-
tem. Semantical incompatibilities are inconsistencies between a specification of ex-
pected behavior defined by a Service User for a Service Interface and the specific
behavior of a Service Provider.

As semantical Compatibility may change over time, it needs to be checked
whenever the state of a Service Provider changes. In our example you can seeWe need to consider

state changes and
corresponding

changes of
semantical

Compatibility.

this, as a Compatibility check between a Dutch C-Unit and a German P-Unit will
be successful as long as the fingerclip did not slip off, while it will fail after the
clip slipped off. Since checks after state changes correspond more or less to a
bisimulation, we want to minimize the amount of checks to a reasonable number.

Therefore, a requirement for our approach is, that it is able to detect semantical
incompatibilities in a dependable way but reduces the amount of tests compared
to a classic bisimulation approach significantly. Therefore, our approach should
enable a description of state spaces, for which different behavior is expected re-
spectively provided.

At runtime this enables us to realize, whenever we enter a state space, where
semantical Compatibility needs to be rechecked. Therefore, we can establish a
Component Binding between two Dependable Dynamic Adaptive Components, if
they became compatible respectively remove a Component Binding between them,
if they became incompatible. The Compatibility of a state space is evaluated by test
execution, which is performed, whenever a new state space is entered at runtime.

Instead of just simulating the next execution step like in bisimulation, we cover
whole sets of method invocations during test execution leading to a higher certainty,
that future system execution steps will not cause the system to fail. The testing
approach itself, however, leads us to another requirement of our approach.

3. Application Example 63

3.5.4 Free of Side Effects

Since we execute semantical Compatibility checks within a running Dependable
Dynamic Adaptive System, we need to provide means, which ensure, that these Executing

Compliance Test
Cases needs to be
free of side effects.

checks have no side effects on the system. This means, that the state of the system
must be maintained during these checks – it must not be changed during these
checks respectively the system has to be taken to a special testing state during the
checks and the state needs to be rolled back after these checks. This must be done
careless of a check’s results.

These requirements – derived from our application example – will be addressed
by our approach based on our system model. We will introduce this formal system
model in the following. We explain the different model elements and their relations
using our application example.

64 3. Application Example

A rock pile ceases to be a rock pile the moment a single man contemplates
it,
bearing within him the image of a cathedral.

Antoine de Saint Exupéry

4
Structural Model for Dependable

Dynamic Adaptive Systems

If we want to achieve Dependable Dynamic Adaptive Systems, we first need to
have a clear definition, how such systems look like. Therefore, we need to provide
a model, which enables us to describe Dependable Dynamic Adaptive Systems. We
need to describe two aspects of these systems: The structural aspects of Depend-
able Dynamic Adaptive Systems as well as the behavioral aspects. The structural
aspects of Dependable Dynamic Adaptive Systems are described in the following.
This includes the description how a system can be build from several smaller parts,
how these parts are structured internally, and how they are bound to each other.

These structural aspects can be divided into two groups: One, describing the
structure of specific instances of Dependable Dynamic Adaptive Components within
a Dependable Dynamic Adaptive Systems. We describe these aspects in Sections Our structural model

describes instances
and types.

4.3 – 4.6. Next to these instance-related aspects, the structural model also contains
type aspects, describing the Service Interfaces between the Dependable Dynamic
Adaptive Component instances. We describe type-related aspects in Sections 4.7
– 4.8.

The behavioral aspects, meaning how a system respectively a part of it behaves
in terms of externally observable behavior are described in Section 5. A graphical
view of the structural model introduced in the following is depicted in Figure 4.1
– this Figure helps you, to understand our system model. We will use the colors The margins depict

model elements from
Figure 4.1.

from this Figure during the following sections when we describe the system from
our application example using our system model. As a reminder, we will depict

65

66 4. Structural Model for Dependable Dynamic Adaptive Systems

corresponding model elements from Figure 4.1 in the margins, whenever a model
element is described in the following sections.

InstanceModel

DomainModel

Behavior Specification

<<component>>

Dependable Dynamic Adaptive Component

Dependable Component Configuration

Dependable Service Reference

+Attributes

+Methods()

Service Interface

Domain Architecture

Dependable Service

=syntactical

* *

uses

*0..1

implements

provides

*

1..*

declares

*

1..*

specifiedBehavior

0..1
1

refers to

1

0..*

element of
contains

1..*

1

current

0..1

1

element of

contains
1..*

1

>=

*
*

Figure 4.1: Graphical View of our Structural System Model.

The Domain Architecture and Behavior Specifications, which may exist for spe-
cific Service Interfaces of a Domain Architecture are depicted only for completeness
here. They are not part of our formal model in the following, as our approach to
Dependable Dynamic Adaptive Systems does not require them necessarily. The Be-
havior Specification, however, could be used to verify the correct implementation

4. Structural Model for Dependable Dynamic Adaptive Systems 67

of Dependable Services with respect to this specification1.
In the following we will describe, how we model Dependable Dynamic Adaptive

Systems. Therefore, we will have a short look back at our application example
introduced before.

4.1 Looking Back at the Application Example

Our model needs to be capable of describing the Emergency Assistance System
introduced in section 3. The idea of the Emergency Assistance System was to support
medics in a rescue operation. Therefore, medics come along with M-Units. These
M-Units display general information about a casualty they are currently treating
as well as orders from an incident command.

The incident command is equipped with an IC-Unit enabling them to get a quick
overview of the disaster situation. They can get detailed information about each
casualty enabling them to figure out, which casualty is most needy of help. There-
fore, the IC-Unit provides a solid decision foundation for the incident command.
They can figure out, which orders need to be given to medics. They can directly
give these orders using the IC-Unit.

Information about casualties is received by C-Units. Medics equip each casualty
with a C-Unit, which stores and transmits personal information about the casualty.
This C-Unit can also calculate the Triage Class of the casualty, if it is (wirelessly)
connected to a so called P-Unit.

A P-Unit contains vital data sensors and, therefore, is able to provide live in-
formation about the vital condition of a casualty. Thus, P-Units enable an incident
command to recognize changes in vital condition of casualties without medics being
present at their place. However, not each casualty needs to be equipped with a
P-Unit – e.g. only casualties in critical conditions may be equipped with such a unit
due to financial reasons.

Important about our example is the idea, that different vendors will develop
these Dependable Dynamic Adaptive Components occurring in our example. Thus,
different P-Units may appear in our example. They may be different in terms Components of

different vendors are
characterized by a
postfix German
respectively Dutch.

of structure as well as in terms of behavior. In our example we sketched differ-
ent Dependable Dynamic Adaptive Components developed by a German and a
Dutch vendor. When we describe the Emergency Assistance System using our sys-
tem model we will, therefore, refer to the different instances by adding the postfix
German respectively Dutch.

1However, this would not guarantee a Dependable Dynamic Adaptive System, as this would be
only verification without considering means for validation. Validation here means answering the
question, whether a Dependable Service behaves as expected by a Service User.

68 4. Structural Model for Dependable Dynamic Adaptive Systems

We split this application example into 7 subsequent steps labeled from t0 to t0+
6 in order to explain our structural system model. These steps denote points in time,Dependability

Checkpoints denote
situations, which

threaten
Dependability.

where the Dependability of the system is threatened due to a change of structure or
behavior within the Dependable Dynamic Adaptive System. We call these points in
time Dependability Checkpoints in the following. We describe these Dependability
Checkpoints shortly in the following and. In addition they are depicted in Figure
4.2.

t0 denotes the Dependability Checkpoint, when an emergency has occurred.
There are no Dependable Dynamic Adaptive Components present, as no
helper has arrived at the location yet.

t0 + 1 describes the situation where a German Ambulance arrives, which consists of
a single medic, who has his own M-Unit.

t0 + 2 is the point in time where this German medic discovered a casualty and equips
him with a C-Unit.

t0 + 3 denotes the Dependability Checkpoint, when this German medic decides that
this casualty is so severely wounded, that continuous monitoring of his vital
condition is required. Thus, he equips this casualty with an additional P-Unit.

t0 + 4 describes the situation where a Dutch Ambulance arrives, which consists of a
single medic, who has his own M-Unit.

t0 + 5 is the point in time where this Dutch medic discovered a casualty and equips
him with a C-Unit.

t0 + 6 denotes the Dependability Checkpoint, when this Dutch medic decides that
this casualty is so severely wounded, that continuous monitoring of his vital
condition is required. Thus, he equips the casualty with an additional P-Unit.

Before we explain our system model top-down, we will first introduce all basic sets,
which we use in our system model to capture the structural aspects of Dependable
Dynamic Adaptive Systems in the following.

4.2 Basic Sets

The first set, to which our system model refers, is the set
DependableDynamicAdaptiveComponent. It denotes all Dependable DynamicComponents

Adaptive Components we can think of.
Since we want to be able to describe adaptive Components, we introduce

so called Dependable Component Configurations describing a mapping betweenConfigurations

4. Structural Model for Dependable Dynamic Adaptive Systems 69

Disaster
 occurs

German medics
 arrive

German medic
discovers
casualtyDisaster

 occurs

Dependability
 Checkpoints

Dutch medics
 arrive

Dutch medic
 discovers casualty

casualty‘s situation
is critical

casualty‘s
situation is

criticalt0
t0 + 1 t0 + 2 t0 + 3

t0 + 4 t0 + 5 t0 + 6

Figure 4.2: Dependability Checkpoints in our Example.

provided Dependable Services and required Dependable Services. All De-
pendable Component Configurations we can think of are contained in the set
DependableComponentConfiguration, while the set DependableService contains all Services respectively

Service Referencespossible provided Dependable Services and the set DependableServiceReference
contains all possible required Dependable Services.

Our system model states that Dependable Dynamic Adaptive Components are
bound to each other during runtime by binding a provided Dependable Service of
a Component to a required Dependable Service of another Component. In order Service Interfaces

to decide, whether they are syntactically compatible, they are associated with a
Service Interface (either by implementing it (provided service) or by declaring it
(required service)). The set ServiceInterface contains all Service Interfaces we can
define in Dependable Dynamic Adaptive Systems.

To further specify a Service Interface, the sets MethodDeclaration and
AttributeDeclaration contain the syntactical declaration of all possible methods re- Methods and

attributesspectively attributes, which may occur in Dependable Dynamic Adaptive Systems.
Methods as well as attributes refer to the basic set Type. This set contains all Types

types – primitive types as well as user-defined reference types – possible in De-
pendable Dynamic Adaptive Systems. Next to Type, methods and attributes refer
to String. This set contains all sequences of characters, which can be used as names Strings

for attributes respectively methods.
Since we assume, that Dependable Dynamic Adaptive Systems are not devel-

70 4. Structural Model for Dependable Dynamic Adaptive Systems

oped as a whole, our model must not be a static one, where all instances of Depend-
able Dynamic Adaptive Components belonging to a system are already known in
advance. Therefore, we don’t want to define structural respectively behavioral
changes of a system s over time in advance but want to be able to reason about
structure and behavior of a system at any specific point in time during execution
instead.

Thus, we introduce two sets: Set S contains all Dependable Dynamic AdaptiveSystems

Systems, which can be described using our system model and set T , which is the
set of natural numbers used to denote Dependability Checkpoints, which threatenSequence of

Dependability
Checkpoints

Dependability of a Dependable Dynamic Adaptive System s ∈ S during system
runtime. There are two triggers, that need to be considered regarding a system’s
Dependability:

1. Structural changes within a system: For example, the set of Dependable
Dynamic Adaptive Components present in the system changes or a binding
among Components is changed.

2. Behavioral changes within a system: A Dependable Dynamic Adaptive Com-
ponent behaves differently now, as its internal state has changed.

As we describe only Dependability-relevant points during execution time – so called
Dependability Checkpoints – using our system model, t ∈ T is only increased, if a
structural change or a behavioral change threatening Dependability has occurred.

S and T are used, when defining the relations used within our system model in
the following. These parameters indicate, that these relations may have a difficult
meaning, if ...

1. ... the system is considered at a different Dependability Checkpoint.

2. ... a different system is considered.

In the following we will use these sets to describe Dependable Dynamic Adap-
tive Systems in our system model. The system from our application example will be
described using our system model for a better understanding. This system is called
sae ∈ S where ae stands for application example.

4.3 Dependable Dynamic Adaptive System Structure

Our model is capable of describing a specific Dependable Dynamic Adaptive
System as snapshots of the set of Dependable Dynamic Adaptive Component in-
stances ApplicationComponentsTS , that belong to a system at a specific Dependabil-
ity Checkpoint. This set is changing dynamically whenever an instance is integrated
into the system respectively an instance is removed from the system at runtime.

4. Structural Model for Dependable Dynamic Adaptive Systems 71

If Component c1 is integrated into a system s at Dependabil-
ity Checkpoint ti ∈ T , this means that ApplicationComponentstis =
ApplicationComponentsti−1

s ∪{c1}. If a Dependable Dynamic Adaptive Com-
ponent instance c2 ∈ ApplicationComponentstis is removed from system s at
Dependability Checkpoint ti + 1 this leads to a new snapshot of Components:
ApplicationComponentsti+1

s = ApplicationComponentstis \{c2}.

<
<

c
o

m
p

o
n

e
n

t>
>

D
e

p
e

n
d

a
b

le
 D

y
n

a
m

ic
 A

d
a

p
ti

v
e

 C
o

m
p

o
n

e
n

t

Summed up, we get a system snapshot ApplicationComponentsTS , which can be
used to describe a system at a specific Dependability Checkpoint:

ApplicationComponentsTS =def

T × S → P(DependableDynamicAdaptiveComponent)
(4.1)

If we look at system sae from the application example introduced before, we
have different snapshots of application Component sets during system runtime.
These snapshots are described in the following using our system model. A trivial
snapshot is the one at Dependability Checkpoint t0 before the first ambulance has
arrived. At this point the set containing the application Components is empty:

ApplicationComponentst0sae = ∅ (4.2)

In the following, the German Ambulance arrives at Dependability Checkpoint
t0+1, which may consist of a single medic, who has his own M-Unit2. This would result
in a snapshot, where we have a single Dependable Dynamic Adaptive Component
within the system:

ApplicationComponentst0+1
sae = {mUnitGerman} (4.3)

If we now consider, that this German medic, which is equipped with mUnitGerman
equips a casualty with a C-Unit at Dependability Checkpoint t0 + 2, the following
snapshot would result:

ApplicationComponentst0+2
sae = {mUnitGerman, cUnitGerman} (4.4)

In the following he equips this casualty with an additional P-Unit resulting in a
snapshot at Dependability Checkpoint t0 + 3:

ApplicationComponentst0+3
sae = {mUnitGerman, cUnitGerman, pUnitGerman} (4.5)

In order to be able to show the capabilities of our system model in the following
we look at another Dependability Checkpoint: Imagine, that t0 + 6 is the Depend-
ability Checkpoint, where a Dutch medic equipped with a M-Unit has arrived and

2We leave out the incident command with it’s IC-Unit, since it is not necessary to explain our
system model.

72 4. Structural Model for Dependable Dynamic Adaptive Systems

has equipped a casualty with a C-Unit and a P-Unit already3. Thus, the set of
application Components looks as follows at t0 + 6

ApplicationComponentst0+6
sae = {mUnitGerman, cUnitGerman, pUnitGerman,

mUnitDutch, cUnitDutch, pUnitDutch}
(4.6)

This set of application Components is also depicted in Figure 4.3.

DependableDynamicAdaptiveSystem t_0 + 6, s_aepackage []

pUnitGerman :
Dependable Dynamic
Adaptive Component

mUnitGerman :
Dependable Dynamic
Adaptive Component

cUnitGerman :
Dependable Dynamic
Adaptive Component

pUnitDutch :
Dependable Dynamic
Adaptive Component

cUnitDutch :
Dependable Dynamic
Adaptive Component

mUnitDutch :
Dependable Dynamic
Adaptive Component

Figure 4.3: Application Components present in our Application Example at t0 + 6.

After looking at the system structure from this very abstract view, the next step
towards a structural model for Dependable Dynamic Adaptive Systems is to de-
scribe, how a Dependable Dynamic Adaptive Component is further structured.

4.4 Dependable Dynamic Adaptive Component Struc-
ture

Each Dependable Dynamic Adaptive Component instance in our system may contain
several different Dependable Component Configuration instances. They describe
the capability of a Dependable Dynamic Adaptive Component depending on De-
pendable Services, which need to be provided by other Service Providers within a
Dependable Dynamic Adaptive System.

3We skip t0+4 where the Dutch M-Unit has been integrated and t0+5 where the Dutch C-Unit
has been integrated – they can be found in appendix A for the sake of completeness.

4. Structural Model for Dependable Dynamic Adaptive Systems 73

A Dependable Component Configuration, therefore, is a mapping between re-
quired and provided Dependable Services. It states, that this Dependable Dynamic
Adaptive Component provides these Dependable Services only, if other Service
Providers are available, providing those required Dependable Services.

<
<

co
m

p
o
n
e
n
t>

>

D
e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

D
e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

co
n
ta

in
s

1
..
*1If a Service Provider is available for each required Dependable Service of

a specific Dependable Component Configuration, we call this Dependable Com-
ponent Configuration activatable, as it could be activated by a Dependable Sys-
tem Infrastructure. A Component activated in a specific Dependable Component
Configuration provides all Dependable Services of this configuration by using its
Dependable Service References.

Since we want to be able to bind Dependable Dynamic Adaptive Systems
from Dependable Dynamic Adaptive Components automatically, we need to rea-
son about the quality of a Dependable Component Configuration. This is necessary
to decide, which is the best Dependable Component Configuration, if multiple De-
pendable Component Configurations of a Dependable Dynamic Adaptive Compo-
nent are activatable in a system.

D
e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

>
= *

*

As a simple approach we claim, that Dependable Component Configurations
need to be ordered regarding their quality by a ≥ relation. The intuitive meaning
of configurationa≥ configurationb is, that the quality of configurationa is equal or
better than the quality of configurationb.

For simplicity we assume in the following, that the quality of two different De-
pendable Component Configuration instances contained in a specific Dependable
Dynamic Adaptive Component instance is only equal, if the Dependable Component
Configuration instances are equal (antisymmetric relation).

Moreover the ≥ relation is reflexive meaning that
configurationa≥ configurationa. Finally we assume, that the ≥ relation is
transitive for all Dependable Component Configurations contained in a Depend-
able Dynamic Adaptive Component. This means, that the Dependable Component
Configuration instances of a Dependable Dynamic Adaptive Component instance
are a partially ordered set.

The ≥ relation is dynamic, meaning that it may change over time. A dynamic
≥ relation can be useful, when considering quality of service4. For example, a
Dependable Component Configuration of a Dependable Dynamic Adaptive Com-
ponent located on a mobile device might be the best while the device’s battery is
fully charged, while it is worse, if the battery is running low as this Dependable

4When we refer to quality of service, we do not understand the “classical” definition of network-
related quality of service, aiming at the network domain by guaranteeing network-related prop-
erties like a certain bandwidth or jitter. Instead we mean application-related quality of service
properties describing the quality of a service as rated by an end user. For example, a user may
prefer a voice output service to a graphical output service and, therefore, rate the quality of voice
output services better.

74 4. Structural Model for Dependable Dynamic Adaptive Systems

Component Configuration should be avoided to enhance battery life.
Summed up, the following two relations can be used to describe instances of

Dependable Dynamic Adaptive Components.

ContainsTS =def DependableDynamicAdaptiveComponent× T × S →
P(DependableComponentConfiguration) :

configuration ∈ Containsts(component1) ∧
configuration ∈ Containsts(component2) ⇒
component1 = component2
∀configuration ∈ DependableComponentConfiguration,
∀s ∈ S, ∀t ∈ T, ∀component1, component2 ∈
ApplicationComponentsts

(4.7)

≥T
S =def DependableComponentConfiguration ×

DependableComponentConfiguration× T × S → Boolean :

((c1≥t
s c2) ∧ (c2≥t

s c3) ⇒ c1≥t
s c3) ∧ (c1≥t

s c1)∧
(((c1≥t

s c2) ∧ (c2≥t
s c1)) ⇔ (c1 = c2))

∀c ∈ ApplicationComponentsts,
∀c1, c2, c3 ∈ Containsts(c), ∀s ∈ S, ∀t ∈ T

(4.8)

<
<

c
o
m

p
o
n
e
n
t>

>

D
e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

D
e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
u
rr

e
n
t

0
..
1

1

By this, a Dependable System Infrastructure can easily determine for each De-
pendable Dynamic Adaptive Component instance the best Dependable Component
Configuration instance, which can be activated.

Next to the set of contained Dependable Component Configurations and their
order, we need to describe, which Dependable Component Configuration is the cur-
rent Dependable Component Configuration, meaning that this Dependable Compo-
nent Configuration is currently activated by the Dependable System Infrastructure.

CurrentTS =def DependableDynamicAdaptiveComponent× T × S →
DependableComponentConfiguration ∪ {∅} :

Currentts(c) ∈ Containsts(c) ∪ {∅} ∀s ∈ S, ∀t ∈ T,

∀c ∈ ApplicationComponentsts

(4.9)

Applied to our system sae from our application example, at Dependabil-
ity Checkpoint t0 + 6 we know six Components, namely mUnitGerman, cUnitGerman,
pUnitGerman, mUnitDutch, cUnitDutch, and pUnitDutch. Each M-Unit (mUnitGerman respec-
tively mUnitDutch) contains two Dependable Component Configurations:

4. Structural Model for Dependable Dynamic Adaptive Systems 75

1. mConfiguration1German respectively mConfiguration1Dutch, where no Service
Interface is required. This represents a medic, which is currently not treating
a casualty.

2. mConfiguration2German respectively mConfiguration2Dutch, where Service In-
terface CUnitServiceIf is required. This represents a medic, which is cur-
rently treating a casualty equipped with a C-Unit.

Each C-Unit (cUnitGerman respectively cUnitDutch) from our application example
contains two Dependable Component Configurations as well:

1. cConfiguration1German respectively cConfiguration1Dutch, where no Service In-
terface is required. This represents a casualty, where a medic manually sets
the Triage Class – no vital data sensors are present.

2. cConfiguration2German respectively cConfiguration2Dutch, where Service Inter-
face PUnitServiceIf is required. This represents a casualty, which is cur-
rently equipped with vital data sensors monitoring his physical condition.
Therefore, the Triage Class of this casualty can be calculated automatically.

The P-Units (pUnitGerman respectively pUnitDutch) contain only a single De-
pendable Component Configuration (pConfiguration1German respectively
pConfiguration1Dutch) where they do not require any Service Interface and
provide Service Interface PUnitServiceIf.

The Dependable Component Configurations contained in the Dependable Dy-
namic Adaptive Components from our system sae of our application example at
t0 + 6 are described formally according to our system model in the following.

Containst0+6
sae (mUnitGerman) = {mConfiguration1German,

mConfiguration2German}
(4.10)

Containst0+6
sae (cUnitGerman) = {cConfiguration1German,

cConfiguration2German}
(4.11)

Containst0+6
sae (pUnitGerman) = {pConfiguration1German} (4.12)

Containst0+6
sae (mUnitDutch) = {mConfiguration1Dutch,

mConfiguration2Dutch}
(4.13)

Containst0+6
sae (cUnitDutch) = {cConfiguration1Dutch, cConfiguration2Dutch} (4.14)

76 4. Structural Model for Dependable Dynamic Adaptive Systems

Containst0+6
sae (pUnitDutch) = {pConfiguration1Dutch} (4.15)

In our application example the Dependable Component Configuration requiring
Service Interface CUnitServiceIf is the best configuration of M-Units followed by
the Dependable Component Configuration requiring nothing. A similar order of the
Dependable Component Configurations can be derived for the C-Units from our
application example. The configurations are, therefore, ordered as depicted in the
following formulas.

mConfiguration2German≥t0+6
sae mConfiguration1German (4.16)

cConfiguration2German≥t0+6
sae cConfiguration1German (4.17)

mConfiguration2Dutch≥t0+6
sae mConfiguration1Dutch (4.18)

cConfiguration2Dutch≥t0+6
sae cConfiguration1Dutch (4.19)

The remaining question regarding the configuration structure within our applica-
tion example at this point is, which Dependable Component Configuration is the cur-
rent Dependable Component Configuration for each Dependable Dynamic Adap-
tive Component at the different Dependability Checkpoints. As an example5, we
will have a look at t0 + 2 and t0 + 6.

D
e

p
e

n
d

a
b

le
 C

o
m

p
o

n
e

n
t

C
o

n
fi

g
u

ra
ti

o
n

At t0 + 2 we only have two Dependable Dynamic Adaptive Components
present within our Dependable Dynamic Adaptive System: a German M-Unit
and a German C-Unit. Thus, the German M-Unit is in its best Dependable Com-
ponent Configuration (mConfiguration2German), as a C-Unit is available providing
CUnitServiceIf. The German C-Unit is in its worst Dependable Component Con-
figuration (cConfiguration1German) as no Service Provider of PUnitServiceIf is
present.

Currentt0+2
sae (mUnitGerman) = mConfiguration2German (4.20)

Currentt0+2
sae (cUnitGerman) = cConfiguration1German (4.21)

At t0 + 6 for each Dependable Dynamic Adaptive Component from our ex-
ample their best Dependable Component Configuration is the current Dependable

5A complete overview of the current Dependable Component Configurations during execution
of our application example can be found in Appendix A.

4. Structural Model for Dependable Dynamic Adaptive Systems 77

Component Configuration, as Service Providers for all required Service Interfaces
of the Service Users are available.

Currentt0+6
sae (mUnitGerman) = mConfiguration2German (4.22)

Currentt0+6
sae (cUnitGerman) = cConfiguration2German (4.23)

Currentt0+6
sae (pUnitGerman) = pConfiguration1German (4.24)

Currentt0+6
sae (mUnitDutch) = mConfiguration2Dutch (4.25)

Currentt0+6
sae (cUnitDutch) = cConfiguration2Dutch (4.26)

Currentt0+6
sae (pUnitDutch) = pConfiguration1Dutch (4.27)

The Component structure resulting at t0 + 6 is depicted in Figure 4.4. Current
Dependable Component Configurations are marked by green checks in this figure.

In the following we will continue investigating the structure of a Dependable
Dynamic Adaptive Component by taking a closer look at the internal structure of
Dependable Component Configurations.

78 4. Structural Model for Dependable Dynamic Adaptive Systems

D
e

p
e

n
d

a
b

le
D

yn
a

m
ic

A
d

a
p

tiv
e

S
ys

te
m

t_
0

 +
 6

,
s_

a
e

p

a
c

k
a

g
e

[

]

m
U

n
it

G
e

rm
a

n
 :

 D
e

p
e

n
d

a
b

le
 D

y
n

a
m

ic
 A

d
a

p
ti

v
e

 C
o

m
p

o
n

e
n

t

m
C

o
n

fi
g

u
ra

ti
o

n
2

G
e

rm
a

n
 :

 D
e

p
e

n
d

a
b

le
 C

o
m

p
o

n
e

n
t

C
o

n
fi

g
u

ra
ti

o
n

m
C

o
n

fi
g

u
ra

ti
o

n
1

G
e

rm
a

n
 :

D

e
p

e
n

d
a

b
le

 C
o

m
p

o
n

e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
U

n
it

G
e

rm
a

n
 :

 D
e

p
e

n
d

a
b

le
 D

y
n

a
m

ic
 A

d
a

p
ti

v
e

 C
o

m
p

o
n

e
n

t

c
C

o
n

fi
g

u
ra

ti
o

n
2

G
e

rm
a

n
 :

D

e
p

e
n

d
a

b
le

 C
o

m
p

o
n

e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
C

o
n

fi
g

u
ra

ti
o

n
1

G
e

rm
a

n
 :

D

e
p

e
n

d
a

b
le

 C
o

m
p

o
n

e
n

t
C

o
n

fi
g

u
ra

ti
o

n

p
U

n
it

G
e

rm
a

n
 :

 D
e

p
e

n
d

a
b

le
 D

y
n

a
m

ic
 A

d
a

p
ti

v
e

 C
o

m
p

o
n

e
n

t

p
C

o
n

fi
g

u
ra

ti
o

n
1

G
e

rm
a

n
 :

D

e
p

e
n

d
a

b
le

 C
o

m
p

o
n

e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
U

n
it

D
u

tc
h

 :
 D

e
p

e
n

d
a

b
le

 D
y

n
a

m
ic

 A
d

a
p

ti
v

e
 C

o
m

p
o

n
e

n
t

c
C

o
n

fi
g

u
ra

ti
o

n
2

D
u

tc
h

 :

D
e

p
e

n
d

a
b

le
 C

o
m

p
o

n
e

n
t

C
o

n
fi

g
u

ra
ti

o
n

c
C

o
n

fi
g

u
ra

ti
o

n
1

D
u

tc
h

 :

D
e

p
e

n
d

a
b

le
 C

o
m

p
o

n
e

n
t

C
o

n
fi

g
u

ra
ti

o
n

p
U

n
it

D
u

tc
h

 :
 D

e
p

e
n

d
a

b
le

 D
y

n
a

m
ic

 A
d

a
p

ti
v

e
 C

o
m

p
o

n
e

n
t

p
C

o
n

fi
g

u
ra

ti
o

n
1

D
u

tc
h

 :

D
e

p
e

n
d

a
b

le
 C

o
m

p
o

n
e

n
t

C
o

n
fi

g
u

ra
ti

o
n

m
U

n
it

D
u

tc
h

 :
 D

e
p

e
n

d
a

b
le

 D
y

n
a

m
ic

 A
d

a
p

ti
v

e
 C

o
m

p
o

n
e

n
t

m
C

o
n

fi
g

u
ra

ti
o

n
2

D
u

tc
h

 :

D
e

p
e

n
d

a
b

le
 C

o
m

p
o

n
e

n
t

C
o

n
fi

g
u

ra
ti

o
n

m
C

o
n

fi
g

u
ra

ti
o

n
1

D
u

tc
h

 :

D
e

p
e

n
d

a
b

le
 C

o
m

p
o

n
e

n
t

C
o

n
fi

g
u

ra
ti

o
n

 :
 >

=

 :
 >

=

 :
 >

=

 :
 >

=

Fi
gu
re
4.
4:
A
C
lo
se
r
Lo
ok
at
th
e
A
pp
lic
at
io
n
C
om
po
ne
nt
s
Pr
es
en
ti
n
ou
r
A
pp
lic
at
io
n
Ex
am
pl
e
at

t 0
+
6.

4. Structural Model for Dependable Dynamic Adaptive Systems 79

4.5 Dependable Component Configuration Structure

A Dependable Component Configuration instance is specified by two sets – one set
containing all provided Dependable Services, the other set containing Dependable
Service References for all Dependable Services declared as required by this specific
Dependable Component Configuration instance.

D
e

p
e

n
d

a
b

le
 C

o
m

p
o

n
e

n
t

C
o

n
fi

g
u

ra
ti

o
n D

e
p

e
n

d
a

b
le

 S
e

rv
ic

e
 R

e
fe

re
n

c
e

D
e

p
e

n
d

a
b

le
 S

e
rv

ic
e

d
e

cl
a

re
s

*
1

..
*

p
ro

vi
d

e
s

*
1

..
*

The concept of a Dependable Component Configuration is, that all provided
Dependable Service instances of a currently active Dependable Component Con-
figuration can be used by other Dependable Dynamic Adaptive Components which
act as Service Users. On the other hand all declared Dependable Service Refer-
ences of the currently active Dependable Component Configuration need to point to
Dependable Service instances, which are provided by currently active Dependable
Component Configurations of other Dependable Dynamic Adaptive Components
acting as Service Providers.

The provided respectively required Dependable Services are denoted by the
relations Provides and Declares in our system model.

ProvidesTS =def DependableComponentConfiguration× T × S →
P(DependableService) :

c1 ̸= c2 ⇒ Providests(conf1) ∩ Providests(conf2) = ∅
∀c1, c2 ∈ DependableDynamicAdaptiveComponent,
∀conf1 ∈ Containsts(c1), ∀conf2 ∈ Containsts(c2),
∀s ∈ S, ∀t ∈ T

(4.28)

DeclaresTS =def DependableComponentConfiguration× T × S →
P(DependableServiceReference) :

c1 ̸= c2 ∧ conf1 ∈ Containsts(c1) ∧ ∀conf2 ∈ Containsts(c2) ⇒
Declarests(conf1) ∩ Declarests(conf2) = ∅
∀c1, c2 ∈ DependableDynamicAdaptiveComponent,
∀s ∈ S, ∀t ∈ T

(4.29)

In the following we will only show the structure of those Dependable Component
Configurations of the German Dependable Dynamic Adaptive Components6.

In our example the German M-Unit provides a Dependable Service
mUnitServiceGerman in all Component Configurations. This may be the same De-
pendable Service instance for all configurations.

6You can find a complete specification of our application example in Appendix A.

80 4. Structural Model for Dependable Dynamic Adaptive Systems

In order to be able To provide this Dependable Service, it may require Service
Interface CUnitServiceIf or no Service Interface, depending on the Dependable
Component Configuration instance – this corresponds to situations, where a medic
is assigned to a casualty or where he is not assigned. Thus, it declares a Depend-
able Service Reference cUnitReferenceGerman or no Dependable Service Reference
depending on the Dependable Component Configuration instance.

The two Component Configurations of the German C-Unit provide a Depend-
able Service cUnitServiceGerman and declare no Dependable Service Reference
respectively a Dependable Service Reference pUnitReferenceGerman – this corre-
sponds to situations, where no P-Unit is attached to this casualty respectively where
this casualty is equipped with a P-Unit.

Providest0+6
sae (mConfiguration1German) = {mUnitServiceGerman}

Declarest0+6
sae (mConfiguration1German) = ∅

Providest0+6
sae (mConfiguration2German) = {mUnitServiceGerman}

Declarest0+6
sae (mConfiguration2German) = {cUnitReferenceGerman}

(4.30)

Providest0+6
sae (cConfiguration1German) = {cUnitServiceGerman}

Declarest0+6
sae (cConfiguration1German) = ∅

Providest0+6
sae (cConfiguration2German) = {cUnitServiceGerman}

Declarest0+6
sae (cConfiguration2German) = {pUnitReferenceGerman}

(4.31)

Providest0+6
sae (pConfiguration1German) = {pUnitServiceGerman}

Declarest0+6
sae (pConfiguration1German) = ∅

(4.32)

The German P-Unit has only a single Dependable Component Configuration. In
this configuration it provides a Dependable Service pUnitServiceGerman and requires
no Dependable Service.

The structure of the Dependable Dynamic Adaptive Components and their De-
pendable Component Configurations resulting at t0 + 6 is depicted in Figure 4.5.
Following the UML notation provided Dependable Services are represented by a
filled circle, whereas declared Dependable Service References are represented
by an unfilled semicircle as depicted in the margin.

D
e

p
e
n

d
a
b

le
 S

e
rv

ic
e
 R

e
fe

re
n

c
e

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e

In the following we will show, how Dependable Dynamic Adaptive Components
are bound to each other by binding Dependable Service References to Depend-
able Services.

4. Structural Model for Dependable Dynamic Adaptive Systems 81

D
e
p
e
n
d
a
b
le

D
yn

a
m

ic
A

d
a
p
tiv

e
S

ys
te

m
t_

0
 +

 6
,
s_

a
e

p
a
c
k
a
g

e

[

]

c
U

n
it

G
e
rm

a
n

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

p
U

n
it

R
e
fe

re
n

c
e
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e
 R

e
fe

re
n

c
e

c
C

o
n

fi
g

u
ra

ti
o

n
2
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
C

o
n

fi
g

u
ra

ti
o

n
1
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
U

n
it

S
e
rv

ic
e
G

e
rm

a
n

:

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e

p
U

n
it

G
e
rm

a
n

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

p
C

o
n

fi
g

u
ra

ti
o

n
1
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

p
U

n
it

S
e
rv

ic
e
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e

m
U

n
it

G
e
rm

a
n

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

c
U

n
it

R
e
fe

re
n

c
e
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e
 R

e
fe

re
n

c
e

m
C

o
n

fi
g

u
ra

ti
o

n
2
G

e
rm

a
n

 :
 D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

m
C

o
n

fi
g

u
ra

ti
o

n
1
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

m
U

n
it

S
e
rv

ic
e
G

e
rm

a
n

:

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e

m
U

n
it

D
u

tc
h

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

c
U

n
it

R
e
fe

re
n

c
e
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e
 R

e
fe

re
n

c
e

m
C

o
n

fi
g

u
ra

ti
o

n
2
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

m
C

o
n

fi
g

u
ra

ti
o

n
1
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

m
U

n
it

S
e
rv

ic
e
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e

c
U

n
it

D
u

tc
h

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

p
U

n
it

R
e
fe

re
n

c
e
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e
 R

e
fe

re
n

c
e

c
C

o
n

fi
g

u
ra

ti
o

n
2
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
C

o
n

fi
g

u
ra

ti
o

n
1
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
U

n
it

S
e
rv

ic
e
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e

p
U

n
it

D
u

tc
h

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

p
C

o
n

fi
g

u
ra

ti
o

n
1
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

p
U

n
it

S
e
rv

ic
e
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e

 :
 p

ro
vi

d
e
s

 :
 p

ro
vi

d
e
s

 :
 d

e
cl

a
re

s

 :
 >

=
 :
 >

=

 :
 p

ro
vi

d
e
s

 :
 p

ro
vi

d
e
s

 :
 p

ro
vi

d
e
s

 :
 p

ro
vi

d
e
s

 :
 >

=

 :
 p

ro
vi

d
e
s

 :
 >

=

 :
 p

ro
vi

d
e
s

 :
 d

e
cl

a
re

s

 :
 d

e
cl

a
re

s

 :
 d

e
cl

a
re

s

 :
 p

ro
vi

d
e
s

 :
 p

ro
vi

d
e
s

Fi
gu
re
4.
5:
A
C
lo
se
r
Lo
ok
at
th
e
A
pp
lic
at
io
n
C
om
po
ne
nt
s
an
d
th
ei
r
C
on
fig
ur
at
io
ns
at

t 0
+
6.

82 4. Structural Model for Dependable Dynamic Adaptive Systems

4.6 Binding Structure

Next to the declaration of required and provided Dependable Services, we need
to be able to describe, which Dependable Service Reference uses which Depend-
able Service – this is also called a binding. This binding is described by the Uses
relation in our system model. It associates a Dependable Service Reference with a
Dependable Service. The Dependable Service used by a Dependable Service Ref-
erence has to be provided by another Dependable Dynamic Adaptive Component
instance in its Current Configuration.

D
e

p
e

n
d

a
b

le
 S

e
rv

ic
e

 R
e

fe
re

n
c

e
D

e
p

e
n

d
a

b
le

 S
e

rv
ic

e
u

s
e

s

*
0

..
1

UsesTS =def DependableServiceReference× T × S →
DependableService ∪ {∅} :

Usests ̸= ∅ ⇒ ∃cprov ∈ ApplicationComponentsts |
cprov ̸= creq ∧ Usests(ref) ∈ Providests(Currentts(cprov))
∀ref ∈ Declarests(Currentts(creq)),
∀creq ∈ ApplicationComponentsts, ∀s ∈ S, ∀t ∈ T

(4.33)

For our application example at t0+6 we may observe, that the German M-Unit
is bound to the German C-Unit, which is bound to the German P-Unit7. The Uses
relation in our example system, therefore, is defined as follows at t0 + 6:

Usest0+6
sae (cUnitReferenceGerman) = cUnitServiceGerman (4.34)

Usest0+6
sae (pUnitReferenceGerman) = pUnitServiceGerman (4.35)

The bindings of Dependable Dynamic Adaptive Components at t0 + 6 in our
example are depicted in Figure 4.6 by uses relations between Dependable Services
and Dependable Service References.

Now that we have defined a binding structure by introducing a Uses relation,
we can refine the Current relation from Equation 4.9. We can now specify, that
each current Dependable Component Configuration needs to have each Depend-
able Service Reference bound to a Dependable Service provided by a different
Dependable Dynamic Adaptive Component in its current Dependable Component
Configurations. The revised Current relation is specified as follows.

7This is only one specific binding, you can think of in our application example. We assume this
specific binding in the following – of course, the German M-Unit could be bound to a Dutch C-
Unit at t0 + 6 as well. Any binding between German and Dutch Dependable Dynamic Adaptive
Components which are syntactically compatible would be possible here.

4. Structural Model for Dependable Dynamic Adaptive Systems 83

D
e
p
e
n
d
a
b
le

D
yn

a
m

ic
A

d
a
p
tiv

e
S

ys
te

m
t_

0
 +

 6
,
s_

a
e

p
a
c
k
a
g

e

[

]

c
U

n
it

G
e
rm

a
n

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

p
U

n
it

R
e
fe

re
n

c
e
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e
 R

e
fe

re
n

c
e

c
C

o
n

fi
g

u
ra

ti
o

n
2
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
C

o
n

fi
g

u
ra

ti
o

n
1
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
U

n
it

S
e
rv

ic
e
G

e
rm

a
n

:

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e

p
U

n
it

G
e
rm

a
n

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

p
C

o
n

fi
g

u
ra

ti
o

n
1
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

p
U

n
it

S
e
rv

ic
e
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e

m
U

n
it

G
e
rm

a
n

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

c
U

n
it

R
e
fe

re
n

c
e
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e
 R

e
fe

re
n

c
e

m
C

o
n

fi
g

u
ra

ti
o

n
2
G

e
rm

a
n

 :
 D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

m
C

o
n

fi
g

u
ra

ti
o

n
1
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

m
U

n
it

S
e
rv

ic
e
G

e
rm

a
n

:

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e

m
U

n
it

D
u

tc
h

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

c
U

n
it

R
e
fe

re
n

c
e
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e
 R

e
fe

re
n

c
e

m
C

o
n

fi
g

u
ra

ti
o

n
2
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

m
C

o
n

fi
g

u
ra

ti
o

n
1
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

m
U

n
it

S
e
rv

ic
e
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e

p
U

n
it

D
u

tc
h

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

p
C

o
n

fi
g

u
ra

ti
o

n
1
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

p
U

n
it

S
e
rv

ic
e
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e

c
U

n
it

D
u

tc
h

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

p
U

n
it

R
e
fe

re
n

c
e
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e
 R

e
fe

re
n

c
e

c
C

o
n

fi
g

u
ra

ti
o

n
2
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
C

o
n

fi
g

u
ra

ti
o

n
1
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
U

n
it

S
e
rv

ic
e
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e

 :
 u

se
s

 :
 u

se
s

 :
 u

se
s

 :
 u

se
s

 :
 p

ro
vi

d
e
s

 :
 p

ro
vi

d
e
s

 :
 d

e
cl

a
re

s

 :
 >

=

 :
 p

ro
vi

d
e
s

 :
 >

=

 :
 p

ro
vi

d
e
s

 :
 p

ro
vi

d
e
s

 :
 p

ro
vi

d
e
s

 :
 p

ro
vi

d
e
s

 :
 >

=
 :
 >

=

 :
 p

ro
vi

d
e
s

 :
 d

e
cl

a
re

s

 :
 d

e
cl

a
re

s

 :
 d

e
cl

a
re

s

 :
 p

ro
vi

d
e
s

 :
 p

ro
vi

d
e
s

Fi
gu
re
4.
6:
A
C
lo
se
r
Lo
ok
at
th
e
Bi
nd
in
gs
of
th
e
A
pp
lic
at
io
n
C
om
po
ne
nt
s
at

t 0
+
6.

84 4. Structural Model for Dependable Dynamic Adaptive Systems

CurrentTS =def DependableDynamicAdaptiveComponent× T × S →
DependableComponentConfiguration ∪ {∅} :

(Currentts(c) ∈ Containsts(c) ∪ {∅})∧
(Currentts(c) ̸= ∅ ⇒ Usests(ref) ̸= ∅)∀s ∈ S, ∀t ∈ T,

∀c ∈ ApplicationComponentsts, ∀ref ∈ Declarests(Current(c))
(4.36)

In the following we will have a closer look, how the type of a Dependable
Service respectively Dependable Service Reference is further described in our sys-
tem model by associating them with Service Interfaces. We assume in our system
model, that this type information is not dynamic, meaning that a Service Interface
provided respectively required by a Dependable Dynamic Adaptive Component
has the same type all over the time and in each system. Therefore, the following
relations do not consider T and S anymore.

4.7 Dependable Service and Dependable Service Ref-
erence Structure

Both, Dependable Services and Dependable Service References are associated
with Service Interfaces. Dependable Services implement a Service Interface, while
Dependable Service References refer to a Service Interface to denote their syntac-
tical requirements regarding a specific Dependable Service they require. Thus, the
relations Implements and RefersTo are defined in our structural model to express
these associations. These relations are static: instances of Dependable Services or
Dependable Service References cannot change a Service Interface they implement
respectively refer to over time. The relations are, therefore, defined as follows:

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e
 R

e
fe

re
n

c
e

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e

S
e
rv

ic
e
 I
n

te
rf

a
c
e

im
p
le

m
e
n
ts

re
fe

rs
 t
o

1

0
..
*

Implements =def DependableService→ ServiceInterface (4.37)

RefersTo =def DependableServiceReference→ ServiceInterface (4.38)

In our application example Dependable Service mUnitServiceGerman pro-
vided by the German M-Unit implements Service Interface mUnitServiceIf while
cUnitServiceGerman provided by the German C-Unit implements Service Interface
cUnitServiceIf. Finally, Dependable Service pUnitServiceGerman provided by the
German P-Unit implements Service Interface pUnitServiceIf.

When looking at Dependable Service References, cUnitReferenceGerman refers
to Service Interface cUnitServiceIf and pUnitReferenceGerman refers to Service Inter-
face pUnitServiceIf.

4. Structural Model for Dependable Dynamic Adaptive Systems 85

Summed up those Dependable Services provided respectively those Depend-
able Service References declared by the German Dependable Dynamic Adaptive
Components in our example are associated with Service Interfaces as follows:

Implements(mUnitServiceGerman) = mUnitServiceIf (4.39)

Implements(cUnitServiceGerman) = cUnitServiceIf (4.40)

Implements(pUnitServiceGerman) = pUnitServiceIf (4.41)

RefersTo(cUnitReferenceGerman) = cUnitServiceIf (4.42)

RefersTo(pUnitReferenceGerman) = pUnitServiceIf (4.43)

You can see these type relations within our application example in the middle
of Figure 4.7. In the following we will have a closer look at a Service Interface’s
internal structure.

4.8 Service Interface Structure

The structure of a Service Interface is defined by two sets. The first set contains a Service Interface =
methods + attributes.declaration of all methods, while the second contains a declaration of all attributes

of a Service Interface.
Methods associated with a provided Dependable Service instance (through the

Implements relation) can be called by a Service User through his Dependable Ser-
vice Reference. Attributes associated with a provided Dependable Service can be
set or queried by a Service User of this Dependable Service as well using the same
mechanism.

Methods =def ServiceInterface→ P(MethodDeclaration) (4.44)

Attributes =def ServiceInterface→ P(AttributeDeclaration) (4.45)

If we look at Service Interface cUnitServiceIf and pUnitServiceIf provided by
C-Units respectively P-Units from our application example, this looks as follows.

86 4. Structural Model for Dependable Dynamic Adaptive Systems
D

e
p
e
n
d
a
b
le

D
yn

a
m

ic
A

d
a
p
tiv

e
S

ys
te

m
t_

0
 +

 6
,
s_

a
e

p
a
c
k
a
g

e

[

]

p
U

n
it

G
e
rm

a
n

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

p
C

o
n

fi
g

u
ra

ti
o

n
1
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

p
U

n
it

S
e
rv

ic
e
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e

c
U

n
it

G
e
rm

a
n

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

p
U

n
it

R
e
fe

re
n

c
e
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e
 R

e
fe

re
n

c
e

c
C

o
n

fi
g

u
ra

ti
o

n
2
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
C

o
n

fi
g

u
ra

ti
o

n
1
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
U

n
it

S
e
rv

ic
e
G

e
rm

a
n

:

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e

m
U

n
it

G
e
rm

a
n

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

c
U

n
it

R
e
fe

re
n

c
e
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e
 R

e
fe

re
n

c
e

m
C

o
n

fi
g

u
ra

ti
o

n
2
G

e
rm

a
n

 :
 D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

m
C

o
n

fi
g

u
ra

ti
o

n
1
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

m
U

n
it

S
e
rv

ic
e
G

e
rm

a
n

:

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e

m
U

n
it

D
u

tc
h

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

c
U

n
it

R
e
fe

re
n

c
e
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e
 R

e
fe

re
n

c
e

m
C

o
n

fi
g

u
ra

ti
o

n
2
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

m
C

o
n

fi
g

u
ra

ti
o

n
1
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

m
U

n
it

S
e
rv

ic
e
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e

c
U

n
it

D
u

tc
h

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

p
U

n
it

R
e
fe

re
n

c
e
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e
 R

e
fe

re
n

c
e

c
C

o
n

fi
g

u
ra

ti
o

n
2
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
C

o
n

fi
g

u
ra

ti
o

n
1
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
U

n
it

S
e
rv

ic
e
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e

p
U

n
it

D
u

tc
h

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

p
C

o
n

fi
g

u
ra

ti
o

n
1
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

p
U

n
it

S
e
rv

ic
e
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e

p
U

n
it

S
e
rv

ic
e
If

 :
 S

e
rv

ic
e

In
te

rf
a
c
e

m
U

n
it

S
e
rv

ic
e
If

:

S
e
rv

ic
e

In
te

rf
a
c
e

c
U

n
it

S
e
rv

ic
e
If

 :

S
e
rv

ic
e

In
te

rf
a
c
e

 :
 r

e
fe

rs
 t
o

 :
 r

e
fe

rs
 t
o

 :
 im

p
le

m
e
n
ts

 :
 im

p
le

m
e
n
ts

 :
 im

p
le

m
e
n
ts

 :
 im

p
le

m
e
n
ts

 :
 r

e
fe

rs
 t
o

 :
 im

p
le

m
e
n
ts

 :
 im

p
le

m
e
n
ts

 :
 u

se
s

 :
 u

se
s

 :
 u

se
s

 :
 u

se
s

 :
 r

e
fe

rs
 t
o

 :
 p

ro
vi

d
e
s

 :
 p

ro
vi

d
e
s

 :
 d

e
cl

a
re

s

 :
 >

=

 :
 p

ro
vi

d
e
s

 :
 >

=

 :
 p

ro
vi

d
e
s

 :
 p

ro
vi

d
e
s

 :
 p

ro
vi

d
e
s

 :
 >

=

 :
 p

ro
vi

d
e
s

 :
 >

=

 :
 p

ro
vi

d
e
s

 :
 d

e
cl

a
re

s

 :
 d

e
cl

a
re

s

 :
 d

e
cl

a
re

s

 :
 p

ro
vi

d
e
s

 :
 p

ro
vi

d
e
s

Fi
gu
re
4.
7:
A
C
lo
se
r
Lo
ok
at
D
ep
en
da
bl
e
Se
rv
ic
es
an
d
D
ep
en
da
bl
e
Se
rv
ic
e
Re
fe
re
nc
es
fr
om

ou
r
A
pp
lic
at
io
n
Ex
am
pl
e.

4. Structural Model for Dependable Dynamic Adaptive Systems 87

Methods(cUnitServiceIf) = {getLongitudeC, getLatitudeC, getTriageClassC,
setTriageClassC, getAssignedPeripheralUnitC}

(4.46)

Methods(pUnitServiceIf) = {getSystolicBloodPressureP,
getDiastolicBloodPressureP, getPulseRateP}

(4.47)

Attributes(cUnitServiceIf) = ∅ (4.48)

Attributes(pUnitServiceIf) = ∅ (4.49)

The specification of those Service Interfaces offered respectively required by
the M-Units from our application example can be found in Appendix A.

Now that we specified the Service Interfaces, we need to define, how the dec-
larations of methods respectively attributes look like. We will take a look at these
declarations in the following.

4.8.1 Method Declaration

A method declaration contains three different types of structural information:

1. The name of this method.

2. The type of this method’s return value.

3. A set of attributes, which have to be passed to this method as input param-
eters.

More formally this results in three relations, which are denoted in the following.

MethodName =def MethodDeclaration→ String (4.50)

ReturnType =def MethodDeclaration→ Type (4.51)

Parameters =def MethodDeclaration→ P(AttributeDeclaration) :
Parameters(m) ∩ Attributes(c) = ∅
m1 ̸= m2 ⇒ Parameters(m1) ∩ Parameters(m2) = ∅
∀m,m1,m2 ∈ MethodDeclaration,
∀c ∈ DependableDynamicAdaptiveComponent

(4.52)

88 4. Structural Model for Dependable Dynamic Adaptive Systems

If we look at those methods provided by Service Interface cUnitServiceIf, which
is the interface between M-Units and C-Units in our application example, their dec-
laration looks as follows:

MethodName(getLongitudeC) = ”getLongitude”
ReturnType(getLongitudeC) = int
Parameters(getLongitudeC) = ∅

(4.53)

MethodName(getLatitudeC) = ”getLatitude”
ReturnType(getLatitudeC) = int
Parameters(getLatitudeC) = ∅

(4.54)

MethodName(setTriageClassC) = ”setTriageClass”
ReturnType(setTriageClassC) = void
Parameters(setTriageClassC) = {triageClassC}

(4.55)

MethodName(getTriageClassC) = ”getTriageClass”
ReturnType(getTriageClassC) = TriageClass
Parameters(getTriageClassC) = ∅

(4.56)

MethodName(getAssignedPeripheralUnitC) = ”getAssignedPeripheralUnit”
ReturnType(getAssignedPeripheralUnitC) = PUnitServiceIf
Parameters(getAssignedPeripheralUnitC) = ∅

(4.57)

The method declaration of the Service Interfaces mUnitServiceIf and
pUnitServiceIf can be found in Appendix A.

4.8.2 Attribute Declaration

An attribute declaration contains two types of structural information: the attribute’s
name as well as the attribute’s type. Thus, the following two relations declare an
attribute.

AttributeName =def AttributeDeclaration→ String (4.58)

AttributeType =def AttributeDeclaration→ Type (4.59)

4. Structural Model for Dependable Dynamic Adaptive Systems 89

If we look at attribute triageClassC, which occurred as a parameter in method
setTriageClassC in the previous section, this looks as follows:

AttributeName(triageClassC) = ”triageClass”
AttributeType(triageClassC) = TriageClass

(4.60)

The specification of those attributes declared in Service Interfaces
mUnitServiceIf and pUnitServiceIf can be found in Appendix A. We depicted it in
Figure 4.8 in addition.

DependableDynamicAdaptiveSystem ServiceInterfacespackage []

+getLongitude() : int
+getLatitude() : int
+getTriageClass() : TriageClass
+setTriageClass(triageClass : TriageClass) : void
+getAssignedPeripheralUnit() : PUnitServiceIf

cUnitServiceIf : ServiceInterface

+getLongitude() : int
+getLatitude() : int
+getActivity() : Activity
+getAssignedCasualty() : CUnitServiceIf

mUnitServiceIf : ServiceInterface

+getPulseRate() : int
+setSystolicBloodPressure() : int
+getDiastolicBloodPressure() : int

pUnitServiceIf : ServiceInterface

Figure 4.8: Specification of Service Interfaces in our Application Example.

4.9 Syntactical Compatibility

Now, that we specified the structure of Dependable Services as well as the structure
of Dependable Service References and also the structure of methods and attributes
within our system model, we can describe, whether a Dependable Service is syntac-
tically compatible with a Dependable Service Reference. Therefore, we specify a
≃Syntactical relation between Dependable Service Reference and Dependable Ser-
vice.

≃Syntactical =def DependableServiceReference× DependableService→
Boolean : ref≃Syntactical serv⇒
RefersTo(ref)≃InterfaceSyntactical Implements(serv)
∀ref ∈ DependableServiceReference,
∀serv ∈ ServiceInterface

(4.61)

D
e

p
e

n
d

a
b

le
 S

e
rv

ic
e

 R
e

fe
re

n
c

e
D

e
p

e
n

d
a

b
le

 S
e

rv
ic

e
=

sy
n

ta
ct

ic
a

l
*

*

Having this specification, we need to refine the Uses relation from Equation
4.33, as a Dependable Service Reference may only use a Dependable Service, if

90 4. Structural Model for Dependable Dynamic Adaptive Systems

they are syntactically compatible. Thus, the Uses relation is defined as follows:

UsesTS =def DependableServiceReference× T × S →
DependableService ∪ {∅} :

Usests(ref) ̸= ∅ ⇒ ref≃Syntactical Usests(ref)∧
∃cprov ∈ ApplicationComponentsts |
cprov ̸= creq ∧ Usests(ref) ∈ Providests(Currentts(cprov))
∀ref ∈ Declarests(Currentts(creq)),
∀creq ∈ ApplicationComponentsts, ∀s ∈ S, ∀t ∈ T

(4.62)

However, we still need to define, whether two Service Interfaces are syntacti-
cally compatible, as this notion of syntactical Compatibility between Service Inter-
faces is used within the definition of syntactical Compatibility between Dependable
Service Reference and Dependable Service.

Two Service Interfaces ifreq and ifprov are syntactically compatible, if ifprov con-Definition of
syntactical

Compatibility of
Service Interfaces.

tains a syntactically compatible method respectively attribute for each method and
attribute of ifreq.

Thus, a provided Service Interface can have more attributes or methods than a
required Service Interface but may still be syntactically compatible to it. Conse-
quently this relation is not commutative. The left hand side of the relation takes a
Service Interface, which a Dependable Service Reference refers to, while the right
hand side takes a Service Interface, which a Dependable Service implements.

≃InterfaceSyntactical =def ServiceInterface× ServiceInterface→ Boolean :

ifreq≃InterfaceSyntactical ifprov ⇒
((∀mreq ∈ Methods(ifreq)∃mprov ∈ Methods(ifprov)|
mreq≃MethodSyntactical mprov)∧
(∀areq ∈ Attributes(ifreq)∃aprov ∈ Attributes(ifprov)|
areq≃AttributeSyntactical aprov)
∀ifreq, ifprov ∈ ServiceInterface

(4.63)

Since we want to be able to talk about syntactical Compatibility of ServiceMethods are
syntactical

compatible, if they
have the same name
and their parameters
and return types are

syntactically
compatible.

Interface instances, we need to define the syntactical Compatibility on the low-
est level of abstraction between two method declarations. We call this relation
≃MethodSyntactical.

This relation between two methods is not commutative meaning that a
≃MethodSyntactical b ̸⇒ b ≃MethodSyntactical a. This is caused by the fact, that return types
or parameters of a required and a provided method must not be of the same type
– they may be in an inheritance relation.

4. Structural Model for Dependable Dynamic Adaptive Systems 91

For the return type of methods, we state that the return type of a required
method mreq needs to be the same or a supertype of the return type of a provided
method mprov8. This is denoted by ReturnType(mreq) ≥ ReturnType(mprov) in the
following.

≃MethodSyntactical =def MethodDeclaration×MethodDeclaration→
Boolean : mreq≃MethodSyntactical mprov ⇒
MethodName(mreq) = MethodName(mprov) ∧
ReturnType(mreq) ≥ ReturnType(mprov) ∧
∃pprov ∈ Parameters(mprov)|
preq≃ParameterSyntactical pprov ∧
| Parameters(mreq)| = | Parameters(mprov)|
∀preq ∈ Parameters(mreq),
∀mreq,mprov ∈ MethodDeclaration

(4.64)

For parameters of methods, we need parameters with the same name, which Parameters are
syntactical
compatible, if they
have the same name
and their type is
syntactical
compatible.

are of the same type or of a subtype compared to the parameters of the required
method: If we require a method with a parameter named p of type T, we could
use each method, taking a parameter named p of type T or a supertype of T. The
relation ≃ParameterSyntactical, therefore, is defined as follows:

≃ParameterSyntactical =def AttributeDeclaration× AttributeDeclaration→
Boolean : preq≃ParameterSyntactical pprov ⇒
AttributeName(preq) = AttributeName(pprov) ∧
AttributeType(preq) ≤ AttributeType(pprov)
∀preq, pprov ∈ AttributeDeclaration

(4.65)

Given this definition of syntactical Compatibility, we need to refine our defini-
tion of a Service Interface’s methods declaration from Equation 4.44. The relation
≃MethodSyntactical allows us, to specify, that a Service Interface must not contain two
methods, which are pairwise syntactical compatible, since this would mean, that
these two methods have the same names, parameters and return types, which does
not make sense in practice within a namespace.

8Assume that we have two types: Car and FastCar, where Car is a supertype of FastCar. If we
require a method named m with a return type Car, we could use a method named m returning a
FastCar, since we could use the return value as if it would be a car.
If we require a method named m with a return type FastCar, we could not use a method named m

returning a Car, since the return value does not necessarily have the same properties as a FastCar.
Therefore, only methods returning the same or a subtype of the returned type defined in a required
method are syntactically compatible.

92 4. Structural Model for Dependable Dynamic Adaptive Systems

The revised definition of the Methods relation, therefore, looks as follows.

Methods =def ServiceInterface→ P(MethodDeclaration) :
((m1≃MethodSyntactical m2) ∧ ((m2≃MethodSyntactical m1)) ⇒
m1 = m2 ∀m1,m2 ∈ Methods(i), ∀i ∈ ServiceInterface

(4.66)

Since we want to be able to talk about syntactical Compatibility of Service In-
terfaces, we need to define the syntactical Compatibility not only between method
declarations but between attribute declarations as well. We call this relation
≃AttributeSyntactical.

In contrast to syntactical Compatibility between parameters of a method, com-Attributes are
syntactical

compatible, if they
have the same

name, and the same
type.

patible attributes must be of the same type, as Components requiring an attribute,
may read its value (AttributeType(areq) ≥ AttributeType(aprov)) or may set it to a
new value (AttributeType(areq) ≤ AttributeType(aprov)).

The relation, therefore, is defined as follows.

≃AttributeSyntactical =def AttributeDeclaration× AttributeDeclaration→
Boolean : areq≃AttributeSyntactical aprov ⇒
AttributeName(areq) = AttributeName(aprov) ∧
AttributeType(areq) = AttributeType(aprov)
∀areq, aprov ∈ AttributeDeclaration

(4.67)

Given this definition of syntactical Compatibility, we need to extend the defini-
tion of a Service Interface’s attributes declaration from Equation 4.45. The relation
≃AttributeSyntactical allows us, to specify, that no Service Interface may contain two
attributes, which are syntactical compatible, since this would mean, that these two
attributes have same names and types, which does not make sense in practice within
a namespace.

The revised definition of the Attributes relation, therefore, looks as follows:

Attributes =def ServiceInterface→ P(AttributeDeclaration) :
a1 ≃AttributeSyntactical a2 ⇒ a1 = a2
∀a1, a2 ∈ Methods(i), ∀i ∈ ServiceInterface

(4.68)

In our example we realize, that Dependable Service Reference
pUnitReferenceGerman defined by the German C-Unit’s best Dependable Com-
ponent Configuration (cConfiguration2German) is syntactically compatible with
Dependable Service pUnitServiceDutch provided by the Dutch P-Unit as they refer
to a Service Interface containing the same methods and attributes.

Summed up, when considering syntactical Compatibility between Dependable
Service References and Dependable Services of the German Dependable Dynamic

4. Structural Model for Dependable Dynamic Adaptive Systems 93

Adaptive Components we realize the following situation in our application exam-
ple:

cUnitReferenceGerman≃Syntactical cUnitServiceGerman
pUnitReferenceGerman≃Syntactical pUnitServiceGerman

(4.69)

Syntactical Compatibility between all Dependable Services and Dependable
Service References from our application example is depicted in Figure 4.9. For
reasons of clarity, we left out the surrounding Dependable Dynamic Adaptive Com-
ponents and Dependable Component Configurations in this figure.

DependableDynamicAdaptiveSystem SyntacticalCompatibilitypackage []

cUnitReferenceGerman :
Dependable Service Reference

pUnitReferenceGerman :
Dependable Service Reference

cUnitReferenceDutch :
Dependable Service Reference

pUnitReferenceDutch :
Dependable Service Reference

pUnitServiceGerman :
Dependable Service

mUnitServiceGerman
: Dependable Service

cUnitServiceGerman
: Dependable Service

mUnitServiceDutch :
Dependable Service

pUnitServiceDutch :
Dependable Service

cUnitServiceDutch :
Dependable Service

 : =syntactical : =syntactical

 : =syntactical : =syntactical
 : =syntactical

 : =syntactical : =syntactical

 : =syntactical

Figure 4.9: Syntactical Compatibility in our Application Example.

Our previously presented system model supports dynamic properties of De-
pendable Dynamic Adaptive Systems. This is achieved by considering different
Dependability Checkpoints from set T within the relations of our system model. As
motivated when introducing T in section 4.2, t ∈ T is only increased, if a structural
change or a behavioral change threatening Dependability has occurred.

We will investigate in the following, which Dependability-relevant structural
changes can occur according to our system model. We call these changes struc-

94 4. Structural Model for Dependable Dynamic Adaptive Systems

tural reconfiguration triggers, as each of them may lead to a reconfiguration of the
Dependable Dynamic Adaptive System.

4.10 Structural Reconfiguration Triggers

Dependable Dynamic Adaptive Systems are expected to reconfigure themselves
at runtime. Therefore, we need to understand, which changes within the structure
of a system respectively its Components may trigger such a reconfiguration. To getStructural

reconfiguration
triggers indicate a
structural change,
which threatens
Dependability.

an idea of these triggers we will investigate a system s ∈ S at each level of our
system model as introduced before.

Each time, where a reconfiguration may occur due to one of these triggers
we increase the Dependability Checkpoint by 1 – thus, tnew = tlatest + 1 where
tlatest ∈ T is the latest Dependability Checkpoint before this reconfiguration trigger
has been active.

First of all, a Dependable Dynamic Adaptive Component may enter
or leave a Dependable Dynamic Adaptive System. This means, that setA Component enters

or leaves. ApplicationComponents has changed. We call it AppComponentsChange and de-
fine it formally by the following trigger.

AppComponentsChangeTS =defT × S → boolean (4.70)

AppComponentsChangetnew+1
s :=ApplicationComponentstnew+1

s ̸=
ApplicationComponentstnew

s

∀tnew ∈ T, ∀s ∈ S

(4.71)

A second reconfiguration trigger is, that a Dependable Dynamic Adaptive Com-
ponent changes the set of offered Dependable Component Configurations result-
ing in a newly offered Dependable Component Configuration or in a Depend-The set of offered

Configurations of a
Component changes.

able Component Configuration, which is not offered anymore. This means, that
the Contains relation of a Component changes, which is expressed by the trigger
ConfigurationChange.

ConfigurationChangeTS =defT × S → boolean (4.72)

ConfigurationChangetnew+1
s :=∃c ∈ (ApplicationComponentstnew+1

s ∩
ApplicationComponentstnew

s)|
Containstnew+1

s (c) ̸= Containstnew
s (c)

∀tnew ∈ T, ∀s ∈ S

(4.73)

4. Structural Model for Dependable Dynamic Adaptive Systems 95

Another reconfiguration trigger related to Dependable Component Configura-
tions is a change in the order of Dependable Component Configurations. This is
expressed by trigger ConfigOrderChange, which is defined as follows.

ConfigOrderChangeTS =defT × S → boolean (4.74)

ConfigOrderChangetnew+1
s :=∃c ∈ (ApplicationComponentstnew+1

s ∩
ApplicationComponentstnew

s) ∧ ∃conf1, conf2 ∈
(Containstnew+1

s (c) ∩ Containstnew
s (c))|

conf1 ̸= conf2∧
conf1≥tnew+1

s conf2 ∧ conf2≥tnew
s conf1

∀tnew ∈ T, ∀s ∈ S
(4.75)

The Current relation is no trigger for an upcoming reconfiguration. Instead a The order of offered
Configurations of a
Component changes.

change in this relation means, that a reconfiguration of the Dependable Dynamic
Adaptive System has occurred: a Dependable Component Configuration has been
activated by the Dependable System Infrastructure – therefore, it represents a re-
configuration effect, an adaptation.

As we want to describe effects of reconfiguration as well, we will consider
changes in the Current relation as reconfiguration triggers in the following. Thus, The Current

Configuration
changes (=
Adaptation).

we define a trigger CurrentConfigurationChange, which is true, if the Depend-
able Component Configuration of a Dependable Dynamic Adaptive Component
has changed.

CurrentConfigurationChangeTS =defT × S → boolean (4.76)

CurrentConfigurationChangetnew+1
s :=∃c ∈ (ApplicationComponentstnew+1

s |
Currenttnew+1

s (c) ̸= Currenttnew
s (c)

∀tnew ∈ T, ∀s ∈ S
(4.77)

96 4. Structural Model for Dependable Dynamic Adaptive Systems

Considering the internal structure of a Dependable Component Configuration,The set of provided
Services respectively

declared Service
References of a
Configuration

changes.

we can identify two changes, which trigger a reconfiguration.

1. A change in the set of provided Dependable Services, expressed by trigger
ServiceChange.

2. A change in the set of declared Dependable Service References, expressed
by trigger ReferenceChange.

These triggers are specified as follows.

ServiceChangeTS =defT × S → boolean (4.78)

ServiceChangetnew+1
s :=∃c ∈ (ApplicationComponentstnew+1

s ∩
ApplicationComponentstnew

s)∧
∃conf ∈ (Containstnew+1

s (c) ∩ Containstnew
s (c))|

Providestnew+1
s (conf) ̸= Providestnew

s (conf)
∀tnew ∈ T, ∀s ∈ S

(4.79)

ReferenceChangeTS =defT × S → boolean (4.80)

ReferenceChangetnew+1
s :=∃c ∈ (ApplicationComponentstnew+1

s ∩
ApplicationComponentstnew

s)∧
∃conf ∈ (Containstnew+1

s (c) ∩ Containstnew
s (c))|

Declarestnew+1
s (conf) ̸= Declarestnew

s (conf)
∀tnew ∈ T, ∀s ∈ S

(4.81)

Like changes in the Current relation, changes in the Uses relation are no trigger
for reconfiguration. Instead a change in this relation means, that a reconfigurationChange of a Used

Service. of a Dependable Dynamic Adaptive System has occurred as a Dependable Service
Reference now points to a different Dependable Service than before – therefore, it
represents another reconfiguration effect, an adaptation. Adaptation here means,
that a Service Binding has changed. We specify these changes in the Uses relation
within a reconfiguration trigger BindingChange as follows.

BindingChangeTS =defT × S → boolean (4.82)

4. Structural Model for Dependable Dynamic Adaptive Systems 97

BindingChangetnew+1
s :=∃c ∈ (ApplicationComponentstnew+1

s)∧
∃conf ∈ (Containstnew+1

s (c))∧
∃ref ∈ (Declarestnew+1

s (conf))|
Usestnew+1

s (ref) ̸= Usestnew
s (ref)

∀tnew ∈ T, ∀s ∈ S

(4.83)

The type information in our system model is no reconfiguration trigger, as it does
not change during runtime – instead it is static by definition. Thus, types and their
related syntactical Compatibility cannot trigger a reconfiguration and, therefore,
are not considered here.

Summed up, we identified two different types of structural reconfiguration trig-
gers: one type enabling us, when it may be necessary to perform a reconfiguration
and another one enabling us to reason about effects of a reconfiguration. In our
formal model the first type is unified in a boolean relation StructuralChange as
follows.

StructuralChangeTS =defT × S → boolean (4.84)

StructuralChangetnew
s :=AppComponentsChangetnew

s ∨
ConfigurationChangetnew

s ∨
ConfigOrderChangetnew

s ∨
ServiceChangetnew

s ∨ ReferenceChangetnew
s

∀tnew ∈ T, ∀s ∈ S

(4.85)

Looking back at our application example, we can only recognize
AppComponentsChange triggers, as we only face entering or leaving Compo-
nents and do not consider changes to the internal structure of Dependable Dynamic
Adaptive Components in our application example.

The second type of reconfiguration triggers is unified in a boolean relation
StructuralReconfiguration as follows.

StructuralReconfigurationTS =defT × S → boolean (4.86)

StructuralReconfigurationtnew
s :=CurrentConfigurationChangetnew

s ∨
BindingChangetnew

s

∀tnew ∈ T, ∀s ∈ S

(4.87)

A Dependable System Infrastructure is expected to react to these reconfigu-
ration triggers and reconfigure a Dependable Dynamic Adaptive System immedi-
ately. Thus, we assume, that no Dependability Checkpoints are between recog-
nizing a reconfiguration trigger and reacting to it by reconfiguration. Instead we
assume, that these two steps are performed at the same Dependability Checkpoint.

98 4. Structural Model for Dependable Dynamic Adaptive Systems

Considering this, we can state, that each reconfiguration requires, that a recon-
figuration trigger is true. However, not each active reconfiguration trigger causes aStructural

reconfiguration→
structural change.

reconfiguration. For example, a Dependable Dynamic Adaptive Component may
enter a Dependable Dynamic Adaptive System, which is not bound to any other
Component in this system due to syntactical incompatibilities.

This is covered by the following implication which is expected to be true at each
Dependability Checkpoint.

StructuralReconfigurationtnew
s ⇒ StructuralChangetnew

s

∀tnew ∈ T, ∀s ∈ S
(4.88)

4.11 Summary

In this section you can find the formal definition of the structural model concentrated
at a single place. Thus, we will repeat the formulas from the previous sections top-
down. Whenever definitions were revised, you will find the latest definition in this
summary.

ApplicationComponentsTS =def

T × S → P(DependableDynamicAdaptiveComponent)
(4.89)

ContainsTS =def DependableDynamicAdaptiveComponent× T × S →
P(DependableComponentConfiguration) :

configuration ∈ Containsts(component1) ∧
configuration ∈ Containsts(component2) ⇒
component1 = component2
∀configuration ∈ DependableComponentConfiguration,
∀s ∈ S, ∀t ∈ T, ∀component1, component2 ∈
ApplicationComponentsts

(4.90)

≥T
S =def DependableComponentConfiguration ×

DependableComponentConfiguration× T × S → Boolean :

((c1≥t
s c2) ∧ (c2≥t

s c3) ⇒ c1≥t
s c3) ∧ (c1≥t

s c1)∧
(((c1≥t

s c2) ∧ (c2≥t
s c1)) ⇔ (c1 = c2))

∀c ∈ ApplicationComponentsts,
∀c1, c2, c3 ∈ Containsts(c), ∀s ∈ S, ∀t ∈ T

(4.91)

4. Structural Model for Dependable Dynamic Adaptive Systems 99

CurrentTS =def DependableDynamicAdaptiveComponent× T × S →
DependableComponentConfiguration ∪ {∅} :

(Currentts(c) ∈ Containsts(c) ∪ {∅})∧
(Currentts(c) ̸= ∅ ⇒ Usests(ref) ̸= ∅)∀s ∈ S, ∀t ∈ T,

∀c ∈ ApplicationComponentsts, ∀ref ∈ Declarests(Current(c))
(4.92)

ProvidesTS =def DependableComponentConfiguration× T × S →
P(DependableService) :

c1 ̸= c2 ⇒ Providests(conf1) ∩ Providests(conf2) = ∅
∀c1, c2 ∈ DependableDynamicAdaptiveComponent,
∀conf1 ∈ Containsts(c1), ∀conf2 ∈ Containsts(c2),
∀s ∈ S, ∀t ∈ T

(4.93)

DeclaresTS =def DependableComponentConfiguration× T × S →
P(DependableServiceReference) :

c1 ̸= c2 ∧ conf1 ∈ Containsts(c1) ∧ ∀conf2 ∈ Containsts(c2) ⇒
Declarests(conf1) ∩ Declarests(conf2) = ∅
∀c1, c2 ∈ DependableDynamicAdaptiveComponent,
∀s ∈ S, ∀t ∈ T

(4.94)

UsesTS =def DependableServiceReference× T × S →
DependableService ∪ {∅} :

Usests(ref) ̸= ∅ ⇒ ref≃Syntactical Usests(ref)∧
∃cprov ∈ ApplicationComponentsts |
cprov ̸= creq ∧ Usests(ref) ∈ Providests(Currentts(cprov))
∀ref ∈ Declarests(Currentts(creq)),
∀creq ∈ ApplicationComponentsts, ∀s ∈ S, ∀t ∈ T

(4.95)

Implements =def DependableService→ ServiceInterface (4.96)

RefersTo =def DependableServiceReference→ ServiceInterface (4.97)

100 4. Structural Model for Dependable Dynamic Adaptive Systems

Methods =def ServiceInterface→ P(MethodDeclaration) :
((m1≃MethodSyntactical m2) ∧ ((m2≃MethodSyntactical m1)) ⇒
m1 = m2 ∀m1,m2 ∈ Methods(i), ∀i ∈ ServiceInterface

(4.98)

Attributes =def ServiceInterface→ P(AttributeDeclaration) :
a1 ≃AttributeSyntactical a2 ⇒ a1 = a2
∀a1, a2 ∈ Methods(i), ∀i ∈ ServiceInterface

(4.99)

MethodName =def MethodDeclaration→ String (4.100)

ReturnType =def MethodDeclaration→ Type (4.101)

Parameters =def MethodDeclaration→ P(AttributeDeclaration) :
Parameters(m) ∩ Attributes(c) = ∅
m1 ̸= m2 ⇒ Parameters(m1) ∩ Parameters(m2) = ∅
∀m,m1,m2 ∈ MethodDeclaration,
∀c ∈ DependableDynamicAdaptiveComponent

(4.102)

AttributeName =def AttributeDeclaration→ String (4.103)

AttributeType =def AttributeDeclaration→ Type (4.104)

≃Syntactical =def DependableServiceReference× DependableService→
Boolean : ref≃Syntactical serv⇒
RefersTo(ref)≃InterfaceSyntactical Implements(serv)
∀ref ∈ DependableServiceReference,
∀serv ∈ ServiceInterface

(4.105)

≃InterfaceSyntactical =def ServiceInterface× ServiceInterface→ Boolean :

ifreq≃InterfaceSyntactical ifprov ⇒
((∀mreq ∈ Methods(ifreq)∃mprov ∈ Methods(ifprov)|
mreq≃MethodSyntactical mprov)∧
(∀areq ∈ Attributes(ifreq)∃aprov ∈ Attributes(ifprov)|
areq≃AttributeSyntactical aprov)
∀ifreq, ifprov ∈ ServiceInterface

(4.106)

4. Structural Model for Dependable Dynamic Adaptive Systems 101

≃MethodSyntactical =def MethodDeclaration×MethodDeclaration→
Boolean : mreq≃MethodSyntactical mprov ⇒
MethodName(mreq) = MethodName(mprov) ∧
ReturnType(mreq) ≥ ReturnType(mprov) ∧
∃pprov ∈ Parameters(mprov)|
preq≃ParameterSyntactical pprov ∧
| Parameters(mreq)| = | Parameters(mprov)|
∀preq ∈ Parameters(mreq),
∀mreq,mprov ∈ MethodDeclaration

(4.107)

≃ParameterSyntactical =def AttributeDeclaration× AttributeDeclaration→
Boolean : preq≃ParameterSyntactical pprov ⇒
AttributeName(preq) = AttributeName(pprov) ∧
AttributeType(preq) ≤ AttributeType(pprov)
∀preq, pprov ∈ AttributeDeclaration

(4.108)

≃AttributeSyntactical =def AttributeDeclaration× AttributeDeclaration→
Boolean : areq≃AttributeSyntactical aprov ⇒
AttributeName(areq) = AttributeName(aprov) ∧
AttributeType(areq) = AttributeType(aprov)
∀areq, aprov ∈ AttributeDeclaration

(4.109)

Now that we have specified our structural model for Dependable Dynamic
Adaptive Systems we need to add behavioral aspects to it. in order to achieve
not only syntactical Compatibility but semantical Compatibility as well, when bind-
ing Dependable Dynamic Adaptive Systems. Thus, we will look at these behavioral
aspects of our system model in the following.

102 4. Structural Model for Dependable Dynamic Adaptive Systems

It would seem that perfection is attained not when no more can be added,
but when no more can be removed.

Antoine de Saint Exupéry

5
Behavioral Model for Dependable

Dynamic Adaptive Systems

We already defined syntactical Compatibility within the previous chapter. How-
ever, this is not sufficient [VHT00] for Dependable Dynamic Adaptive Systems – we
also need to consider the behavior of Dependable Dynamic Adaptive Components
bound within these systems.

In this chapter we will, therefore, investigate the behavior of Dependable Dy-
namic Adaptive Systems. Thus, we will introduce behavioral aspects in our system
model and use them to describe the behavior of the specific Dependable Dynamic
Adaptive System from our application example.

In contrary to the introduction of structural aspects in Section 4, we will describe
the behavior bottom-up ending at the system level. We describe it bottom-up, since
our model defines semantical Compatibility between Dependable Services and
Dependable Service References. All specifications on top-levels in our behavioral
system model only contain aggregations of specification from the lower level. Not the behavior

itself is described,
but state spaces of
equivalent provided
respectively
expected behavior.

Our model does not describe the behavior of a system respectively its Compo-
nents itself. Instead we describe only classes of equivalent behavior for its Compo-
nents.

The idea behind these Behavior Equivalence Classes is, to describe state spaces,
where a Component provides respectively requires an equivalent behavior. At run-
time a Dependable System Infrastructure, therefore, is capable of monitoring the
Behavior Equivalence Classes of bound Dependable Dynamic Adaptive Compo-
nents and can execute Compliance Test Cases whenever such a Behavior Equiva-

103

104 5. Behavioral Model for Dependable Dynamic Adaptive Systems

lence Class changes.
A graphical view of our behavioral model introduced in the following is depicted

in Figure 5.1 – this Figure helps you, to understand our system model. The structural
parts of the model are depicted as well but with a lower saturation. This highlights
our behavioral additions to the structural model.

We will use the colors from this Figure during the following sections when we
describe the system from our application example using our system model. AsThe margins depict

model elements from
Figure 5.1.

a reminder, we will depict corresponding model elements from Figure 5.1 in the
margins, whenever a model element is described in the following sections.

InstanceModel

DomainModel

Behavior Specification

BehaviorEquivalence Class

<<component>>

Dependable Dynamic Adaptive Component

Dependable Component Configuration

Dependable Service Reference

+Attributes

+Methods()

Service Interface

Domain Architecture

Dependable Service

=syntactical

* *

serviceBehavior

0..1

1

=semantical

* *

Service Reference Behavior

Service Reference Behavior

10..*

uses

*0..1

implements

provides

*

1..*

declares

*

1..*

specifiedBehavior

0..1
1

refers to

1

0..*

element of
current

0..1

1

contains

1..*

1

contains
1..*

1

>=

*
*

element of

subset of

Figure 5.1: Graphical View of our Behavioral System Model.

5. Behavioral Model for Dependable Dynamic Adaptive Systems 105

5.1 Looking Back at the Application Example

Our model needs to be capable of describing the Emergency Assistance System
introduced in section 3.

Considering system sae from our application example, we could investigate the Until t0 + 6
semantical
Compatibility could
have been proven in
advance at
development time.

behavior of this Dependable Dynamic Adaptive System at Dependability Check-
points t0 to t0 + 6 which have been introduced in section 4.1. However, regarding
our aim of establishing Dependable Dynamic Adaptive Systems, this situation is not
very interesting.

Those Components bound together at t0 +6 were developed by the same ven-
dor. They may have been explicitly designed to interoperate with each other.
The interaction, therefore, could have been easily tested respectively verified in
advance by the Component vendor.

To demonstrate the benefit of our approach we will, therefore, consider the
following situation: Later, at Dependability Checkpoint tn (tn > t0 + 6) a Dutch
medic equips a further casualty with a Dutch C-Unit. Thus, now a second Dutch
C-Unit is present in our Dependable Dynamic Adaptive System. The structure and
behavior of this second Dutch C-Unit does not differ from the first one. To distinguish
it from the first one, we add the postfix 2, whenever we consider this C-Unit using
our system model.

The Dutch medic does not deploy a P-Unit at this casualty, as his situation is tn + 1 and tn + 2
denote
Dependability
Checkpoints, when a
Dutch C-Unit is
bound to a German
P-Unit.

not critical yet. Most interesting regarding our approach are the following two
Dependability Checkpoints tn + 1 and tn + 2 as depicted in Figure 5.2. They are
defined as follows:

tn + 1 denotes the Dependability Checkpoint, when this casualty is equipped with a
German P-Unit to monitor his vital condition in the following. This results from
the decision of a German medic treating this casualty, that his vital condition
got critical and, therefore, live monitoring is indicated. The structure and
behavior of this second German P-Unit does not differ from the first one. To
distinguish it from the first one, we add the postfix 2, whenever we consider
this P-Unit using our system model.

tn + 2 describes the situation, where the fingerclip of this second German P-Unit tn + 2: semantical
incompatibility
occurs.

measuring the pulse rate of this casualty slips off. Thus, this casualty has a
measured pulse rate of zero, while his blood pressure is still present.

In the following we will investigate, which additional basic sets are required in
our formal model in order to capture behavioral aspects of Dependable Dynamic
Adaptive Systems.

106 5. Behavioral Model for Dependable Dynamic Adaptive Systems

Dependability
 Checkpoints - part 2 -

casualty‘s
situation

is critical

tn + 1tn tn + 2 another
Dutch medic
 discovers
 casualty

casualty‘s
finger clip

slips off

Figure 5.2: Dependability Checkpoints Interesting for Semantical Compatibility in
our Example.

5.2 Basic Sets

As for the structural model, we first of all need to define some basic sets, which we
refer to, when talking about behavioral aspects of a Dependable Dynamic Adap-All Behavior

Equivalence Classes. tive System. On the behavioral side we only have the set BehaviorEquivalenceClass
which contains all Behavior Equivalence Classes, we can think of.

Now that we defined the basic sets, we can start describing the behavior (re-
spectively the classes of equivalent behavior) bottom-up in the following.

5.3 Dependable Service and Dependable Service Ref-
erence Behavior Class

First of all we will investigate, how Dependable Services respectively DependableBehavior
Equivalence Classes

imply equivalent
behavior of a

Service. Behavior
Equivalence Classes

are defined by
component vendors
at development time.

Service References behave in a Dependable Dynamic Adaptive System.
A Dependable Service may behave differently depending on the internal state

of a Dependable Dynamic Adaptive Component providing this service. Thus, we
introduce the concept of Behavior Equivalence Classes. A Dependable Service is
associated with a set of such Behavior Equivalence Classes.

At each point during runtime, a single Behavior Equivalence Class is active for
each Dependable Service, depending on the state of the provider of this service.
The meaning of a Behavior Equivalence Class for a Dependable Service is, that

5. Behavioral Model for Dependable Dynamic Adaptive Systems 107

the Dependable Service will behave equivalently as long as the active Behavior
Equivalence Class does not change.

Behavior Equivalence Classes of a Dependable Service are defined by a Com-
ponent vendor at development time of a Dependable Dynamic Adaptive Compo-
nent providing the specific Dependable Service. The vendor can derive them from
the control flow of the implementation by considering the different paths.

A starting point would be considering each path as a separate Behavior Equiv-
alence Class. However, a Component vendor may need to classify several paths
under a single Behavior Equivalence Class. For example, if different paths are
taken depending on input passed to a Dependable Service, the Behavior Equiva-
lence Class would be the same for all these paths.

Within our formal model, we assume, that the currently active Behavior Equiv-
alence Class of a Dependable Service is given by a relation ServiceBehavior de-
pending on the internal state of a providing Component1. It is defined as follows.

B
e
h

a
v
io

rE
q

u
iv

a
le

n
c
e
 C

la
s
s

ServiceBehaviorTS =def DependableService× T × S →
BehaviorEquivalenceClass

(5.1)

Considering system sae from our application example, we need to investigate
the behavior of the Dependable Service provided by a Dutch P-Unit and the be-
havior of a Dependable Service Reference declared by a Dutch C-Unit, which are
bound at t0+6. However, regarding our aim of establishing Dependable Dynamic
Adaptive Systems, this situation is not very interesting, as the Components bound at
t0 + 6 were designed by the same vendor. Thus, they could have been designed
to interoperate with each other. In our example the interaction could have been
easily tested respectively verified in advance by the Dutch vendor of these two
Components.

To demonstrate the benefit of our approach we will, therefore, consider tn + 1
which is another Dependability Checkpoint, where a Dutch C-Unit is bound to a
German P-Unit. This situation can occur within our example, when a German medic
treats a casualty, which has been equipped with a Dutch C-Unit in advance.

If this German medic decides, that the vital condition of this casualty is critical,
he may equip him with an additional P-Unit to monitor his vital condition in the
following. In this case, we will face exactly this situation.

In our example, the vendor of the German P-Units may have defined, that
these P-Units behave equivalently regardless of their internal state. He calls this
Behavior Equivalence Class pUnitServiceUsualOperationGerman. Thus, the Behav-
ior Equivalence Class of the provided Dependable Service pUnitServiceGerman is

1The internal state is not considered in our formal system model. When implementing our system
model, a mechanism is needed, which updates the Behavior Equivalence Class, whenever the internal
state of a providing Component changes.

108 5. Behavioral Model for Dependable Dynamic Adaptive Systems

pUnitServiceUsualOperationGerman at any time during system execution in our ex-
ample system. Therefore, we will realize the following at tn + 1.

ServiceBehaviortn+1
sae (pUnitServiceGerman2) =

pUnitServiceUsualOperationGerman
(5.2)

Next to Behavior Equivalence Classes of Dependable Services, we also applyA Service User
expects equivalent
behavior as long as

the Behavior
Equivalence Class
does not change.

this concept to Dependable Service References. This enables us to describe state
spaces, where a Service User assumes equivalent behavior of a Service Provider.

For Dependable Service References Behavior Equivalence Classes are used to
express, that a specific equivalent behavior is expected for the provider of the
Dependable Service as long as the Behavior Equivalence Class does not change.
This specific equivalent behavior needs to be specified by the Service User.

In our formal model this is done by the relation ≃Semantical
2 in Section 5.4.

A currently active Behavior Equivalence Class of a Dependable Service Refer-
ence is given by the relation ServiceReferenceBehavior. It is a relation, which assigns
a Behavior Equivalence Class to a pair of Dependable Service and Dependable
Service Reference.

This Behavior Equivalence Class depends on the internal state of a Dependable
Dynamic Adaptive Component containing the given Dependable Service Reference
as well as on an externally visible state3 of the given syntactically compatible
Dependable Service. The relation is, therefore, defined as follows.

ServiceReferenceBehaviorTS =def DependableServiceReference×
DependableService× T × S →
BehaviorEquivalenceClass ∪ {∅} :

ServiceReferenceBehaviorts(ref, serv) = ∅ ⇔
ref ̸≃Syntactical serv
∀ref ∈ DependableServiceReference,
∀serv ∈ DependableService, ∀t ∈ T, ∀s ∈ S

(5.3)S
e

rv
ic

e
 R

e
fe

re
n

c
e

 B
e

h
a

v
io

r

ServiceReferenceBehavior is defined for any pair of syntactically compatible
instances of Dependable Service Reference and Dependable Service. This relation,
therefore, enables a Dependable System Infrastructure to reason about a currently
active ServiceReferenceBehavior of such a pair, even if they are not bound within
the system at the moment.

2In our reference implementation of a Dependable System Infrastructure in Chapter 6 this rela-
tion is realized by runtime testing.

3The externally visible state is each part of state information, which can be queried by calling
state-preserving methods or by reading attributes of a specific Dependable Service.

5. Behavioral Model for Dependable Dynamic Adaptive Systems 109

If we consider system sae from our application example, the vendor of the Dutch
C-Unit might have specified, that he can think of two Behavior Equivalence Classes
regarding a required P-Unit:

1. pUnitReferenceUsualOperationDutch where this C-Unit would calculate the
Triage Class of a casualty to T I, T II, T III, or T IV based on values pro-
vided by the P-Unit. In this case, the C-Unit expects the P-Unit to return
values for pulse as well as blood pressure, which are in usual ranges (e.g.
0 < return value < 300).

2. pUnitReferenceDeadOperationDutch where this C-Unit would calculate the
Triage Class of a casualty to EX based on values provided by the P-Unit,
since the pulse of the casualty is equal to zero. In this case, the C-Unit ex-
pects the P-Unit to return values for pulse as well as blood pressure, which
are equal to zero.

If we assume, that a German P-Unit is attached to a casualty with a
pulse of 70, and a blood pressure of (120, 80) at tn + 1, this Dutch C-Unit
would calculate the Triage Class to T I. Thus, it is in Behavior Equivalence Class
pUnitReferenceUsualOperationDutch at this Dependability Checkpoint. This is speci-
fied as follows.

ServiceReferenceBehaviortn+1
sae (pUnitReferenceDutch2,

pUnitServiceGerman2) = pUnitReferenceUsualOperationDutch
(5.4)

In this Behavior Equivalence Class it expects pulse as well as blood pressure of
the P-Unit to be between zero and 300 in order to be semantical compatible.

An excerpt of the situation at tn + 1 showing only the second German P-Unit
and the second Dutch C-Unit is depicted in Figure 5.3.

If we consider Dependability Checkpoint tn + 2, where the fingerclip of the
associated casualty slips off, the Dutch C-Unit would calculate the Triage Class to
EX, as it does not consider blood pressure in addition. This is due to the implicit
assumption made by the Dutch vendor, that the blood pressure must be equal to (0,
0) in this case as well.

Thus, the Behavior Equivalence Class of the pair of the second
Dutch C-Unit and the second German P-Unit changes at tn + 2 towards
pUnitReferenceDeadOperationDutch. The C-Unit now expects the P-Unit to behave
differently. Instead of values between zero and 300 it now expects pulse as well
as blood pressure of the P-Unit to be equal to zero in order to be semantical
compatible.

ServiceReferenceBehaviortn+2
sae (pUnitReferenceDutch2,

pUnitServiceGerman2) = pUnitReferenceDeadOperationDutch
(5.5)

110 5. Behavioral Model for Dependable Dynamic Adaptive Systems
D

e
p
e
n
d
a
b
le

D
yn

a
m

ic
A

d
a
p
tiv

e
S

ys
te

m
t_

n
 +

 1
,
s_

a
e

p
a
c
k
a
g

e

[

]

p
U

n
it

G
e
rm

a
n

2
 :

 D
e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

p
C

o
n

fi
g

u
ra

ti
o

n
1
G

e
rm

a
n

2
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

p
U

n
it

S
e
rv

ic
e
G

e
rm

a
n

2

:
D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e

c
U

n
it

D
u

tc
h

2
 :

 D
e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

p
U

n
it

R
e
fe

re
n

c
e
D

u
tc

h
2
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e
 R

e
fe

re
n

c
e

c
C

o
n

fi
g

u
ra

ti
o

n
2
D

u
tc

h
2
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
C

o
n

fi
g

u
ra

ti
o

n
1
D

u
tc

h
2
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
U

n
it

S
e
rv

ic
e
D

u
tc

h
2
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e

p
U

n
it

R
e
fe

re
n

c
e
U

s
u

a
lO

p
e
ra

ti
o

n
D

u
tc

h
 :

 S
e
rv

ic
e

R
e
fe

re
n

c
e
 B

e
h

a
v
io

r

p
U

n
it

S
e
rv

ic
e
U

s
u

a
lO

p
e
ra

ti
o

n
G

e
rm

a
n

 :

B
e
h

a
v
io

rE
q

u
iv

a
le

n
c
e
 C

la
s
s

 :
 u

se
s

 :
 s

e
rv

ic
e
R

e
fe

re
n
ce

B
e
h
a
vi

o
r

 :
 s

e
rv

ic
e
B

e
h
a
vi

o
r

 :
 s

e
rv

ic
e
R

e
fe

re
n
ce

B
e
h
a
vi

o
r

 :
 p

ro
vi

d
e
s

 :
 d

e
cl

a
re

s

 :
 >

=

 :
 p

ro
vi

d
e
s

 :
 p

ro
vi

d
e
s

Fi
gu
re
5.
3:
Th
e
Be
ha
vi
or
Eq
ui
va
le
nc
e
C
la
ss
es
of
a
D
ep
en
da
bl
e
Se
rv
ic
e
an
d
a
D
ep
en
da
bl
e
Se
rv
ic
e
Re
fe
re
nc
e
in
O
ur
A
pp
lic
at
io
n

Ex
am
pl
e
at

t n
+
1.

5. Behavioral Model for Dependable Dynamic Adaptive Systems 111

In the following we will analyze, how we can reason about semantical Compat-
ibility at runtime by using our behavioral model defined before.

5.4 Semantical Compatibility

Now, that we considered classes of equivalent behavior within our model, we can
describe, whether a Dependable Service is semantically compatible with a De-
pendable Service Reference. Therefore, we specify the≃Semantical relation between
Dependable Service Reference and Dependable Service.

Important about this specification is, that it is expected to return the same value4

for semantical Compatibility as long as the Behavior Equivalence Classes of the in- Semantical
Compatibility of a
binding is not
expected to change,
unless its Combined
Behavior
Equivalence Class
changes.

volved Dependable Service and Dependable Service Reference do not change.
Thus, if a Dependable Service Reference ref has been semantical compatible with
Dependable Service serv at Dependability Checkpoint t, they are semantical com-
patible at every other Dependability Checkpoint, when the same Behavior Equiva-
lence Classes are active for ref and serv, as well. The same applies for semantical
incompatibilities.

This is reflected in the specification of ≃Semantical as follows.

≃Semantical
T
S =def DependableServiceReference× DependableService×

T × S → Boolean :

(ServiceBehaviort1s (serv) = ServiceBehaviort2s (serv)∧
ServiceReferenceBehaviort1s (ref, serv) =
ServiceReferenceBehaviort2s (ref, serv)) ⇒
((ref≃Semantical

t1
s serv⇔ ref≃Semantical

t2
s serv)∧

(ref ̸≃Semantical
t1
s serv⇔ ref ̸≃Semantical

t2
s serv))

∀ref ∈ DependableServiceReference,
∀serv ∈ DependableService, ∀t1, t2 ∈ T, ∀s ∈ S

(5.6)

The≃Semantical relation is our key to Dependable Dynamic Adaptive Systems. We
use it in our Dependable System Infrastructure to decide, whether two Dependable
Dynamic Adaptive Components may be bound together (as they are semantically
compatible) or not (as they are semantically incompatible).

However, our formal model does not specify this ≃Semantical relation in more The specific
realization of
≃Semantical may differ
in different
Dependable System
Infrastructures.

detail. The specific realization of this relation may, therefore, vary in different
Dependable System Infrastructures.

Depending on the degree of required Dependability, you can use different
techniques for the realization of this relation. Formal proofs can verify specific

4True or false.

112 5. Behavioral Model for Dependable Dynamic Adaptive Systems

properties of a Service Binding like absence of deadlocks while methods like run-
time testing verify only a specific execution path. Of course, you can also think of
combinations of these options.

For our reference implementation of the Dependable System Infrastructure, weOur infrastructure
uses runtime testing
as a well-known,

lightweight
approach.

chose runtime testing as a lightweight mechanism to achieve Dependable Dynamic
Adaptive Systems.

In system sae from our application example, the Dutch C-Unit is semantically
compatible with the German P-Unit at tn + 1. However, as soon as the fingerclip
slips off at tn + 2, they are not semantically compatible anymore.

This semantical incompatibility results from a changed Behavior Equivalence
Class of the second Dutch C-Unit regarding the second German P-Unit. Since the
second Dutch C-Unit would calculate the Triage Class to EX due to the pulse rate of
zero measured by the second German P-Unit, it now expects a different behavior
from this P-Unit.

It expects, that pulse rate as well as blood pressure are equal to zero now,The second Dutch
C-Unit is not
semantical

compatible with the
second German
P-Unit due to a

failing Compliance
Test Case at tn + 2.

which is not the case for the second German P-Unit as only the fingerclip slipped
off. Thus, the≃Semantical will return false – in our realization this is caused by a failing
testcase, detecting this deviation between expected and provided behavior.

This change in semantical Compatibility at tn + 2 is reflected as follows using
our model.

pUnitReferenceDutch≃Semantical
tn+1
sae pUnitServiceGerman (5.7)

pUnitReferenceDutch ̸≃Semantical
tn+2
sae pUnitServiceGerman (5.8)

Now that we have defined semantical Compatibility, we can refine the Uses re-Only semantical
compatible Services
may be used by a
Service Reference

lation in a way, that only semantically compatible Dependable Service References
and Dependable Services may be bound together. This is reflected in a refined
specification of the Uses relation as follows.

UsesTS =def DependableServiceReference× T × S →
DependableService ∪ {∅} :

Usests(ref) ̸= ∅ ⇒ ref≃Syntactical Usests(ref)∧
ref≃Semantical Usests(ref) ∧ ∃cprov ∈ ApplicationComponentsts |
cprov ̸= creq ∧ Usests(ref) ∈ Providests(Currentts(cprov))
∀ref ∈ Declarests(Currentts(creq)),
∀creq ∈ ApplicationComponentsts, ∀s ∈ S, ∀t ∈ T

(5.9)

Semantical Compatibility is only defined for Service Bindings between Depend-
able Service References and Dependable Services. Since we assume, that Depend-
able Dynamic Adaptive Components are developed at different points in time and

5. Behavioral Model for Dependable Dynamic Adaptive Systems 113

especially a Dependable Dynamic Adaptive System is not developed as a whole,
we cannot assume, that there are additional semantical Compatibility criteria rea-
soning about semantically Compatibility at the system level. The only criterion we
consider are the local semantical Compatibilities between bound Dependable Ser-
vice References and Dependable Services contained in the Dependable System
Configuration. Other criteria like system test criteria are not defined, since we can
not predict each specific Dependable System Configuration in advance. However,
such system test criteria could be easily added to our system model if necessary
for other types of systems.

A Dependable Dynamic Adaptive System in our system model is characterized
by the fact, that only semantically compatible Dependable Services and Depend-
able Service References are bound. This is specified by the isDependable relation
as depicted in the following.

isDependableTS =def T × S → Boolean (5.10)

isDependablets := true ⇔ ref≃Semantical Usests(ref)
∀ref ∈ Declarests(Currentts(comp)), ∀comp ∈ ApplicationComponentsts,
∀t ∈ T, ∀s ∈ S

(5.11)

The task of a Dependable System Infrastructure is, to guarantee, that
isDependable holds for the Dependable Dynamic Adaptive System at each point A Dependable

Dynamic Adaptive
System must not
contain semantically
incompatible
bindings.

during system execution. This is automatically achieved, as long as a Depend-
able System Infrastructure considers semantical Compatibility during establishing
respectively updating the Service Binding as specified in our Uses relation. It must
not change Service Bindings except it is indicated by a reconfiguration trigger.

For completeness we will investigate the combinations of Behavior Equivalence
Classes to the behavior class of a binding in the following.

5.5 Binding Behavior Class

The binding behavior class as well as all following behavior specifications is only a Combined Behavior
Equivalence Class of
a binding is only a
combination of the
Behavior
Equivalence Classes
of its Service User
and its Service
Provider.

combination of the Behavior Equivalence Classes defined for Dependable Services
and Dependable Service References. They are described here only for complete-
ness.

The behavior class of a Service Binding is defined by a Dependable Service
Reference and a Dependable Service, which are bound. The pair of Dependable
Service Reference and Dependable Service defines the Behavior Equivalence Class
for this binding from a Service User’s point of view, whereas the Dependable Ser-
vice defines the Behavior Equivalence Class from a Service Provider’s point of view.

114 5. Behavioral Model for Dependable Dynamic Adaptive Systems

Thus, the binding behavior relation is defined as follows.

BindingBehaviorTS =def DependableServiceReference× T × S →
BehaviorEquivalenceClass×
BehaviorEquivalenceClass

BindingBehaviorts(ref) :={ServiceReferenceBehaviorts(ref,Usests(ref)),
ServiceBehaviorts(Uses

t
s(ref))}

∀ref ∈ DependableServiceReference,
∀t ∈ T, ∀s ∈ S

(5.12)

Considering system sae from our application example, we can observe a behav-
ior class of the binding between the second Dutch C-Unit and the second German
P-Unit at tn + 1 as follows.

BindingBehaviortn+1
sae (pUnitReferenceDutch2) =

{ServiceReferenceBehaviortn+1
sae (pUnitReferenceDutch2,

pUnitServiceGerman2),
ServiceBehaviortn+1

sae (pUnitServiceGerman2)} =

{pUnitReferenceUsualOperationDutch,
pUnitServiceUsualOperationGerman)}

(5.13)

In the following we will investigate, how the behavior class of a Dependable
Component Configuration is defined within our formal system model.

5.6 Dependable Component Configuration Behavior
Class

The behavior class of a Dependable Component Configuration consists of two parts:
one part containing the Behavior Equivalence Classes of all provided Dependable
Services from a Service Provider’s point of view, the other part contains a Behavior
Equivalence Class for each declared Dependable Service Reference from a Service
User’s point of view.

Since we already stated before, that a Behavior Equivalence Class of a De-
pendable Service Reference may depend not only on the state of the declaring
Dependable Dynamic Adaptive Component but as well on the externally visible
state of a specific Dependable Dynamic Adaptive Component providing a syn-
tactically compatible Dependable Service, we define the behavior class only for
Current Configurations, where the specific provider of a Dependable Service is

5. Behavioral Model for Dependable Dynamic Adaptive Systems 115

already known for each Dependable Service Reference. The behavior class of a
Current Configuration, therefore, is defined as depicted in the following.

ConfigurationBehaviorTS =def DependableComponentConfiguration×
T × S → P(BehaviorEquivalenceClass)×
P(BehaviorEquivalenceClass)

ConfigurationBehaviorts(c) :={ProvidedBehaviorts(c),
DeclaredBehaviorts(c)}
∀c ∈ DependableComponentConfiguration,
∀t ∈ T, ∀s ∈ S

(5.14)

This is a simplification, resulting in a specification, which is easier to read. How-
ever, it does not limit the capabilities of an Dependable System Infrastructure, as
it could reason directly about semantical Compatibility of each syntactically com-
patible combination of Dependable Service and Dependable Service Reference
by referring to their specific Behavior Equivalence Classes.

The ProvidedBehavior respectively DeclaredBehavior relation is defined by
the union of the Behavior Equivalence Classes of provided Dependable Services
respectively declared Dependable Service References of a specific Dependable
Component Configuration. The Behavior Equivalence Class of each Dependable
Service Reference is calculated regarding the Dependable Service it is currently
bound to.

ProvidedBehaviorTS =def DependableComponentConfiguration×
T × S → P(BehaviorEquivalenceClass)

ProvidedBehaviorts(c) :=
⋃

serv ∈ Providests(c)

ServiceBehaviorts(serv)

∀c ∈ DependableComponentConfiguration,
∀t ∈ T, ∀s ∈ S

(5.15)

DeclaredBehaviorTS =def DependableComponentConfiguration×
T × S → P(BehaviorEquivalenceClass)

DeclaredBehaviorts(c) :=
⋃

ref ∈ Declarests(c)

ServiceReferenceBehaviorts(ref,

Usests(ref))
∀c ∈ DependableComponentConfiguration,
∀t ∈ T, ∀s ∈ S

(5.16)

116 5. Behavioral Model for Dependable Dynamic Adaptive Systems

Looking at system sae from our application example, therefore, the behavior
classes of those Dependable Component Configurations which are Current Config-
urations within our system at tn + 1 are as shown in the following.

ConfigurationBehaviortn+1
sae (cConfiguration2Dutch2) =

{ProvidedBehaviortn+1
sae (cConfiguration2Dutch2),

DeclaredBehaviortn+1
sae (cConfiguration2Dutch2)}

ConfigurationBehaviortn+1
sae (pConfiguration1German2) =

{ProvidedBehaviortn+1
sae (pConfiguration1German2),

DeclaredBehaviortn+1
sae (pConfiguration1German2)}

(5.17)

ProvidedBehaviortn+1
sae (cConfiguration2Dutch2) =

{ServiceBehaviortn+1
sae (cUnitServiceDutch2)}

ProvidedBehaviortn+1
sae (pConfiguration1German2) =

{ServiceBehaviortn+1
sae (pUnitServiceGerman2)}

(5.18)

DeclaredBehaviortn+1
sae (cConfiguration2Dutch2) =

{ServiceReferenceBehaviortn+1
sae (pUnitReferenceDutch2,

pUnitServiceGerman2)}
DeclaredBehaviortn+1

sae (pConfiguration1German2) = ∅

(5.19)

Now that we investigated behavior classes of Current Configurations, we can
have a look at the behavior classes of Dependable Dynamic Adaptive Components
in the following.

5.7 Dependable Dynamic Adaptive Component Be-
havior Class

As a Dependable Dynamic Adaptive Component can be active in different Depend-
able Component Configurations its behavior depends on its Current Configuration.
Thus, the behavior class of a Dependable Dynamic Adaptive Component at a De-
pendability Checkpoint is simply defined as follows:

ComponentBehaviorTS =def DependableDynamicAdaptiveComponent×
T × S → P(BehaviorEquivalenceClass)×
P(BehaviorEquivalenceClass)

ComponentBehaviorts(c) :=ConfigurationBehavior
t
s(Current

t
s(c))

∀c ∈ ApplicationComponentsts, ∀t ∈ T, ∀s ∈ S
(5.20)

5. Behavioral Model for Dependable Dynamic Adaptive Systems 117

Looking at system sae from our application example, the behavior class of those
Dependable Dynamic Adaptive Components present within the system at tn + 1 is
as specified in the following.

ComponentBehaviortn+1
sae (mUnitGerman) =

ConfigurationBehaviortn+1
sae (mConfiguration2German)

(5.21)

ComponentBehaviortn+1
sae (cUnitGerman) =

ConfigurationBehaviortn+1
sae (cConfiguration2German)

(5.22)

ComponentBehaviortn+1
sae (pUnitGerman) =

ConfigurationBehaviortn+1
sae (pConfiguration1German)

(5.23)

ComponentBehaviortn+1
sae (pUnitGerman2) =

ConfigurationBehaviortn+1
sae (pConfiguration1German2)

(5.24)

ComponentBehaviortn+1
sae (mUnitDutch) =

ConfigurationBehaviortn+1
sae (mConfiguration2Dutch)

(5.25)

ComponentBehaviortn+1
sae (cUnitDutch) =

ConfigurationBehaviortn+1
sae (cConfiguration2Dutch)

(5.26)

ComponentBehaviortn+1
sae (cUnitDutch2) =

ConfigurationBehaviortn+1
sae (cConfiguration2Dutch2)

(5.27)

ComponentBehaviortn+1
sae (pUnitDutch) =

ConfigurationBehaviortn+1
sae (pConfiguration1Dutch)

(5.28)

Now that we have defined the behavior class of a Dependable Dynamic Adap-
tive Component by referring to the behavior class of its Current Configuration, we
will specify the behavior class of a Dependable Dynamic Adaptive System in the
following.

118 5. Behavioral Model for Dependable Dynamic Adaptive Systems

5.8 Dependable Dynamic Adaptive System Behavior
Class

It is important to understand, that our approach does not require a specification
of the behavior of a Dependable Dynamic Adaptive System, as we only investi-
gate the semantical Compatibility of Dependable Dynamic Adaptive Components
to be bound locally based on Behavior Equivalence Classes of Dependable Ser-
vices and Dependable Service References. The Behavior Equivalence Class of the
Dependable Service Reference is associated with a specific expected behavior.

Thus, we can compare this expected behavior5 of a Dependable Service Ref-
erence to a provided behavior of a syntactically compatible Dependable Service
at runtime in order to decide, whether the corresponding Dependable Dynamic
Adaptive Components are semantically compatible or not. This comparison needs
to be performed in the implementation of the≃Semantical relation, which is introduced
in the following section.

No vendor is required to specify the behavior of a Dependable Dynamic Adap-
tive System as this would contradict our assumption, that a Dependable Dynamic
Adaptive System is not designed as a whole.

Therefore, at the system level, the behavior class of a Dependable Dynamic
Adaptive System at a specific Dependability Checkpoint is defined simply by the
union of behavior classes of all Dependable Dynamic Adaptive Components present
in the system. This is specified by relation SystemBehavior in the following.

SystemBehaviorTS =def T × S → P(P(BehaviorEquivalenceClass)×
P(BehaviorEquivalenceClass))

SystemBehaviorts :=
⋃

c ∈ ApplicationComponentsts

ComponentBehaviorts(c)

∀t ∈ T, ∀s ∈ S

(5.29)

Looking at system sae from our application example, therefore, the behavior
class of the system at tn +1 is a set containing the behavior classes of all Depend-

5In our reference implementation the expected behavior is defined by Compliance Test Cases.

5. Behavioral Model for Dependable Dynamic Adaptive Systems 119

able Dynamic Adaptive Components as specified in the following.

SystemBehaviortn+1
sae ={ComponentBehaviortn+1

sae (mUnitGerman),
ComponentBehaviortn+1

sae (cUnitGerman),
ComponentBehaviortn+1

sae (pUnitGerman),
ComponentBehaviortn+1

sae (pUnitGerman2),
ComponentBehaviortn+1

sae (mUnitDutch),
ComponentBehaviortn+1

sae (cUnitDutch),
ComponentBehaviortn+1

sae (cUnitDutch2),
ComponentBehaviortn+1

sae (pUnitDutch)}

(5.30)

In the following we will investigate, which behavioral triggers exist, which can
cause a reconfiguration of a Dependable Dynamic Adaptive System.

5.9 Behavioral Reconfiguration Triggers

In section 4.10 we already investigated, which structural triggers may cause a
reconfiguration of the system. We identified AppComponentsChange, Configura-
tionChange, ConfigOrderChange, ServiceChange, and ReferenceChange as struc-
tural triggers for the reconfiguration of a Dependable Dynamic Adaptive System.
Now we will have a look, how a change in the behavior classes of a Dependable
Dynamic Adaptive System respectively a change in the behavior classes of its De-
pendable Dynamic Adaptive Components may trigger reconfiguration.

If we look at the lowest level of our behavioral model – the behavior of Depend-
able Service References and Dependable Services – we can think of two behavioral
changes, that might affect the System Configuration.

First of all, we consider an IncompatibilityChange. We call a situation an In-
compatibilityChange, when a Dependable Service Reference uses a Dependable A semantically

compatible binding
becomes
incompatible.

Service and this binding becomes semantically incompatible and, therefore, needs
to be removed from the Dependable Dynamic Adaptive System.

An IncompatibilityChange always causes a reconfiguration as the incompati-
ble Service Binding is removed6 from the Dependable System Configuration as
reflected in the following equation.

IncompatibilityChangetnew
s ⇒ BindingChangetnew

s

∀tnew ∈ T, ∀s ∈ S
(5.31)

6It may be replaced by a semantically compatible Service Binding involving a different Service
Provider.

120 5. Behavioral Model for Dependable Dynamic Adaptive Systems

In addition Current configurations of Dependable Dynamic Adaptive Components
are changed as well, iff a Current configuration is not runnable anymore due to this
detected incompatibility.

An IncompatibilityChange is specified as follows.

IncompatibilityChangeTS =defT × S → boolean (5.32)

IncompatibilityChangetnew+1
s :=∃c ∈ (ApplicationComponentstnew+1

s ∩
ApplicationComponentstnew

s)∧
∃ref ∈ (Declarestnew

s (Currenttnew
s (c))∩

Declarestnew+1
s (Currenttnew

s (c)))|
ref≃Semantical

tnew
s Usestnew

s (ref)∧
ref ̸≃Semantical

tnew+1
s Usestnew

s (ref)∧
Usestnew+1

s (ref) ̸= Usestnew
s (ref)

∀tnew ∈ T, ∀s ∈ S

(5.33)

Next to IncompatibilityChanges we consider CompatibilityChanges as behav-
ioral reconfiguration triggers. We call a situation a CompatibilityChange, when aA semantically

incompatible binding
becomes compatible.

Dependable Service Reference becomes semantically compatible with a previously
incompatible Dependable Service and, therefore, a Service Binding between this
reference and this service could be established within the Dependable Dynamic
Adaptive System.

A CompatibilityChange is specified as follows.

CompatibilityChangetnew+1
s :=∃creq, cprov ∈

(ApplicationComponentstnew+1
s ∩

ApplicationComponentstnew
s)∧

∃confreq ∈ (Containstnew+1
s (creq)∩

Containstnew
s (creq))∧

∃confprov ∈ (Containstnew+1
s (cprov)∩

Containstnew
s (cprov))∧

∃ref ∈ (Declarestnew
s (confreq)∩

Declarestnew+1
s (confreq))∧

∃serv ∈ (Providestnew
s (confprov)∩

Providestnew+1
s (confprov))|

ref ̸≃Semantical
tnew
s serv∧

ref≃Semantical
tnew+1
s serv

∀tnew ∈ T, ∀s ∈ S

(5.34)

5. Behavioral Model for Dependable Dynamic Adaptive Systems 121

A CompatibilityChange may cause a reconfiguration resulting in a change of the
Service Binding as well as a change of Current configurations of Dependable Dy-
namic Adaptive Components. However, it does not necessarily imply these changes,
as better Service Providers may be available which are used instead of this newly
semantically compatible Dependable Service.

These are the only behavioral reconfiguration triggers we consider in our system
model. You can think of other behavioral reconfiguration triggers like changing
context (e.g. a Dependable Dynamic Adaptive Component hosted on a device
for which the battery is running low). We do not consider them here, as we focus
on behavioral reconfiguration triggers that are related to Dependability of the
Dependable Dynamic Adaptive System. Therefore, other triggers are out of the
scope of this thesis.

Thus, we can specify a BehavioralChange as CompatibilityChange or
IncompatibilityChange as specified in the following.

BehavioralChangeTS =defT × S → boolean (5.35)

BehavioralChangetnew
s := IncompatibilityChangetnew

s ∨
CompatibilityChangetnew

s

∀tnew ∈ T, ∀s ∈ S

(5.36)

Now that we have specified BehavioralChange, StructuralChange as well as
StructuralReconfiguration, we can define Change as follows.

ChangeTS =defT × S → boolean (5.37)

Changetnew
s := StructuralChangetnew

s ∨
BehavioralChangetnew

s ∨
StructuralReconfigurationtnew

s

∀tnew ∈ T, ∀s ∈ S

(5.38)

In our system model, Change is expected to be true for each t ∈ T , as we
identified these to be the only points in time relevant for Dependability of a De-
pendable Dynamic Adaptive System.

Changes in the Dependable System Configuration can not only be triggered by Each structural
reconfiguration
implies that a
structural change or
a behavioral change
is present.

changes of structure, but by changes of a Component’s behavior, as well. Thus, our
implication from Equation 4.88 needs to be revised as follows.

StructuralReconfigurationtnew
s ⇒ StructuralChangetnew

s ∨
BehavioralChangetnew

s

∀tnew ∈ T, ∀s ∈ S

(5.39)

122 5. Behavioral Model for Dependable Dynamic Adaptive Systems

In the following we will give a short summary of our behavioral system model,
before we will explain, how we applied our runtime testing approach for Depend-
able Dynamic Adaptive Systems.

5.10 Summary

In this section you can find the formal definition of our behavioral model concen-
trated at a single place. Thus, we will repeat the formulas from the previous sections
top-down. Whenever definitions were revised, you will find the latest definition in
this summary.

SystemBehaviorTS =def T × S → P(P(BehaviorEquivalenceClass)×
P(BehaviorEquivalenceClass))

SystemBehaviorts :=
⋃

c ∈ ApplicationComponentsts

ComponentBehaviorts(c)

∀t ∈ T, ∀s ∈ S

(5.40)

ComponentBehaviorTS =def DependableDynamicAdaptiveComponent×
T × S → P(BehaviorEquivalenceClass)×
P(BehaviorEquivalenceClass)

ComponentBehaviorts(c) :=ConfigurationBehavior
t
s(Current

t
s(c))

∀c ∈ ApplicationComponentsts, ∀t ∈ T, ∀s ∈ S
(5.41)

ConfigurationBehaviorTS =def DependableComponentConfiguration×
T × S → P(BehaviorEquivalenceClass)×
P(BehaviorEquivalenceClass)

ConfigurationBehaviorts(c) :={ProvidedBehaviorts(c),
DeclaredBehaviorts(c)}
∀c ∈ DependableComponentConfiguration,
∀t ∈ T, ∀s ∈ S

(5.42)

5. Behavioral Model for Dependable Dynamic Adaptive Systems 123

ProvidedBehaviorTS =def DependableComponentConfiguration×
T × S → P(BehaviorEquivalenceClass)

ProvidedBehaviorts(c) :=
⋃

serv ∈ Providests(c)

ServiceBehaviorts(serv)

∀c ∈ DependableComponentConfiguration,
∀t ∈ T, ∀s ∈ S

(5.43)

DeclaredBehaviorTS =def DependableComponentConfiguration×
T × S → P(BehaviorEquivalenceClass)

DeclaredBehaviorts(c) :=
⋃

ref ∈ Declarests(c)

ServiceReferenceBehaviorts(ref,

Usests(ref))
∀c ∈ DependableComponentConfiguration,
∀t ∈ T, ∀s ∈ S

(5.44)

BindingBehaviorTS =def DependableServiceReference× T × S →
BehaviorEquivalenceClass×
BehaviorEquivalenceClass

BindingBehaviorts(ref) :={ServiceReferenceBehaviorts(ref,Usests(ref)),
ServiceBehaviorts(Uses

t
s(ref))}

∀ref ∈ DependableServiceReference,
∀t ∈ T, ∀s ∈ S

(5.45)

ServiceBehaviorTS =def DependableService× T × S →
BehaviorEquivalenceClass

(5.46)

ServiceReferenceBehaviorTS =def DependableServiceReference×
DependableService× T × S →
BehaviorEquivalenceClass ∪ {∅} :

ServiceReferenceBehaviorts(ref, serv) = ∅ ⇔
ref ̸≃Syntactical serv
∀ref ∈ DependableServiceReference,
∀serv ∈ DependableService, ∀t ∈ T, ∀s ∈ S

(5.47)

124 5. Behavioral Model for Dependable Dynamic Adaptive Systems

≃Semantical
T
S =def DependableServiceReference× DependableService×

T × S → Boolean :

(ServiceBehaviort1s (serv) = ServiceBehaviort2s (serv)∧
ServiceReferenceBehaviort1s (ref, serv) =
ServiceReferenceBehaviort2s (ref, serv)) ⇒
((ref≃Semantical

t1
s serv⇔ ref≃Semantical

t2
s serv)∧

(ref ̸≃Semantical
t1
s serv⇔ ref ̸≃Semantical

t2
s serv))

∀ref ∈ DependableServiceReference,
∀serv ∈ DependableService, ∀t1, t2 ∈ T, ∀s ∈ S

(5.48)

UsesTS =def DependableServiceReference× T × S →
DependableService ∪ {∅} :

Usests(ref) ̸= ∅ ⇒ ref≃Syntactical Usests(ref)∧
ref≃Semantical Usests(ref) ∧ ∃cprov ∈ ApplicationComponentsts |
cprov ̸= creq ∧ Usests(ref) ∈ Providests(Currentts(cprov))
∀ref ∈ Declarests(Currentts(creq)),
∀creq ∈ ApplicationComponentsts, ∀s ∈ S, ∀t ∈ T

(5.49)

isDependableTS =def T × S → Boolean (5.50)

isDependablets := true ⇔ ref≃Semantical Usests(ref)
∀ref ∈ Declarests(Currentts(comp)), ∀comp ∈ ApplicationComponentsts,
∀t ∈ T, ∀s ∈ S

(5.51)

Now that we have specified our formal model for Dependable Dynamic Adap-
tive Systems, we will explain in the following how we implemented it in our Depend-
able System Infrastructure DAiSI and how Component vendors can benefit from it
in order to achieve Dependable Dynamic Adaptive Systems.

By the time you’ve sorted out a complicated idea into little steps that even
a stupid machine can deal with, you’ve learned something about it yourself.

Douglas Adams

6
Realization of an Infrastructure for
Dependable Dynamic Adaptive

Systems

This chapter describes the realization of our Dependable System Infrastructure The realization of
our application
example, serving as
development
guidelines, can be
found in Appendix B.

DAiSI, which includes an implementation of our formal system model introduced
before. You can find the implementation of our application example in Appendix
B. It serves as a development guideline for Component vendors, wanting to provide
Dependable Dynamic Adaptive Components.

The chapter serves as a validation of our approach, as it provides an implemen-
tation of our formal system model and shows, that Dependable Dynamic Adaptive
Systems can be bound automatically at runtime using our system model.

In [NKA+07], we already described, that Dependable Dynamic Adaptive Sys- Dependable
Dynamic Adaptive
Systems consist of
layers.

tems consist of the following four layers as depicted in Figure 6.1:

• Application Layer: This layer contains application specific Dependable Dy-
namic Adaptive Components.

• Infrastructure Layer: It consists of infrastructure Components providing gen-
eral services for Dependable Dynamic Adaptive Systems like automatic es-
tablishment of a Dependable System Configuration or lifecycle management.

• System Layer: Within this layer general services like a communication in-
frastructure or supported programming languages are provided, that are

125

126 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

required by the infrastructure layer.

• Physical Layer: This layer defines the supported target hardware of Depend-
able Dynamic Adaptive Systems running on top of this Dependable System
Infrastructure.

Figure 6.1: Layers of a Dependable Dynamic Adaptive System.

Within this thesis, we contribute to the infrastructure layer and to the application
layer. Our contribution to the infrastructure layer is our reference implementation
of a Dependable Dynamic Adaptive System Infrastructure called DAiSI. It refers toInfrastructure layer =

DAiSI. our system model from Chapter 4 and Chapter 5 in order to establish and update
a Dependable System Configuration in Dependable Dynamic Adaptive Systems
automatically at runtime.

As our contribution to the application layer, we provide a Component framework
for vendors of Dependable Dynamic Adaptive Components. This framework consistsApplication layer =

component
framework.

of abstract classes, which provide a reference implementation of our Component
model from Chapter 4 and Chapter 5.

In the following sections we will describe these contributions in detail. For the
two lowest layers we use existing standards like IIOP or Ethernet. Thus, we do not
provide own contributions to these layers.

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 127

6.1 Dependable Dynamic Adaptive System Infras-
tructure

Our reference implementation DAiSI consists of several infrastructure Components
to achieve automatic Dependable System Configuration. We will focus on two of
these infrastructure Components – the Node Component and DAiSI’s heartbeat: the
Dependable Configuration Component – in the following, as they are required in Infrastructure

components =
Dependable
Configuration
Component + Node
Component + Event
Component + Device
Bay Component.

each Dependable Dynamic Adaptive System based on DAiSI.
Next to them, infrastructure Components like an Event Component or a De-

vice Bay Component are optional infrastructure Components in Dependable Dy-
namic Adaptive Systems. The Event Component provides asynchronous communica-
tion while the Device Bay Component enables integration of Dependable Dynamic
Adaptive Components hosted on resource-constrained devices like smartphones.

These infrastructure Components are not described within this thesis. You can
find out more about them in [KNW06] and [AKNR09]. An overview of DAiSI’s
infrastructure Components is depicted in Figure 6.2.

InfrastructureLayerpackage DAiSI[]

DAiSI: Dependable Dynamic Adaptive System Infrastructure

<<component>>

Dependable Configuration
Component

<<component>>

Infrastructure Component

<<component>>

Event
Component

<<component>>

Node
Component

<<component>>

Device Bay
Component

1..*

Figure 6.2: An Overview of DAiSI’s Infrastructure Components.

DAiSI is based on CORBA [Gro04b]. Thus, Service Interfaces provided respec- Service Interfaces as
well as interfaces of
infrastructure
Components are
specified in IDL due
to underlying
CORBA.

tively required by Dependable Dynamic Adaptive Components need to be spec-
ified in IDL. The public interfaces provided by our infrastructure Components are
consequently specified in IDL as well. Thus, they can be accessed remotely by other

128 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

infrastructure Components easily.
We implemented DAiSI in Java, nevertheless you could implement a Depend-

able System Infrastructure in other programming languages as well – previous ver-
sions of DAiSI have been implemented in C++ as proof of concept [KNW06].

6.1.1 Node Component

The Node Component is a specific infrastructure Component present at each physi-A Node Component
is responsible for

lifecycle
management of
Components.

cal node1 within a Dependable Dynamic Adaptive System. It manages the lifecycle
of Dependable Dynamic Adaptive Components executed on this node. Thus, it is
responsible for starting up Dependable Dynamic Adaptive Components or shutting
them down.

The relationship between a physical node, a Node Component and Depend-
able Dynamic Adaptive Components is depicted in Figure 6.3. A physical node
may instantiate multiple Node Components. Each Node Component may manage
several Dependable Dynamic Adaptive Components.

A Node Component requires a specification of Dependable Dynamic AdaptiveA node model
specifies, which

Components should
be started by a Node

Component.

Components that should be hosted at this specific node. A node model specifies
these Dependable Dynamic Adaptive Components.

The Node Component parses a given node model, starts up those specified De-
pendable Dynamic Adaptive Components and registers them at DAiSI’s Depend-
able Configuration Component, which is responsible for establishing a Dependable
System Configuration.

Usage of DAiSI’s Node Component

DAiSI’s Node Component implements no remotely accessible interface. Thus, a
Node Component can only be used by handing over a node model specifying
Dependable Dynamic Adaptive Components and infrastructure Components that it
should start up or by using its graphical user interface. This can be done by passing
a node model XML file as an argument to the Node Component during its startup.

A node model XML file looks as depicted in Listing 6.1.

1 <?xml version=”1.0” encoding=”UTF-8”?>
2 <daisi:Node xmi:version=”2.0” xmlns:xmi=”http://www.omg.org/

XMI” xmlns:daisi=”de.tuc.ifi.sse.daisi”>
3 <infrastructureComponent name=”

DependableConfigurationComponent”/>
4 <dependableDynamicAdaptiveComponent name=”de.tuc.ifi.sse.

daisi.applicationExample.germanVendor.cUnit.CUnitImpl”
requestRun=”true” />

1A physical node here means a device, e.g. a smartphone or a laptop, hosting Dependable
Dynamic Adaptive Components.

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 129

InfrastructureLayer Node Componentpackage []

Physical Node

*

1

-description : XML

<<component>>

Node Component

<<component>>

Dependable Dynamic
Adaptive Component

managed by

Figure 6.3: Relationship between Physical Node, Node Component, and Depend-
able Dynamic Adaptive Components.

5 </daisi:Node>

Listing 6.1: Node Model for a Physical Node that Should Host a German C-Unit.

Within a node model XML file, you specify Dependable Dynamic Adaptive
Components, that should be started by a node, by adding child nodes called de-
pendableDynamicAdaptiveComponent to the XML root node daisi:node. This is de-
picted in line 4 of Listing 6.1.

You use attribute name to specify, which Dependable Dynamic Adaptive Com- requestRun specifies,
whether a
Dependable
Dynamic Adaptive
Component should
be activated, if it is
not used by other
Components.

ponent should be started up by this Node Component. It contains a full classifier to
the Dependable Dynamic Adaptive Component’s Java class.

Attribute requestRun influences how this Dependable Dynamic Adaptive Com-
ponent is registered at the Dependable Configuration Component. It describes,
whether this Dependable Dynamic Adaptive Component is a Component, that pro-
vides a feature to a user of a Dependable Dynamic Adaptive System on its own.

130 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

Dependable Dynamic Adaptive Components, which specify this as true, will be
activated by DAiSI’s Dependable Configuration Component even if no other De-
pendable Dynamic Adaptive Component requires any Dependable Service pro-
vided by this Component.

Those Dependable Dynamic Adaptive Components, for which false has been
specified, will not be activated in this case. This can be used to save power for
sensor Components as they only need to be active, if their values are queried by
other Dependable Dynamic Adaptive Components.

In our application example, German C-Units may be used by medics, which
are not equipped with M-Units. These medics set the Triage Class of a casualty by
pushing a C-Unit’s button. Thus, attribute requestRun is specified to true in this exam-
ple, as C-Units in our example need to be activated even if no other Dependable
Dynamic Adaptive Component uses them.

Next to Dependable Dynamic Adaptive Components, a Node Component may
start up infrastructure Components . For example, a Node Component will start up a
Dependable Configuration Component, if none is available within this Dependable
Dynamic Adaptive System yet.

Additional infrastructure Components that need to be started up by a specific
node are specified in the node model XML file by adding a child node called
infastructureComponent to the XML root node. Within this child node, only the name
of the infrastructure Component is specified.

Valid names of infrastructure Components within our DAiSI implementation are
DependableConfigurationComponent, DeviceBayComponent, and EventComponent2.
The corresponding infrastructure Component will be started up by the Node Com-
ponent.

The specification of a Dependable Configuration Component within a node
model is optional: as a Dependable Configuration Component is mandatory within
Dependable Dynamic Adaptive Systems it will always be started by a Node Com-
ponent, if it has not been started before by another Node Component. Since DAiSI’s
Dependable Configuration Component is implemented as a singleton, a node will
not start a Dependable Configuration Component if one is already present in the
Dependable Dynamic Adaptive System, although it may be specified in this node
model.

Summed up, a Node Component behaves as depicted in Figure 6.4. The regis-
tration of a Dependable Dynamic Adaptive Component itself is only included as a
reference in this diagram, as it is discussed in section 6.1.2 when explaining DAiSI’s
Dependable Configuration Component.

2Currently there is no implementation of an Event Component. There is only a concept, described
in [AKNR09].

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 131

c : DependableDynamicAdaptiveComponent

 : DependableConfigurationComponent

 : Infrastructure Component

 : NodeComponent

[firstNode]

opt

[]

Component Registration

ref

loop (0,dependableDynamicAdaptiveComponents.length-1)

[]

loop (0,infrastructureComponents.length-1)

i = loop counter

i = loop counter

parseNodeModel(): dependableDynamicAdaptiveComponents, infrastructureComponents2:

createApplicationComponent(instance=dependableDynamicAdaptiveComponents[i])5:

createInfrastructureComponent(instance=infrastructureComponents[i])3:

register(instance=c)7:

Figure 6.4: Behavior of a Node Component During Startup.

Graphical User Interface

If no argument is handed over to a Node Component during startup, a dialog
as depicted in Figure 6.5 will pop up, asking for a node model XML file. This
dialog allows you to easily select an appropriate node model, specifying, which
Dependable Dynamic Adaptive Components or infrastructure Components need to
be started by this node.

After startup, a second graphical user interface pops up, displaying all De-
pendable Dynamic Adaptive Components and infrastructure Components, that have
been started by this Node Component. This user interface is depicted in Figure 6.6.
On the top you can see a list of all Dependable Dynamic Adaptive Components
started by this Node Component. At the bottom an analogous list of infrastructure
Components is displayed.

In Figure 6.6, the list of infrastructure Components has a yellow background.
This indicates, that DAiSI’s Dependable Configuration Component has been started
up by this Node Component. Thus, you should not shut down this Node Component
before all other Node Components of this Dependable Dynamic Adaptive System
have been shut down. Otherwise this system will not be capable of updating its
Dependable System Configuration due to active Change triggers anymore.

By pushing the bottommost buttons of a Node Component’s user interface, you

132 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

Figure 6.5: Dialog Asking for a Node Model XML File During Startup of the Node
Component.

can refresh the lists3 or shut down selected Dependable Dynamic Adaptive Com-The Node
Component’s user

interface enables us
to unregister
Components.

ponents respectively infrastructure Components started by this Node Component.
The latter requires you to select those Components in these lists before pushing the
“Shutdown selected Components” button.

Another option of shutting down Components started by a specific node is shut-
ting down a whole Node Component by closing its window using the cross-button in
the upper right corner.

Whenever a Node Component shuts down a Dependable Dynamic Adaptive
Component, it will unregister this specific Component at the Dependable Configu-
ration Component to notify it, that this Component is not available anymore. This
enables the Dependable Configuration Component to update the Dependable Sys-
tem Configuration accordingly.

As Node Components notify the Dependable Configuration Component of en-
tering or leaving Dependable Dynamic Adaptive Components, this realizes the
AppComponentsChange trigger of our formal system model.

6.1.2 Dependable Configuration Component

The Dependable Configuration Component is DAiSI’s heartbeat regarding Depend-
able Dynamic Adaptive Systems. It establishes and updates the System Configu-
ration of a Dependable Dynamic Adaptive System at runtime, ensuring that only
Dependable System Configurations will be established.

To achieve this, the Dependable Configuration Component manages the state

3For example, if a Dependable Dynamic Adaptive Component has been shut down.

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 133

Figure 6.6: The Graphical User Interface Allowing Interaction with Components
Started by a Specific Node Component.

of Dependable Dynamic Adaptive Components acting as Service Partners. During States of a
Dependable
Dynamic Adaptive
Component.

runtime, each Service Partner can be in one out of four different states. These states
are introduced in the following. A Service Partner can be...

• ... registered: This is the starting state of a Service Partner. A Service Partner
is registered, as soon as he enters a Dependable Dynamic Adaptive System.
He remains in this state, until a semantically compatible Service Provider is
available for each declared Dependable Service References of one of his
Dependable Component Configurations.

• ... runnable: This state indicates, that for at least one of its Dependable
Component Configurations all required Service Interfaces are offered by
Unknown Service Partners, which are runnable respectively running as well.

134 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

The Service Partner remains in this state, if no other Service Partner requires
his offered Dependable Services and the Service Partner is declared as a
passive Service Partner. This means, that this Service Partner should only run,
iff at least one other Service Partner exists, which requires a Dependable
Service, offered by this passive Service Partner4.

• ... in testing mode: A Service Partner is in testing mode, while the interactionThe testing mode is
required, to prevent
side-effects of test
case execution.

with other Service Partners is tested. This is similar to the sandbox-principle
which has been applied to different domains in the past [WLAG93,GWTB96,
GMPS97, KDF04]. The goal of sandboxing is the capability of integrating
untrusted third-party code into your system. Since you want to avoid negative
side-effects of this integration on your system you transfer the third-party
code in a special environment for execution. This environment guarantees,
that the execution does not harm your system and, therefore, is free of side-
effects.

For our approach the trigger for sandboxing is, when we put a Service Part-
ner into testing mode. All changes regarding the internal state of a Service
Partner in testing mode have to be rolled back as soon, as this Service Partner
leaves this state – this is a difference to the classical sandboxing approach,
where you do not allow any temporary modifications of the system state. In-
stead you would provide a simulated system environment for interaction with
sandboxed objects.

Rolling back the state of Service Partners is necessary in order to avoid side-
effects of a semantical Compatibility test on a running system. Since you allow
changes of the system state, you need to make sure, that you can rollback all
of these changes. If testing interaction with a Service Partner includes irre-
versible changes in state (like an explosion of an airbag caused by an airbag
controller Component), a Service Partner, therefore, needs to replace these
irreversible state changes by steps simulating these state changes whenever
it is in testing mode.

• ... running: In this state a Service Partner interacts with other Service Partners
by providing respectively using provided Dependable Services. He leaves
this state, if its Behavior Equivalence Class or the Behavior Equivalence Class
of a Service Partner he is bound to by a Dependable Component Binding
changes towards an untested combination of Behavior Equivalence Classes.
In this case we need to reevaluate the semantical Compatibility of this De-
pendable Component Binding. Thus, this Service Partner enters the testing

4The P-Unit from our application example could be such a passive Service Partner: It does not
make much sense to execute this Dependable Dynamic Adaptive Component unless there is a Service
Partner using its Dependable Service. Otherwise we would just drain the battery of the P-Unit.

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 135

States of a CommunicationPartner{protocol} States of a CommunicationPartnerstate machine []

Service Partner is in
testing mode

Service Partner is
runnable

Service Partner is
running

Service Partner is
registered

Service Partner should be integrated
into the system and the Component

 Binding has been tested successfully /

For at least one of the required Service Interfaces of the Service Partner
there is no runnable Service Partner providing an equivalent

Dependable Service within the system /

Service Partner should be
integrated into the system and

the Component Binding to
 be established is untested /

Test fails /

For all required Service Interfaces of the
Service Partner there is at least one runnable

Service Partner providing an equivalent
Dependable Service within the system /

Test passes /

Service Partner
enters the system /

Behavior Equivalence Class combination of a
Component Binding changes and the

combination has not been tested before /

Figure 6.7: Different States of a Service Partner and Their Transitions.

mode state and test cases are executed for the Dependable Component
Binding.

An overview, showing these four states and transitions between them is depicted in
Figure 6.7.

From an abstract point of view, the Dependable Configuration Component be-
haves as depicted in Figure 6.8. It deals with registering Components while it The Dependable

Configuration
Component monitors
for change triggers
in parallel to
registration.

monitors changes in Behavior Equivalence Classes of Dependable Services or De-
pendable Service References in parallel to recognizing active CompatibilityChange
triggers and reacting to them by changing the Dependable System Configuration.

During registration of a Dependable Dynamic Adaptive Component it derives
the syntactical Compatibility to other Components. In the following it activates this
registering Component in its best runnable Dependable Component Configuration
and binds it to other Components, if the registering Component has requested to
run or its Dependable Services are required by other running Components in the
Dependable Dynamic Adaptive System.

Summed up, it realizes the Change trigger from our formal model in order to The Change trigger
can be realized by a
polling or observer
strategy.

recognize each threat to Dependability and to react to them appropriately. In
general there are two strategies, how these triggers can be realized:

1. Polling Strategy: The Dependable Configuration Component queries each We chose the
observer strategy
due to less overhead
and a quicker
recognition of active
triggers.

Dependable Dynamic Adaptive Component in the Dependable Dynamic
Adaptive System periodically, to check whether a Change trigger is active.

2. Observer Strategy: Dependable Dynamic Adaptive Components notify the
Dependable Configuration Component whenever a Change trigger is active.

136 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

c : DependableDynamicAdaptiveComponent

 : DependableConfigurationComponent : NodeComponent

[]

[runRequested || Dependable Service provided by c is required by another component]

Activate best Dependable Component Configuration (this includes a check of semantical Compatibility)

ref

opt

Derive syntactical Compatibility

ref

[]

Monitor Change Triggers and update the System Configuration in case of an active Change Trigger

ref

par

register(instance=c)2:

Figure 6.8: Behavior of the Dependable Configuration Component from an Abstract
Point of View.

We decided to realize the Change trigger by using the observer strategy. This
strategy has two main advantages: it causes less overhead, since we do not need to
poll periodically while no Change trigger is active and we recognize active Change
triggers immediately instead of recognizing them in the next polling period.

However, by this realization we assume, that each Dependable Dynamic Adap-Assumption:
Dependable

Dynamic Adaptive
Components notify

the Dependable
Configuration
Component if

triggers are active.

tive Component immediately notifies the Dependable Configuration Component,
whenever a Change trigger is active. If we do not rely on this notification, only the
polling strategy would be applicable.

The Dependable Configuration Component is automatically started up together
with the first Node Component in a Dependable Dynamic Adaptive System. It
is realized as a singleton, however, one could realize it in a distributed way as
well having several Dependable Configuration Components, which cooperate to
establish a Dependable System Configuration.

DAiSI’s Node Component registers each Dependable Dynamic Adaptive Com-Simplification: DAiSI
does not consider

structural changes of
a Component after

registration.

ponent at the Dependable Configuration Component during startup of the Compo-
nents. As a simplification, DAiSI does not consider structural changes of Components
after their registration.

Thus, the Dependable Configuration Component only updates its view of the
Dependable Dynamic Adaptive System by querying the structure of Components
during registration. It will query, which Dependable Component Configurations a
Component contains, and which Dependable Services are provided respectively
which Dependable Service References are declared within these configurations.

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 137

Based on this structural information it can derive syntactical Compatibility to Simplification:
syntactical
Compatibility is
reduced to identical
types.

other Components present in the Dependable Dynamic Adaptive System. As a sim-
plification of our formal system model, a Dependable Service and a Dependable
Service Reference are treated as syntactically compatible, iff they implement re-
spectively refer to the same type. We do not compare methods and attributes of
the corresponding Service Interfaces.

This enables a much less complicated implementation of DAiSI. It would not be
impossible to implement syntactical Compatibility as defined in our formal model,
but the Uses relation from our formal model could not be easily set by reflection,
since Java would blame the incorrect type of this assignment at runtime.

Using its structural view of the Dependable Dynamic Adaptive Components
present in the system, the Dependable Dynamic Adaptive System tries to activate ≥ is based on

integer quality
values of the
configurations. If
this value is not set,
the order of adding
configurations is
considered.

the best activatable Dependable Component Configuration of each Component.
Thus, in our reference implementation DAiSI, the ≥ relation from our formal system
model is realized based on an integer quality value.

If this quality value has not been set, it considers the order of adding Depend-
able Component Configurations to a Component. The configuration added first
is treated as best configuration. A more sophisticated ≥ relation could be eas-
ily implemented, if, for example, internal properties of a Component should be
considered to derive an order of configurations.

Since we want to consider Dependability during establishing a Dependable
System Configuration, the Dependable Configuration Component also considers
the ≃Semantical relation from our system model. This relation can be implemented in
many different ways using those verification and validation techniques discussed in
section 2.2.

Since we don’t want to restrict the specification language and want to retain a
good system performance, our reference implementation DAiSI uses runtime testing ≃Semantical is realized

by the well-known
and lightweight
mechanism of
runtime testing.

to achieve a Dependable Dynamic Adaptive System – thus, the≃Semantical relation is
realized by executing Compliance Test Cases and reasoning about their results. A
more detailed view, how DAiSI’s Dependable Configuration Component is realized
– including those behaviors referred to in Figure 6.8 – can be found in Subsection
Realization.

Usage of DAiSI’s Configuration Component

There are mainly three different use cases, how someone wants to use the Depend- Three different use
cases.able Configuration Component.

1. He wants to register or unregister Dependable Dynamic Adaptive Compo-
nents in a Dependable Dynamic Adaptive System.

2. He wants to notify the Dependable Configuration Component, that a Change

138 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

trigger is active due to a change of the internal state of a Dependable Dy-
namic Adaptive Component since this Component may behave differently
now.

3. He wants to monitor a Dependable Dynamic Adaptive System.

Each of these use cases is addressed by the interface of the Dependable Con-
figuration Component, which is depicted in Figure 6.9.

<<component>>

Dependable Configuration Component

+register(instance : InstanceComponentIf)
+unregister(instance : InstanceComponentIf)
+requestRun(instance : InstanceComponentIf)
+cancelRun(instance : InstanceComponentIf)
+equivalenceClassChanged(provider : InstanceComponentServiceIf, equivalenceClass : int)
+equivalenceClassChanged(user : InstanceComponentServiceReferenceIf)
+getRegisteredInstances() : InstanceComponentIf [0..*]
+getRunnableInstances() : InstanceComponentIf [0..*]
+getRunningInstances() : InstanceComponentIf [0..*]
+getRunRequestedInstances() : InstanceComponentIf [0..*]
+addChangeListener(changeListener : ChangeListenerIf)

ConfigurationComponentIf

+notify(changeType : ConfigurationEventType)

ChangeListenerIf

equivalenceClassChanged
configurationChanged

<<enumeration>>

ConfigurationEventType

Figure 6.9: Interface of DAiSI’s Dependable Configuration Component.

Four methods deal with registration or unregistration of Dependable Dynamic
Adaptive Components. By calling the register method, you register a Depend-
able Dynamic Adaptive Component within a Dependable Dynamic Adaptive Sys-
tem. This causes, that the Dependable Configuration Component updates the De-
pendable System Configuration and may bind this registering Component to exist-
ing Dependable Dynamic Adaptive Components.

If a Dependable Dynamic Adaptive Component wants to leave a DependableSimplification: We
sequenced the
registration /

unregistration of
Dependable

Dynamic Adaptive
Components.

Dynamic Adaptive System it calls the unregister method. This causes that the
Dependable Configuration Component once again updates the Dependable Sys-
tem Configuration – it will remove this Component and all Dependable Service
Bindings incorporating this Component.

These two methods are a simplified implementation of the
AppComponentsChange trigger of our formal system model. Since Depend-

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 139

able Dynamic Adaptive Components are expected to call these methods when
entering or leaving a Dependable Dynamic Adaptive System, each call of one of
these methods implies this trigger. As a simplification, we sequenced this trigger in
our realization – thus it is not possible, that x Components join at Dependability
Checkpoint t causing a new Dependability Checkpoint t+ 1; instead they register
one after another leading to t+ 1 to t+ x.

This implementation does not recognize crashing Components. This could be Crashing
Components can be
detected by applying
a watchdog
mechanism.

added by applying a watchdog mechanism [CFHL07], where the liveness of all
Components is periodically checked and, therefore, crashes can be detected.

Next to the register and unregister methods, method requestRun
can be used to request, that this Dependable Dynamic Adaptive Component should
be activated by DAiSI’s Dependable Configuration Component even, if no other
Component requires any Dependable Service provided by this Component.

By default these Components are not activated unless they are required by
another Component, which is reasonable as long as a Component does not provide
any functionality to an end user directly. Calling method cancelRun restores this
default behavior for Dependable Dynamic Adaptive Components if requestRun
has been called for them before.

If the internal state of a Dependable Dynamic Adaptive Component has
changed, it needs to notify the Dependable Configuration Component, as its pro-
vided Dependable Services may behave differently now or as he may expect a dif-
ferent behavior of used Dependable Services. This notification is done by calling the
equivalenceClassChanged method. It is available to notify the Depend-
able Configuration Component of a change for Dependable Services (changed
provided behavior) as well as for Dependable Service References (changed ex-
pected behavior).

In the first case, it has two parameters: the Dependable Service, whose behav-
ior may be different now, and the Behavior Equivalence Class, which the Service
Provider now calculates for this Dependable Service. In the later case, it only has the
Dependable Service Reference as parameter, as the Behavior Equivalence Class
depends on the Dependable Service, for which the semantical Compatibility should
be checked.

This notification causes, that DAiSI’s Dependable Configuration Component re-
calculates the Behavior Equivalence Classes for all Dependable Service Bindings
including this Dependable Service respectively Dependable Service Reference. In
case of changed Behavior Equivalence Classes the Dependable Configuration Com-
ponent will execute test cases for the corresponding Dependable Service Bindings
to evaluate their semantical Compatibility and change the Dependable System
Configuration in case of a detected incompatibility.

Besides these use cases how Dependable Dynamic Adaptive Components in-
teract with the Dependable Configuration Component, its interface also supports

140 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

monitoring Components, that visualize the Dependable Dynamic Adaptive SystemMonitoring
Components

visualize a running
Dependable

Dynamic Adaptive
System.

including its Components in order to provide a graphical debug view of the system5.
One reference implementation of such a monitoring Component is described in the
following subsection.

Monitoring Components can add themselves as listener to the Dependable Con-
figuration Component by calling its addChangeListener method. This causes,
that the notify method of these monitoring Components will be called by the
Dependable Configuration Component each time, the Dependable System Config-
uration or a Behavior Equivalence Class of a Dependable Service Binding changes.

DAiSI’s Dependable Configuration Component offers four getter methods
to query the currently established Dependable System Configuration. The
methods getRegisteredInstances(), getRunnableInstances(),
getRunningInstances(), and getRunRequestedInstances() re-
turn different subsets of all Dependable Dynamic Adaptive Components present
in the system. getRegisteredInstances() returns each Dependable Dy-
namic Adaptive Component, while getRunningInstances() returns only
those Components, which currently run – meaning that they have a Current Con-
figuration.

Method getRunRequestedInstances() returns all Components, for
which a run request has been submitted by calling requestRun(). As Com-
ponents, which have not requested to run, are not activated by DAiSI’s Depend-
able Configuration Component unless they are required by other Components,
getRunnableInstances() returns all Components, which could be activated
by DAiSI – this includes all running Components.

These methods are not independent of each other – the subset rela-
tions getRegisteredInstances() ⊇ getRunnableInstances()
⊇ getRunningInstances() and getRegisteredInstances
() ⊇ getRunRequestedInstances() apply to the return sets
of these methods. In addition, all instances appearing in the re-
sult sets of getRunnableInstances() and in the result set of
getRunRequestedInstances() have to appear in the result set of
getRunningInstances() as well. These relations are depicted in Figure
6.10

5This graphical view was especially useful during development and debugging of DAiSI. More-
over it helped Component vendors in research projects where DAiSI was applied to understand why
DAiSI establishes a specific Dependable System Configuration during system execution.
However, it is not essential for the execution of Dependable Dynamic Adaptive Systems – this is the

reason, why we decoupled this graphical view by introducing a listener concept for our Dependable
Configuration Component. This enables us, to exchange this graphical view with a new one or even
to disable it.

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 141

Runnable Instances

Running Instances

Registered Instances

Run Requested Instances

Figure 6.10: Relations Between Result Sets of those Monitoring Methods Returning
Information about the Dependable System Configuration.

Next to these four methods another method provides monitoring access to
DAiSI’s Dependable Configuration Component: getRegisteredTypes().
This method returns the types of Dependable Configuration Components present
in the Dependable Dynamic Adaptive System.

DAiSI’s Dependable Configuration Component derives these types at runtime
from the Component instances by comparing the structure of entering Components
to the structure of the existing Components. As only structure is considered for the
extraction of type information, in our application example, the C-Units provided
by the two vendors are considered to be of the same type by DAiSI’s Dependable
Configuration Component.

Extracting type information in our reference implementation enables the De-
pendable Configuration Component to reason about syntactical Compatibility. As
type information is only retrieved once during registration of a Component, perfor-
mance is increased.

DAiSI’s Dependable Configuration Component does not have to query each De-
pendable Dynamic Adaptive Component to reason about syntactical Compatibility
during each change of the Dependable System Configuration but can extract this
information from their types, which means local method calls instead of remote calls.
However, this means, that structural changes occurring after registration, which are

142 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

possible using our system model, are not considered by DAiSI.

Graphical User Interface

As a prototypical implementation of a monitoring Component, DAiSI features a soThe Configuration
Component Browser
displays a running

Dependable
Dynamic Adaptive
System for reasons

of debugging.

called Configuration Component Browser. It visualizes the Dependable Dynamic
Adaptive System and its Dependable System Configuration graphically. It repre-
sents the concepts from our formal system model as follows:

• Dependable Dynamic Adaptive Components are displayed as blue rectan-
gles.

• Dependable Component Configurations are represented by yellow bars
within a Component.

• Dependable Services are depicted by green circles, which are connected to
providing Dependable Component Configurations.

• Dependable Service References correspond to red semicircles, which are con-
nected to declaring Dependable Component Configurations.

• Uses relations are displayed as connections between Dependable Services
and Dependable Service References. A label aligned across this connec-
tion indicates, which Service Interface the corresponding Dependable Service
implements respectively the corresponding Dependable Service Reference
refers to.

A view of a Dependable Dynamic Adaptive System displayed by this Config-
uration Component Browser is depicted in Figure 6.11. You can see a situation
from our application example, where a German and a Dutch C-Unit are bound to
a German P-Unit. Both Dependable Service Bindings have been established using
Service Interface PUnitServiceIf. If you hover a Dependable Service respec-
tively a Dependable Service Reference, the footing of this window will display the
Service Interface, it implements respectively refers to – in Figure 6.11 we hovered
the Dependable Service provided by the Dutch C-Unit.

You can change the view using a dropdown list, where you can choose between
showing only running Dependable Dynamic Adaptive Components– which is the
default view – or any other option6 provided by the monitoring methods of DAiSI’s
Dependable Configuration Component.

6Showing only registered, runnable, or run requested Dependable Dynamic Adaptive Compo-
nents.

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 143

In order to enable you to improve the layout of this view, the Configuration
Component Browser supports dragging and dropping of Components, services and
service references. Thus, you can arrange the Components to your own needs.

Besides this, you can flip a Component by clicking the green double arrow in the
lower right corner of a Component. This causes, that afterwards service references
and services are displayed on the opposite side of the Component. This gives
you better layouting opportunities. Finally, the Configuration Component Browser
supports zooming by the buttons on top of the window.

Figure 6.11: A View of our System from the Application Example Using the Config-
uration Component Browser.

144 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

+
g

e
tS

e
m

a
n

tic
a

lC
o

m
p

a
tib

ili
ty

(
d

e
p

e
n

d
a

b
le

S
e

rv
ic

e
 :

 I
n

st
a

n
ce

C
o

m
p

o
n

e
n

tS
e

rv
ic

e
If

,
d

e
p

e
n

d
a

b
le

S
e

rv
ic

e
R

e
fe

re
n

ce
 :

 I
n

st
a

n
ce

C
o

m
p

o
n

e
n

tS
e

rv
ic

e
R

e
fe

re
n

ce
If

)
 :

 B
o

o
le

a
n

+
b

in
d

in
g

Is
S

e
m

a
n

tic
a

lC
o

m
p

a
tib

le
(

d
e

p
e

n
d

a
b

le
S

e
rv

ic
e

 :
 I

n
st

a
n

ce
C

o
m

p
o

n
e

n
tS

e
rv

ic
e

If
,

d
e

p
e

n
d

a
b

le
S

e
rv

ic
e

R
e

fe
re

n
ce

 :
 I

n
st

a
n

ce
C

o
m

p
o

n
e

n
tS

e
rv

ic
e

R
e

fe
re

n
ce

If
,

p
ro

vi
d

e
rE

q
u

iv
a

le
n

ce
C

la
ss

 :
 in

t
)

:
B

o
o

le
a

n

C
o

m
p

a
ti

b
il

it
y

C
o

m
p

o
n

e
n

t

+
se

tT
yp

e
F

o
rI

n
st

a
n

ce
(

in
st

a
n

ce
 :

 I
n

st
a

n
ce

C
o

m
p

o
n

e
n

tI
f,

 r
e

m
o

ve
In

st
a

n
ce

F
ro

m
T

yp
e

 :
 B

o
o

le
a

n
)

+
is

S
yn

ta
ct

ic
a

lly
C

o
m

p
a

tib
le

(
se

rv
ic

e
In

st
a

n
ce

 :
 I

n
st

a
n

ce
C

o
m

p
o

n
e

n
tS

e
rv

ic
e

If
,

re
fe

re
n

ce
In

st
a

n
ce

 :
 I

n
st

a
n

ce
C

o
m

p
o

n
e

n
tS

e
rv

ic
e

R
e

fe
re

n
ce

If
)

 :
 B

o
o

le
a

n

T
y

p
e

R
e

p
o

s
it

o
ry

<
<

co
m

p
o

n
e

n
t>

>

D
e

p
e

n
d

a
b

le
 C

o
n

fi
g

u
ra

ti
o

n
 C

o
m

p
o

n
e

n
t

+
re

g
is

te
r(

 in
st

a
n

ce
 :

 I
n

st
a

n
ce

C
o

m
p

o
n

e
n

tI
f

)
+

u
n

re
g

is
te

r(
 in

st
a

n
ce

 :
 I

n
st

a
n

ce
C

o
m

p
o

n
e

n
tI

f
)

+
re

q
u

e
st

R
u

n
(

in
st

a
n

ce
 :

 I
n

st
a

n
ce

C
o

m
p

o
n

e
n

tI
f

)
+

ca
n

ce
lR

u
n

(
in

st
a

n
ce

 :
 I

n
st

a
n

ce
C

o
m

p
o

n
e

n
tI

f
)

+
e

q
u

iv
a

le
n

ce
C

la
ss

C
h

a
n

g
e

d
(

p
ro

vi
d

e
r

:
In

st
a

n
ce

C
o

m
p

o
n

e
n

tS
e

rv
ic

e
If

,
e

q
u

iv
a

le
n

ce
C

la
ss

 :
 in

t
)

+
e

q
u

iv
a

le
n

ce
C

la
ss

C
h

a
n

g
e

d
(

u
se

r
:

In
st

a
n

ce
C

o
m

p
o

n
e

n
tS

e
rv

ic
e

R
e

fe
re

n
ce

If
)

+
g

e
tR

e
g

is
te

re
d

In
st

a
n

ce
s(

)
:

In
st

a
n

ce
C

o
m

p
o

n
e

n
tI

f
[0

..
*]

+
g

e
tR

u
n

n
a

b
le

In
st

a
n

ce
s(

)
:

In
st

a
n

ce
C

o
m

p
o

n
e

n
tI

f
[0

..
*]

+
g

e
tR

u
n

n
in

g
In

st
a

n
ce

s(
)

:
In

st
a

n
ce

C
o

m
p

o
n

e
n

tI
f

[0
..

*]
+

g
e

tR
u

n
R

e
q

u
e

st
e

d
In

st
a

n
ce

s(
)

:
In

st
a

n
ce

C
o

m
p

o
n

e
n

tI
f

[0
..

*]
+

a
d

d
C

h
a

n
g

e
L

is
te

n
e

r(
 c

h
a

n
g

e
L

is
te

n
e

r
:

C
h

a
n

g
e

L
is

te
n

e
rI

f
)

C
o

n
fi

g
u

ra
ti

o
n

C
o

m
p

o
n

e
n

tI
f

+
a

d
d

R
e

g
is

te
re

d
In

st
a

n
ce

C
o

m
p

o
n

e
n

t(
 in

st
a

n
ce

 :
 I

n
st

a
n

ce
C

o
m

p
o

n
e

n
tI

f
)

In
s

ta
n

c
e

R
e

p
o

s
it

o
ry

e
q

u
iv

a
le

n
ce

C
la

ss
C

h
a

n
g

e
d

co
n

fig
u

ra
tio

n
C

h
a

n
g

e
d

<
<

e
n

u
m

e
ra

tio
n

>
>

C
o

n
fi

g
u

ra
ti

o
n

E
v

e
n

tT
y

p
e

+
n

o
tif

y(
 c

h
a

n
g

e
T

yp
e

 :
 C

o
n

fig
u

ra
tio

n
E

ve
n

tT
yp

e
)

C
h

a
n

g
e

L
is

te
n

e
rI

f

Fi
gu
re
6.
12
:
In
te
rn
al
St
ru
ct
ur
e
of
DA
iS
I’s
D
ep
en
da
bl
e
C
on
fig
ur
at
io
n
C
om
po
ne
nt
.

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 145

As the Dependable Configuration Component is DAiSI’s heartbeat and realizes
our approach to Dependable Dynamic Adaptive Systems, we will describe its real-
ization in more detail in the following by looking at some important methods from
its public interface.

Realization

The realization of DAiSI’s Dependable Configuration Component contains three im-
portant parts: An Instance Repository, a Type Repository, and a Compatibility
Component, as depicted in Figure 6.12.

The Instance Repository is used to store all instances of Dependable Dynamic The Instance
Repository contains
all Component
instances registered
in a Dependable
Dynamic Adaptive
System.

Adaptive Components, which registered at the Dependable Configuration Com-
ponent. It stores them in different sets like registered, runnable, running, or run
requested instances. These sets can be queried at the Instance Repository sepa-
rately. Next to this, it provides methods to retrieve a Component, containing a
given Dependable Service respectively Dependable Service Reference.

The Type Repository manages runtime type information extracted from register- The Type Repository
contains types of
these instances and
realizes the
≃Syntactical relation.

ing Dependable Dynamic Adaptive Components. It is used by DAiSI’s Dependable
Configuration Component to reason about syntactical Compatibility of Depend-
able Dynamic Adaptive Components. The Type Repository, therefore, realizes the
≃Syntactical relation of our formal model.

It enables DAiSI’s Dependable Configuration Component to find out, which types
of Dependable Dynamic Adaptive Components offer a specific Service Interface
and to retrieve all instances of them without querying all instances present in the
system. This also increases DAiSI’s performance during establishing a Dependable
System Configuration.

Using its Compatibility Component, the Dependable Configuration Component The Compatibility
Component triggers
the execution of
Compliance Test
Cases if a Behavior
Equivalence Class
has changed.

can query, whether a Dependable Service and a Dependable Service Reference
are semantically compatible.

Based on our formal model, the Compatibility Component only calls method
isSemanticallyCompatible at a Dependable Service Reference, if the
Behavior Equivalence Class of this given Dependable Service or of the given De-
pendable Service Reference has changed. Otherwise it will return the result from
the last semantical Compatibility check of this Dependable Service Binding, as the
behavior has not changed.

By accessing these three parts, DAiSI’s Dependable Configuration Component
realizes its public interface. We will have a closer look at two central methods of
this interface: register and equivalenceClassChanged.

They are considered here, as DAiSI’s Dependable Configuration Component
checks Dependability of a System Configuration within these methods. A call to
the register method corresponds to trigger AppComponentsChange while a

146 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

call to the equivalenceClassChanged requires us to check, whether trigger
CompatibilityChange is active and, therefore, the Dependable System Configura-
tion needs to be changed.

Method register is realized as follows: First of all, the registering Depend-
able Dynamic Adaptive Component is added to the registered instances at the
Instance Repository and a type is set for it at the Type Repository.

By doing this, the syntactical Compatibility to existing Components is also de-
rived at the Type Repository. Figure 6.8 referred to this by reference “Derive
syntactical Compatibility”.

Then the Dependable Configuration Component checks, whether the registering
Component is runnable (meaning that at least one of its Dependable Component
Configurations can be activated). If this is the case, it is additionally added to the setregister = set a type,

figure out a runnable
configuration, and

activate it.

of runnable Components at the Instance Repository, before the Dependable System
Configuration is updated by calling updateSystemConfiguration(). This
corresponds to reference “Activate best Dependable Component Configuration (this
includes a check of semantical Compatibility)” in Figure 6.8.

The overall registration process is depicted in Figure 6.13.

 : Dependable Configuration Component : Instance Repository : Type Repository

[getBestRunnableConfigurationInstance(instance=instance)!=null]

The registered instance is runnable -> it has to be stored as a runnable
Component. Moreover it has to be checked, whether any component is now
runnable which has not been runnable before: Check whether those
components which requested a run are now runnable in a better configuration.

opt

corresponds to "Activate
best Dependable Component
 Configuration (this includes
a check of semantical
Compatibility)"

setTypeForInstance(instance=instance, removeInstanceFromType=false)2:

addRegisteredInstances(instance=instance)3:

updateSystemConfiguration()5:

addRunnableInstanceComponentIf(instance=instance)4:

Figure 6.13: Realization of the register Method by DAiSI’s Dependable Config-
uration Component.

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 147

Method getBestRunnableConfigurationInstance checks, which is
the best runnable Dependable Component Configuration. It does this by checking
for each configuration whether a syntactically compatible Dependable Service is
provided by another Component in a runnable configuration for each of the con-
figuration’s Dependable Service References. It then returns the best runnable con-
figuration.

Method updateSystemConfiguration() is realized as follows: First
of all the Dependable Configuration Component checks, whether any Dependable
Dynamic Adaptive Component, which has not been runnable before, is runnable
now. It marks them as runnable, so they can be started up when updating the
Dependable System Configuration at the end.

Then it checks, whether any Dependable Dynamic Adaptive Component which
requested to run is runnable now. If it finds such a Component, it immediately
activates it. As a consequence it may also activate further runnable but not yet
running Dependable Dynamic Adaptive Components which are required by this
Component.

In the following it updates the Dependable Component Configurations of run-
ning Components by calling adaptComponentConfiguration(), as now
better configurations may be activatable. As other Components may not be used
anymore, due to this reconfiguration, in the following unused Components are
stopped7 by calling stopUnusedComponents. Finally, all listeners are noti-
fied, that the Dependable System Configuration has changed and they, therefore,
need to update their views.

Summed up, the realization of this method is depicted in Figure 6.14.
The unregister method calls updateSystemConfiguration() as unregister = stop

Component and
update the System
Configuration.

well, after it has stopped the unregistering Component and removed all Component
Bindings, where this component was involved.

Whenever DAiSI’s Dependable Configuration Component establishes a new De-
pendable Service Binding, it calls the equivalenceClassChanged method,
passing the Dependable Service and its current Behavior Equivalence Class. Next
to this, this method is called by Dependable Dynamic Adaptive Components, when
their internal state changes and, therefore, they may behave differently now.

To understand, how Dependability is addressed within DAiSI’s Dependable Con-
figuration Component, we will look at the realization of this method. This method
is called, whenever a BehavioralChange trigger may be active, as a Behavior
Equivalence Class has changed, or a new Component Binding has been estab-
lished. We assume, that Dependable Dynamic Adaptive Components notify the
Dependable Configuration Component of internal state changes – thus, each active
BehavioralChange trigger can be recognized within this method. The realization of

7As long as they did not call requestRun().

148 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

updateSystemConfiguration updateSystemConfigurationinteraction []

 : Dependable Configuration Component

recheckNotRunnableComponents()2:

recheckRunRequestedComponents()3:

adaptComponentConfiguration()4:

stopUnusedComponents()5:

notifyChangeListeners(configurationEvent=ConfigurationEventType.configurationChanged)6:

updateSystemConfiguration()1:

Figure 6.14: Realization of the updateSystemConfiguration Method by
DAiSI’s Dependable Configuration Component.

this method is depicted in Figure 6.15 – it represents reference “Monitor changes
and update the System Configuration in case of an active Change Trigger” depicted
in Figure 6.8.

Whenever the equivalenceClassChanged method is called, DAiSI’s De-Whenever a
Behavior

Equivalence Class
has changed, the

semantical
Compatibility needs
to be updated – the

System
Configuration needs
to be updated if a
(In-)Compatibility
has been detected.

pendable Configuration Component queries all instances of Dependable Service
References, which refer to the Service Interface implemented by the given Depend-
able Service (interactions 2 – 7 of Figure 6.15).

In the following it uses the CompatibilityComponent to evaluate for each of these
Dependable Service References, whether they have been semantically compatible
before the Behavior Equivalence Class has changed. It then updates the semantical
Compatibility by calling the updateSemanticalCompatibility method at
the CompatibilityComponent and compares the newly calculated semantical Com-
patibility to the previous Compatibility.

This enables DAiSI’s Dependable Configuration Component to recognize,

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 149

whether a previously semantically incompatible set of Dependable Service and
Dependable Service Reference is semantically compatible now or vice versa.
Thus, it is a realization of the BehavioralChange trigger from our formal
model. If DAiSI’s Dependable Configuration Component recognizes, that this trig-
ger is active, it updates the Dependable System Configuration by calling the
updateSystemConfiguration method.

(serviceProvider : InstanceComponentServiceIf, behaviorEquivalenceClass : int) equivalenceClassChanged equivalenceClassChangedinteraction []

rType : TypeComponentServiceReferenceIf : Dependable Configuration Component : CompatibilityComponent : Type Repository

[]

[previousCompatibility!=currentCompatibility]

opt

loop (0,instances.length-1)

i = loop counter

instances7:

getExistingTypeForInstance(instance=service)2:

getExistingReferenceTypeForComponentServiceType(serviceType=sType)4:

getInstances()6:

getSemanticalCompatibility(serviceInstance=service, referenceInstance=instances[i])8:

updateSemanticalCompatibility(serviceInstance=service, referenceInstance=instances[i], providerEquivalenceClass=ec)10:

getSemanticalCompatibility(serviceInstance=service, referenceInstance=instances[i])11:

updateSystemConfiguration()13:

previousCompatibility9:

currentCompatibility12:

sType3:

rType5:

equivalenceClassChanged(serviceInstance=service, behaviorEquivalenceClass=ec)1:

Figure 6.15: Realization of the equivalenceClassChanged Method by
DAiSI’s Dependable Configuration Component.

To update semantical Compatibility, DAiSI’s Dependable Configuration Compo-
nent calls bindingIsSemanticalCompatible for the specific Service Bind-
ing and checks, whether the result contradicts the previous result. If this is the case,
the new result is stored as sketched in Figure 6.16. If a semantical Compatibility
is stored, this Dependable Service Binding can be established in the following by
DAiSI’s Dependable Configuration Component, otherwise it is removed from the

150 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

Dependable System Configuration.

(serviceInstance : InstanceComponentServiceIf, referenceInstance : InstanceComponentServiceReferenceIf, providerEquivalenceClass : int) updateSemanticalCompatibility updateSemanticalCompatibilityinteraction []

 : CompatibilityComponent

[else]

[!bindingIsCompatible]

Store binding as
incompatible (left out here
 intentionally)

opt

[bindingHasBeenIncompatibleBefore]

[bindingIsCompatible]

Store binding as
compatible (left out
 here intentionally)

opt

alt

bindingIsSemanticalCompatible(serviceInstance=service, referenceInstance=reference, providerEquivalenceClass=ec):"bindingIsCompatible"2:

bindingIsSemanticalCompatible(serviceInstance=service, referenceInstance=reference, providerEquivalenceClass=ec):"bindingIsCompatible"3:

updateSemanticalCompatibility(serviceInstance=service, referenceInstance=reference, providerEquivalenceClass=ec)1:

Figure 6.16: Realization of the updateSemanticalCompatibilityMethod
by DAiSI’s Dependable Configuration Component.

Method bindingIsSemanticalCompatible is implemented specially
due to our approach of applying runtime tests to decide, whether a Service Binding
is semantically compatible: since we need to trigger execution of runtime tests here,
we need to we need to take measures against side-effects. This includes side-effects
on a running system as well as side-effects on Service Partners involved in the test
(this may be Service Partners, which are not part of the running system, yet).

To avoid side-effects on Service Partners involved in the test, these ServiceWe put affected
Service Partners into

testing mode to
avoid side-effects of
test case execution.

Partners are put into testing mode, where they can store their internal state. This
enables them to recover their state after test case execution.

To avoid side-effects of test execution on a running system, we need to put
further Dependable Dynamic Adaptive Components into testing mode. To under-
stand, which Dependable Dynamic Adaptive Components need to be put into testing
mode, we will look at a simple scenario in the following.

Let us examine a test case execution from the system of our application example.
At t0 + 6 we want to bind the Dutch P-Unit to the Dutch C-Unit. Thus, we need to
evaluate, whether Dependable Service pUnitServiceDutch is semantically compatible
to Dependable Service Reference pUnitReferenceDutch. Therefore, we query the

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 151

current Behavior Equivalence Classes of these two Service Partners.
In the following we want to execute the test case defined by the Dutch C-Unit

for its current Behavior Equivalence Class regarding the Dependable Component
Binding. Before we can do this, we need to put the two Service Partners into testing
mode. Besides them we have to put all other Service Partners in testing mode, which
are bound to them in a direct or indirect way.

Two Service Partners A and B are directly bound, iff A uses a Dependable
Service provided by B or vice versa. An indirect binding means, that they are Affected = bound

directly or
transitively.

bound transitively by multiple Service Partners in a row. All these bound Service
Partners need to be put into testing mode, since they may be affected by test case
execution and, therefore, need to recover their internal state when the test has
finished.

Let’s consider the system from our application example to get a deeper un-
derstanding. Figure 6.17 depicts the situation at t0 + 6 again. If we test the De-
pendable Component Binding between pUnitServiceDutch and pUnitReferenceDutch,
we first of all need to put the two Dependable Dynamic Adaptive Components into
testing mode, which provide Dependable Service pUnitServiceDutch respectively de-
clare Dependable Service Reference pUnitReferenceDutch. In our example these are
pUnitDutch respectively cUnitDutch.

Next to these two Dependable Dynamic Adaptive Components, we need to
put all Dependable Dynamic Adaptive Components into testing mode, which are
directly or indirectly bound to them. We can derive them by following the uses
relations in Figure 6.17.

When considering the pUnitDutch, we find out, that the cUnitDutch as well as
the mUnitDutch are bound to it. When considering the cUnitDutch, we find out that
the pUnitDutch and the mUnitDutch are bound to it.

Summing up, next to pUnitDutch and cUnitDutch we need to put mUnitDutch into
testing mode, as it is bound to at least one Dependable Dynamic Adaptive Com-
ponent under test as depicted in Figure 6.18. We call these Dependable Dynamic
Adaptive Components bound to Components under test affected Components in the
following.

Test cases are executed as depicted in Figure 6.19. Putting affected Compo-
nents into testing mode is illustrated in this figure by the call setTestMode(true)8.
After we prepared the test by putting the affected Components into testing mode,
we proceed with testing the specific behavior of this Dependable Service.

Test case execution includes method calls at the Dependable Service under test
as well as internal calls at the Requesting Service Partner, which may be used to
reason about the semantical Compatibility. This enables us to decide, whether the

8We leave out putting transitively affected Components into testing mode here for better read-
ability of the sequence chart.

152 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

test has passed or failed.
Regarding our application example, at tn+1 we want to bind the second Dutch

C-Unit to the second German P-Unit. Thus, Dependable Service pUnitServiceGerman2Idea: Compliance
Test Cases are

specified in a test
specification
language;

Compliance Test
Cases’ code is

generated from this
specification.

provided by the second German P-Unit is initially tested by executing Compliance
Test Cases, which have been defined by the second Dutch C-Unit for the declared
Dependable Service Reference pUnitReferenceDutch2. In the following we are look-
ing at this test case, which is executed at tn + 1.

Let us consider a test case specification like the one depicted as TTCN-3 spec-
ification in Listing 6.2 respectively as UML Testing Profile specification in Figure
6.20.

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 153

D
e
p
e
n
d
a
b
le

D
yn

a
m

ic
A

d
a
p
tiv

e
S

ys
te

m
t_

0
 +

 6
,
s_

a
e

p
a
c
k
a
g

e

[

]

p
U

n
it

G
e
rm

a
n

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

p
C

o
n

fi
g

u
ra

ti
o

n
1
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

p
U

n
it

S
e
rv

ic
e
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e

c
U

n
it

G
e
rm

a
n

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

p
U

n
it

R
e
fe

re
n

c
e
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e
 R

e
fe

re
n

c
e

c
C

o
n

fi
g

u
ra

ti
o

n
2
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
C

o
n

fi
g

u
ra

ti
o

n
1
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
U

n
it

S
e
rv

ic
e
G

e
rm

a
n

:

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e

m
U

n
it

G
e
rm

a
n

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

c
U

n
it

R
e
fe

re
n

c
e
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e
 R

e
fe

re
n

c
e

m
C

o
n

fi
g

u
ra

ti
o

n
2
G

e
rm

a
n

 :
 D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

m
C

o
n

fi
g

u
ra

ti
o

n
1
G

e
rm

a
n

 :

D
e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

m
U

n
it

S
e
rv

ic
e
G

e
rm

a
n

:

D
e
p

e
n

d
a
b

le
 S

e
rv

ic
e

m
U

n
it

D
u

tc
h

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

c
U

n
it

R
e
fe

re
n

c
e
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e
 R

e
fe

re
n

c
e

m
C

o
n

fi
g

u
ra

ti
o

n
2
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

m
C

o
n

fi
g

u
ra

ti
o

n
1
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

m
U

n
it

S
e
rv

ic
e
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e

c
U

n
it

D
u

tc
h

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

p
U

n
it

R
e
fe

re
n

c
e
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e
 R

e
fe

re
n

c
e

c
C

o
n

fi
g

u
ra

ti
o

n
2
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
C

o
n

fi
g

u
ra

ti
o

n
1
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

c
U

n
it

S
e
rv

ic
e
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e

p
U

n
it

D
u

tc
h

 :
 D

e
p

e
n

d
a
b

le
 D

y
n

a
m

ic
 A

d
a
p

ti
v
e
 C

o
m

p
o

n
e
n

t

p
C

o
n

fi
g

u
ra

ti
o

n
1
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 C

o
m

p
o

n
e
n

t
C

o
n

fi
g

u
ra

ti
o

n

p
U

n
it

S
e
rv

ic
e
D

u
tc

h
 :

D

e
p

e
n

d
a
b

le
 S

e
rv

ic
e

p
U

n
it

S
e
rv

ic
e
If

 :
 S

e
rv

ic
e

In
te

rf
a
c
e

m
U

n
it

S
e
rv

ic
e
If

:

S
e
rv

ic
e

In
te

rf
a
c
e

c
U

n
it

S
e
rv

ic
e
If

 :

S
e
rv

ic
e

In
te

rf
a
c
e

 :
 r

e
fe

rs
 t
o

 :
 r

e
fe

rs
 t
o

 :
 im

p
le

m
e
n
ts

 :
 im

p
le

m
e
n
ts

 :
 im

p
le

m
e
n
ts

 :
 im

p
le

m
e
n
ts

 :
 r

e
fe

rs
 t
o

 :
 im

p
le

m
e
n
ts

 :
 im

p
le

m
e
n
ts

 :
 u

se
s

 :
 u

se
s

 :
 u

se
s

 :
 u

se
s

 :
 r

e
fe

rs
 t
o

 :
 p

ro
vi

d
e
s

 :
 p

ro
vi

d
e
s

 :
 d

e
cl

a
re

s

 :
 >

=

 :
 p

ro
vi

d
e
s

 :
 >

=

 :
 p

ro
vi

d
e
s

 :
 p

ro
vi

d
e
s

 :
 p

ro
vi

d
e
s

 :
 >

=

 :
 p

ro
vi

d
e
s

 :
 >

=

 :
 p

ro
vi

d
e
s

 :
 d

e
cl

a
re

s

 :
 d

e
cl

a
re

s

 :
 d

e
cl

a
re

s

 :
 p

ro
vi

d
e
s

 :
 p

ro
vi

d
e
s

Fi
gu
re
6.
17
:
Lo
ok
in
g
Ba
ck
at
th
e
Bi
nd
in
gs
fr
om

ou
r
A
pp
lic
at
io
n
Ex
am
pl
e
at

t 0
+
6.

154 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

1 testcase TestSemanticalCompatibility(EquivalenceClass
equivalenceClass, PeripheralUnitIf pUnit) runs on CUnit {

2 pUnit.call (getPulseRate());
3 pUnit.getreply (getPulseRate:{} value ?) -> value pulseRate

{}
4 pUnit.call (getSystolicBloodPressure());
5 pUnit.getreply (getSystolicBloodPressure:{} value ?) ->

value systolicBloodPressure {}
6 pUnit.call (getDiastolicBloodPressure());
7 pUnit.getreply (getDiastolicBloodPressure:{} value ?) ->

value diastolicBloodPressure {}
8 alt {
9 [] equivalenceClass == TriageClass.EX {
10 if (pulseRate != 0 || systolicBloodPressure != 0 ||

diastolicBloodPressure != 0) {
11 setverdict (fail);
12 } else {
13 setverdict (pass);
14 }
15 }
16 [] equivalenceClass == TriageClass.T_I {
17 if (0<pulseRate<300 && 0<systolicBloodPressure<300 && 0<

diastolicBloodPressure<300) {
18 setverdict (pass);
19 } else {
20 setverdict (fail);
21 }
22 }
23 [...]
24 }
25 }
Listing 6.2: TTCN-3 Specification of a Testcase for P-Units as Defined by the Dutch
C-Unit.

To be executable, this test case specification needs to be transformed into ex-
ecutable code. All code examples in this thesis are Java-based. Thus, Listing 6.3
depicts, how a Java fragment, generated from these specifications, may look like.
This can be generated directly into the code of the Dependable Dynamic Adap-
tive Component acting as Requesting Service Partner9 and can be executed by our
Dependable System Infrastructure to reason about semantical Compatibility of a
Dependable Component Binding involving the specific Requesting Service Partner.

1 public boolean testSemanticalCompatibility(EquivalenceClass
equivalenceClass, PeripheralUnitIf pUnit) {

2 if(equivalenceClass == TriageClass.EX) {
3 int pulseRate = pUnit.getPulseRate();

9In this case this is the second Dutch C-Unit

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 155

Figure 6.18: A View on a System Under Test at t0 +6. We Can Distinguish Affected
From Unaffected Components Based on the Components Involved in the Test.

4 int systolicBloodPressure = pUnit.getSystolicBloodPressure
();

5 int diastolicBloodPressure = pUnit.
getDiastolicBloodPressure();

6 if (pulseRate != 0 || systolicBloodPressure != 0 ||
diastolicBloodPressure != 0) {

7 return false;
8 } else {
9 return true;
10 }
11 } else {
12 if(equivalenceClass == TriageClass.T_I) {
13 int pulseRate = pUnit.getPulseRate();
14 int systolicBloodPressure = pUnit.

getSystolicBloodPressure();
15 int diastolicBloodPressure = pUnit.

156 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

(serviceInstance : InstanceComponentServiceIf, referenceInstance : InstanceComponentServiceReferenceIf, providerEquivalenceClass : int) : Boolean bindingIsSemanticalCompatible bindingIsSemanticalCompatibleinteraction []

reference : InstanceComponentServiceReferenceIf service : InstanceComponentServiceIfinstanceRepository : InstanceRepository : CompatibilityComponent

restore previous
test mode of
service user and
provider.

restore binding of
reference.

(left out here
intentionally)

store previous test
 mode of service
user and provider.

store binding of
reference.

(left out here
intentionally)

Test Interaction

isSemanticallyCompatible13:

10:

12:

user3:

provider5:

setTestMode(mode=true)6:

getComponentDeclaringReference(referenceInstance=reference)2:

getComponentProvidingService(instanceService=service)4:

setTestMode(mode=true)7:

isSemanticallyCompatible(providerEquivalenceClass=ec)8:

isSemanticallyCompatible14:

bindingIsSemanticalCompatible(serviceInstance=service, referenceInstance=reference, providerEquivalenceClass=ec)1:

Figure 6.19: Realization of the bindingIsSemanticalCompatibleMethod
by DAiSI’s Dependable Configuration Component.

getDiastolicBloodPressure();
16 if (0<pulseRate<300 && 0<systolicBloodPressure<300 && 0<

diastolicBloodPressure<300) {
17 return true;
18 } else {
19 return false;
20 }
21 } else {
22 [...]
23 }
24 }
25 }
Listing 6.3: Java-Code fragment generated from a Testcase Specification of a
Testcase for P-Units as Defined by the Dutch C-Unit.

If we assume, that the Triage Class of a casualty is calculated to T_I at tn + 1,
the second option for the test case is executed. Thus, the blood pressure as well as
pulse rate are queried and it is checked, whether they are between 0 and 300.

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 157

TestSemanticalCompatibility TestSemanticalCompatibilityinteraction []

<<TestComponent>>

this : Dependable Service Reference

<<SUT>>

pUnit : PeripheralUnitIf

[thisEquivalenceClass==TriageClass.EX]

[pulseRate!=0 ||
systolicBloodPressure!=0 ||
diastolicBloodPressure !=0]

[else]

alt

QueryVitalData

ref

[thisEquivalenceClass==TriageClass.T_I]

[0<pulseRate<300 &&
0<systolicBloodPressure<300 &&
0<diastolicBloodPressure<300]

[else]

alt

QueryVitalData

ref

[else]

QueryVitalData

ref

Left out intentionally

alt

fail2:

pass3:

pass4:

fail5:

testSemanticalCompatibility(serviceProvider=pUnit, equivalenceClass=thisEquivalenceClass)1:

Figure 6.20: UML Testing Profile Specification of a Testcase for P-Units as Defined
by the Dutch C-Unit.

158 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

PassingSemanticalCompatibilityTest PassingSemanticalCompatibilityTestinteraction []

pUnitReferenceDutch2 : Dependable Service Reference pUnitServiceGerman2 : PUnitServiceIf

Due to:
0<180<300 &&
0<160<300 &&
0<100<300

getPulseRate()2:

getSystolicBloodPressure()4:

getDiastolicBloodPressure()6:

true8:

pulseRate: 1803:

systolicBloodPressure: 1605:

diastolicBloodPressure: 1007:

testSemanticalCompatibility(serviceProvider=pUnitServiceGerman2, equivalenceClass=TriageClass.T_I):true1:

Figure 6.21: Execution of Test Cases to Reason About Semantical Compatibility Be-
fore Binding the second Dutch C-Unit to the second German P-Unit at tn + 1.

If the casualty has, for example, a pulse rate of 180 bpm and a blood pressure
of (160, 100) as depicted in Figure 6.21, therefore, the test passes and these two
Service Partners are bound by the Dependable Configuration Component.

Summed up, this semantical Compatibility test in combination with monitoringSemantical
Compatibility +
monitoring of

Behavior
Equivalence Classes
= BehavioralChange

trigger.

the Behavior Equivalence Classes of all Service Partners within a Dependable Dy-
namic Adaptive System is our realization of the BehavioralChange trigger from our
formal model: We detect changes in Behavior Equivalence Classes by monitoring
and determine, whether they influence Dependability by runtime testing.

If we look at our application example at tn + 2 we are, therefore, able to
recognize, that the second Dutch C-Unit and the second German P-Unit are not
semantically compatible anymore10: Our Dependable System Infrastructure will

10tn+2 denotes the Dependability Checkpoint when the fingerclip measuring the pulse rate slips
off.

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 159

FailingSemanticalCompatibilityTest FailingSemanticalCompatibilityTestinteraction []

pUnitReferenceDutch2 : Dependable Service Reference pUnitServiceGerman2 : PUnitServiceIf

Due to:
pulseRate!=0

getPulseRate()2:

getSystolicBloodPressure()4:

getDiastolicBloodPressure()6:

false8:

pulseRate: 03:

systolicBloodPressure: 1605:

diastolicBloodPressure: 1007:

testSemanticalCompatibility(serviceProvider=pUnitServiceGerman2, equivalenceClass=TriageClass.EX):true1:

Figure 6.22: Execution of Test Cases to Reason About Semantical Compatibility After
Binding the second Dutch C-Unit to the second German P-Unit at tn + 2 when the
fingerclip slips off.

recognize a changing Behavior Equivalence Class of the second Dutch C-Unit to-
wards TriageClass.EX and, therefore, repeat the semantical Compatibility
tests.

The second Dutch C-Unit will query the vital data of the second German P-Unit. We can detect the
semantical
incompatibility in
our application
example, using our
approach.

It will recognize, that this vital data values – pulse rate equals zero, while blood
pressure is above zero – deviate from its expectations. Thus, test case execution
fails. In detail, this test case execution will happen as depicted in Figure 6.22.

As a consequence the Dependable Configuration Component will remove this
Dependable Component Binding between the second Dutch C-Unit and the German
P-Unit. Thus, the casualty will not be classified incorrectly but needs to be classified
manually by a medic instead.

160 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

6.2 Component Framework

To simplify implementation of Dependable Dynamic Adaptive Components, our ref-Our component
framework enables
vendors to focus on

Component
functionality instead

of dealing with
specifics of our
system model.

erence implementation of DAiSI also provides a Component framework. Component
vendors can use this framework in order to deal with Component specific implemen-
tation details instead of having to deal with details specific to our formal system
model.

The Component framework realizes the Component model from our formal sys-
tem model by following an interface-based approach. Therefore, all elements of
the Component model are represented by interfaces as depicted in Figure 6.23.

ComponentModelInterfacespackage DAiSI[]

+getElementName() : String
+setElementName(String name)
+getServiceBehavior() : int

InstanceComponentServiceIf

+getElementName() : String
+setElementName(String name)
+getUses() : InstanceComponentServiceIf
+setUses(InstanceComponentServiceIf service)
+getTypeOfUses() : Contained
+isSemanticallyCompatible(int behaviorEquivalenceClass)
+getServiceReferenceBehavior() : int

InstanceComponentServiceReferenceIf

+initialize()
+setTestMode(boolean testMode)
+getTestMode() : boolean
+rollbackConfiguration()
+runCurrentOneway()
+stopCurrent()
+getElementName() : String
+setElementName(String name)
+getCurrent() : InstanceComponentConfigurationIf
+setCurrent(InstanceComponentConfigurationIf config)
+getContains() : InstanceComponentConfigurationIf [*]
+addContains(InstanceComponentConfigurationIf config)
+removeContains(InstanceComponentConfigurationIf config)

InstanceComponentIf

+getElementName() : String
+setElementName(String name)
+getDeclares() : InstanceComponentServiceReferenceIf [*]
+addDeclares(InstanceComponentServiceReferenceIf reference)
+removeDeclares(InstanceComponentServiceReferenceIf reference)
+getProvides() : InstanceComponentServiceIf [*]
+addProvides(InstanceComponentServiceIf service)
+removeProvides(InstanceComponentServiceIf service)
+isBetterThan(InstanceComponentConfigurationIf config) : boolean
+getQuality() : int
+setQuality(int quality)

InstanceComponentConfigurationIf

<<component>>

Dependable Dynamic Adaptive Component

Dependable Component Configuration

Dependable Service ReferenceDependable Service
=syntactical* *

uses

*0..1

current

0..1

1

contains

1..*

1

provides

*

1..*
declares

*

1..*

>=

*

*

Figure 6.23: Mapping Between the Component Model of our Formal System Model
and Interfaces Used by our Reference Implementation DAiSI.

The relations between elements of our Component model are repre-
sented in those interfaces as well. You can access all contained Depend-
able Component Configurations by calling getContains() at interface
InstanceComponentIf, for example. However, there are differences be-
tween these interfaces and our Component model. These differences split up into
two categories:

• Simplifications, which simplified the implementation of the Dependable Sys-
tem Infrastructure.

• Additions, which added debugging capabilities to the Dependable System

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 161

Infrastructure without complicating the implementation of Dependable Dy-
namic Adaptive Components.

A simplification was to calculate the semantical Compatibility only for active De-
pendable Service Bindings. This causes, that the Dependable Configuration Com- Simplification:

semantical
Compatibility is only
calculated for active
bindings.

ponent will establish a Service Binding, evaluate the semantical Compatibility and
remove it in case of a detected incompatibility (as this means, that it is not a De-
pendable Service Binding).

This simplification becomes visible in interface
InstanceComponentServiceReferenceIf at two places: on the
one hand, the getServiceReferenceBehavior() method does not take
an InstanceComponentServiceIf as an argument, as it only returns
the Behavior Equivalence Class of the currently used Dependable Service. On
the other hand, it is visible at the isSemanticallyCompatible(int
behaviorEquivalenceClass) method, which only takes the Behavior
Equivalence Class of the Dependable Service Reference (regarding the currently
used Dependable Service) instead of taking the Dependable Service that should
be tested in addition.

As a design decision we realized Behavior Equivalence Classes sim-
ply by int values. As our formal model only consider changes of a Be-
havior Equivalence Class this is no restriction of the formal model but a Behavior

Equivalence Classes
realized simply by
integers.

design decision for the realization of our Dependable System Infrastruc-
ture. This is visible at the return values of the getServiceBehavior
() respectively getServiceReferenceBehavior() methods
of the interfaces InstanceComponentServiceIf respectively
InstanceComponentServiceReferenceIf.

An addition was, to include a string description for each element of the model in Addition: String
descriptions to
enable monitoring
Components to
generate human
readable
visualizations.

the interfaces, which can be accessed by the getElementName() respectively
setElementName(String name) methods. This enables us to display read-
able names for the elements in our Dependable Dynamic Adaptive System browser
instead of hardly understandable object identifiers.

These interfaces are implemented by helper classes of our Component frame-
work as depicted in Figure 6.24. Next to a pure interface realization the helper
classes provide added features enabling Component vendors to realize Depend-
able Dynamic Adaptive Components more easily.

Using these helper classes a Component vendor can implement a Dependable
Dynamic Adaptive Component as depicted in Figure 6.25.

By letting a newly developed Dependable Dynamic Adaptive Component ex-
tend the class AbstractInstanceComponentImpl, a vendor can benefit from frame-
work methods capable of creating Dependable Component Configurations, De-
pendable Service References, or Dependable Services and adding them to this

162 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

ImplementationFrameworkpackage DAiSI[]

+createReference(String fieldName, Object owner) : InstanceComponentServiceReferenceIf
+createReference(String fieldName) : InstanceComponentServiceReferenceIf
+createService(Class serviceInterface, Object serviceImplementation) : InstanceComponentServiceIf
+createService(Class serviceInterface) : InstanceComponentServiceIf
+createConfiguration() : InstanceComponentConfigurationIf
+unregisterComponent()
+unregisterComponent(InstanceComponentIf component)
+getServiceBehavior() : int
+stateChanged()

AbstractInstanceComponentImpl

GenericInstanceComponentConfigurationImpl

AbstractInstanceComponentJFrameImpl

GenericInstanceComponentServiceReferenceImpl

+getElementName() : String
+setElementName(String name)
+getUses() : InstanceComponentServiceIf
+setUses(InstanceComponentServiceIf service)
+getTypeOfUses() : Contained
+isSemanticallyCompatible(int behaviorEquivalenceClass)
+getServiceReferenceBehavior() : int

InstanceComponentServiceReferenceIf

+initialize()
+setTestMode(boolean testMode)
+getTestMode() : boolean
+rollbackConfiguration()
+runCurrentOneway()
+stopCurrent()
+getElementName() : String
+setElementName(String name)
+getCurrent() : InstanceComponentConfigurationIf
+setCurrent(InstanceComponentConfigurationIf config)
+getContains() : InstanceComponentConfigurationIf [*]
+addContains(InstanceComponentConfigurationIf config)
+removeContains(InstanceComponentConfigurationIf config)

InstanceComponentIf

+getElementName() : String
+setElementName(String name)
+getServiceBehavior() : int

InstanceComponentServiceIf

+getElementName() : String
+setElementName(String name)
+getDeclares() : InstanceComponentServiceReferenceIf [*]
+addDeclares(InstanceComponentServiceReferenceIf reference)
+removeDeclares(InstanceComponentServiceReferenceIf reference)
+getProvides() : InstanceComponentServiceIf [*]
+addProvides(InstanceComponentServiceIf service)
+removeProvides(InstanceComponentServiceIf service)
+isBetterThan(InstanceComponentConfigurationIf config) : boolean
+getQuality() : int
+setQuality(int quality)

InstanceComponentConfigurationIf

GenericInstanceComponentImpl JFrame

instantiates

instantiate

-delegatee 1

Figure 6.24: Helper Classes of DAiSI’s Component Framework Implementing the
Interfaces Which Represent our Component Model.

Component. The methods provided by AbstractInstanceComponentImpl
are briefly sketched in the following.

First of all, it implements helper methods to create remote objects representing
the Dependable Dynamic Adaptive Components and their structure. This enables
DAiSI’s Dependable Configuration Component to call methods on the Dependable
Dynamic Adaptive Components and their Dependable Component Configurations
respectively provided Dependable Services and declared Dependable Service
References remotely.

One of these methods is createConfiguration(). It enables us to cre-
ate a remote object representing an empty Dependable Component Configuration.
In the following we can add Dependable Services and Dependable Service Ref-
erences to this configuration and finally add this configuration to the supported
configurations of our Dependable Dynamic Adaptive Component by passing it as
a parameter to the addContains method of this Component.

Another method is createService. This method is implemented using two
different parameter lists. The first takes a Class parameter and an Object
parameter. The Class parameter specifies the Service Interface, for which a

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 163

ComponentImplementationpackage DAiSI[]

+createReference(String fieldName, Object owner) : InstanceComponentServiceReferenceIf
+createReference(String fieldName) : InstanceComponentServiceReferenceIf
+createService(Class serviceInterface, Object serviceImplementation) : InstanceComponentServiceIf
+createService(Class serviceInterface) : InstanceComponentServiceIf
+createConfiguration() : InstanceComponentConfigurationIf
+unregisterComponent()
+unregisterComponent(InstanceComponentIf component)
+getServiceBehavior() : int
+stateChanged()

AbstractInstanceComponentImpl

GenericInstanceComponentConfigurationImpl

GenericInstanceComponentServiceReferenceImpl

AbstractInstanceComponentJFrameImpl

+getElementName() : String
+setElementName(String name)
+getServiceBehavior() : int

InstanceComponentServiceIf

-myReference : RequiredService

DependableDynamicAdaptiveComponentImplementation

JFrameGenericInstanceComponentImpl

+specificServiceMethod()

SpecificServiceInterface

SpecificConfiguration

SpecificReference

SpecificService

Associated with

Alternatively

instanceOf

provides

*

contains

1..*
instanceOf

declares

*

-delegatee 1

Figure 6.25: Implementation of a Dependable Dynamic Adaptive Component by
Using the Component Framework.

remote object should be created (as Dependable Dynamic Adaptive Components
may provide multiple Service Interfaces). The Object parameter has to be the
Object realizing the given Service Interface.

The second createService method only takes a Class parameter and
assumes, that the given Service Interface is realized by the Dependable Dynamic
Adaptive Component (this) itself.

A third method provided by AbstractInstanceComponentImpl is
createReference. This method creates a remote object for a Dependable
Service Reference. It also is provided with two different parameter lists. The first
takes a String parameter and an Object parameter. The String parame-
ter specifies the name of the field representing the Dependable Service Reference
in our Dependable Dynamic Adaptive Component implementation.

A specific Dependable Service will be assigned to the given field by DAiSI’s De-
pendable Configuration Component using the reflection mechanism. The Object

164 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

parameter has to be the Object containing the field with the given name11. The
second createReference method only takes a String parameter and as-
sumes, that the Dependable Dynamic Adaptive Component (this) itself contains
a field of the given name.

Next to these methods, three additional methods are pro-
vided by AbstractInstanceComponentImpl. The method
unregisterComponent can be used, to unregister a Dependable Dy-
namic Adaptive Component at DAiSI’s Dependable Configuration Component. As
a consequence, the Dependable Dynamic Adaptive Component is removed from
the Dependable Dynamic Adaptive System by removing existing Dependable
Service Bindings containing this Component.

This unregisterComponent method also comes with two parameter lists,
one taking a InstanceComponentIf, which represents the Dependable Dy-
namic Adaptive Component to be unregistered, the other taking no parameter,
assuming that the Dependable Dynamic Adaptive Component (this) should be
unregistered.

Method getServiceBehavior is provided for downwards compatibility.Default
implementation of
getServiceBehavior

for downwards
compatibility to prior
versions of DAiSI.

As DAiSI has been applied in several research projects and first versions of DAiSI did
not take semantical Compatibility into account, we provide a implementation of the
getServiceBehavior method always returning -1. This enables us to execute
Dependable Dynamic Adaptive Components on the latest version of DAiSI without
adding the calculation of Behavior Equivalence Classes to their implementation12.

Component vendors need to override method getServiceBehavior
method respectively getServiceReferenceBehavior to insert their spe-
cific calculation of a Behavior Equivalence Class13.

First of all, we need to understand, which methods of a Service Interface theyOnly
state-preserving
methods may be

called during
calculation of a

Behavior
Equivalence Class.

may use during calculation of a current Behavior Equivalence Class of a Depend-
able Service respectively of a Dependable Service Reference. Thus, we can classify
methods of a Service Interface regarding the influence of method execution on the
internal state of a Service Partner as follows: we can distinguish between state-
preserving and state-changing methods.

Considering our application example, C-Units offer Service Interface
CasualtyUnitIf as depicted in the Domain Architecture in Figure 6.26. In
the following we will classify the methods of this Service Interface according to the
previously mentioned dimension in Table 6.1.

11This enables us to use, for example, a field from an inner class of the Dependable Dynamic
Adaptive Component as Dependable Service Reference.

12However, we need to override this method with our own calculation of Behavior Equivalence
Classes to fully benefit from our approach to Dependable Dynamic Adaptive Components.

13How they can provide own implementations of getServiceBehavior respectively
getServiceReferenceBehavior, is explained in Appendix B.

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 165

EmergencyAssistanceSystemDomainArchitecturepackage []

ServiceInterfaces

+getTriageClass() : TriageClass
+setTriageClass(triageClass : TriageClass) : Boolean
+getAssignedPeripheralUnit() : PUnitServiceIf

CUnitServiceIf

+getActivity() : Activity
+getAssignedCasualty() : CUnitServiceIf

MUnitServiceIf

+getSystolicBloodPressure() : int
+getDiastolicBloodPressure() : int

BloodPressureSensorIf

+getLongitude() : int
+getLatitude() : int

PositionIf

+getPulseRate() : int

PulseRateSensorIf

PUnitServiceIf

ComponentsDatatypes

Unknown

T IV
T III
T II

EX

T I

<<enumeration>>

TriageClass

ApproachingCasualty
TreatsCasualty

Idle

<<enumeration>>

Activity <<component>>

IncidentCommandUnit

<<component>>

PeripheralUnit

<<component>>

CasualtyUnit

<<component>>

MedicUnit

PUnitServiceIf

PUnitServiceIf

MUnitServiceIf

MUnitServiceIf

CUnitServiceIf

CUnitServiceIf

CUnitServiceIf

Figure 6.26: Looking Back at our Domain Architecture for Emergency Assistance
Systems.

You can see, that getters belong to the category “state-preserving” while set-
ters belong to the category “state-changing”. During calculation of Behavior Equiv-
alence Classes, only state-preserving methods may be called, as otherwise the
Behavior Equivalence Class may be changed during calculation. Moreover the cal-
culation would not be free of side-effects otherwise.

When looking at Service Interface PUnitServiceIf provided by P-Units
in our application example, we find out, that all methods of this Service Interface
are state-preserving and, therefore, can be called during calculation of Behavior
Equivalence Classes.

Such a classification of methods may be part of a Domain Architecture to give Method classification
may be part of a
Domain Architecture.

vendors of Dependable Dynamic Adaptive Components an additional clue, how
implementations of these methods should behave and which methods they may call
during calculation of Behavior Equivalence Classes. Next to this, mechanisms like

166 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

influence on internal state method
state-preserving getLongitude

getLatitude
getTriageClass

getAssignedPeripheralUnit
state-changing setTriageClass

Table 6.1: Classification of Methods Contained in Service Interface
CUnitServiceIf Along the Dimension Influence of Method Execution on
Internal State.

marking it by an annotation [Chi05] can enable implementations of a Dependable
System Infrastructures to ensure, that only state-preserving methods are called dur-
ing calculation of Behavior Equivalence Classes.

Considering our framework, method stateChanged() notifies DAiSI’s De-
pendable Configuration Component that the state of this Dependable Dynamic
Adaptive Component has changed and, therefore, the Behavior Equivalence Classes
for all Dependable Service Bindings of this Component need to be recalculated.

In case of changed Behavior Equivalence Classes DAiSI’s Dependable Config-
uration Component will execute Compliance Test Cases for the corresponding De-
pendable Service Bindings to evaluate their semantical Compatibility.

We assume, that Dependable Dynamic Adaptive Components call this
method, whenever their internal state changes. It causes calls of the
equivalenceClassChanged method at the Dependable Configuration Com-
ponent for each provided Dependable Service and for each declared Dependable
Service Reference of their Current Configuration.

Component vendors need to extend AbstractInstanceComponentImpl
in order to benefit from these helper methods. Thus, they would be limited, since
Java does not support multiple inheritance. To enable Component vendors to
provide Dependable Dynamic Adaptive Components extending any specific class,
we provide the sample class AbstractInstanceComponentJFrameImpl, demonstrating
how to do this by extending the specific class JFrame.

If a vendor wants to provide a Dependable Dynamic Adaptive Component ex-Inheriting own
classes is possible

by using the
Delegation pattern.

tending a specific class SuperClass, he needs to implement an abstract class, extend-
ing SuperClass. This class also needs to implement interface InstanceComponentIf
in order to provide access to the methods from our framework described above.

Component vendors do not need to implement the interface – they can use the
Delegation pattern [GHJV94] instead. In this case the abstract class acts as dele-
gator, whereas an internally instantiated object of GenericInstanceComponentImpl
acts as delegatee. Now they can implement a Dependable Dynamic Adaptive

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 167

Component extending SuperClass by extending the newly created abstract class,
which extends SuperClass.

You will find a more detailed guideline, how vendors can implement Depend-
able Dynamic Adaptive Components using our Component framework in Appendix
B, where we describe the implementation of specific Components from our appli-
cation example.

In the following, we will investigate, which tool support exists for developers to
speed up the implementation of Dependable Dynamic Adaptive Components and
to lower the burden of applying our approach.

6.3 Tool Support During Implementation

IDEs like Eclipse already offer powerful mechanisms to support Component de-
velopers during realization of Dependable Dynamic Adaptive Components. One
of the most important mechanisms during implementation is code completion. A Eclipse code

completion
templates enable
quick
implementation of
Dependable
Dynamic Adaptive
Components.

study in 2005 showed, that it is the 5th most used editing command of the Eclipse
IDE [MKF06] exceeded only by the basic commands Delete, Save, Next Word, and
Paste. If you are not familiar with code completion you can find an overview of it
in [BMM09].

Within the Eclipse IDE, Content Assist is responsible for code completion. We
realized templates for Content Assist, providing four new code completions, namely
createConfiguration, createReference, createService, and createTestRelatedMethods.
These templates are depicted in Listing 6.4.

The template createConfiguration can be used to create a Dependable Com-
ponent Configuration and placeholders for required and provided Dependable
Services. The created configuration is added to the contained configuration of
the currently edited Dependable Dynamic Adaptive Component. The Compo-
nent vendor can select the Dependable Component Configuration which should
be created by using a dropdown list offering all declared attributes of the Type
InstanceComponentConfigurationIf, which is the representation of a
Dependable Component Configuration within DAiSI’s framework.

Templates createService and createReference are used to add provided respec-
tively required Dependable Services to a previously created Dependable Compo-
nent Configuration. The configuration to which the Dependable Service respectively
Dependable Service Reference should be added once again can be chosen using
a dropdown list.

In case of createService the Component developer needs to specify the Ser-
vice Interface and a name for the created field representing the Dependable Ser-
vice14. When applying createReference, the Component developer can select the

14This field can be reused to add the same Dependable Service to further Dependable Compo-

168 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

field (which needs to extend InstanceComponentServiceIf) representing
the Dependable Service Reference from a dropdown list.

The last template createTestRelatedMethods can be used to generate a get-
ter for the Behavior Equivalence Class of a Dependable Service Reference and a
method calculating the semantical Compatibility for a Dependable Service Refer-
ence. Within the latter method a Component developer needs to implement a test
case, testing the semantical Compatibility of a bound Dependable Service. The
Dependable Service Reference, for which these methods should be generated can
be once again chosen from a dropdown list as already sketched for the createRef-
erence template.

1 <?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
2 <templates>
3 <template autoinsert=”true” context=”java” deleted=”false”

description=”Create a Configuration and add it to the
Component” enabled=”true” name=”createConfiguration”>

4 ${:import(de.tuc.ifi.sse.daisi.componentModel.
instanceComponent.InstanceComponentConfigurationIf)}

5 ${configurationName:field(de.tuc.ifi.sse.daisi.
componentModel.instanceComponent.
InstanceComponentConfigurationIf)} =
createConfiguration();

6 // Create and add Provided Services here
7 ${cursor}
8 // Create and add Service References for Required

Services here
9 /** The Configuration is added to the Component.
10 * Note, that the order of adding the configurations

decides, which
11 * Configuration is treated as ”better” by DAiSI.
12 * Configurations added earlier are treated as better.
13 */
14 addContains(${configurationName});
15 </template>
16 <template autoinsert=”true” context=”java” deleted=”false”

description=”Creates a Service Reference for a required
Service and adds it to a Configuration of this

Component.” enabled=”true” name=”createReference”>
17 ${configurationName:field(de.tuc.ifi.sse.daisi.

componentModel.instanceComponent.
InstanceComponentConfigurationIf)}.addDeclares(
createReference(”${referenceName:field(de.tuc.ifi.sse.
daisi.componentModel.instanceComponent.
InstanceComponentServiceIf)}”));

18 </template>
19 <template autoinsert=”true” context=”java” deleted=”false”

nent Configurations.

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 169

description=”Creates a Service and adds it to a
Configuration of a Component” enabled=”true” name=”
createService”>

20 ${ServiceInterface} ${serviceName} = (${ServiceInterface
})createService(${ServiceInterface}.class, this);

21 ${configurationName:field(de.tuc.ifi.sse.daisi.
componentModel.instanceComponent.
InstanceComponentConfigurationIf)}.addProvides(${
serviceName});

22 </template>
23 <template autoinsert=”true” context=”java” deleted=”false”

description=”Creates a getter for the behavior of a
Service Reference and a method testing the semantical
equivalence of the service reference.” enabled=”true”
name=”createTestRelatedMethods”>

24 public int getServiceReferenceBehavior_${
referenceName:field(de.tuc.ifi.sse.daisi.
componentModel.instanceComponent.
InstanceComponentServiceIf)}(){

25 // TODO: access ${referenceName} to calculate the
current Behavior Equivalence Class.

26 return 0;
27 }
28 public boolean equivalenceClassTest_${referenceName}(int

providerEquivalenceClass, int userEquivalenceClass){
29 // TODO: access ${referenceName} to check, whether it is

semantically equivalent
30 return true;
31 }
32 </template>
33 </templates>

Listing 6.4: Code Completion Templates for the Eclipse IDE.

6.4 Summary

Within this section we depict the relation between DAiSI and our formal model Six tables show the
relation between
realization and
formal model and
restrictions of the
realization.

introduced in the previous sections by six tables. We will relate basic sets, rela-
tions and reconfiguration triggers from our model to implementation groups and
implementation elements.

While implementation groups specify an area, where this model element is rel-
evant, implementation elements describe, how this model element is realized within
this implementation group.

Wherever applicable, we will explicitly state within these tables, which restric-
tions our reference implementation imposes regarding our formal model.

170 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems

M
od

el
M

od
el

 E
le

m
en

t
Gr

ou
p

Im
pl

em
en

ta
tio

n
El

em
en

t
De

pe
nd

ab
le

Dy
na

m
ic

Ad
ap

tiv
eC

om
po

ne
nt

Co
m

po
ne

nt
 F

ra
m

ew
or

k
al

l I
ns

ta
nc

es
 e

xt
en

di
ng

 A
bs

tr
ac

tIn
st

an
ce

Co
m

po
ne

nt
Im

pl
De

pe
nd

ab
le

Co
m

po
ne

nt
Co

nf
ig

ur
at

io
n

Co
m

po
ne

nt
 F

ra
m

ew
or

k
al

l I
ns

ta
nc

es
 o

f G
en

er
ic

In
st

an
ce

Co
m

po
ne

nt
Co

nf
ig

ur
at

io
nI

m
pl

De
pe

nd
ab

le
Se

rv
ic

e
Co

m
po

ne
nt

 F
ra

m
ew

or
k

al
l I

ns
ta

nc
es

 im
pl

em
en

tin
g

an
 In

te
rf

ac
e,

 w
hi

ch
 e

xt
en

ds
 In

st
an

ce
Co

m
po

ne
nt

Se
rv

ic
eI

f
De

pe
nd

ab
le

Se
rv

ic
eR

ef
er

en
ce

Co
m

po
ne

nt
 F

ra
m

ew
or

k
al

l I
ns

ta
nc

es
 o

f G
en

er
ic

In
st

an
ce

Co
m

po
ne

nt
Se

rv
ic

eR
ef

er
en

ce
Im

pl
Se

rv
ic

eI
nt

er
fa

ce
CO

RB
A

al
l I

nt
er

fa
ce

s d
ef

in
ab

le
 in

 ID
L

M
et

ho
dD

ec
la

ra
tio

n
CO

RB
A

al
l M

et
ho

ds
 d

ef
in

ab
le

 in
 ID

L
At

tr
ib

ut
eD

ec
la

ra
tio

n
CO

RB
A

al
l A

tt
rib

ut
es

 d
ef

in
ab

le
 in

 ID
L

Ty
pe

CO
RB

A
al

l T
yp

es
 d

ef
in

ab
le

 in
 ID

L
St

rin
g

Pr
og

ra
m

m
in

g
La

ng
ua

ge
ja

va
.la

ng
.S

tr
in

g

Re
fe

re
nc

e
Im

pl
em

en
ta

tio
n

Fi
gu
re
6.
27
:
M
ap
pi
ng
St
ru
ct
ur
al
Se
ts
D
ef
in
ed
in
O
ur
Fo
rm
al
Sy
st
em

M
od
el
to
El
em
en
ts
of
O
ur
Re
fe
re
nc
e
Im
pl
em
en
ta
tio
n.

6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems 171

Model
Model Element Group Implementation Element Restrictions
ApplicationComponents Infrastructure DependableConfigurationComponent.getRegisteredInstances()
Contains Component Framework AbstractInstanceComponentImpl.getContains() 1
ш Component Framework AbstractInstanceComponentImpl 1, 2
Current Component Framework AbstractInstanceComponentImpl.getCurrent() 3
Provides Component Framework GenericInstanceComponentConfigurationImpl.getProvides() 1
Declares Component Framework GenericInstanceComponentConfigurationImpl.getDeclares() 1
Uses Component Framework GenericInstanceComponentServiceReferenceImpl.getUses() 3
Implements Programming Language Not explicitly defined. Derived by reflection at runtime.
RefersTo Component Framework GenericInstanceComponentServiceReferenceImpl.getTypeOfUses()
уSǇŶƚĂĐƚŝĐĂů Programming Language Not explicitly defined. Derived by reflection at runtime. 4
Methods Programming Language Not explicitly defined. Could be derived by reflection at runtime. 5
Attributes Programming Language Not explicitly defined. Could be derived by reflection at runtime. 5
Parameters Programming Language Not explicitly defined. Could be derived by reflection at runtime. 5
MethodName Programming Language Not explicitly defined. Could be derived by reflection at runtime. 5
ReturnType Programming Language Not explicitly defined. Could be derived by reflection at runtime. 5
AttributeName Programming Language Not explicitly defined. Could be derived by reflection at runtime. 5
AttributeType Programming Language Not explicitly defined. Could be derived by reflection at runtime. 5
уIŶƚĞƌĨĂĐĞSǇŶƚĂĐƚŝĐĂů Programming Language Not explicitly defined. Could be derived by reflection at runtime. 5
уMĞƚŚŽĚSǇŶƚĂĐƚŝĐĂů Programming Language Not explicitly defined. Could be derived by reflection at runtime. 5
уPĂƌĂŵĞƚĞƌSǇŶƚĂĐƚŝĐĂů Programming Language Not explicitly defined. Could be derived by reflection at runtime. 5
уAƚƚƌŝďƵƚĞSǇŶƚĂĐƚŝĐĂů Programming Language Not explicitly defined. Could be derived by reflection at runtime. 5

Legend:

1

2

3

4

5

Only identical Types of implemented / referred to interfaces are treated as identical -
no comparison of methods, attributes, or parameters.
Not considered, as the reference implementation treats services and service references as syntactical
compatible, iff they implement respectively refer to the same interface.

May only be changed by DAiSI's Dependable Configuration Component.

Reference Implementation

Static - Can not change over time. If a component needs to change it, it needs to unregister, change the
relation and register again. Otherwise, DAiSI's DependableConfigurationComponent will not
detect the change.
Considering only the integer quality value (getQuality()) of configurations,
respectively the order of adding configurations, if no quality value has been set.

Figure 6.28: Mapping Structural Relations Defined in Our Formal System Model to
Elements of Our Reference Implementation.

Model
Model Element Group Implementation Element Restrictions

AppComponentsChange Infrastructure ConfigurationComponent.(un-)register
ConfigurationChange n/a n/a 1
ConfigOrderChange n/a n/a 1
CurrentConfigurationChange Infrastructure Adaptation of Current Configuration performed by ConfigurationComponent 2
ServiceChange n/a n/a 1
ReferenceChange n/a n/a 1
BindingChange Infrastructure Adaptation of Bindings performed by ConfigurationComponent 2

Legend:

1

2

Reference Implementation

Changes at runtime are not detected unless a component unregisters, changes the
relation and registers again.
Adaptations, which are not performed by the ConfigurationComponent are not detected.

Figure 6.29: Mapping Structural Reconfiguration Triggers Defined in Our Formal
System Model to Elements of Our Reference Implementation.

Model
Model Element Group Implementation Element

BehaviorEquivalenceClass Programming Language int

Reference Implementation

Figure 6.30: Mapping Behavioral Sets Defined in Our Formal System Model to
Elements of Our Reference Implementation.

172 6. Realization of an Infrastructure for Dependable Dynamic Adaptive Systems
M

od
el

M
od

el
 E

le
m

en
t

G
ro

up
Im

pl
em

en
ta

tio
n

El
em

en
t

Re
st

ric
tio

ns
Sy

st
em

Be
ha

vi
or

n/
a

n/
a

1
Co

m
po

ne
nt

Be
ha

vi
or

n/
a

n/
a

1
Co

nf
ig

ur
at

io
nB

eh
av

io
r

n/
a

n/
a

1
Pr

ov
id

ed
Be

ha
vi

or
n/

a
n/

a
1

De
cl

ar
ed

Be
ha

vi
or

n/
a

n/
a

1
Bi

nd
in

gB
eh

av
io

r
In

fr
as

tr
uc

tu
re

Co
m

bi
ne

d
by

 th
e

Co
nf

ig
ur

at
io

nC
om

po
ne

nt
 b

y
qu

er
yi

ng
 th

e
Be

ha
vi

or
 o

f S
er

vi
ce

 a
nd

 S
er

vi
ce

 R
ef

er
en

ce
.

Se
rv

ic
eB

eh
av

io
r

Se
rv

ic
e

Im
pl

em
en

ta
tio

n
M

et
ho

d
ge

tS
er

vi
ce

Be
ha

vi
or

()
- n

ee
ds

 to
 b

e
re

al
ize

d
by

 a
 C

om
po

ne
nt

 v
en

do
r.

Se
rv

ic
eR

ef
er

en
ce

Be
ha

vi
or

Co
m

po
ne

nt
 Im

pl
em

en
ta

tio
n

M
et

ho
d

ge
tS

er
vi

ce
Re

fe
re

nc
eB

eh
av

io
r_

<r
ef

er
en

ce
N

am
e>

()
- n

ee
ds

 to
 b

e
re

al
ize

d
by

 a
 C

om
po

ne
nt

 v
en

do
r.

2
уS
Ğŵ

ĂŶ
ƚŝĐ
Ăů

M
et

ho
d

eq
ui

va
le

nc
eC

la
ss

Te
st

_<
re

fe
re

nc
eN

am
e>

(in
t p

ro
vi

de
rE

C,
 in

t u
se

rE
C)

 -
ne

ed
s t

o
be

 re
al

ize
d

by
 a

 C
om

po
ne

nt
 v

en
do

r.
isD

ep
en

da
bl

e
n/

a
3

Le
ge

nd
:

1 2 3

Se
m

an
tic

al
 C

om
pa

tib
ili

ty
 is

 o
nl

y
co

ns
id

er
ed

 fo
r S

er
vi

ce
 B

in
di

ng
s.

 T
hu

s o
nl

y
th

e
be

ha
vi

or
 o

f a
 se

rv
ic

e
an

d
a

se
rv

ic
e

re
fe

re
nc

e
ar

e
co

ns
id

er
ed

 w
ith

in
 th

e
re

fe
re

nc
e

im
pl

em
en

ta
tio

n.
O

nl
y

de
fin

ed
 w

ith
in

 th
e

re
fe

re
nc

e
im

pl
em

en
ta

tio
n

fo
r a

 c
ur

re
nt

ly
 e

st
ab

lis
he

d
bi

nd
in

g
in

st
ea

d
of

 p
as

sin
g

a
De

pe
nd

ab
le

 S
er

vi
ce

 a
s a

 p
ar

am
et

er
 to

 th
e

m
et

ho
d.

N
ot

 d
ef

in
ed

 w
ith

in
 th

e
re

fe
re

nc
e

im
pl

em
en

ta
tio

n,
 a

s D
Ai

SI
 w

ill
 o

nl
y

es
ta

bl
ish

 se
m

an
tic

al
ly

 c
om

pa
tib

le
 S

er
vi

ce
 B

in
di

ng
s a

nd
 th

us
 th

is
re

la
tio

n
is

al
w

ay
s t

ru
e.

Re
fe

re
nc

e
Im

pl
em

en
ta

tio
n

Fi
gu
re
6.
31
:
M
ap
pi
ng
Be
ha
vi
or
al
Re
la
tio
ns
D
ef
in
ed
in
O
ur
Fo
rm
al
Sy
st
em

M
od
el
to
El
em
en
ts
of
O
ur
Re
fe
re
nc
e
Im
pl
em
en
ta
tio
n.

M
od

el
M

od
el

 E
le

m
en

t
G

ro
up

Im
pl

em
en

ta
tio

n
El

em
en

t
Re

st
ric

tio
ns

In
co

m
pa

tib
ili

ty
Ch

an
ge

In
fr

as
tr

uc
tu

re
Co

nf
ig

ur
at

io
nC

om
po

ne
nt

 c
he

ck
s t

he
 se

m
an

tic
al

 C
om

pa
tib

ili
ty

, w
he

ne
ve

r
eq

ui
va

le
nc

eC
la

ss
Ch

an
ge

d(
In

st
an

ce
Co

m
po

ne
nt

Se
rv

ic
eI

f d
ep

en
da

bl
eS

er
vi

ce
, i

nt

se
rv

ic
eE

qu
iv

al
en

ce
Cl

as
s)

 is
 c

al
le

d
1

Co
m

pa
tib

ili
ty

Ch
an

ge
In

fr
as

tr
uc

tu
re

Co
nf

ig
ur

at
io

nC
om

po
ne

nt
 c

he
ck

s t
he

 se
m

an
tic

al
 C

om
pa

tib
ili

ty
, w

he
ne

ve
r

eq
ui

va
le

nc
eC

la
ss

Ch
an

ge
d(

In
st

an
ce

Co
m

po
ne

nt
Se

rv
ic

eI
f d

ep
en

da
bl

eS
er

vi
ce

, i
nt

se

rv
ic

eE
qu

iv
al

en
ce

Cl
as

s)
 is

 c
al

le
d

1

Le
ge

nd
:

1

Re
fe

re
nc

e
Im

pl
em

en
ta

tio
n

Se
m

an
tic

al
 C

om
pa

tib
ili

ty
 c

he
ck

 is
 tr

ig
ge

re
d

by
 th

e
Se

rv
ic

e
Pr

ov
id

er
 b

y
ca

lli
ng

 st
at

eC
ha

ng
ed

; S
er

vi
ce

U

se
r c

an
no

t t
rig

ge
r t

he
 c

om
pa

tib
ili

ty
 c

he
ck

.

Fi
gu
re
6.
32
:
M
ap
pi
ng

Be
ha
vi
or
al
Re
co
nf
ig
ur
at
io
n
Tr
ig
ge
rs
D
ef
in
ed

in
O
ur
Fo
rm
al
Sy
st
em

M
od
el
to
El
em
en
ts
of
O
ur
Re
fe
re
nc
e

Im
pl
em
en
ta
tio
n.

And now the end is near; and so I face the final curtain.
My friend, I’ll say it clear, I’ll state my case of which I’m certain.
I’ve lived a life that’s full. I’ve travelled each and every highway;
and more, much more than this, I did it my way.

Frank Sinatra

7
Summary

Nowadays, Dynamic Adaptive Systems are gaining importance rapidly, as you can Dependable
Dynamic Adaptive
Systems gain
importance.

see by research directions like Ubiquitous Computing, Ultra Large Scale Systems, or
IT Ecosystems and numerous conferences or workshops, dealing with these research
questions associated with these systems. As indicated by the name, two concepts
characterize Dynamic Adaptive Systems: Dynamics and Adaptation.

These systems are dynamic, meaning that Components may enter or leave the Dynamics =
Components enter or
leave the system at
runtime.

system at any time during runtime. To fully benefit from dynamics, Dynamic Adap-
tive Systems are open system, meaning that external Service Interfaces of their
Components are published in a common Domain Architecture enabling Component
vendors to provide new Components for these systems.

These Components need to be integrated into those systems, although they have Components are not
known upfront.not necessarily been known upfront. Thus, classical design of an overall system,

explicitly specifying the System Configuration containing its Components and their
bindings, is not applicable for Dynamic Adaptive Systems anymore.

Dynamic Adaptive Systems are adaptive, meaning that they (respectively their Systems and
Components are
adaptive regarding a
System Context.

Components) may behave differently according to a current context of the system.
Thus, they adapt their behavior to fully benefit from entering Components, provide
graceful degradation in case of leaving Components, or to adapt to a user’s current
needs.

As motivated, runtime reconfiguration, which means changing the System Con- A dynamically
changing System
Configuration is
necessary.

figuration including its Component Bindings, is necessary for Dynamic Adaptive Sys-
tems since Components may enter or leave a system at runtime. However, proving

173

174 7. Summary

the correctness of a Component Binding at runtime is not possible in general. Nev-
ertheless it is crucial to deal with semantical Compatibility of Component Bindings,Semantical

Compatibility needs
to be considered.

as (re-)binding Dynamic Adaptive Components at runtime imposes huge threats to
a system’s Dependability.

7.1 Conclusion

Starting with an application example from the emergency management domain, we
analyzed Dependable Dynamic Adaptive Systems to gain a deep understanding of
these systems. This resulted in a formal system model, enabling us to reason aboutOur system model

defines syntactical
and semantical
Compatibility.

Compatibility within these systems. We defined two aspects of Compatibility within
our model: syntactical and semantical Compatibility.

Syntactical Compatibility only considers a structural comparison of Dependable
Services provided by Components and Dependable Service References specify-
ing required Dependable Services of other Components. Semantical Compatibility
compares provided and required behavior of Components instead.

We elaborated an approach evaluating the semantical Compatibility of Com-A Dependable
Dynamic Adaptive
System must not

contain semantically
incompatible

bindings.

ponent Bindings during establishing a System Configuration. This enables a De-
pendable System Infrastructure to establish only Dependable System Configura-
tions free of semantically incompatible Component Bindings. We call Dynamic
Adaptive Systems containing only semantically compatible Component Bindings De-
pendable Dynamic Adaptive Systems.

A Component Binding may consist of several Service Bindings between a Service
User and a Service Provider. The semantical Compatibility is evaluated separately
for each of these Service Bindings resulting in a composed semantical Compatibility
of the Component Binding.

Semantical Compatibility in our formal model is defined by the ≃Semantical rela-≃Semantical defines
semantical

Compatibility.
tion. As semantical Compatibility of a Component Binding may change over time
due to changes in state of the bound Components, the evaluation of this relation de-
pends on the state of the bound Components. Thus, our model introduces so calledDependability

Checkpoints denote
points, where the
Dependability is

threatened.

Dependability Checkpoints. They specify points in time during system execution,
where the Dependability of Component Bindings need to be reevaluated.

In order to get a reasonable set of Dependability Checkpoints for a Compo-
nent Binding at runtime, our model introduces the concept of Behavior Equivalence
Classes. By using Behavior Equivalence Classes we try to avoid unnecessary eval-Behavior

Equivalence Classes
are used to reduce

points, where
semantical

Compatibility needs
to be reevaluated.

uations of semantical Compatibility of Component Bindings by recognizing critical
changes of a Component’s state, which are relevant for the semantical Compatibil-
ity of a Component Binding.

Behavior Equivalence Classes specify state spaces, where a Dependable Ser-
vice behaves equivalently respectively a Dependable Service Reference expects,

7. Summary 175

that a used Dependable Service behaves equivalently. Thus, they are defined by
each Dependable Service as well as by each Dependable Service Reference.

The relations ServiceBehavior respectively ServiceReferenceBehavior return the As long as a
Behavior
Equivalence Class
does not change,
equivalent behavior
is provided
respectively
expected.

current Behavior Equivalence Class of a Dependable Service respectively a De-
pendable Service Reference bound to a specific Dependable Service at any time
during runtime by accessing state-preserving methods of the specific Dependable
Service and reasoning about their return values.

Behavior Equivalence Classes of Dependable Service References express, that
a specific behavior is expected by a Service Provider. This specific behavior needs
to be considered during the realization of the≃Semantical relation when implementing
our formal system model.

By monitoring changes in Behavior Equivalence Classes, a Dependable Sys- Changes of a
Behavior
Equivalence Class
trigger a
reevaluation of
semantical
Compatibility.

tem Infrastructure can reevaluate semantical Compatibility of a Service Binding,
whenever the Behavior Equivalence Class of a bound Dependable Service or De-
pendable Service Reference changes. If it detects a semantical incompatibility, it
can instantly remove this specific Service Binding from the System Configuration,
which prevents method calls at a semantically incompatible Dependable Service
and, therefore, increases the system’s Dependability.

We provided a reference implementation DAiSI of such a Dependable System DAiSI updates a
Dependable System
Configuration based
on our formal model.

Infrastructure. DAiSI updates the System Configuration while it considers semantical
Compatibility. Therefore, it implements our formal model introduced before.

DAiSI uses runtime testing to reason about semantical Compatibility of Service
DAiSI uses testing –
a lightweight, well
known, mechanism.

Bindings. A Service User may specify different Compliance Test Cases depending
on a currently active Behavior Equivalence Class of this Service Binding to deal with
different expected behaviors depending on the Components’ states. The Compli-
ance Test Cases of the currently active Behavior Equivalence Class are executed Compliance Test

Cases are defined by
Service Users.

on Service Providers at runtime to reason about the semantical Compatibility of a
specific Service Binding.

Since tests are executed on Dependable Dynamic Adaptive Components bound Side-effects are
addressed by
introducing a testing
mode.

to a running system, we need to take care, that testing does not have side-effects
on the system’s behavior. Thus, we notify all Dependable Dynamic Adaptive Com-
ponents, which are transitively bound to the Component under test in order to warn
them, that they must not rely on the behavior of other Service Providers at the mo-
ment. In consequence we also notify them, when testing has finished in order to
enable them, to roll back state changes, which mistakenly occurred during test case Our implementation

framework enables
vendors to
implement
Dependable
Dynamic Adaptive
Components quickly.

execution.
An implementation framework enables Component vendors to easily implement

Dependable Dynamic Adaptive Components which adhere to our formal model.
Eclipse templates for code completion complement the formal model as additional
tool support for Component vendors.

We implemented our application example using DAiSI. This implementation

176 7. Summary

serves as a guideline for Component vendors, how they can implement Depend-
able Dynamic Adaptive Components using our reference implementation of a De-
pendable System Infrastructure. The implementation of this application example
shows, that DAiSI can detect semantical incompatibilities at runtime and remove the
specific Service Bindings.

DAiSI does not know anything about the Dependable Dynamic Adaptive Com-Our approach is
application

independent.
ponents except that they adhere to our formal model. Thus, DAiSI can be used to
realize and execute Dependable Dynamic Adaptive Components for any Depend-
able Dynamic Adaptive System.

Together with Siemens we applied for a patent on our approach to DependableWe applied for
patent together with

Siemens.
Dynamic Adaptive Systems using Behavior Equivalence Classes to (re-)evaluate se-
mantical Compatibility of Component Bindings [NRK+10].

7.2 Outlook

In the future we may investigate several issues regarding our approach presentedComposition is not
part of our model,

yet.
in this thesis. First of all, our formal model does not provide composition, mean-
ing that two Components can be bound together forming a single Component and,
therefore, encapsulating those Service Interfaces used for their Component Binding.
Today composition is used at development time to encapsulate inner details of Com-
ponent realizations. We need to investigate, whether encapsulation is required at
runtime as well to prevent multiple Service Bindings of different Dependable Ser-
vice References to the same Dependable Service.

Next to this, our proposed approach will have an impact on the engineeringThe impact of our
approach on a
engineering

methodology needs
to be investigated.

methodology for Dependable Dynamic Adaptive Systems respectively their Com-
ponents. A comparison between an engineering methodology today and a novel
engineering methodology using our approach is depicted in Figure 7.1.

Today system vendors select Components from a Component market and add
self-developed Components which they may publish in the Component market as
well. They compose the resulting Component selection to a system and verify and
validate this system1. When they successfully verified and validated this system,
they deliver it to different end users, which will use this system in the following.

Different system vendors use this methodology to produce systems based onActivities like
verification shift

from development
time towards

runtime.

Components from the same Component market leading to a huge diversity of sys-
tems available for end users. This methodology is depicted on top of Figure 7.1.

Using our approach, several parts of this engineering methodology shift from
development time towards runtime of the system. First of all, there is no system ven-
dor anymore. Instead there are only Component vendors, which implement Com-No system vendor

anymore.
1Of course, this is no one-way waterfall process – loops are not displayed in this Figure to

increase readability.

7. Summary 177

ponents by referring to interfaces jointly defined by a standardization committee
in a common Domain Architecture. In addition they may verify their Components
against semantical specifications, which may exist in this Domain Architecture2.

After publishing these Components in a Component market, end users may select End users integrate
the system
(semi-)automatically
by using a
Dependable System
Infrastructure.

Components from this market and deploy them within any system using a Depend-
able System Infrastructure. This infrastructure is responsible for composition of the
system, which means it needs to update the System Configuration regarding the
newly entering Components. During this update of the System Configuration, the
infrastructure considers semantical Compatibility by verifying and validating3 the
Component Bindings.

Since Components change their internal states and, therefore, their provided
respectively expected behavior, this semantical Compatibility needs to be perma-
nently reevaluated, whenever a change in a Behavior Equivalence Class is rec-
ognized by monitoring. If the semantical Compatibility of a Component Binding
changes, the Dependable System Infrastructure needs to update the System Con-
figuration immediately.

This engineering methodology is depicted at the bottom of Figure 7.1. We need Users want to know,
whether a
Component fits into
their system, before
they buy it.

to evaluate, whether this sketch of an engineering methodology is appropriate for
Dependable Dynamic Adaptive Systems, or whether it needs to be further refined.
For example, it may be necessary to inform a user about current syntactical and
semantical Compatibility of Components available in a Component market to an
existing Dependable Dynamic Adaptive System in order to enable him to select
fitting Components.

For Component developers, we need to consider the integration of test case Test case generation
needs to be
considered to lower
the burden of our
approach.

generation into our framework. This enables them to engineer their test cases in a
systematical way by specifying them in languages like TTCN-3 or U2TP. However,
there is already a bunch of related work in the area of test case generation from
models. Thus, the integration of test cases is not a research challenge.

Regarding test case generation one could also think of generating test case
automatically from execution traces collected during executions at development
time by Component vendors. This would lower the burden when applying our ap-
proach to Dependable Dynamic Adaptive Systems. However, we need to be able
to extract the relevant traces to generate test cases to apply this type of test case
generation.

2This is not depicted in the Figure to increase readability
3It depends on the test cases, whether the evaluation of semantical Compatibility is verification,

validation, or both. If test cases are derived from a semantical specification of the Service Interface
contained in the Domain Architecture, they represent verification. If they are defined by a Service
User to express his expectations of the behavior of this Dependable Service, they represent valida-
tion. In consequence a combination using both types of test cases means performing validation and
verification.

178 7. Summary

Figure 7.1: An Engineering Methodology for Dependable Dynamic Adaptive Sys-
tems Compared to One for Component Based Systems.

7. Summary 179

Finally there are implementation details, which may be improved in future re-
leases of the reference implementation DAiSI. First of all, the simplifications currently Syntactical

Compatibility in
DAiSI is currently
based on identical
types.

made for the realization of DAiSI compared to our formal model can be removed.
These simplifications includes the syntactical Compatibility, which is reduced to iden-
tical types of the implemented respectively referred to Service Interface instead of
comparing the methods and attributes of the two Service Interfaces.

In Addition, a mechanism is needed, which ensures, that the calculation of Be- Only
state-preserving
methods may be
called to calculate
Behavior
Equivalence Classes.

havior Equivalence Classes itself does not change the Behavior Equivalence Classes.
Classifying methods of a Service Interface into state-preserving and state-changing
methods can help us to ensure this. By annotating [Chi05] these methods with these
categories we can change the implementation of DAiSI to ensure, that only state-
preserving methods are called during calculation of Behavior Equivalence Classes.

Next to this, DAiSI does not take care about cyclic dependencies of Components, Cyclic dependencies
are not considered.where a Service Interface provided by ComponentA is required by ComponentB

and vice versa. In such a situation DAiSI would not establish a System Configuration
binding ComponentA to ComponentB and vice versa. One could enhance DAiSI to
be able to establish such a System Configuration.

However, this bears the risk of livelocks – especially, as the specific Service
Provider has not necessarily been known at development time. Thus, one could
alternatively include a cycle detection into DAiSI and inform the end user, that a
Component has not been integrated into the system due to a cyclic dependency,
which would be a huge threat for the system’s Dependability.

Finally, DAiSI currently evaluates semantical Compatibility by executing Compli- Test case execution
can be
complemented by
techniques like
formal proofs.

ance Test Cases. This could be complemented by further verification and validation
techniques like formal proofs. However, we need to focus on specific properties like
deadlock-recognition, which can be evaluated at runtime using these techniques.

In this case, we need to provide a guideline, which properties may be evalu-
ated using which verification and validation technique. However, combining several
techniques will result in a further increase of the system’s Dependability.

7.3 Additional Material

You can find additional material on the thesis’ homepage
http://www.dirkniebuhr.de/. It includes the following.

• A PDF version of this thesis.

• Our reference implementation DAiSI.

• The implementation of our application example.

This page will also contain known errata of this thesis in the future.

http://www.dirkniebuhr.de/

180 7. Summary

Appendices

181

Glossary

Activatable Dependable Component Configuration

If each Dependable Service required by a specific Dependable Component
Configuration is available within a Dependable Dynamic Adaptive System,
we call this Dependable Component Configuration activatable, as it could be
activated by a Dependable System Infrastructure. A Component activated in
a specific Dependable Component Configuration provides all Dependable
Services of this configuration by using its Dependable Service References.

Behavior Equivalence Class

A Behavior Equivalence Class defines a state space of equivalent behavior
of a Dependable Service. If Behavior Equivalence Classes are defined by a
Dependable Service itself, they express equivalent provided behavior. These
Behavior Equivalence Classes may have been derived from the control flow of
the implementation respectively from its specification.

If Behavior Equivalence Classes in contrary are defined by a Dependable
Service Reference, they define state spaces, where equivalent behavior is
assumed by the Requesting Service Partner. The Requesting Service Part-
ner declaring the Dependable Service Reference does not necessarily know
the Unknown Service Partner providing the Dependable Service. Thus, these
Behavior Equivalence Classes do not have to correspond to the state spaces
defined as Behavior Equivalence Classes by a specific Dependable Service –
they may differ, instead.

C-Unit

cf. Casualty Unit.

Casualty Unit

The Casualty Unit replaces the casualty card (cf. Figure 3.2) in our application
example from the emergency assistance domain. It stores the Triage Class as
well as the treatment history of a casualty. If it is connected to a so called

183

184 Glossary

Peripheral Unit, it is able to calculate the Triage Class automatically from
vital data information of a casualty.

Combined Behavior Equivalence Class

A Combined Behavior Equivalence Class describes an Behavior Equivalence
Class for a Dependable Service Binding at runtime. It contains the User’s Be-
havior Equivalence Class (Current Behavior Equivalence Class of the Service
User) as well as the Provider’s Behavior Equivalence Class (Current Behavior
Equivalence Class of the Service Provider). Combined Behavior Equivalence
Classes are not specified in advance but are combined from the Current Be-
havior Equivalence Classes of the associated Service Partners at runtime.

A change in a Combined Behavior Equivalence Class of a Dependable Service
Binding means, that now a different behavior is assumed by the Requesting
Service Partner or a different behavior is provided by the Unknown Service
Partner. Thus, it has to be checked, whether this Dependable Service Bind-
ing is still valid by (re-)executing all Compliance Test Cases associated with
the User’s Behavior Equivalence Class of the Combined Behavior Equivalence
Class.

Compatibility

The term Compatibility is used within this thesis to describe, that a Service
Provider P and a Service User U can be bound together. Compatibility splits
up into syntactical Compatibility and semantical Compatibility.

A Service S provided by Service Provider P is syntactically compatible with a
Service Reference declared by a Service User U, if each method or attribute
from R is provided by S.

Service S and Service Reference R are semantical compatible, if the behavior
provided by S implies the behavior expected by R.

Since this implication cannot be proven in general, our approach is, describing
the expected behavior by Compliance Test Cases, which are executed at
runtime. As the result of the test execution may vary depending on the state
of P and U, the semantical Compatibility may change during runtime of a
Dependable Dynamic Adaptive System.

Compatibility Component

A Compatibility Component monitors the semantical Compatibility of Com-
ponent Bindings of a System Configuration. It can detect incompatibilities
between Components by executing Compliance Test Cases defined by the
Requesting Service Partner of the Service Bindings.

Glossary 185

A Compatibility Component can, therefore, be used by a Dependable Con-
figuration Component to establish only Dependable System Configurations
(System Configurations containing only Dependable Component Bindings).

Compliance Test Case

A Compliance Test Case is a test case defined by a Dependable Service
Reference. It can be executed to evaluate, whether a Dependable Service
behaves as expected by a Service User. Therefore, the Compliance Test Case
will access the specific Dependable Service and reason whether its behavior
is compatible with the Service User’s expectations.

A Compliance Test Case is associated with a set of Behavior Equivalence
Classes defined by the Dependable Service Reference. This means, that it
needs to be executed, whenever the Combined Behavior Equivalence Class
of a Dependable Service Binding associated with the Dependable Service
Reference changes and the User’s Behavior Equivalence Class of the Com-
bined Behavior Equivalence Class is among the set of associated Behavior
Equivalence Classes.

A passing Compliance Test Case states, that the Dependable Service Bind-
ing between this specific Dependable Service Reference and Dependable
Service is semantically compatible in this specific Combined Behavior Equiv-
alence Class. A failing Compliance Test Case states, that the Dependable
Service Binding must not be established respectively needs to be removed
since it is semantically incompatible in the specific Combined Behavior Equiv-
alence Class.

Component

Several attempts were made to define a Component in the past [BDH+98].
We will try to focus on the commonalities of these definitions in the following.
A Component is the fundamental building block [Gro04a] of Component-
based systems. Thus, Components represent the parts of a System Configu-
ration in Component-based systems. According to [Szy02] a Component is a
unit of independent deployment and subject to third-party composition.

Component Binding

A Component Binding describes the connection between two specific Dynamic
Adaptive Components R and U. A Component Binding exists between these
two Components, if U provides at least one Service in its Current Configura-
tion, which is bound to a Service Reference of the Current Configuration of
R by a Service Binding. A Component Binding contains all Service Bindings
which exist between these two Components.

186 Glossary

Component Configuration

A Dynamic Adaptive Component describes the mapping between provided
Services and required Services (declared as Service References) as Compo-
nent Configurations. The meaning of a Component Configuration is, that all
offered Services provided by this Component Configuration are offered to
other Dynamic Adaptive Components, iff each Service Reference is bound
to a Service provided by a Component Configuration of another Dynamic
Adaptive Component from the System Configuration.

Configuration Component

The Configuration Component is a specific System Infrastructure Component,
which is responsible for finding and establishing a System Configuration. To
achieve this, it introspects the dependencies declared by Dynamic Adaptive
Components in terms of Service References respectively Services.

Current Behavior Equivalence Class

The Current Behavior Equivalence Class describes the Behavior Equivalence
Class of a Dependable Service at runtime from the Service User’s view or
the Service Provider’s view.

The Service Provider’s view of the Current Behavior Equivalence Class is pro-
vided by the Dependable Service based on its internal state. The Service
User’s view of the Current Behavior Equivalence Class is provided by the De-
pendable Service Reference based on its internal state as well as based on
the Observable State of the Dependable Service.

Current Configuration

For each Dynamic Adaptive Component within a Dynamic Adaptive System’s
System Configuration, exactly one of its Component Configurations is the so
called Current Configuration. This means, that for each Service Reference R
declared by the Current Configuration a Service Binding exists, which binds R
to a Service provided by a Current Configuration of another Dynamic Adap-
tive Component from the System Configuration.

Dependability

[ALR04] defines Dependability based on service failures. They define a
service failure as an “event that occurs, when the delivered service deviates
from correct service, either because the system does not comply with the
specification, or because the specification did not adequately describe its
function”. Consequently they define Dependability as the “ability to avoid

Glossary 187

service failures that are more frequent or more severe than acceptable”. This
is the definition of Dependability to which we refer within this thesis.

Dependability Checkpoint

We call a point in time during system runtime a Dependability Checkpoint if
there are changes to the structure or behavior of the Dependable Dynamic
Adaptive Systems which threaten its Dependability.

Dependable Component Binding

A Dependable Component Binding is a specific Component Binding between
two Dependable Dynamic Adaptive Components, where all contained Ser-
vice Bindings are semantically compatible Dependable Service Bindings
meaning that all Dependable Services provided by Unknown Service Part-
ners bound to the Dependable Service References of this Requesting Service
Partner behave as expected by this Requesting Service Partner.

Dependable Component Configuration

A Dependable Component Configuration extends a Component Configuration
in a way, that it provides Dependable Services and declares Dependable
Service References instead of Services respectively Service References. This
enables us to reason about the semantical Compatibility of a specific Com-
ponent Binding, since each Dependable Service Reference may contain Com-
pliance Test Cases which need to pass when they are bound to compatible
Unknown Service Partners.

Dependable Configuration Component

The Dependable Configuration Component extends the Configuration Compo-
nent in a way, that it only establishes Dependable System Configurations. To
achieve this, it includes the runtime-testing mechanisms as introduced in this
thesis to establish only Dependable Component Bindings between semanti-
cally compatible Dependable Dynamic Adaptive Components.

Dependable Dynamic Adaptive Component

Dependable Dynamic Adaptive Components are specific Dynamic Adaptive
Components, which contain only Dependable Component Configurations and,
therefore, may be bound in a dependable way (cf. Dependable Component
Binding) by a Dependable Configuration Component.

Dependable Dynamic Adaptive System

A Dependable Dynamic Adaptive System shares all the characteristics of a
Dynamic Adaptive System. In addition it needs to detect and avoid possi-

188 Glossary

ble resulting semantically incompatible System Configurations during runtime
and, therefore, establish only Dependable System Configurations.

This is done by using a Dependable System Infrastructure, which monitors
that no semantically incompatible System Configurations are established at
runtime.

Dependable Integration

By Dependable Integration we mean an integration of Dynamic Adaptive
Components into a Dynamic Adaptive System while taking actions to ensure,
that only semantically compatible Service Partners are bound.

In our approach this is achieved by runtime testing, enabling each Dynamic
Adaptive Component acting as Requesting Service Partner to specify the de-
sired behavior of Unknown Service Partners by test cases, which need to pass
prior to integration as well as after integration during system runtime.

Dependable Service

A Dependable Service is a specific Service characterized by the feature that it
has a set of Behavior Equivalence Classes. If a Dependable Service is offered
by the Current Configuration of a Dependable Dynamic Adaptive Component
at runtime, it is associated with exactly one of these Behavior Equivalence
Classes. This so called Current Behavior Equivalence Class is determined by
the internal state of the Dependable Service.

Whenever the Observable State of a Dependable Service changes, it no-
tifies the Dependable System Infrastructure, which will check, whether the
Combined Behavior Equivalence Classes of associated Dependable Service
Bindings have changed. If this is the case, it will perform another check –
using the runtime testing mechanisms from this thesis – whether the semantical
Compatibility of Dependable Service Bindings has changed and, therefore,
the Dependable Component Bindings from the Dependable System Config-
uration need to be updated due to a detected Semantical Incompatibility
respectively Semantical Compatibility.

Dependable Service Binding

A Dependable Service Binding is a Service Binding between Dependable Ser-
vice U and Dependable Service Reference R, where U provides an implemen-
tation of the Service Interface I. A Dependable Service Binding is associated
with a semantical Compatibility, declaring, whether U behaves as expected
by R. Using our approach that means, that a Dependable Service Binding
between U and R is semantical compatible, if the Compliance Test Cases
specified by R pass when executed on U.

Glossary 189

Dependable Service Bindings may only be established by a Dependable Con-
figuration Component if they are semantically compatible. If they are se-
mantically incompatible, they still have to be considered by the Dependable
System Infrastructure, since they may become semantically compatible if the
state of one of the involved Components changes.

Dependable Service Reference

A Dependable Service Reference extends a Service Reference in a way, that
it defines a set of Behavior Equivalence Classes regarding the Dependable
Service provided by a Unknown Service Partner of a specific Dependable
Service Binding.

These Behavior Equivalence Classes define state spaces, where the vendor
of the Dependable Dynamic Adaptive Component containing this Depend-
able Service Reference assumes, that a Dependable Service provided by a
third-party Component behaves equivalently. Exactly one of these Behavior
Equivalence Classes – the so called Current Behavior Equivalence Class – is
associated with each Dependable Service Binding at runtime. This means that
a Dependable Service Reference referring to a Service Interface I needs to
be able to return the Current Behavior Equivalence Class for any given De-
pendable Service, which implements I.

Next to the definitions of Behavior Equivalence Classes, a Dependable Service
Reference defines Compliance Test Cases, which are associated with the Be-
havior Equivalence Classes and may be executed by the Dependable System
Infrastructure if the Current Behavior Equivalence Class of the Dependable
Service Reference is among the associated Behavior Equivalence Classes.
The Dependable System Infrastructure executes these Compliance Test Cases
whenever a Combined Behavior Equivalence Class of a Dependable Service
Binding changes in order to decide, whether the semantical Compatibility of
this Dependable Service Binding has changed.

Dependable System Configuration

A Dependable System Configuration is a System Configuration, which only
contains Dependable Component Bindings between Dependable Dynamic
Adaptive Components.

Dependable System Infrastructure

A Dependable System Infrastructure extends the System Infrastructure in a
way, that it uses a Dependable Configuration Component which establishes
only Dependable System Configurations.

190 Glossary

This is achieved by checking the semantical Compatibility of Component Bind-
ings within a System Configuration by using a so called Compatibility Com-
ponent. Therefore, semantical incompatible System Configurations can be
detected in advance.

Domain Architecture

By Domain Architecture we mean the specific Service Interfaces and
datatypes, which are used by Dynamic Adaptive Components in Dynamic
Adaptive Systems of a specific domain. These Service Interfaces and
datatypes are expected to be standardized in advance, enabling a vendor
to develop Dynamic Adaptive Components for a specific domain.

Next to syntactical information regarding Service Interfaces and datatypes,
the Domain Architecture is expected to contain semantical information as well.
This may include Service Interface protocols or a formal specification of the
behavior of correct implementations of a Service Interface’s methods. How-
ever, we do assume in this thesis, that Dynamic Adaptive Components may be
incorrect regarding this semantical specification from the Domain Architecture.

Dynamic Adaptive Component

A Dynamic Adaptive Component is a Component, characterized by its contin-
uous adaptation to a System Context or a User Context. You can think of
a speech recognition Component, which adapts its speech recognition algo-
rithm regarding the current physical stress of the speaking user (adaptation to
the User Context) or a printer Component, which can provide a copy-function
after adaptation, whenever a scanner Component is present in the system
(adaptation to the System Context).

In order to support this adaptation, Dynamic Adaptive Components may spec-
ify several Component Configurations describing, which Services they offer
depending on Services, which are offered by other Dynamic Adaptive Compo-
nents in the Dynamic Adaptive System. This enables a System Infrastructure to
update their Current Configurations, if new Dynamic Adaptive Components en-
ter the Dynamic Adaptive System, which provide Services required by them.

Dynamic Adaptive Components act as Service Partners in Component Bindings
meaning that they offer Services to Dynamic Adaptive Components or they use
Services, which are offered by other Dynamic Adaptive Components. Com-
ponent Bindings describe, how Dynamic Adaptive Components are connected
among each other within a Dynamic Adaptive System.

Dynamic Adaptive Components are expected to publish their adaptation trig-
gers to System Infrastructure Components, enabling automatic adaptation by
a System Infrastructure.

Glossary 191

Dynamic Adaptive System

A Dynamic Adaptive System is a system built from Dynamic Adaptive Com-
ponents. How the system is composed from Dynamic Adaptive Components
– namely which Dynamic Adaptive Components are contained in the system
and how they are bound – is described in its System Configuration.

A Dynamic Adaptive System is characterized by the openness towards entering
Dynamic Adaptive Components. This results in a continuous adaptation of the
System Configuration during runtime due to changes in the System Context
(e.g. newly entering respectively leaving Dynamic Adaptive Components)
or due to changes in the User Context (e.g. a new user or changing usage
preferences).

Thus, the System Configuration in a Dynamic Adaptive System needs to be es-
tablished and updated at runtime automatically. This continuous adaptation
of the System Configuration needs to be supported by a System Infrastruc-
ture.

IC-Unit

cf. Incident Command Unit.

Incident Command Unit

The Incident Command Unit is a Component of our application example from
the emergency assistance domain. It may be a large display mounted to the
inside of an ambulance vehicle. It enables medics, which coordinate a rescue
operation, to assign medics to casualties efficiently.

To do this, the Incident Command Unit provides an graphical overview map,
where all medics and casualties are displayed. It can display current activities
of the medics as well as vital data and Triage Classes of the casualties.

M-Unit

cf. Medic Unit.

Medic Unit

TheMedic Unit is the interaction device of a medic in our application example
from the emergency assistance domain. A medic can assign Triage Classes
to casualties, view their vital data or their treatment history. In addition,
commands sent by the Incident Command Unit are displayed on the Medic
Unit.

192 Glossary

Observable State

If we talk about Observable State of a Dependable Service in this thesis, we
mean its public visible state, observable by the value of its public attributes
and return values of its state-preserving methods.

P-Unit

cf. Peripheral Unit.

Peripheral Unit

The Peripheral Unit is a Component of our application example from the emer-
gency assistance domain. It features vital data sensors like a pulse rate sensor
or a blood pressure sensor. If a medic attaches these sensors to a casualty,
the Peripheral Unit enters the Dependable Dynamic Adaptive System. As a
consequence the vital data of this casualty can be monitored by any medic.

Requesting Service Partner

A Dynamic Adaptive Component acts as a Requesting Service Partner when
it declares Service References which may be bound to Services provided by
other Dynamic Adaptive Components in their Current Configurations.

A Dependable Dynamic Adaptive Component acting as a Requesting Service
Partner in addition needs to be able to decide, whether the specific Depend-
able Service to which its Dependable Service Reference may be bound by a
Dependable Service Binding fulfills its expectations regarding the behavior.

Semantical Compatibility

We call a Dependable Service S implementing a Service Interface I and a
Dependable Service Reference R referring to I semantical compatible, if the
provided behavior of S matches the expectations of R.

Semantical Incompatibility

We call a Dependable Service S implementing a Service Interface I and a
Dependable Service Reference R referring to I semantical incompatible, if the
provided behavior of S does not match the expectations of R.

Service

A Service in this thesis is the implementation of a Service Interface provided
by a specific Dynamic Adaptive Component in at least one of its Component
Configurations. A Dynamic Adaptive Component provides Services as an
Unknown Service Partner towards Requesting Service Partners.

Glossary 193

In contrast to common Service definitions from service-oriented architecture,
we do not assume, that a Service needs to be stateless.

Service Binding

A Service Binding describes the connection between two specific Dynamic
Adaptive Components which declare a Service Reference R (cf. Request-
ing Service Partner) respectively provide a Service U (cf. Unknown Service
Partner) that refers to respectively implements the same Service Interface I.
The Service Binding describes the connection between R and U.

Service Interface

Each Domain Architecture contains a set of Service Interfaces. These Service
Interfaces describe, how Dynamic Adaptive Components within a Dynamic
Adaptive System may interact by defining methods and attributes, which may
be offered by Dynamic Adaptive Components of the specific domain.

Unknown Service Partners refer to the Service Interfaces to describe the type
of their provided Services whereas Requesting Service Partners contain Ser-
vice References referring to Service Interfaces to indicate the type of Service,
they request.

In practice Service Interfaces are typically described in Interface Description
Languages like IDL [Gro04b] or WSDL [CCMW01]. These definitions only
describe syntactical aspects of a Service Interface.

Service Partner

A Service Partner in the sense of this thesis describes the role of a Dynamic
Adaptive Component in a Component Binding. A Dynamic Adaptive Compo-
nent acts as a Requesting Service Partner when it is using Services provided by
other Dynamic Adaptive Components whereas it acts as an Unknown Service
Partner for other Dynamic Adaptive Components when it provides Services
which are used by them.

As a Dynamic Adaptive Component may provide and use Services at the
same time, it consequently may act as Requesting Service Partner and as
Unknown Service Partner at the same time.

Service Provider

cf. Unknown Service Partner

Service Reference

A Dynamic Adaptive Component declares the Services it requires in a specific
Component Configuration by Service References. A Service Reference R refers

194 Glossary

to a Service Interface I, which needs to be implemented by a Service S in
order to establish a Service Binding between S and R.

From a programmer’s view a Service Reference simply is a field, which has
the type of the Service Interface.

Service User

cf. Requesting Service Partner

System Configuration

By System Configuration we mean a set of Dynamic Adaptive Component in-
stances at runtime and the Component Bindings between them. An adaptation
of the System Configuration, therefore, may result from entering or leaving
Dynamic Adaptive Components (change in the set of Dynamic Adaptive Com-
ponent instances) as well as from changes of Component Bindings between
Dynamic Adaptive Component instances of the System Configuration.

System Context

The Context of a Dynamic Adaptive System is described by all Dynamic
Adaptive Components present in the system and their internal state. The Sys-
tem Context changes at runtime when new Dynamic Adaptive Components
enter, existing Dynamic Adaptive Components leave the system or existing
Dynamic Adaptive Components adapt themselves.

System Infrastructure

A System Infrastructure in this thesis contains infrastructure Components, which
support us to build a Dynamic Adaptive System. This includes infrastructure
Components responsible for instantiation or execution of Dynamic Adaptive
Components.

The main focus of this thesis lies on a specific infrastructure Component re-
sponsible for establishing or updating the Dependable System Configuration
within a Dependable Dynamic Adaptive System: the Dependable Configu-
ration Component.

Triage Class

Triage Classes are used during rescue operations with a large number of
casualties to classify casualties according to their treatment priority.

In Germany and further countries, casualties are classified in five Triage
Classes: T I to T IV as well as EX.

Glossary 195

• Triage Class T I characterizes casualties, which are severely wounded
and need to be treated immediately.

• A casualty classified as T II needs to be evacuated to a hospital for
further treatment.

• Casualties classified as T III are only slightly injured and are only
treated rudimentary on-site.

• Triage Class T IV characterizes casualties, which have no chance to
survive and are only treated in terms of terminal care.

• Moreover there is one additional Triage Class EX denoting casualties
which have died.

Unknown Service Partner

A Dynamic Adaptive Component acts as an Unknown Service Partner for other
Dynamic Adaptive Components (Requesting Service Partners) when it is bound
to them since its Current Configuration offers Services, which they requested.

It is unknown in terms of the implementation of the associated Service Inter-
faces, as Requesting Service Partners need to ensure, that the behavior of
the implementation provided by the Unknown Service Partner is semantically
compatible with the behavior they expected when they declared the Service
Reference.

User Context

The User Context contains information about the specific user(s) of a Dynamic
Adaptive System. This context changes at runtime when a new user starts
interacting with a Dynamic Adaptive System or when a user changes his in-
teraction style, for example, due to a new task.

Index

activatable, 73, 137, 147

Behavior Equivalence Class, 11, 12,
26, 31, 32, 103, 104, 106–
109, 111–115, 118, 134, 135,
139, 140, 145, 147, 148, 151,
158, 159, 161, 164–166, 168,
174–177, 179, 220, 224, 225,
232

C-Unit, 39–43, 45–48, 52, 54, 55, 58,
59, 62, 67, 68, 71, 72, 75, 76,
80, 82, 84, 85, 88, 92, 105,
107, 109, 112, 114, 130, 141,
142, 150–152, 154, 158, 159,
164, 187, 190, 194, 197, 200,
205, 210, 217–219, 225, 226,
228, 230, 232–235

Casualty Unit, 39
Combined Behavior Equivalence Class,

4, 111, 113
Compatibility, xv, 3, 11–13, 15, 17, 22–

24, 33, 45, 46, 58, 59, 61–
63, 69, 82, 89–93, 97, 101,
103, 105, 108, 109, 111–115,
118–121, 133–135, 137, 139,
141, 145–151, 154, 158, 159,
161, 164, 166, 168, 174–177,
179, 217, 222, 224, 232

Compatibility Component, 145
Compliance Test Case, 4, 11, 26, 28, 31,

32, 63, 103, 112, 118, 137,
145, 152, 166, 175, 179, 232

Component, xv, 1–5, 7, 8, 10, 11,
15–17, 19–26, 28–36, 39,

41, 45–49, 52, 55, 59, 61,
62, 67–74, 77, 92, 94, 95,
97, 98, 103, 105, 107, 121,
124–132, 134–143, 145–147,
151, 160–162, 164, 166–168,
173–177, 179, 224, 226

Component Binding, xv, 1–3, 47, 59, 61,
62, 147, 173, 174, 176, 177,
210

Component Configuration, 52, 61, 79,
80

Current Configuration, 13, 82, 95, 114–
117, 140, 166, 222, 223, 228,
230

Dependability, xv, 3, 5, 8, 10, 12, 14,
15, 18, 19, 21, 22, 25, 26, 28,
30, 31, 35, 45, 68, 70, 93, 94,
111, 121, 135, 137, 145, 147,
158, 174, 175, 179

Dependability Checkpoint, 68, 70, 71,
74, 76, 93, 94, 97, 98, 105,
107, 109, 111, 116, 118, 139,
158, 174, 189, 190, 192, 194,
197, 200, 205, 210

Dependable Component Binding, 24,
25, 30, 134, 135, 151, 154,
159

Dependable Component Configuration,
68, 69, 72–77, 79, 80, 82, 92–
96, 114–116, 133, 135–137,
142, 146, 147, 160–162, 167,
220–223, 226, 228, 230, 234

196

Index 197

Dependable Configuration Component,
25, 127–132, 135–142, 145–
149, 158, 159, 161–164, 166,
220–223, 228, 232, 234, 236

Dependable Dynamic Adaptive Compo-
nent, xv, 11–17, 24, 28, 29,
31, 32, 35, 37, 48, 49, 61,
62, 65, 67–77, 79, 80, 82, 84,
85, 93–95, 97, 98, 103, 106–
108, 111, 112, 114, 116–121,
125–142, 145–147, 150, 151,
154, 160–167, 175, 176, 189,
217, 219–222, 224, 226, 228,
232, 235, 236

Dependable Dynamic Adaptive System,
xv, 3, 4, 8, 11–18, 22, 25,
26, 28, 29, 31–33, 36, 37, 41,
46, 49, 50, 52, 59–63, 65–70,
72, 73, 76, 93–98, 101, 103,
105–107, 111–113, 117–122,
124–133, 135–142, 145, 158,
161, 164, 173, 174, 176, 177,
189, 190, 192, 194, 197, 200,
205, 210, 217, 222, 228

Dependable Integration, 10, 11, 16, 36,
46

Dependable Service, 13, 24, 25, 31,
32, 67, 69, 72, 73, 79, 80,
82, 84, 85, 89, 90, 92, 93,
96, 103, 106–108, 111–115,
118–121, 130, 134–137, 139,
142, 145, 147–152, 161–
164, 166–168, 174–177, 187,
220–222, 224, 226, 227, 236

Dependable Service Binding, 13, 32,
138–140, 142, 145, 147, 149,
161, 164, 166, 232, 234

Dependable Service Reference, 13, 73,
79, 80, 82, 84, 85, 89, 90, 92,
93, 96, 103, 106–108, 111–
115, 118–120, 133, 135–

137, 139, 142, 145, 147–152,
161–164, 166–168, 174–176,
187, 222, 224, 226–229, 232

Dependable System Configuration, 11,
13, 18, 113, 119, 121, 125–
128, 131, 132, 135–142,
145–147, 149, 150, 174, 175

Dependable System Infrastructure, 13,
18, 24, 25, 73, 74, 95,
97, 103, 108, 111–113, 115,
124–126, 128, 154, 158, 160,
161, 166, 174–177

Domain Architecture, 2, 3, 11, 17, 28,
46–49, 52, 55, 59, 61, 66,
164, 165, 173, 177, 217, 220,
226

Dynamic Adaptive Component, 1–5, 7–
13, 15, 21, 45–49, 52, 55, 58,
59, 174

Dynamic Adaptive System, 1–5, 7–11,
14, 15, 18–22, 24, 30, 35, 47,
48, 173, 174

IC-Unit, 43, 45, 47, 48, 52, 54, 67, 71,
217

Incident Command Unit, 43

M-Unit, 39, 41–43, 45–48, 52, 54, 58,
67, 68, 71, 72, 74, 76, 79,
82, 84, 87, 88, 130, 187, 190,
192, 217

Medic Unit, 39

P-Unit, 41–43, 45–50, 52, 54–56, 58,
59, 62, 67, 68, 71, 72, 75, 80,
82, 84, 85, 92, 105, 107, 109,
112, 114, 134, 142, 150, 152,
158, 159, 165, 190, 197, 205,
210, 217–220, 222–226, 228,
232, 234–236

Peripheral Unit, 41

198 Index

Requesting Service Partner, 13, 151,
154

Service, 1–4, 11–13, 23, 26, 58, 59,
61, 69, 96, 106, 112, 220

Service Binding, 11, 12, 32, 96, 112,
113, 119–121, 149, 150, 161,
174–176

Service Interface, 2, 4, 10, 11, 13, 17,
46–50, 52, 54, 55, 58, 59,
61, 62, 65, 66, 69, 75–77, 80,
84, 85, 87–92, 127, 133, 137,
142, 145, 148, 162–165, 167,
173, 176, 177, 179, 217–223,
226, 230

Service Partner, 1, 8, 10, 11, 33, 34,
133, 134, 150, 151, 158, 164

Service Provider, 11, 12, 28, 32, 58, 62,
72, 73, 76, 77, 79, 108, 113,
114, 119, 121, 133, 139, 174,
175, 179

Service Reference, 13, 58, 69, 96, 112,
227, 232

Service User, 11, 12, 28, 32, 58, 62,
67, 77, 79, 85, 108, 113, 114,
174, 175, 177

System Configuration, xv, 1–4, 10–13,
17, 19–22, 25, 26, 28, 31,
33, 119, 132, 145, 147, 148,
173–175, 177, 179, 224

System Context, 1, 2, 19, 173
System Infrastructure, 2, 13, 16, 19, 59,

61

Triage Class, 38–41, 43, 46–48, 50, 52,
55, 59, 67, 75, 109, 112, 130,
156, 226–228, 230, 232

Unknown Service Partner, 13, 31, 33–
36, 133

User Context, 1, 2

A
Formal Specification of the Application

Example

Within this appendix, we depict the relations from our formal model for the appli-
cation example. We left out the behavioral parts for the provided Dependable
Services of the C-Units and M-Units and for the Dependable Service References of
the M-Units intentionally to get a more compact appendix.

A.1 Type Specification

A.1.1 Service Interface mUnitServiceIf

Attributes(mUnitServiceIf) = ∅ (A.1)

Methods(mUnitServiceIf) = {getLongitudeM, getLatitudeM, getActivityM,
getAssignedCasualtyC}

(A.2)

MethodName(getLongitudeM) = ”getLongitude”
ReturnType(getLongitudeM) = int
Parameters(getLongitudeM) = ∅

(A.3)

199

200 A. Formal Specification of the Application Example

MethodName(getLatitudeM) = ”getLatitude”
ReturnType(getLatitudeM) = int
Parameters(getLatitudeM) = ∅

(A.4)

MethodName(getActivityM) = ”getActivity”
ReturnType(getActivityM) = Activity
Parameters(getActivityM) = ∅

(A.5)

MethodName(getAssignedCasualtyM) = ”getAssignedCasualty”
ReturnType(getAssignedCasualtyM) = CUnitServiceIf
Parameters(getAssignedCasualtyM) = ∅

(A.6)

A.1.2 Service Interface cUnitServiceIf

Attributes(cUnitServiceIf) = ∅ (A.7)

Methods(cUnitServiceIf) = {getLongitudeC, getLatitudeC, getTriageClassC,
setTriageClassC, getAssignedPeripheralUnitC}

(A.8)

MethodName(getLongitudeC) = ”getLongitude”
ReturnType(getLongitudeC) = int
Parameters(getLongitudeC) = ∅

(A.9)

MethodName(getLatitudeC) = ”getLatitude”
ReturnType(getLatitudeC) = int
Parameters(getLatitudeC) = ∅

(A.10)

MethodName(setTriageClassC) = ”setTriageClass”
ReturnType(setTriageClassC) = void
Parameters(setTriageClassC) = {triageClassC}

(A.11)

MethodName(getTriageClassC) = ”getTriageClass”
ReturnType(getTriageClassC) = TriageClass
Parameters(getTriageClassC) = ∅

(A.12)

A. Formal Specification of the Application Example 201

MethodName(getAssignedPeripheralUnitC) = ”getAssignedPeripheralUnit”
ReturnType(getAssignedPeripheralUnitC) = PUnitServiceIf
Parameters(getAssignedPeripheralUnitC) = ∅

(A.13)

AttributeName(triageClassC) = ”triageClass”
AttributeType(triageClassC) = TriageClass

(A.14)

A.1.3 Service Interface pUnitServiceIf

Attributes(pUnitServiceIf) = ∅ (A.15)

Methods(pUnitServiceIf) = {getSystolicBloodPressureP,
getDiastolicBloodPressureP, getPulseRateP}

(A.16)

MethodName(getSystolicBloodPressureP) = ”getSystolicBloodPressure”
ReturnType(getSystolicBloodPressureP) = int
Parameters(getSystolicBloodPressureP) = ∅

(A.17)

MethodName(getDiastolicBloodPressureP) = ”getDiastolicBloodPressure”
ReturnType(getDiastolicBloodPressureP) = int
Parameters(getDiastolicBloodPressureP) = ∅

(A.18)

MethodName(getPulseRateP) = ”getPulseRate”
ReturnType(getPulseRateP) = int
Parameters(getPulseRateP) = ∅

(A.19)

A.2 Instances at Dependability Checkpoint t0
At t0, we face the situation that no Dependable Dynamic Adaptive Component is
present in our Dependable Dynamic Adaptive System sae yet.

ApplicationComponentst0sae = ∅ (A.20)

202 A. Formal Specification of the Application Example

A.3 Instances at Dependability Checkpoint t0 + 1

At t0+1, we face the situation that a German M-Unit is present in our Dependable
Dynamic Adaptive System sae.

ApplicationComponentst0+1
sae = {mUnitGerman} (A.21)

A.3.1 German M-Unit

Containst0+1
sae (mUnitGerman) = {mConfiguration1German,

mConfiguration2German}
(A.22)

mConfiguration2German≥t0+1
sae mConfiguration1German (A.23)

Providest0+1
sae (mConfiguration1German) = {mUnitServiceGerman}

Declarest0+1
sae (mConfiguration1German) = ∅

Providest0+1
sae (mConfiguration2German) = {mUnitServiceGerman}

Declarest0+1
sae (mConfiguration2German) = {cUnitReferenceGerman}

(A.24)

Currentt0+1
sae (mUnitGerman) = mConfiguration1German (A.25)

Usest0+1
sae (cUnitReferenceGerman) = ∅ (A.26)

A.4 Instances at Dependability Checkpoint t0 + 2

At t0 + 2, we face the situation that next to the German M-Unit a German C-Unit
is present in our Dependable Dynamic Adaptive System sae.

A.5 Instances at Dependability Checkpoint t0 + 3

At t0+3, we face the situation that a German P-Unit is deployed in our Dependable
Dynamic Adaptive System sae.

ApplicationComponentst0+3
sae = {mUnitGerman, cUnitGerman, pUnitGerman} (A.27)

A. Formal Specification of the Application Example 203

A.5.1 German M-Unit

Containst0+3
sae (mUnitGerman) = {mConfiguration1German,

mConfiguration2German}
(A.28)

mConfiguration2German≥t0+3
sae mConfiguration1German (A.29)

Providest0+3
sae (mConfiguration1German) = {mUnitServiceGerman}

Declarest0+3
sae (mConfiguration1German) = ∅

Providest0+3
sae (mConfiguration2German) = {mUnitServiceGerman}

Declarest0+3
sae (mConfiguration2German) = {cUnitReferenceGerman}

(A.30)

Currentt0+3
sae (mUnitGerman) = mConfiguration2German (A.31)

Usest0+3
sae (cUnitReferenceGerman) = cUnitServiceGerman (A.32)

A.5.2 German C-Unit

Containst0+3
sae (cUnitGerman) = {cConfiguration1German,

cConfiguration2German}
(A.33)

cConfiguration2German≥t0+3
sae cConfiguration1German (A.34)

Providest0+3
sae (cConfiguration1German) = {cUnitServiceGerman}

Declarest0+3
sae (cConfiguration1German) = ∅

Providest0+3
sae (cConfiguration2German) = {cUnitServiceGerman}

Declarest0+3
sae (cConfiguration2German) = {pUnitReferenceGerman}

(A.35)

Currentt0+3
sae (cUnitGerman) = cConfiguration2German (A.36)

Usest0+3
sae (pUnitReferenceGerman) = pUnitServiceGerman (A.37)

204 A. Formal Specification of the Application Example

A.5.3 German P-Unit

Containst0+3
sae (pUnitGerman) = {pConfiguration1German} (A.38)

Providest0+3
sae (pConfiguration1German) = {pUnitServiceGerman}

Declarest0+3
sae (pConfiguration1German) = ∅

(A.39)

Currentt0+3
sae (pUnitGerman) = pConfiguration1German (A.40)

A.5.4 Semantical Compatibility

ServiceBehaviort0+3
sae (pUnitServiceGerman) =

pUnitServiceUsualOperationGerman
(A.41)

ServiceReferenceBehaviort0+3
sae (pUnitReferenceGerman,

pUnitServiceGerman) = pUnitReferenceUsualOperationGerman
(A.42)

pUnitReferenceGerman≃Semantical
t0+3
sae pUnitServiceGerman (A.43)

A.6 Instances at Dependability Checkpoint t0 + 4

At t0 + 4, we face the situation that a Dutch M-Unit joins our Dependable Dynamic
Adaptive System sae.

ApplicationComponentst0+4
sae = {mUnitGerman, cUnitGerman, pUnitGerman,

mUnitDutch}
(A.44)

A.6.1 German M-Unit

Containst0+4
sae (mUnitGerman) = {mConfiguration1German,

mConfiguration2German}
(A.45)

mConfiguration2German≥t0+4
sae mConfiguration1German (A.46)

A. Formal Specification of the Application Example 205

Providest0+4
sae (mConfiguration1German) = {mUnitServiceGerman}

Declarest0+4
sae (mConfiguration1German) = ∅

Providest0+4
sae (mConfiguration2German) = {mUnitServiceGerman}

Declarest0+4
sae (mConfiguration2German) = {cUnitReferenceGerman}

(A.47)

Currentt0+4
sae (mUnitGerman) = mConfiguration2German (A.48)

Usest0+4
sae (cUnitReferenceGerman) = cUnitServiceGerman (A.49)

A.6.2 German C-Unit

Containst0+4
sae (cUnitGerman) = {cConfiguration1German,

cConfiguration2German}
(A.50)

cConfiguration2German≥t0+4
sae cConfiguration1German (A.51)

Providest0+4
sae (cConfiguration1German) = {cUnitServiceGerman}

Declarest0+4
sae (cConfiguration1German) = ∅

Providest0+4
sae (cConfiguration2German) = {cUnitServiceGerman}

Declarest0+4
sae (cConfiguration2German) = {pUnitReferenceGerman}

(A.52)

Currentt0+4
sae (cUnitGerman) = cConfiguration2German (A.53)

Usest0+4
sae (pUnitReferenceGerman) = pUnitServiceGerman (A.54)

A.6.3 German P-Unit

Containst0+4
sae (pUnitGerman) = {pConfiguration1German} (A.55)

Providest0+4
sae (pConfiguration1German) = {pUnitServiceGerman}

Declarest0+4
sae (pConfiguration1German) = ∅

(A.56)

Currentt0+4
sae (pUnitGerman) = pConfiguration1German (A.57)

206 A. Formal Specification of the Application Example

A.6.4 Dutch M-Unit

Containst0+4
sae (mUnitDutch) = {mConfiguration1Dutch,

mConfiguration2Dutch}
(A.58)

mConfiguration2Dutch≥t0+4
sae mConfiguration1Dutch (A.59)

Providest0+4
sae (mConfiguration1Dutch) = {mUnitServiceDutch}

Declarest0+4
sae (mConfiguration1Dutch) = ∅

Providest0+4
sae (mConfiguration2Dutch) = {mUnitServiceDutch}

Declarest0+4
sae (mConfiguration2Dutch) = {cUnitReferenceDutch}

(A.60)

Currentt0+4
sae (mUnitDutch) = mConfiguration1Dutch (A.61)

Usest0+4
sae (cUnitReferenceDutch) = ∅ (A.62)

A.6.5 Semantical Compatibility

ServiceBehaviort0+4
sae (pUnitServiceGerman) =

pUnitServiceUsualOperationGerman
(A.63)

ServiceReferenceBehaviort0+4
sae (pUnitReferenceGerman,

pUnitServiceGerman) = pUnitReferenceUsualOperationGerman
(A.64)

pUnitReferenceGerman≃Semantical
t0+4
sae pUnitServiceGerman (A.65)

A.7 Instances at Dependability Checkpoint t0 + 5

At t0+5, we face the situation that a Dutch C-Unit is introduced in our Dependable
Dynamic Adaptive System sae.

ApplicationComponentst0+5
sae = {mUnitGerman, cUnitGerman, pUnitGerman,

mUnitDutch, cUnitDutch}
(A.66)

A. Formal Specification of the Application Example 207

A.7.1 German M-Unit

Containst0+5
sae (mUnitGerman) = {mConfiguration1German,

mConfiguration2German}
(A.67)

mConfiguration2German≥t0+5
sae mConfiguration1German (A.68)

Providest0+5
sae (mConfiguration1German) = {mUnitServiceGerman}

Declarest0+5
sae (mConfiguration1German) = ∅

Providest0+5
sae (mConfiguration2German) = {mUnitServiceGerman}

Declarest0+5
sae (mConfiguration2German) = {cUnitReferenceGerman}

(A.69)

Currentt0+5
sae (mUnitGerman) = mConfiguration2German (A.70)

Usest0+5
sae (cUnitReferenceGerman) = cUnitServiceGerman (A.71)

A.7.2 German C-Unit

Containst0+5
sae (cUnitGerman) = {cConfiguration1German,

cConfiguration2German}
(A.72)

cConfiguration2German≥t0+5
sae cConfiguration1German (A.73)

Providest0+5
sae (cConfiguration1German) = {cUnitServiceGerman}

Declarest0+5
sae (cConfiguration1German) = ∅

Providest0+5
sae (cConfiguration2German) = {cUnitServiceGerman}

Declarest0+5
sae (cConfiguration2German) = {pUnitReferenceGerman}

(A.74)

Currentt0+5
sae (cUnitGerman) = cConfiguration2German (A.75)

Usest0+5
sae (pUnitReferenceGerman) = pUnitServiceGerman (A.76)

208 A. Formal Specification of the Application Example

A.7.3 German P-Unit

Containst0+5
sae (pUnitGerman) = {pConfiguration1German} (A.77)

Providest0+5
sae (pConfiguration1German) = {pUnitServiceGerman}

Declarest0+5
sae (pConfiguration1German) = ∅

(A.78)

Currentt0+5
sae (pUnitGerman) = pConfiguration1German (A.79)

A.7.4 Dutch M-Unit

Containst0+5
sae (mUnitDutch) = {mConfiguration1Dutch,

mConfiguration2Dutch}
(A.80)

mConfiguration2Dutch≥t0+5
sae mConfiguration1Dutch (A.81)

Providest0+5
sae (mConfiguration1Dutch) = {mUnitServiceDutch}

Declarest0+5
sae (mConfiguration1Dutch) = ∅

Providest0+5
sae (mConfiguration2Dutch) = {mUnitServiceDutch}

Declarest0+5
sae (mConfiguration2Dutch) = {cUnitReferenceDutch}

(A.82)

Currentt0+5
sae (mUnitDutch) = mConfiguration2Dutch (A.83)

Usest0+5
sae (cUnitReferenceDutch) = cUnitServiceDutch (A.84)

A.7.5 Dutch C-Unit

Containst0+5
sae (cUnitDutch) = {cConfiguration1Dutch, cConfiguration2Dutch} (A.85)

cConfiguration2Dutch≥t0+5
sae cConfiguration1Dutch (A.86)

Providest0+5
sae (cConfiguration1Dutch) = {cUnitServiceDutch}

Declarest0+5
sae (cConfiguration1Dutch) = ∅

Providest0+5
sae (cConfiguration2Dutch) = {cUnitServiceDutch}

Declarest0+5
sae (cConfiguration2Dutch) = {pUnitReferenceDutch}

(A.87)

Currentt0+5
sae (cUnitDutch) = cConfiguration1Dutch (A.88)

Usest0+5
sae (pUnitReferenceDutch) = ∅ (A.89)

A. Formal Specification of the Application Example 209

A.7.6 Semantical Compatibility

ServiceBehaviort0+5
sae (pUnitServiceGerman) =

pUnitServiceUsualOperationGerman
(A.90)

ServiceReferenceBehaviort0+5
sae (pUnitReferenceGerman,

pUnitServiceGerman) = pUnitReferenceUsualOperationGerman
(A.91)

ServiceReferenceBehaviort0+5
sae (pUnitReferenceDutch, pUnitServiceGerman) =

pUnitReferenceUsualOperationDutch
(A.92)

pUnitReferenceGerman≃Semantical
t0+5
sae pUnitServiceGerman (A.93)

pUnitReferenceDutch≃Semantical
t0+5
sae pUnitServiceGerman (A.94)

A.8 Instances at Dependability Checkpoint t0 + 6

At t0 + 6, we face the situation that a Dutch P-Unit is attached to the Dutch C-Unit
in our Dependable Dynamic Adaptive System sae.

ApplicationComponentst0+6
sae = {mUnitGerman, cUnitGerman, pUnitGerman,

mUnitDutch, cUnitDutch, pUnitDutch}
(A.95)

A.8.1 German M-Unit

Containst0+6
sae (mUnitGerman) = {mConfiguration1German,

mConfiguration2German}
(A.96)

mConfiguration2German≥t0+6
sae mConfiguration1German (A.97)

Providest0+6
sae (mConfiguration1German) = {mUnitServiceGerman}

Declarest0+6
sae (mConfiguration1German) = ∅

Providest0+6
sae (mConfiguration2German) = {mUnitServiceGerman}

Declarest0+6
sae (mConfiguration2German) = {cUnitReferenceGerman}

(A.98)

Currentt0+6
sae (mUnitGerman) = mConfiguration2German (A.99)

Usest0+6
sae (cUnitReferenceGerman) = cUnitServiceGerman (A.100)

210 A. Formal Specification of the Application Example

A.8.2 German C-Unit

Containst0+6
sae (cUnitGerman) = {cConfiguration1German,

cConfiguration2German}
(A.101)

cConfiguration2German≥t0+6
sae cConfiguration1German (A.102)

Providest0+6
sae (cConfiguration1German) = {cUnitServiceGerman}

Declarest0+6
sae (cConfiguration1German) = ∅

Providest0+6
sae (cConfiguration2German) = {cUnitServiceGerman}

Declarest0+6
sae (cConfiguration2German) = {pUnitReferenceGerman}

(A.103)

Currentt0+6
sae (cUnitGerman) = cConfiguration2German (A.104)

Usest0+6
sae (pUnitReferenceGerman) = pUnitServiceGerman (A.105)

A.8.3 German P-Unit

Containst0+6
sae (pUnitGerman) = {pConfiguration1German} (A.106)

Providest0+6
sae (pConfiguration1German) = {pUnitServiceGerman}

Declarest0+6
sae (pConfiguration1German) = ∅

(A.107)

Currentt0+6
sae (pUnitGerman) = pConfiguration1German (A.108)

A.8.4 Dutch M-Unit

Containst0+6
sae (mUnitDutch) = {mConfiguration1Dutch,

mConfiguration2Dutch}
(A.109)

mConfiguration2Dutch≥t0+6
sae mConfiguration1Dutch (A.110)

Providest0+6
sae (mConfiguration1Dutch) = {mUnitServiceDutch}

Declarest0+6
sae (mConfiguration1Dutch) = ∅

Providest0+6
sae (mConfiguration2Dutch) = {mUnitServiceDutch}

Declarest0+6
sae (mConfiguration2Dutch) = {cUnitReferenceDutch}

(A.111)

Currentt0+6
sae (mUnitDutch) = mConfiguration2Dutch (A.112)

Usest0+6
sae (cUnitReferenceDutch) = cUnitServiceDutch (A.113)

A. Formal Specification of the Application Example 211

A.8.5 Dutch C-Unit

Containst0+6
sae (cUnitDutch) = {cConfiguration1Dutch, cConfiguration2Dutch} (A.114)

cConfiguration2Dutch≥t0+6
sae cConfiguration1Dutch (A.115)

Providest0+6
sae (cConfiguration1Dutch) = {cUnitServiceDutch}

Declarest0+6
sae (cConfiguration1Dutch) = ∅

Providest0+6
sae (cConfiguration2Dutch) = {cUnitServiceDutch}

Declarest0+6
sae (cConfiguration2Dutch) = {pUnitReferenceDutch}

(A.116)

Currentt0+6
sae (cUnitDutch) = cConfiguration2Dutch (A.117)

Usest0+6
sae (pUnitReferenceDutch) = pUnitServiceDutch (A.118)

A.8.6 Dutch P-Unit

Containst0+6
sae (pUnitDutch) = {pConfiguration1Dutch} (A.119)

Providest0+6
sae (pConfiguration1Dutch) = {pUnitServiceDutch}

Declarest0+6
sae (pConfiguration1Dutch) = ∅

(A.120)

Currentt0+6
sae (pUnitDutch) = pConfiguration1Dutch (A.121)

A.8.7 Semantical Compatibility

ServiceBehaviort0+6
sae (pUnitServiceGerman) =

pUnitServiceUsualOperationGerman
(A.122)

ServiceBehaviort0+6
sae (pUnitServiceDutch) =

pUnitServiceUsualOperationDutch
(A.123)

ServiceReferenceBehaviort0+6
sae (pUnitReferenceGerman,

pUnitServiceGerman) = pUnitReferenceUsualOperationGerman
(A.124)

212 A. Formal Specification of the Application Example

ServiceReferenceBehaviort0+6
sae (pUnitReferenceGerman, pUnitServiceDutch) =

pUnitReferenceUsualOperationGerman
(A.125)

ServiceReferenceBehaviort0+6
sae (pUnitReferenceDutch, pUnitServiceGerman) =

pUnitReferenceUsualOperationDutch
(A.126)

ServiceReferenceBehaviort0+6
sae (pUnitReferenceDutch, pUnitServiceDutch) =

pUnitReferenceUsualOperationDutch
(A.127)

pUnitReferenceGerman≃Semantical
t0+6
sae pUnitServiceGerman (A.128)

pUnitReferenceGerman≃Semantical
t0+6
sae pUnitServiceDutch (A.129)

pUnitReferenceDutch≃Semantical
t0+6
sae pUnitServiceGerman (A.130)

pUnitReferenceDutch≃Semantical
t0+6
sae pUnitServiceDutch (A.131)

A.9 Instances at Dependability Checkpoint tn
At tn, we face the situation that a second Dutch C-Unit is started in our Dependable
Dynamic Adaptive System sae to represent a third casualty.

ApplicationComponentstnsae = {mUnitGerman, cUnitGerman, pUnitGerman,
mUnitDutch, cUnitDutch, pUnitDutch,
cUnit2Dutch}

(A.132)

A.9.1 German M-Unit

Containstnsae(mUnitGerman) = {mConfiguration1German,
mConfiguration2German}

(A.133)

mConfiguration2German≥tn
sae mConfiguration1German (A.134)

A. Formal Specification of the Application Example 213

Providestnsae(mConfiguration1German) = {mUnitServiceGerman}
Declarestnsae(mConfiguration1German) = ∅
Providestnsae(mConfiguration2German) = {mUnitServiceGerman}
Declarestnsae(mConfiguration2German) = {cUnitReferenceGerman}

(A.135)

Currenttnsae(mUnitGerman) = mConfiguration2German (A.136)

Usestnsae(cUnitReferenceGerman) = cUnitServiceGerman (A.137)

A.9.2 German C-Unit

Containstnsae(cUnitGerman) = {cConfiguration1German,
cConfiguration2German}

(A.138)

cConfiguration2German≥tn
sae cConfiguration1German (A.139)

Providestnsae(cConfiguration1German) = {cUnitServiceGerman}
Declarestnsae(cConfiguration1German) = ∅
Providestnsae(cConfiguration2German) = {cUnitServiceGerman}
Declarestnsae(cConfiguration2German) = {pUnitReferenceGerman}

(A.140)

Currenttnsae(cUnitGerman) = cConfiguration2German (A.141)

Usestnsae(pUnitReferenceGerman) = pUnitServiceGerman (A.142)

A.9.3 German P-Unit

Containstnsae(pUnitGerman) = {pConfiguration1German} (A.143)

Providestnsae(pConfiguration1German) = {pUnitServiceGerman}
Declarestnsae(pConfiguration1German) = ∅

(A.144)

Currenttnsae(pUnitGerman) = pConfiguration1German (A.145)

214 A. Formal Specification of the Application Example

A.9.4 Dutch M-Unit

Containstnsae(mUnitDutch) = {mConfiguration1Dutch,
mConfiguration2Dutch}

(A.146)

mConfiguration2Dutch≥tn
sae mConfiguration1Dutch (A.147)

Providestnsae(mConfiguration1Dutch) = {mUnitServiceDutch}
Declarestnsae(mConfiguration1Dutch) = ∅
Providestnsae(mConfiguration2Dutch) = {mUnitServiceDutch}
Declarestnsae(mConfiguration2Dutch) = {cUnitReferenceDutch}

(A.148)

Currenttnsae(mUnitDutch) = mConfiguration2Dutch (A.149)

Usestnsae(cUnitReferenceDutch) = cUnitServiceDutch2 (A.150)

A.9.5 Dutch C-Unit

Containstnsae(cUnitDutch) = {cConfiguration1Dutch, cConfiguration2Dutch} (A.151)

cConfiguration2Dutch≥tn
sae cConfiguration1Dutch (A.152)

Providestnsae(cConfiguration1Dutch) = {cUnitServiceDutch}
Declarestnsae(cConfiguration1Dutch) = ∅
Providestnsae(cConfiguration2Dutch) = {cUnitServiceDutch}
Declarestnsae(cConfiguration2Dutch) = {pUnitReferenceDutch}

(A.153)

Currenttnsae(cUnitDutch) = cConfiguration2Dutch (A.154)

Usestnsae(pUnitReferenceDutch) = pUnitServiceDutch (A.155)

A. Formal Specification of the Application Example 215

A.9.6 Second Dutch C-Unit

Containstnsae(cUnitDutch2) = {cConfiguration1Dutch2,
cConfiguration2Dutch2}

(A.156)

cConfiguration2Dutch2≥tn
sae cConfiguration1Dutch2 (A.157)

Providestnsae(cConfiguration1Dutch2) = {cUnitServiceDutch2}
Declarestnsae(cConfiguration1Dutch2) = ∅
Providestnsae(cConfiguration2Dutch2) = {cUnitServiceDutch2}
Declarestnsae(cConfiguration2Dutch2) = {pUnitReferenceDutch2}

(A.158)

Currenttnsae(cUnitDutch2) = cConfiguration1Dutch2 (A.159)

Usestnsae(pUnitReferenceDutch2) = ∅ (A.160)

A.9.7 Dutch P-Unit

Containstnsae(pUnitDutch) = {pConfiguration1Dutch} (A.161)

Providestnsae(pConfiguration1Dutch) = {pUnitServiceDutch}
Declarestnsae(pConfiguration1Dutch) = ∅

(A.162)

Currenttnsae(pUnitDutch) = pConfiguration1Dutch (A.163)

A.9.8 Semantical Compatibility

ServiceBehaviortnsae(pUnitServiceGerman) =
pUnitServiceUsualOperationGerman

(A.164)

ServiceBehaviortnsae(pUnitServiceDutch) =
pUnitServiceUsualOperationDutch

(A.165)

216 A. Formal Specification of the Application Example

ServiceReferenceBehaviortnsae(pUnitReferenceGerman,
pUnitServiceGerman) = pUnitReferenceUsualOperationGerman

(A.166)

ServiceReferenceBehaviortnsae(pUnitReferenceGerman, pUnitServiceDutch) =
pUnitReferenceUsualOperationGerman

(A.167)

ServiceReferenceBehaviortnsae(pUnitReferenceDutch, pUnitServiceGerman) =
pUnitReferenceUsualOperationDutch

(A.168)

ServiceReferenceBehaviortnsae(pUnitReferenceDutch, pUnitServiceDutch) =
pUnitReferenceUsualOperationDutch

(A.169)

ServiceReferenceBehaviortnsae(pUnitReferenceDutch2,
pUnitServiceGerman) = pUnitReferenceUsualOperationDutch

(A.170)

ServiceReferenceBehaviortnsae(pUnitReferenceDutch2, pUnitServiceDutch) =
pUnitReferenceUsualOperationDutch

(A.171)

pUnitReferenceGerman≃Semantical
tn
sae pUnitServiceGerman (A.172)

pUnitReferenceGerman≃Semantical
tn
sae pUnitServiceDutch (A.173)

pUnitReferenceDutch≃Semantical
tn
sae pUnitServiceGerman (A.174)

pUnitReferenceDutch≃Semantical
tn
sae pUnitServiceDutch (A.175)

pUnitReferenceDutch2≃Semantical
tn
sae pUnitServiceGerman (A.176)

pUnitReferenceDutch2≃Semantical
tn
sae pUnitServiceDutch (A.177)

A. Formal Specification of the Application Example 217

A.10 Instances at Dependability Checkpoint tn + 1

At tn+1, we face the situation that a German P-Unit is attached to the Dutch C-Unit
introduced at tn in our Dependable Dynamic Adaptive System sae.

ApplicationComponentstn+1
sae = {mUnitGerman, cUnitGerman, pUnitGerman,

mUnitDutch, cUnitDutch, pUnitDutch,
cUnit2Dutch, pUnit2German}

(A.178)

A.10.1 German M-Unit

Containstn+1
sae (mUnitGerman) = {mConfiguration1German,

mConfiguration2German}
(A.179)

mConfiguration2German≥tn+1
sae mConfiguration1German (A.180)

Providestn+1
sae (mConfiguration1German) = {mUnitServiceGerman}

Declarestn+1
sae (mConfiguration1German) = ∅

Providestn+1
sae (mConfiguration2German) = {mUnitServiceGerman}

Declarestn+1
sae (mConfiguration2German) = {cUnitReferenceGerman}

(A.181)

Currenttn+1
sae (mUnitGerman) = mConfiguration2German (A.182)

Usestn+1
sae (cUnitReferenceGerman) = cUnitServiceGerman (A.183)

A.10.2 German C-Unit

Containstn+1
sae (cUnitGerman) = {cConfiguration1German,

cConfiguration2German}
(A.184)

cConfiguration2German≥tn+1
sae cConfiguration1German (A.185)

Providestn+1
sae (cConfiguration1German) = {cUnitServiceGerman}

Declarestn+1
sae (cConfiguration1German) = ∅

Providestn+1
sae (cConfiguration2German) = {cUnitServiceGerman}

Declarestn+1
sae (cConfiguration2German) = {pUnitReferenceGerman}

(A.186)

Currenttn+1
sae (cUnitGerman) = cConfiguration2German (A.187)

Usestn+1
sae (pUnitReferenceGerman) = pUnitServiceGerman (A.188)

218 A. Formal Specification of the Application Example

A.10.3 German P-Unit

Containstn+1
sae (pUnitGerman) = {pConfiguration1German} (A.189)

Providestn+1
sae (pConfiguration1German) = {pUnitServiceGerman}

Declarestn+1
sae (pConfiguration1German) = ∅

(A.190)

Currenttn+1
sae (pUnitGerman) = pConfiguration1German (A.191)

A.10.4 Second German P-Unit

Containstn+1
sae (pUnitGerman2) = {pConfiguration1German2} (A.192)

Providestn+1
sae (pConfiguration1German2) = {pUnitServiceGerman2}

Declarestn+1
sae (pConfiguration1German2) = ∅

(A.193)

Currenttn+1
sae (pUnitGerman2) = pConfiguration1German2 (A.194)

A.10.5 Dutch M-Unit

Containstn+1
sae (mUnitDutch) = {mConfiguration1Dutch,

mConfiguration2Dutch}
(A.195)

mConfiguration2Dutch≥tn+1
sae mConfiguration1Dutch (A.196)

Providestn+1
sae (mConfiguration1Dutch) = {mUnitServiceDutch}

Declarestn+1
sae (mConfiguration1Dutch) = ∅

Providestn+1
sae (mConfiguration2Dutch) = {mUnitServiceDutch}

Declarestn+1
sae (mConfiguration2Dutch) = {cUnitReferenceDutch}

(A.197)

Currenttn+1
sae (mUnitDutch) = mConfiguration2Dutch (A.198)

Usestn+1
sae (cUnitReferenceDutch) = cUnitServiceDutch2 (A.199)

A. Formal Specification of the Application Example 219

A.10.6 Dutch C-Unit

Containstn+1
sae (cUnitDutch) = {cConfiguration1Dutch, cConfiguration2Dutch} (A.200)

cConfiguration2Dutch≥tn+1
sae cConfiguration1Dutch (A.201)

Providestn+1
sae (cConfiguration1Dutch) = {cUnitServiceDutch}

Declarestn+1
sae (cConfiguration1Dutch) = ∅

Providestn+1
sae (cConfiguration2Dutch) = {cUnitServiceDutch}

Declarestn+1
sae (cConfiguration2Dutch) = {pUnitReferenceDutch}

(A.202)

Currenttn+1
sae (cUnitDutch) = cConfiguration2Dutch (A.203)

Usestn+1
sae (pUnitReferenceDutch) = pUnitServiceDutch (A.204)

A.10.7 Second Dutch C-Unit

Containstn+1
sae (cUnitDutch2) = {cConfiguration1Dutch2,

cConfiguration2Dutch2}
(A.205)

cConfiguration2Dutch2≥tn+1
sae cConfiguration1Dutch2 (A.206)

Providestn+1
sae (cConfiguration1Dutch2) = {cUnitServiceDutch2}

Declarestn+1
sae (cConfiguration1Dutch2) = ∅

Providestn+1
sae (cConfiguration2Dutch2) = {cUnitServiceDutch2}

Declarestn+1
sae (cConfiguration2Dutch2) = {pUnitReferenceDutch2}

(A.207)

Currenttn+1
sae (cUnitDutch2) = cConfiguration2Dutch2 (A.208)

Usestn+1
sae (pUnitReferenceDutch2) = pUnitServiceGerman2 (A.209)

220 A. Formal Specification of the Application Example

A.10.8 Dutch P-Unit

Containstn+1
sae (pUnitDutch) = {pConfiguration1Dutch} (A.210)

Providestn+1
sae (pConfiguration1Dutch) = {pUnitServiceDutch}

Declarestn+1
sae (pConfiguration1Dutch) = ∅

(A.211)

Currenttn+1
sae (pUnitDutch) = pConfiguration1Dutch (A.212)

A.10.9 Semantical Compatibility

ServiceBehaviortn+1
sae (pUnitServiceGerman) =

pUnitServiceUsualOperationGerman
(A.213)

ServiceBehaviortn+1
sae (pUnitServiceDutch) =

pUnitServiceUsualOperationDutch
(A.214)

ServiceBehaviortn+1
sae (pUnitServiceGerman2) =

pUnitServiceUsualOperationGerman
(A.215)

ServiceReferenceBehaviortn+1
sae (pUnitReferenceGerman,

pUnitServiceGerman) = pUnitReferenceUsualOperationGerman
(A.216)

ServiceReferenceBehaviortn+1
sae (pUnitReferenceGerman, pUnitServiceDutch) =

pUnitReferenceUsualOperationGerman
(A.217)

ServiceReferenceBehaviortn+1
sae (pUnitReferenceGerman,

pUnitServiceGerman2) = pUnitReferenceUsualOperationGerman
(A.218)

ServiceReferenceBehaviortn+1
sae (pUnitReferenceDutch, pUnitServiceGerman) =

pUnitReferenceUsualOperationDutch
(A.219)

A. Formal Specification of the Application Example 221

ServiceReferenceBehaviortn+1
sae (pUnitReferenceDutch, pUnitServiceDutch) =

pUnitReferenceUsualOperationDutch
(A.220)

ServiceReferenceBehaviortn+1
sae (pUnitReferenceDutch,

pUnitServiceGerman2) = pUnitReferenceUsualOperationDutch
(A.221)

ServiceReferenceBehaviortn+1
sae (pUnitReferenceDutch2,

pUnitServiceGerman) = pUnitReferenceUsualOperationDutch
(A.222)

ServiceReferenceBehaviortn+1
sae (pUnitReferenceDutch2, pUnitServiceDutch) =

pUnitReferenceUsualOperationDutch
(A.223)

ServiceReferenceBehaviortn+1
sae (pUnitReferenceDutch2,

pUnitServiceGerman2) = pUnitReferenceUsualOperationDutch
(A.224)

pUnitReferenceGerman≃Semantical
tn+1
sae pUnitServiceGerman (A.225)

pUnitReferenceGerman≃Semantical
tn+1
sae pUnitServiceDutch (A.226)

pUnitReferenceGerman≃Semantical
tn+1
sae pUnitServiceGerman2 (A.227)

pUnitReferenceDutch≃Semantical
tn+1
sae pUnitServiceGerman (A.228)

pUnitReferenceDutch≃Semantical
tn+1
sae pUnitServiceDutch (A.229)

pUnitReferenceDutch≃Semantical
tn+1
sae pUnitServiceGerman2 (A.230)

pUnitReferenceDutch2≃Semantical
tn+1
sae pUnitServiceGerman (A.231)

pUnitReferenceDutch2≃Semantical
tn+1
sae pUnitServiceDutch (A.232)

pUnitReferenceDutch2≃Semantical
tn+1
sae pUnitServiceGerman2 (A.233)

222 A. Formal Specification of the Application Example

A.11 Instances at Dependability Checkpoint tn + 2

At tn+2, we face the situation that the fingerclip of the casualty at the German P-
Unit, which has been introduced at tn in our Dependable Dynamic Adaptive System
sae slips off. Thus, the compatibility between this P-Unit and the Dutch C-Units
changes and the Component Binding between Dutch C-Unit and German P-Unit is
removed.

ApplicationComponentstn+2
sae = {mUnitGerman, cUnitGerman, pUnitGerman,

mUnitDutch, cUnitDutch, pUnitDutch,
cUnit2Dutch, pUnit2German}

(A.234)

A.11.1 German M-Unit

Containstn+2
sae (mUnitGerman) = {mConfiguration1German,

mConfiguration2German}
(A.235)

mConfiguration2German≥tn+2
sae mConfiguration1German (A.236)

Providestn+2
sae (mConfiguration1German) = {mUnitServiceGerman}

Declarestn+2
sae (mConfiguration1German) = ∅

Providestn+2
sae (mConfiguration2German) = {mUnitServiceGerman}

Declarestn+2
sae (mConfiguration2German) = {cUnitReferenceGerman}

(A.237)

Currenttn+2
sae (mUnitGerman) = mConfiguration2German (A.238)

Usestn+2
sae (cUnitReferenceGerman) = cUnitServiceGerman (A.239)

A.11.2 German C-Unit

Containstn+2
sae (cUnitGerman) = {cConfiguration1German,

cConfiguration2German}
(A.240)

cConfiguration2German≥tn+2
sae cConfiguration1German (A.241)

A. Formal Specification of the Application Example 223

Providestn+2
sae (cConfiguration1German) = {cUnitServiceGerman}

Declarestn+2
sae (cConfiguration1German) = ∅

Providestn+2
sae (cConfiguration2German) = {cUnitServiceGerman}

Declarestn+2
sae (cConfiguration2German) = {pUnitReferenceGerman}

(A.242)

Currenttn+2
sae (cUnitGerman) = cConfiguration2German (A.243)

Usestn+2
sae (pUnitReferenceGerman) = pUnitServiceGerman (A.244)

A.11.3 German P-Unit

Containstn+2
sae (pUnitGerman) = {pConfiguration1German} (A.245)

Providestn+2
sae (pConfiguration1German) = {pUnitServiceGerman}

Declarestn+2
sae (pConfiguration1German) = ∅

(A.246)

Currenttn+2
sae (pUnitGerman) = pConfiguration1German (A.247)

A.11.4 Second German P-Unit

Containstn+2
sae (pUnitGerman2) = {pConfiguration1German2} (A.248)

Providestn+2
sae (pConfiguration1German2) = {pUnitServiceGerman2}

Declarestn+2
sae (pConfiguration1German2) = ∅

(A.249)

Currenttn+2
sae (pUnitGerman2) = pConfiguration1German2 (A.250)

A.11.5 Dutch M-Unit

Containstn+2
sae (mUnitDutch) = {mConfiguration1Dutch,

mConfiguration2Dutch}
(A.251)

mConfiguration2Dutch≥tn+2
sae mConfiguration1Dutch (A.252)

224 A. Formal Specification of the Application Example

Providestn+2
sae (mConfiguration1Dutch) = {mUnitServiceDutch}

Declarestn+2
sae (mConfiguration1Dutch) = ∅

Providestn+2
sae (mConfiguration2Dutch) = {mUnitServiceDutch}

Declarestn+2
sae (mConfiguration2Dutch) = {cUnitReferenceDutch}

(A.253)

Currenttn+2
sae (mUnitDutch) = mConfiguration2Dutch (A.254)

Usestn+2
sae (cUnitReferenceDutch) = cUnitServiceDutch2 (A.255)

A.11.6 Dutch C-Unit

Containstn+2
sae (cUnitDutch) = {cConfiguration1Dutch, cConfiguration2Dutch} (A.256)

cConfiguration2Dutch≥tn+2
sae cConfiguration1Dutch (A.257)

Providestn+2
sae (cConfiguration1Dutch) = {cUnitServiceDutch}

Declarestn+2
sae (cConfiguration1Dutch) = ∅

Providestn+2
sae (cConfiguration2Dutch) = {cUnitServiceDutch}

Declarestn+2
sae (cConfiguration2Dutch) = {pUnitReferenceDutch}

(A.258)

Currenttn+2
sae (cUnitDutch) = cConfiguration2Dutch (A.259)

Usestn+2
sae (pUnitReferenceDutch) = pUnitServiceDutch (A.260)

A.11.7 Second Dutch C-Unit

Containstn+2
sae (cUnitDutch2) = {cConfiguration1Dutch2,

cConfiguration2Dutch2}
(A.261)

cConfiguration2Dutch2≥tn+2
sae cConfiguration1Dutch2 (A.262)

Providestn+2
sae (cConfiguration1Dutch2) = {cUnitServiceDutch2}

Declarestn+2
sae (cConfiguration1Dutch2) = ∅

Providestn+2
sae (cConfiguration2Dutch2) = {cUnitServiceDutch2}

Declarestn+2
sae (cConfiguration2Dutch2) = {pUnitReferenceDutch2}

(A.263)

Currenttn+2
sae (cUnitDutch2) = cConfiguration1Dutch2 (A.264)

Usestn+2
sae (pUnitReferenceDutch2) = ∅ (A.265)

A. Formal Specification of the Application Example 225

A.11.8 Dutch P-Unit

Containstn+2
sae (pUnitDutch) = {pConfiguration1Dutch} (A.266)

Providestn+2
sae (pConfiguration1Dutch) = {pUnitServiceDutch}

Declarestn+2
sae (pConfiguration1Dutch) = ∅

(A.267)

Currenttn+2
sae (pUnitDutch) = pConfiguration1Dutch (A.268)

A.11.9 Semantical Compatibility

ServiceBehaviortn+2
sae (pUnitServiceGerman) =

pUnitServiceUsualOperationGerman
(A.269)

ServiceBehaviortn+2
sae (pUnitServiceDutch) =

pUnitServiceUsualOperationDutch
(A.270)

ServiceBehaviortn+2
sae (pUnitServiceGerman2) =

pUnitServiceUsualOperationGerman
(A.271)

ServiceReferenceBehaviortn+2
sae (pUnitReferenceGerman,

pUnitServiceGerman) = pUnitReferenceUsualOperationGerman
(A.272)

ServiceReferenceBehaviortn+2
sae (pUnitReferenceGerman, pUnitServiceDutch) =

pUnitReferenceUsualOperationGerman
(A.273)

ServiceReferenceBehaviortn+2
sae (pUnitReferenceGerman,

pUnitServiceGerman2) = pUnitReferenceInconsistentMeasurementGerman
(A.274)

ServiceReferenceBehaviortn+2
sae (pUnitReferenceDutch, pUnitServiceGerman) =

pUnitReferenceUsualOperationDutch
(A.275)

226 A. Formal Specification of the Application Example

ServiceReferenceBehaviortn+2
sae (pUnitReferenceDutch, pUnitServiceDutch) =

pUnitReferenceUsualOperationDutch
(A.276)

ServiceReferenceBehaviortn+2
sae (pUnitReferenceDutch,

pUnitServiceGerman2) = pUnitReferenceDeadOperationDutch
(A.277)

ServiceReferenceBehaviortn+2
sae (pUnitReferenceDutch2,

pUnitServiceGerman) = pUnitReferenceUsualOperationDutch
(A.278)

ServiceReferenceBehaviortn+2
sae (pUnitReferenceDutch2, pUnitServiceDutch) =

pUnitReferenceUsualOperationDutch
(A.279)

ServiceReferenceBehaviortn+2
sae (pUnitReferenceDutch2,

pUnitServiceGerman2) = pUnitReferenceDeadOperationDutch
(A.280)

pUnitReferenceGerman≃Semantical
tn+2
sae pUnitServiceGerman (A.281)

pUnitReferenceGerman≃Semantical
tn+2
sae pUnitServiceDutch (A.282)

pUnitReferenceGerman≃Semantical
tn+2
sae pUnitServiceGerman2 (A.283)

pUnitReferenceDutch≃Semantical
tn+2
sae pUnitServiceGerman (A.284)

pUnitReferenceDutch≃Semantical
tn+2
sae pUnitServiceDutch (A.285)

pUnitReferenceDutch ̸≃Semantical
tn+2
sae pUnitServiceGerman2 (A.286)

pUnitReferenceDutch2≃Semantical
tn+2
sae pUnitServiceGerman (A.287)

pUnitReferenceDutch2≃Semantical
tn+2
sae pUnitServiceDutch (A.288)

pUnitReferenceDutch2 ̸≃Semantical
tn+2
sae pUnitServiceGerman2 (A.289)

A. Formal Specification of the Application Example 227

A.12 Mapping Instances To Types

Implements(mUnitServiceGerman) = mUnitServiceIf (A.290)

Implements(mUnitServiceDutch) = mUnitServiceIf (A.291)

RefersTo(cUnitReferenceGerman) = cUnitServiceIf (A.292)

RefersTo(cUnitReferenceDutch) = cUnitServiceIf (A.293)

Implements(cUnitServiceGerman) = cUnitServiceIf (A.294)

Implements(cUnitServiceDutch) = cUnitServiceIf (A.295)

Implements(cUnitServiceDutch2) = cUnitServiceIf (A.296)

RefersTo(pUnitReferenceGerman) = pUnitServiceIf (A.297)

RefersTo(pUnitReferenceDutch) = pUnitServiceIf (A.298)

RefersTo(pUnitReferenceDutch2) = pUnitServiceIf (A.299)

Implements(pUnitServiceGerman) = pUnitServiceIf (A.300)

Implements(pUnitServiceGerman2) = pUnitServiceIf (A.301)

Implements(pUnitServiceDutch) = pUnitServiceIf (A.302)

228 A. Formal Specification of the Application Example

A.13 Syntactical Compatibility

cUnitReferenceGerman≃Syntactical cUnitServiceGerman
cUnitReferenceGerman≃Syntactical cUnitServiceDutch
cUnitReferenceGerman≃Syntactical cUnitServiceDutch2

(A.303)

pUnitReferenceGerman≃Syntactical pUnitServiceGerman
pUnitReferenceGerman≃Syntactical pUnitServiceDutch

pUnitReferenceGerman≃Syntactical pUnitServiceGerman2
(A.304)

cUnitReferenceDutch≃Syntactical cUnitServiceGerman
cUnitReferenceDutch≃Syntactical cUnitServiceDutch
cUnitReferenceDutch≃Syntactical cUnitServiceDutch2

(A.305)

pUnitReferenceDutch≃Syntactical pUnitServiceGerman
pUnitReferenceDutch≃Syntactical pUnitServiceDutch

pUnitReferenceDutch≃Syntactical pUnitServiceGerman2
(A.306)

pUnitReferenceDutch2≃Syntactical pUnitServiceGerman
pUnitReferenceDutch2≃Syntactical pUnitServiceDutch

pUnitReferenceDutch2≃Syntactical pUnitServiceGerman2
(A.307)

B
Implementation of our Application

Example

In this chapter of the Appendix, we will have a look at some of the Dependable
Dynamic Adaptive Components from our application example to illustrate, how
component vendors can implement them using our framework. Then we will have a
look, how node specifications look like, enabling users to start up these Dependable
Dynamic Adaptive Components.

B.1 Dependable Dynamic Adaptive Components
from our example

In our application example we identified several Dependable Dynamic Adaptive
Components like IC-Units, M-Units, C-Units, or P-Units establishing our overall De-
pendable Dynamic Adaptive System supporting medics during the triage classifica-
tion process in major incidents. Each component may be implemented by a different
vendor and there might be different Dependable Dynamic Adaptive Components
implementing syntactically compatible Service Interfaces.

First of all, the Domain Architecture describing Service Interfaces for Depend-
able Dynamic Adaptive Components of emergency assistance systems needs to be
implemented. Using our reference implementation DAiSI Service Interfaces need to
be specified in IDL, since DAiSI is based on CORBA.

Let us here have a look at Service Interface PUnitServiceIf, which is pro-

229

230 B. Implementation of our Application Example

vided by P-Units and required by C-Units in our application example. This Ser-
vice Interface has already been defined in Figure 3.10 by inheriting from Service
Interfaces PulseRateSensorIf and BloodPressureSensorIf. This is
depicted in Figure B.1 as a reminder.

+getSystolicBloodPressure() : int
+getDiastolicBloodPressure() : int

BloodPressureSensorIf

+getPulseRate() : int

PulseRateSensorIf

PUnitServiceIf

Figure B.1: Specification of PUnitServiceIf from our Domain Architecture.

The IDL file depicted in Listing B.1 specifies these three Service Interfaces.Definition of a
Service Interface in

IDL.
1 #ifndef _PUNITSERVICE_IF
2 #define _PUNITSERVICE_IF
3 #ifndef _INSTANCECOMPONENT_IDL
4 #include <de/tuc/ifi/sse/daisi/componentModel/

instanceComponent/instanceComponent.idl>
5 #endif
6 module de{ module tuc{ module ifi{ module sse{ module daisi{

module applicationExample{ module domainArchitecture{
7 interface PulseRateSensorIf: ::de::tuc::ifi::sse::daisi::

componentModel::instanceComponent::
InstanceComponentServiceIf {

8 long getPulseRate();
9 };
10 interface BloodPressureSensorIf: ::de::tuc::ifi::sse::daisi

::componentModel::instanceComponent::
InstanceComponentServiceIf{

11 long getSystolicBloodPressure();
12 long getDiastolicBloodPressure();
13 };
14 interface PUnitServiceIf: BloodPressureSensorIf,

PulseRateSensorIf {
15 };
16 }; }; }; }; }; }; };

B. Implementation of our Application Example 231

17 #endif
Listing B.1: Specification of Service Interface PUnitServiceIf.

The preamble of this IDL file in lines 1 – 5 is necessary for two reasons: on the
one hand, it resolves cyclic dependencies during parsing by an IDL compiler in lines
1 and 2. On the other hand, it imports the IDL specification of Service Interfaces in
general (lines 3 – 5), which is defined by our reference implementation DAiSI.

This standard preamble is necessary for each IDL specification of a Service
Interface when using DAiSI. You only need to adapt the defined name (_PUNITSER-
VICE_IF) in lines 1 and 2 to the name of the Service Interface to be specified in this
IDL file.

In line 6, the package of the following Service Interfaces is defined
as hierarchical modules which will be translated into the Java package
de.tuc.ifi.sse.daisi.applicationExample.domainArchitecture during compilation of the
IDL file.

Lines 7 – 9 define the Service Interface PulseRateSensorIf containing
a single method getPulseRate() returning the pulse rate of a casualty. As
specified in line 7, this Service Interface extends InstanceComponentServiceIf from
package de.tuc.ifi.sse.daisi.componentModel.instanceComponent. This marks it as a
Service Interface for our reference implementation DAiSI. The same is specified for
Service Interface BloodPressureSensorIf in line 10.

For Service Interface PUnitServiceIf InstanceComponentServiceIf does
not need to be extended, as the two previously marked Service Interfaces
PulseRateSensorIf and BloodPressureSensorIf are extended.

Within this section we will focus on three different Dependable Dynamic Adap-
tive Components of our application example to depict the benefits of our approach
and to provide a guideline for developers, how to develop Dependable Dynamic
Adaptive Components using our approach.

1. A German P-Unit measuring the pulse rate using a fingerclip and measuring
the blood pressure using a wrist cuff.

2. A German C-Unit assuming, that pulse rate and blood pressure are measured
independent of each other.

3. A Dutch C-Unit assuming, that pulse rate and are measured by the same
physical sensor.

In the following we will describe the implementation of these three Dependable
Dynamic Adaptive Components starting with the German P-Unit. The Listings in the
following are not complete but focus on the interesting parts of these implementa-
tions. If you are interested in the complete Listings: this thesis is accompanied by a
CD containing the complete sources.

232 B. Implementation of our Application Example

B.1.1 German P-Unit

The German P-Unit in our application example has been structured as depicted
in Figure B.2. It only has a single Dependable Component Configuration. In this
configuration it provides Service Interface PUnitServiceIf from our Domain
Architecture. Thus, this Dependable Dynamic Adaptive Component serves as an
example, how a component vendor can implement a component, providing a De-
pendable Service.

pUnitGerman : Dependable Dynamic Adaptive Component

pConfiguration1German :
Dependable Component

Configuration

pUnitServiceGerman :
Dependable Service

pUnitServiceIf :
 Service
Interface

 : implements

 : provides

Figure B.2: Structure of the German P-Unit from our Application Example.

Let us first of all have a look at the declaration part of the Ger-
man P-Unit, which is depicted in Listing B.2. The German P-Unit extends
AbstractInstanceComponentImpl of our framework as described in
section 6.2. Next to this, it implements two interfaces: Service Interface
PUnitServiceIf1 and the Observer interface.

The Observer interface is implemented, as this German P-Unit has an internal
object for its physical sensor (c.f. line 3 of Listing B.2), which is notifies the P-Unit by
calling its update(Observable o, Object arg) method, whenever the
sensor measures changed sensor values. By this, the German P-Unit can notify the
Dependable Configuration Component in case of an internal state change. Thus,
changing Behavior Equivalence Classes and associated BehavioralChange triggers
are considered for reconfiguration by the Dependable Configuration Component.

Within this listing fragment, the Dependable Component Configuration is cre-Creating a Service.

ated and structured as depicted in Figure B.2: First an attribute for this De-
pendable Component Configuration is declared in line 2. This attribute is ini-
tialized with an empty Dependable Component Configuration in Line 7 by calling
the createConfiguration() method, which is implemented in its superclass
AbstractInstanceComponentImpl of our framework. Then a remote ob-
ject is created in line 9 by calling the createService method at the superclass.

1The suffix Operations results from the CORBA Tie approach used in our reference implementa-
tion DAiSI. The Tie approach avoids multiple inheritance by applying the Delegation pattern.

B. Implementation of our Application Example 233

This method takes two parameters: first a class specifying the Service Interface2

and second the object implementing the Service Interface3.
The created remote object representing a Dependable Service is added to

the Dependable Component Configuration in line 11 by calling addProvides at
the Dependable Component Configuration and passing the Dependable Service as
a parameter. In line 18 we add the Dependable Component Configuration to the
component by calling addContains. In consequence we have created a structure
as it had been depicted in Figure B.2.
1 public class PUnitImpl extends AbstractInstanceComponentImpl

implements PUnitServiceIfOperations, Observer{
2 private InstanceComponentConfigurationIf

pConfiguration1German;
3 private PhysicalSensorImpl physicalSensor;
4

5 public PUnitImpl() {
6 super();
7 pConfiguration1German = createConfiguration();
8 // Create and add Provided Services here
9 PUnitServiceIf pUnitServiceGerman = (PUnitServiceIf)

createService(
10 PUnitServiceIf.class, this);
11 pConfiguration1German.addProvides(pUnitServiceGerman);
12

13 /** The Configuration is added to the Component.
14 * Note, that the order of adding the configurations

decides, which
15 * Configuration is treated as ”better” by DAiSI.
16 * Configurations added earlier are treated as better.
17 */
18 addContains(pConfiguration1German);
19 }
Listing B.2: Declaration Part of the P-Unit Implementation by the German Vendor.

In the following, we have a look at methods, which are called by DAiSI during
the component’s lifecycle. The initialize() method is called by the Node initialize() is

called before
registration.

Component before it registers this Dependable Dynamic Adaptive Component at
DAiSI’s Dependable Configuration Component. Thus, here initialization operations
may be performed analogously to an object’s constructor. In our example here,
we create an object representing the physical sensor measuring the vital data of a
casualty in line 22.

2This is required, as a Dependable Dynamic Adaptive Component could implement multiple
Service Interfaces and, therefore, we need to know, for which implemented Service Interface a
Dependable Service needs to be created.

3This enables component vendors to implement Service Interfaces using separate objects like
inner classes.

234 B. Implementation of our Application Example

Method runCurrent() is called by DAiSI’s Dependable Configuration Com-runCurrent() is
called by the
Dependable

Configuration
Component to

activate a
Dependable

Dynamic Adaptive
Component.

ponent when the Dependable Dynamic Adaptive Component has been bound to
other components of the Dependable Dynamic Adaptive System and should start.
Thus, the Dependable Configuration Component has set a Dependable Component
Configuration of this component as Current Configuration and it has set all De-
pendable Service References of this configuration to syntactically and semantically
compatible Dependable Services provided by other components.

Usually we need to check, which is the Current Configuration, when
runCurrent() is called in order to behave accordingly. Since the German P-
Unit only has a single Dependable Component Configuration, we leave out this part
here and directly call setVisible(true) on the physical sensor. This causes,
that a simulated vital data sensor pops up as depicted in Figure B.3, providing
sliders for the sensor values4.

Method stopCurrent() is called by DAiSI’s Dependable Configuration
Component, if the Dependable Dynamic Adaptive Component is unbound from
other components and should not be executed anymore. Thus, we need to en-
sure, that we do not access Dependable Service References anymore, when this
method is called. Since the German P-Unit does not declare any Dependable Ser-
vice References, we only use it here to hide the GUI of the physical sensor by calling
setVisible(false).
20 @Override
21 public void initialize() {
22 physicalSensor = new PhysicalSensorImpl(this);
23 }
24

25 @Override
26 public void runCurrent() {
27 physicalSensor.setVisible(true);
28 }
29

30 @Override
31 public void stopCurrent() {
32 physicalSensor.setVisible(false);
33

34 }
Listing B.3: DAiSI Specific Part of the P-Unit Implementation by the German Vendor.

In the following we show the implementation of the specific methods of the pro-
vided Service Interface PUnitServiceIf. These are depicted in Listing B.4
and are realized simply by delegating the call to the physical sensor. Note, thatImplementation of a

Service Interface.
4There also is a real implementation of this physical sensor. However, we use a simulated version

here, in order to enable each reader of this thesis to execute our application example – contained
on the enclosed DVD – without owning such an expensive sensor.

B. Implementation of our Application Example 235

Figure B.3: GUI of the German P-Unit from our Application Example Featuring a
Simulated Sensor.

usually we need to query the Current Configuration here as well, as we may realize
methods of a Service Interface differently according to the Dependable Compo-
nent Configuration. However, we leave it out here again, as we only have a single
configuration.

35 public int getDiastolicBloodPressure() {
36 return physicalSensor.getDiastolicBloodPressure();
37 }
38

39 @Override
40 public int getSystolicBloodPressure() {
41 return physicalSensor.getSystolicBloodPressure();
42 }
43

44 @Override
45 public int getPulseRate() {
46 return physicalSensor.getPulseRate();
47 }
Listing B.4: Service Implementation Part of the P-Unit Implementation by the German
Vendor.

Next to the service-specific methods, the German P-Unit implements the Ob-
server interface and, therefore, has a method update(Observable o,
Object arg), which is called by the physical sensor, whenever the measured
sensor values change. This means, that the internal state of this component has
changed and, therefore, the Dependable Configuration Component needs to be
notified. The realization of the update method is depicted in Listing B.5.

In line 51 we call method stateChanged() realized by the superclass.
This method causes a notification of DAiSI’s Dependable Configuration Component,

236 B. Implementation of our Application Example

which checks, whether a Behavior Equivalence Class of its provided DependableA call of
stateChanged causes

a reevaluation of
semantical

Compatibility of all
bindings involving
this Component.

Services respectively a Behavior Equivalence Class of Dependable Service Ref-
erences syntactically compatible with these Dependable Service, or a Behavior
Equivalence Class of its Dependable Service References to other Dependable Ser-
vices has changed. If it recognizes a change, it executes the specified tests of these
Dependable Service References to update semantical Compatibility. In addition it
updates the System Configuration, if it detects an active BehavioralChange trigger,
which means a change in semantical Compatibility.

49 public void update(Observable o, Object arg) {
50 System.out.println(”Notified”);
51 stateChanged();
52 }
Listing B.5: Observer Implementation Part of the P-Unit Implementation by the
German Vendor.

According to our approach, a Dependable Dynamic Adaptive Component
needs to give information about the Behavior Equivalence Class, a Dependable
Service is currently in. For our German P-Unit the vendor can think of several dif-
ferent Behavior Equivalence Classes numbered from -3 to 1, where the negative
numbers indicate potential malfunctions of the sensor5.

To improve readability of the source code, the German vendor mappedBehavior
Equivalence Classes
in our application

example.

them to constants BELOW_ZERO = -3, SINGLE_VALUE_ZERO =
-2, SYSTOLIC_BELOW_DIASTOLIC = -1, ALL_ZERO = 0, and
ABOVE_ZERO = 1.

• BELOW_ZERO denotes the situation, that one of the sensor values is below
zero, which indicates, that there is a malfunction of one of the sensors.

• SINGLE_VALUE_ZERO describes, that one sensor value is zero, while at least
one other sensor value is above zero. This may be due to a slipped of fin-
gerclip or wrist cuff or due to a sensor malfunction.

• SYSTOLIC_BELOW_DIASTOLIC characterizes situations, where the systolic
blood pressure is below the diastolic blood pressure, which cannot occur in
reality and, therefore, indicates, that something is wrong with the physical
sensor.

5Note that this has been specified by the German vendor. He could also have specified, that
the sensor behaves equivalently for each state and, therefore, always return the same Behavior
Equivalence Class. However, this would increase the risk, that incompatibilities are missed during
runtime, as only changing Behavior Equivalence Classes of Dependable Service References would
remain as triggers for test case execution in this case.

B. Implementation of our Application Example 237

• ALL_ZERO denotes a situation where all sensor values are equal to zero. This
may be due to a cardiac arrest of the casualty or due to the fact, that the
sensor is not connected to a casualty.

• ABOVE_ZERO denotes all other situations, where plausible values for blood
pressure and pulse rate are measured.

The method getServiceBehavior() returns an integer value representing
the currently active Behavior Equivalence Class. The realization of this method by
the German P-Unit is depicted in Listing B.6

53 public int getServiceBehavior(){
54 if (physicalSensor.getPulseRate()<0||physicalSensor.

getDiastolicBloodPressure()<0||physicalSensor.
getSystolicBloodPressure()<0){

55 return BELOW_ZERO; // One Sensor value is below zero.
56 }
57 if ((physicalSensor.getPulseRate()==0&&(physicalSensor.

getDiastolicBloodPressure()!=0||physicalSensor.
getSystolicBloodPressure()!=0))||physicalSensor.
getPulseRate()!=0&&((physicalSensor.
getDiastolicBloodPressure()==0||physicalSensor.
getSystolicBloodPressure()==0))){

58 return SINGLE_VALUE_ZERO; // One Sensor value is zero,
while one of the other ones is above zero.

59 }
60 if (physicalSensor.getSystolicBloodPressure()<

physicalSensor.getDiastolicBloodPressure()){
61 return SYSTOLIC_BELOW_DIASTOLIC; // The Systolic Blood

Pressure is lower than the Diastolic Blood Pressure.
62 }
63 if (physicalSensor.getPulseRate()==0||physicalSensor.

getDiastolicBloodPressure()==0||physicalSensor.
getSystolicBloodPressure()==0){

64 return ALL_ZERO; // all values are zero -> Casualty dead?
65 }
66 return ABOVE_ZERO; // Values above zero have been measured.
67 }
68

69 }

Listing B.6: Provided Service Behavior Calculation of the P-Unit Implementation by
the German Vendor.

In the following we will have a look at the C-Unit implementation provided by
the German vendor.

238 B. Implementation of our Application Example

B.1.2 German C-Unit

The German C-Unit of our application example has been structured as depicted in
Figure B.4. It has two Dependable Component Configurations. In both configura-
tions it provides Service Interface CUnitServiceIf from our Domain Architec-
ture.

The configurations differ in that way, that the C-Unit declaresA single Component,
two configurations a Dependable Service Reference pUnitReferenceGerman in

cConfiguration2German whereas it declares no Dependable
Service Reference in cConfiguration1German. Configuration
cConfiguration2German is the better Dependable Component Con-
figuration and offers automatic Triage Class calculation, whereas the Triage
Class of a casualty needs to be set manually in the worse configuration
cConfiguration1German.

We use this Dependable Dynamic Adaptive Component in the following as an
example, how a component vendor can implement a component, requiring a De-
pendable Service. We will focus on the differences to the German P-Unit and
skip identical parts of the implementations, as they already have been explained
before.

cUnitGerman : Dependable Dynamic Adaptive Component

pUnitReferenceGerman :
Dependable Service Reference

cConfiguration2German :
Dependable Component

Configuration

cConfiguration1German :
Dependable Component

Configuration

cUnitServiceGerman
: Dependable Service

pUnitServiceIf :
 Service
Interface

cUnitServiceIf :
Service
Interface

 : refers to

 : implements

 : provides : provides

 : >=

 : declares

Figure B.4: Structure of the German C-Unit from our Application Example.

Let us first of all have a look at the declaration part of the German C-Unit,
which is depicted in Listing B.7. Compared to the declaration part of the German
P-Unit we recognize two main differences:

1. The German C-Unit contains two Dependable Component Configurations.

2. The German C-Unit contains a Dependable Service Reference.

These differences reflect in the Listing. First of all, two Depend-
able Component Configurations cConfiguration1German and

B. Implementation of our Application Example 239

cConfiguration2German are declared in line 1. Then each configu-
ration is structured and added to the component in lines 7 – 32.

Note, that the order of adding configurations to a component decides, Order of adding
configurations
decides about
quality, if we do not
set the quality of a
configuration
explicitly.

which configuration is treated as better in our reference implementation
DAiSI. As we add cConfiguration2German in line 20 before we add
cConfiguration1German in line 32, German is treated as better, which
is reasonable, as it features automatic calculation of Triage Classes.

Regarding Dependable Service Reference pUnitReferenceGerman, we
need to emphasize two parts in the Listing. At first, a private field pUnit is Creating a Service

Reference.declared in line 2, which has the type of the required Dependable Service. At
second, we create a remote object of this field by calling createReference
and passing the name of this field (“pUnit”) in line 13. This remote object
representing the Dependable Service Reference is then added to configuration
cConfiguration2German in line 14.

In consequence we have created a structure as it had been depicted in Figure
B.4.

1 private InstanceComponentConfigurationIf
cConfiguration1German, cConfiguration2German;

2 private PUnitServiceIf pUnit=null;
3

4 public CUnitImpl() {
5 super();
6

7 cConfiguration2German = createConfiguration();
8 // Create and add Provided Services here
9 CUnitServiceIf cUnitService = (CUnitServiceIf)

createService(
10 CUnitServiceIf.class, this);
11 cConfiguration2German.addProvides(cUnitService);
12 // Create and add Service References for Required Services

here
13 InstanceComponentServiceReferenceIf pUnitReferenceGerman =

createReference(”pUnit”);
14 cConfiguration2German.addDeclares(pUnitReferenceGerman);
15 /** The Configuration is added to the Component.
16 * Note, that the order of adding the configurations

decides, which
17 * Configuration is treated as ”better” by DAiSI.
18 * Configurations added earlier are treated as better.
19 */
20 addContains(cConfiguration2German);
21

22 cConfiguration1German = createConfiguration();
23 // Create and add Provided Services here
24 cConfiguration1German.addProvides(cUnitService);

240 B. Implementation of our Application Example

25 // Create and add Service References for Required Services
here

26

27 /** The Configuration is added to the Component.
28 * Note, that the order of adding the configurations

decides, which
29 * Configuration is treated as ”better” by DAiSI.
30 * Configurations added earlier are treated as better.
31 */
32 addContains(cConfiguration1German);
33 }
Listing B.7: Declaration Part of the C-Unit Implementation by the German Vendor.

In the following, we have a look at methods, which are called by DAiSI during
the component’s lifecycle. The realization of these methods is depicted in Listing B.8.
The realization of the initialize() method does not differ essentially from
the German P-Unit – here a GUI instead of a simulated pulse sensor is created.

Method runCurrent() is called by DAiSI’s Dependable Configuration Com-
ponent if the Dependable Dynamic Adaptive Component has been bound to other
components of the Dependable Dynamic Adaptive System and should start.

We check, which is the Current Configuration by comparing it to our two De-You have to use
_is_equivalent
instead of equals
for comparisons.

pendable Component Configurations6 in line 42 and 64. Note, that the comparison
is done by calling _is_equivalent instead of equals.

This is due to the fact, that our reference implementation DAiSI is based on
CORBA and, therefore, all remote objects are CORBA objects. As a consequence,
two different remote objects can point to the same server object – in this case,
equals would return false, while _is_equivalent will return true, which is
our desired behavior in this case. As the configuration has been set remotely by
DAiSI’s Dependable Configuration Component, the compared remote objects will
never be equal, forcing us to use _is_equivalent for comparisons.

If cConfiguration2German is our Current Configuration, we periodically
calculate the Triage Class using a thread. Whenever we recognize, that the cal-
culated Triage Class has changed, we notify DAiSI’s Dependable Configuration
Component by calling stateChanged() in line 50. This method is realized by
the superclass AbstractInstanceComponentImpl.

The method stopCurrent() is called by DAiSI’s Dependable Configura-
tion Component, if the Dependable Dynamic Adaptive Component is unbound from
other components and should not be executed anymore. Thus, we need to ensure,
that we do not access Dependable Service References anymore, when this method
is called.

6As we only have two configurations, we do not need another if-condition, but can simply put
our second behavior in the else part.

B. Implementation of our Application Example 241

The German C-Unit periodically accesses its Dependable Service Reference
pUnitReferenceGerman using a thread, if cConfiguration2German
has been the Current Configuration. Thus, we destroy this thread in lines 73 – 76 to
avoid further accesses to this Dependable Service Reference if stopCurrent()
is called.

34 @Override
35 public void initialize() {
36 myGui = new GUIImpl();
37 }
38

39 @Override
40 public void runCurrent() {
41 myGui.setVisible(true);
42 if (getCurrent()._is_equivalent(cConfiguration2German)){
43 myGui.setCUnitActive(true);
44 updateThread = new Thread(){
45 public void run(){
46 while(!isInterrupted()){
47 TriageClass currentTriageClass = getTriageClass();
48 if (currentTriageClass!=lastCalculatedTriageClass){
49 lastCalculatedTriageClass = currentTriageClass;
50 stateChanged();
51 }
52 myGui.updateLabelValues(pUnit.getPulseRate(), pUnit.

getDiastolicBloodPressure(), pUnit.
getSystolicBloodPressure());

53 myGui.updateTriageClass(currentTriageClass);
54 try {
55 Thread.sleep(500);
56 } catch (InterruptedException e) {
57 // TODO Auto-generated catch block
58 e.printStackTrace();
59 }
60 }
61 }
62 };
63 updateThread.start();
64 } else {
65 myGui.setCUnitActive(false);
66 myGui.updateTriageClass(manuallySetTriageClass);
67 }
68

69 }
70

71 @Override
72 public void stopCurrent() {
73 if (updateThread!=null){
74 updateThread.interrupt();

242 B. Implementation of our Application Example

75 updateThread=null;
76 }
77 myGui.setVisible(false);
78 }
Listing B.8: DAiSI Specific Part of the C-Unit Implementation by the German Vendor.

Next to these DAiSI specific methods we also need to implement the methods
of Service Interface CUnitServiceIf. Remarkable about this implementation
depicted in Listing B.9 are two details:

1. The implementation behaves differently depending on the Current Configu-
ration of the C-Unit.

2. The implementation queries pulse rate as well as blood pressure to decide,
whether a casualty is dead (TriageClass.EX) as described in our ap-
plication example.

By querying the Current Configuration as depicted in lines 81, 90, and
123 of Listing B.9 the German vendor implements different behaviors depend-
ing on the Current Configuration. Thus, the German C-Unit returns a automat-
ically calculated Triage Class if it is in Dependable Component Configuration
cConfiguration2German, while it returns a manually set one in configuration
cConfiguration1German.
79 @Override
80 public PUnitServiceIf getAssignedPeripheralUnit() {
81 if (getCurrent()._is_equivalent(cConfiguration2German)){
82 return pUnit;
83 } else {
84 return null;
85 }
86 }
87

88 @Override
89 public TriageClass getTriageClass() {
90 if (getCurrent()._is_equivalent(cConfiguration2German)){
91 if (pUnit.getPulseRate()==0 && pUnit.

getDiastolicBloodPressure() == 0 && pUnit.
getSystolicBloodPressure() == 0){

92 return TriageClass.EX;
93 }
94 if (pUnit.getPulseRate()==0 && (pUnit.

getDiastolicBloodPressure() != 0 || pUnit.
getSystolicBloodPressure() != 0)){

95 return TriageClass.UNKNOWN;
96 }

B. Implementation of our Application Example 243

97 if (pUnit.getPulseRate()!=0 && (pUnit.
getDiastolicBloodPressure() == 0 || pUnit.
getSystolicBloodPressure() == 0)){

98 return TriageClass.UNKNOWN;
99 }
100 if (pUnit.getPulseRate()<0||pUnit.

getDiastolicBloodPressure() < 0 || pUnit.
getSystolicBloodPressure() < 0){

101 return TriageClass.UNKNOWN;
102 }
103 if ((T_IV_LOW_BORDER<pUnit.getPulseRate()&&pUnit.

getPulseRate()<=T_III_LOW_BORDER||(T_III_HIGH_BORDER<
pUnit.getPulseRate()&&pUnit.getPulseRate()<=
T_IV_HIGH_BORDER))){

104 return TriageClass.T_IV;
105 }
106 if ((T_III_LOW_BORDER<pUnit.getPulseRate()&&pUnit.

getPulseRate()<=T_II_LOW_BORDER||(T_II_HIGH_BORDER<
pUnit.getPulseRate()&&pUnit.getPulseRate()<=
T_III_HIGH_BORDER))){

107 return TriageClass.T_III;
108 }
109 if ((T_II_LOW_BORDER<pUnit.getPulseRate()&&pUnit.

getPulseRate()<=T_I_LOW_BORDER||(T_I_HIGH_BORDER<pUnit
.getPulseRate()&&pUnit.getPulseRate()<=
T_II_HIGH_BORDER))){

110 return TriageClass.T_II;
111 }
112 if ((T_I_LOW_BORDER<=pUnit.getPulseRate()&&pUnit.

getPulseRate()<T_I_HIGH_BORDER)){
113 return TriageClass.T_I;
114 }
115 return TriageClass.UNKNOWN;
116 } else {
117 return manuallySetTriageClass;
118 }
119 }
120

121 @Override
122 public boolean setTriageClass(TriageClass newTriageClass) {
123 if (getCurrent()._is_equivalent(cConfiguration1German)){
124 manuallySetTriageClass = newTriageClass;
125 return true;
126 } else {
127 return false;
128 }
129 }
130

131 @Override

244 B. Implementation of our Application Example

132 public int getLatitude() {
133 return 0;
134 }
135

136 @Override
137 public int getLongitude() {
138 return 0;
139 }

Listing B.9: Service Implementation Part of the C-Unit Implementation by the German
Vendor.

The remaining part of the implementation is the calculation of Behavior Equiv-
alence Classes regarding the required P-Unit and the test cases, that need to be
executed to decide, whether a given P-Unit is semantically compatible.

As a Dependable Dynamic Adaptive Component may declare several Depend-
able Service References, both – the method calculating the Behavior Equivalence
Class as well as the method executing test cases – need to contain an identifier spec-
ifying the Dependable Service Reference, they refer to. In our reference implemen-
tation DAiSI, we indicate this, by adding an underscore followed by the name of the
attribute representing this Dependable Service Reference as a suffix to the methods
getServiceReferenceBehavior and equivalenceClassTest.

In our example, the German C-Unit contains an attribute pUnit (cf. line 2Behavior
Equivalence Classes

for Service
References.

of Listing B.7) representing the Dependable Service Reference. Thus, the two
methods calculating the Behavior Equivalence Class and the semantical Compat-
ibility in our example are getServiceReferenceBehavior_pUnit and
equivalenceClassTest_pUnit.

The calculation of the Behavior Equivalence Class in our example is straightfor-
ward. The German vendor decides, that the Behavior Equivalence Class of a P-Unit
depends on the Triage Class he would calculate by accessing this P-Unit. Thus, the
method getServiceReferenceBehavior_pUnit returns the Triage Class
converted to an integer value.

The German C-Unit has two different Compliance Test Cases for a P-Unit. The
first Compliance Test Case in lines 148 – 150 of Listing B.10 simply checks, whether
the systolic blood pressure is equal or above the diastolic blood pressure, since
otherwise the P-Unit has a malfunction. This Compliance Test Case is executed,
whenever the German C-Unit has calculated the Behavior Equivalence Class of a
P-Unit to the integer representation of TriageClass.EX.

In all other cases, it is checked additionally, whether the sensor values are equal
or above zero as depicted in lines 150 – 152 of Listing B.10, since this is a precon-
dition to calculate the Triage Class in a reasonable way. DAiSI’s Dependable Con-
figuration Component executes one of these Compliance Test Cases – depending
on the Behavior Equivalence Class – if a Dependable Service Binding is established

B. Implementation of our Application Example 245

respectively if a Behavior Equivalence Class combination of a Dependable Service
Binding changes.

140 public int getServiceReferenceBehavior_pUnit() {
141 // accesses pUnit (encapsulated in the getTriageClass()-

call) to calculate the current Behavior Equivalence
Class.

142 TriageClass tc = getTriageClass();
143 return tc.value();
144 }
145

146 public boolean equivalenceClassTest_pUnit(int
providerEquivalenceClass, int userEquivalenceClass) {

147 // accesses pUnit to check, whether it is semantically
equivalent

148 if (userEquivalenceClass == TriageClass.UNKNOWN.value()){
149 return (pUnit.getSystolicBloodPressure()>=pUnit.

getDiastolicBloodPressure());
150 } else {
151 return (pUnit.getPulseRate()>=0&&pUnit.

getDiastolicBloodPressure()>=0&&pUnit.
getSystolicBloodPressure()>=0&&(pUnit.
getSystolicBloodPressure()>=pUnit.
getDiastolicBloodPressure()));

152 }
153 }
154 }

Listing B.10: Provided Service Behavior Calculation of the C-Unit Implementation
by the German Vendor.

B.1.3 Dutch C-Unit

The implementation of the C-Unit by the Dutch vendor differs from the German
C-Unit in the implementation of its getTriageClass() method. It classifies a
casualty as dead (TriageClass.EX) as soon as the pulse rate is equal to zero,
without considering the blood pressure in addition. This is depicted in Lines 4 – 6
of Listing B.11.

The remainder of the implementation of this method is identical to the imple-
mentation of the German vendor.

1 @Override
2 public TriageClass getTriageClass() {
3 if (getCurrent()._is_equivalent(cConfiguration2Dutch)){
4 if (pUnit.getPulseRate()==0){
5 return TriageClass.EX;
6 }

246 B. Implementation of our Application Example

7 if (pUnit.getPulseRate()<0||pUnit.
getDiastolicBloodPressure() < 0 || pUnit.
getSystolicBloodPressure() < 0){

8 return TriageClass.UNKNOWN;
9 }
10 if ((T_IV_LOW_BORDER<pUnit.getPulseRate()&&pUnit.

getPulseRate()<=T_III_LOW_BORDER||(T_III_HIGH_BORDER<
pUnit.getPulseRate()&&pUnit.getPulseRate()<=
T_IV_HIGH_BORDER))){

11 return TriageClass.T_IV;
12 }
13 if ((T_III_LOW_BORDER<pUnit.getPulseRate()&&pUnit.

getPulseRate()<=T_II_LOW_BORDER||(T_II_HIGH_BORDER<
pUnit.getPulseRate()&&pUnit.getPulseRate()<=
T_III_HIGH_BORDER))){

14 return TriageClass.T_III;
15 }
16 if ((T_II_LOW_BORDER<pUnit.getPulseRate()&&pUnit.

getPulseRate()<=T_I_LOW_BORDER||(T_I_HIGH_BORDER<pUnit
.getPulseRate()&&pUnit.getPulseRate()<=
T_II_HIGH_BORDER))){

17 return TriageClass.T_II;
18 }
19 if ((T_I_LOW_BORDER<=pUnit.getPulseRate()&&pUnit.

getPulseRate()<T_I_HIGH_BORDER)){
20 return TriageClass.T_I;
21 }
22 return TriageClass.UNKNOWN;
23 } else {
24 return manuallySetTriageClass;
25 }
26 }
Listing B.11: Implementation of the getTriageClass() Method by the C-Unit of the
Dutch Vendor.

Due to its different implementation of getTriageClass(), the Dutch ven-
dor assumes, that a pulse rate of zero implies a blood pressure of zero. This as-
sumption needs to be reflected in the test cases for P-Units specified by the Dutch
C-Unit. You can see the specification of these interoperability tests in Listing B.12.

Within this Listing you can see in lines 6 – 8, that this C-Unit expects a P-
Unit to return zero for pulse rate as well as for blood pressure, whenever the
C-Unit would classify a casualty as dead. Otherwise the test case execution will
fail. This causes, that the Dependable Configuration Component automatically re-
moves the Dependable Service Binding between the Dutch C-Unit and the previ-
ously bound P-Unit and changes its Dependable Component Configuration towards
configurationManualTriage.

B. Implementation of our Application Example 247

1 public boolean equivalenceClassTest_pUnit(int
providerEquivalenceClass, int userEquivalenceClass) {

2 // accesses pUnit to check, whether it is semantically
equivalent

3 if (userEquivalenceClass == TriageClass.UNKNOWN.value()){
4 return (pUnit.getPulseRate()>=0&&pUnit.

getDiastolicBloodPressure()>=0&&pUnit.
getSystolicBloodPressure()>=0&&(pUnit.
getSystolicBloodPressure()>=pUnit.
getDiastolicBloodPressure()));

5 } else {
6 if (userEquivalenceClass == TriageClass.EX.value()){
7 return (pUnit.getPulseRate()==0 && pUnit.

getDiastolicBloodPressure() == 0 && pUnit.
getSystolicBloodPressure() == 0);

8 } else {
9 return (pUnit.getSystolicBloodPressure()>=pUnit.

getDiastolicBloodPressure());
10 }
11 }
12 }
Listing B.12: Implementation of the Interoperability Test for P-Units Included in the
C-Unit of the Dutch Vendor.

B.2 Node Models

Our reference implementation DAiSI requires node models, specifying, which De-
pendable Dynamic Adaptive Components should be started by a specific physical
node. This has already been described in section 6.1.1 in detail. Such a node
model specifying, that a German C-Unit should be started up, looks as depicted in
Listing B.13. In line 6 of this listing we specify the class, that should be instantiated
by the physical node.

1 <?xml version=”1.0” encoding=”UTF-8”?>
2 <daisi:Node xmi:version=”2.0” xmlns:xmi=”http://www.omg.org/

XMI” xmlns:daisi=”de.tuc.ifi.sse.daisi”>
3 <infrastructureComponent name=”

DependableConfigurationComponent”/>
4 <dependableDynamicAdaptiveComponent name=”de.tuc.ifi.sse.

daisi.applicationExample.germanVendor.cUnit.CUnitImpl”
requestRun=”true” />

5 </daisi:Node>

Listing B.13: Node Model for a Physical Node that Should Host a German C-Unit.

248 B. Implementation of our Application Example

If we want to specify a node model, that should startup a German P-Unit or a
Dutch C-Unit this line needs to be replaced by the corresponding line from Listing
B.14 or B.15.

1 <dependableDynamicAdaptiveComponent name=”de.tuc.ifi.sse.daisi
.applicationExample.germanVendor.pUnit.PUnitImpl”
requestRun=”false” />

Listing B.14: Excerpt From a Node Model for a Physical Node that Should Host a
German P-Unit.

1 <dependableDynamicAdaptiveComponent name=”de.tuc.ifi.sse.daisi
.applicationExample.dutchVendor.cUnit.CUnitImpl”
requestRun=”true” />

Listing B.15: Excerpt From a Node Model for a Physical Node that Should Host a
Dutch C-Unit.

In Listing B.14 you can also see, that we specified property requestRun to false.
This means, that DAiSI’s Dependable Configuration Component will not activate this
P-Unit unless there is another Dependable Dynamic Adaptive Component requiring
a Dependable Service provided by this P-Unit. This makes sense, as the P-Unit on
its own is useless until there is another component using its sensor values.

Bibliography

[AE06] E. H. L. Aarts and J. L. Encarnaçao. True Visions: The Emergence of
Ambient Intelligence (Frontiers Collection). Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006. 7

[AKNR09] André Appel, Holger Klus, Dirk Niebuhr, and Andreas Rausch. Event-
Based Realization of Dynamic Adaptive Systems. In Handbook of Re-
search on Advanced Distributed Event-Based Systems. Idea Group Inc.,
2009. accepted for publication. 127, 130

[All09] The OSGi Alliance. Osgi service platform core specification, release
4, version 4.2. http://www.osgi.org/download/r4v42/r4.core.pdf
[Online; accessed 23-March-2010], 2009. 21

[ALR04] Algirdas Avižienis, Jean-Claude Laprie, and Brian Randell. Depend-
ability and its threats: A taxonomy. In Building the Information Society,
pages 91–120. 2004. 25, 26, 27, 28, 186, 261

[Ang10] Digital Angel. Homepage of digital angel. http://www.digitalangel.
com/, 2010. [Online; accessed 23-March-2010]. 6

[BB03] F. Barbier and N. Belloir. Component behavior prediction and moni-
toring through built-in test. In Engineering of Computer-Based Systems,
2003. Proceedings. 10th IEEE International Conference and Workshop
on the, pages 17–22, 2003. 32

[BBSN08] Saddek Bensalem, Marius Bozga, Joseph Sifakis, and Thanh-Hung
Nguyen. Compositional verification for Component-Based systems
and application. In Proceedings of the 6th International Symposium
on Automated Technology for Verification and Analysis, pages 64–79,
Seoul, Korea, 2008. Springer-Verlag. 30

[BCP07] Antonio Brogi, Carlos Canal, and Ernesto Pimentel. Behavioural types
for service integration: Achievements and challenges. Electron. Notes
Theor. Comput. Sci., 180(2):41–54, 2007. 30

249

http://www.osgi.org/download/r4v42/r4.core.pdf
http://www.digitalangel.com/
http://www.digitalangel.com/

250 Bibliography

[BDH+98] Manfred Broy, Anton Deimel, Juergen Henn, Kai Koskimies, František
Plášil, Gustav Pomberger, Wolfgang Pree, Michael Stal, and Clemens
Szyperski. What characterizes a (software) component? Software -
Concepts & Tools, 19(1):49–56, June 1998. 20, 185

[Ber96] Philip A. Bernstein. Middleware: a model for distributed system ser-
vices. Commun. ACM, 39(2):86–98, 1996. 25

[BGS01] Michael Beigl, Hans-W. Gellersen, and Albrecht Schmidt. Mediacups:
experience with design and use of computer-augmented everyday
artefacts, 2001. 8

[Bla04] J. Blau. Supermarket’s futuristic outlet. Spectrum, IEEE, 41(4):21–22,
25, April 2004. 6

[BLS05] Mike Barnett, Leino, and Wolfram Schulte. The spec# programming
system: An overview. In Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices, volume 3362/2005, pages 69, 49.
Springer, 2005. 32

[BMM09] Marcel Bruch, Martin Monperrus, and Mira Mezini. Learning from
examples to improve code completion systems. In Proceedings of the
the 7th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software engi-
neering, pages 213–222, Amsterdam, The Netherlands, 2009. ACM.
167

[BMMS+06] Jürgen Branke, Moez Mnif, Christian Müller-Schloer, Holger Proth-
mann, Urban Richter, Fabian Rochner, and Hartmut Schmeck. Organic
Computing – Addressing complexity by controlled self-organization.
In Proceedings of the 2nd International Symposium on Leveraging Appli-
cations of Formal Methods, Verification and Validation (ISoLA 2006),
November 2006. 4

[BMP07] Antonia Bertolino, Henry Muccini, and Andrea Polini. Architectural ver-
ification of Black-Box Component-Based systems. In Rapid Integration
of Software Engineering Techniques, pages 98–113. 2007. 33

[Bro93] Manfred Broy. Functional specification of time-sensitive communicating
systems. ACM Trans. Softw. Eng. Methodol., 2(1):1–46, 1993. 3

[BRSV00] Klaus Bergner, Andreas Rausch, Marc Sihling, and Alexander Vilbig.
Putting the parts together – concepts, description techniques, and de-
velopment process for componentware. In HICSS 33, Proceedings of

Bibliography 251

the Thirty-Third Annual Hawaii International Conference on System Sci-
ences. IEEE Computer Society, Jan 2000. 1

[CCMW01] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva
Weerawarana. Web services description language (wsdl) 1.1. Tech-
nical report, W3C, 2001. 23, 193

[CFHL07] Xi Chen, Juejing Feng, Martin Hiller, and Vera Lauer. Application
of software watchdog as a dependability software service for au-
tomotive safety relevant systems. In Proceedings of the 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works, pages 618–624. IEEE Computer Society, 2007. 139

[Chi05] M. M. Islam Chisty. An introduction to java annotations. Developer.com,
2005. 166, 179

[Chu36] Alonzo Church. An unsolvable problem of elementary number theory.
American Journal of Mathematics, 58:345–363, 1936. 30

[Cor08a] Microsoft Corporation. Msdn documentation of the program com-
patibility assistant in windows vista. http://msdn.microsoft.com/en-
us/library/bb756937.aspx, 2008. [Online; accessed 23-March-
2010]. 35, 261

[Cor08b] Microsoft Corporation. Windows logo program. http://www.
microsoft.com/whdc/winlogo/, 2008. [Online; accessed 23-March-
2010]. 34

[Cor08c] Microsoft Corporation. Windows update. http://windowsupdate.
microsoft.com/, 2008. [Online; accessed 23-March-2010]. 34

[Cor 6] International Data Corporation. Information industry update. 1995-6.
6, 261

[CPS09] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Larva –
safer monitoring of Real-Time java programs. Hanoi, Vietnam, 2009.
33

[CS05] Christoph Csallner and Yannis Smaragdakis. Check ’n’ crash: combin-
ing static checking and testing. In Proceedings of the 27th international
conference on Software engineering, pages 422–431, St. Louis, MO,
USA, 2005. ACM. 30

http://msdn.microsoft.com/en-us/library/bb756937.aspx
http://msdn.microsoft.com/en-us/library/bb756937.aspx
http://www.microsoft.com/whdc/winlogo/
http://www.microsoft.com/whdc/winlogo/
http://windowsupdate.microsoft.com/
http://windowsupdate.microsoft.com/

252 Bibliography

[DJ08] Dino Distefano and Matthew J. Parkinson J. jStar: towards practical
verification for java. In Proceedings of the 23rd ACM SIGPLAN con-
ference on Object-oriented programming systems languages and appli-
cations, pages 213–226, Nashville, TN, USA, 2008. ACM. 31

[Dow97] Mark Dowson. The Ariane 5 software failure. SIGSOFT Softw. Eng.
Notes, 22(2):84, 1997. 10

[dRA04] Boris de Ruyter and Emile Aarts. Ambient intelligence: visualizing the
future. In AVI ’04: Proceedings of the working conference on Advanced
visual interfaces, pages 203–208, New York, NY, USA, 2004. ACM. 7

[Dum09] Daniel Dumas. Aug. 28, 1988: Ramstein air show disaster kills
70, injures hundreds. http://www.wired.com/thisdayintech/2009/
08/0828ramstein-air-disaster/ [Online; accessed 23-March-2010],
2009. 37

[Erl05] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and
Design. Prentice Hall International, illustrated edition edition, August
2005. 22, 23, 24, 261

[fESE09] Fraunhofer-Institute for Experimental Software Engineering. Bilateral
german–hungarian collaboration project on ambient intelligence sys-
tems. http://www.belami-project.org/, 2009. [Online; accessed 23-
March-2010]. 8

[FGG+06] Peter Feiler, Richard P. Gabriel, John Goodenough, Rick Linger, Tom
Longstaff, Rick Kazman, Mark Klein, Linda Northrop, Douglas Schmidt,
Kevin Sullivan, and Kurt Wallnau. Ultra-large-scale systems: The soft-
ware challenge of the future. Technical report, The Carnegie Mellon
Software Engineering Institute, 2006. 1, 4

[fIGiVI03] Gesellschaft fuer Informatik (GI) and Informationstechnis-
che Gesellschaft im VDE (ITG). Organic computing, computer-
und systemarchitektur im jahr 2010. Position Paper, 2003. 4

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended static checking for java.
In Proceedings of the ACM SIGPLAN 2002 Conference on Program-
ming language design and implementation, pages 234–245, Berlin,
Germany, 2002. ACM. 29, 30, 33

[For06] UPnP Forum. Upnp device architecture 1.0. Technical report, UPnP
Forum, 2006. 36

http://www.wired.com/thisdayintech/2009/08/0828ramstein-air-disaster/
http://www.wired.com/thisdayintech/2009/08/0828ramstein-air-disaster/
http://www.belami-project.org/

Bibliography 253

[GAO95] David Garlan, Robert Allen, and John Ockerbloom. Architectural mis-
match: Why reuse is so hard. IEEE Softw., 12(6):17–26, 1995. 3

[Gar09] Inc. Gartner. Gartner says grey-market sales and destocking drive
worldwide mobile phone sales to 309 million units; smartphone sales
grew 13 per cent in third quarter of 2009. http://www.gartner.
com/it/page.jsp?id=1224645, 2009. [Online; accessed 23-March-
2010]. 6

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, illustrated edition edition, November
1994. 166

[GMPS97] Li Gong, Marianne Mueller, Hemma Prafullchandra, and Roland
Schemers. Going beyond the sandbox: an overview of the new
security architecture in the java development kit 1.2. In USITS’97:
Proceedings of the USENIX Symposium on Internet Technologies and
Systems on USENIX Symposium on Internet Technologies and Systems,
pages 10–10, Berkeley, CA, USA, 1997. USENIX Association. 134

[Gro00] Object Management Group. Trading object service specification.
http://www.omg.org/cgi-bin/doc?formal/2000-06-27 [Online; ac-
cessed 23-March-2010], 2000. 22

[Gro04a] Hans-Gerhard Gross. Component-based Software Testing With Uml.
SpringerVerlag, 2004. 20, 185

[Gro04b] Object Management Group. Common object request broker architec-
ture (corba) specification, version 3.1. http://www.corba.org/ [On-
line; accessed 23-March-2010], 2004. 21, 127, 193

[Gro05] Manchester Triage Group. Emergency Triage. BMJ Books, 2005. 38

[Gro07] Object Management Group. UML Testing Profile Webpage. http:
//www.omg.org/technology/documents/formal/test_profile.htm,
2007. [Online; accessed 23-March-2010]. 17

[GSQ07] Daniel Görlich, Peter Stephan, and Jan Quadflieg. Demonstrating re-
mote operation of industrial devices using mobile phones. In Mobility
’07: Proceedings of the 4th international conference on mobile tech-
nology, applications, and systems and the 1st international symposium
on Computer human interaction in mobile technology, pages 474–477,
New York, NY, USA, 2007. ACM. 8

http://www.gartner.com/it/page.jsp?id=1224645
http://www.gartner.com/it/page.jsp?id=1224645
http://www.omg.org/cgi-bin/doc?formal/2000-06-27
http://www.corba.org/
http://www.omg.org/technology/documents/formal/test_profile.htm
http://www.omg.org/technology/documents/formal/test_profile.htm

254 Bibliography

[GWTB96] Ian Goldberg, David Wagner, Randi Thomans, and Eric Brewer. A se-
cure environment for untrusted helper applications (confining the wily
hacker). In Proceedings of the Sixth USENIX UNIX Security Symposium,
San Jose, California, USA, July 1996. USENIX, USENIX Association.
134

[Her05] Scott Herrboldt. How to improve driver quality withWinqual /WHQL.
In Windows Hardware Engineering Conference (WinHEC). Microsoft
Corporation, 2005. 34

[HKNR08] Sebastian Herold, Holger Klus, Dirk Niebuhr, and Andreas Rausch.
Engineering of IT ecosystems: design of ultra-large-scale software-
intensive systems. In Proceedings of the 2nd international workshop
on Ultra-large-scale software-intensive systems, pages 49–52, Leipzig,
Germany, 2008. ACM. 1

[Huc10] Thomas Huckle. Collection of software bugs, 2010. http://www5.
in.tum.de/%7Ehuckle/bugse.html [Online; accessed 23-March-2010].
10

[Ini09] Metro Group Future Store Initiative. MEA - der Mo-
bile Einkaufsassistent. http://www.future-store.org/fsi-
internet/get/documents/FSI/multimedia/pdfs/MEA%20-
%20Der%20mobile%20Einkaufsassistent.pdf [Online; accessed
23-March-2010], 2009. 6, 9

[Ins07] The European Telecommunications Standards Institute. Testing & Test
Control Notation Webpage. http://www.ttcn-3.org/, 2007. [Online;
accessed 23-March-2010]. 17

[JTNK06] Thomas Jaitner, Marcus Trapp, Dirk Niebuhr, and Jan Koch. Indoor-
simulation of team training in cycling. In ISEA 2006, Jul 2006. 8

[KDF04] Katarzyna Keahey, Karl Doering, and Ian Foster. From sandbox to
playground: Dynamic virtual environments in the grid. In GRID ’04:
Proceedings of the Fifth IEEE/ACM International Workshop on Grid
Computing, pages 34–42, Washington, DC, USA, 2004. IEEE Com-
puter Society. 134

[Ken06] Lawrence Kenny. Exploring the business and social impacts of perva-
sive computing. TA – SWISS, IBM Zurich Research Laboratory, 2006.
5

http://www5.in.tum.de/%7Ehuckle/bugse.html
http://www5.in.tum.de/%7Ehuckle/bugse.html
http://www.future-store.org/fsi-internet/get/documents/FSI/multimedia/pdfs/MEA%20-%20Der%20mobile%20Einkaufsassistent.pdf
http://www.future-store.org/fsi-internet/get/documents/FSI/multimedia/pdfs/MEA%20-%20Der%20mobile%20Einkaufsassistent.pdf
http://www.future-store.org/fsi-internet/get/documents/FSI/multimedia/pdfs/MEA%20-%20Der%20mobile%20Einkaufsassistent.pdf
http://www.ttcn-3.org/

Bibliography 255

[KNR07] Holger Klus, Dirk Niebuhr, and Andreas Rausch. A component model
for dynamic adaptive systems. In ESSPE ’07: International workshop
on Engineering of software services for pervasive environments, pages
21–28, New York, NY, USA, 2007. ACM. 7

[KNW06] Holger Klus, Dirk Niebuhr, and Oliver Weiß. Integrating sensor nodes
into a middleware for ambient intelligence. In Proceedings of the
Workshop Building Software for Sensor Networks, International Con-
ference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2006), Oct 2006. 127, 128

[KR06] Holger Klus and Andreas Rausch. A general architecture for self-
adaptive ami components applied in speech recognition. In SEAMS -
Software Engineering for Adaptive and Self-Managing Systems, Shang-
hai, China, May 2006. 2

[LBR06] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary de-
sign of JML: a behavioral interface specification language for java.
SIGSOFT Softw. Eng. Notes, 31(3):1–38, 2006. 32, 49

[Lev95] Nancy G. Leveson. Safeware: System Safety and Computers. Addison-
Wesley Professional, April 1995. 26

[Lig02] Peter Liggesmeyer. Software-Qualität. Testen, Analysieren und Veri-
fizieren von Software. Spektrum Akademischer Verlag, August 2002.
4, 28, 29, 31, 261

[LPY97] Kim G Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell.
1997. 30

[LTW+06] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and
Chengxiang Zhai. Have things changed now?: an empirical study
of bug characteristics in modern open source software. In Proceedings
of the 1st workshop on Architectural and system support for improv-
ing software dependability, pages 25–33, San Jose, California, 2006.
ACM. 4

[Mat07] Friedemann Mattern. Was bedeuten Pervasive und Ubiquitous Com-
puting? asut-Bulletin, (4):33, 2007. 5

[MBM+07] David Martin, Mark Burstein, Drew Mcdermott, Sheila Mcilraith, Mas-
simo Paolucci, Katia Sycara, Deborah L. Mcguinness, Evren Sirin, and
Naveen Srinivasan. Bringing semantics to web services with OWL-S.
World Wide Web, 10(3):243–277, 2007. 23

256 Bibliography

[Mes09] Deutsche Messe. CeBIT fair – Centrum für Büroautomation, Infor-
mationstechnologie und Telekommunikation, 2009. http://www.cebit.
de/ [Online; accessed 23-March-2010]. 37

[Mey92] Bertrand Meyer. Applying ”design by contract”. Computer,
25(10):40–51, 1992. 32, 49

[Mic93] Microsoft. Com: Component object model technologies. http://
www.microsoft.com/com/default.mspx [Online; accessed 23-March-
2010], 1993. 21

[Mic96] Microsoft. Dcom technical overview. http://msdn.microsoft.com/
en-us/library/ms809340.aspx [Online; accessed 23-March-2010],
1996. 21

[Mic07a] Microsoft. Microsoft .net framework. http://www.microsoft.com/net/
[Online; accessed 23-March-2010], 2007. 21

[Mic07b] Sun Microsystems. Java platform, enterprise edition. http://java.sun.
com/javaee/ [Online; accessed 23-March-2010], 2007. 21

[Mic09] Microsoft. Managed extensibility framework, 2009. http://www.
codeplex.com/MEF [Online; accessed 23-March-2010]. 21

[MKF06] G.C. Murphy, M. Kersten, and L. Findlater. How are java software
developers using the elipse IDE? IEEE Software, 23(4):76–83, 2006.
167

[MRP+07] Anton Michlmayr, Florian Rosenberg, Christian Platzer, Martin Treiber,
and Schahram Dustdar. Towards recovering the broken SOA triangle:
a software engineering perspective. In 2nd international workshop on
Service oriented software engineering: in conjunction with the 6th ES-
EC/FSE joint meeting, pages 22–28, Dubrovnik, Croatia, 2007. ACM.
24, 261

[NBKL06] Jürgen Nehmer, Martin Becker, Arthur Karshmer, and Rosemarie
Lamm. Living assistance systems: an ambient intelligence approach. In
ICSE ’06: Proceeding of the 28th international conference on Software
engineering, pages 43–50, New York, NY, USA, 2006. ACM. 8

[New06] Jan Newmarch. Jan newmarch’s guide to jini technologies, 2006. http:
//jan.newmarch.name/java/jini/tutorial/Jini.html [Online; accessed
23-March-2010]. 22

http://www.cebit.de/
http://www.cebit.de/
http://www.microsoft.com/com/default.mspx
http://www.microsoft.com/com/default.mspx
http://msdn.microsoft.com/en-us/library/ms809340.aspx
http://msdn.microsoft.com/en-us/library/ms809340.aspx
http://www.microsoft.com/net/
http://java.sun.com/javaee/
http://java.sun.com/javaee/
http://www.codeplex.com/MEF
http://www.codeplex.com/MEF
http://jan.newmarch.name/java/jini/tutorial/Jini.html
http://jan.newmarch.name/java/jini/tutorial/Jini.html

Bibliography 257

[Nie09] Dirk Niebuhr. DAiSI - Infrastruktur für Dynamisch Adaptive Sys-
teme – Verlässliche IT Ökosysteme am Beispiel eines Rettungsassisten-
zsystems, 2009. http://bit.ly/dBs0dS [Online; accessed 23-March-
2010]. 37

[Nie10] Dirk Niebuhr. Rettungsassistenzsystem für Katastrophen und
Großschadenslagen, 2010. http://www2.in.tu-clausthal.de/
%7ERettungsassistenzsystem/video.php [Online; accessed 10-
March-2010]. 37

[NKA+07] Dirk Niebuhr, Holger Klus, Michalis Anastasopoulos, Jan Koch, Oliver
Weiß, and Andreas Rausch. Daisi - dynamic adaptive system infras-
tructure. Technical report, Fraunhofer Institut Experimentelles Software
Engineering, IESE-Report No. 051.07/E, Jun 2007. 125

[NRK+10] Dirk Niebuhr, Andreas Rausch, Holger Klus, André Appel, Cornel Klein,
Jürgen Reichmann, and Reiner Schmid. Method and apparatus for de-
termining a component conforming to the requirements. Patent pend-
ing (Patent Nr. WO 2010/040605 A2), 2010. 176

[NSH09] Dirk Niebuhr, Mirco Schindler, and Dirk Herrling. Emergency assistance
system – webpage of the cebit exhibit 2009, 2009. http://www2.
in.tu-clausthal.de/%7ERettungsassistenzsystem/en [Online; accessed
23-March-2010]. 15, 37

[NSRD08] E. Naroska, K. Scherer, C. Ressel, and T. Dimitrov. Ambient intelligence
to support people at home. 2008. 7

[otN09] Royal Philips Electronics of the Netherlands. Ambilight technol-
ogy. http://www.consumer.philips.com/c/televisions/33092/cat/
gb/ [Online; accessed 23-March-2010], 2009. 7

[PBC+06] Neha Padmanabhan, Frada Burstein, Leonid Churilov, Jeff
Wassertheil, Bernard Hornblower, and Nyree Parker. A mo-
bile emergency triage decision support system evaluation. In
Proceedings of the 39th Annual Hawaii International Conference on
System Sciences - Volume 05, page 96.2. IEEE Computer Society,
2006. 41

[Pre99] Larry Press. Personal computing: the post-pc era. Commun. ACM,
42(10):21–24, 1999. 5

http://www2.in.tu-clausthal.de/%7ERettungsassistenzsystem/en/events.php#futuretalk
http://www2.in.tu-clausthal.de/%7ERettungsassistenzsystem/video.php
http://www2.in.tu-clausthal.de/%7ERettungsassistenzsystem/video.php
http://www2.in.tu-clausthal.de/%7ERettungsassistenzsystem/en
http://www2.in.tu-clausthal.de/%7ERettungsassistenzsystem/en
http://www.consumer.philips.com/c/televisions/33092/cat/gb/
http://www.consumer.philips.com/c/televisions/33092/cat/gb/

258 Bibliography

[Rau01] Andreas Rausch. Componentware: Methodik des evolutionären Ar-
chitekturentwurfs. Herbert Utz Verlag, PhD Thesis at Technische Uni-
versität München, Nov 2001. 22

[Rau02] Andreas Rausch. “design by contract”+ “componentware”= “design
by signed contract”. Journal of Object Technology, 1(3), Jul 2002.
Special issue: TOOLS USA 2002. 22

[Rau05a] Andreas Rausch. Towards a formal foundation for dynamic evolution-
ary systems. In Proceedings of the Workshop on Architecture-Centric
Evolution (ACE 2005), the 19th European Conference on Object-
Oriented Programming (ECOOP 2005), Jul 2005. 22

[Rau05b] Andreas Rausch. Towards dynamic evolutionary systems. In Proceed-
ings of the Workshop on Architecture-Centric Evolution (ACE 2005),
the 19th European Conference on Object-Oriented Programming
(ECOOP 2005), Jul 2005. 15

[Rau07] Andreas Rausch. DisCComp – A Formal Model for Distributed Con-
current Components. Electronic Notes in Theoretical Computer Science
(ENTCS), 176(2):5–23, 2007. 22

[RKL+05] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén
Lara, Michael Stollberg, Axel Polleres, Cristina Feier, Cristoph Bus-
sler, and Dieter Fensel. Web service modeling ontology. Appl. Ontol.,
1(1):77–106, 2005. 23

[SBL05] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving
the reliability of commodity operating systems. ACM Trans. Comput.
Syst., 23(1):77–110, 2005. 33

[Sec92] International Electrotechnical Commission (IEC) Secretariat. Industrial-
process measurement and control – evaluation of system properties
for the purpose of system assessment. part 5: Assessment of system
dependability, publication 1069-5. Technical report, 1992. 25

[SHDC06] Randall B. Smith, Bernard Horan, John Daniels, and Dave Cleal. Pro-
gramming the world with Sun SPOTs. In OOPSLA ’06: Companion to
the 21st ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 706–707, New York, NY,
USA, 2006. ACM. 40

[SIG05] Bluetooth SIG. Hands-free profile 1.5. Technical report, Bluetooth
SIG, 2005. 10, 36

Bibliography 259

[SIG07] Bluetooth SIG. Specification of the bluetooth system. specification ver-
sion 2.1. Technical report, Bluetooth SIG, 2007. 10, 36

[Som06] Ian Sommerville. Software Engineering. Addison Wesley, 8 edition,
June 2006. 28

[SS03] Gitanjali Swamy and Sanjay Sarma. Manufacturing cost simulations
for low cost RFID systems. Technical report, Auto-ID Center, Mas-
sachusetts Institute of Technology, 2003. 6

[SS06] Fredrik Seehusen and Ketil Stølen. Information flow property preserv-
ing transformation of UML interaction diagrams. In Proceedings of the
eleventh ACM symposium on Access control models and technologies,
pages 150–159, Lake Tahoe, California, USA, 2006. ACM. 3

[Szy02] Clemens Szyperski. Component Software. Addison Wesley Publishing
Company, 2002. 1, 20, 21, 185

[Tec09] Crossbow Technology. Homepage of crossbow technology, 2009. http:
//www.xbow.com/ [Online; accessed 23-March-2010]. 40

[Tel06] Telephia. European subscriber and device report q1 2006. 2006. 10

[Tos09] Toshiba. Firmware update documentation – firmware 1.5 for the HD
DVD players HD-XE1 and HD-E1. http://www.toshibahddvd.co.uk/
media/File/firmware_update_1.5.pdf, 2009. [Online; accessed 23-
March-2010]. 9

[Tur36] Alan Mathison Turing. On computable numbers, with an application to
the Entscheidungsproblem. In Proceedings of the London Mathematical
Society, pages 230–265, 1936. 30

[US04] Pauliina Ulkuniemi and Veikko Seppanen. Cots component acquisition
in an emerging market. IEEE Softw., 21(6):76–82, 2004. 21

[VHT00] Antonio Vallecillo, Juan Hernandez, and Jose M Troya. Component
interoperability. ECOOP ’99 READER, NUMBER 1743 IN LNCS, pages
1—21, 2000. 36, 103

[Vog03] Werner Vogels. Web services are not distributed objects. IEEE Internet
Computing, 7(6):59–66, 2003. 23

[W3C07] W3C. Simple object access protocol (soap) specification. http://www.
w3.org/TR/soap/ [Online; accessed 23-March-2010], 2007. 23, 36

http://www.xbow.com/
http://www.xbow.com/
http://www.toshibahddvd.co.uk/media/File/firmware_update_1.5.pdf
http://www.toshibahddvd.co.uk/media/File/firmware_update_1.5.pdf
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/

260 Bibliography

[Wei81] Mark Weiser. Program slicing. In Proceedings of the 5th international
conference on Software engineering, pages 439–449, San Diego, Cal-
ifornia, United States, 1981. IEEE Press. 29

[Wei91] Mark Weiser. The computer for the 21st century. Scientific American,
02/1991 1991. 5

[WLAG93] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Gra-
ham. Efficient software-based fault isolation. In SOSP ’93: Proceed-
ings of the fourteenth ACM symposium on Operating systems principles,
pages 203–216, New York, NY, USA, 1993. ACM. 134

List of Figures

1.1 A Shift in the Computing Paradigm according to [Cor 6]. 6
1.2 Building Blocks of a Software Systems Engineering Methodology. . . 16

2.1 The SOA Triangle According to [MRP+07] or [Erl05]. 24
2.2 A Dependability Taxonomy According to [ALR04]. The Depend-

ability Attributes Addressed in this Thesis are Highlighted in Color. . 27
2.3 A Classification of the Most Relevant Verification and Validation

Techniques According to [Lig02]. The Verification and Validation
Technique Used in this Thesis is Highlighted in Color. 29

2.4 The Program Compatibility Assistant Querying the End User After
an Installation of a Potentially Incompatible Software Product Ac-
cording to [Cor08a]. 35

3.1 A sequence of events in case of a huge disaster. 39
3.2 A German Casualty Card’s Front and Rear View with a Triage Class

Leaflet Attached at the Bottom. 40
3.3 An Unfolded Triage Class Leaflet – Triage Class EX is Represented

by the Black Color. 41
3.4 A M-Unit for the Emergency Assistance System. 42
3.5 A Cased Sun SPOT Acting as a C-Unit in our Emergency Assistance

System. 43
3.6 A Cased Sun SPOT With Vital Data Sensors Attached. It is Acting

as a P-Unit in our Emergency Assistance System. 44
3.7 A Mounted Wall Display Acting as an IC-Unit in our Emergency

Assistance System. 44
3.8 Overview of the Different Components Within our Application Ex-

ample. 45
3.9 The Component Bindings Within our Application Example and Their

Compatibility. 48
3.10 A Domain Architecture for Emergency Assistance Systems. 49
3.11 The German P-Unit – Two Separate Sensors. 54
3.12 The Dutch P-Unit – a Combined Sensor. 57

261

262 List of Figures

3.13 Compatibility Between the Different C-Units and P-Units Depending
on Their Internal State. 60

4.1 Graphical View of our Structural System Model. 66
4.2 Dependability Checkpoints in our Example. 69
4.3 Application Components present in our Application Example at t0+6. 72
4.4 A Closer Look at the Application Components Present in our Appli-

cation Example at t0 + 6. 78
4.5 A Closer Look at the Application Components and their Configura-

tions at t0 + 6. 81
4.6 A Closer Look at the Bindings of the Application Components at t0+6. 83
4.7 A Closer Look at Dependable Services and Dependable Service

References from our Application Example. 86
4.8 Specification of Service Interfaces in our Application Example. . . . 89
4.9 Syntactical Compatibility in our Application Example. 93

5.1 Graphical View of our Behavioral System Model. 104
5.2 Dependability Checkpoints Interesting for Semantical Compatibil-

ity in our Example. 106
5.3 The Behavior Equivalence Classes of a Dependable Service and a

Dependable Service Reference in Our Application Example at tn+1.110

6.1 Layers of a Dependable Dynamic Adaptive System. 126
6.2 An Overview of DAiSI’s Infrastructure Components. 127
6.3 Relationship between Physical Node, Node Component, and De-

pendable Dynamic Adaptive Components. 129
6.4 Behavior of a Node Component During Startup. 131
6.5 Dialog Asking for a Node Model XML File During Startup of the

Node Component. 132
6.6 The Graphical User Interface Allowing Interaction with Components

Started by a Specific Node Component. 133
6.7 Different States of a Service Partner and Their Transitions. 135
6.8 Behavior of the Dependable Configuration Component from an Ab-

stract Point of View. 136
6.9 Interface of DAiSI’s Dependable Configuration Component. 138
6.10 Relations Between Result Sets of those Monitoring Methods Return-

ing Information about the Dependable System Configuration. 141
6.11 A View of our System from the Application Example Using the Con-

figuration Component Browser. 143
6.12 Internal Structure of DAiSI’s Dependable Configuration Component. 144

List of Figures 263

6.13 Realization of the register Method by DAiSI’s Dependable
Configuration Component. 146

6.14 Realization of the updateSystemConfiguration Method
by DAiSI’s Dependable Configuration Component. 148

6.15 Realization of the equivalenceClassChanged Method by
DAiSI’s Dependable Configuration Component. 149

6.16 Realization of the updateSemanticalCompatibility
Method by DAiSI’s Dependable Configuration Component. 150

6.17 Looking Back at the Bindings from our Application Example at t0 +6.153
6.18 A View on a System Under Test at t0 + 6. We Can Distinguish

Affected From Unaffected Components Based on the Components
Involved in the Test. 155

6.19 Realization of the bindingIsSemanticalCompatible
Method by DAiSI’s Dependable Configuration Component. 156

6.20 UML Testing Profile Specification of a Testcase for P-Units as De-
fined by the Dutch C-Unit. 157

6.21 Execution of Test Cases to Reason About Semantical Compatibility
Before Binding the second Dutch C-Unit to the second German P-
Unit at tn + 1. 158

6.22 Execution of Test Cases to Reason About Semantical Compatibility
After Binding the second Dutch C-Unit to the second German P-Unit
at tn + 2 when the fingerclip slips off. 159

6.23 Mapping Between the Component Model of our Formal System
Model and Interfaces Used by our Reference Implementation DAiSI. 160

6.24 Helper Classes of DAiSI’s Component Framework Implementing the
Interfaces Which Represent our Component Model. 162

6.25 Implementation of a Dependable Dynamic Adaptive Component
by Using the Component Framework. 163

6.26 Looking Back at our Domain Architecture for Emergency Assistance
Systems. 165

6.27 Mapping Structural Sets Defined in Our Formal System Model to
Elements of Our Reference Implementation. 170

6.28 Mapping Structural Relations Defined in Our Formal System Model
to Elements of Our Reference Implementation. 171

6.29 Mapping Structural Reconfiguration Triggers Defined in Our Formal
System Model to Elements of Our Reference Implementation. 171

6.30 Mapping Behavioral Sets Defined in Our Formal System Model to
Elements of Our Reference Implementation. 171

6.31 Mapping Behavioral Relations Defined in Our Formal System
Model to Elements of Our Reference Implementation. 172

264 List of Figures

6.32 Mapping Behavioral Reconfiguration Triggers Defined in Our For-
mal System Model to Elements of Our Reference Implementation. . . 172

7.1 An Engineering Methodology for Dependable Dynamic Adaptive
Systems Compared to One for Component Based Systems. 178

B.1 Specification of PUnitServiceIf from our Domain Architecture. 230
B.2 Structure of the German P-Unit from our Application Example. . . . 232
B.3 GUI of the German P-Unit from our Application Example Featuring

a Simulated Sensor. 235
B.4 Structure of the German C-Unit from our Application Example. . . . 238

List of Tables

3.1 Semantical Compatibility of C-Units and P-Units in our Example. . . 59

6.1 Classification of Methods Contained in Service Interface
CUnitServiceIf Along the Dimension Influence of Method
Execution on Internal State. 166

265

266 List of Tables

List of Listings

3.1 Semantical Specification of Service Interface PulseRateSensorIf. . . 50
3.2 Semantical Specification of Service Interface BloodPressureSensorIf. 50
3.3 Semantical Specification of Service Interface CasualtyUnitIf in the

Domain Architecture. 51
3.4 Implementation of the German C-Unit. 53
3.5 Implementation of the Dutch C-Units. 55
3.6 Implementation of the Dutch P-Unit. 56
6.1 Node Model for a Physical Node that Should Host a German C-Unit.128
6.2 TTCN-3 Specification of a Testcase for P-Units as Defined by the

Dutch C-Unit. 154
6.3 Java-Code fragment generated from a Testcase Specification of a

Testcase for P-Units as Defined by the Dutch C-Unit. 154
6.4 Code Completion Templates for the Eclipse IDE. 168
B.1 Specification of Service Interface PUnitServiceIf. 230
B.2 Declaration Part of the P-Unit Implementation by the German Vendor.233
B.3 DAiSI Specific Part of the P-Unit Implementation by the German

Vendor. 234
B.4 Service Implementation Part of the P-Unit Implementation by the

German Vendor. 235
B.5 Observer Implementation Part of the P-Unit Implementation by the

German Vendor. 236
B.6 Provided Service Behavior Calculation of the P-Unit Implementation

by the German Vendor. 237
B.7 Declaration Part of the C-Unit Implementation by the German Vendor.239
B.8 DAiSI Specific Part of the C-Unit Implementation by the German

Vendor. 241
B.9 Service Implementation Part of the C-Unit Implementation by the

German Vendor. 242
B.10 Provided Service Behavior Calculation of the C-Unit Implementa-

tion by the German Vendor. 245
B.11 Implementation of the getTriageClass() Method by the C-Unit of the

Dutch Vendor. 245

267

268 List of Listings

B.12 Implementation of the Interoperability Test for P-Units Included in
the C-Unit of the Dutch Vendor. 246

B.13 Node Model for a Physical Node that Should Host a German C-Unit.247
B.14 Excerpt From a Node Model for a Physical Node that Should Host

a German P-Unit. 248
B.15 Excerpt From a Node Model for a Physical Node that Should Host

a Dutch C-Unit. 248

	Erklärung
	Vorwort
	Kurzfassung
	Abstract
	1 Introduction
	1.1 Dynamic Adaptive System Visions
	1.1.1 Ubiquitous Computing
	1.1.2 Ambient Intelligence

	1.2 Motivation
	1.3 Goals of the Thesis
	1.4 Reader's Guide
	1.4.1 Structure of the Thesis
	1.4.2 The Thesis in the Context of a Software Systems Engineering Methodology
	Formal System Model
	Description Techniques
	Iterative System Evolution Process
	Standard Domain Architectures
	Tool Support

	2 State of the Art
	2.1 Dynamic Adaptive Systems
	2.1.1 Component-Based Systems
	Component Definition
	Component Reuse

	2.1.2 Service Oriented Architecture

	2.2 Dependability
	2.2.1 Static Techniques
	2.2.2 Dynamic Techniques
	2.2.3 Standardization

	3 Application Example
	3.1 Domain Description
	3.2 Emergency Assistance System
	3.2.1 Support of Triage Classification Process
	3.2.2 Support of Medical Treatment
	3.2.3 Support of Incident Command

	3.3 Dependability Threats Derived from the Application Example
	3.4 A Software View on the Application Example
	3.4.1 Domain Architecture for Emergency Assistance Systems
	3.4.2 Dynamic Adaptive Components Provided by a German Vendor
	German C-Unit
	German P-Unit

	3.4.3 Dynamic Adaptive Components Provided by a Dutch Vendor
	Dutch C-Units
	Dutch P-Unit

	3.4.4 Compatibility of Dynamic Adaptive Components in our Example
	Syntactical Compatibility of Dynamic Adaptive Components in our Example
	Semantical Compatibility of Dynamic Adaptive Components in our Example

	3.5 Requirements Derived from the Example
	3.5.1 Support for Adaptation
	3.5.2 Support of Decoupled Development
	3.5.3 Detect Semantical Incompatibilities
	3.5.4 Free of Side Effects

	4 Structural Model for Dependable Dynamic Adaptive Systems
	4.1 Looking Back at the Application Example
	4.2 Basic Sets
	4.3 Dependable Dynamic Adaptive System Structure
	4.4 Dependable Dynamic Adaptive Component Structure
	4.5 Dependable Component Configuration Structure
	4.6 Binding Structure
	4.7 Dependable Service and Dependable Service Reference Structure
	4.8 Service Interface Structure
	4.8.1 Method Declaration
	4.8.2 Attribute Declaration

	4.9 Syntactical Compatibility
	4.10 Structural Reconfiguration Triggers
	4.11 Summary

	5 Behavioral Model for Dependable Dynamic Adaptive Systems
	5.1 Looking Back at the Application Example
	5.2 Basic Sets
	5.3 Dependable Service and Dependable Service Reference Behavior Class
	5.4 Semantical Compatibility
	5.5 Binding Behavior Class
	5.6 Dependable Component Configuration Behavior Class
	5.7 Dependable Dynamic Adaptive Component Behavior Class
	5.8 Dependable Dynamic Adaptive System Behavior Class
	5.9 Behavioral Reconfiguration Triggers
	5.10 Summary

	6 Realization of an Infrastructure for Dependable Dynamic Adaptive Systems
	6.1 Dependable Dynamic Adaptive System Infrastructure
	6.1.1 Node Component
	Usage of DAiSI's Node Component
	Graphical User Interface

	6.1.2 Dependable Configuration Component
	Usage of DAiSI's Configuration Component
	Graphical User Interface
	Realization

	6.2 Component Framework
	6.3 Tool Support During Implementation
	6.4 Summary

	7 Summary
	7.1 Conclusion
	7.2 Outlook
	7.3 Additional Material

	Appendices
	Glossary
	Index
	A Formal Specification of the Application Example
	A.1 Type Specification
	A.1.1 Service Interface mUnitServiceIf
	A.1.2 Service Interface cUnitServiceIf
	A.1.3 Service Interface pUnitServiceIf

	A.2 Instances at Dependability Checkpoint t0
	A.3 Instances at Dependability Checkpoint t0 + 1
	A.3.1 German M-Unit

	A.4 Instances at Dependability Checkpoint t0 + 2
	A.5 Instances at Dependability Checkpoint t0 + 3
	A.5.1 German M-Unit
	A.5.2 German C-Unit
	A.5.3 German P-Unit
	A.5.4 Semantical Compatibility

	A.6 Instances at Dependability Checkpoint t0 + 4
	A.6.1 German M-Unit
	A.6.2 German C-Unit
	A.6.3 German P-Unit
	A.6.4 Dutch M-Unit
	A.6.5 Semantical Compatibility

	A.7 Instances at Dependability Checkpoint t0 + 5
	A.7.1 German M-Unit
	A.7.2 German C-Unit
	A.7.3 German P-Unit
	A.7.4 Dutch M-Unit
	A.7.5 Dutch C-Unit
	A.7.6 Semantical Compatibility

	A.8 Instances at Dependability Checkpoint t0 + 6
	A.8.1 German M-Unit
	A.8.2 German C-Unit
	A.8.3 German P-Unit
	A.8.4 Dutch M-Unit
	A.8.5 Dutch C-Unit
	A.8.6 Dutch P-Unit
	A.8.7 Semantical Compatibility

	A.9 Instances at Dependability Checkpoint tn
	A.9.1 German M-Unit
	A.9.2 German C-Unit
	A.9.3 German P-Unit
	A.9.4 Dutch M-Unit
	A.9.5 Dutch C-Unit
	A.9.6 Second Dutch C-Unit
	A.9.7 Dutch P-Unit
	A.9.8 Semantical Compatibility

	A.10 Instances at Dependability Checkpoint tn + 1
	A.10.1 German M-Unit
	A.10.2 German C-Unit
	A.10.3 German P-Unit
	A.10.4 Second German P-Unit
	A.10.5 Dutch M-Unit
	A.10.6 Dutch C-Unit
	A.10.7 Second Dutch C-Unit
	A.10.8 Dutch P-Unit
	A.10.9 Semantical Compatibility

	A.11 Instances at Dependability Checkpoint tn + 2
	A.11.1 German M-Unit
	A.11.2 German C-Unit
	A.11.3 German P-Unit
	A.11.4 Second German P-Unit
	A.11.5 Dutch M-Unit
	A.11.6 Dutch C-Unit
	A.11.7 Second Dutch C-Unit
	A.11.8 Dutch P-Unit
	A.11.9 Semantical Compatibility

	A.12 Mapping Instances To Types
	A.13 Syntactical Compatibility

	B Implementation of our Application Example
	B.1 Dependable Dynamic Adaptive Components from our example
	B.1.1 German P-Unit
	B.1.2 German C-Unit
	B.1.3 Dutch C-Unit

	B.2 Node Models

	Bibliography
	List of Figures
	List of Tables
	List of Listings

