
Thomas Ternité

Variability of Development Models

An approach for the adaptation of
development models

SSE-Dissertation 3

Software
Systems
Engineering

Department of Informatics
Chair of Prof. Dr. Andreas Rausch

Variability of Development Models
An approach for the adaptation of development models

D o c t o r a l T h e s i s
(D i s s e r t a t i o n)

to be awarded the degree of
Doctor rerum naturalium

(Dr. rer. nat.)

submitted by

Thomas Ternité
from Mainz-Mombach

approved by the Department of Informatics,
Clausthal University of Technology

2010

Dissertation Clausthal, SSE-Dissertation 3, 2010

Chairperson of the Board of Examiners
Prof. Dr. Michael Kolonko

Chief Reviewer
Prof. Dr. Andreas Rausch

2. Reviewer
Prof. Dr. Stefan Biffl

Date of oral examination: November 5, 2010

Cover picture: ©iStockphoto.com/marekuliasz

Dedicated to Dr. med. Hella R. Schäfer

Abstract

Introduction of process models (development models) is a common approach for
organizations to aim for a better process quality and higher success rates in project
conduction.
In the context of this thesis, the notion of ‘process models’ will be extended to a
notion of ‘development models’. This is due to the fact that in the common sense of
process models, they are usually not only related to processes, but to other artifacts,
as well.
Prior to introduction of development models into an organization, a comprehensive
customization is usually inevitable.
Along with an intended customization, the following questions are relevant:

What concepts can be used to. . .

. . . support the customization in general?

. . . minimize the customization effort?

. . . assure conformity of the customized variant to the intentions of
the original model?

. . . keep the customized variant in line with a developing original
model?

There are different approaches implemented in actual development models like
the V-Model XT and RUP to address these issues. Although they are effective in the
details, they lack a holistic approach.
This thesis offers an analysis of variability mechanisms in development models,
software product lines, and other software/model related domains. The findings
are integrated into a framework for variable development models. In addition to
offering variability, this framework allows the definition of domain-specific and
model-specific constraints that are used to discard models that do not structurally
conform to the intentions of the original model’s creator.
When adequately realizing this framework, a variable development model is un-
derstood as a development model line (DML). A DML is offered to an organization’s
process engineer as a means to create variants of the original model. While doing
this, he uses explicit variability mechanisms, namely configurability, extensibility,
and modifiability.
The target audience of this thesis is the engineer of development models. This
includes both the engineer of an original (standard) model and the customizing
engineer of an adapting organization.

iv

Acknowledgment / Danksagung

An dieser Stelle möchte ich mich bei den Menschen bedanken, die mich auf dem
Weg unterstützt haben, diese Arbeit abzuschließen.
An erster Stelle danke ich Prof. Dr. Andreas Rausch für die einmalige Gelegenheit,
gestalterisch herausfordernde und zugleich technisch anspruchsvolle Tätigkeiten
im Bereich des Software Systems Engineering ausüben zu dürfen. Sein kritischer
Geist und sein Blick für unstimmige konzeptuelle Details in allen Fragen der Wissen-
schaft und der praktischen Anwendung sind mir in den letzten Jahren ein großes
Vorbild gewesen. Danke auch für die Intensität der vielen Diskussionen zum Thema
dieser Arbeit.
Mein Dank geht auch an Prof. Biffl und seine Mitarbeiter für das herzliche Willkom-
men in Wien und das Feedback zu meiner Arbeit.
Ich danke Hella Schäfer für die liebevolle, vollumfängliche Unterstützung in allen
Belangen meines Lebens. Ihrer Familie spreche ich ebenfalls meinen Dank für die
Aufnahme in ihre Reihen aus, die mir seit Jahren eine große Hilfe ist.
Meinen Eltern möchte ich für den Rückhalt während meines Studiums und danach
danken. Danke auch für das vermittelte Gefühl eures Stolzes.
Ich danke Sabine und Dirk Niebuhr für die ganze erfreuliche Zeit, die wir mitein-
ander verbringen, und für das reichhaltige und sehr willkommene Feedback zu
kritischen sowie unkritischen Inhalten dieser Dissertation.
Danken möchte ich auch Jan Friedrich, Marco Kuhrmann und Klaus Bergner für
die vielen fruchtenden Diskussionen beim Redesign des V-Modell XT Metamodells,
dessen Neuerungen letztlich auch Gegenstand dieser Arbeit sind.
Meinen mittlerweile zahlreichen Kollegen möchte ich dafür danken, dass wir es
trotz starkem Zuwachs irgendwie geschafft haben, eine Gemeinschaft zu bleiben.
Ich hoffe, ihr könnt diese Gruppenintegrität noch lange aufrechterhalten.

Thomas Ternité,
Clausthal-Zellerfeld, den 11. August 2010

v

Contents

List of Figures x

List of Tables xii

List of Definitions xiii

Preface xiv

I The Domain of Development Model Adaptation 1

1 Introduction 4
1.1 Research issues . 6
1.2 Solution approach . 7
1.3 Thesis structure . 8

2 Adaptation of development models 9
2.1 Development models . 9

2.1.1 Approaches for successful project execution 11
2.1.2 Development model reference areas (sub-models) 15
2.1.3 Common development models 18

2.2 Development model adaptation . 20
2.2.1 Conformity . 21
2.2.2 Timeline of model evolution . 21

2.3 The need for development model adaptation 22
2.4 Adaptable development models . 23
2.5 Problems in current adaptations . 24

2.5.1 Macroscopic problems . 24
2.5.2 Microscopic problems . 25

3 On the notion of variability 27
3.1 Three types of variability . 27
3.2 Configurability . 28

3.2.1 Instances of configurability . 29
3.2.2 Properties of a configuration framework 33
3.2.3 Configuration mechanisms . 33
3.2.4 Precautions for the design of configurability 34

vi

Contents

3.3 Extensibility . 35
3.3.1 Instances of extensibility . 36
3.3.2 Properties of an extension framework 38
3.3.3 Extension mechanisms . 39

3.4 Modifiability . 40
3.4.1 Instances of indirect modification 41
3.4.2 Properties of a modification framework 43
3.4.3 Modification mechanisms . 45

4 On the notion of variant restriction 46
4.1 Transformational restriction . 48
4.2 Analytical restriction . 48

4.2.1 Syntax restriction . 49
4.2.2 Constraint restriction . 49
4.2.3 Manual restriction . 50

4.3 Relation between the restriction types 50

5 Description of the conception approach 52
5.1 Creation of development model lines . 52
5.2 Variation mechanisms of a development model line 56

5.2.1 Support for the creation of variants 57
5.2.2 Support for the restriction of variants 58

5.3 Concept development strategy . 59

II Conception of variable Development Models 61

6 Variability design approaches 64
6.1 Configurability design approach . 65

6.1.1 Related design pattern: whole-part 65
6.1.2 Configurability structure . 66

6.2 Extensibility design approach . 70
6.2.1 Related design pattern: relationship object 70
6.2.2 Extensibility structure . 71

6.3 Modifiability design approach . 72
6.3.1 Related design pattern: subclassing 73
6.3.2 Modifiability structure . 74

7 Development model lines 78
7.1 Developer roles in a DML . 80
7.2 Structure of a DML framework . 81

7.2.1 Framework core . 82
7.2.2 Knowledge pool . 83
7.2.3 Feature model . 83

vii

Contents

7.3 An exemplary DML architecture . 84
7.4 An exemplary DML . 86
7.5 An exemplary DML extension . 87
7.6 DML environment . 89
7.7 Upgrading the underlying DML . 90

8 Concept for constraint restriction 92
8.1 Motivational aspects . 92
8.2 Constraint restriction example . 94
8.3 What has not yet been investigated . 96

9 Constrained development model lines 98
9.1 DML framework with constraint restriction 98

9.1.1 Constraints . 100
9.1.2 Terms . 101

9.2 Exemplary DML architecture with constraint restriction 102
9.3 Exemplary DML with constraint restriction 103

10 Implementation 106
10.1 DML modeling using UML . 108
10.2 Configuration: selection and reduction 109
10.3 Transformation: execution of change operations 111
10.4 Constraint checking . 111

10.4.1 Formal basis . 112
10.4.2 Spanning an array of stable models 115
10.4.3 Nivel . 115
10.4.4 DML expressed in Nivel . 124
10.4.5 Semantics of features . 128
10.4.6 Semantics of constraints . 129

III The Results 132

11 Discussion 134
11.1 Review on the development model creation process 135

11.1.1 Limitations . 135
11.1.2 Implications . 136

11.2 Review on variability mechanisms . 137
11.2.1 Configurability . 137
11.2.2 Extensibility . 139
11.2.3 Modifiability . 139

11.3 Review on variant restriction . 141
11.3.1 Transformational restriction . 141
11.3.2 Analytical restriction . 141

viii

Contents

11.4 Comparison with stated problems . 143
11.5 Implementation technologies . 145

11.5.1 Modeling language . 145
11.5.2 Model transformations . 146
11.5.3 Constraint checking . 147

12 Conclusion 149

Appendix 153

Model transformations for the DML environment 153
1 DML reduction: XSL implementation 153
2 DML transformation: XSL implementation 156

UML to Nivel translations 165
3 Transform DML framework package to Nivel 165
4 Transform DML architecture package to Nivel 169
5 Transform DML package to Nivel . 172

DML in Nivel syntax 177
6 Transformed DML framework in Nivel syntax 177
7 Transformed DML architecture in Nivel syntax 179
8 Transformed DML in Nivel syntax . 181

DML semantics 185
9 Semantics for constraint restriction . 185

Bibliography and indices 192

Bibliography 192

Index of DML framework entities 205

Index (content) 207

ix

List of Figures

1.1 Roles around a development model . 5
1.2 Chosen solution approach . 7
1.3 Thesis structure . 8

2.1 Reference areas of development models (sub-models) 16
2.2 Dimensions of the V-Model 97 . 19
2.3 Dimensions of the adaptation of the V-Model XT 22

3.1 Principle of configurability . 29
3.2 Configuration frameworks . 32
3.3 Characteristics of configurability . 33
3.4 Principle of extensibility . 36
3.5 Extension frameworks . 38
3.6 Principle of modifiability . 40
3.7 Modification frameworks . 44

4.1 Restriction types for the variant space . 47

5.1 Creation of development models using the whole DML concept . . . 55
5.2 Concept properties: Create valid variants 57
5.3 Concept properties: Create variants . 57
5.4 Concept properties: Restrict variants . 58
5.5 Chapters of Part II related to the proposed concept 59

6.1 Whole-Part design pattern . 65
6.2 Configurability design approach . 67
6.3 Extensibility design approach . 71
6.4 Participants in modifiability . 75
6.5 Exemplary modifiability scenario . 76

7.1 Roles of a development model line . 80
7.2 The elements of a DML framework . 82
7.3 Specific elements of an exemplary DML architecture 85
7.4 Exemplary DML element instances . 86
7.5 Exemplary organization-specific DML extension 87
7.6 An interpreted development model variant 88
7.7 Process steps of a DML environment . 89

x

List of Figures

8.1 Example for a constraint meta-model . 95
8.2 Exemplary constraint term . 95

9.1 Constraint enabled DML framework . 99
9.2 Example of a constraint enabled DML architecture 102
9.3 Example of a constraint enabled DML 103

10.1 Relating TABLE 10.1 to FIGURE 7.7 . 107
10.2 Meta-model for the definition of selection information 109
10.3 Strict meta-modeling . 116
10.4 Deep instantiation . 117
10.5 Abstract syntax of Nivel . 119

xi

List of Tables

3.1 Feature Types (product lines) . 31

7.1 Mapping between modifiability design approach and the DML frame-
work . 83

8.1 Constraint types . 93

10.1 Overview of the DML environment process step implementation . . 107
10.2 Considerations for UML modeling of DML’s 110
10.3 Nivel’s predicates . 121
10.4 Assignment of variables used in LISTING 10.6 130
10.5 Assignment of variables used in LISTING 10.7 131

12.1 Main contributions of this thesis . 150

xii

List of Definitions

1 Development model (intension) . 10
2 Development model properties (extension) 11
3 Configurability . 29
4 Extensibility . 36
5 Modifiability . 41
6 DML framework . 53
7 DML architecture . 53
8 DML . 54
9 DML environment . 54

xiii

Preface

I am convinced that a native association with language makes any text easier to
understand for the reader. So I use ‘I’ if my person is of relevance.1 Verbal excesses
like “The author points out...” or usage of ‘we’ if I actually mean ‘me’ simply won’t
happen.
I will refer to us, i.e. ‘we’, if it is convenient to assume that you, the reader, are
putting yourself notionally into the presentation of my thoughts and arguments. A
sentence like “Imagine that elephant we discussed on page 22, but this time with
five legs” is allowing for a more fluent reading and is generally more appealing than
expressions like “In this section, the elephant presented on page 22 is extended by
a fifth leg”.
So, to state this clearly: ‘we’ will never be me pretending to be a vague group of
scientists, but always you and me together on our path to a better understanding of
the subject.
In case it’s not self-evident in the Table of Contents, I offer a short description of
the anatomy of this thesis.
In addition to a List of Figures and a List of Tables, this thesis provides a List of
Definitions that contains all definitions that are relevant to the concept presented
in this document.
The thesis is subdivided into three parts. The second part covers the solution con-
cepts. The other parts serve as a preparation and recapitulation of these concepts.
The appendix contains code used for an exact specification of semantics that are
needed for the concepts. After these appendices, a bibliography is provided. It’s
followed by two indices.
The first index lists the entities that are relevant in the main concept presented
in PART II. The second index is a general index covering the relevant keywords
throughout the whole thesis.

1Though, this is not the case in any chapter of this thesis.

xiv

Part I.

The Domain of Development Model
Adaptation

1

Contents of the First Part

1 Introduction 4

1.1 Research issues . 6

1.2 Solution approach . 7

1.3 Thesis structure . 8

2 Adaptation of development models 9

2.1 Development models . 9

2.2 Development model adaptation . 20

2.3 The need for development model adaptation 22

2.4 Adaptable development models . 23

2.5 Problems in current adaptations . 24

3 On the notion of variability 27

3.1 Three types of variability . 27

3.2 Configurability . 28

3.3 Extensibility . 35

3.4 Modifiability . 40

4 On the notion of variant restriction 46

4.1 Transformational restriction . 48

4.2 Analytical restriction . 48

4.3 Relation between the restriction types 50

CONTENTS OF THE FIRST PART

5 Description of the conception approach 52

5.1 Creation of development model lines . 52

5.2 Variation mechanisms of a development model line 56

5.3 Concept development strategy . 59

3

1. Introduction

Contents
1.1 Research issues . 6

1.2 Solution approach . 7

1.3 Thesis structure . 8

In software and systems engineering, we observe that methods, technologies, and
processes play an important role in respect to the quality of the developed systems.
Methods and technologies represent the set of tools to engineer systems. There
are a lot of different approaches for software and systems engineering that fill in
methods and technologies for a large variety of use cases.
In respect to processes, and according to the Chaos report published by the Standish
Group, common reasons for development project success are: proper planning,
clear statement of requirements, clear objectives, user involvement, executive man-
agement support, and small project milestones [Sta94].1

Defined processes are a way to ameliorate these criteria for a development project.
The usage of development models is a common approach for projects that shall
realize software and systems within a predefined budget, time, and quality [FK07].
Development models are focused on describing processes, and on combining these
with methods and technologies for usage in development projects.
Standard development models are usually very generic to allow a universal appli-
cability. This universality is often a problem in respect to the applicability of a
standard model. This implies the adaptation of such a model to an organization’s
processes and structures. A standard development model rarely fits well to the
requirements of an applying organization.
Thus, an organization’s aim is often to provide more concrete methods and a guide-
line to project managers. In addition, processes usually have to be adapted to better
embed the projects into the process framework present in the organization.
In larger organizations, a development model customization is a very complex task
[AEH+08], even without the introduction process [Arm08]. Not only the model usu-
ally has an increased complexity after customization, but it is difficult to maintain
a model and keep it in line with the original model, if it evolves in parallel.

1The validity of the Standish report’s figures has been challenged [Gla06, EV10], but the influence
of these success factors is commonly undoubted.

4

1. Introduction

Engineer
(Core asset E.,

Organization E.)

Manager User

creates
model for

manages
project for

Figure 1.1: Roles around a development model

An example for such an evolving model is the V-Model XT. Since its release in 2005,
six new versions of the model were released, mainly due to feedback from users.2

For an organization with a customized variant of any release, it is difficult to keep
in touch with the evolving standard model.
In short, these difficulties motivated the creation of this thesis.
In the area of development models, research is divided into three parts according to
the supported roles. It affects:

• the user of a development model,

• the manager of a project as a special case of a user, and

• the engineer of a development model.

Firstly, the enactment of development models can be supported in respect to meth-
ods and technologies, to enable a holistic application during a development project.
This subsumes all users of a development model, shown on the right hand side of
FIGURE 1.1.
Secondly, the project manager instantiates guidelines provided by a development
model. He fills the gap between process descriptions, the actual project, and its
overall project plan. How to remain consistent in this case may be within the focus
of research.
The last direction concerns the definition of development models. That’s were this
thesis is focused on. It is intended to provide a concept for variable development
models. These variable development models are to be constrained in a way that
not all imaginable variants are within the range of possible development mod-
els, but only those that are admissible to certain conditions. The engineer can
either be focused on a development model standard (core asset engineer), or on an
organization-specific development model (organization engineer).
The target audience of this thesis is the engineer. It provides support in respect to
variability during creation of a development model (target group: core asset engi-
neers) and during adaptation of a development model (target group: organization
engineers).

2Namely, the release versions after 1.0 were 1.01, 1.1, 1.2, 1.2.1, 1.2.1.1, and 1.3.

5

1. Introduction

1.1. Research issues

With the focus being placed upon the engineering of development models, this
thesis contributes to the development model definition process. The following five
goals will frame the contents of this thesis.

Goal 1 To investigate how ‘variability’ is commonly understood during development of
variable development models and software.

The notion of the term ‘variability’ for development models and software is per-
ceived in different ways in the literature and in practice. It is a goal of this thesis to
give a structure to this term.
In short, variability of development models or software is usually perceived as a
property to be configurable, extensible, modifiable, or a combination of these three
attributes.
The following goals relate to development models only, as this thesis concentrates
on the variability of development models, not software. Variability of software is
taken into consideration by GOAL 1 because we can observe variability mechanisms
there that are important for the variability approach presented in this thesis.

Goal 2 To create a pattern concept for variability of development models, regarding the
notion of variability as it is identified in GOAL 1.

The definition of the term variability as targeted by GOAL 1 is complemented by the
identification of specific patterns that enable variability of development models.
These patterns can be used to realize configurability, extensibility, and modifiability
of development models.

Goal 3 To identify the aspects to be regarded when constraining the variant space of
development models.

In order to not only create arbitrary variants of development models, this the-
sis identifies the aspects to be regarded when constraining the variant space of
development models.
This is realized by a discussion on different mechanisms for variant restriction.

Goal 4 To combine the variability patterns (targeted by GOAL 2) into an architectural
framework for variable development models, namely a development model line frame-
work.

This goal covers the construction of an architectural framework for variable devel-
opment models, using variability patterns with properties identified in GOAL 2.
The framework can be used for the creation of variable development models. Such
models represent a base model for a complete family of development models. This
family is called a development model line.

6

1. Introduction

ArchitectureFramework
Development

Model Line
Development

Model

Core asset
engineer

ManagerCore asset
engineer

Organization
engineer

User

Thesis

Figure 1.2: Chosen solution approach

Goal 5 To integrate a variant restriction mechanism into the development model line
framework.

With the knowledge of variant restriction mechanisms (GOAL 3), a concept will be
presented that is intended to ensure that variable development models fitting to
GOAL 4 are restricted to an admissible variant space.

1.2. Solution approach

It is an aim of this thesis to provide a solution used to achieve the goals described in
the previous section. The thesis proposes a concept for support of the adaptation
of development models to organization-specific and project-specific needs. The
concept includes variabilities to be used by engineers of organization-specific devel-
opment models, as well as by project managers wanting to adapt a development
model to a particular project.
FIGURE 1.2 shows the structural constituents of this concept. This thesis proposes a
framework that is responsible for providing variability possibilities. This framework
is intended as a basis for the creation of concrete development model architectures.
This creation is performed by a model engineer developing a standard development
model. In effect, an architecture is the meta-model of a development model, i.e. it
defines the model element types that can be defined within a development model.

7

1. Introduction

PART IIIPART I PART II

Chapters: 1 – 2 – 3 – 4 – 5 6 – 7 – 8 – 9 – 10 11 – 12

Domain, terms, defini-
tions, solution strategy

Solution concepts,
exemplary implementation

Discussion,
conclusion

Figure 1.3: Thesis structure

A core asset engineer then uses the architecture to model a development model line.
A development model line is a set of development model related assets. These that
can be configured by a project manager to be used as a development model. This
development model is adopted by the user in a project.
This configuration is supported explicitly by the concept. Thus, the project manager
performing this step can rely on existing contents and tools enabling a simple
tailoring process.
In addition to its configurability, a development model line is extensible and mod-
ifiable. These properties are important to an organization engineer creating a
customized development model line for an organization.
An existing implementation that is largely consistent with the notion of a develop-
ment model line that is configurable, extensible, and modifiable is the V-Model XT
[BMI08]. This thesis makes use of the very same concepts for these variabilities like
the V-Model XT and its tool implementation, the V-Model XT Editor [VMX09].
Nevertheless, one contribution is the addition of a generic layer above the meta-
model of the V-Model XT and its tool implementation. This layer is targeted by
GOAL 4. Another contribution is the addition of a formalized mechanism for variant
restriction, which is targeted by GOAL 5.

1.3. Thesis structure

This thesis consists of three parts. Their structure is depicted by FIGURE 1.3.
The first part contains all definitions relevant in the other parts. It introduces
the domain of variability and the adaptation of development models (CHAPTERS

2–4). In addition, with CHAPTER 5 it provides a detailed description of the solution
approach that was shortly described in the previous SECTION 1.2.
PART II represents the conceptual emphasis of this thesis. In CHAPTERS 6–9, it de-
scribes a concept realizing the solution approach framed by CHAPTER 5. CHAPTER 10
describes an exemplary implementation of these concepts.
This implementation was primarily used for evaluation of the evolving concept in
respect to soundness, consistency, and correctness. It does only provide a minor case
study for the application of the concepts in respect to applicability and scalability.
Finally, the last part contains a discussion of the proposed concept (CHAPTER 11)
and a conclusion (CHAPTER 12).

8

2. Adaptation of development
models

Contents
2.1 Development models . 9

2.1.1 Approaches for successful project execution 11

2.1.2 Development model reference areas (sub-models) 15

2.1.3 Common development models 18

2.2 Development model adaptation . 20

2.2.1 Conformity . 21

2.2.2 Timeline of model evolution 21

2.3 The need for development model adaptation 22

2.4 Adaptable development models . 23

2.5 Problems in current adaptations . 24

2.5.1 Macroscopic problems . 24

2.5.2 Microscopic problems . 25

2.1. Development models

Development models are used to organize a development process. A common way
to denote the subject of this thesis, namely development models, is the usage of the
term ‘process model’. As we will see below, in this thesis’ notions of this domain, a
process model is a constituent of a development model.
The definition stated in this thesis will not stick to a purely intensional definition
only. Instead, this thesis makes use of both intensional and extensional descrip-
tions.
In general, an intensional definition describes a set of attributes that fit to all el-
ements that are subject to the definition. For development models, there is no
intension known describing all items that are commonly understood as develop-
ment model, without allowing more things that are commonly understood as not
being a development model.

9

2. Adaptation of development models

On the other hand, an extension is describing all elements belonging to the notion
of development models by naming each of them. As there is no full list of all
development models, nor can we foretell the names of all development models yet
to come, a complete extension of development models cannot be written down.
In addition, a pure extensional definition is a weak definition, as it prohibits the
upcoming of new items to be subject to the definition.
This thesis contains an intensional definition of the term ‘development model’, but
knowing that this definition must be incomplete and inaccurate, it is augmented
by an additional extensional description of its properties.

Definition 1 (Development model (intension)) A development model is used in devel-
opment projects for the creation of software and systems and has the following properties:

• Purpose: Its purpose is to reproducibly increase the success rate of development
projects.

• Methodology: A development model is a knowledge pool to be used as a guide-
line or instruction reference during development projects. As a knowledge pool, a
development model contains sub-models that describe various reference areas to
map the ideal model1 to a real development process, in order to be able to adapt the
reality towards this ideal. These reference areas are used to give answers to questions
concerning the creation of the resulting product.

A project is deemed to be successful if the resulting product is of a high quality,2

and the budget and time frames both stay within predefined limits [Sta94].
The definition above is incomplete. It does not provide any suggestions on how a
development model may succeed in fulfilling its purpose as a knowledge pool used
for the successful accomplishment of projects. In order to reduce, not eliminate,
this flaw, an additional extensional description of these properties is provided. The
given lists are incomplete as well, but they span the area as it is known today.

Definition 2 (Development model properties (extension))

• Known approaches to successfully execute development projects are:

– Development paradigms to work towards a higher product quality: code-
and-fix programming, stagewise development, iterative development,
incremental development prototyping,V-shapedmodels, transformation
basedmodels, agile models, and reuse orientedmodels.

– Management disciplines to stay within a predefined allowance of quality,
budget and time: project management, quality management, risk manage-
ment, configurationmanagement, and changemanagement.

1Note that ‘ideal’ does not imply ‘optimal’. The term bears a notion of a good exemplar, though.
2The more features and functions implemented as initially specified, the higher the quality.

10

2. Adaptation of development models

• Reference areas are used as an ideal description of how the reality should be formed
according to the development model. Such descriptions can be grouped into prod-
uct model, role model, activity model, process model, location model, and
rationale model. These are often referred to as ‘sub-models’.

The following sections describe these properties in more detail.

2.1.1. Approaches for successful project execution

This section contains a list of methods and strategies that were developed to increase
the probability that a project finally is successful. The approaches are sorted into
two subsections: one for approaches intended for the organization of development
processes (development paradigms), and one for cross-functional approaches to
increase the quality of the resulting product and to control time and budget of
project execution (management principles).

Development paradigms

All of the following approaches have one thing in common: they were developed
with the aim to enhance the quality of software and systems by following a concrete
development paradigm.
It is very common to combine the following development approaches with each
other, creating new variants by making use of different strategies all at once. Il-
lustrations of many such variants have been provided by FORSBERG and MOOZ

[FM01].

Code-and-fix programming. The code-and-fix model, known from the earliest
days of software development [Boe88, p. 61], is an intuitive approach for software
development. Quality is achieved by abidingly following two development steps,
again and again:

1. Write some code.

2. Fix the problems in the code.

This approach may appear trivial, but it’s a concept making the difference between
coding and testing explicit. This is creating a more transparent development pro-
cess.

Stagewise development. This approach is organizing a development process into
a sequential order with clearly defined milestones and quality goals for all work
products to be created until a milestone is finally reached [Ben87, p. 305]. A promi-
nent example is the waterfall model, which additionally allows feedback loops
between stages [Roy87, p. 330] as an additional mechanism to enhance quality.
Many of the following approaches are making use of this stagewise development
principle, embedding it into a more complex flow of activities.

11

2. Adaptation of development models

Iterative development. Iterative development is a concept making use of the
observable fact that a single development cycle rarely is sufficient to produce a
complete software system with an appropriate quality. It relies on several cycles,
while each cycle is running through several phases of a stagewise development.
A famous development model explicitly introducing this paradigm is BOEHM’s
spiral model of software development and enhancement [Boe88, p. 64]. Iterative
development is characterized by repetitions of development activities [Coc93, p.
311]. The main focus of these repetitions is rework, not development of new items.

Incremental development. While iterative development is making use of repe-
titions of development activities to do rework, in an incremental approach, rep-
etitions of development activities are prevalent, too. But in case of incremental
development, the activities address new parts of the system, instead of reworking
existing ones [Coc93, p. 311]. I.e., incremental development focuses on the addition
of parts to the specifications and the system (an increment) during each repetition,
i.e. the system is developed in portions.
A description of what can be the focus or character of an increment, e.g. the imple-
mentation of stub implements, was provided by PITTMAN [Pit93, p. 51].
Incremental development may be combined with an iterative approach. In this
case, each single increment may be developed using an iterative development, i.e.
each increment is reworked until it reaches shipping quality [Coc93, p. 312].

Prototyping. Stagewise development has drawbacks [MJ82] that led to the for-
mulation of an evolutionary development model [Boe88, p. 63]. This model more
directly involves the future user of the developed system in the development pro-
cess. The software is developed iteratively or incrementally, while the user evaluates
the result of each iteration. A redesign of the prototype and its specification is made
according to the user’s input.
Evolutionary development is one case where a prototype is created that is refined
and evaluated step by step.
Another use of a prototype can be explorative, where a prototype is created merely
to have a medium to show to one or more user representatives and talk about the
requirements. I.e., explorative prototyping is a method for requirements elicitation.
Prototyping can also be used in an experimental setting to evaluate different solu-
tion possibilities for problems emerging from the requirements specification.
With explorative and experimental prototyping, the prototype is usually discarded
when its purpose is fulfilled. The now emerging need to ‘cleanly’ reprogram the
system is intended to increase its quality by ruling out dirty code refactoring.

V-shaped models. A V-shaped model is explicitly using verification and valida-
tion at exactly defined steps throughout a development process [Nat07]. During
specification refinement, it is always verified that a finer specification is consistently
covering the relevant parts of the original specification. Verification is intended

12

2. Adaptation of development models

to assure that on the path from requirements specifications, over system and ar-
chitecture design, down to module design, the resulting module specifications are
consistent with the requirements. This part has been visualized by FORSBERG and
MOOZ as the left bar of a ‘V’ [FM92].
On the right bar, rising from bottom to the top right of the ‘V’, the realization of
the modules, and the integration to units and systems, up to the complete system,
is validated against the specifications at the appropriate level on the left bar. This
means that modules are tested against the module specification, a system is tested
against its system specification and the whole system is tested at user-level against
the requirements specification.

Transformation based models. In contrast to the other approaches listed above,
this approach does not involve the ordering of process steps. Instead, it is a paradigm
that relies on automated generation of code using a formal specification [BCG83].
Its intention is to increase the quality of software even if the software was adapted
several times in the maintenance phase. Modifications are made to the specifica-
tions, not to the code.
Product quality is increased by avoidance of code decay during development and
maintenance.

Agile models. An agile process is usually characterized by self-organization of
small teams, direct communication, frequent re-evaluation of plans, and short
iterations. The ‘Agile Manifesto’, formulated and signed by many members of the
agile community [BBvB+01], identifies four main prioritizations:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

While the authors of the Agile Manifesto agree that there is value in the items on
the right, they perceive the items on the left as being more important.
Widespread agile processes are eXtreme Programming [BF01], Feature Driven Devel-
opment [PF02] and Scrum [SB01].

Reuse oriented models. Building systems from existing components is an ap-
proach to both save development time and to rely on successful and tested assets
[Sam01]. The system is created by selection, acquisition, and customizing existing
components from one or more component repositories [AF98]. In addition, some
specific modules are created in a way that the existing components may interact
appropriately.
Software product lines are realizing this concept [CN02].

13

2. Adaptation of development models

Management disciplines

In a project, there usually is a lot management of activities and work items to be
done. Studies show that efficient management structures affect critical success
factors for project execution [FW06, p. 55 f.].
In general, these supporting disciplines can be divided into project management,
quality assurance management, risk management, change management, and con-
figuration management.
Maturity models are used for the evaluation of process maturity. They usually
describe requirements for management disciplines a development model must
fulfill in order to enable successful project execution.
ISO/IEC 15504 (SPICE) is an international standard for the assessment of enter-
prises with a focus on software development [ISO06]. Capability Maturity Model
Integration (CMMI) is a series of reference models that can be used as a frame to
compare a concrete development model with [SEI06].
Both maturity models describe the assessment and evaluation of projects and or-
ganizations concerning supporting disciplines like project management. They
are regarding quality aspects, too, and SPICE makes use of aspects of the software
lifecycle,3 as its nomenclature is oriented on ISO/IEC 12207 (Software Life Cycle
Processes) [ISO95].

Project management In the German standard DIN 69901, project management
is described as an entity of organization and executive functions, with appropriate
methods and instruments [DIN01]. Project management is used to coordinate the
time line of projects, in respect to delivery milestones, as well as to the available
budget [HHMS04, p. 6].
Project management covers project organization, controlled project startup and
closing, project planning, as well as project examination and control [HHMS04].
PRINCE2 is a governmental standard model for project management widely spread
in the UK [OGC02]. It is described in SECTION 2.1.3.

Quality management Quality management in general is about quality control,
quality assurance and quality improvement. I.e., it covers not only the quality of an
end product (quality control), but also the systematic monitoring and evaluation of
processes (quality assurance), as well as a company-wide learning process (quality
improvement) [ISO00].
Common standards for quality management describing how these areas can be
covered are ISO 9001 [ISO00] and, with a focus on process management, CMMI
[SEI06].
The following approaches represent specific strategies that may be regarded as the
result of a thoroughly performed quality management.

3See development paradigms above.

14

2. Adaptation of development models

Risk management Risk management is an approach to systematically identify
and evaluate potential problems in a project early, i.e. long before the problem
actually eventuates [HHMS04, p. 143]. The intention of doing this is to increase
control over project success, by minimizing or eliminating potential threats. Mech-
anisms proposed by ISO 31000 are risk identification, risk analysis, risk evaluation,
planning of countermeasures, as well as risk monitoring and introducing a risk
communication system [ISO09].

Change management The organization of change is described in part 3 (Service
Transition) of the IT Infrastructure Library (ITIL) [LMT07]. This part is arranging a
general change management process for any kind of change, regardless its size.
According to this, a change has first to be formally requested, then registered and
classified. This enables tracking and planning of changes. In consequence, changes
have to go through an acceptance process. If the decision is made to act to the
change request, a solution has to be designed, implemented and tested. Afterwards,
the changes’ meta-information is stored to be available for later analyses.
In CMMI, change management is subsumed as a sub-process of configuration
management [SEI06].

Configuration management According to the American National Standards In-
stitute (ANSI), configuration management is “a management process for establish-
ing and maintaining consistency of a product’s performance, its functional and
physical attributes, with its requirements, design and operational information,
throughout its life.” [ANS04].
Being consistent to this definition, ISO 10007:2003 identifies various activities in
the configuration management process to fulfill this requirement [ISO03]: configu-
ration management planning, configuration identification, change control (see
change management), configuration status accounting, and configuration audit.
IEEE Std. 828-1998 covers the same fields, but adds subcontractor/vendor control
to the list of activities, as well as the management and communication of program-
ming interfaces [IEE98, p. 8 f.].

2.1.2. Development model reference areas (sub-models)

The term reference area may be confusing: why is it called that way? Well, a
development model is intended to be used as a guideline. It provides an ideal
description of a development process. This description is used as a reference for
the actual real process. The six reference areas mentioned above and shown in
FIGURE 2.1 are different aspects to be regarded during a development process.
An intuitive way to denote reference areas is to call them ‘sub-models’:

• Product (sub-)model

• Role (sub-)model

15

2. Adaptation of development models

Why?

W
h

y?
W

h
y?

What?
„What is created?“

(product)

Who?
„Who creates?“

(role)

How?
„How is created?“

(activity)

When?
„When is created?“

(process)

Legend:
is related to

Where?
„Where is created?“

(location)

Figure 2.1: Reference areas of development models (sub-models)

• Activity (sub-)model

• Process (sub-)model

• Location (sub-)model

• Rationale (sub-)model

A product model is providing information about what is to be created. The role
model describes who is creating the results. An activity model contains explanations
about how to create, whereas a process model defines when these activities are
performed. Activities comprise descriptions about methods and tools that are
suited to support the creation of the results. The process model brings the activities
into an order. The location model describes where a specific action is taken.4 The
rationale model is motivating the other models, explaining why they are modeled
the way they are modeled.
FIGURE 2.1 shows these reference areas and how they relate to each other. The What
is located in the center, since the result and all work products created to build this
result can be regarded as the central aspects of a development model.

4Since software and system development is infrequently bound to a particular location of develop-
ment action, the Where usually is of subordinate importance in development models. At least, it
is seldom perceived as being a relevant aspect.

16

2. Adaptation of development models

The V-Model XT takes a position regarding the product model as the central aspects
of the development model [BMI08]. It states that it’s the results that quality man-
agement is primarily about.5 The correlated product model provides a description
of the results: “What is created during the development process?”.

It may as well be argued that activities are the central aspects of a development
model, as it is realized in the Rational Unified Process (RUP) [Wik10]. While adopt-
ing this point of view, one would replace the How and the What in FIGURE 2.1 with
each other.

Note that a development model does not exactly describe the items actually created
in a development process, but the types of items that are to be created. For example,
it may define a product type like ‘system specification’.

The creation process can be supplied with additional information, provided by the
other models. The process can be further specified by a role model (“Who is the
creator in the creation process?”), a process model (“When is the creation process
performed?”), an activity model (“How is the creation process performed?”), and a
location model (“Where is the creation process performed?”). As we observed in
the product model, these sub-models also describe types, not concrete instances.
I.e., a development model may define role types like ‘project manager’, and activity
types like ‘testing’ etc.

Finally, there is a model describing the rationale of concrete elements within the
other reference areas (“Why is this element modeled the way it is modeled?”). Note
that the rationale model is less of use for an actual development process, but for the
development model itself, as it explains why certain design decisions were made
during its development. As such, it is very useful when discussing the structure of a
development model, both when analyzing its efficiency as development model, as
well as when intending adaptations of the development model.

A development model does not need to cover all reference areas. All reference areas
taken alone may remain unspecified and implicit, as long as there remain reference
areas covered by the development model.

An important note in this context is that if a development model does not provide
information about a particular reference area, then its up to the people performing
a development process to make up a solution for missing areas. They can make this
implicitly (producing no process documentation) or explicitly (by documenting).
They can even be either aware or unaware of the fact that they must finally give a
solution to the questions arisen within all reference areas.

5Of course, process quality etc. plays an important role, too. Yet this kind of quality is not needed
for its mere existence, but finally for the quality of the product.

17

2. Adaptation of development models

2.1.3. Common development models

SPEM based models

The Rationale Unified Process (RUP) is an IBM-driven development model [Kru00]
based on the Software Process Engineering Metamodel (SPEM). It is used as an
adaptable framework to be tailored to specific needs prior to its application.
It provides processes and process descriptions for six engineering disciplines: busi-
ness modeling, requirements, analysis and design, implementation, test, and de-
ployment [Kru00]. These are implementations of some of the approaches for suc-
cessful project execution listed above, like stagewise, iterative, and incremental
development.
In addition, RUP provides three supporting disciplines: project management,
configuration and change management, and environment management. While
project, change, and configuration management exactly map to the time and bud-
get related approaches in development models, environment management plays
an additive role as it is used to customize a RUP description to an organization or a
project. This property will be regarded below in more detail, as it is a mechanism
for variant creation provided by the development model itself. This is an important
characteristic of an adaptable development model.
SPEM suggests various sub-models: product, activity, role, process [JBR99]. These
are used in a Unified Process to fill in the different disciplines.
There are many variants of RUP [Wik10]:

• Unified Process – The generic Unified Process.

• Open Unified Process (OpenUP) – An open source variant, based on the Eclipse
Process Framework (EPF).

• OpenUP/Basic – A reduced version of OpenUP.

• Agile Unified Process – A subset of RUP, integrating agile approaches.

• Essential Unified Process (EssUP) – A simplification of the Agile Unified Pro-
cess.

• The Unified Process for Education (UPEDU) – A subset of RUP used for educa-
tion.

• Enterprise Unified Process – An enlarged version of RUP. Includes software
purchase, production operations and support, product retirement and replace-
ment etc.

V-Model 97

The combined definitions of the term ‘development model’ (DEFINITIONS 1 and
2) show a certain resemblance with the way the V-Model 97 was described. In
fact, the constitutional structure of the V-Model 97 can exactly be mapped to the
general notion of development models in this thesis. FIGURE 2.2 is illustrating

18

2. Adaptation of development models

Tool

Requirements

Methods

Procedure

Configuration Management

Quality Assurance

System Development

Project Management

Figure 2.2: Dimensions of the V-Model 97 [BMI97, p. 4]

the cube that was used to describe the three level standardization concept of the
V-Model 97 [BMI97, p. 4]. The cube is describing two orthogonal dimensions: One
dimension is covering Procedure, Methods, and Tool Requirements. These are
describing what is to be done and how.6 The other dimension is divided into the
sub-models project management, system development, quality management, and
configuration management.
We can see that the areas covered by the V-Model 97 are a subset of the properties
used to define the term ‘development model’. According to the terminology cho-
sen here, the first dimension in the V-Model 97 maps to the reference areas of a
development model, whereas the second dimension maps to the approaches for
successful project conduction.

V-Model XT

The V-Model XT is the development standard for IT Systems of the Federal Republic
of Germany [BMI10]. Its primary objectives are:

• “Minimization of Project Risks [. . .]

• Improvement and Guarantee of Quality [. . .]

• Reduction of Total Cost over the Entire Project and System Life Cycle [. . .]

• Improvement of Communication between all Stakeholders [. . .]” [BMI08]

These objectives cover the purpose of development models as identified by DEFI-
NITIONS 1 and 2. The solution provided by the V-Model XT to fulfill these objec-
tives is to offer process modules containing the necessary assets needed by project

6From the point of view chosen in this thesis, the How covers both methods, as well as tools
supporting these methods.

19

2. Adaptation of development models

management, quality assurance, system development etc. [BR05]. Naturally, the
preferential development strategy is the V-shaped development paradigm.
Orthogonally, the V-Model XT is organized in sub-models, providing product, role,
activity, and process model.

HERMES

HERMES is a method for carrying out software development projects [ISB03]. It is
an open standard provided and maintained by the Swiss Federal Administration,
initially developed in 1970 [ISB09].
Its description covers three sub-models: product, activity, and role [ISB03, p. 9].
In addition, HERMES describes supportive disciplines7 like project management,
quality management, risk management, configuration management, and project
marketing. Project marketing is a field of project external communication made
explicit.
In 1995, HERMES’ content was orientated on what was supplied by the German
V-Model [ISB09].

PRINCE2

Except for the early days after its initial development in 1989, PRojects IN Controlled
Environments (PRINCE) has been a generic project management method, without
a focus on information systems project management [OGC09a]. Nevertheless, it
is listed here for completeness, as it is fully comparable with native development
models with a single exception: its purpose does not fully fit into the definition of
‘development models’. PRINCE is not meant to support managing projects used
“for the creation of software and systems” (see DEFINITION 1), but more generally
for any development projects.
The current version PRINCE2:2009 is the de facto standard method used for project
management in the UK [OGC09b]. It provides various sub-models: product, ac-
tivity, role [OGC02]. As a generic project management standard, it extensively
covers supportive areas of project conduction, covering quality, risk, change and
configuration management.

2.2. Development model adaptation

There are two kinds of adaptations applicable to development model that are in the
focus of this thesis: organization-specific and project-specific adaptations.
Organization-specific adaptations represent the main focus of this thesis. A fitting
term for the adaptation process is customization. The proposed approach for

7In the HERMES terminology, these disciplines are denoted as ‘sub-models’.

20

2. Adaptation of development models

the adaptation of development models is intended to support the creation and
maintenance of organization-specific variants of development models.
The other aspect of development model adaptation is regarding a particular project’s
needs. This is often referred to as tailoring and implies the reduction and composi-
tion of a development model to best fit to a project’s application environment.
In this thesis, both aspects are integrated into the solution concept.

2.2.1. Conformity

In case of the V-Model XT, model conformity of organization-specific customiza-
tions to the standard plays an important role. The V-Model XT is mandatory for all
development IT projects of the public sector. Thus, any organization developing
systems for German administration may have to account for the conformity to the
V-Model process.
As a consequence, a conformity program has been founded that includes personal
and organizational certifications for the V-Model XT. It includes an information
approach that can be used to verify the conformity of a particular customization.
In addition, under certain preconditions, a variant that is using the variant mech-
anisms embedded in the V-Model XT since its version 1.3, may automatically be
evaluated as a conform model.

2.2.2. Timeline of model evolution

As FIGURE 2.3 illustrates along a cutout of the version and variant history of the
V-Model XT, the adaptation of development models is characterized by two dimen-
sions: further development and the creation of variants. A variant can itself be
subject to further development and variant creation.
When regarding the creation of variants of development models in practice, we can
observe three steps of building variants:

1. Initial development of the original development model, both meta-model
and model contents. The developer is denoted here by core asset engineer.

2. Customization of the original model to particular needs of an adapting organi-
zation that is intending to apply the development model. The role performing
this customization is the organization engineer.

3. Tailoring of a development model for a particular project. This step is not
illustrated in FIGURE 2.3. The actor performing the tailoring of a development
model is the project manager. The target audience of the tailored model is the
user.

Both original model and customized model are subject to further development.
The development of the original model is done by the model owner, whereas the

21

2. Adaptation of development models

V-Model XT

1.2

Further development

V
ar

ia
n

t
cr

e
at

io
n

V-Model XT BW

1.2

V-Model XT BY

1.0

V-Model XT

1.2.1
V-Model XT

1.3

V-Model XT BW

1.2.2

V-Model XT

1.0

V-Model XT BW

1.3

V-Model XT
IT-AmtBw

1.3

V-Model XT BY

1.3

Figure 2.3: Dimensions of the adaptation of the V-Model XT

customization is developed further by the adapting organization. In practice, the
development lines are often performed in parallel.
As mentioned above, the timeline of model evolution can be described by two
dimensions.
The first dimension includes the decoupling of variants, as we can see in FIGURE 2.3.
There have been two variants of the V-Model XT created at different times, namely
the V-Model XT BY adapted by the Bavarian Department of the Interior, and the
V-Model XT 1.2 BW for the German Bundeswehr. For the V-Model XT BW 1.3, there
has even been a further variant, which is department-specific: the V-Model XT
IT-AmtBw 1.3.
The second dimension refers to further development of existing variants. In FIG-
URE 2.3, there is a cutout shown from the version history of the considered models.
We can see that all model variants reached version 1.3.
Not too obvious in the figure is the fact that variant creation is only one direction of
the vertical dimension. Merging model branches like the VMXT BW and VMXT BY
is a way to decrease differences between further developed model variants. I.e., the
model were synchronized with the original development line. This synchronization
was a major task for both variants.

2.3. The need for development model adaptation

Standard development models are created with a general requirement to be highly
generic, in order to be applicable in a variety of project context throughout a variety
of different organizations.
Specific needs and characteristics of the applying organizations cannot all be satis-
fied by a generic standard. ROMBACH identified lack of guidance in development

22

2. Adaptation of development models

models that are too generic [Rom05, p. 87].8

On the other hand, when too specific, a standard process model is restricted to a
subset of organizations with very specific needs.
In particular, the following problems motivate the creation of organization-specific
variants of a standard development model:

• Nomenclature does not fit.

• Development processes do not fit, i.e. applicable development paradigms and
organization of managements disciplines may differ vastly.

• Technologies and tools in use in an organization may not be supported by the
processes defined in a development model.

There are two general ways to overcome these problems: 1. to create an organization-
specific variant of a development model, and 2. to adapt the organization to the
processes defined in a development model.
Since a development model is very generic and does only provide vague guidelines
regarding technologies and methods to be used during development, it is usually
perceived as the more promising approach to adapt the development model to the
organization and enrich it with technology and method specifics.

2.4. Adaptable development models

There exist concepts in meta-model based development models that are intended to
support the adaptability of the models to facilitate variant creation. These concepts
are analyzed in CHAPTER 3. They were integrated in SPEM and the V-Model XT.
But the existent implementations of these concepts only provide selective solutions
to the problems arising with variant creation. It is intended to provide a more
holistic solution in this thesis.
Approaches to implement adaptability into development models are:

• Variability operations (SPEM) [OMG08b].

• Change operations (V-Model XT) [Kuh08, Ter09].

• Tailoring (V-Model XT) [KN05, Kuh05, Gna07, KT09].

• Modularity (SPEM, V-Model XT) [OMG08b, Kuh08].

The research group around MÜNCH, ARMBRUST and OCAMPO follow a distinctive
approach to support the creation of development model variants. Their focus lies
on the evolution process, not the structural constituents of a development model.
This evolutionary approach covers:

8Note that ROMBACH compared organization-specific development models with the actual usage
in a project, but this ambivalence is transitive and even more severe for a generic standard model.

23

2. Adaptation of development models

• scoping development models to identify the locations where variability is
needed [AKM+08, AKM+09],

• rationale support during development model evolution [OS07, OMR09, OM09],
and

• differential analysis of evolved model variants [Arm08].

The first point is centered around the process to determine the properties an actual
model has, and the identification of commonalities to infer needed variabilities.
This approach lays its focus on the analysis of an existing model and the possibilities
to create a variable derivative which can be used later on to flexibly create variants.
The latter two points are both mainly focused on an a posteriori observation of the
evolved subject. I.e. they do not explicitly support the variability of a development
model, but the handling with evolving models as a whole.

2.5. Problems in current adaptations

The problems that are of significance in this thesis arise with development models
that undergo a customization. In the state of the art of development model cus-
tomization it is assumed that a development model is adapted to specific needs by
either changing the original sources itself and thereby creating a newer version by
copying and modifying the model. These changes in the standard model lead to
some problems stated below.
This approach for change is unsatisfactory [Tai96, p. 451]. Direct modification is
likely to cause inconsistencies with other components referring to the modified
component.
Furthermore, copy&modify is uneconomical, because usually the changes “are
relatively small in proportion to the overall size of the component” [Tai96, p. 451].
This leads to large amounts of copied passages or model contents that remain
untouched during modification. These parts have an influence on maintenance.
Finally, the relationship between the original and the copied components is lost,
causing maintenance problems with a high probability later on.
The resulting problems can be divided into two groups by their granularity. The
first group of problems concerns model variant organization and conformity of
variants (macroscopic). The other group contains problems that arise when editing
a development model in detail (microscopic).

2.5.1. Macroscopic problems

Problem 1 (Updates of the reference model) The reference model changes after cus-
tomization.

24

2. Adaptation of development models

When the reference model, i.e. the original model that was subject to an adaptation,
is updated to a newer version, it can be a major task to update an organization-
specific adaptation to this version [Ter09, p. 173].
In a traditional adaptation approach, there are two strategies to address this prob-
lem. The first strategy is to analyze all changes made in the reference model and
then apply these changes to the customized model. The second strategy is to do it
the other way around: analyzing the changes made to the customized model and
then apply them to the new version of the reference model.
Both approaches have some drawbacks:

• The analysis of the changes made is not trivial (see PROBLEM 3), neither in a
pure text document, nor in a structured document form like XML documents
[Arm08].

• The manual application of the changes to either the reference model or the
adapted model is error-prone both in respect to correctness of the result as
well as to completeness of the issues tackled with.

Problem 2 (Conformity of an organization-specific developmentmodel) Under cer-
tain circumstances, when adapting a development model, it may be important that the
result sticks to a given set of rules, i.e. there may be the need to observe conformity guide-
lines.

For example, the German V-Model XT [BMI10] is intended to be used as a devel-
opment model in development projects for public authorities. In this case, the
supplier has to stick to a standardized V-Model interface to enable collaboration
between acquirer and supplier.
When a supplier adapts such a development model to his organization’s needs, he
may be obliged to keep regard on the interface to the acquirer. So for conformity
reasons, the customizing development model engineer is restricted in the degree of
possible adaptations.
Such restrictions are usually provided informally, if provided at all. It is difficult
to fulfill these requirements, since they are vague and the development model
engineer has no guidance during adaptation.

2.5.2. Microscopic problems

It’s change that is needed to create variants of developments models. In order to be
able to differentiate between an increasing amount of variants, and to keep track of
all variants, it is important to control the changes and the motivation of change.

Problem 3 (Localization of changes) In the first instance, changed model elements
cannot be distinguished from other model elements. The information about the change
itself must usually be retrieved using a specific method, either by writing a separate change
protocol or by differential analysis.

25

2. Adaptation of development models

Changes in adapted models are not an explicit part of the model. Instead, the
model only contains an incarnation of the executed change. This makes it difficult
to locate the change information itself, when this is of interest.
Lack of this change information hampers synchronization of several model variants
developing in parallel. In severe cases, changes that ought to be part in all branches
may be implemented incompletely or incorrectly in one or more variants.
ARMBRUST describes difficulties when finding differences between several versions
of a development model [Arm08, p. 7]. A proposed solution concerns technical
aspects like a differential analysis. Evolyzer [Arm08, p. 8 ff] is a tool to partially
circumvent these problems for structured documents like XML documents.
But a differential approach is a symptomatic approach to PROBLEM 3, as it only
provides an a posteriori solution to the consequences of undocumented changes. It
does not cover the change itself, just its consequences.

Problem 4 (Loss of the rationale of changes) Along with the changes made in an
adapted model, it is important to know the rationale of the change. This information is
needed to be able to evaluate changes and set them in relation to other changes that may
be relevant in the contextual environment of the change.

In a traditional modification setting, the rationale of the change is easily lost
due to its detachment from the change subject. This includes loss of motivation,
pro&contra, discussion, and the decision process concerning a change [OM09, p.
87]. This may result in inconsistencies or ambiguity, as well as lacking knowledge
capturing and support for decision making [OM09, p. 85].
Even if the rationale is documented and stored for later usage, it is difficult to
relate it to changes actually made. This is due to the observation conveyed from
PROBLEM 3 that changes are not explicit in a model, but only present as their
resulting incarnations.

26

3. On the notion of variability

Contents
3.1 Three types of variability . 27

3.2 Configurability . 28

3.2.1 Instances of configurability 29

3.2.2 Properties of a configuration framework 33

3.2.3 Configuration mechanisms 33

3.2.4 Precautions for the design of configurability 34

3.3 Extensibility . 35

3.3.1 Instances of extensibility . 36

3.3.2 Properties of an extension framework 38

3.3.3 Extension mechanisms . 39

3.4 Modifiability . 40

3.4.1 Instances of indirect modification 41

3.4.2 Properties of a modification framework 43

3.4.3 Modification mechanisms . 45

Many researchers and practitioners introduce variabilities into their concepts and
products with the goal to incorporate flexibility. But what exactly is variability?
It is obvious that in differing contexts, the meaning of ‘variability’ is recognized
differently. In this chapter, we will take a look at three different types of variability
that emerge from different application contexts. In some contexts, we can observe
several of these types all at once, overlapping.

3.1. Three types of variability

Any informational item may be subject to variability: software, systems, models,
etc. The subject underlying variability is denoted here by variability subject .
When the term variability is used in the literature, we can observe different notions.
In some cases, variability is understood as a property to either induce change or
to identify differences between similar objects [AEH+08, AG01, AKM+08, BFG+02,
DSB09, Kuh08, LW94, OMG08b, Sch06, RK08, Tai96, vGBS01, WZ88, . . .].

27

3. On the notion of variability

In most of these references, variability is additionally used as an instrument to
simply extend a variability subject with additional properties. SIMIDIEVA et al.
provide a process variation approach, which contains a concept for pure addition
[SCO07], without any implications to changing existing properties. Interestingly,
this concept is intended to provide a change in a process as a whole, by purely
adding subprocesses at insertion points.
For modular systems and models, as well as for product line approaches, variabil-
ity is implemented by configuration mechanisms for the assembly of a greater
whole from smaller parts [AMS06, BPS04, CKK06, dOGHM05, DSB09, Kna04, LK04,
PvdLM06, SvGB02, . . .]. These parts can be reused and combined in other ways to
create variation.
Each of these variability types is characterized best by the intended goal that is
implied by the variability. The identified goals are:

• configurability,

• extensibility, and

• modifiability.

The variability mechanisms differ for these variability types. In this chapter, we
take a look at properties and instances of each of these variability types, separately.
A look into the notions of these terms is the way to achieve GOAL 1.
For the definitions following in this chapter, all variability types distinguish two
points in time. The first designates the state of the variability subject before execu-
tion resp. interpretation of the variabilities (initial state). The second is determined
by the state of the variability subject after variability execution resp. interpretation
(varied state).
Note that variability can actually be executed, resulting in a changed variability
subject. Or, it can be interpreted without actually changing the variability subject.
Both ways for realization of variability should be transparent to the client using the
variability subject in its varied state, though.

3.2. Configurability

When using the term variability, many researchers imply the ability of a subject to
be assembled from smaller parts in various combinations. Each combination as a
whole has different properties, functions, data etc. and is considered a variant.
Those small parts may be both functionally dependent and independent from each
other. For the assembly, a configuration framework is needed, which is allowing for
the definition of concrete compositions.

Definition 3 (Configurability) Configurability is the ability of a variability subject
to be put together from smaller assets (configuration units), i.e. assembled by choice of
various options.

28

3. On the notion of variability

System

Back-end Front-end

Complex Simple

Possible Configurations:
• Complex Back-end
• Complex Back-end, Front-end
• Simple Back-end
• Simple Back-end, Front-end

Optional

Feature

Mandatory

Feature

Alternative

Features

Figure 3.1: Principle of configurability

When following this definition, a configuration framework must allow the declara-
tion of configuration units to be subject for a configuration that defines a whole. A
framework has to handle the rules of composition and to provide a mechanism for
configuration of a whole.
FIGURE 3.1 illustrates the principle of configurability using a simple feature model-
ing technique [KCH+90]. Feature modeling is a common technique to describe the
structure of a software product line [CN02]. It is possible to create various variants
from pre-existing assets.
In the figure, an exemplary family of systems is described. Each member of this
family, i.e. each system that can be created, must have a back-end and may option-
ally have a front-end. The back-end may either be simple or complex. With these
assets given, there are four possible configurations.
We will now take a look at several examples of existing configuration frameworks in
SECTION 3.2.1. These examples will then be taken up again in SECTION 3.2.2, where
we will see the general properties that make a configuration framework. It will be
demonstrated how the examples realize these properties.
SECTION 3.2.3 gives some common mechanisms used in the examples to realize
configurability, whereas SECTION 3.2.4 is listing some precautions that have to be
made before realization of configurability.

3.2.1. Instances of configurability

When taking a look around, we can see many examples where systems or models
are designed to enable variability by providing a configuration mechanism. We
will take a look at three examples: software product lines [CN02], component
frameworks [Sun09, Spr09], and development models.
As we will see in the examples, the exemplary variability subjects are composed

29

3. On the notion of variability

of configuration units. Configuration units can be selected or deselected, and
their selection may be dependent or independent from the selection state of other
units. The complete set of selected units constitute to a greater whole. The size
of configuration units defines the granularity of the variability mechanism. A
configuration unit may be part of another configuration unit, thus contributing to
its internal structure.

Software product lines

Software product lines are used to exploit commonalities of partially distinct soft-
ware products in order to achieve substantial production economies.
The following definition refers to the definition made by CLEMENTS and NORTHROP

[CN02, p. 5].1

Software product line A set of software-intensive systems sharing a
common, managed set of features. All systems within this set are devel-
oped from a common set of core assets in a prescribed way.

Software product line architecture Concentrates on commonalities
in the implementation of a line of products and provides a structure
that makes the derivation of software products from software assets
possible [JS02, p. 3]. For the creation of a product, a set of applicable
components from the base of common assets is chosen for integration.
The components are tailored as necessary through preplanned variation
mechanisms,2 and integrated with any new components that may be
necessary according to the rules of the product line architecture [JS02, p.
3].

The variation mechanisms are aligned towards three feature types [AG01, p. 110].
Feature types are used to determine whether a feature belongs to a particular prod-
uct in a product line. TABLE 3.1 shows the feature types mandatory, optional and
alternative. Features may be independent, inclusive or mutually exclusive. Variabil-
ities can be applied at different times, i.e. at compile-time, link-time, runtime and
post-runtime.
The product line architecture combines these feature types to provide fixed com-
monalities and controlled variabilities [Rom05, p. 85]. Ad hoc variabilities unique to
a single product have to be developed from scratch and must fit in the architecture.
They should use well designed interfaces to prevent architecture erosion [Rom05, p.
85].
Usually, in order to assess commonalities and variabilities, a commonality analysis
has to be performed [OBM05, p. 273].

1These definitions have not been included in the List of Definitions in this thesis as they are not
directly related to the proposed concept.

2Mechanisms to do so are parameterization or inheritance, for example.

30

3. On the notion of variability

Feature Type Meaning
Mandatory The feature must always be

included.
Optional The feature is an indepen-

dent complement that may
be included or not.

Alternative The feature replaces
(an)other feature(s) when
included.

Table 3.1: Feature Types (product lines) [AG01]

The composition framework in product lines is using features to distinguish various
parts of the variability subject that can be combined to a whole. This kind of feature
modeling3 was proposed by KANG et al. to be used as a management mechanism
for commonalities and variabilities in system families [KCH+90]. The proposal
distinguished mandatory, optional, and alternative features and described the
relationships between sets of features. Feature modeling as stated in [KCH+90] was
created for the Feature-Oriented Domain Analysis (FODA) and is widely known and
often cited.4

Component frameworks

A widely known technology that can be used to achieve variability through config-
urability is J2EE with its various web application server implementations like IBM
WebSphere, Oracle Application Server and JBoss Application Server.
A related technology is Spring. The Spring framework is an application framework
for any Java application [Joh02]. It supports the J2EE principles, but is not restricted
to web applications.
Support for distribution and persistence management are very important and
prominent features of J2EE and Spring [Mär05], but these are out of focus in this
thesis. Instead, we look for mechanisms for configuration of objects that represent
an application. Both J2EE and Spring use a deployment descriptor to define how
beans5 contained in an application are combined to create a particular application.
The specifications of J2EE and Spring declare how the information in the deploy-
ment descriptors has to be interpreted. In our context, an implementation of these
specifications works as a configuration framework.
Implementations of classes to be configured have to fulfill specified criteria to
enable such configurability. Beans serving the same interfaces usually are intended
to be exchangeable, thus opening variation space.

3An example was shown in FIGURE 3.1.
4CiteseerX [PSU09a] recognized approx. 400 citations of this technical report on 19th June 2009.

The exact search address is documented in the bibliography in [PSU09b].
5Beans are the configuration units.

31

3. On the notion of variability

= Feature = Bean = Process module/
Method plugin

= Configuration unit

a b

c

a b

c

Feature selection: Deployment descriptor: Tailoring/
Library configuration:

Configuration:

select(b)
select(d) select(a)

select(b)

select(a)
select(b)

<bean id=“bean_a“ class=“a“>

<property=“a_ref“>

<ref bean=“bean_b“/>

</property>

</bean>

<bean id=“bean_b“ class=“b“>

</bean>

Product: System: Development model:

a b a b

Features: Beans: Modules/Plugins:

Variability subject (initial state)

Configuration

Component framework
Configuration

framework
Development models

Variability subject (varied state)

System

a b

b c

a

ab

ba

dc

d

Result:

Product lines

Figure 3.2: Configuration frameworks

Development models

The V-Model XT [BMI10] has a tailoring model using project types and project type
variants for the project specific configuration of the development model contents
[KN05]. The tailorable configuration units are so called process modules. Each
process module is a collection of process contents that functionally and technically
belong together.

Dependent on the project environment, process modules are connected with each
other in predefined combinational possibilities. The resulting process module
configuration is used as development model for the tailored project.

GNATZ stated that the one-to-one allocation of model contents to containers re-
duces the flexibility of the tailoring mechanism [Gna07, p. 169 ff.]. He proposes the
introduction of structuring elements allowing one-to-many relations so that a finer
granularity for the selection process is possible.

A mechanism comparable to process modules is present in the Software Process
Engineering Meta-Model (SPEM) [OMG08b]. This meta-model for development
models provides method plugins, which are containers for all content and pro-
cess elements. A library configuration classifier adds capabilities for packaging of
method plugins to enable development model tailoring.

32

3. On the notion of variability

Integration/reduction of Units

Selection of Units

Definition of configuration units

Figure 3.3: Characteristics of configurability

3.2.2. Properties of a configuration framework

FIGURE 3.2 shows the chosen examples in comparison with the notion of configura-
bility stated above. The rightmost column is showing the generic structure, from
top to bottom: a variability subject in its initial state consisting of configuration
units, a configuration process, and a variability subject in its varied state. These
characteristics are summarized in FIGURE 3.3.
We can see that product lines, component frameworks, and the chosen develop-
ment models are implementations of a configuration framework. According to
FIGURE 3.2, it is possible to identify configuration units in every example. In the
chosen examples, the configuration units are features, beans, process modules,
and method plugins. In addition to the configuration units, all concepts provide
a mechanism for the selection of these units, in addition to an implementation
for automated integration of all selected configuration units. The result is either a
product, a system, or a development model.
Note that the definition of relations between the configuration units is arranged
differently in the examples. In product lines and the chosen development models,
the relations between features resp. process contents are part of the variability sub-
ject. For a component framework, the configuration of the relationships between
configuration units is additionally dependent on interconnection information as
a part of the deployment descriptor. Thus, the latest point in time to define these
relations is during configuration of units.
If you can, in any variability subject, identify entities that are likely to be used as
configuration units, and this subject provides a configuration mechanism with a
downstream integration mechanism, then you face another example for configura-
bility.

3.2.3. Configuration mechanisms

As the previous section pointed out, and according to FIGURE 3.3, configurability is
enabled by the definition of configuration units, and a selection and integration
mechanism. Configuration is then characterized by selection and integration of
configuration units.

33

3. On the notion of variability

Selection. The selection step is dependent on the feature model approach cho-
sen. In product lines, such an approach enables selection by providing notions of
mandatory, optional, and alternative features. In component frameworks and de-
velopment models, selection of configuration units is explicitly realized by pointing
out elements to be included in the result. In general, there are no further restrictions
on the selection, but we know from the V-Model XT that the selection mechanism
can be enhanced by a tailoring framework providing an additional layer of selection
criteria to facilitate process module selection [BR05, Gna07].

Integration/reduction. When configuration units have been selected, integra-
tion is necessary. Integration is dependent on the domain technology used for the
definition of the variability subject. I.e., for software the integration rules differ
from those of development models. Once connection issues are solved, integration
is a straightforward domain-specific process.
Integration underlies different general conditions for the configuration of product
lines and component frameworks, i.e. software, in comparison to development
models.
Integration of development models after the selection process is characterized by
removal of deselected items, i.e. reduction.
For software, explicit definition of variation points is necessary for the realization
of integration in product lines [RK08]. Variation points define an interface between
a configuration unit and the embedding configuration framework. A configuration
unit must realize such an interface to be able to be integrated within a configuration
framework.
Known mechanism to realize this kind of variability in process families are encap-
sulation, parameterization, extension points and inheritance [Sch06, SP06]. We
can observe usage of these (software related) mechanisms in J2EE and Spring. The
realization of these mechanisms using constructs from programming languages
is done with polymorphism, interfaces, dynamic class loading and static libraries,
configuration files, and conditional compilation [SP06].6

3.2.4. Precautions for the design of configurability

When coping with configurability as defined above, the designer should be aware
of the following circumstances that may arise:

• Configurability needs to be manageable at all levels of abstraction [BPS04, p.
334], so when different configuration stages7 are involved, the variability
mechanisms still need to be scalable, traceable and create consistent results

6The examination in [SP06] is restricted to Java language, but can easily be transferred to other
object-oriented programming languages.

7E.g. configuration at development time, linking time, runtime etc.

34

3. On the notion of variability

[BBM05, p. 184]. I.e., duplicate or missing functionality and inconsistent data
structures due to chosen or removed configuration units must be avoided.
This prerequisite induces the need for a mechanism in a configuration frame-
work to guarantee integrity of the generated results. Additionally, the selec-
tion mechanism must allow the user to understand the implications of his
decisions when configuring the units.

• Variability mechanisms must be designed to handle feature interaction [SvGB02,
p. 707]. A feature interaction is “a situation in which system behavior (speci-
fied as some set of features) does not as a whole satisfy each of its component
features individually” [Gib97, p. 46]. It is considered “impossible to give a
complete specification of a system using features because the features cannot
be considered independently” [SvGB02, p. 707].
Feature interaction is a requirements specification problem [Zav93, p. 22].
This makes it difficult to arbitrarily combine features at later stages.8 There-
fore, the configuration framework must fulfill at least one of the following
requirements:

1. Restrict features so far that undesired interactions cannot occur.

2. Define explicit interaction protocols for all features.

3. Include the requirements specification into the configuration decisions.

3.3. Extensibility

Another popular usage of the term variability is to denote the utilization of exten-
sions. Extensions need concepts to allow addition of structures or behavior to an
existing model or system.
An extension framework is needed to be used for variability subjects that are to be
extended. To enable the addition of extensions, such a framework must specify
exact interfaces. A limitation of such a framework is that the extensions that can
be realized are restricted by the existing framework structure. Thus, only those
addition scenarios can be implemented that were envisioned by the developer
[KL02, p. 1].
Extension can be made applicable at various times [SvGB02, pp. 711–712]. Extensi-
bility at the development stage can be used to generate product variations, whereas
runtime extensibility can be used to delay variability until the actual user of the
variability subject takes a decision. The extension framework has to be designed
regarding the binding time of extensions in a way that the variability subject is
neither too flexible nor inflexible to additions [BFG+02, p. 16]. Too much flexi-
bility promotes ambiguities, whereas lacking flexibility enforces workarounds or
prohibits some kind of additions.

8Later than requirements specification.

35

3. On the notion of variability

A

A

Inter-
pretation

extendsa, b

a, b, c

Initial

state

Varied

state

related

B
c, rel(a,b)

Figure 3.4: Principle of extensibility

Definition 4 (Extensibility) Extensibility is the ability of a variability subject to be
augmented by additional elements and relations between existing elements. The variability
subject itself does not need to be changed for the extension, i.e. extension is realized by pure
addition of information.

FIGURE 3.4 illustrates the principle of extensibility according to this definition. An
element can extend another element by referencing it. An extension framework
enables the merge of both elements.

3.3.1. Instances of extensibility

We will take a look at some languages and models that were designed to be extended
or to allow extension: a process definition language, object-oriented programming
languages, and from the field of development models: SPEM and V-Model XT.
For software product lines, BOSCH et al. state that a variability framework supporting
configurability can also be used for the creation of variants by mere addition of
configuration units [BFG+02, p. 19], and thus realizing extensibility.

Process definition languages

Little-JIL [Wis06] is an agent coordination language that can be used for visual
representation of processes. SIMIDCHIEVA et al. were using this language as a vehicle
for representing process families [SCO07]. With this language, a process can be
represented as a tree. Every leaf is regarded as atomic process step, and it is up to the
assigned actor performing the step to decide what exactly is to be done during the
step.
A complete process tree can be refined by pure addition of sub-nodes for leafs.
This splits up the atomic step into further process steps, moving the property of
atomicity to the newly added leaf. This refinement leaves all existing specifications
as they are.

36

3. On the notion of variability

Object-oriented programming languages

An (object-oriented) framework is “a set of classes that embodies an abstract design
for solutions to a family of related problems” [BMMB97, p. 3]. Most object-oriented
frameworks provide means to implement a system by adding new classes that build
upon existing functionality [Weg90, p. 36]. A thoroughly analyzed approach to
do this is inheritance of abstract classes [Tai96], which is an important design
technique of object-oriented frameworks [Joh91, p. 3].
A framework should be designed in a way that makes an appropriate use of the
framework possible, without the need for changes directly in the framework. The
definition of new classes is always done by additional, independent files with
references to class names in the framework. In particular, the information stating
the extends-relation is part of the extending model, not the extended one.
The compiler combines the functionality of the framework with the newly added
objects. In the most simple cases, this combination does only need additions, e.g.
new methods and fields. In more complex situations, inheritance can be used to
overwrite methods or fields coming from the framework.9

Method overwriting10 is an example for modifiability,11 and is not covered by ex-
tensibility.12 So when sticking to the denotations made in this thesis, we must
classify object-oriented languages as an example for two principles, extensibility
and modifiability.
Note: a common way to implement extensible systems is to design loosely-coupled
components [BMR+96, p. 406]. This kind of extensibility relies on logical separation
of concerns and narrow interfaces. In contrast, the view on object-oriented lan-
guages here is regarding extensibility of classes and their children, not components
or systems. To make that clear: this thesis focuses on the notion of extensibility
as defined in DEFINITION 4, not on the notion perceived in [BMR+96] and other
component-oriented publications.

Development models

For extension, the V-Model XT uses a separate extension model referring to a refer-
ence model that is to be extended [BMI10]. The extension model may reference any
element in the reference model, provided that the meta-model allows such refer-
ences. The extension mechanism technically merges both models and generates a
customized result model.
In particular, the V-Model XT has been designed in a way that many relations that
often are subject to extension are first-class instances. This allows for the addition

9Overwriting here has the meaning of copy&overwrite, so the original functionality is not lost, but
ignored.

10Also known as ‘overriding’.
11See SECTION 3.4.
12Note that method overloading, i.e. the provision of another method with the same name, but

different parameters, is a pure extension.

37

3. On the notion of variability

= Instance = Element

Extension model:

Interpreted model:

Reference model: Original model:

= First-class relation= Association instance

= Task

= Task refinement

Task elaboration:

Interpreted diagram:

Coordination diagram:

task d task b

task a

task c

task d task b

task a

task c

Parent:

Inheriting child:

Interpreted class:

class a {

int m;

}

class b extends a {

int n;

}

class b {

int m;

int n;

}

name

name

= Class

= Child class

b

C: related_to

b : Product

e : creates

a : Role

d : Product

Little-JIL OO languages Extension frameworkV-Model XT

Variability subject (initial state)

Variability subject (varied state)

c : creates

b : Product

a : Role

d : Product

createscreates

Result model interpretation:

a

Extension model:

ba
related_to

Figure 3.5: Extension frameworks

of relationships in an extension without altering the original model.

3.3.2. Properties of an extension framework

We will now take a look at the chosen examples and their relation to the notion of
extensibility stated above. FIGURE 3.5 is intended to support thereby. The rightmost
column is showing the generic structure of an extension framework. It relies on a
variability subject in its initial state with an element that is to be extended. In the
example in FIGURE 3.5, the variability subject consists of a single element ‘a’.
In addition, in an extension model, an additional element is provided and an in-
stance of a first-class relation between this element and the element to be extended.
The last of the necessary properties of an extension framework is the integrated
variability subject in its varied state, after interpretation of the extension relation.
The illustration indicates that the related elements a and b act together as if related
to each other by a second-class association. The difference in modeling the relation
is transparent to the user.
Little-JIL, object-oriented languages and the chosen development models are im-
plementations of such an extension framework.
As we can see in FIGURE 3.5, extensions can be identified in all examples. The
extensions are a newly added task in Little-JIL, a newly added class in object-oriented
languages and a newly added process element in the V-Model XT. The original tasks,

38

3. On the notion of variability

classes, and process elements remain untouched.
The extension itself is declared by extension relations like task elaboration (Little-
JIL), declaration of inheritance, and first-class relations. In addition, all examples
provide a mechanism for automatic integration of the declared extension. The
result is either physically or virtually13 created.

3.3.3. Extension mechanisms

Two kinds of extension mechanisms to be regarded when implementing extensibil-
ity in the notion used here can be identified:

• Usage of association classes

• Usage of interfaces

Association classes

A way to make any element extensible in respect to its surroundings is to refrain
from extensive usage of outgoing references within the element. If an element
contains all information about to whom it is related, the conclusion is that it is
difficult to create additional relationships between this element and others without
directly changing the element itself.
Usage of first-class associations can therefore largely enhance extensibility [Nob00,
p. 73]. If an association can separately be instantiated that represents a relationship
between existing elements, such a relationship can be established without changing
the involved participants. Speaking in terms of UML, association classes provide
this kind of extensibility.

Interfaces

Interfaces play an important role for the implementation of extensibility into a
variability subject. They define the minimum criteria that have to be fulfilled by an
extension unit.
SCHNIEDERS and PUHLMANN identified encapsulation as a basic extension mech-
anism where application-specific implementations are inserted into an invariant
interface [SP06, pp. 589–590].
In development models, interfaces are determined by the type structure of its meta-
model. If a work product can only be related to a role via a typed first-class relation
object, this type signature represents the interface an extension has to adhere to.

13Object-oriented languages: an inheriting class does not physically exist, but its properties are
transparently interpreted by the runtime environment.

39

3. On the notion of variability

A B

A

Inter-
pretation

changesa, b mod(b,c)

a, c

Initial

state

Varied

state

Figure 3.6: Principle of modifiability

3.4. Modifiability

The two types of variability considered so far were both concerned with existing
structures that themselves remained unchanged. Variants were induced either by
creative combination of existing assets (configurability) or by addition of new func-
tions or model contents that are incorporated via first-class relations (extensibility).
We will now take a look at the case when there is need to perform changes on prede-
fined assets. This use case appears to be appropriate if a variability subject provides
lots of functionality or data structures that are needed in a particular application
context, but have to be modified in order to be suitable in a new environment.
In general, we can distinguish two approaches of modification:

1. Direct modification of existing code, functions, structure, data etc. I.e., if a
modification is performed, the original program or model is changed.

2. Indirect modification by explicit declaration of changes to be executed by an
interpreter.

Direct modification overwrites the initial state of a change subject. It is used as a
common approach for further development and even for variant creation. Direct
modification is one of the involved factors leading to most problems arising during
adaptation (see CHAPTER 2). If only direct modification is possible, we need mech-
anisms to cope with the locality of changes (PROBLEM 3), as well as the rationale
behind the changes (PROBLEM 4). Furthermore, we can not simply exchange the
modified model with a newer version of the reference model, because exchanging
the model would mean removing all modifications done (PROBLEM 1).
Indirect modification on the other hand has need for a modification framework .
Such a framework interprets declarations of indirect modification and performs the
changes in the change subject. This is a controlled transformation of the initial
state into a varied state.
The principle of indirect modification is illustrated in FIGURE 3.6. An element can
modify another element by referencing to it. A modification framework enables

40

3. On the notion of variability

the integration of both elements by performing an appropriate change operation.
The interpretation of the changes-relation is to change properties of the element to
be modified.
In the domain of software configuration management, the evolution of a change
subject can be tracked either with a state-based approach, or a change-based ap-
proach [CW98, p. 262]. I.e., in the first case, the difference between two versions
are derived a posteriori by comparing two states. In the latter case, the difference
is descriptively described by explicit entities representing the change and, in con-
sequence, the difference. Usage of change operations provide the opportunity to
adopt a change-based versioning approach.

Definition 5 (Modifiability) Modifiability is the ability of a variability subject to be
modified by usage of specifically designed mechanisms for indirect modification.

If a variability subject can be modified only by direct change of its properties with-
out usage of explicit modification mechanisms, then it cannot be categorized as
modifiable, according to the notion in this thesis.

3.4.1. Instances of indirect modification

In this section, we will take a look at examples that implement indirect modifica-
tion as described above. The means to do this is to create modification units that
reference an element that is to be modified. An interpreter is realizing this change
description.

Model versioning

EMFStore [KH10a, KH10b] is a version control system for models based on the
Eclipse Modeling Framework [Ecl10b]. Versioning in EMFStore is operation-based.
I.e., changes performed on a model are not only executed within the Eclipse ed-
itor, but a change protocol is recorded along with each modification [HK10b]. A
multitude of different change operation types are implemented into EMFStore that
allows the model based documentation of descriptive changes [HK10b, Fig. 2].
Change operations distinguish between primitive and composite operations. Com-
posite operations represent a group of primitive operations that represent a seman-
tic unit with enlarged change semantics.
The versioning concept in EMFStore relies on such change operations. When a
model is synchronized with the model repository after the modification, only the
model based change information is transfered to the server.
An implementation of a development environment for models that is building
upon EMFStore is UNICASE [HK10a].

41

3. On the notion of variability

Data modeling languages

XMI is a standard provided by the Object Management Group (OMG) for exchang-
ing metadata information via XML [OMG07a]. It integrates MOF [OMG06] and
UML in an XML based language.
As interchange format, XMI provides a mechanism to reduce the amount of data to
be transfered when a model is changed remotely. Instead of transmitting a complete
model, it is possible to specify only the differences. These differences have to be
interpreted transparently, so the user will only act on the changed model without
necessarily knowing about how the model emerged.
For this purpose, XMI defines three difference types: Add, Delete, and Replace
[OMG07a, p. 12]. Elements of these types can be added to a model, resulting in the
differences being interpreted by an XMI parser.

• Delete induces the removal of an element with all its contents.

• The Add operation adds contents to a referenced element.

• Replace removes an element from the model, with it being substituted by
another element. The contents of the removed element remain. They are
appended to the contents of the added element. I.e., only the referenced node
is replaced. All contained nodes remain.

These mechanisms allow for the descriptive definition of changes. They allow the
addition and removal of XML elements, but do not allow fine-grained changes of
XML attributes.
It has been proposed to use this mechanism to support the description of model
evolution [KR01] and to use it during migration of persistent object models [FR05].

Development models

SPEM’s method plugins are not only elements used for configuration of a develop-
ment model’s contents as described in SECTION 3.2.1. The method plugin package
also defines modification mechanisms for method content and processes [OMG08b,
p. 117]. The mechanism allows the change of contents “without directly modifying
them, but by describing changes from a separate unit”14 [OMG08b, p. 117]. Method
packages can be used as collection of method plugins to enhance the possibilities for
configuration of a complete process. The SPEM provides a variability mechanism
that is intended to realize modifiability, in the way this term is understood in this
thesis.
The mechanism includes a Variability Element which is used for elements to refer-
ence their basis (parent) and select the variability algorithm15 to be used.

14Namely, the extension unit is the method plugin.
15In SPEM, these algorithms are denoted as ‘variability types’. This thesis treats them as ‘variability

algorithms’ to prevent confusion with the three variability types defined in this chapter.

42

3. On the notion of variability

The possible variability algorithms are contributes , replaces, extends and extends-
replaces (see [OMG08b, pp. 137–140]).

• contributes. When defining a ‘contributes’-relation, the variability element
injects its “properties into their base Variability Element without directly
altering any of its existing properties” [OMG08b, p. 137].

• replaces. The base variability element (parent) “is logically replaced with this
new variant of the element to which all incoming associations still point as be-
fore, but which has potentially new attribute values and outgoing association
properties” [OMG08b, p. 138].

• extends. ‘Extends’ allows reuse of elements. “The result of interpretation
is that the special element has the same properties as the based-on has, but
might override the inherited properties with its own values” [OMG08b, p.
139].

• extends-replaces. “Extends-replaces combines the effects of extends and
replace variability” [OMG08b, p. 140].

Since version 1.3, the V-Model XT has a similar mechanism for the definition
of indirect modifications [Ter09, p. 174]. Its meta-model offers concrete change
operations that can be instantiated to define changes. KUHRMANN named change
operations in the V-Model XT and distinguished them from extension operations
[Kuh08, p. 139], which do not perform changes, but additions. Change operations
are used for the logical manipulation of a model.
For example, the organization engineer can rename a role not by change of the
name field of a particular role (direct modification), but by addition of a new in-
stance of RolleUmbenennen (RenameRole). This instance must reference the role
to be renamed and contains the information about the new name.
The meta-model contains change operations for all use cases of modifiability in-
tended by the V-Model XT authors. Cases not provided or envisioned by the authors
are not allowed. This effectively restricts flexibility.

3.4.2. Properties of a modification framework

Like we did for configurability and extensibility, we will now run through the
instances of modifiability and compare their structures with the notion of a frame-
work for indirect modification. FIGURE 3.7 is intended to help with this. Since
direct modification has no need for a framework to perform changes, a modifica-
tion framework is always used to realize indirect modification, and thus refers to
indirect modification.
Like before, the rightmost column in the figure shows a generic structure for modi-
fication frameworks. It has a variability subject in initial state that is about to be
modified. A modification unit is used to declare modification of an element via a
modification relation. In the result, i.e. the variability subject in its varied state,

43

3. On the notion of variability

= Model element = Element

Variability algorithm:

Development model:

Original process element:

= Modification unit= Variability element

= Class

= Change operation

a

b

c

d

a‘
c

d

d : Task

e : replaces

c : Work Product

a : Role

= Model element

Change operation:

Development model:

Reference model:

= Change operation

b : ChangeResponsibility

c : Product

d : Product

c : Product

d : Product

b : Role

d : Task

c : Work Product

b : Role

EMFStore V-Model XT Modification frameworkSPEM

Variability subject (initial state)

Variability subject (varied state)

a : Role

a : Role

Result model:

Original model:

Change operation:

Result model:

Original model:

a : EObject
- attribute = „value“

b : SingleAttributeOperation
-value = „new value“
-oldValue = „value“

a : EObject
- attribute = „new value“

Modification model:

Figure 3.7: Modification frameworks

some properties of the element to be modified have changed. In the illustration,
a relation from element a to element c has been replaced by a relation to element
d. Since the element a is not the same as before, it is marked as a’. This does not
necessarily mean that the name of a has changed.
In addition to the generic structure, FIGURE 3.7 is showing modification units in
EMFStore and the development models V-Model and SPEM.
EMFStore provides mechanisms for change recording. These recordings use a
change operation meta-model that is generic for all EMF models. The exemplary
element b is a change operation of type SingleAttributeOperation. Such a change
element is created during change of an attribute in an EObject like a. During change
recording, not only the new value to be set in the target element is attached to the
change operation, but the old value, too. This enables undoing changes if requested
by the user.
In the V-Model example, there is a change operation b of type ChangeResponsibil-
ity. It points to a Role a which is responsible for Product c. The change operation
declares that a is to be made responsible for another product, namely d.16 In the
resulting development model after interpretation of the change operation, Role a
is not responsible any more for Product c, but for Product d.
A similar example can be seen for SPEM. In the exemplary case’s initial state, Role a

16The relation to the new product must be modeled, but is not visualized in FIGURE 3.7.

44

3. On the notion of variability

is performing Task d. In order to declare a modification of this state, a new Role b is
defined with an embedded variability algorithm of type ‘replaces’. It points to Role
a. After interpretation, Task d is performed by Role b. The variability operations
does not only affect the referenced Role a, but all process elements with an outgoing
reference to Role a, too.

3.4.3. Modification mechanisms

The way to implement indirect modification is to implement change operations
into the modification framework. The framework must provide a meta-model
containing elements that represent change operations able to reference to elements
in the model to be changed.
In addition, the intended semantics for each operation must be specified and
implemented. For example, in EMFStore, a change operation of type SingleAttribu-
teOperation has a very specific semantics implemented into EMFStore [HK10b, p.
79].

45

4. On the notion of variant restriction

Contents
4.1 Transformational restriction . 48

4.2 Analytical restriction . 48

4.2.1 Syntax restriction . 49

4.2.2 Constraint restriction . 49

4.2.3 Manual restriction . 50

4.3 Relation between the restriction types 50

The variability mechanisms described in the previous chapter span the variant
space of a variability subject. In order to prevent invalid results, it may be desired
to restrict the variant space to reasonable variants. “After all, the purpose is not to
provide limitless flexibility but to provide just enough flexibility to suit the current
and future needs” of the variability subject [SvGB02, p. 708]. FIGURE 4.1 provides
an overview of the different methods that can be used to restrict the variant space.
A variable model can be configured, extended, and modified. Configuration is
only possible within the narrow bounds defined by a feature model. Extension
and modification of an existing model is always bound to its meta-model, i.e. the
meta-model is restricting the variant space of customized variants. Such a meta-
model can be used as a syntax definition to check a model against. Since a syntax
definition can be used to evaluate a syntax as being either valid or invalid, it spans
the variant space of valid models (syntax restriction).
The meta-model’s ability to define a variant space can further be enhanced by usage
of constraints (constraint restriction). Such constraints restrict the variant space
provided by a syntax definition.
However, checking against a meta-model and a set of constraints may not be enough.
Semantical considerations of informal information like natural language are not fac-
tored in. In order to further restrict such a semi-formal model, human interaction is
needed (manual restriction). For example, a variant overwriting an existing descrip-
tion text with a contrary description may annul central aspects of a development
model.
Imagine a description like “The project manager must update the project plan
according to the projected course of the project”. If a development model variant
instead states “The project manager initially creates a project plan and this plan is
carved in stone throughout the whole project”, then we certainly had to admit that

46

4. On the notion of variant restriction

Analytical
restriction

Syntax
restriction

Constraint
restriction

Manual
restriction

Transformational
restriction

Variant space
restriction

Figure 4.1: Restriction types for the variant space

the development model variant does not conform to the original intentions of the
development model. Changing the text to “The project manager must update the
project plan weekly” might be a valid variant of the original description. We need
an analysis performed by a human to be able to achieve a fitting decision.
The mentioned restriction types, i.e. syntax, constraint, and manual restriction,
represent an analytical approach for the restriction of a model variant space. This
analytical approach has been identified by BARTELT et al. [BFT09, p. 4 ff.], yet lacking
the breakdown into the described restriction types.
Generally spoken, analytical restriction is a rule based approach used to decide
whether a variant is still a valid variant. This may be done automatically for the
analysis of syntax and constraints. But it includes manually checking the confor-
mity of variants, as well, if either the rules or the subject of the analysis are not
completely formalized.
A different way to control the variant space without usage of analytical methods
in the first instance is transformational restriction [BFT09, p. 4 ff.].1 The transfor-
mational approach is not checking the varied state of a variability subject, but
determines the generation process of the varied state [BFT09, p. 6]. In simple cases,
this approach guarantees that only those manipulations can be executed that lead
to a valid result.
We can find this kind of result restriction in any word processor with a user interface.
Most editing steps can be identified as an example for transformational restriction.
For instance, when pressing the button for ‘insert table’ the program should ensure
that after pressing this button and maybe entering some parameters, the result is a
valid document. No further checking is needed. If in a certain context, the addition
of tables would lead to an invalid result, as the addition of tables in a footnote may
do, then the transforming operation must not be offered to the user.
In some cases, i.e. when the model to be transformed cannot be completely formal-

1Note that in the paper, the authors denote this approach as ‘constructive’.

47

4. On the notion of variant restriction

ized, there may reside the need for verification of the transformation result. Then,
we have to additionally choose an analytical approach.

4.1. Transformational restriction

The transformational approach (transformational restriction) for variant creation
is realized by modification via change operations. Though, while using change
operations, we are confronted by the thesis that it is generally impossible to describe
the complete valid variant space transformationally only by use of a reference model
and change operations [BFT09, p. 10]. I.e., applying change operations may lead to
invalid results.
Therefore, when considering the use of change operations, we have to take a look at
two cases. The execution of a particular change operation may...

1. ...lead to a valid result for all use cases of the operation.

2. ...lead to a valid result for none or some, but not all use cases.

In the first case, the change operation is a neat candidate to realize transformational
restriction of the variant space.
However, the second case leads to the need for a decision between two options:

A) The change operation is kept out of the modification toolkit. I.e., the organi-
zation engineer may not use it while modeling modification.

B) The change operation is added to the modification toolkit, but the result may
be invalid.

Option A is a clean way to restrict the result of transformational variation to a valid
variant space. But it may be that the transformational variability approach is too
restrictive to create the variants that need to be created. So in some cases, Option B
may be the only alternative.
Option B implies that a change operation may be reasonable enough to be included
into the toolkit of operations provided to the organization engineer, even if it leads
to invalid results. In this case, the result has to be verified using an analytical
approach.

4.2. Analytical restriction

The analytical approach (analytical restriction) makes use of a set of rules that is
applied to the varied state2 of the variability subject [BFT09, p. 5]. The rules are
used to check whether the variability subject is conform to the intended variant
space defined by the comprehension of the core asset engineer.

2See page 28 for the distinction between initial and varied state.

48

4. On the notion of variant restriction

Analytical restriction can be divided into three complementary restriction types:
syntax restriction, constraint restriction and manual restriction. Syntax restriction
defines an initial variant space. Constraint restriction reduces the variant space
that is contoured by syntax restriction by usage of constraints that allow the identi-
fication of invalid models. Syntax restriction and constraint restriction can both be
completely formalized.
However, if natural language belongs to the content of a model to be restricted,
these restriction types cannot be used to make pinpoint variant restrictions, since
a human is needed to make the evaluations and to take a decision. For this case is
manual restriction.
The following subsections describe these three types of variant restriction. In
CHAPTER 8, a focus will be laid on constraint restriction. For this restriction type,
a rule approach will be presented that allows the engineer of a model to specify
domain-specific rules that restrain possible model variants.

4.2.1. Syntax restriction

A syntax definition in general describes rules that govern the way words can be
combined to sentences. In particular, a meta-model represents a concrete set of
rules resulting from an abstract syntax. This set of rules can be used to decide if a
concrete syntax is valid in respect to the meta-model.
Syntax restriction is a fundamental property of language based programming and
modeling. Syntax analysis is very well understood [ASU92, p. 193ff.]. As such, in
this thesis, it’s availability is taken as being self-evident.
The syntax rules describe a space of valid concrete syntaxes. Any variant of an
existing concrete syntax must be within this variant space.

4.2.2. Constraint restriction

In order to further restrict the variant space defined by a meta-model, a constraint
based restriction can be used. This restriction is based on formal rules and model
structures that are checked against these rules.
Simple constraints like multiplicity ranges for object instances are usually integrated
directly into a modeling language.
A common way to realize more complex constraint restriction is the usage of a
constraint language [OMG10a]. For UML, the Object Constraint Language (OCL)
allows the definition of invariants, as well as preconditions and postconditions.
These constraints are defined for a certain context, such as a model entity. This
way, constraints do not only guard static model consistency, but the environment
of a particular entity, as well. OCL is side effect free, i.e. the evaluation of an OCL
expression will never change a model [OMG10a, p. 5].

49

4. On the notion of variant restriction

4.2.3. Manual restriction

When applying an analytical approach to check the validity of a modified model,
in many cases there is need to have someone manually perform a mapping between
the model and a set of rules. The creation of such a mapping needs human interac-
tion, as either these rules, the involved model, or both would be written down in
natural language.
A manual mapping, though, is out of the scope of this thesis.

4.3. Relation between the restriction types

The relation between analytical and transformational restriction is dependent from
the particular implementation. According to BARTELT et al., the approaches can
mutually be interchanged with each other [BFT09, p. 6]. An analytical approach
may be easier to implement and understand for simple cases, whereas the transfor-
mational approach is useful if a series of complicated operations are needed to be
performed as a single step. It was stated that a variability framework must find a
good ratio between both ways. In addition, it may be necessary to apply analytical
methods after performing transformations.
This observation holds true when taking a look at the variant spaces opened by
these restriction types. In particular, there appears to be a subset relationship
between the types. Thus, when applying the different restriction types to a model
domain, it appears reasonable to use a certain order of restriction application.
All restriction types operate on a given syntax. Thus, they can only be applied to a
domain with a specific syntax, which is the initial point of variant consideration. A
set of syntax rules intensionally describe the variant space of a domain. I.e., syntax
restriction designates the maximal variant space for a given domain.
Based on one arbitrary variant out of this variant space, this thesis orientates on the
creation of another variant of this variant. Naturally this variant must conform to
the syntax rules, or otherwise it’s out of scope of the domain. Now, the application
of the other restriction types appears reasonable when we are in want of mecha-
nisms to control the result of the variant creation. Syntax restriction can’t hold off
all unwanted variants.
Transformational restriction reduces the amount of variants that can be created
based on a particular variant to those that can constructively be created by change
operations. It effectively decreases the size of the variant space for this variant.
To further reduce the amount of variants, constraint restriction can be used to
automatically discard all those variants within the variant space of transformational
restriction that do not adhere to given rules.
The last restriction, namely manual restriction, acts like constraint restriction in
its appearance, but human interaction is needed to decide whether a variant is still
within the admissible variant space.

50

4. On the notion of variant restriction

When taking a look at the restriction types used to finally confine the variant space,
we can observe that the variant space in general can be decreased with usage of each
restriction type in turn.
Note that all restriction types might impose inhomogeneous restrictions where one
restriction type allows variants that are prohibited by another, and vice versa.

51

5. Description of the conception
approach

Contents
5.1 Creation of development model lines 52

5.2 Variation mechanisms of a development model line 56

5.2.1 Support for the creation of variants 57

5.2.2 Support for the restriction of variants 58

5.3 Concept development strategy . 59

This chapter subsumes PART II of this thesis. It draws an image of a development
model line (DML) concept envisioned to be suitable to provide solutions to achieve
the goals in CHAPTER 1 and to solve the problems stated in CHAPTER 2.
This concept bases on a DML framework . This framework is used to create DML
architectures, which in turn are used to create DML’s. These are the basis for the
creation of project-specific development models.
SECTION 5.1 explains the different DML terms and draws an outline of the DML
approach developed in this thesis. The following SECTION 5.2 explains in more
detail the mechanisms used to make a DML work.
Finally, SECTION 5.3 contains a short description of the structure of PART II. This
structure mirrors the strategy that has been chosen for the conception of the DML
approach.

5.1. Creation of development model lines

The DML concept introduced in this section is organized in three layers: the frame-
work layer, the architecture layer, and the model layer. This distinction was chosen
to offer variability to any kind of development model, not only to a specific one.
I.e., the main contribution in this thesis is a framework that allows to incorporate
configurability, extensibility, modifiability, and constraint based variant restriction
into a family of development models, i.e. a DML.
The framework can be used by a core asset engineer to create both a meta-model
(DML architecture), as well as a model (DML) for a domain-specific development

52

5. Description of the conception approach

model. Since the DML is bound to the DML framework, its general structure al-
lows the mentioned variabilities. An organization engineer can make use of these
variabilities to create an organization-specific DML that can finally be reduced to a
project-specific development model.
FIGURE 5.1 illustrates the relation of the various DML-related terms defined in
this section. But prior to a more detailed description of this figure, the necessary
definitions are made first.
For didactic reasons, the term ‘development model line’ is defined below in DEF-
INITION 8. We begin with DEFINITION 6. Note that a description of development
model was provided by DEFINITION 1.

Definition 6 (DML framework) A framework containing types necessary for the cre-
ation of DML architectures through specialization. Types in the framework are: model
element, relation (extensibility), feature model (configurability), change operation (modifi-
ability), and constraint (variant restriction).1

The purpose of a DML framework is to guarantee a certain structure for all DML
architectures, which in turn guarantees that every DML created using these archi-
tectures is generally configurable, extensible, and modifiable, as well as there is a
base structure for variant evaluation.
The abstract types within the framework are used as generalization for all types cre-
ated within a DML architecture. Model element and relation are used to model the
types in the knowledge pool of a development model. In addition, relations can be
used to enable extensibility. The feature model is needed for configurability, while
change operations allow modifiability. Constraints are used to check a specific
development model against previously modeled domain-specific constraints.
The feature model is the only concrete constituent of the framework. This means
that it provides a full meta-model for management of feature models, which are a
structure to enable configuration of development models. All other elements of the
DML framework must by specialized by a DML architecture.

Definition 7 (DML architecture) Contains concrete types which are created by special-
ization of abstract types in the DML framework. It contains:

• concrete model element types and relation types to enable modeling of knowledge
pools,

• concrete change operation types with explicit semantics, and

• concrete constraint types with explicit semantics.

A DML architecture serves as a meta-model for DML’s and development models.
It frames the areas of interest important to a concrete DML by providing a meta-
model for the knowledge pool of the development models to be created. E.g., it

1Four types are representatives of variability and variant restriction. The associated variability is
indicated in parenthesis.

53

5. Description of the conception approach

may contain a ‘Role’ type,2 a ‘Work product’ type,3 and a relation type representing
possible relationships between both.4

A change operation type might be an entity ‘Rename Role’, and a constraint type
could be ‘Has to be responsible for’.
Note that extensibility in a DML is enabled by conscious usage of association classes
for extensible relations during elaboration of a DML architecture. The relation
type between ‘Role’ and ‘Work product’ mentioned above represents an extensible
relationship, if it is realized as an association class. The DML framework offers the
general type relation for specialization to provide the property of extensibility.

Definition 8 (DML) A development model line (DML) contains instances of the con-
crete types of the DML architecture and the DML framework. Consequently, it is always
bound to a specific DML architecture. A DML can be made organization-specific by more
instantiation of concrete types.
A DML can be supplied to a project manager to configure it according to a particular project,
with the help of a DML environment. The result of a DML environment’s engagement is a
development model.
Elements of a DML are interpreted by a DML environment to realize configurability,
extensibility, modifiability, and variant evaluation.

A DML contains instances within the frame given by its meta-model, the DML
architecture. For example, it may contain a ‘Project manager’ as an instance of
‘Role’, a ‘Project plan’ as an instance of ‘Work product’, and an instance of a relation
between both.
In addition, we might have an instance of ‘Rename Role’ which references the
‘Project manager’ instance and contains the new name ‘Project leader’ as additional
information.
Finally, there may be an ‘Has to be responsible for’ constraint within the model
stating that in all variants of the DML, the role ‘Project manager’ must always be
responsible for the work product ‘Project plan’.
The common entity instances represent the knowledge pool of a development
model, whereas change operation instances, relation instances, constraint in-
stances, and feature selection have to be interpreted, yet. This interpretation is
done by a DML environment.

Definition 9 (DML environment) Implements operational semantics of configurabil-
ity, extensibility, modifiability, and constraints. I.e., a DML environment enables feature
selection and downstreammodel reduction (configuration), transparently interprets first-
class relations (extensibility), and interprets change operation instances (modification).
Additionally, it checks the result for constraint conformity.

2‘Role’ may be a representative within a development model’s role sub-model. See CHAPTER 2.1.2.
3‘Work product’ may be a representative within a development model’s product sub-model.
4Note that these are types, not instances.

54

5. Description of the conception approach

DML
environment

DML
architecture

(concrete types)

DML
framework
(abstract types)

modification &
extension

interpretation

Automated conversion:

Legend:

Manual concretion
(tool supported):

(instances, end
product)

Develop-
ment modelconfiguration

model tool

(instances)

DML

Figure 5.1: Creation of development models using the whole DML concept

FIGURE 5.1 provides an overview of the previous definitions and makes the interrela-
tion between them more explicit. It shows that a DML framework contains abstract
types to be specialized during creation of a DML architecture. Such an architecture
contains concrete types to be used as a basis for the instantiation of a DML. A DML
contains instances of these types.
Such a DML may optionally be extended and modified. If it is, the DML is used as
a reference DML , i.e. it is not changed directly, but by definition of an additional
model referencing the original DML. Extension and modification is declaratively
realized by instantiation of elements in the extension DML . This is the task of an
organization engineer.
A reference DML, along with any extension DML that is to be used in a particular
context, is provided to a project manager to be used for the creation of a project-
specific development model. The project manager selects all features applicable in
the project at hand and provides this configuration setup to a DML environment.
At this point, all information needed by the DML environment is available: refer-
ence and extension models, and a configuration setup. Modification elements and
constraints are part of the provided models. These models can now be interpreted
by the DML environment in four steps:

1. The extension DML is merged with its reference DML during a transforma-
tion performed by the DML environment. This integration may either be
performed operationally, or by transparent interpretation of distinct models
as a merged model.

55

5. Description of the conception approach

2. The DML environment is executing a configuration of the features defined in
the merged DML. To be able to do this, it is dependent on the configuration
setup created by the project manager. Any model element that does not
belong to any feature selected by the project manager is removed from the
merged model.

3. The DML environment translates all descriptively provided modification in-
formation into actual modifications. The needed modification information is
located within the model itself.

4. The resulting model is checked against constraints located within the model
itself.

This transformation finally creates a project-specific development model. This
development model is ready to be used in a project, by a DML user.
Each concretion and transformation step may lead to a variety of results, thus
spanning a wide variant tree. The DML framework can be used to create different
DML architectures. Each architecture can be used to create different DML’s. Each
DML can declaratively be extended and modified to create a variety of specific DML
variants. And in the end, each DML variant can be used to configure a number of
development models.
The difference between a DML and a development model is that a DML allows
variabilities like extensibility, modifiability, and configurability. A development
model is stripped off these variabilities, as it is the result of explicit variability
decisions given as input to a DML environment.

5.2. Variation mechanisms of a development model
line

The DML approach provided in this thesis supports the adaptability of development
models within a predefined variant space. I.e., the concept as a whole is intended to
support the creation of valid development model variants from a DML. It provides
concrete methods usable for variant creation, as well as concrete concepts to ensure
that the created variants are within an acceptable, model-specifically limited, scope.
In summary, the following aspects are integrated into the concept:

• Support for the creation of variants (GOALS 1–4).

• Support for the restriction of variants (GOALS 3–5).

These aspects are illustrated in FIGURE 5.2. The arrows indicate variant creation,
whereas the checkmark and the cross indicate whether a created variant is valid.
The aspects are explained in more detail in SECTIONS 5.2.1 and 5.2.2. With this
concept, the following questions shall be answered:

56

5. Description of the conception approach

MSTD

MX

MY

Figure 5.2: Concept properties: Create valid variants

MX

Mechanisms for creation
1. Configuration by selection

MSTD

Creation

+ =

+ =
a a‘

MSTD MADD MX

change

MSTD

MX

MY

2. Extension by addition

3. Modification by declarative change

MXMSTD + =
a
b
c

a

c
selection

Figure 5.3: Concept properties: Create variants

How can the creation of development model variants be supported so
that. . .

. . . we more explicitly make use of variability mechanisms like exten-
sion, modification, and configuration?

. . . we more explicitly create those variants we are allowed to create, not
just those we can create?

. . . we can upgrade a variant to new versions of the original model more
easily?

5.2.1. Support for the creation of variants

As FIGURE 5.3 illustrates, the creation of variants is modeled using three base mech-
anisms: configuration, extension, and modification.5 These have to be provided as
abstract base functionality by the DML environment.
Extension implies that variants are created by taking a base model MSTD and adding
a differential description model MADD. MSTD is never changed directly. Instead, all
elements contained within MADD are added to MSTD and merged into a result model

5The figure is using dark arrows and light check and cross marks to indicate its focus on creation,
rather than restriction.

57

5. Description of the conception approach

Mechanisms for restriction
1. Analytical restriction

+ rule check = OK/NOK MX

Restriction

MSTD

MX

MY

2. Transformational restriction

• Restricted set of change operations

Figure 5.4: Concept properties: Restrict variants

MX by a DML environment. This merge may be physically performed or realized by
transparent interpretation of distinct models as a singular merged model.
In addition, the concept makes use of configuration of existing assets to tailor a
DML to specific needs, generating a concrete development model.
Extension and configuration can be used to adapt development models by adding
and removing contents. In order to alter contents, the concept makes use of change
operations. Change operations are a declarative mechanism to realize modifiability:
remember FIGURE 3.6 for the principle of modifiability.
A change operation, being placed itself in MADD, references another object con-
tained within MSTD. The DML environment interprets the operation according
to domain-specific semantics defined for this operation. The result is an altered
content.

5.2.2. Support for the restriction of variants

We know that there will always be variants in the set of all possible variants that are
undesirable, in respect to their intended use. So we can identify the need to reduce
the amount of variants to an admissible set.
As shown in FIGURE 5.4, variant can be realized while adopting two philosophies:
analytical restriction and transformational restriction.6 Both approaches are suited
to control the creation of variants. But only one of them, namely transformational
variation, directly creates only those variants that are valid.
Analytical restriction is motivated when any thinkable variation can be created,
since there are no restrictions set upon what may be changed. In order to assure that
the created variants adhere to a set of domain-specific rules, any created variant has
to be analyzed by checking it against the rules. The analysis can lead to the result
that a variant is invalid in respect to the rules.
In this thesis, an analytical restriction type that is explicitly supported is constraint
restriction. Syntax restriction is assumed to be present, since it is assumed that all
models we discuss adhere to a concrete meta-model. Manual restriction is neglected

6The figure is using dark check and cross marks and light arrows to indicate its focus on restriction,
rather than creation.

58

5. Description of the conception approach

DML concept (implementation: Chp. 10)

DML framework
• variability framework

DML architecture
DMLChapter 7 Chapter 9

Chapter 6 Chapter 8

basis
for

basis
for

DML framework
• variability framework
• variant restriction

DML architecture
DML

Figure 5.5: Chapters of Part II related to the proposed concept

in the thesis.
Thus, up to a certain extent, uncontrolled variation is made possible in the concept,
but it will always be followed by a downstream validity analysis.
On the other hand, transformational restriction is a mechanism that only allows
for the creation of valid variants, so that an a posteriori analysis is not necessary.
This is realized by provision of a limited set of operations that apply changes to a
model. These changes always generate a valid result, so that an additional check
against the rule book is not necessary.
Note that this kind of controlled variation has to be implemented in a way that an
operation like an ‘add’ operation would not be offered to the user, if the amount
of elements in the model already is equal to the maximum value allowed. More
precisely, the amount of elements after execution of an operation must not exceed
given multiplicities. For example, a schema aware XML editor would offer an ‘add’
operation for elements with a multiplicity of 0..1 if and only if no such element
already exists.

5.3. Concept development strategy

Part II is structured according to a strategy for the development of a variant restricted
DML framework. The structure is illustrated in FIGURE 5.5. It is intended to relate
the chapter structure of Part II to the proposed concept.
First of all, CHAPTER 6 (Variability design approaches) filters the different implementa-
tions of the identified variability types and presents design approaches to facilitate
implementation of these variabilities (GOAL 2).
Afterwards, CHAPTER 7 (Developmentmodel lines) makes use of the design approaches
elaborated in CHAPTER 6 to create a DML framework as stated in GOAL 4. This
framework can be used to create DML architectures, which in turn can be used to
create DML’s, i.e. variable development models.
An additional dimension of variability is regarded in CHAPTER 8 (Concept for con-
straint restriction). It covers the restriction of model variants using constraints. This
observation serves GOAL 3.
The DML framework presented in CHAPTER 7 is then augmented by the considera-
tions concerning the admissible variant space made in CHAPTER 8. An enhanced

59

5. Description of the conception approach

DML framework for development model variant restriction is provided in CHAP-
TER 9 (Constrained development model lines) and thus achieving GOAL 5.
Finally, CHAPTER 10 shows how the proposed DML concept can be implemented.
This serves as an evaluation of the concept in respect to soundness and consistency.

60

Part II.

Conception of variable Development
Models

61

Contents of the Second Part

6 Variability design approaches 64

6.1 Configurability design approach . 65

6.2 Extensibility design approach . 70

6.3 Modifiability design approach . 72

7 Development model lines 78

7.1 Developer roles in a DML . 80

7.2 Structure of a DML framework . 81

7.3 An exemplary DML architecture . 84

7.4 An exemplary DML . 86

7.5 An exemplary DML extension . 87

7.6 DML environment . 89

7.7 Upgrading the underlying DML . 90

8 Concept for constraint restriction 92

8.1 Motivational aspects . 92

8.2 Constraint restriction example . 94

8.3 What has not yet been investigated . 96

9 Constrained development model lines 98

9.1 DML framework with constraint restriction 98

9.2 Exemplary DML architecture with constraint restriction 102

9.3 Exemplary DML with constraint restriction 103

CONTENTS OF THE SECOND PART

10 Implementation 106

10.1 DML modeling using UML . 108

10.2 Configuration: selection and reduction 109

10.3 Transformation: execution of change operations 111

10.4 Constraint checking . 111

63

6. Variability design approaches

Contents
6.1 Configurability design approach . 65

6.1.1 Related design pattern: whole-part 65

6.1.2 Configurability structure . 66

6.2 Extensibility design approach . 70

6.2.1 Related design pattern: relationship object 70

6.2.2 Extensibility structure . 71

6.3 Modifiability design approach . 72

6.3.1 Related design pattern: subclassing 73

6.3.2 Modifiability structure . 74

This chapter is based on the notions of the three variability types defined in CHAP-
TER 3, namely configurability, extensibility, and modifiability.
For these variability types, design approaches are provided in this chapter to enable
the creation of configurable, extensible, and modifiable systems and models.1

The following descriptions adhere to a pattern description template that is used
by BUSCHMANN et al. (see [BMR+96, pp. 20–21]), with slight deviations inspired by
GAMMA et al. [GHJV94, pp. 6–7].
Every design approach is preceded by a related design pattern. For all approaches,
the following fields belong to their description:

• Name: The name of the approach.

• Motivation: A short description of the use case of the pattern.

• Context: A description of the situation in which the approach can be applied.

• Problem: The problem that is addressed by the approach, and some implica-
tions of the problem.

• Solution: The solution strategy used to solve the problems.

• Structure: A description of the structural composition of the design approach.

• Example Resolved: An exemplary realization of the structure.

• Variants: Known deviations of the approach.

• KnownUses: Real world examples where the approach can be identified.
1Note that these attributes depend on the definitions made in CHAPTER 3.

64

6. Variability design approaches

callsService

Whole

+service1()
+service2()
+…()

PartA

+serviceA1()
+serviceA2()
+…()

PartN

+serviceN1()
+serviceN2()
+…()

Client

+doTask()

combines
… other parts

Figure 6.1: Whole-Part design pattern [BMR+96, p. 229]

6.1. Configurability design approach

This section describes a design approach for configurability that will be used in
the DML framework presented in CHAPTER 7. The approach is oriented on the
Whole-Part pattern.
Benefits from usage of this pattern are (see [BMR+96, p. 241]):

1. Changeability of parts. The internal structure of the whole can be modified
without an impact on clients using the whole.

2. Separation of concerns. Each concern may be implemented by a separate
part. This makes it possible to implement complex strategies via composition
of simpler services.

3. Reusability. Firstly, a part’s type can theoretically be reused in more than a
single whole. Secondly, the encapsulation of parts provides an interface that
prevents scattering the use of part objects throughout the whole.

These properties are useful for a configurable variability subject, as they help relating
configuration units to each other and to the configuration framework.

6.1.1. Related design pattern: whole-part

The Whole-Part pattern [BMR+96, p. 225 ff.] is used to form an aggregation of
components in order to subsume a semantic unit. The structure of this pattern (see
FIGURE 6.1) covers three types of participants: A Whole object representing a group
of objects, which are called Parts. A property of this pattern is that a Client can only
interact with the Whole, i.e. the Whole acts as a wrapper around its constituents
[BMR+96, p. 228]. Access to the Parts is only possible via the Whole. In addition,
the life-span of a Part is restricted to the life-span of its Whole.
The Whole-Part pattern is related to three types of relationship [BMR+96, p. 226 f.]:

65

6. Variability design approaches

• assembly-parts. The Parts are tightly integrated into the Whole. Usually, this
kind of relationship relies on a static structure of the Whole, i.e. the Parts
don’t vary.

• container-contents. The Parts are concentrated in a container. The contents
are loosely coupled and may be dynamically added or removed.

• collection-members. The Parts are grouped as a collection. The collection
provides functionality like iteration over all members. This is a specialization
of container-contents, while all Part objects have the same type.

6.1.2. Configurability structure

Name. Configurability Design.

Motivation. In some contexts, a system or model that is uniformly used as a
whole via a narrow interface may have internals that vary depending on extrinsic
conditions. The constituents of the whole vary with a particular configuration
made before usage of the whole. So the system’s or model’s composition may be
configured prior to use.
In the context of development models, the project-specific configuration of a model
is referred to as tailoring.

Context. The development of a configurable system or model: a system or model
has to constitute of several units that are brought into combination by a configu-
ration setting. The purpose is to have a flexible item that may be customized for a
particular use case and be composed of predefined assets.

Problem. A design for a configurable system or model in respect to the definition
of configurability (DEFINITION 3, p. 28) must provide means to. . .

. . . define a part-whole relationship between configuration units, so that all units
as a whole may be treated as an aggregate object.

. . . select/configure a subset of units that have to behave as a part of a whole.

Solution. The solution orientates on the Whole-Part pattern (see SECTION 6.1.1).
One component has to encapsulate smaller objects. Clients using this component
may not access the smaller units directly. The aggregate must define an interface
providing the only means to access data and the functionality of the encapsulated
objects.
The three relationship types described for the Whole-Part pattern apply to the
configurability approach as well.

66

6. Variability design approaches

Legend:

model
element tool

unitNunitA

subsumes

…

whole

configures

uses

u
se
s

user or
system

configurator

client

Figure 6.2: Configurability design approach

An additional aspect is the requirement for selection of smaller units to be used for
the composition. This composition is done by an external configuration device
enabling a client to select Units and doing the actual composition of the whole.

Structure. FIGURE 6.2 illustrates a structure that represents a realization of the
solution stated above. We can see four types of participants.
A whole object representing a composition of smaller objects, called units. The
whole is providing an interface to a client which relies on data and/or functionality
of the whole and its units and which may either be a human user or a system. The
whole encapsulates the units, direct access is not possible for the client. The only
way to influence the units is either by accessing the whole, or by accessing a config-
urator component. The configurator is responsible for the selection and deselection
of units and thus defines the composition of the whole. The configurator must
execute the configuration prior to usage of the whole, in order to clearly define its
composition.
After composition, direct access to a whole’s units may be allowed for the client.

Example Resolved. It’s not surprising that we already got to know an example for
a configurability approach in CHAPTER 3. The Spring framework [Joh02] provides
a configuration mechanism which can be used to integrate a system from smaller
units, as it is illustrated in FIGURE 6.2. We will now compare Spring with the
configurability structure shown in this figure to understand the connection.

67

6. Variability design approaches

1 class Exam {
2 Examiner examiner ;
3 Student student ;
4

5 void setTheExaminer (Examiner e) {
6 this . examiner = e ;
7 }
8

9 void setTheStudent (Student s) {
10 this . student = s ;
11 }
12

13 boolean s t a r t () {
14 return examiner . t e s t (student) ;
15 }
16 }
17

18 class Examiner {
19 boolean t e s t (Student s) {
20 return true ;
21 }
22 }
23

24 class Student {
25 // burning i n t e s t i n e s
26 }

Listing 6.1: Exam Java code

First, we take a look at some Java code of an exam setting. LISTING 6.1 contains
three classes. There is an Examiner class and a Student class. These are the units in
respect to FIGURE 6.2. The Exam class represents the whole. Each instance of an
Exam must be composed of one Examiner instance and one Student instance. This
is an exemplary domain-specific condition. In other contexts, one or both units
used for configuration might be optional, or the same class might be used more
than once in a way that would allow more than one student in an exam.
Note that the instances of Examiner and Student are not created within Exam.
If they were, then we would not face the need for an external configurator, and
thus no configurability. The methods setTheExaminer and setTheStudent are needed by
Spring2 to be able to compose the whole correctly. The start method is a domain-
specific method used to begin the exam.
The classes in LISTING 6.1 provide a meta-model for an exam domain model. The
Spring framework can be used to create instances of a class by defining beans. Each
bean has a unique identifier and a reference to the class to be instantiated. See
LISTING 6.2 for a bean configuration XML file beans.xml that is understood by Spring.
This file, in combination with Spring’s interpretation of the file, represents the

2Spring serves as the mentioned configurator, here.

68

6. Variability design approaches

1 <?xml version=” 1.0 ” encoding=”UTF−8” ?>
2 < !DOCTYPE beans PUBLIC ” −//SPRING / /DTD BEAN/ /EN”
3 ” h t t p : / /www. springframework . org / dtd / spring−beans . dtd”>
4

5 <beans>
6 <bean id=”ExaminerA” c l a s s =”Examiner” />
7 <bean id=”ExaminerB” c l a s s =”Examiner” />
8 <bean id=”StudentA” c l a s s =” Student ” />
9 <bean id=” StudentB ” c l a s s =” Student ” />

10

11 <bean id=”TheExam” c l a s s =”Exam”>
12 <property name=”TheExaminer”>
13 <bean r e f =”ExaminerB” />
14 </ property>
15

16 <property name=”TheStudent”>
17 <bean r e f =”StudentA” />
18 </ property>
19 </ bean>
20 </ beans>

Listing 6.2: Exam Spring configuration (beans.xml)

configurator participant of the configurability approach.

In the exemplary listing, lines 6–9 define the instances of two Examiners ExaminerA
and ExaminerB, as well as two Students StudentA and StudentB. In the shown
example, the Examiners and the Student instances don’t differ from each other
aside from their identifier, but in an extended example, these instances would
obtain additional properties like names, abilities etc.

In line 11 of LISTING 6.2, an Exam class is instantiated. It gets the identifierTheExam.
TheExam is composed of ExaminerB and StudentA by setting the appropriate
properties. The property qualifiers imply calling the methods setTheExaminer and
setTheStudent on the TheExam instance, and providing the instances ExaminerB
resp. StudentA to the methods.

With this configuration file, the composition is clearly defined. The only thing
do be done now is to write a Java program that asks Spring for the TheExam bean.
The program will get a fully initialized instance of Exam, according to the defined
configuration. It can then call the method start to begin the exam.3

In this example, the Java program, which is asking Spring for the beans, is the client
we know from FIGURE 6.2. The client is choosing and controlling the configuration,
i.e. the configurator Spring and the configuration information in beans.xml. Thus,
the client indirectly determines the composition of the whole.

3You may have noticed that all exams will always have a true as result value. This shall by no means
indicate any simulation or caricature of a real exam practice. It just keeps the example short.

69

6. Variability design approaches

Variants. In some whole-part hierarchies it may be reasonable to allow a whole
to contain other wholes. This case is a joint venture with the Composite pattern
[GHJV94, p. 163 ff.]. Both wholes and units need to implement the same abstract
interface, which is open to usage by the client. The whole is then aggregating
elements implementing that interface, which can be wholes and units.

Known Uses. We learned above that Spring’s configuration mechanism may be
used to realize configurability.
The V-Model XT is another instance of the presented design of configurability. In
this case, the configurability approach is translated to models. The development
itself is a whole, whereas the process modules are treated as units. The tailoring
mechanism of the V-Model XT is used to select process modules and thus to define
the composition of the development model. With this characteristic, the tailoring
mechanism represents a configurator performing the combination of units.
Note that the development model has other elements like glossary entries that are
not organized in process modules, but since these elements are not subject to the
tailoring mechanism, they do not fit into the declaration as a unit object.

6.2. Extensibility design approach

The premise of the following extensibility approach is the need for the ability to
add information to a model without directly changing the model.

6.2.1. Related design pattern: relationship object

NOBLE presented a couple of relationship patterns, since associations are an im-
portant part of object-oriented design [Nob00, p. 73]. One relationship type he
identified was Relationship Object , which has arisen in the object-oriented domain
as a contrast to representing relationships as attributes. When using attributes, the
participating objects are tightly coupled [Nob00, p 76], and a change to an attribute
always involves changing the containing host.
An advantage of the Relationship Object pattern identified by NOBLE is that it may
simplify the design, since relationship objects may themselves contain relationship-
related information. This increases cohesion, since “other participating objects do
not need to model part of the relationship” [Nob00, p. 77].
In addition, the pattern allows the separate creation of a relationship object, causing
a relationship between related objects without the need to change these objects
directly.
A disadvantage is the increased number of objects to be managed, since a relation-
ship object is a first-class entity which can be uniquely identified and must uniquely
be managed.

70

6. Variability design approaches

Entity AnotherEntity

AssociationClass

Figure 6.3: Extensibility design approach

6.2.2. Extensibility structure

Name. Extensibility Design.

Motivation. Successful reuse of already existing assets is usually recognized as an
amiable strategy to prevent redundancy and to reduce development time. When
building new objects, we are often in want of an archetype we can use as a basis and
adapt to our needs. The extensibility design approach in this section is providing a
structure that is useful when a developer is creating new structures by performing
purely additive tasks to already existing objects.

Context. Development with the need for the creation of variants of already ex-
isting object. These objects must not be directly changed. A variant can thus be
created by addition of information only.

Problem. A design for an extensible system or model in respect to the definition
of extensibility (DEFINITION 4, p. 36) must have the following properties:

1. A newly defined element must be able to be placed additionally into an exist-
ing model context. It must be possible to neatly embed the new element into
existing structures.

2. Such an element must be able to reference an element that is to be extended.

3. The original model must not be directly changed by the extension.

Solution. During meta-model design, create awareness that the usage of explicit
relationship objects4 allows extensibility. A relationship object can be added to a
model to homogeneously create relationships:

• between already existing elements,

• between existing elements and new ones, and

• between completely new elements.

71

6. Variability design approaches

Structure. In UML, a relationship object is modeled using association classes. A
graphical representation of such a model is shown in FIGURE 6.3. There is a class
Entity related to a class AnotherEntity by an association class AssociationClass.
This allows the creation of relationships between instances of Entity and Another-
Entity without the need to have direct access to these instances. A condition for
this is that the association ends are managed within the association class, not the
related classes.
The important aspect of using relationship objects as a means to realize extensibility
is the design phase of a domain meta-model. If a relation between objects ought
to be used to realize extension of a model, it should be designed as a relationship
object. Thus, a relationship object is not only a candidate for usage if a relation
is qualified by additional information, but also if it is intended to be used in an
extension setting.

Example Resolved. Due to the simplicity of the approach, an example appears
unnecessary.

Variants. No variants could be identified.

Known Uses. UML knows association classes to realize relationship objects. As an
association class is a fully fledged class, it can store supplementary informations
further characterizing the relationship, as well as operations etc.
The V-Model XT is a development model with a meta-model containing association
classes that were explicitly introduced for the sake of extensibility.
Before version 1.3, the responsibility relation between roles and products was a
second-class relation attached to the product. Since release of version 1.3, this
relation has been replaced by an association class representing the very same rela-
tionship. This was done to allow extension models define responsibility relations
to entities within the reference model, without the need for direct modification of
the reference model.

6.3. Modifiability design approach

As we have seen in CHAPTER 3.4, modifiability can be achieved by either using direct
or indirect modification of a variability subject. Direct modification has unwanted
effects that imply most of the problems stated in CHAPTER 2. This is the reason why
indirect modification is favored in this thesis. In short, direct modification might
lead to. . .

. . . inconsistencies if there exist copies of the original throughout the system or
model that should be modified, too.

4See SECTION 6.2.1.

72

6. Variability design approaches

. . . lacking knowledge at a later stage of development about what has been altered
at all.

. . . difficulties when the original is developed further, and the variant is intended
to be updated to the new state of the original.

The section at hand provides a design approach for modifiability using indirect
modification. A common mechanism for the reuse of existing programs includ-
ing indirect modification of the programs is subclassing. Inherent principles of
subclassing are identified and filtered into a design approach for the realization of
modifiability via indirect modification.

6.3.1. Related design pattern: subclassing

Although Subclassing is not a pattern in the stricter sense of [GHJV94] and [BMR+96],
it may be categorized as an idiom as defined by BUSCHMANN et al. [BMR+96, p.
346]. Idioms are low-level patterns that provide a solution for common imple-
mentation issues. Subclassing, when viewed as an idiom, is so constitutional for
object-oriented programming that it has been integrated into the literal syntax of
many programming languages.
Subclassing is a synonym for inheritance and is understood as “a facility for differ-
ential, or incremental program development” [Tai96, p. 439]. WEGNER and ZDONIK

formally defined inheritance as follows [WZ88, p. 55]:5

R = P ⊕ΔR (6.1)

In EQUATION 6.1, R denotes a newly defined object or class, P denotes the properties
inherited from an existing object or class, ΔR denotes the incrementally added new
properties that differentiate R from P (the delta part), and ⊕ denotes an operation
to somehow combine ΔR with the properties of P . As a result of this combination,
R will contain all the properties of P , except that the incremental modification
part ΔR may introduce properties that overlap with those of P so as to redefine or
defeat (cancel) certain properties of P ; thus, R may not always be fully compatible
with P .6

One might argue that subclassing is not an idiom at all, for it’s an integral part
of object-oriented programming languages like primitive types are. But when
taking a look at languages that are not designed to provide in-language support for
inheritance, like JavaScript, we can observe that a simple code archetype can be
used to emulate non-strongly typed subclassing [Gol09].
This thesis is assuming that subclassing is in fact an idiom. It has consequently
been integrated into the language specifications of object-oriented programming
languages for better and more intuitive support of this idiom.

5The formalism was provided by WEGNER and ZDONIK, but we see here the notation chosen by
TAIVALSAARI [Tai96].

6The preceding break has been copied literally from the explanation in [Tai96, p. 439].

73

6. Variability design approaches

1 class Line {
2 int width ;
3 }
4

5 class Square extends Line {
6 int height ;
7 }

Listing 6.3: Exemplary Java code using subclassing

1 class Square {
2 int width ;
3 int height ;
4 }

Listing 6.4: The interpreted result of the definition of Square from LISTING 6.3

We will now look at an example of subclassing in the Java language (LISTING 6.3).
We can see a Line class with an attribute width. Its attribute corresponds to P in
EQUATION 6.1. Another class has been added, namely Square. It’s a subclass of Line7

and provides an additional attribute height. This attribute describes ΔR.
LISTING 6.4 shows the resulting class. It’s a virtual construct determining the data
structures and behavior of the class when interpreted by the Java Virtual Machine.
This class is the correspondence to R in EQUATION 6.1.

6.3.2. Modifiability structure

Name. Modifiability Design.

Motivation. The drawbacks of direct modification motivate usage of indirect mod-
ification. Indirect modification is modification that is descriptively modeled and
performed later on by a formal mechanism. The descriptive change can be regarded
as a description of the difference between the original to be modified and the
intended result.

Context. Development with the need for the creation of variants of already exist-
ing objects, if these objects are likely to be updated later on in a separate develop-
ment line and a merge might be necessary in future.

Problem. A modifiable system or model using indirect modification must provide
means to. . .

7The subclass property is defined by the qualifier extends in line 5.

74

6. Variability design approaches

target
element

references

+ parameters

operation
instance

in
st

an
ti

at
io

n

change
operation

type

executes

implements semantics

interpreter

Figure 6.4: Participants in modifiability (legend: see FIGURE 6.2)

. . . model intended changes as separate change elements. This is a mechanism
needed to separately declare modification without direct modification of the
original.

. . . operationalize modification and to define its semantics.

. . . automatically integrate the declaration of modification with the original
elements that are intended to be modified.

Solution. In order to provide indirect modifiability, the approach makes use of
change operations . Change operations are used as a container for the declaration of
modification. When modification is to be indicated, a change operation is created.
An interpreter is running through all change operations and performs actions
according to the semantics of the operations.

Structure. The modifiability design approach (see FIGURE 6.4) makes use of a
two-leveled strategy: meta-model (upper part) and instance level (lower part).
At the upper part, domain-specific change operation types are situated for a par-
ticular change that may be performed on a model. This domain meta-model level
contains the types of change operations that can be used on the instance level. For
each change operation type, specific semantics must be provided and implemented
in an interpreter.
At the instance level, the interpreter is then used to execute changes for every
instance of a change operation type. Such instances reference target elements in a
domain model and may be supplied with parameters to be used during the actual
course of the change.

75

6. Variability design approaches

name = ‚Project
Manager‘

pManager
: Role

references

newName = ‚Project
Leader‘

chName
: ChangeRoleName

in
st

an
ti

at
io

n

ChangeRoleName

executes

implements semantics

name = ‚Project
Leader‘

pManager‘
: Role

ge
n

er
at

es

interpreter

Figure 6.5: Exemplary modifiability scenario (legend: see FIGURE 6.2)

An interpreter is necessary to execute the change operations on the target elements.8

The interpreter must know the semantics of the change operation types and be
able to take into account additional parameters provided by the change operation’s
attributes.

Example Resolved. FIGURE 6.5 is showing an exemplary realization of the modifi-
ability design approach. It’s structure is deliberately orientated on FIGURE 6.4.
In the upper center, there is a change operation type denoted with ChangeRole-
Name. Below, an instance of this type is placed in the model: chName. It has an
additional parameter newName storing some information to be used during inter-
pretation of the change operation. chName references a model element within
the domain model, namely pManager. This element has a name attribute with the
value ‘Project Manager’.
The described scenario can now be taken by an interpreter and transformed to a
modified model. The semantics of the change have to be implemented by this
interpreter. In the transformed model, placed at the right hand side of FIGURE 6.5,
there is an element pManager’, where the name attribute’s value has been replaced
by the parameter of the change operation chName.

Variants. No variants could be identified.

Known Uses. The V-Model XT [BMI10] can be mapped to the design approach
stated above. Its meta-model contains change operation types like RolleUmbenen-

8More precisely: to execute the instances of the former on the instances of the latter.

76

6. Variability design approaches

nen (RenameRole).
In addition, the provided tool suite of the V-Model XT supports the interpretation
of the change operations made applicable by the meta-model. This interpreter
uses an extension model and merges it with a reference model, thereby executing
all change operations in the order of their appearance in the model. The result is
separately saved in the file system for usage by other tools of the V-Model XT tool
chain.

77

7. Development model lines

Contents
7.1 Developer roles in a DML . 80

7.2 Structure of a DML framework . 81

7.2.1 Framework core . 82

7.2.2 Knowledge pool . 83

7.2.3 Feature model . 83

7.3 An exemplary DML architecture . 84

7.4 An exemplary DML . 86

7.5 An exemplary DML extension . 87

7.6 DML environment . 89

7.7 Upgrading the underlying DML . 90

We can observe some efforts in the upcoming field of process line engineering.
To take over the term Process lines1 by learning from product line engineering
was proposed by ROMBACH [Rom05]. He pointed out already existing examples of
process lines,2 and postulated the need for theoretical foundations.
A proposition for a concrete process line architecture was made by WASHIZAKI

[Was06]. The concept is presented as a means to subsume several similar workflows
under one template workflow that can be configured to the users needs. The paper
concentrates on process descriptions and is providing a SPEM extension to express
commonality and variability in process workflows. The approach is bound to
SPEM’s workflow model.
WASHIZAKI explains by means of an example how a set of process workflows can be
integrated into a generic process pattern that can be used to create these workflows
by serving variation points and selecting alternatives. In addition, this process
pattern, denoted as a process line architecture, can be used to create many variants
of the exemplary workflows.
The approach is an analytical approach taking into account a set of existing work-
flows, and creating a generic workflow that can be used to recreate all given variants,
and more. The provided notation can even be used constructively to design generic

1For usage in the area of variable process models.
2The developers of these ‘process lines’ did themselves not necessarily use this term.

78

7. Development model lines

workflows that can be configured to the users needs, but does not provide a solution
to the problems stated in CHAPTER 2. The reason is that it represents a specific
solution for the configuration of workflows, whereas the stated problems reside in
another level of relevance.
ARMBRUST et al. researched the scoping of process lines without providing concrete
specifications for a process line architecture [AKM+09]. I.e., they propose an ap-
proach to analyze current and future products and projects in an organization to
elicit its process needs, interpreting these needs as the scope of the process line
[AKM+09, p. 185 f.]. The approach consists of five steps, namely product analysis,
project analysis, process analysis, attribute prioritization, and scope determination
using a mathematical model.
The given approach of a DML framework in this chapter is to be understood as a
complementary addition, since scoping of development model lines is out of the
focus of this thesis. The relevant aspect in this thesis is a structure of a development
model that is intended to be configurable, extensible, and modifiable.
GOALS 1 and 43 represent the ambition of this thesis to support the theoretical
foundations asked for by ROMBACH [Rom05].
This chapter subsumes the definitions made in the previous chapters and provides
a realization of the DML concept presented in CHAPTER 5. This concept makes use
of the variability mechanisms identified in CHAPTER 6.
The Chapter contains first a SECTION 7.1 identifying different roles that may be
present during the development of a concrete DML. Afterwards, the DML con-
cept is explained in detail by first describing the structure of a DML framework
(SECTION 7.2) and then explaining how a DML architecture is created (SECTION 7.3).
In SECTION 7.4, it is shown how such an architecture can be used to create a concrete
DML. In order to enable configurability and modifiability of a DML, a DML envi-
ronment is described in SECTION 7.6. SECTION 7.7 describes the case that a reference
model is updated to a new version by the core asset engineer.
For more convenience while reading this thesis, certain DML specific keywords are
marked with a short line printed above the keyword. As the DML concept described
in this chapter differentiates between three different levels, for each keyword it is
additionally indicated to which level the keyword belongs.

• ‘contentElement’ is an entity of the DML framework presented in SECTION 7.2.
It is marked by a short line on the left: contentElement.

• ‘product’ is an entity of the exemplary DML architecture presented in SEC-
TION 7.3. It is marked by a short centered line: product.

• ‘projectManual’ is an entity of the DML example presented in SECTION 7.4. It
is marked by a line on the right: projectManual.

This kind of markings for entities defined at different levels is intended to retain
clearness. For example, the three entities mentioned above can be related to each

3See CHAPTER 1.

79

7. Development model lines

Organization
management

Objective
management

Identify
objectives

Identify organization
specifics

Assets for
DMLs

Feedback
on assets

DML

Feedback
on DML

Project portfolio
management

Identify project
specifics

Core asset
engineer

DML
manager

DML
user

Organization
engineer

OrganizationStandard

Figure 7.1: Roles of a development model line (adapted from [McG04, Figure 1])

other: contentElement is a generalization of product, while product is a general-
ization of projectManual. The intention of these markings is to provide a quick
comprehension of the involved DML levels.
Marking entities has an additional advantage. When marked, a word can exactly
be identified as indicating an actual entity. For example, in the DML framework,
there is an entity relation. When used in a sentence within the scope of the DML
framework, usage of the word ‘relation’ leaves it open if this word refers to a ‘relation’
between certain entities in a general sense, or to the entity ‘relation’. Marking the
word as relation definitely identifies it as an entity of the DML framework.

7.1. Developer roles in a DML

MCGREGOR identified three roles that participate in the creation of a software
product line [McG04, p. 66]. The first role is the group of core asset developers,
which provides the resources needed to create products, such as the architecture and
common system components. The group of product developers select appropriate
assets from the core assets and create concrete products. The third role is the
management, which both provides business objectives to be regarded during core
development, as well as descriptions of the products that have to be created.
In the context of development model lines, similar roles can be identified, as shown
in FIGURE 7.1. We observe that the role core asset developer and product developer
exist there, too. To remain consistent with the nomenclature, they will be denoted
with core asset engineer and organization engineer. Additional roles have been
added, namely the DMLmanager and the DML user . Finally, the management has
been subdivided into three separate roles.

80

7. Development model lines

The core asset engineer can use the DML framework presented in this thesis to
create a domain-specific DML architecture. Using this architecture as a meta-model,
the core asset engineer can create a reference DML. This DML can be used by an
organization engineer to create customized variants of the DML. Such variants
are translated to a final DML, which is taken by a manager for the creation of a
project-specific development model. This specific model is taken by a DML user
during execution of a project.
In comparison to the role model for software product lines presented by McGregor,
the management part has been divided into three separate roles. This is due to an
additional gap in the case of development model lines: core asset development and
DML development usually are performed in different organizations with differing
managements, whereas product lines usually are developed either within a single
organization, or if multiple organizations are concerned, the management of the
objectives and the target products exist under one organization.
So when having separate organizations involved, the management has to be divided.
The division criterion is the function that is performed by the management. The
three relevant functions are Identify objectives, Identify organization specifics, and Iden-
tify project specifics, in adaptation of the original functions [McG04, p. 66]. The roles
to take up these functions are objective management , organizationmanagement ,
and project portfolio management .
In some cases, some of these management roles may be combined under one um-
brella, resulting in a setting with a combined management like that described by
MCGREGOR. But in general, the roles have to be differentiated.

7.2. Structure of a DML framework

FIGURE 7.2 shows a UML diagram of a class structure for a DML framework as de-
fined in SECTION 5.1.4 The classes are divided into three groups: framework core,
knowledge pool , and feature model .
The elements presented in this chapter enable a knowledge pool, as well as the prop-
erties of configurability, modifiability, and extensibility of development models.
Note that all elements except those in the feature model are abstract, i.e. they have
to be specialized prior to usage. This specialization is made by a DML architecture.
The following sections describe the structural properties of a DML, beginning with
a description of the DML framework. Afterwards, for this framework, an exem-
plary DML architecture is presented. This architecture is then used to describe an
exemplary DML.

4In order to more easily distinguish classes from association classes in the UML diagrams, classes
are drawn as a box filled with white, while association classes are colored blue.

81

7. Development model lines

knowledge pool

framework core

feature model

0..1

1
rootFeature

root

model

0..1

*

«enumeration»
cardinalityType
mandatory
optional

modelElement

1..*
belongs_to

*

changeOperation
1..* *

* *

modifies

parameter

contentElement relation

feature

featureModel

subfeature

-cardinality : cardinalityType

* *
source target

param operation

target operationelement

capsule

whole

part

Figure 7.2: The elements of a DML framework

7.2.1. Framework core

This section covers the description of the framework core as illustrated in the middle
part of FIGURE 7.2. The central element of a DML framework is the most generic
class we can think of: the abstract class modelElement . When finally constructed,
a development model only consists of instances of this class. The DML framework
core does not imply any structural conditions for the meta-model in a DML archi-
tecture, with the exception that any instance of modelElement must be associated
with at least one instance of feature (see SECTION 7.2.3).
The area covered by the changeOperation and its outgoing associations, is based ex-
actly on the modifiability design approach presented in CHAPTER 6.3.2. Its structure
is shown in FIGURE 6.4.
There is a 1:1 mapping possible between this approach and the DML framework de-
scribed above. TABLE 7.1 is mapping the modifiability entities to their counterparts
in the DML framework. Specializations of changeOperation to be defined within
a DML architecture represent the change operation types, while their instances
map to the operation instances. The target element is realized by instances of
contentElement attached to any changeOperation via the modifies association.
Finally, the interpreter described in the modifiability design approach is realized by
the DML environment. It is not shown in FIGURE 7.2, because it represents an ex-
ternal application logic. It must implement the semantics for all change operation
types. Doing so, it is an integral part of the process to generate development models

82

7. Development model lines

Modifiability entity DML entity
change operation type specializations of changeOperation
operation instance instances of changeOperation
target element instances of contentElement referenced via

modifies
interpreter DML environment (not shown in FIGURE 7.2, see

SECTION 7.6)

Table 7.1: Mapping between modifiability design approach and the DML framework

and its implications map those of the interpreter described in the modifiability
design approach. The DML environment is described in SECTION 7.6.

7.2.2. Knowledge pool

The class contentElement is a specialization of modelElement. contentElement
is the abstract class for anything that can be defined in a knowledge pool. In-
stances of contentElement can be related to each other by an abstract association
relation, which itself is a specialization of contentElement. Thus, it is part of the
knowledge pool. Through contentElement and relation, an arbitrary meta-model
for the knowledge pool of a development model can be created as part of a DML
architecture. This creation is made by specialization, as shown in SECTION 7.3.
Note that any instance of a subclass of contentElement belongs to the knowledge
pool.
The usage of relation is a quite inconspicuous realization of the extensibility design
approach described in CHAPTER 6.2.2. The realization of relation as an association
class was explicitly chosen to give the creator of a DML architecture the opportunity
to include extensibility aspects into the meta-model by specialization of this class.
As we will see below in SECTION 7.4, an instantiated specialization of this class can
be used to extend an existing model without applying direct changes to the original
model during variant modeling.

7.2.3. Feature model

The configurability approach, shown at the top of FIGURE 7.2, is based on a fea-
ture modeling concept named Forfamel [AMS06, AM09]. This concept is realizing
feature models as designed in FODA [KCH+90].
A feature represents an end-user visible characteristic of a domain [KCH+90, p. 3].
Configuration of a development model is realized through selection of features. An
example for a system composition using FODA has been illustrated in FIGURE 3.1.
A feature may consist of other features. This is modeled as an association subfeature ,
which is provided with a feature type. The possible types are defined by the enu-

83

7. Development model lines

meration cardinalityType :5 mandatory and optional. A mandatory feature must be
selected, if its parent feature is. An optional feature may be selected, but does not
need to be.
Optional features provide configurability, as they defer the decision concerning the
actual configuration of a development model to the DML manager.
A modelElement must be associated with at least one feature. This association
belongs to indicates that a modelElement is part of the resulting development
model, if the parent feature is. A modelElement may be assigned to different
features simultaneously. If any of these features are selected, the modelElement is
selected, too.
Finally, the configurability area contains a class featureModel , which primarily is
used to identify a root feature to begin development model configuration with.
A feature that is related to the featureModel as rootFeature is mandatory to any
development model that can be created using the DML.
Note that the configurability classes are final, which means they cannot be special-
ized in a DML architecture, but have to be instantiated directly in a DML.6

The described approach is an implementation of the configurability structure de-
scribed in CHAPTER 6.1.2. The feature represents the whole, while a feature related
to the whole via a subfeature association plays the unit. In our case at hand, units
may in turn play the role as a whole.
The selection of features can be denoted with tailoring. As described in CHAP-
TER 6.1.2, a Configurator component is needed to enable this kind of tailoring. This
component is realized by the DML environment. See SECTION 7.6 for details.

7.3. An exemplary DML architecture

A development model makes use of a meta-model describing the types of admissible
model elements. Such a meta-model is denoted in this thesis as a DML architecture.
As described in CHAPTER 5.1, a DML architecture is created by specializing the DML
framework.
In the DML framework, all elements are declared abstract, except those of the feature
model. I.e., prior to usage, they have to be specialized in a DML architecture.
In this section, we will take a look at a development model meta-model that has
been created to serve as an example of a DML architecture. It will be used as a
meta-model for the creation of a development model example in SECTION 7.4.
FIGURE 7.3 shows domain-specific classes that specialize some abstract framework
classes introduced in SECTION 7.2.7

5Note that the name ‘cardinalityType’ is adopted from [AM09] for consistency reasons.
6In UML, this property is specified by setting a RedefinableElement ’s attribute isLeaf to ‘true’.
7The shown model makes use of subsetting association ends, but without renaming the ends. See

discussion in CHAPTER 11.1.1.

84

7. Development model lines

knowledge pool

dml framework

*

modifiesResponsibility

newRole

1

*

1

*
1

contentElement relation

role

product

changeOperation

responsibility changeProductResponsibility

param
{subsets param}

target
{subsets target}

operation
{subsets operation}

source
{subsets source}

target
{subsets target}

operation
{subsets operation}

Not visualized:
1. modifiesResponsibility specializes modifies
2. newRole specializes parameter

Figure 7.3: Specific elements of an exemplary DML architecture

On the left hand side, we can see two typical specializations of contentElement: role
and product . In addition, there is a specialization of relation called responsibility,
which connects each role with an arbitrary amount of products.8

Clearly, the role element addresses the role model reference area in a development
model, whereas the product element is concerned with the product model . See
CHAPTER 2.1.2 for details on the reference areas.
In addition, there is a specialization of changeOperation that was given the name
changeProductResponsibility. This specific change operation has an outgoing as-
sociation modifiesResponsibility to a responsibility-relation and an outgoing asso-
ciation newRole to a role.
In contrast to the responsibility specialization, the exact semantics of this class is
important to us. Each selected9 instance of a change operation has to be opera-
tionalized by the DML environment. How the semantics of a change operation can
be specified is shown in CHAPTER 10.3.
In case of an instance of changeProductResponsibility, the DML environment will

8There is no specification of a detailed semantics for this relation here, because this is not needed in
this example. We may simply assume any semantics that appears to be reasonable. Note that in a
real development model, the semantics of each relation between contentElements must clearly
be stated!

9I.e., it belongs to a feature that has been selected during configuration of a DML.

85

7. Development model lines

knowledge pool

feature model

: rootFeature

: subfeature

cardinality = mandatory

pmrepo
: featureModel

orgModel
: feature

: subfeature

cardinality = optional

projManagement
: feature

qaManagement
: feature

pmResp4pm
: responsibility

: belongs_to

projectManager
: role

projectManual
: product

qaResp4qa
: responsibility

: belongs_to

qaManual
: product

qaManager
: role

model

feature

wholewholepart part

element

element

element

capsule capsule

element

element

element

source target target source

Figure 7.4: Exemplary DML element instances

modify the responsibility identified by the association modifiesResponsibility. Af-
ter execution of the operation, the responsibility is related to another role, namely
the role referenced by thenewRole-association of the changeProductResponsibility
instance. See SECTION 7.4 for an instance example of changeProductResponsibility
and its implications.

7.4. An exemplary DML

In this section, we will take a look at an exemplary DML created using the DML
architecture described in SECTION 7.3. The example is illustrated by FIGURE 7.4.
As stated in CHAPTER 5.1, a DML is created via instantiation of a DML architecture.
On top of FIGURE 7.4, we can see instances of the final classes in the feature model
that were defined in the DML framework. In addition, we observe instances of
classes defined in the DML architecture, belonging to the knowledge pool.
In the feature model area, there is a featureModel pmrepo and three features,
namely orgModel , projManagement , and qaManagement . orgModel is related
to pmrepo and thus indicated as the root feature in the model. This results in
orgModel being a feature that is selected in any configuration. projManagement
and qaManagement are subfeatures of orgModel. projManagement is a mandatory
feature, while qaManagement is modeled as optional via the subfeature association.
The described feature model allows for two possible configurations of the DML: in
the first configuration, only orgModel and projManagement are selected, and in
the second, all three are selected. This feature model spans the configurability of
the DML.
As we can see in the DML framework, all modelElements, and thus all elements
within the knowledge pool, must be related to an instance of a feature via an

86

7. Development model lines

reference model

knowledge pool: belongs_to

projectManager
: role

: belongs_to: modifiesResponsibility

: newRole

qaReport
: product

pmResp4qaRep
: responsibility

changeResponsibility
: changeProductResponsibility

qaResp4qa
: responsibility

qaManagement
: feature

capsule

capsule

element

element

element

source

target

target

operation

operation

param

Figure 7.5: Exemplary organization-specific DML extension

instance of the belongs to association. We can see that this is the case in FIGURE 7.4.
For each of the two dependent features, both a product and a role are contained.
For projManagement, there is a role projectManager and a product projectManual .
For qaManagement, there is a role qaManager and a product qaManual . These
pairs each are related by a responsibility-association.
Note that responsibility is a specialization of relation, which is a modelElement.
This implies that instances of responsibility, like all other modelElements, must
have a belongs to association to a feature.

7.5. An exemplary DML extension

FIGURE 7.4 illustrates a reference DML, being the root model for a variety of devel-
opment models that may be deduced from it using configuration, extension, and
modification. The configurability of the reference model is defined by the feature
model. FIGURE 7.5 is showing an example making use of both extensibility and
modifiability. It shows an extension model that may be created by an organization
to create a customized variant of the reference model. This extension model is
making use of the very same meta-model as the reference model, which is the DML
architecture.
The example in FIGURE 7.5 shows that a product instance qaReport has been added.
The projectManager located in the reference model is responsible for qaReport via
a responsibility instance. This is a pure extension to the reference model. The
extension is made possible by the fact that responsibility is a relationship object,
instead of an attribute of product or role. This allows for the creation of relations
between elements, even if these elements are located within the reference model,

87

7. Development model lines

knowledge pool

feature model

: rootFeature

: subfeature

cardinality = mandatory

pmrepo
: featureModel

orgModel
: feature

: subfeature

cardinality = optional

projManagement
: feature

qaManagement
: feature

pmResp4pm
: responsibility

: belongs_to

projectManual
: product

qaResp4qa
: responsibility

: belongs_to

qaManual
: product

qaManager
: role

: belongs_to

qaReport
: product

pmResp4qaRep
: responsibility

projectManager
: role

model

feature

wholewholepart part

element

element

element

capsule capsule

element

element

element

source target target

source

source

target

capsule

element

element

Figure 7.6: An interpreted development model variant

without performing changes to the reference model itself.
In addition to the mentioned extension, the customized model contains an in-
stance of changeProductResponsibility named changeResponsibility. This change
operation belongs to the feature qaManagement, which means that the operation
applies to all configurations of the model, where this feature is selected.
The change operation is pointing via the association modifiesResponsibility to the
responsibility qaResp4qa. qaResp4qa is a relation between the product qaManual
and the role qaManager in the reference model. This responsibility is the target of
the change operation, i.e. this is the element where the modification has to take
place. A parameter newRole is associated to changeResponsibility, too. This associa-
tion relates it to the role projectManager. Thus, the reference to the projectManager
is the needed additional information for the change operation to know which role
has to be inserted into the responsibility qaResp4qa.
The modification itself is executed by the DML environment after configuration
of the DML. The semantics of the change operation implies that after execution
of the operation, the responsibility instance qaResp4qa is no longer related to the
role qaManager, but to the role projectManager.
The result of the described models after interpretation by a DML environment is
shown in FIGURE 7.6. We can see that the responsibility qaResp4qa is now related to
projectManager. This is due to the change operation changeResponsibility. Before
interpretation of this operation, qaResp4qa was related to qaManager. In addition,
there are the newly added instances qaReport and pmResp4qaRep.
Note that the figure is showing the development model after configuration, exten-

88

7. Development model lines

DML environment

Dev.
model

c
o
n
s
tr

a
in

t

c
h
e
c
k
in

g

transformationreductionselectionDML

Figure 7.7: Process steps of a DML environment

sion and modification. I.e., in the example shown, the feature qaManagement has
been chosen by the user triggering the DML environment. Otherwise, the change
operation would not have been interpreted, as it belongs to qaManagement.

7.6. DML environment

In the creation process of a development model, a DML environment is performing
automated transformation steps to create a development model from a DML. As
indicated in FIGURE 7.7, a DML environment is used for two model transformation
steps: first, reduction according to given configuration data, then transformation
by execution of change operations.
The combined process of configuration and reduction is called tailoring.
FIGURE 7.7 is actually a detailed view of the translation of a DML to a development
model, as it was shown in the lower right part of FIGURE 5.1.
After the creation of a reduced and transformed development model, automated
result analysis by checking constraints is performed. A transformation is only
successful if the result analysis yields a positive result.
The reduction and transformation of DML’s are modeled using the DML entities
features and changeOperations, respectively. For result analysis, constraints will be
introduced in CHAPTER 9.
The following paragraphs contain descriptions explaining the purposes and ex-
ecution strategies of reduction, transformation, and constraint checking in the
context of DML’s. These descriptions can be seen as informal requirements a DML
environment must implement. An exemplary implementation example is provided
in CHAPTER 10.

Reduction. To realize configurability, a DML environment must provide a selec-
tion mechanism for a DML manager to enable configuration of a DML by selecting
features. For this purpose, a semantics is provided for the association belongs to we
know from the DML framework.
A feature that is bound to its parent feature via a mandatory subfeature relation is
always selected, if its parent is. A feature bound via an optional subfeature relation

89

7. Development model lines

may be selected if a user selects it.
Every modelElement that does not belong to10 a selected feature is removed from
the DML and will not be part of the resulting development model.

Transformation. After the reduction, if there are any changeOperations in the
resulting development model, the DML environment executes each operation
by operationalizing its semantics defined along with the DML architecture (see
CHAPTER 10.3).
As a basis, and for simplicity, a total order over the change operations will be as-
sumed. This order has to be modeled in the DML. It is not an aim of this thesis
to provide a more thoroughly designed approach for operation sequencing. For
simplicity, it is assumed that change operations are executed in the order they
are modeled in the persistent file containing the model, exactly like difference
operation ordering is specified in XMI [OMG07a, p. 38].

Constraint checking. The result of the previous two steps is then checked against
constraints. These constraints are provided in two levels. The first level is imple-
mented in the DML architecture, where a set of domain-specific constraint spe-
cializations is defined for a particular DML. The second level is implemented in a
DML, where the constraint specializations are used as meta-elements for concrete
constraint instances. A model element can be related to a constraint instance in
order to determine whether the contextual environment of this element adheres to
given constraints.
Along with each constraint specialization, a concrete semantics must be provided
so that the DML environment is able to decide whether a constraint instance is
fulfilled.
If the model resulting from the transformation step is not contrary to any constraint,
the result is a development model ready to be used for a project-specific context by
the DML user.
For the sake of simplicity, constraints have not yet been included in the DML frame-
work. An introduction to constraints is provided in CHAPTER 8 and the integration
of constraints with the DML framework is described in CHAPTER 9.

7.7. Upgrading the underlying DML

The DML architecture presented in SECTION 7.3 gives the organization engineer of
an organization-specific adaptation the possibility to exchange the standard DML
with a newer version. The consequences are explained by means of an example in
this section. We assume that the creators of the DML model from the example in
SECTION 7.4 publish a new version of the DML.

10The association name has been flexed from belongs to to belong to for better readability.

90

7. Development model lines

Let’s assume that compared to its previous version, there are two differences in the
new version. The first is the renaming of the role projectManager to projectLeader.11

The second change is the addition of a new mandatory feature with the name
configurationManagement. This feature contains the newly created product in-
stance configurationHandbook and assigns the role projectLeader as being respon-
sible.
When the organization engineer of a customized model variant intents to upgrade
his model to the new version of the standard DML, he must exchange the persistent
file containing the original model with the new one. I.e., the extended customized
model no longer references to the old version, but to the newly adapted standard
DML.
The organization engineer now looks at the new contents for any conflicts that may
arise when including the new model. There are no conflicts,12 so all he has to do is
to exchange the old model with the new model. Every project initiated from now
on will be based on a new customized variant of the adapted standard DML, which
inherently contains all features of the newest model.

11Note that while performing this change directly in the original model, the unique identifier of
the altered class remains the same.

12We will take a look at possible conflicts in SECTION 11.4.

91

8. Concept for constraint restriction

Contents
8.1 Motivational aspects . 92

8.2 Constraint restriction example . 94

8.3 What has not yet been investigated 96

In this chapter, we will take a look at a typed, model based mechanism for con-
straint restriction that relies on domain-specific rules. This mechanism is based on
constraints that can explicitly be modeled within a DML. Constraints are a formal
mechanism that can be used to test if a model satisfies exact requirements. Each
constraint has a representative class in the DML architecture, hence model based.
Constraints can be combined and evaluated using terms with a boolean logic.
With a DML architecture defining concrete constraints, it is possible to create a
DML containing instances of these. Constraints may be linked to other elements
within the DML.
When using this mechanism, we can define for any element in the DML that it
must conform to a particular constraint, or a combination of constraints. As these
constraints are defined formally, it is possible to automatically check the element’s
model environment for consistency to the constraints.

8.1. Motivational aspects

As we can see when taking a look at OCL, constraints are motivated by the need for
invariants, preconditions and postconditions [MC99, p. 854]. Preconditions and
postconditions are not covered in this thesis as they are concerned with operational
transitions. Constraint restriction is defined to target a variability subject in its
varied state.
In order to be able to apply constraints, the model context to be regarded during
interpretation of a constraint must be supplied. This context can be either related
to a concrete model element instance that is bound to a particular constraint, or to
a type of model elements, indicating that the constraint is stated over all instances
of this type. This motivates the distinction between two classes of constraints:
constraint and typeConstraint . TABLE 8.1 gives an overview of these classes.

92

8. Concept for constraint restriction

constraint typeConstraint
Target(s): model element(s) model element(s) and

model element type
Modes: (no modes) any, all
Informal semantics: The target(s) must fulfill

specific criteria.
The target(s) and instances
of the targeted type must
fulfill specific criteria.

Note: The concrete criteria that must be fulfilled depend on the specializa-
tion created for constraint instantiation.

Table 8.1: Constraint types

typeConstraints are similar to what can be expressed with OCL. The constraint
places the context upon a concrete type and states the invariant that has to be
fulfilled. In OCL, such a constraint may be:
context Person inv : s e l f . Age >= 0

This exemplary constraint states that any instance of Person must have an age
greater than or equal to 0 at any time.
On the other hand, constraints are out of the focus of OCL, in regard to the con-
strained entity. constraints can be related to a concrete model element instance in a
model, which is not within the expressibility of OCL. I.e., a constraint can be used
to target an element and define the conditions this particular element must fulfill.
This is like defining an explicit constraint over Peter, instead of Person.
typeConstraint is a specialization of constraint. I.e., it has the same properties but
is additionally provided with a reference to a type to be constrained.
The targets of a constraint are actual model elements, i.e. they are bound variables.
This is unlike the usage in OCL, where parameters are always free variables. That
way, a constraint instance may be formulated concerning a particular model envi-
ronment.
For typeConstraints, it is important to specify the environment in which the con-
straint is fulfilled. The constraint may be satisfied if any instance of the targeted
type satisfies the constraint, or it may only be satisfied if all instances of the type
fulfill the constraint.
Note that modeling constraints as classes implies that constraints are placed within
a model by instantiating the appropriate class and setting target values. I.e., they
are no static part of the meta-model, but part of the model itself with the semantics
being stated within the meta-model level.
The classes constraint and typeConstraint are unspecific in their concrete seman-
tics. The core asset engineer must create specializations of these classes during the
creation of a DML architecture. Along with each specialization, concrete semantics
must then be provided. How this can be realized is shown in CHAPTER 10.4.6.
In addition to these two constraint classes, it appears advantageous to be able to
combine different constraints with each other, in the sense that we can create terms
of constraints for an increased flexibility to express constraints.

93

8. Concept for constraint restriction

These two concepts, namely the differentiation between the two constraint types
constraint and typeConstraint, and the possibility to create constraint terms are
the basis for the constraint mechanism explained in this chapter.

8.2. Constraint restriction example

Let’s remember the DML architecture defining the contentElements product, role,
and the relation responsibility between role and product, as was shown in FIG-
URE 7.3.
The following instances that were shown in shown in FIGURE 7.4 will be subject to
the constraint example.

• projectManual, instance of product,

• projectManager, instance of role,

• qaManual, instance of product,

• qaManager, instance of role,

As creator of a reference DML, i.e. as core asset engineer, we might want to define
restrictions for all variants created from the reference model. In our example, we
assume a restriction for products. We want to express that. . .

. . . in all modified variants of the DML, the projectManager is responsible for the
product projectManual.

. . . if the qaManager is responsible for any product, then he must at least be
responsible for the qaManual.

We want to define this requirement at the instance level, since otherwise we would
have to integrate this particular circumstance into the DML architecture, where, in
the first line, we do not know what instances will be defined in the DML.
Now, there are two analytical approaches suitable to make sure that a model is
consistent with the domain-specific restrictions listed above. If this restriction was
only defined using natural language, like it is up to now, the first approach would
be to perform a manual check.
The second approach, however, requires a formalization of the constraint, as well
as an engine able to map the formal specification against the implementation in
the concrete model. This approach will be dealt with informally in this section. A
formal basis will be provided in CHAPTER 10.
A meta-model for the example described below is presented in FIGURE 8.1. This
example is a reduced version of the concept that will be introduced in CHAPTER 9.
It does only show how constraints may be specialized in a DML architecture.

94

8. Concept for constraint restriction

dml architecturedml framework

contentElement

*

*

constrainedElement

element

constr

constraint

role

hasToBeResponsibleFor

product

constrainedRole constrainedProduct

element
{subsets element}

1 1

* *constr
{subsets constr}

element
{subsets element}

constr
{subsets constr}

Figure 8.1: Example for a constraint meta-model

term

conA : hasToBeResponsibleFor
Constrained product = projectManual

Constrained role = projectManager

AND

subterm1

XOR

conB : hasToBeResponsibleFor
Constrained product = qaManual

Constrained role = qaManager

conC : hasToBeRelatedToAny
Constrained type = product

Constrained element = qaManager

subterm2

NOT

Figure 8.2: Exemplary constraint term

hasToBeResponsibleFor specializes constraint. The contentElements that are target
of the constraint are bound to hasToBeResponsibleFor by its outgoing associations:
constrainedRole indicating a role, and constrainedProduct indicating a product.

Note that the associations both specialize constrainedElement. All involved associ-
ation ends are subsetting the association ends element and constr.

The informal semantics of hasToBeResponsibleFor is that an instance of this class
is deemed an unsatisfied constraint, if there is no responsibility relation between
the targeted instances of role and product.

FIGURE 8.2 shows an exemplary term consisting of three constraints. The con-
straints are named conA, conB, and conC. The two constraints conA and conB
are instances of hasToBeResponsibleFor, a specialization of constraint. conC is an

95

8. Concept for constraint restriction

instance of hasToBeRelatedToAny, which is a specialization of typeConstraint.1

These three constraints are combined to a term consisting of constraints and sub-
terms.
conA is a constraint over the product projectManual. It ensures that there exists
a responsibility relation between projectManual and projectManager. This con-
straint is associated to subterm1 with a boolean AND operator.
subterm1 consists of two operands, namely conB and subterm2. These operands are
combined with an XOR operator. conB is a constraint that is satisfied if qaManager
is responsible for qaManual. If this is not the case in a model in its varied state, then
subterm2 must be satisfied.
subterm2 negates the associated constraint conC. conC is satisfied, if qaManager
is related to any product instance. I.e., subterm2 is only satisfied, if qaManager
is not related to any product in any way. In effect, a model may only be valid if
qaManager is either not related to any product, or qaManager is responsible at least
for the qaManual.

8.3. What has not yet been investigated

There reside several aspects that need to be clarified. First, we only had a glimpse on
the meta-model that is involved for constraint restriction, the complete constraint
mechanism is yet to be defined. This point is taken into CHAPTER 9, where the
whole constraint mechanism is integrated into the DML framework.
Second, the description is informal. A formal clarification of the evaluation mecha-
nism and the rule semantics is provided in CHAPTER 10.
Third and last, it has not yet been fully motivated why to refrain from an existing
constraint language like OCL. An explanation follows here.
To begin with, we have to recall the context in which DML’s are to be used. It is all
about variability of a development model standard. When an organization decides
to create a customized variant, it is confronted with three actualities it does not
have much influence on: a DML framework as it is proposed in this thesis, a finished
DML architecture, and a concrete DML. The two last items are created by the core
asset engineer.
The organization engineer can use the DML as a reference model and create a variant
by usage of configurability, extensibility, and modifiability. While doing so, the
organization engineer has to respect the restrictions modeled in the reference DML.
I.e., if the core asset engineer creates rules as indicated in the example above, he can
guarantee that in every valid variant of this DML, the projectManager is responsible
for the projectManual and the qaManager is either responsible for the qaManual,
or not responsible for any product at all.
Now the point is, the core asset engineer can define what requirements a model has

1hasToBeRelatedToAny will be included into the DML architecture in CHAPTER 9.

96

8. Concept for constraint restriction

to fulfill in order to be a valid variant of the original model. This definition is made
at the instance level of a DML, not the DML architecture. The DML architecture
must only provide a generic structure to do this. This means, in the DML architec-
ture, there must be classes defined to instantiate constraints, as well as their exact
semantics. But the combination of constraints in respect to concrete instances
within the DML is only made in the reference DML.
For the organization’s organization engineer, this means he can uniformly use
modeling elements of the DML architecture without knowledge of OCL constraints.
In addition, he can add own restrictions, as well, having the possibility to model
constraints over any variant of the customized DML.

97

9. Constrained development model
lines

Contents
9.1 DML framework with constraint restriction 98

9.1.1 Constraints . 100

9.1.2 Terms . 101

9.2 Exemplary DML architecture with constraint restriction 102

9.3 Exemplary DML with constraint restriction 103

This chapter presents the complete constraint restriction mechanism that was
introduced partially in CHAPTER 8.
The classes constraint and typeConstraint will be described in detail, as well as the
possibility to combine these to build terms.

9.1. DML framework with constraint restriction

FIGURE 9.1 shows an extended version of the DML framework that was introduced
with FIGURE 7.2. As part of the knowledge pool meta-model, meta-model elements
have been added for constraint restriction. Two of these elements have already been
mentioned in CHAPTER 8.2: constraint and typeConstraint .
The constraint restriction meta-model in its full extent additionally contains the fol-
lowing DML framework entities: constraintOperand , operand , term , and rootTerm .
operand is the most generic class in the constraint restriction mechanism. A DML
environment must be able to check whether an operand is fulfilled or not. How
the DML environment can deduce such a decision is dependent on the actual
specialization of operand that is instantiated in the model. Possible specializations
can belong to one of two classes: term or constraintOperand.
The two aspects of constraint restriction identified in CHAPTER 8.1, namely the
definition of constraints and the definition of terms consisting of constraints are
covered in the following sections.

98

9. Constrained development model lines

feature model

0..1

1
rootFeature

root

model

knowledge pool

framework core

0..1

*

«enumeration»
cardinalityType
mandatory
optional

modelElement

1..*
belongs_to

*

changeOperation
1..* *

* *

modifies

parameter

contentElement relation

feature

featureModel

subfeature

-cardinality : cardinalityType

* *
source target

param operation

target operationelement

capsule

whole

part

constraint restriction

*

*

constrainedElement

element

constr

constraint

boundConstraint
*

1

oper

constr

1..2

*
operands

operandsContained

operandsContainer

term

-operator : operatorType

operand

constraintOperand

rootTerm

«enumeration»
invalidityMode

invalid
true
false

«enumeration»
operatorType

opAND
opOR
opNOT
opXOR
opID

constraint

-invalMode : invalidityMode typeConstraint

-constrainedTypeName : String

Figure 9.1: Constraint enabled DML framework

99

9. Constrained development model lines

9.1.1. Constraints

A constraint is used to express an invariant over a model. The two types of con-
straints introduced in CHAPTER 8.1 are constraint and typeConstraint.
Any instance of constraint represents a restriction formulated over contentElements
identified by the association constrainedElement . During evaluation of the con-
straint, the associated contentElements are tested against domain-specific require-
ments.
In addition to its references to constrainedElements, a typeConstraint has a string
attribute constrainedTypeName . This attribute is used to specify the name of a type
that is to be constrained.
When specifying the concrete semantics for typeConstraint in one of its specializa-
tions, it must be clarified whether the constraint is fulfilled when any instance of the
associated type fulfills certain requirements, or all instances of the type must fulfill
these requirements. This differentiation has to be made explicit as a specification
of constraint semantics during realization of a DML architecture.
constraint has an attribute invalMode that has not yet been mentioned. Its purpose
is to support the constraint restriction mechanism to be able to operate on reducible
models. I.e., a model element targeted by an constraint may be removed from the
model during model reduction. In such a case, the semantics of a constraint has
been undefined until now. invalMode can be set to one of three values, with
the following semantics. These semantics apply if the constraint instance has no
constrainedElement set:

• invalid: The whole term checking for this constraint must evaluate to false.

• true: The constraint evaluates to true, always.

• false: The constraint evaluates to false, always.

Note that there is no value ‘valid’, always resolving a term to be true. This is because
it would break the locality of a constraint. Of course, invalid breaks with this
locality principle, too, but is regarded as a proper mechanism to deal with invalid
term structures. This relation can be compared with the relationship between a
process returning an error when a subprocess cannot successfully be performed in
opposition to a process returning success when a single subprocess was performed
successfully. In most cases, the latter behavior would be regarded as faulty.
Until now, it has been left open how a DML environment can determine whether a
particular constraint is satisfied. For each specialization of constraint in the DML
architecture, specific semantics must additionally be provided to enable constraint
restriction. How such semantics can be defined is described in CHAPTER 10.
In the following section, we assume that the DML environment is able to decide
for each specialization of constraint in the architecture whether it is fulfilled by a
concrete DML.

100

9. Constrained development model lines

9.1.2. Terms

In order to provide more expressivity for the constraint mechanism, a boolean logic
term principle was added to the concept. This mechanism is represented by the
term class.
The DML environment must be able to test whether a term is satisfied. A term is
satisfied if all operands related to the term via the association operands are satisfied
according to the operatorType.
Since term is a specialization of operand, the DML environment is able to interpret
this kind of operand.
Another specialization of operand is constraintOperand . This class creates an at-
tachment between terms and constraints via the association boundConstraint.
operand itself does not have the association boundConstraint to avoid its special-
ization term to be able to directly be associated to a constraint instance. This rela-
tionship has to be realized as an operand instance.
A DML environment evaluates a constraintOperand by evaluating the associated
constraint.
operatorType defines the boolean operators AND, OR, XOR, NOT, and ID, repre-
sented by the literals opAND , opOR , opXOR , opNOT , and opID respectively.
The semantics of these operators are as follows:

• opAND (binary): The term is evaluated with the result ‘true’ if and only if all
operand instances associated via operands are evaluated to the result ‘true’.

• opOR (binary): The term is evaluated with the result ‘true’ if at least one
operand instance associated via operands is evaluated to the result ‘true’.

• opXOR (binary): The term is evaluated with the result ‘true’ if and only if both
of two conditions are given. First, the term must have exactly two operand
instances associated via operands. Second, the result of both operands must
be evaluated with a contrary result. I.e., if the first operand is evaluated to
‘true’, then the second must be evaluated to ‘false’, and vice versa.

• opNOT (unary): The term is evaluated with the result ‘true’ if and only if the
operand instance associated via operands is evaluated to the result ‘false’.

• opID (unary): The term is evaluated with the result ‘true’ if and only if the
operand instance associated via operands is evaluated to the result ‘true’.

For binary operators, the amount of operands related to a term must be two, for
unary operators, the amount must be one.
A specialization of term is rootTerm. When checking a model for compliance with
all instantiated restrictions, the DML environment has to evaluate all rootTerms
and their subterms, and finally all operands associated via the association operands.
There is no objection against including rootTerms as operands in another term.

101

9. Constrained development model lines

knowledge poolconstraint restriction

dml framework

*
*

modifiesResponsibility

newRoleconstrainedRole

1

*

1

1

*1

contentElementconstraint relation

hasToBeResponsibleFor

role

product

changeOperation

responsibility changeProductResponsibility

param
{subsets param}

target
{subsets target}

operation
{subsets operation}

source
{subsets source}

target
{subsets target}

typeConstraint

hasToBeRelatedToAny

constrainedProduct

*

constr
{subsets constr}

element
{subsets element}

1

constr
{subsets constr}

element
{subsets element}

operation
{subsets operation}

Not visualized:
1. constrainedProduct specializes constrainedElement
2. constrainedRole specializes constrainedElement
3. modifiesResponsibility specializes modifies
4. newRole specializes parameter

Figure 9.2: Example of a constraint enabled DML architecture

9.2. Exemplary DML architecture with constraint
restriction

The previous section contained an extension of the DML framework presented in
CHAPTER 7. Likewise, FIGURE 9.2 describes an extension of the exemplary DML
architecture that was introduced by FIGURE 7.3. The extension contains specializa-
tions of constraint and is shown in a red box at the left hand side of the figure.
hasToBeResponsibleFor is a specialization of constraint. This class has already been
introduced in CHAPTER 8.2.
It has an outgoing association constrainedRole which specializes the association
constrainedElement. It is pointing to exactly one role. In addition, it has an as-
sociation constrainedProduct that is specializing constrainedElement, as well, but
pointing to a product.
An instance of hasToBeResponsibleFor represents a constraint checking whether a
concrete product instance is responsible for a concrete role instance. We will see a
model example in the next section.
Remember that the exact semantics of hasToBeResponsibleFor is discussed in CHAP-
TER 10.
In CHAPTER 8.2, another specialization of constraint has been neglected. In partic-
ular, it is a specialization of typeConstraint: hasToBeRelatedToAny. This special-
ization does not add any specialized associations to typeConstraint. Instead, the
specialization is needed to attach semantics to this constraint.
The informal semantics of hasToBeRelatedToAny is that an instance of this class
is deemed a satisfied constraint if any element associated to this instance via

102

9. Constrained development model lines

knowledge pool

feature model

: rootFeature

: subfeature

cardinality = mandatory

pmrepo
: featureModel

orgModel
: feature

: subfeature

cardinality = optional

projManagement
: feature

qaManagement
: feature

pmResp4pm
: responsibility

: belongs_to

projectManager
: role

projectManual
: product

qaResp4qa
: responsibility

: belongs_to

qaManual
: product

qaManager
: role

model

feature

wholewholepart part

element

element

element

capsule capsule

element

element

element

source target target source

constraint restrictionmainManagementProducts
: rootTerm

operator = opAND

: operands

: constrainedRole
: constrainedRole

constr

constr

element element

operandsContained

operandsContainer

: operands

operandsContained

operandsContainer

oper

oper

constr constr

element

constr

: constrainedProduct

element

constr

: constrainedProduct

: boundConstraint : boundConstraint

operand1
: constraintOperand

qaHasToBeResponsible4qaManual
: hasToBeResponsibleFor

invalMode = false

: operands

operandsContained

operandsContainer

: operands

operandsContained

operandsContaineroperand2
: constraintOperand operand3

: constraintOperand

subterm1
: term

operator = opXOR
subterm2

: term

operator = opNOT

operandsContained operandsContainer

: operands

qaHasToBeRelated2anyProduct
: hasToBeRelatedToAny

invalMode = false
constrainedType = ‚product‘

constr

: boundConstraint

oper

element

constr : constrainedElement

pmHasToBeResponsible4pmManual
: hasToBeResponsibleFor

invalMode = invalid

Figure 9.3: Example of a constraint enabled DML

its relation constrainedElement is associated to an instance of relation, which
itself is associated to any instance of the class identified by the attribute value
of constrainedTypeName. The attribute constrainedTypeName is inherited from
typeConstraint.

9.3. Exemplary DML with constraint restriction

First of all, FIGURE 9.3 includes all DML elements that were presented in the exem-
plary DML introduced in CHAPTER 7. This was made to provide a complete example
in this chapter, now including constraint restriction elements, too.
The constraint restriction example shown in FIGURE 9.3 has already been explained
in SECTION 8.2, but not in all details.
The model placed in the constraint restriction box in FIGURE 9.3 is a DML repre-
sentation of the term shown in FIGURE 8.2. mainManagementProducts is the term

103

9. Constrained development model lines

FIGURE 8.2 illustrated. It is instantiating rootTerm. Any rootTerm is to be checked by
the DML environment whether its operands fulfill the given rules. If any rootTerm
is not fulfilled, the model is to be interpreted as an invalid model variant. A term
that is not a rootTerm may not be fulfilled, but this does not necessarily mean the
model variant is invalid.
In the example, the effect of the rootTerm is giving the DML environment the
command to always check if the model created by configuration and modification
is valid in respect to mainManagementProducts.
mainManagementProducts is deemed satisfied if both operands associated to the
term are satisfied. That both operands have to be fulfilled is indicated by the value
of operator: opAND.
One operand is operand1, an instance of constraintOperand. operand1 is associ-
ated to pmHasToBeResponsible4pmManual via the boundConstraint association.
pmHasToBeResponsible4pmManual instantiates hasToBeResponsibleFor, which is
a constraint specialization. I.e., a DML environment is able to decide whether
pmHasToBeResponsible4pmManual is satisfied.
In our example, pmHasToBeResponsible4pmManual is satisfied if the role asso-
ciated via constrainedRole is attached to the product that is associated via the
relation constrainedProduct. In the model at hand, this constraint is fulfilled by
the responsibility instance pmResp4pm: the role projectManager is responsible for
the product projectManual.
We ignore hasToBeResponsibleFor’s attribute invalMode for now. It will be covered
below.
The other operand of mainManagementProducts is subterm1, which is another
term. It consists of two operands subterm2 and operand3. Their satisfaction state
is mutually exclusive (opXOR).
operand3 is provided with qaHasToBeResponsible4qaManual. This constraint is
similar to pmHasToBeResponsible4pmManual and tests whether the qaManager is
responsible for qaManual.
subterm1’s other operand subterm2 uses the unary operator opNOT. This indicates
that the term is deemed satisfied if the associated operand operand2 is not, and
vice versa.
operand2 is associated to qaHasToBeResponsible4anyProduct, which is an instance
of hasToBeResponsibleForAny. The type that is guarded by this specialization of
typeConstraint is identified by the value of constrainedTypeName: ‘product’. The
constraint instance qaHasToBeResponsible4anyProduct is satisfied, if the element
targeted by the association constrainedElement has any relation to any product.
In effect, the term described above has the following informal semantics: The model
is deemed unsatisfied, if the root term is not satisfied. The root term is satisfied, if
the projectManager is responsible for the projectManual AND exactly one of the
following two constraints is satisfied:

104

9. Constrained development model lines

1. qaManager is responsible for qaManual

2. qaManager is not related to any product via any specialization of relation.

As described in CHAPTER 8, subterm1 ensures that if qaManager is related to any
product, then a responsibility relation to qaManual must exist, too.
Until now, the attribute invalMode that is common to all constraints was ignored.
As stated in SECTION 9.1, a term is to be interpreted as not being fulfilled, if any
constraint does not point to any target and the value of invalMode is set to invalid.
So we may conclude that if in any variant, the projectManual,1 would be removed,
either by change operation or by model reduction after feature configuration, then
the rootTerm mainManagementProducts would have to be interpreted as being not
satisfied.
This would end up in any such variant being interpreted as an invalid model variant
of the original model. In our exemplary DML architecture and model example, this
scenario cannot take place, because it happens that there is no change operation
able to remove a product from the model, nor can the feature projManagement be
configured out. In such a case, i.e. when a constrainedElement cannot be removed
from the model in any model variant, then the value assigned to invalMode does
not matter and is not interpreted.
On the other hand, qaHasToBeResponsible4qaManual has an invalMode value of
false. This means that if and only if the qaManual would be removed from the
model by configuration or modification, then the constraint had to be interpreted
as unsatisfied. In effect, this allows model elements that are under constraints to be
removed from the model without disabling the term containing such constraints.

1projectManual is the constrainedProduct of pmHasToBeResponsible4pmManual.

105

10. Implementation

Contents
10.1 DML modeling using UML . 108

10.2 Configuration: selection and reduction 109

10.3 Transformation: execution of change operations 111

10.4 Constraint checking . 111

10.4.1 Formal basis . 112

10.4.2 Spanning an array of stable models 115

10.4.3 Nivel . 115

10.4.4 DML expressed in Nivel . 124

10.4.5 Semantics of features . 128

10.4.6 Semantics of constraints . 129

This chapter contains a description of an implementation of the concepts that were
introduced in PART II. As stated in CHAPTER 1.3, this implementation is primarily an
evaluation approach for the concept described in the previous chapters in respect
to soundness, consistency, and correctness. In addition it represents an example
used to show how the concept can be implemented.
The presented implementation of the DML environment is used as an example for
the application of the DML concept. It is provided with a prepared UML model that
is consistent with the UML diagrams in CHAPTER 9. It contains selection of features,
a downstream model reduction process, transformation according to information
provided by change operations, and the transformation of the modified UML
models to a logic programming language that is used to reason over constraints
located within the model.
The input to this DML environment has to be provided as UML model. As we will
see below, selection information is placed along with the whole DML model, i.e. it
has to be modeled within the UML model, too.
In addition to implementation issues, this chapter provides a clarification of the
exact semantics of the mechanisms introduced in previous chapters.
The chosen strategy was to create a stringent and consistent process going from the
beginning, i.e. the definition of a DML framework, to the end, i.e. a development
model ready to be used in a project.

106

10. Implementation

Process step Implementation Result format Section
I. Selection Addition of deselection information

to the UML model.
UML model 10.2

II. Reduction XSL transformation of the model in
UML format, regarding the deselec-
tion information. Deselection infor-
mation is discarded.

UML model 10.2

III. Transformation Multiple XSL transformations of the
reduced UML model. Every instance
of change operation is interpreted
and executed. Change operations
are discarded.

UML model 10.3

IV. Constraint
checking

XSL transformation of the previous
UML result model to the formal lan-
guage Nivel. The model is then
tested for constraint inconsistencies.

Nivel model 10.4

Table 10.1: Overview of the DML environment process step implementation

DML environment

Dev.
modelc

o
n
s
tr

a
in

t

c
h
e
c
k
in

g

transformationreductionselectionDML

Step I Step II Step III Step IV

Figure 10.1: Relating TABLE 10.1 to FIGURE 7.7

An important aspect of this strategy is the usage of UML as a modeling language to
be able to make this thesis’ subjects computer interpretable. I.e., the DML frame-
work, as well as the derived DML architectures and DML’s described in CHAPTERS 7
and 9 are modeled as UML models. These models are made persistent as XMI files
adhering to the UML XMI 2.1 format, as it is implemented in the export function-
ality of MagicDraw 16.8.1 Specifics of the UML modeling of the DML concept are
discussed in SECTION 10.1.
The functionality of the DML environment as described in CHAPTER 7.6 is realized
as it is shown in TABLE 10.1. A graphical description of the process was initially
shown in FIGURE 7.7. This figure was extended with a mapping to the table. The
mapping is shown in FIGURE 10.1.
The first step, covered in SECTION 10.2, is the selection of features of a DML. This
selection is made manually by a DML manager. The information is stored along
with the model information.

1http://www.magicdraw.com/

107

http://www.magicdraw.com/

10. Implementation

Step II concerns the interpretation of this selection information. Any model ele-
ment, that does not belong to a selected feature is removed from the model. For
this transformation, an XSLT interpreter is used: Saxon 9-1-0-7j.2 Step II is covered
in SECTION 10.2, too.
Transformation, i.e. step III, covers the execution of change operations. In the
implementation described in this thesis, the semantics of change operations is
specified using XSL scripts. Each change operation is executed in order of appear-
ance, finally creating a modified DML. The implementation strategy for step III is
described in SECTION 10.3.
In step IV, the DML environment is checking for adherence to constraints con-
tained within the model. In order to make this check possible, the UML model is
transformed to a formal language representation of the model. The language used
for this purpose is named Nivel. This topic is described in detail in SECTION 10.4.

10.1. DML modeling using UML

In CHAPTER 7, UML representations were provided for the proposed DML frame-
work, an exemplary DML architecture and an exemplary DML. These models were
enhanced in CHAPTER 9 by a constraint meta-model. As the figures concerning
constraint restricted DML’s are more complete, they should be used as a reference
when following the implementation details described in this chapter.
In particular, the DML framework was shown in FIGURE 9.1, a DML architecture
was presented in FIGURE 9.2, and a DML was illustrated in FIGURE 9.3.
The figures adhere to the graphical UML 2.3 notation [OMG10b]. The models were
created using MagicDraw 16.8.3

There is an aspect of the models that is not shown in the figures. On page 84, it
was stated that for some classes, the attribute ‘isLeaf’ is set to true. This applies
to featureModel, feature, subfeature, term, rootTerm, and constraintOperand. The
effect is that those classes must not be specialized in the DML architecture. There is
no graphical representation for ‘isLeaf’ defined by UML, so this aspect has textually
been added in the description text covering FIGURES 7.2 and 9.1.
The UML models will later be translated into Nivel [Asi07], another modeling lan-
guage (see SECTION 10.4.4). There are modeling conventions that must be adhered
to in order to allow this transformation.
All elements that belong to the DML framework, have to be placed together in a
package named ‘framework’. All architecture related elements must be grouped in a
package named ‘architecture’. The instances of those elements reside in a package
‘dml’ and in a package ‘extension’ for the exemplary extension model that was
shown in FIGURE 7.5, respectively.

2http://saxon.sourceforge.net/
3Note that the figures were redrawn manually afterwards for better readability.

108

10. Implementation

dml environment dml framework
1..*deselects

featurefeatureDeselector deselector deselectedFeature

*

Figure 10.2: Meta-model for the definition of selection information

There are more considerations. TABLE 10.2 lists these aspects that have to be regarded
when modeling DML’s with UML when intending to input this model to the DML
environment described in this thesis.
The left column lists the UML entities that may be used in the three layers. The
right column lists additional restrictions.

10.2. Configuration: selection and reduction

The chosen strategy used to intertwine a DML model with configuration informa-
tion was to create an additional meta-model element featureDeselector at the same
level as the DML framework. FIGURE 10.2 shows how this element is related to the
DML framework. featureDeselector is used to model configuration information to
be used during reduction of the model.

Selection. A featureDeselector is associated to one or more features via the as-
sociation deselects. In order to define configuration information, instances of
featureDeselector have to be added to the DML model. They must then be related
to features that are intended to be removed from the model.
The implementation described in this thesis does not check if features are manda-
tory or optional. I.e., the DML manager is responsible to ensure that only those
features are deselected, that are not mandatory in any subfeature context.

Reduction. The integration after selection in the case of a DML is a simple model
reduction. After selection, a DML model with featureDeselector instances is inter-
preted by an XSL script for DML reduction. In effect, the script reduce.xsl copies the
whole input model to an output model, stripping it from:

• all featureDeselector instances,

• all feature instances that were referenced by any deselects relation,

• all other model element instances that do not have a belongs to relation to
any of the remaining features, and

• all association instances with outgoing references to any of the removed ele-
ments.

109

10. Implementation

Supported UML elements Restrictions to be considered
DML framework

• classes
• associations
• association classes
• enumerations
• generalization
• attributes (String and

enumerations)

• Package must be named ‘framework’.
• All associations must have multiplicities on both

ends.
• All association ends must be named.
• Attributes always have the multiplicity 1.

DML architecture

• classes
• associations
• generalization, in case

the general is located
within the DML frame-
work

• Package must be named ‘architecture’.
• All classes and associations must specialize an ele-

ment of the framework.
• Associations defined in the framework are implic-

itly inherited: i.e. no specialization needs to be
explicitly modeled, but they may be.

• Associations must be specializations.
• All associations must have multiplicities on both

ends.
• All association ends must be named.
• The owner of both association ends in an associa-

tion must be the association itself.
• A specialized class or association must have a differ-

ent name as the father.
• The association ends must use the same name as

the father association.

DML

• instance specifications • Package must be named ‘dml’ or ‘extension’.
• Instances may be named, but need not.
• All classes of the architecture can be instantiated.
• Those classes of the framework can be instantiated

that do have the attribute ‘isLeaf’ set.
• Associations must be created explicitly as instances:

it does not suffice to create a link between two
classes.

• In an instance, all attributes defined in the architec-
ture must be assigned a value.

• Instances of associations must have a value for both
association ends.

• Creating diagrammatic links between a class in-
stance and an association instance is optional.

Table 10.2: Considerations for UML modeling of DML’s

110

10. Implementation

The script is documented in detail in the appendix on page 153. To understand the
script, one needs knowledge of XSLT and the UML XMI format.

10.3. Transformation: execution of change operations

After the reduction of the DML model, the model is transformed. When this
model transformation is performed by the DML environment, all instances of
changeOperation are executed. During execution, the semantics of each change
operation are interpreted and operationalized. Semantics for a change operation
is provided by the DML architecture along with a concrete element specializing
changeOperation.
Transformation in the implementation that is subject to this chapter is realized by
the interpretation of XSL scripts. The complete transformation is realized by the
repeated execution of the following XSL transformations:

1. Generate an XSL script that is used to be executed in the next step. This
XSL script covers the interpretation of exactly one changeOperation instance
residing in the DML model. Such a script is denoted as effect script . The
result of the script is another XSL script that has to be interpreted by an XSL
interpreter.

2. Execute the effect script. It takes a DML model as input. The effect script does
not only perform the intended change. It also removes the changeOperation
instance that was the reason for creation of the effect script. Output of the
script is a DML model after the intended change.

These two steps are executed repeatedly on the DML model, until no change opera-
tion is left in the model. The final state of this DML model is then the transformed
development model.
The implementation of this process is described in detail in the appendix on pages
156 ff.

10.4. Constraint checking

In CHAPTER 4, it was motivated to restrict the configuration and modification of
DML’s to a valid variant space. CHAPTER 9 then introduced a meta-model enhance-
ment for the specification of constraints that can be related to model elements, in
order to define which model occurrences are to be regarded as valid, and which not.
As an evaluation framework, a logic programming language was chosen. The pre-
liminary strategy is to convert a development model that was expressed in UML and
processed so far by the DML environment into a language with stable model seman-
tics [GL88]. The formal basis for this approach is explained below. The language
that has been chosen in this thesis was enhanced by ASIKAINEN and MANNISTÖ with

111

10. Implementation

semantics for the formal inspection of models that are oriented on UML [AM09].
The resulting (meta-)modeling4 language is named Nivel .
Nivel has a native support for a UML-like modeling paradigm and is thus capable
to both represent DML models, and to be used for automated reasoning over these
models.
After translation of a development model from UML to Nivel syntax, the language
interpreter decides if all rootTerms residing in the model are satisfied. If this test is
successful, we know whether the development model that was investigated by this
formal test is a valid model, or not. If it is valid, the development model that was
output of the change operation transformation step can be regarded as the output
of the DML environment. This model is then the resulting development model that
can be used by the DML manager for the initialization and execution of projects.
This can be supported by further tools that are able to interpret the development
model.
Tools like that can provide process enactment or generation of a development model
documentation. Nevertheless, such tools are out of the focus of this thesis. But
it is important to state that the final result of the DML environment is either the
information that the configured variant of the input DML is invalid. Or, the result
is the very DML model in UML XMI format that was created in the transformation
step, in case of this result being declared as valid by the constraint checking step.

10.4.1. Formal basis

In this thesis, a (meta-)modeling language with a formal semantics is used as a
formalization method for the DML concept. The language is named Nivel . Nivel’s
modeling concepts are basically oriented on UML and provide a core set of proper-
ties like class, attribute, value, association, generalization, and instantiation [AM09,
p. 522]. The language realizes strict meta-modeling [AK02] and incorporates exten-
sions like deep instantiation [AK01].5

While usage of the deep instantiation concept is necessary when applying Nivel,
the theoretical implications of deep instantiation are out of the scope of this thesis.
Nevertheless, the deep instantiation concept brings a benefit when integrated into
models of the DML concept. As strict meta-modeling allows a strict detachment
of different levels within the model, deep instantiation guarantees the correct
assignment of subordinate classes to the right levels. Since the DML concept relies
on a strict differentiation between DML framework, DML architecture and DML,
usage of three separate levels with deep instantiation appears reasonable.
The language Nivel builds upon stable model semantics for normal logic programs
[GL88]. This declarative approach as a basis for Nivel has been chosen in order to
provide a formal semantics for Nivel [AM09, p. 522].

4The ‘meta-’ is placed in parentheses, because the language can be used for both defining models
and the definition of meta-models for such models.

5Strict meta-modeling and deep instantiation will be explained in SECTION 10.4.3.

112

10. Implementation

In logic programs with stable model semantics, rules can be used to formulate
constraints over answer sets [Nie99, p. 242]. A solution in an answer set is denoted
as a stable model. With stable model semantics, it is possible to calculate an answer
set for a model by providing a constraint program, where constraints are expressed
as rules [NSS00]. The result is a family of stable models, which all pass the given
constraints [MT99, p. 375].
In summary, the underlying idea is to formulate a problem by using logic program
rules in a way that the solutions to the problem are covered by the stable models of
the rules. This approach differs vastly from the usual logic programming paradigm,
which is commonly using a query evaluation with the goal to compute a yes/no
answer for a concrete query.
In our application scenario of the DML concept, the answer set paradigm is primar-
ily neglected in respect to the purpose of the constraint restriction mechanism. I.e.,
in effect, the stable model semantics is used to find exactly a yes/no answer which
decides whether a configured and modified DML is within an admissible variant
space.
However, in a next step, the whole functionality of the stable model semantics will
be integrated and used as a means to create a list of several valid variants. This will
be explained in SECTION 10.4.2.
Actually, Nivel is based on an extended stable model semantics called Weight Con-
straint Rule Language (WCRL) [NSS99, SNS02]. WCRL is extending the stable model
semantics with weights that can be applied to rules, which gives more control over
the exact amount of predicates that have to be fulfilled in order to infer a result.
Nivel was developed by ASIKAINEN and MANNISTÖ as a formalized meta-modeling
language in the environment of several variability languages [Asi08]. One of these
languages, namely Forfamel [AMS06], has been elaborated using Nivel [AM09, p.
539]. This meta-model for feature models has been integrated in the DML imple-
mentation.
An execution environment for stable model semantics is realized by the program
smodels and the command line based front-end lparse.6 lparse creates ground
(variable-free) programs from a Prolog style input syntax and then transforms the
result into primitive rules [Nie99, p. 267]. These rules can be given to smodels to
calculate stable models.
Programs are composed of atoms and inference rules. A problem is formulated
using such a program. An atom represents a claim about the universe of discourse.
It may be either true or false. An inference rule is used to represent relationships
between atoms. A stable model is an answer to a problem, provided as a set of atoms.
Constants are always lower cased, variables are upper cased.
See LISTING 10.1 for an exemplary problem: Knights and Knaves.7 The problem
description is:

6smodels and lparse can be obtained at: http://www.tcs.hut.fi/Software/smodels/
7The example was originally published by SMULLYAN [Smu00]. It was translated to the presented

syntax by Tommi SYRJÄNEN and has been provided with lparse.

113

http://www.tcs.hut.fi/Software/smodels/

10. Implementation

1 % There are t h r e e pe r sons in t h i s puzz l e
2 person (a ; b ; c) .
3

4 % Each person i s e i t h e r kn ight or knave , but not both .
5 1 { knight (P) , knave (P) } 1 :− person (P) .
6

7 %% Hint 1: %%
8 % I f A t e l l s the t ru th , both B and C are kn i gh t s
9 2 { knight (b) , knight (c) } 2 :− knight (a) .

10

11 % I f A l i e s , i t i s not p o s s i b l e that they are both kn igh t s
12 :− knave (a) , knight (b) , knight (c) .
13

14 %% Hint 2: %%
15 % I f B t e l l s the t ru th , A i s a knave and C i s a knight
16 2 { knave (a) , knight (c) } 2 :− knight (b) .
17

18 % I f B l i e s , i t i s not p o s s i b l e that A i s knave and C i s kn ight
19 :− knave (b) , knave (a) , knight (c) .

Listing 10.1: Knights and Knaves

The Island of Knights and Knaves has two types of inhabitants: knights,
who always tell the truth, and knaves, who always lie. One day, three
inhabitants (a, b, and c) of the island met a foreign tourist and gave the
following information about themselves:

1. a said that b and c are both knights.

2. b said that a is a knave and c is a knight.

What types are a, b, and c?

There is exactly one solution to the problem. The problem will now be formulated
so that the result is a stable model.
The first atom in line 2 of the listing states that a, b, and c are persons.8

The requirement that a person is either a knight or a knave is formulated in line 5.
This is a choice rule which is satisfied when exactly one literal is satisfied, not more
or less. This effectively reduces the amount of stable models to those containing
only combinations where a person is either marked as a knight or a knave, never
more or less.
Now there remain two hints. The first one leads to the knowledge that when a is a
knight, then both b and c must be knights, too, since a would tell the truth. This
is formulated in line 9. The reverse is that if a is a knave, then b and c cannot be
knights at the same time. Line 12 contains this condition. A term starting with ‘:−’
disqualifies all models where the right side is satisfied.

8The term person(a; b; c) is grounded by lparse to three atoms: person(a). person(b). person(c).

114

10. Implementation

The second hint leads to lines 16 and 19. They are created analogously to those from
hint 1.
With this problem description, execution of lparse and piping the result into smod-
els leads to the following result:

Answer: 1
S t a b l e Model: knave (a) knave (c) knave (b) person (c) person (b) person (a)

This means that answer 1 is a stable model with all persons being a knave. It is the
only stable model, so we know now that the model assumed in the example finally
represents a world of liars.

10.4.2. Spanning an array of stable models

The difference in stable model semantics to the usual logic programming paradigm
is that is does not only identify a yes/no answer when evaluating a model in respect
to the provided constraints. Stable model semantics provides more, as it determines
an answer set that may consist of more than one stable model. The mechanism
used to realize this are constraint literals like the following:

switch (a) .
1 { a c t i v e (N) , i n a c t i v e (N) } 1 :− switch (N) .

There is an atom a that is stated to be a switch. Note that the ‘switch’ does not hold
any semantics, it could be ‘foo’ or any other name, as well. The rule below the fact
statement is that for all atoms N were switch(N) is set as a fact, one of two possible
facts is derived: either active(N), or inactive(N). The constraint literal on the left side
can be read like: ‘The amount of true predicates of those defined within the braces
must be at least 1 (left side), and at most 1 (right side)’.
smodels will test all possibilities and output all models that do not collide with any
further rules provided in the model. If there are no further rules, the result will be
two stable models:

Answer: 1
S t a b l e Model: a c t i v e (a) switch (a)
Answer: 2
S t a b l e Model: i n a c t i v e (a) switch (a)

This mechanism is used below to calculate stable models that satisfy given con-
straint restrictions provided within a DML.

10.4.3. Nivel

This section describes first the concepts of strict meta-modeling and deep instantia-
tion, since these are incorporated into Nivel . Then, Nivel itself is explained, first by
explaining its abstract syntax for a better understanding how the language relates
to modeling in general, then the concrete syntax is described. Afterwards, some
extensions and modifications that had to be implemented into Nivel are explained.

115

10. Implementation

 !"# $%!&

 $%!&

 !"# $%!&'&!(!)"

'&!(!)"

 !"#$%"&'()* !"#$%"&'()*

&+"$%!"#

,--. ,--.

&+"$%!"#

,--. ,--.

Figure 10.3: Strict meta-modeling [AK02, Fig. 2]

These contain shortcuts for a more convenient modeling process, as well as minor
adaptations that had to be made in order to make the DML concept applicable with
Nivel.

Strict meta-modeling

Strict meta-modeling guarantees that models concerning different meta-levels
have well-defined boundaries. In particular, this modeling paradigm interprets the
instance-of relationship at the granularity of individual model elements [AK02, p.
9], see also FIGURE 10.3. This is framed by the following rule:

“In an n-level modeling architecture, M0, M1 . . . Mn−1, every element of an
Mm-level model must be an instance-of exactly one element of anMm+1-level
model, for all m < n − 1, and any relationship other than the instance-of
relationship between two elements X and Y implies that level(X)=level(Y).”
[AK02, p. 9]

In effect, this rule guarantees that no element is an instance of an element residing
two or more levels above. In addition, single classification is enforced, so that an
element cannot be an instance of two elements in a meta-model.

Deep instantiation

A consequent realization of strict meta-modeling is resumed with the concept of
deep instantiation [AK01]. The concept refrains from the case of shallow instantia-
tion , where a “two-levels only” modeling philosophy is present with only a model
level and a meta-model level [AK01, p. 27].
In a model environment with several meta-model levels, an element can have both
class and object properties. The occurrence of this phenomenon is apparent in
practice and has been investigated [Ode94, Atk97]. ATKINSON denoted an element
with these properties a clabject [Atk97, p. 96].
Deep instantiation is an attempt to address this phenomenon with an explicit
instantiation model. A goal of this approach is to formulate a mechanism “in

116

10. Implementation

 !" #$#%&'(
)*+,-./0+1)234(

 56789 :;3<(

 5=7>9 :;3'(

 56789 :;3<(

 ?%@47A+,)B9 #%C$(

)*+,-./0+1)234(
 567>9 :D34(

)*+,-%/E+1)23<(

)*+,-F/0+1)23<(
 GH 7I#.?F@=:J) KEL 563<(

ProductType2

taxRate1 : Integer

price2 : Float

«instanceOf»

Book1

taxRate0 = 7

price1 : Float

MobyDick0

price0 = 9.95

«instanceOf»

DVD1

taxRate0 = 19

price1 : Float

20010

price0 = 19.95

«instanceOf»

L
0

L
1

L
2

Figure 10.4: Deep instantiation [KS07, Fig. 6]

which a modeling element’s class features can be acquired automatically by the
instantiation step rather than always having to be defined explicitly” [AK01, p. 28].
The main aspects used to model a deep instantiation structure are the concepts of
level and potency. Both are integer values that have to be clearly defined for every
model element.
The level of an element indicates the meta-level the element is located at. An
element at level 0 is at the lowest level. In reference to the MOF meta-levels, it’s an
M0 element [OMG06]. Above the level of an element, another meta-level can be
present, which has a level that is higher by 1.
The potency is slightly different. It indicates the amount of instantiations of an
element that can be made. Each instance inherits the potency of its meta-model
element, reduced by 1. I.e., an element at level 2 with a potency of 1 is a meta-model
element for possibly created instances at level 1. These instances cannot be further
instantiated, as they have a potency of 0.
An element with a potency of 2 can be instantiated twice: first, to an element one
level below, with a potency of 1. Then, this element can be instantiated once to an
instance at another level below, which will have a potency of 0. Such an instance
cannot be further instantiated.
Note that the potency concept is largely, but not completely independent from the
level of an element. The potency must never be higher than the level an element
resides on, since an element at level 0 with a potency > 0 could not be instantiated.
FIGURE 10.4 shows an example of a model with deep instantiation. The potency
is noted like a mathematical potency beside a class or property name. As we can

117

10. Implementation

see at level L2, there is a class ProductType with a potency of 2. It has a property
taxRate with a potency of 1, indicating that the lowest instantiation of this property
must be one level above that of ProductType. One level below, at L1, we can see
instances of ProductType: Book and DVD. They have a potency of 1, since every
instantiation reduces the potency of the instance by 1. taxRate is instantiated, too,
but as it reaches a potency of 0, it represents the actual value used for taxRate. It
indicates that each Book has a taxRate of 7 and each DVD a taxRate of 19.
As the example shows, the deep instantiation concept allows to model values that
are applicable to a complete class of objects. MobyDick, being an L0 instance with
a potency of 0, has its own attribute values. But a property like taxRate ought to
be stated for all elements that are instances of the Book class, not for each Book
instance separately. Defining the potency of taxRate at the highest level allows to
explicitly model such a design decision.

Nivel’s abstract syntax

Nivel is primarily a meta-modeling language. Its abstract syntax represents a re-
duced version of UML. It shares the notions of class, attribute, association, cardinal-
ity, and generalization.
FIGURE 10.5 shows the abstract syntax as it was summarized by ASIKAINEN and
MANNISTÖ. A detailed description of the language is provided in [AM09].
We will take a quick look at the elements that are used later on for the formalization
of the constraint mechanism.
The main elements of those depicted by FIGURE 10.5 are Class, Association, At-
tribute, Value, Role, as well as the instanceOf and the subclassOf relationships.
A Class can be an instance of another Class. In this case, the instance is located at a
level lower by 1. Its potency is reduced by 1, too.9

A Class may be a top-level Class. This indicates that it is not an instance of another
Class and no Class is located at a higher level than this Class.
Associations are related to Role and Class via a ternary relation playsRoleIn. An
Association connects Classes to each other that play a certain role in an Association.
A Class may be related to Attributes via hasAttr. If an Attribute has been instantiated
until its potency has reached 0, a Value must be assigned to the class via hasValue.

Nivel’s concrete syntax

TABLE 10.3 lists all Nivel syntax elements that are used in this thesis. The exact
semantics of the predicates were described by ASIKAINEN and MANNISTÖ [AM09].
We will not discuss them in detail here, but we need an overview on what is used
later on during implementation. The definition of Nivel’s rules was published on
the web page of the SoberIT Software Business and Engineering Institute [Asi07].10

9See above in the explanation of deep instantiation for the notions of level and potency.
10http://www.soberit.tkk.fi/nivel/

118

http://www.soberit.tkk.fi/nivel/

10. Implementation

Association

Class

name:string [0..1]

/level:natural

potency:natural

isAbstact:Boolean
/mayDefineAttributes:Boolean

instancesMayHaveAttributes:Boolean

/superclassing:{none,single,multiple}

instanceSuperclassing:{none,single,multiple}

1

instancetype

(direct)

instanceOf

name:string

Role

hasRole

1

1
1..*

hasAttr

superclass subclass

Value

name:string

value

1hasValue

(direct)

subclassOf

0..1

Attribute

name:string

potency:natural

cardinality:Cardinality

domain:Domain

Model

numberOfLevels:natural

multipleClassification:Boolean

topLevel 1..*

Cardinality

lower:natural

upper:natural [0..1]

CardinalityConstraint

cardinality:Cardinality

potency:natural

GeneralisationSet

name:string

isCovering:Boolean

isDisjoint:Boolean

playsRoleIn

Domain

name:string

value [*]

Figure 10.5: Abstract syntax of Nivel [AM09, Fig. 5]

119

10. Implementation

Note that the lparse interpreter identifies any string from the occurrence of ‘%’ on
as a comment.
An important aspect is that most predicates have different modes to be used in. The
normal mode is enabled by using the predicate name without any appendices. In
this case, the predicate represents is an actual fact. In contrast, a predicate may
represent a possible fact.
The distinction between actual and possible facts is made in Nivel to span the
field for the determination of stable models. An input Nivel model interpreted by
smodels must have possible facts so that smodels can calculate all stable models
that satisfy all given rules. The output model then only contains actual facts that
were determined during the calculation process as being models that do not break
with any rules.
For example, a class may be actual (class(c)), or it may be possible (class p(c)). If a class
is stated to be actual, smodels must interpret this class as actually being present in
all valid model variants it goes through. If it is only possible, smodels is free to drop
the idea of having this class in a stable model. This effectively enlarges the space of
admissible stable models.
Modes are applied with an underscore and a following letter sequence. Available
modes are actual (no appendix), possible (p), direct (d), transitive possible (tp), and
declared (D).11

Actual and possible facts were described above. A direct fact implies an actual
relationship between two model levels that are adjacent to each other. In particular,
this means that the statement of a direct fact makes it an actual fact. For example, a
direct instanceOf relationship is present between the classes contentElement and
product in the DML architecture: product is a direct instance of contentElement,
since there are no other instanceOf relationships between them.
A transitive fact may span more than one level. projectManual is a transitive in-
stanceOf contentElement. This relationship is spanned over 2 levels via product.
Note that direct relationships imply actual relationships, while transitive relation-
ships don’t. Transitive relationships are always only related to possibility, meaning
that is may become actual, but need not.
Declared facts imply both possibility and directness, while the latter is only used if
applicable. I.e., if a declared fact is provided, smodels is free to actualize the fact, or
not.
The different modes will now be subsumed in reference to TABLE 10.3 for the in-
stanceOf predicate. The predicate comes with four variants: actual (), possible (p),
direct (d), and declared (D). An actual instanceOf relation must be present in the
stable model calculated by smodels . A possible instanceOf relation may be present,
but needs not. Direct instanceOf implies an actual relationship that does span over
exactly one level boundary. A declared instanceOf relation is a possible relation that
may either be a direct relationship, or dropped from the stable model. A possible

11These are only the modes that were used for the implementation described in this thesis. The
complete list of modes is described in [AM09].

120

10. Implementation

Predicate Variants Semantics
class(c) p Object constant c represents a class
topLevel(c) D Class c is on top level
subclassOf(a,b) p d D Class a is a subclass of class b
instanceOf(i,t) p d D Class i is an instance of class t
instanceOf(i,t,o) tp Class i is an instance of class t of order o
hasPotency(c,p) D Class c is of potency p
hasAttr(c,n,p,d,l,u) p D Class c has attribute named n with potency

p, domain d, cardinality lower bound l and
upper bound u

hasValue(c,n,v) p D Class c has value v under name n
association(a) Class a is an association
hasRole(a,r) p D Association a has role r
playsRoleIn(c,r,a) d p D Class c plays role r in association a
Symbols in the Variants column: ‘p ’ possible, ‘d ’ direct, ‘D ’ declared, ‘t ’
transitive, ‘ ’ actual. In case more than one variant is defined, the semantics
are described for the actual variant

Table 10.3: Nivel’s predicates, reduced list [AM09, Tab. 1]

instanceOf relation may be transitive, i.e. it may span other instanceOf relations on
the way from the classifier to the instance.

Adaptations to Nivel’s syntax

Two kinds of adaptations were implemented for the usage with Nivel. There have
been minor adaptations in Nivel’s logic to be able to model the DML concept, and
some shortcuts were added for a more convenient usage of the modeling language.

Adaptations in the logic. In the original Nivel rule set, the following rule was
defined [Asi07]:12

360 % Only top− l e v e l c l a s s e s may de c l a r ed r o l e s
361 % (in appendix A)
362 e r r o r (falseEndDeclaration) :− hasRole D (A, R) , not topLevel D (A) .

This rule identifies all classes that are not located at the uppermost level, but have
new role declarations. Such classes are claimed to be an indication for an erro-
neous model. In the DML framework, relation is a subclass of contentElement. I.e.,
relation cannot be a top level element. Thus, the role above would disqualify any
model with an association being a subclass and defining its own roles. For this
reason, the line above has been commented out for usage of the Nivel framework
with the DML concept.

12The line numbers refer to the lines in the original nixel.txt linked in [Asi07].

121

10. Implementation

1 association (owns) .
2 hasPotency D (owns , 2) .
3 hasRole D (owns , owner) .
4 hasRole D (owns , owned) .
5 playsRoleIn D (person , owner , owns) .
6 playsRoleIn D (item , owned , owns) .

Listing 10.2: Creating an association with nivel

Shortcuts. When using the Nivel language, a lot of complex language patterns
appear again and again, with minor variations. In order to enable a more concise
syntax building, some abbreviations have been added to Nivel. This enables con-
venience in modeling Nivel models, and it provides a better overview of what has
actually been modeled.
For example, modeling an association with Nivel is actually more than the simple
usage of the association predicate. We have to define association ends (roles) and
what classes are attached to these ends, as well. Such a definition may look like the
syntax shown in LISTING 10.2.13

The listing contains a list of atoms. These atoms represent an association named
owns, which relates an item to a person. First, the association must be created and
it gets a potency. Then, in lines 3 and 4, the association ends owner and owned are
created. The last two lines relate these roles to person and item, respectively.
In order to be able to easily create associations of that kind, a new predicate has
been introduced: scn association D. It allows the definition of all the information
provided in LISTING 10.2 with a single line:

scn association D (owns , 2 , owner , person , owned , item) .

The first parameter is the name the association has to get. The second indicates the
potency, while the next parameters appear pairwise. Parameter 3 and 4 represent
one association end, where the first defines the name of the role, and the second
defines the class to which the role belongs. The last two parameters are analogously.
LISTING 10.3 shows how the predicate scn association D is embedded into Nivel.
Every time this predicate is used, it implies the association-related predicates, effec-
tively creating an association just like writing the whole code manually. Note that
the parameters there are variable names, not constants.
Another shortcut is the creation of a sub-association via scn subAssociation D. The
parameter list is similar to that of scn association D. The only difference is that no
potency is needed, because it can be determined from the parent’s potency. Instead,
the parent must be provided, as the second parameter Superclass:

scn subAssociation D (Name, Superclass , Role1 , Type1 , Role2 , Type2)

Since a sub-association needs less information to be created, LISTING 10.4 showing
the shortcut code is much shorter than LISTING 10.3.

13Note that all predicates that are specific to Nivel, as well as shortcuts, are presented in a bold style.

122

10. Implementation

1 topLevel D (Name) :−
2 scn association D (Name, Potency , Role1 , Type1 , Role2 , Type2) .
3 association (Name) :−
4 scn association D (Name, Potency , Role1 , Type1 , Role2 , Type2) .
5 hasPotency D (Name, Potency) :−
6 scn association D (Name, Potency , Role1 , Type1 , Role2 , Type2) .
7 hasRole D (Name, Role1) :−
8 scn association D (Name, Potency , Role1 , Type1 , Role2 , Type2) .
9 hasRole D (Name, Role2) :−

10 scn association D (Name, Potency , Role1 , Type1 , Role2 , Type2) .
11 playsRoleIn D (Type1 , Role1 ,Name) :−
12 scn association D (Name, Potency , Role1 , Type1 , Role2 , Type2) .
13 playsRoleIn D (Type2 , Role2 ,Name) :−
14 scn association D (Name, Potency , Role1 , Type1 , Role2 , Type2) .

Listing 10.3: Nivel shortcut (scn) for the creation of an association

1 instanceOf D (Name, S u p e r c l a s s) :−
2 scn subAssociation D (Name, Superclass , Role1 , Type1 , Role2 , Type2) .
3 playsRoleIn D (Type1 , Role1 ,Name) :−
4 scn subAssociation D (Name, Superclass , Role1 , Type1 , Role2 , Type2) .
5 playsRoleIn D (Type2 , Role2 ,Name) :−
6 scn subAssociation D (Name, Superclass , Role1 , Type1 , Role2 , Type2) .

Listing 10.4: Nivel shortcut (scn) for the creation of a sub-association

Another shortcut is scn subAssociationMultiple D. It is used in a context when a
class with outgoing associations that is residing on an upper level is subclassed to
a lower level. All associations of the parent class have to be transferred down to
the subclass, as well. The predicate is modeled in LISTING 10.5. The parameter list
resembles the list for scn subAssociation D, as well as the handling within LIST-
ING 10.5, but there is a significant difference in the usage of the last two parameters.
These are not used to define a role playing (playsRoleIn D), but to define a set of
role playings. For each subclass of the type provided with TypeRole2, a role playing
is defined. This ensures that a subclass of an association is able to be associated to
all subclasses of those classes the parent association can be associated with.

1 instanceOf D (Name, S u p e r c l a s s) :− scn subAssociationMultiple D (Name,
Superclass , Role1 , TypeRole1 , Role2 , TypeRole2) .

2 playsRoleIn D (TypeRole1 , Role1 ,Name) :− scn subAssociationMultiple D (Name,
Superclass , Role1 , TypeRole1 , Role2 , TypeRole2) .

3 playsRoleIn D (SubInstance , Role2 ,Name) :− scn subAssociationMultiple D (Name
, Superclass , Role1 , TypeRole1 , Role2 , TypeRole2) ,

4 instanceOf p (SubInstance , TypeRole2) .

Listing 10.5: Nivel shortcut (scn) for the creation of multiple sub-association relations

123

10. Implementation

10.4.4. DML expressed in Nivel

As stated in SECTION 10.1, UML modeling was used to describe the structure of
the DML framework, an exemplary DML architecture, and an exemplary DML.
In order to use Nivel as logic programming language to define these structures, a
mapping is needed for the creation of Nivel models from UML models. This section
provides such a mapping. The mapping has been verified by implementation of an
automated transformation for this purpose.
The models shown in CHAPTER 7 were modeled using MagicDraw and then exported
to the UML 2.1 XMI format provided by a MagicDraw internal exporter [OMG07a].
The XMI file is looped through an XSL transformation that creates a Nivel syntax as
a result [W3C99].
Three transformations are needed to create a Nivel model that can be run through
smodels. One for the creation of the syntax for the DML framework, one for a
concrete DML architecture, and one for a concrete DML.
A word on the level structure in both UML and Nivel models. As shown by FIG-
URE 5.1, the DML architecture is created using the DML framework by specialization.
Then, a DML is created by instantiation, using the DML architecture. In the context
of Nivel, it has been chosen to map this to the process of instantiation in both cases.
This is due to the benefit that usage of instantiation in an environment supporting
deep instantiation allows a strict and definite separation of DML framework, DML
architecture, and DML. DML framework elements are always on level 3, elements of
the DML architecture on level 2, and DML element reside on level 1.
This leaves level 0 for actual projects where a DML is used as a meta-model. However,
this aspect is not regarded in this thesis.

DML framework

The DML framework is transformed to Nivel model elements by an XSL Transfor-
mation (XSLT) [W3C99]. The transformation script is described in detail in the
appendix on pages 165 ff. Here, we will take a look at exemplary translations of
framework elements into Nivel syntax.
At the top level (level 3), which is the level all elements in the DML framework
reside in, a potency of 3 is assigned to each element.
For example, the modelElement shown in FIGURE 9.1 is translated to Nivel syntax
as:
topLevel D (modelElement) .
hasPotency D (modelElement , 3) .

Nivel needs the information whether an element is at the top level, so all elements
in the DML framework that are not subclasses of other elements are declared as
topLevel D elements. Nivel infers the class p predicate from all topLevel D, so there
is no need to define that explicitly. modelElement is declared with a potency of 3.
For definition of associations like belongs to, a shortcut has been provided in SEC-
TION 10.4.3. The syntax for this association is:

124

10. Implementation

scn association D (belongs to , 3 , capsule , feature , element , modelElement) .

Note that the role names provided to scn association D were actually shown in
FIGURE 9.1. These are the labeled association ends.
Any class that is not a top level element, like contentElement, does not need the
definition of a top level predicate, nor a potency. Instead, it is modeled as subclass
of another class. For example contentElement, being a subclass of modelElement,
is represented by:

subclassOf D (contentElement , modelElement) .

Any enumeration, like cardinalityType with its two literal values mandatory and
optional, are translated into a shallow value representation, using the contains
predicate. Whenever an attribute makes use of the enumeration as its type, it’s
referring to the possible enumeration literals as value domain.
For example, the cardinalityType literal values are represented by the following
lines.

contains (cardinalityType , mandatory) .
contains (cardinalityType , optional) .

A class such as subfeature having an attribute of type cardinalityType is referring to
the enumeration value domain, thus allowing assignments of values within the
given domain. For subfeature, the attribute cardinality is assigned via:

hasAttr D (subfeature , c a r d i n a l i t y , 2 , cardinalityTypeDomain , 1 , 1) .

The following lines of Nivel syntax represent an arranged excerpt of the DML
framework model that was shown in FIGURE 9.1. It is provided here to show an
example of the transformation from UML to Nivel.

. . .
topLevel D (modelElement) .

hasPotency D (modelElement , 3) .

subclassOf D (contentElement , modelElement) .

scn association D (r e l a t i o n , 3 , source , contentElement , t a r g e t , contentElement) .
subclassOf D (r e l a t i o n , contentElement) .

. . .

We can see the declaration of the framework entity modelElement, along with its
specialization contentElement. This contentElement is bound within the associ-
ation relation both with the association ends source and target. As was shown in
FIGURE 9.1, relation is a further specialization of contentElement.
The complete transformed DML framework model is provided for reference in the
appendix on pages 177 ff.

125

10. Implementation

DML architecture

The transformation of a DML architecture is described in detail in the appendix
on pages 169 ff. Like it was done for the framework, we will here take a look at
exemplary transformation results.
All elements in the architecture that are specializing elements in the framework are
in Nivel instances of their parent. For example product, which is a specialization of
contentElement, is represented in Nivel syntax as an instance of contentElement:

instanceOf D (product , contentElement) .

All associations are represented by instances as well. In addition, all association
ends and their appropriate type are defined as a role playing via playsRoleIn D. For
example, the relation responsibility has an association end target. This is related to
the type product by the following line:

playsRoleIn D (product , t a r g e t , r e s p o n s i b i l i t y) .

A specialty of the DML architecture in Nivel is that if there are classes in the DML
framework that have to be instantiated in a concrete DML, then we need an in-
stance of these classes on the level of the DML architecture. This is done by the
creation of implicit classes and associations. This means that for any class in the
DML framework, an implicit class is placed within the Nivel syntax representing
this class to be ready for instantiation in a DML.
In particular, this involves the creation of artificial classes that were not modeled
within the architecture. An example is feature. Since features have to be instantiated
in a DML, we need a representative of this class in the DML architecture. This
representative is created using the name of the class with an appendix ‘ ARCH’:

instanceOf D (feature ARCH , f e a t u r e) .

To enable such classes to be compatible with associations, we need the definition
of scn subAssociationMultiple D predicates.14 The usage of a predicate like the
following allows a product to have associations to any contentElement, as this
property is inherited by the association relation.

scn subAssociationMultiple D (relation ARCH , r e l a t i o n , source , product , t a r g e t ,
contentElement) .

The following lines of Nivel syntax represent an arranged excerpt of the exemplary
DML architecture model that was shown in FIGURE 9.2. It is provided here to show
an example of the transformation from UML to Nivel.

. . .
instanceOf D (product , contentElement) .

scn subAssociationMultiple D (relation ARCH , r e l a t i o n , source , product ,
t a r g e t , contentElement) .

scn subAssociationMultiple D (relation ARCH , r e l a t i o n , t a r g e t , product ,
source , contentElement) .

14The purpose of this predicate is described in SECTION 10.4.3.

126

10. Implementation

scn subAssociationMultiple D (constrainedElement ARCH ,
constrainedElement , element , product , constr , c o n s t r a i n t) .

instanceOf D (r e s p o n s i b i l i t y , r e l a t i o n) .
playsRoleIn D (role , source , r e s p o n s i b i l i t y) .
playsRoleIn D (product , t a r g e t , r e s p o n s i b i l i t y) .

. . .

The code shows the specialization of contentElement to product, and of relation to
responsibility. As stated above, specialization in a UML model between the DML
framework and the DML architecture is realized in Nivel with instantiation.
Some related associations of contentElement were automatically specialized via the
predicate scn subAssociationMultiple D for usage in a DML for model consistency.
The association ends of relation have to be defined for responsibility, too. The
predicate playsRoleIn D is used for this definition. As we can see, the association
ends are typed with classes from the DML architecture.
The complete transformed DML architecture model is provided for reference in the
appendix on pages 179 ff.

DML

Like the translations described in the previous two subsections, the generation
of Nivel syntax from a UML DML model at the instance level is provided in the
appendix. The particular script covered in this section is described on pages 172 ff.
The main purpose of the script is to go find all instances that reside in a DML and
place them in the Nivel model. An instance projectManual of class product will be
represented by:

instanceOf D (projectManual , product) .
instanceOf d (projectManual , product) .

The first line declares the instance, the second line makes sure that it is actualized,
meaning that the smodels parser is not able to remove the instance from the model
to find more stable models.
If an instance has a classifier located at the DML framework, a ‘ ARCH’ is attached
to the classifiers name. This is needed to find the correct instance at level 2 of the
Nivel model, i.e. the architecture level. The creation of those implicit elements has
been described in the previous section.
In the example below, we see an instance of a belongs to relation. Since the relation
has not been named in the DML model, the XSLT interpreter places a name for it:
d1e206.

instanceOf D (d1e206 , belongs to ARCH) .
instanceOf d (d1e206 , belongs to ARCH) .

When an attribute is attached to an instance and this attribute represents an enu-
meration value, the value is stored as a hasValue D predicate. For example, the

127

10. Implementation

constraint instance pmHasToBeResponsible4pmManual has its attribute invalMode
set to the value invalid by:

hasValue D (pmHasToBeResponsible4pmManual , invalMode , i n v a l i d) .

If the instance is subject to an association, the role playing is stored with the pred-
icate playsRoleIn D. For example, the projectManual plays the role target in the
responsibility pmResp4pm:

playsRoleIn D (projectManual , t a r g e t , pmResp4pm) .

The following lines of Nivel syntax represent an arranged excerpt of the exemplary
DML model that was shown in FIGURE 9.3. It is provided here to show an example
of the transformation from UML to Nivel.

. . .
instanceOf D (projectManager , r o l e) .
instanceOf d (projectManager , r o l e) .

instanceOf D (projectManual , product) .
instanceOf d (projectManual , product) .

instanceOf D (pmResp4pm, r e s p o n s i b i l i t y) .
instanceOf d (pmResp4pm, r e s p o n s i b i l i t y) .

playsRoleIn D (projectManager , source , pmResp4pm) .
playsRoleIn D (projectManual , t a r g e t , pmResp4pm) .

. . .

We can see here the instance declaration of projectManager, projectManual, and
the responsibility relation pmResp4pm between them. The association ends of
pmResp4pm are assigned via usage of the predicate playsRoleIn D.
The complete transformed DML model is provided for reference in the appendix on
pages 181 ff.

10.4.5. Semantics of features

As described above, the feature model structure in the DML framework has been
adapted from Forfamel [AMS06], a feature modeling approach. This approach has
been implemented in Nivel by ASIKAINEN and MANNISTÖ [AM09]. This implemen-
tation has been contributed on the Internet [Asi07] and included into the DML
framework as is, with a slight alteration.
features are denoted with ‘featureType’ in the Nivel implementation Forfamel,
which had to be changed to fit into the DML framework. This was done by renaming
‘featureType’ to ‘feature’.
Another important aspect in respect to the semantics of features is the ability to
describe how a model has to be reduced according to configuration information.
This part of the semantics has already been covered in SECTION 10.2.

128

10. Implementation

1 c o n s t r a i n t I s F u l f i l l e d (Constraint) :−
2 instanceOf D (Constraint , hasToBeResponsibleFor) ,
3 instanceOf D (Product , product) ,
4 instanceOf D (Role , r o l e) ,
5

6 instanceOf D (ConstrainedRole , constrainedRole) ,
7 playsRoleIn D (Role , element , ConstrainedRole) ,
8 playsRoleIn D (Constraint , constr , ConstrainedRole) ,
9

10 instanceOf D (ConstrainedProduct , constrainedProduct) ,
11 playsRoleIn D (Product , element , ConstrainedProduct) ,
12 playsRoleIn D (Constraint , constr , ConstrainedProduct) ,
13

14 instanceOf D (R e s p o n s i b i l i t y , r e s p o n s i b i l i t y) ,
15 playsRoleIn D (Role , source , R e s p o n s i b i l i t y) ,
16 playsRoleIn D (Product , t a r g e t , R e s p o n s i b i l i t y) .

Listing 10.6: constraintIsFulfilled semantics for hasToBeResponsibleFor

10.4.6. Semantics of constraints

We now get to know a DML architecture-specific predicate: constraintIsFulfilled.
Remember the exemplary constraint-specialization that was described in CHAP-
TER 9.2: hasToBeResponsibleFor. During introduction of this element, it was stated
that the exact semantics of constraints would later be covered. It will be described
now, and in more detail in the appendix on pages 185 ff. See LISTING 10.6 for the
semantics of hasToBeResponsibleFor.
An instance of the constraint hasToBeResponsibleFor is satisfied, if the predicate
constraintIsFulfilled is true for this instance.
As LISTING 10.6 shows, the predicate is evaluated true, if there exist instances Con-
straint of class hasToBeResponsibleFor, Product of class product, Role of class role,
and Responsibility of class responsibility with the following properties:

• Role is attached to Constraint via an instance of association constrainedRole.

• A Product instance is attached to Constraint via an instance of the association
constrainedProduct.

• Role is responsible for Product. This is modeled by them both being assigned
to the same instance Responsibility of responsibility.

An example corresponding to FIGURE 9.3 is pmHasToBeResponsible4pmManual.
It is an instance of hasToBeResponsibleFor, the very constraint that is defined in
LISTING 10.6. The constraint is resolved as true, with a variable assignment stated
in TABLE 10.4.
The result is that the predicate constraintIsFulfilled (pmHasToBeResponsible4pmManual) is
set.

129

10. Implementation

Variable Model element assigned to variable
Constraint pmHasToBeResponsible4pmManual
Product projectManual
Role projectManager
Responsibility pmResp4pm
ConstrainedRole association of type constrainedRole between projectManager

and pmHasToBeResponsible4pmManual
ConstrainedProduct association of type constrainedProduct between

projectManual and pmHasToBeResponsible4pmManual

Table 10.4: Assignment of variables used in LISTING 10.6 that satisfy the constraint
pmHasToBeResponsible4pmManual

1 c o n s t r a i n t I s F u l f i l l e d (Constraint) :−
2 instanceOf D (Constraint , hasToBeRelatedToAny) ,
3 constrainedType (Constraint , Type) ,
4 instanceOf D (TypeInstance , Type) ,
5 instanceOf D (Element , contentElement) ,
6 constrainedElement (Constraint , Element) ,
7

8 instanceOf tp (Relation , r e l a t i o n , 2) ,
9 playsRoleIn D (Element , source , Relation) ,

10 playsRoleIn D (TypeInstance , t a r g e t , Relation) .

Listing 10.7: constraintIsFulfilled semantics for hasToBeRelatedToAny

LISTING 10.7 presents another constraintIsFulfilled predicate. This one is related
to the hasToBeRelatedToAny architecture element. It is satisfied for an instance
of hasToBeRelatedToAny if there is a contentElement of a particular type that is
related to the element identified by the association constrainedElement within
hasToBeRelatedToAny. The constrained element is identified by a constrainedElement
predicate and the corresponding type is specified by the constrainedType predicate.
These predicates are formalized in the shortcuts section on pages 185 f.
In the DML example provided in this thesis, the predicate constraintIsFulfilled is
fulfilled for the constraint hasToBeRelatedToAny with the variable assignment
shown in TABLE 10.5.
At this point, it is important so understand that constraintIsFulfilled predicates are
domain-specific. I.e., they are defined during definition of a DML architecture,
since this is domain-specific, as well.
A constraint is a conceptual entity that makes use of formal rules. As described in
CHAPTER 9.1, there are two kinds of constraints. One of them is represented by
constraint, the other by typeConstraint. A typeConstraint is like a constraint but
can additionally refer to a class name via its attribute constrainedTypeName.
The exact semantics of the described constraints is described in Nivel syntax in

130

10. Implementation

Variable Model element assigned to variable
Constraint qaHasToBeRelated2anyProduct
Type product
TypeInstance qaManual
Element qaManager
Relation qaResp4qa

Table 10.5: Assignment of variables used in LISTING 10.7 that satisfy the constraint
qaHasToBeRelated2anyProduct

the appendix on pages 185 ff. The rules are an implementation of the following
requirements:

1. A constraint may either be satisfied or unsatisfied. A satisfied constraint is
a constraint where all targeted elements fulfill formal rules defined domain-
specifically for a constraint specialization in the DML architecture.

2. For any combination of satisfied and unsatisfied constraints that are organized
in terms, the variants are tested. The result may be a set of stable models where
given constraints are satisfied that are needed to be satisfied according to the
associated term.

3. All rootTerms must be satisfied, otherwise the containing model variant must
be deemed invalid.

The implementation of these restrictions is pointed out in the appendix at the
appropriate code lines.

131

Part III.

The Results

132

Contents of the Third Part

11 Discussion 134

11.1 Review on the development model creation process 135

11.2 Review on variability mechanisms . 137

11.3 Review on variant restriction . 141

11.4 Comparison with stated problems . 143

11.5 Implementation technologies . 145

12 Conclusion 149

11. Discussion

Contents
11.1 Review on the development model creation process 135

11.1.1 Limitations . 135

11.1.2 Implications . 136

11.2 Review on variability mechanisms 137

11.2.1 Configurability . 137

11.2.2 Extensibility . 139

11.2.3 Modifiability . 139

11.3 Review on variant restriction . 141

11.3.1 Transformational restriction 141

11.3.2 Analytical restriction . 141

11.4 Comparison with stated problems . 143

11.5 Implementation technologies . 145

11.5.1 Modeling language . 145

11.5.2 Model transformations . 146

11.5.3 Constraint checking . 147

As CHAPTER 5 described, the proposed solution concept is a three-leveled approach
used to support variability of development models. The targeted variability dimen-
sions are configurability, extensibility, and modifiability. In addition, a constraint
mechanism has been added to the DML concept that allows the restriction of
variants to a variant space of variants that satisfy a given set of domain-specific
rules.
This chapter provides a discussion on the creation process of development models
using the DML concept, on the variability mechanisms, and on the constraint
restriction mechanisms. In addition, we will take a look at the problems that
were identified in CHAPTER 2. Finally, a short view on the chosen and on possible
technologies to implement the DML concept is taken.

134

11. Discussion

11.1. Review on the development model creation
process

The topic of this section is the DML concept in general. First, we will take a look at
some limitations, then at further implications of the concept.

11.1.1. Limitations

In the proposed DML approach, there are some limitations that should be discussed.

Order of change operations. In the presented approach, there is no possibility
to define the order of change operations. A concept is needed for the organization
engineer to be able to clearly specify an order, in which the operations have to be
performed. Otherwise, the resulting development model will be undefined and
may vary between different implementations of the DML approach. In CHAPTER 7.6,
it was defined that change operations are executed in order of their appearance in
the model’s persistent file, but this is only a rough approach to operation ordering.
It may be necessary to define a process meta-model for change operations to be able
to explicitly model operation ordering. But since such a meta-model is not easily
defined due to side-effects of configurability1 and extensibility,2 operation ordering
was kept simple to reduce the concept complexity.

No support for running projects. Upgrading a customized DML after a new re-
lease of the adapted standard is done by an organization engineer. Running projects
cannot simply be ported to the new meta-model. It is not an ambition of the
proposed concept to enable such porting.

Ambiguities in association specialization vs. subsetting and redefinition. Nivel
supports specialization of associations by allowing the definition of one association
to be a subclass of another. However, the “interaction of association specialization
with association end redefinition and subsetting is not defined” in UML 2.1.1
[OMG07b, p. 41], which is the basis for Nivel [AM09, p. 545].
A more recent view on subsetting and redefinition, as it is presented in UML 2.3
implies that “any association end that subsets or redefines another association
end forces the association of the subsetting or redefining association end to be
a specialization of the association of the subsetted or redefined association end
respectively” [OMG10b, p. 40].
Thus, this connection between specialization and subsetting resp. redefinition was
not implemented in Nivel. As a consequence, the UML model of an exemplary DML

1An operation that is removed from the model because of feature selection may render a given
order invalid.

2An operation added to a model must be related to the order of pre-existing change operations.

135

11. Discussion

architecture, as shown in FIGURE 9.2, makes use of association specialization and
subsetting, but without association end renaming during subsetting. Otherwise, i.e.
if association end names in the different generalization layers differed, the resulting
Nivel model would be invalid.

Non-trivial specification of semantics. With the approach for implementation
presented in CHAPTER 10, it is not an easy task to specify semantics for change
operations (XSLT) and constraints (Nivel rules).
These technologies generally don’t belong to the technology portfolio a develop-
ment model engineer is familiar with.

11.1.2. Implications

After having taken a look at the limitations, we will reflect some further implications
of the proposed approach.

Extension models represent change lists. An extension model does only contain
organization-specific content elements and change operations that alter content
elements of the standard. Thus, the extension model can be used as documentation
of the adaptation steps and may be transformed to a change list representation.
Such a change list is an important asset for future revisions of the development
model [Arm08, p. 4].

Write-protection of the reference model. No element of the original model has
to be overwritten in order to achieve the intended result. Instead, all information is
expressed as additive information in an extension model. This is enabled by the
fact that relations between extensible elements are modeled as first-class entities
referencing other elements.
As an example, we will take a look at a role with an outgoing second-class asso-
ciation owned products.3 This association is used to mark all work products the
role is responsible for. In this case, in order to add a work product to the list of
owned products, we would be obliged to either change the role instance itself by
overwriting its association, or we needed a change operation performing that purely
additive variability.
With an association class owned products first class, we might simply add such a
relation element to the extension model and thus add a work product to the list of
owned products of a role without directly changing the role itself.

Tailorability of extensible relations An effect of extensibility the V-Model XT
makes use of is the possibility to tailor relations. This was used to adapt responsibil-
ity relations to a tailoring profile.

3I.e., the association is part of the role class and has no separate identifier.

136

11. Discussion

Change operations modify change operations. According to the DML frame-
work, a specialization of changeOperation may be defined in a DML architecture
that can be used to modify changeOperation instances. It has not been investigated
if this possibility is necessary for an increased flexibility of adaptations, or if any
issues emerge from this possibility.

Change operations are feature-controlled. The changeOperation class is a spe-
cialization of modelElement. As such, it has a belongs to association to feature.
This includes changeOperations in the configuration of a DML. Since in the DML
environment, change transformation is deferred until after configuration, in effect,
changeOperations are tailorable.
This fact creates the benefit that changes due to changeOperations can be finely
tuned to particular project contexts. On the other hand, a side effect of this flexi-
bility is that for each changeOperation, it must be pondered and decided to which
features it belongs to.

Change operation restriction. Often, an organization adapting a standard devel-
opment model needs to retain conformity with the standard model. In those cases,
any change to the original model must be checked for conformity.
The core asset engineer can restrict the possibilities of the organization engineer
by an accurate provision of change operations in the DML architecture. By giving
a restricted tool set to the organization engineer, the core asset engineer can, up
to a certain degree, constructively guarantee that the adapted process model will
conform to the intentions of the development model.4 However, this guarantee
only applies when the organization engineer does not change the reference model.
If renaming or deletion of content elements may result in a non-conforming pro-
cess,5 the corresponding change operations simply mustn’t be inserted into the
tool set for adaptation.

11.2. Review on variability mechanisms

This section contains a brief overview of implementation issues concerning the
variability mechanisms that were introduced in this thesis: configurability, extensi-
bility, and modifiability.

11.2.1. Configurability

The feature model elements that are integrated into the DML framework are the
key to configurability. They allow the definition of a graph that can be used for the

4See CHAPTER 4.1.
5Note that the exact definition of a conforming process is up to the core asset engineer.

137

11. Discussion

configuration of a DML by means of choosing or discarding optional features.

Early configuration. The feature selection mechanism proposed by ASIKAINEN

and MANNISTÖ along with Nivel is realized in a way that outputs all stable models
where each model represents one feature configuration [AM09, p. 540]. The configu-
ration task performed to find a valid configuration is actually a search problem that
looks for actualized elements. In effect, smodels will output exactly the amount
of stable models that correspond to the amount of configuration alternatives for a
concrete feature model.
This approach to realize feature configuration has deliberately been put aside
during implementation in CHAPTER 10. The process steps implemented in the
DML environment start with selection and reduction of a given DML. This is nec-
essary before transformation according to change operations, in order to grant
changeOperations the property to be tailored by features. Since Nivel syntax is
only created after transformation, the configuration cannot be part of smodels ’
execution.

Feature types: mandatory and optional. The feature model provided by the DML
environment is simplistic. There are only mandatory and optional features. The
next complexity in feature modeling contains alternative features, i.e. features
related to each other where exactly one must be selected, the others deselected.
Since this thesis has no focus on product line engineering as a research discipline,
the complexity has been reduced. This was decided to prevent complex handling
of feature interactions, which were pointed out in CHAPTER 3.2.4.

Configurability is provided once. Another aspect in CHAPTER 3.2.4 is that con-
figurability must be managed at all levels of abstraction. The DML concept does
only allow configurability in the first step of the DML environment, so there is the
restriction that configuration during project runtime is not possible, resp. unsup-
ported.

Selection support. In complex development models, there may reside a large
amount of features for full configuration flexibility. This flexibility comes with the
implication of a more complex selection process. This process may be supported
by definition of a surrogate model that can be used instead of direct access to the
features. This surrogate model encapsulates the features into a smaller model that
reduces the amount of decisions a DML manager has to take during configuration.
The V-Model XT provides such a surrogate model for project managers. During
tailoring, the project manager does not directly select process modules. Instead,
he specifies project characteristics by answering to a set of questions [KN05]. Each
question encapsulates a set of process modules. Thus, the project manager does

138

11. Discussion

only need to answer some domain-specific questions and the surrogate model takes
responsibility for the configuration of the V-Model XT.
GNATZ provided a similar, more generic approach for model configuration [Gna07,
p. 170]. The approach relies on the selection of modules that have different kinds of
relations to what is referred to in this thesis by features. These relation types allow
the definition of aggregation, alternatives, and mutual exclusiveness of features.
Such a surrogate model for feature selection could enhance the configuration pro-
cess of a DML with usability.

11.2.2. Extensibility

Extensibility is more an inherent property of a DML architecture than a mechanism.
The creator of the DML architecture must be aware that the creation of association
classes allows extensibility of a DML at a later point in time. Thus, during design of
a DML architecture, it must be decided for each association whether this association
and the related elements are intended to be extensible.
For 1-to-1 relations, it is unlikely that such an association should be realized by an
association class just for the sake of extensibility. The reason is that in general, a
1-to-1 relation cannot be rearranged with additional participants. However, it may
be reasonable to make use of an association class in such a case. But then, we would
do so in order to gain access to additional benefits that arise with the usage of an
association class like the possibility to place additional information related to an
association. We would not do it to make the model more extensible.
Generally, a core asset engineer has to decide for each association, if the association
is an integral part of one of the participants, or if it represents an independent
relationship that may be created without direct involvement of the related elements.
If the second case is given, and extensibility is a factor, then the relationship should
be realized using an association class.

11.2.3. Modifiability

Modifiability has the most potential to actually create variants that largely differ
from the original model. Configurability and extensibility are rather restricted
mechanisms that do only allow slight deviations in the contents and its structure.
Modifiability on the other hand is able to provide a toolkit of operations that allows
the alteration of almost any content within a model. Because of this property,
modifiability was the reason to add a restriction mechanism to the DML concept.

Transformational language needed. Modifiability is not only the most potent
mechanism in this thesis, but also the only variability mechanism that cannot be
realized within the usage of a logic programming language like Nivel. The reason is
that it implies model to model transformations, which cannot be formulated with
this language.

139

11. Discussion

Thus an additional method for model transformations is needed. Nivel only pro-
vides an analytical approach for model evaluation.

Upgrades of the reference model. Since modifiability allows the organization
engineer to exchange a reference model with a newer version, the DML concept
bears some potential. At the least, there is a potential benefit because a DML variant
is less dependent from a particular version of its reference DML. Small changes, bug
fixes and additions are likely to not create much difficulties during exchange of a
reference model.
A possible downside may be structural changes and massive changes in regard to
contents, as well as meta-model changes. Such changes demand a keen eye for
the needed adaptations in the extension model and likely some effort to create a
consistent DML variant of an upgraded version of the reference model.
For the DML concept, there has been no major case study investigating the effect of
an upgrade of a reference model to a customized variant. For restricted examples,
the mechanism suited well, as there were only few conflicts to attend to.

Scaling change operations. The granularity of change operations may be very
different. A change operation may only affect atomic entities like attribute values
and reference, but the concept may as well be used to transform large portions of a
model, like model refactoring, for example.
There are no recommendations provided in this thesis on how to design change
operations and on how to evaluate their effect.
The granularity of the four variability operations provided in SPEM is quite coarse
[OMG08b]. This results in the disadvantage, that “if there are parts of the generic
process that you want to use in the description of the project specific task, there
needs to be manual duplication of the content” [ZTSJ09].
During design of change operations, it must be considered whether existent proper-
ties are simply overwritten, or embedded into the varied state.

Pre- and postconditioned change operations. The constraint restriction mecha-
nism proposed in this thesis places its focus on invariants regarding the interpreta-
tion of the varied state after configuration, extension, and modification. Pre- and
postconditions for change operations were excluded, but may be an interesting
aspect to be factored in.
Conditions might add more control over the execution process and enable a more
directed application of changes.

Increasing model complexity. Usage of change operations adds elements to a
model. Such elements have unique identifiers and need to be managed along with
the model elements representing a development model’s actual content.

140

11. Discussion

Hence, the amount of elements and the management overhead is increased with
the proposed modifiability concept.
It is unclear, and has not been investigated in this thesis, if adopting the modifi-
ability approach is applicable in the long run, i.e. if it scales with the amount of
variants and versions of a root reference model.

Consistent use of change operations. Until now, it was implicitly assumed that
change operations represent a means of the organization engineer to modify a
model. This assumption unintentionally disqualifies the core asset engineer as a
user of change operations. This restriction is not necessary, though.
A core asset engineer may use change operations for the further development of a
reference model, instead of applying direct modifications. Yet, the implications of
such an approach have not been investigated.
In addition, using change operations for model evolution further contributes to
model complexity as it is described above.

11.3. Review on variant restriction

As described in CHAPTER 4, two ways to realize variant restriction were identified:
transformational and analytical restriction.

11.3.1. Transformational restriction

The usage of change operation has the inherent property to provide transforma-
tional restriction.
An organization engineer may only use change operation types that were provided
within the DML architecture of the DML that is to be adapted. Along with a write-
protection of the reference model, transformational restriction guarantees that the
variant space is restricted to a specific class of variants.
This does not mean that the variant space is limited, but it may be. A limited variant
space can be achieved in case there are only change operation types in a DML
architecture which operate on discrete values, like enumeration types.
As observed in CHAPTER 4.1, a change operation may imply either a valid result
model in respect to the requirements of the core asset engineer, or an invalid model.
When model variants may be created that are deemed invalid, then we need an
additional mechanism to check if a created variant is actually invalid, or not. This
mechanism is realized by analytical restriction.

11.3.2. Analytical restriction

As we have seen in CHAPTER 4.2, analytical restriction covers syntax restriction,
constraint restriction, and manual restriction. Correct syntaxes are regarded as a

141

11. Discussion

prerequisite and are not covered in this thesis. Manual restriction is informal and
bound to domain-specific requirements. Since actual DML realizations were largely
out of the focus here, manual restriction was not covered, likewise.
Constraint restriction has been realized as a concept relying on the model element
constraint in the DML framework.
A constraint can either be satisfied by a model, or not. There is a specialization of
constraint, namely typeConstraint, that can be used to formulate constraints over
types.

Inviolability of the DML architecture. The logic language approach using pred-
icates to identify whether model restrictions are satisfied bears a risk for manip-
ulation. If in an adaptation, it was made possible to add a mere fact stating that
a constraint was fulfilled that is actually not fulfilled, then the resolving of the
constraints may create a wrong answer set.
Thus, it must be assured that an organization engineer is not able to let additional
manipulative facts into the model.
For instance, when using Nivel as modeling language for DML framework, DML
architecture, and DML, there is a way to circumvent the mechanism for constraint
restriction, if care is not taken. In order to feign that a constraint theConstraint is
satisfied, the following predicate must be true:

c o n s t r a i n t I s F u l f i l l e d (theConstraint) .

In an environment that has not been manipulated, this predicate can only be
evaluated to true, if theElement actually is fulfilled. Nevertheless, it may be that
in the DML, a fact is added manually that sets exactly this predicate to true for
theConstraint.
To prevent this, usage of the predicate constraintIsFulfilled must be disallowed in
the DML. If this condition can be assured, then there is no risk that a constraint is
satisfied if it actually is not.

Definition of constraints. The constraint mechanism relies on the specialization
of constraint and on associated semantics provided by a constraintIsFulfilled rule in
Nivel syntax in the DML architecture.
To define such semantics is a task performed by the core asset engineer. The core
asset engineer must be able to specify rules in Nivel syntax. This must be done
manually and a distinct domain knowledge is needed.
With the transformations described in CHAPTER 10, the organization engineer does
not need to be able to create Nivel syntax. But he must be able to interpret the
output of smodels . The result is a set of stable models. If the set is empty, the input
model after configuration and transformation is invalid. Otherwise, each stable
model in the result set represents a solution to the tree of restrictions spanned by
the restriction terms.

142

11. Discussion

11.4. Comparison with stated problems

In this thesis, we saw a concrete concept for realizing a variability framework,
namely a DML framework. With this concept, we can now have a look into the
solution of the problems stated in CHAPTER 2.

Handling Problem 1: Updates of the reference model

Exchanging a reference model with a newer version is made possible by the DML
approach. An organization engineer may upgrade his customized variant of the
reference model by file exchanges.
However, in some cases, problems may arise when exchanging model contents that
are referenced within the organization-specific extension model. In the example of
SECTION 7.7, no conflicts interfered while upgrading the reference DML to a newer
version. But in general, conflicts may arise during upgrade of a standard DML that
is referenced by an extension model. Possible conflicts are:

1. Deleting a model element from the reference model results in a conflict if the
extension model or any of its extensions have outgoing references to it. The
organization engineer must identify those conflicts and repair them manually.
In some cases, the organization-specific DML extension or parts of it have to
be redesigned.

2. If any element is changed in the reference model, while in the customized
model a model element exists that refers to it, it must be checked if the implied
semantics is still within the original meaning.

3. Semantic duplicates may arise during evolution of either model branch. I.e.,
a customized model might define new elements and afterwards, a newly
released reference model version might contain the same additions with slight
deviations. In this case, an automatic upgrade of the customized model will
result in duplicate elements with similar or the same meaning.

The gravity of these conflicts is increasing from the first to the last. The first conflict
threatens model integrity, but can easily be located. A manual fix of the dead-ended
reference is necessary in all cases. This conflict type is deemed less severe, since if
this conflict arises, we know there is an error that has to be fixed in all cases.
The second conflict is similar, but more difficult to locate. We can automatically
generate a list of affected model elements, but there is no help in deciding whether
an identified location actually contains a conflict. So here we do not only need a
manual solution if a conflict arises, but also a manual evaluation whether a conflict
is present.
The last conflict is the most severe because there is no trivial way to automatically
locate duplicates within different model branches. So in this case, there is no list to
be taken and evaluated manually, but the whole change list.

143

11. Discussion

In conflicts 2 and 3, the rationale of the addition of development model contents
may be used to better confine the differences between the alternative additions and
thus manually derive a solution for the conflicts.
In short, if the first conflict arises, this always indicates an error. The second
conflict may be erroneous, but it may also appear in correct models. It has to be
checked manually. The third conflict however can not automatically be identified.
In general, none of these conflict can be resolved automatically without human
intervention.

Handling Problem 2: Conformity of an organization-specific
development model

In the DML concept, two approaches were integrated that regard conformity of
a DML variant to domain-specific restrictions: transformational and constraint
restriction. The other analytical restriction types were not considered in this thesis.

Transformational restriction. For the realization of transformational restriction,
the DML framework provides a class changeOperation which is to be specialized
in a concrete DML architecture. This architecture is a development subject of the
core asset engineer, the original model owner. Thus, the owner has the possibility
to restrict the change operations available for a customized DML. This effectively
restricts the quality of changes that can be applied to the model, provided that the
same meta-model of change operations is used and the reference model remains
unchanged.
In order to have the possibility to automatically allow only those changes that
lead to a conform model, the core asset engineer must be aware that the tool set
of change operations provided must be kept as small as possible, but as large as
required.

Constraint restriction. It is difficult to determine an optimal size of the change
operation toolkit in a DML architecture. Constraint restriction has been provided
to add a more explicit mechanism to control the creation of model variants. This
was done by explicit addition of constraints over a model, placed within the model
itself.
The design of the DML framework allows the addition of constraints directly into
the model. This provides the possibility to both the core asset engineer and the
organization engineer to formulate restrictions over a model.
Such restrictions must be implemented in a way that they are able to filter out
models that do not conform to domain-specific requirements.

144

11. Discussion

Handling Problem 3: Localization of changes

Traditional approaches to track the differences between two versions of a model
either imply the manual creation of a change list during development, or the a
posteriori analysis of both versions [Arm08, p. 8].
After having modeled explicit change operations, these operations can easily be
used to infer a list of differences between the original and the varied result. An
instance of a change operation provides the parameters that have to be used for its
execution, as well as the semantics defined by its concrete type, which have to be
interpreted in a predefined way. The combination of parameters and semantics
of (instances of) change operations can be regarded as the difference between two
versions of a model.
Since a change list is nothing else than a description of differences, and change
operations are a descriptive way to express changes, change operations can be
translated into a human readable change list.

Handling Problem 4: Loss of the rationale of changes

Change operations provide a possibility to explicitly describe modifications. In
addition, if we document the rationale of the change along with the operation, we
can assure that the information about why a certain change has been done is not
lost.
This way, the following information can be attached to each change for later ref-
erence: motivation of the change, pro&contra of the change, and discussion of
pro&contra.
A meta-model for the rationale of changes and a proposition on how to relate this
to a model was proposed by OCAMPO and SOTO [OS07].

11.5. Implementation technologies

Three technologies were used for the implementation of the DML concept: UML,
XSLT, and Nivel. UML and Nivel were used as modeling languages, while XSLT has
been used both to translate UML into Nivel syntax, and to operationalize change
operations.

11.5.1. Modeling language

The DML framework has been described using UML class diagrams. UML is a very
common modeling language and its class diagrams are suited well to describe static
model structures. The popularity of UML has been one reason to use UML for
modeling DML’s.
Another reason is the XMI specification offered by the OMG [OMG07a], which
explicitly supports UML. The specification allows to make use of a standardized

145

11. Discussion

file format for persistent storage of UML models, which was needed to be able to
further process over DML models.
Since the exemplary DML architecture and DML rely on the meta-model provided
by the DML framework, is it obvious to use UML to describe these, too.
In the DML environment’s course of execution, the UML models representing a
DML are transformed into Nivel syntax, which is used as another language for DML
model representation. The main reason for usage of Nivel lies in its capability to be
used to reason over a model’s properties (see constraint checking below).
In addition, it is an interesting case of a model relying on the OMG MOF layers
[OMG06] that is transformed into a model making use of deep instantiation [AK01]
and strict meta-modeling [AK02]. This is enabled by transformation of a special-
ization layer into an instantiation layer. This layer is represented by the DML
architecture.
Using specialization leaves the crossing between DML framework and DML archi-
tecture diffuse from the modeling view. Instantiation on the other hand keeps the
layers strictly separated.

Alternatives. In respect to a largely definite semantics and a file format that can
be interpreted, edited and interchanged by common modeling tools, an alternative
to UML is usage of the Eclipse Modeling Framework (EMF) [Ecl10b].
The tool support for EMF orientates largely on the application scenario of software
and systems development, and there exist less convenient model editors, so UML
was chosen for model representation.
Neither UML, nor EMF support an explicit realization of deep instantiation and
strict meta-modeling.

11.5.2. Model transformations

There are some alternatives to Extensible Stylesheet Language Transformations
(XSLT) for the realization of model transformations. But let’s first take a look at the
different application scenarios for model transformations in the DML concept:

1. Reduction of a UML model according to selection information.

2. Transformation of a UML model according to change operations.

3. Translation of a UML model to a rule checking language.

The first two use cases represent UML to UML transformations, while the third case
implies translation of UML to another language. In order to keep the amount of
technologies used for realization of a DML environment small, it appears reasonable
to use a single transformation language for all three steps. XSLT is a technology
provided by W3C that can do this [W3C99].

146

11. Discussion

Alternatives. QVT is an OMG specification covering model to model transforma-
tions [OMG08a]. This specification has a prominent implementation named Atlas
Transformation Language (ATL) [Ecl10a]. ATL is able to transform both MOF and
EMF based models. But since ATL is restricted to model to model transformations,
in regard to application scenario 3, ATL has not been chosen as transformation
technology.
Other model transformation technologies like graph based transformations [TC06]
need a graph representation of the model, which would include at least one further
transformation into the process.
In the V-Model XT, the operationalization of change operations is implemented
in Java. The transformation tool, namely the V-Model XT Editor, is able to merge
reference and extension models and to interpret change operations residing in the
resulting model. Change operations are not implemented atomically. They are built
from a set of basic operations like exchange of element references or concatenation
of string attributes.
Another existing operation-based approach is EMFStore [KH10a]. Although its
focus lies on recording of change in contrast to change modeling, the underlying
concepts are well suited to be used as a modifiability framework for EMF models.

11.5.3. Constraint checking

Nivel has been used to verify both the model integrity of the configured and mod-
ified DML models during development of this thesis, as well as a means to check
constraint restriction. It is a language with a native support to express UML-like
models.
Model integrity is verified by transformation of the UML models to Nivel syntax for
DML framework, DML architecture, and DML. Nivel will only find stable models
if the modeling adhered to the considerations described in CHAPTER 10.1. This
assures a proper UML modeling of the DML models.
As a logic language, Nivel allows the definition of arbitrary constraint checks by
provision of constraintIsFulfilled predicates in the DML architecture.
These constraint checks are related to actual instances of the model in respect to
both elements that have to fulfill certain criteria, as well as elements that are used
to decide whether such criteria are fulfilled. This provides a flexible mechanism to
place restrictions within a model.
Once a meta-model of constraints is created in the DML architecture, the core asset
engineer, as well as the organization engineer, can freely arrange terms consisting
of constraints to model variant restriction.

Alternatives. OCL [OMG10a] provides the possibility to formulate constraints
over a model, too. But OCL constraints are a static part of the meta-model, in
contrast to constraints being placed within the model. I.e., without change of the

147

11. Discussion

DML architecture, the addition of restrictions to the model would not be possible
with OCL.
Other logic languages besides Nivel were neglected because of Nivel’s native capa-
bility to reason over UML-like models.

148

12. Conclusion

The exemplary development model line (DML) described in CHAPTERS 7 and 9
is an instance of a configurable, extensible, and modifiable development model.
The definitions of configurability, extensibility, and modifiability discussed in
CHAPTER 3 are extracted from existing frameworks and technologies that claim to
have a positive influence on the variability of their subjects.
The implementation of the DML concept explained in CHAPTER 10 is a continuous
example for a realization. It covers. . .

. . . modeling a DML along with its architecture and the DML framework in UML,

. . . the possibility to extend and configure a DML model,

. . . operationalization of modifiability of DML models, and

. . . verification that a resulting development model is within a predefined admis-
sible variant space.

With the DML concept, this thesis provides support for the customization and
maintenance of development models. The originator of a DML, i.e. the core asset
engineer, is able to scale the variability of ‘his’ DML. He does this by arranging
configurability, extensibility, and modifiability. In addition, it is possible to define
constraint restrictions over a model. These restrictions confine the amount of
variants that can be created using variability.
A summary of the main contributions of this thesis is shown in TABLE 12.1. For
each contribution, the related goal(s) and a reference to the chapter(s) covering the
matter is provided. Contributions 2–5 are related to the goals stated in CHAPTER 1.1.
Contribution 1 is needed for spanning the problem domain and contribution 6
is used for an evaluation of soundness and consistency of contributions 2–5. In
addition it discusses semantical issues of modifiability and variant restriction.
As shown in CHAPTER 11, there are several aspects that need attention when the
DML concept is adopted to a development model. These are subject to future work.

• Configurability is restricted to mandatory and optional features. More elabo-
rate feature types were neglected, as well as questions concerning overlapping
features, resp. the effect of features with overlapping contents.

• Change operations have to be added to a DML architecture. The question is:
which operations are feasible? The core asset engineer has to define the exact
toolkit of change operations, but has no support in how to do it right.

149

12. Conclusion

Contribution Goal(s) Chapter(s)
1. Proposition of a comprehensive definition for the term ‘de-

velopment model’.
– 2

2. Clarification of three kinds of variability, namely configura-
bility, extensibility, and modifiability.

1, 2 3, 6

3. Restriction of the variant space of development models
with domain-specific rules and model-specific constraint
criteria.

3 4, 8

4. Definition of an abstract framework for the creation of vari-
able development models and provision of a conceptual
realization example making use of this framework.

4 7

5. Integration of this framework with the introduced concepts
for variant space restriction.

5 9

6. Implementation of the theoretical concept and its seman-
tics with UML, XSLT, and the logic programming language
Nivel.

– 10

Table 12.1: Main contributions of this thesis

• It has to be shown how powerful the constructs actually are we can create
with the constraint restriction framework. Boolean terms of restrictions can
be created but it has not been investigated which classes of restrictions are
possible, which feasible, and which impossible.

• The concept includes extensibility, configurability, and modifiability as these
terms were defined in CHAPTER 3. Other aspects of variability were not in-
cluded.

• Model complexity increases with explicit usage of change operations and
constraint restriction. The influence on scalability of development models
and their versions and variants has to be investigated.

• It has yet to be shown whether the applicability of change operations scales
without a more explicit concept for change operation ordering.

• A development model created with the DML concept may be regarded as a
meta-model for a particular project. There are no implications made in this
thesis on how the enactment of a development model may be realized.

• The presented implementation of the concept uses two very different tech-
nologies for modifiability and constraint restriction. An integrated language
able to both transform a given model, as well as evaluate the proposed con-
straint framework may increase the applicability of the concept.

The proposed DML concept is a promising approach to realize variability of devel-
opment models. It neatly combines variability mechanisms observed in various
technologies, development models, and frameworks into one concept. With these
mechanisms, it offers detailed support to both the core asset engineer and the
organization engineer in respect to flexibility of adaptations and to conformity of

150

12. Conclusion

the created results.

151

Appendix

152

Model transformations for the DML
environment

1. DML reduction: XSL implementation

In this section, the XSL script used for the reduction of a DML is described. Note
that if there is a line numbering gap, this is in all cases due to an empty line in the
original reduce.xsl file.
The first two lines contain the usual XSL stylesheet header. Since we are operating
on XMI models, the XMI namespace is included.

1 <?xml version=” 1.0 ” encoding=”ISO−8859−1” ?>
2 <xsl : s tylesheet version=” 2.0 ” xmlns:xsl=” h t t p : / /www.w3. org /1999/XSL/

Transform” xmlns:xmi= ’ h t t p : / / schema .omg. org / spec /XMI/ 2 . 1 ’>

The result of the reduction is an UML XMI file, so the output format is set to XML.
The file encoding of the UML models is set by MagicDraw to UTF-8, so the output is
created using the same encoding.

4 <xsl:output method=”xml” encoding=”UTF−8” />

In the next lines, the script initializes a set of variables used later on to identify
elements to be removed from the UML model. First, all instances of belongs to are
identified, then stored in the XSL variable belongsToInstances.

6 <xsl :variable name=”belongsToID” s e l e c t =” / / packagedElement [@name= ’
belongs to ’] / @xmi:id” />

7 <xsl :variable name=” belongsToInstances ” s e l e c t =” / / packagedElement [
c l a s s i f i e r / @xmi:idref=$belongsToID or @ c l a s s i f i e r =$belongsToID] ” />

Now, all instances of feature are identified and stored in the XSL variable featureIn-
stances.

8 <xsl :variable name=” featureFrameworkElementID ” s e l e c t =” / /
packagedElement [@name= ’ feature ’] / @xmi:id” />

9 <xsl :variable name=” f e a t u r e I n s t a n c e s ” s e l e c t =” / / packagedElement [
10 c l a s s i f i e r / @xmi:idref=$featureFrameworkElementID or

@ c l a s s i f i e r =$featureFrameworkElementID
11] ” />

Finally, all instances of featureDeselector are identified and gathered using the
variable featureDeselectorInstances.

12 <xsl :variable name=” f e a t u r e D e s e l e c t o r I D ” s e l e c t =” / / packagedElement [
@name= ’ f e a t u r e D e s e l e c t o r ’] / @xmi:id” />

153

Model transformations for the DML environment

13 <xsl :variable name=” f e a t u r e D e s e l e c t o r I n s t a n c e s ” s e l e c t =” / /
packagedElement [

14 c l a s s i f i e r / @xmi:idref=$ f e a t u r e D e s e l e c t o r I D or @ c l a s s i f i e r
=$ f e a t u r e D e s e l e c t o r I D

15] ” />

Having these variables at hand, the next lines store in the variable deselectedFea-
tures all feature instances that were target of any deselects association instance.

16 <xsl :variable name=” d e s e l e c t e d F e a t u r e s ” s e l e c t =”$ f e a t u r e I n s t a n c e s [
17 @xmi:id = / / packagedElement [
18 s l o t / value / @instance=$ f e a t u r e D e s e l e c t o r I n s t a n c e s / @xmi:id
19] / s l o t / value [
20 @instance !=$ f e a t u r e D e s e l e c t o r I n s t a n c e s / @xmi:id
21] / @instance
22] ” />

The next variable, namely selectedFeatures, is determined straightforwardly by
taking the set of featureInstances and subtracting all features that were deselected.

23 <xsl :variable name=” s e l e c t e d F e a t u r e s ”>
24 <xsl:choose>
25 <xsl:when t e s t =”not ($ d e s e l e c t e d F e a t u r e s) ”>
26 <xsl:for−each s e l e c t =”$ f e a t u r e I n s t a n c e s ”>
27 <i d s>
28 <xsl :attr ibute name=” xmi:id ” s e l e c t =”@xmi:id” />
29 </ i d s>
30 </ xsl:for−each>
31 </xsl:when>
32 <xsl:otherwise>
33 <xsl:for−each s e l e c t =”$ f e a t u r e I n s t a n c e s [@xmi:id !=$

d e s e l e c t e d F e a t u r e s / @xmi:id] ”>
34 <i d s>
35 <xsl :attr ibute name=” xmi:id ” s e l e c t =”@xmi:id” />
36 </ i d s>
37 </ xsl:for−each>
38 </ xsl:otherwise>
39 </ xsl:choose>
40 </ xsl :variable>

The next variable deselectedElements contains all those model elements that do
not have any belongs to association to any selected feature.

41 <xsl :variable name=” deselectedElements ” s e l e c t =” / / packagedElement [
42 @xmi:id=$belongsToInstances [
43 not (s l o t / value / @instance= e x s l t : n o d e−s e t ($ s e l e c t e d F e a t u r e s) / i d s

/ @xmi:id)
44] / s l o t / value / @instance
45] ” />

The last variable needed throughout the rest of the script is deselectedElementRela-
tions. It parses through all association instances and looks for any relations to any
of the deselectedElements. Such an association is marked as being deselected, too.

154

Model transformations for the DML environment

46 <xsl :variable name=” deselectedElementRelations ” s e l e c t =” / /
packagedElement [

47 s l o t / value / @instance=$ deselectedElements / @xmi:id
48] ” />

Now, the script is actually starting. The obligatory ‘/’ root template is simply calling
to apply all other templates to the root node.

50 <xsl:template match=” / ”>
51 <xsl:apply−templates />
52 </ xsl:template>

Here is the script with the lowest priority. If a node matches no other template,
then this template is executed. The script does nothing else than copying the actual
node into the result document with all its attributes, then check all direct sub-nodes
against all templates in the script. In the usual case, this script is called recursively
until there either are no more sub-nodes, or one of the other templates with a
higher priority apply.

54 < !−− go through the ac tua l node and copy i t and a l l i t s a t t r i b u t e s ,
55 un l e s s the node i s addres sed by another t emplate !−−>
56 <xsl:template match=”node () ” p r i o r i t y =”1”>
57 <xsl:copy>
58

59 < !−− copy a l l a t t r i b u t e s o f the ac tua l node −−>
60 <xsl:copy−of s e l e c t =”@* ” />
61

62 < !−− c a l l the t empla t e s r e c u r s i v e l y −−>
63 <xsl:apply−templates />
64 </ xsl:copy>
65 </ xsl:template>

If one of the templates below apply to a node, then the copy-template described
above is not executed. All of the following templates generate no output, effectively
removing a node from the UML model. The first template matches if the ID of the
node tested against the templates is in the list featureDeselectorInstances. In effect,
this removes all instances of featureDeselector from the model. They are no longer
needed for the further process in the DML environment.

67 < !−− remove a l l nodes that have a f e a t u r eD e s e l e c t o r as c l a s s i f i e r −−>
68 <xsl:template match=”node () [@xmi:id=$ f e a t u r e D e s e l e c t o r I n s t a n c e s /

@xmi:id] ” p r i o r i t y =”2” />

The next template removes an element from the model, if its ID is stored within
deselectedFeatures. This removes all feature instances from the model that were
deselected.

70 < !−− remove a l l f e a t u r e nodes that have been d e s e l e c t e d −−>
71 <xsl:template match=”node () [@xmi:id=$ d e s e l e c t e d F e a t u r e s / @xmi:id] ”

p r i o r i t y =”3” />

If a node’s ID is covered by deselectedElements, then it is not written to the output
model. In effect, this removes all instances with no belongs to relationship to any
selected feature.

155

Model transformations for the DML environment

73 < !−− remove a l l modelElement i n s t an c e s that do not have a ’ belongs to ’
r e l a t i o n to any f e a t u r e that r e s i d e s in the model −−>

74 <xsl:template match=”node () [@xmi:id=$ deselectedElements / @xmi:id] ”
p r i o r i t y =”4” />

Finally, in order to reestablish model consistency, all internal association references
to elements that were removed from the model are removed as well.

76 < !−− remove a l l r e l a t i o n s to d e s e l e c t e d modelElement i n s t an c e s −−>
77 <xsl:template match=”node () [@xmi:id=$ deselectedElementRelations /

@xmi:id] ” p r i o r i t y =”5” />
78 </ xsl : s tylesheet>

2. DML transformation: XSL implementation

The transformation of DML models, i.e. the execution of all change operations in
the model, is following a generative approach. For each changeOperation instance
identified in the DML model, a separate XSL script is generated and executed. In
general, each generated XSL script takes a DML model as input and outputs the same
model, with changes made according to the exact type of the change operation.
The resulting DML model is then looped through the next change operation script
until all change operations were executed.
For the generation of the change operation effect scripts, an XSL script transform.xsl
was written. It is described in this section. It describes the generation of XSL scripts
that create the effect of a change operation of type changeProductResponsibility,
as it was introduced as example in CHAPTER 7.4.
After the description of this script, an exemplary generated effect script is explained.
The script is implementing the change of responsibility for the product qaManual.
This particular change operation was described as an example in the extension
model shown in CHAPTER 7.4.

transform.xsl This script is implementing the generation of effect scripts for
change operations. Note that only the semantics for changeProductResponsibility
is provided. If another specialization of changeOperation is added to a DML archi-
tecture, the semantics of the operation has to be implemented in this generator
script.
The first two lines contain the usual XSL stylesheet header. Since we are operating
on XMI models, the XMI namespace is included.

1 <?xml version=” 1.0 ” encoding=”ISO−8859−1” ?>
2 <xsl : s tylesheet version=” 2.0 ” xmlns:xsl=” h t t p : / /www.w3. org /1999/XSL/

Transform” xmlns:xmi= ’ h t t p : / / schema .omg. org / spec /XMI/ 2 . 1 ’>

The result of the transformation is an XSL file, so the output format is set to XML.
The output encoding is set to ISO-8859-1, since this is the encoding chosen for the

156

Model transformations for the DML environment

XSL scripts at hand. For a better readability of the result file, the XSLT interpreter is
told to indent the resulting XML code.

4 <xsl:output method=”xml” encoding=”ISO−8859−1” indent=” yes ” />

For better access to certain model elements, some variables are initialized. First,
the framework element changeOperation is identified and stored in the variable
changeOperationFrameworkElement. This element is used to identify all special-
izations of changeOperation in the architecture. These are stored as changeOper-
ationArchitectureElements. Finally, with the knowledge of all change operation
types, changeOperationInstances is set to all instances of these types.

6 <xsl :variable name=”changeOperationFrameworkElement” s e l e c t =” / /
packagedElement [@name= ’ changeOperation ’] ” />

7 <xsl :variable name=” changeOperationArchitectureElements ” s e l e c t =” / /
packagedElement [

8 g e n e r a l i z a t i o n / @general=$changeOperationFrameworkElement /
@xmi:id

9 or
10 @generalization =$changeOperationFrameworkElement / @xmi:id
11] ” />
12 <xsl :variable name=” changeOperationInstances ” s e l e c t =” / /

packagedElement [
13 c l a s s i f i e r / @xmi:idref=$changeOperationArchitectureElements

/ @xmi:id
14 or
15 @ c l a s s i f i e r =$changeOperationArchitectureElements / @xmi:id
16] ” />

Now the root template begins. Output generation starts here with an XML element
named ‘xsl:stylesheet’. The element is provided with the XMI namespace and
an attribute ‘version’ denoting the XSL version 2.0. When executed, we can see
that this XSL code generates the XSL stylesheet header for an effect script. For the
further understanding of the documented code, it may be useful to take looks at
the exemplary effect script shown below the description of the generator script (see
163).

18 <xsl:template match=” / ”>
19

20 <xsl:element name=” x s l : s t y l e s h e e t ”>
21 <xsl:namespace name=”xmi”>h t t p : / / schema .omg. org / spec /XMI/ 2 . 1</

xsl:namespace>
22 <xsl :attr ibute name=” version ”>2.0</ xsl :attr ibute>

The following lines statically create an XML node <xsl:output method=”xml”indent=”
no”/>. We want that the resulting script is able to transform UML XMI models, so
we tell it to work on XML data and to not interfere with the indention it runs across.

23 <xsl:element name=” x s l : o u t p u t ”>
24 <xsl :attr ibute name=”method”>xml</ xsl :attr ibute>
25 <xsl :attr ibute name=” indent ”>no</ xsl :attr ibute>
26 </ xsl:element>

157

Model transformations for the DML environment

Like all XSL stylesheets, the generated script must contain a root template matching
the root node ‘/’. All our root template shall do is check for all child nodes of the
root if any of the other templates apply.

28 < !−− g en e ra t e the r o o t t emplate −−>
29 <xsl:element name=” x s l : t e m p l a t e ”>
30 <xsl :attr ibute name=”match”>/</ xsl :attr ibute>
31 <xsl:element name=” xsl :apply−templates ” />
32 </ xsl:element>

The next lines create code that is identical to the copy-code we saw in lines 56–65 of
script reduce.xsl. The result is that like above, the template with the lowest priority
simply copies a node and its attributes, then applies all templates to its children.

34 < !−− g en e ra t e the g e n e r i c t emplate that i s copy ing a node and
a l l i t s a t t r i b u t e s and subnodes , un l e s s t h e r e e x i s t s a
template with a h ighe r p r i o r i t y f o r t h i s node −−>

35 <xsl:element name=” x s l : t e m p l a t e ”>
36 <xsl :attr ibute name=”match”>node ()</ xsl :attr ibute>
37 <xsl :attr ibute name=” p r i o r i t y ”>1</ xsl :attr ibute>
38 <xsl:element name=” xsl :copy ”>
39 <xsl:element name=” xsl :copy−of ”>
40 <xsl :attr ibute name=” s e l e c t ”>@*</ xsl :attr ibute>
41 </ xsl:element>
42 <xsl:element name=” xsl :apply−templates ” />
43 </ xsl:element>
44 </ xsl:element>

Since for every change operation, a separate effect script is generated, we need to
identify the operation to be executed with the script actually created. The identified
instance of changeOperation is stored in the variable theOperation.
For simplicity, as it was specified in CHAPTER 7.6, this particular change operation is
always the first change operation that can be found in the model. Since an effect
script is always not only executing the change indicated by a change operation, but
also removing the change operation instance from the model in the same step, a
call to the first change operation in the model will always result in another change
operation on repeated executions.

46 < !−− t h e r e i s e xa c t l y one ope ra t i on to be performed in the
next s t e p −−>

47 <xsl :variable name=” theOperation ” s e l e c t =”$
changeOperationInstances [1] ” />

Up until now, the script contained generic XSL code used to create the general lines
that are common to all effect scripts. The rest depends on the particular change
operation. The following script code depends on the concrete type of the instances
identified by theOperation. For every specialization of changeOperation placed
in the DML architecture, a concrete semantics must be provided within this XSL
script. What code is to generated is decided by the type of the change operation.

49 < !−− g en e ra t e the x s l code f o r the ve r y f i r s t change ope ra t ion
, i d e n t i f i e d c l e a r l y by ”$theOperation ” −−>

158

Model transformations for the DML environment

50 <xsl:choose>

We check now for the type of theOperation. If it is an instance of the change opera-
tion changeProductResponsibility, then generate the corresponding XSL code. As
described in CHAPTER 7.4, such an instance is intended to replace a role reference in
a responsibility instance.

51 < !−− when the change ope ra t i on i s an in s tanc e o f
chang eP r oduc tR e spon s i b i l i t y −−>

52 <xsl:when t e s t =” ’ changeProductResponsibility ’ = $
changeOperationArchitectureElements [@xmi:id=$
theOperation / c l a s s i f i e r / @xmi:idref or @xmi:id=$
theOperation / @ c l a s s i f i e r] /@name”>

For better readability of the effect script, a comment is generated informing about
the type of the identified change operation and its ID. The <xsl:text> node is merely
used to rectify output indention, since the indention created by the XSLT interpreter
Saxon is damaged after insertion of a comment when using <xsl:comment>.

53 <xsl:comment> Templates f o r a change operation of type
’ changeProductResponsibility ’ . The instance has

the id ’<x s l : v a l u e−o f s e l e c t =”$theOperation / @xmi:id
”/> ’ </xsl:comment><xs l : text>

54 </ xs l : text>

First, the DML architecture is parsed for the elements representing the responsibility
associations. In particular, we need its association end source, as this is the indicator
pointing to a role. This end is stored in the variable roleEnd.

55 < !−− a t t r i b u t e s o f the r e s p o n s i b i l i t y a r c h i t e c t u r e
e lement −−>

56 <xsl :variable name=” r e s p o n s i b i l i t y A r c h i t e c t u r e E l e m e n t ”
s e l e c t =” / / packagedElement [@name= ’ r e s p o n s i b i l i t y ’] ”

/>
57 <xsl :variable name=” roleEnd ” s e l e c t =”$

r e s p o n s i b i l i t y A r c h i t e c t u r e E l e m e n t /ownedEnd [@name= ’
source ’] ” />

The following lines are used to determine the values of two variables. They cover
relevant modifiesResponsibilityInstance and relevant targetInstance. The first
variable, relevant modifiesResponsibilityInstance, is the very instance of type
modifiesResponsibility that is related to the change operation theOperation. rele-
vant targetInstance is the instance of responsibility that is attached to the associa-
tion end target in that instance. So in effect, these lines determine the responsibility
instance that is affected by the change operation. It can then be referenced by the
variable relevant targetInstance.

59 < !−− f ind t a r g e t i n s tanc e −−>
60 <xsl :variable name=”

modifiesResponsibil i tyArchitectureElement ” s e l e c t =”
/ / packagedElement [@name= ’ modif iesResponsibi l i ty ’] ” /
>

159

Model transformations for the DML environment

61 <xsl :variable name=” m o d i f i e s R e s p o n s i b i l i t y I n s t a n c e s ”
s e l e c t =” / / packagedElement [

62 c l a s s i f i e r / @xmi:idref=$
modifiesResponsibil i tyArchitectureElement /
@xmi:id

63 or @ c l a s s i f i e r =$
modifiesResponsibil i tyArchitectureElement /
@xmi:id

64] ” />
65 <xsl :variable name=” operationArchitectureElement ”

s e l e c t =”$ modifiesResponsibil i tyArchitectureElement /
ownedEnd [@name= ’ operation ’] ” />

66 <xsl :variable name=” targetArchitectureElement ” s e l e c t =
”$ modifiesResponsibil i tyArchitectureElement /
ownedEnd [@name= ’ t a r g e t ’] ” />

67 <xsl :variable name=”
r e l e v a n t m o d i f i e s R e s p o n s i b i l i t y I n s t a n c e ” s e l e c t =”$
m o d i f i e s R e s p o n s i b i l i t y I n s t a n c e s [

68 s l o t [
69 @definingFeature=$

operationArchitectureElement / @xmi:id
70] / value / @instance=$theOperation / @xmi:id
71] ” />
72 <xsl :variable name=” r e l e v a n t t a r g e t I n s t a n c e ” s e l e c t =”

/ / packagedElement [
73 @xmi:id=$

r e l e v a n t m o d i f i e s R e s p o n s i b i l i t y I n s t a n c e /
s l o t [

74 @definingFeature=$
targetArchitectureElement / @xmi:id

75] / value / @instance
76] ” />

Similar to the procedure above, the following code first determines the value of
relevant newRoleInstance, which is the instance of newRole that is associated to
theOperation. This instance is used to determine the instance attached to its param
association end, which in effect is a role instance. In particular, this role instance
is the role to replace the original role associated to relevant targetInstance. It is
referenced by the variable relevant paramInstance.

78 < !−− f ind parameter in s tanc e −−>
79 <xsl :variable name=” newRoleArchitectureElement ” s e l e c t

=” / / packagedElement [@name= ’ newRole ’] ” />
80 <xsl :variable name=” newRoleInstances ” s e l e c t =” / /

packagedElement [
81 c l a s s i f i e r / @xmi:idref=$

newRoleArchitectureElement / @xmi:id
82 or @ c l a s s i f i e r =$newRoleArchitectureElement /

@xmi:id
83] ” />
84 <xsl :variable name=” operationArchitectureElement ”

s e l e c t =”$newRoleArchitectureElement /ownedEnd [@name

160

Model transformations for the DML environment

= ’ operation ’] ” />
85 <xsl :variable name=” paramArchitectureElement ” s e l e c t =”

$newRoleArchitectureElement /ownedEnd [@name= ’param ’]
” />

86 <xsl :variable name=” relevant newRoleInstance ” s e l e c t =”
$newRoleInstances [

87 s l o t [
88 @definingFeature=$

operationArchitectureElement / @xmi:id
89] / value / @instance=$theOperation / @xmi:id
90] ” />
91 <xsl :variable name=” relevant paramInstance ” s e l e c t =” / /

packagedElement [
92 @xmi:id=$ relevant newRoleInstance / s l o t [
93 @definingFeature=$paramArchitectureElement

/ @xmi:id
94] / value / @instance
95] ” />

Now, the generation of XSL templates for the execution of the change operation will
be defined. The necessary information is the responsibility instance to be changed
and the role instance to be used as new responsible role. The responsibility has been
identified above by relevant targetInstance, while the role instance is identified by
relevant paramInstance.
The code below creates an <xsl:template> node with a match clause that looks for an
association end within the association identified by relevant targetInstance. The
association end is identified by roleEnd, which effectively is the source association
end of the responsibility.
Note that the match clause is effectively a concatenation of several strings. Since
the resulting string must contain quotes, and the concatenation function needs
additional quotes, too, some quotes contained within the strings are masked by
".

97 <xsl:element name=” x s l : t e m p l a t e ”>
98 <xsl :variable name=”matchClause”>
99 <xsl:value−of s e l e c t =” concat (’ value [. . /

@definingFeature =" ’ ,$ roleEnd / @xmi:id
, ’" and . . / . . / @xmi:id =" ’ ,$
r e l e v a n t t a r g e t I n s t a n c e / @xmi:id , ’ & # 3 4 ;] ’) ” /
>

100 </ xsl :variable>
101 <xsl :attr ibute name=”match”>
102 <xsl:value−of s e l e c t =”$matchClause” />
103 </ xsl :attr ibute>
104 <xsl :attr ibute name=” p r i o r i t y ”>2</ xsl :attr ibute>

Now, the actual replacement is stated. The following code generates code that,
when the template applies, copies the identified node, all its attributes, and all
its sub-nodes, but replaces the value of the ‘instance’ attribute with the ID of rel-
evant paramInstance. As mentioned above, this is the role instance denoted as

161

Model transformations for the DML environment

newRole by the change operation instance.

106 <xsl:element name=” xsl :copy ”>
107 <xsl:element name=” xsl :copy−of ”>
108 <xsl :attr ibute name=” s e l e c t ”>@*</

xsl :attr ibute>
109 </ xsl:element>
110 <xsl:element name=” x s l : a t t r i b u t e ”>
111 <xsl :attr ibute name=”name”>instance</

xsl :attr ibute>
112 <xsl:value−of s e l e c t =”$

relevant paramInstance / @xmi:id” />
113 </ xsl:element>
114 <xsl:element name=” xsl :apply−templates ” />
115 </ xsl:element>
116 </ xsl:element>

The following line is representing the end of the condition that theOperation is an
instance of changeProductResponsibility.

117 </xsl:when>

This is the end of the choose clause, which was used to determine the type of the
change operation. If more specializations of changeOperation are added to the
DML architecture, then their semantics must be defined before this line embedded
in a <xsl:when> node, just like shown beforehand for changeProductResponsibility.

118 </ xsl:choose>

The rest of the script is generating another template that is looking for the very
change operation instance that script was generated for. The code is intended to
remove the change operation instance identified by theOperation from the DML
model.

120 <xsl:choose>
121 <xsl:when t e s t =”$theOperation ”>
122 < !−− g en e ra t e the code that removes the ve r y change

ope ra t i on ”$theOperation ” that i s r e s o l v e d in the
g ene ra t ed s c r i p t −−>

123 <xsl:element name=” x s l : t e m p l a t e ”>
124 <xsl :attr ibute name=”match”>node () [@xmi:id= ’<

x s l : v a l u e−o f s e l e c t =”$theOperation / @xmi:id”/> ’]
</ xsl :attr ibute>

125 <xsl :attr ibute name=” p r i o r i t y ”>3</ xsl :attr ibute>
126 </ xsl:element>
127 < !−− g en e ra t e the code that removes a l l e l ements that

are r e l a t e d to the removed change ope ra t i on −−>
128 <xsl:element name=” x s l : t e m p l a t e ”>
129 <xsl :attr ibute name=”match”>/ / packagedElement [s l o t

/ value / @instance= ’<x s l : v a l u e−o f s e l e c t =”$
theOperation / @xmi:id”/> ’]</ xsl :attr ibute>

130 <xsl :attr ibute name=” p r i o r i t y ”>3</ xsl :attr ibute>
131 </ xsl:element>
132 </xsl:when>

162

Model transformations for the DML environment

133 <xsl:otherwise>
134 <xsl:comment> No change operation was found in the

model . </xsl:comment><xs l : text>
135 </ xs l : text>
136 </ xsl:otherwise>
137 </ xsl:choose>
138 </ xsl:element>
139 </ xsl:template>
140 </ xsl : s tylesheet>

An exemplary effect script An exemplary script generated by the script above
may look like the following code.
The header’s content is identical to that of the reduce.xsl script: encoding UTF-8 and
the same namespaces, since it is intended to generate the right XMI syntax.

1 <?xml version=” 1.0 ” encoding=”UTF−8” ?>
2 <xsl : s tylesheet xmlns:xmi=” h t t p : / / schema .omg. org / spec /XMI/ 2 . 1 ”
3 xmlns:xsl=” h t t p : / /www.w3. org /1999/XSL/ Transform”
4 version=” 2.0 ”>

The next lines are used to copy the input UML model to the output model. The
output is exactly like the input, with the exception that for the templates described
below, another behavior is defined.

5 <xsl:output method=”xml” indent=”no” />
6 <xsl:template match=” / ”>
7 <xsl:apply−templates />
8 </ xsl:template>
9 <xsl:template match=”node () ” p r i o r i t y =”1”>

10 <xsl:copy>
11 <xsl:copy−of s e l e c t =”@* ” />
12 <xsl:apply−templates />
13 </ xsl:copy>
14 </ xsl:template>

The exceptional behavior is defined by three templates. The first template identi-
fies an association end of type source that is contained within the responsibility
instance that was targeted by the change operation.
Note that, like it was described above, " is masking a single quote. This means
this code has the same effect like ’.

15 < !−− Templates f o r a change ope ra t i on of t ype ’
changeProductResponsibility ’ . The in s tanc e has the id ’
16 6 2 284e05ec 1271941702875 40894 1309 ’ −−>

16 <xsl:template match=” value [. . / @definingFeature ="
16 6 2 284e05ec 1269713897568 176111 1013" and . . / . . / @xmi:id

=" 16 6 2 284e05ec 1269958123338 858107 773 "] ”
17 p r i o r i t y =”2”>
18 <xsl:copy>
19 <xsl:copy−of s e l e c t =”@* ” />
20 <xsl :attr ibute name=” instance ”>

16 6 2 284e05ec 1269859455832 166492 902</ xsl :attr ibute>

163

Model transformations for the DML environment

21 <xsl:apply−templates />
22 </ xsl:copy>
23 </ xsl:template>

The second template looks for the change operation instance and removes it from
the resulting model.

24 <xsl:template match=”node () [@xmi:id = ’
16 6 2 284e05ec 1271941702875 40894 1309 ’] ”

25 p r i o r i t y =”3” />

Finally, the last template removes all associations with a reference to the removed
change operation.

26 <xsl:template match=” / / packagedElement [s l o t / value / @instance = ’
16 6 2 284e05ec 1271941702875 40894 1309 ’] ”

27 p r i o r i t y =”3” />
28 </ xsl : s tylesheet>

164

UML to Nivel translations

3. Transform DML framework package to Nivel

The following script implements the translation of a DML framework provided as a
UML model in XMI format to Nivel syntax.
The script starts with a common XSL script header. Note that the output format is
‘text’.

1 <?xml version=” 1.0 ” encoding=”ISO−8859−1” ?>
2 <xsl : s tylesheet version=” 2.0 ” xmlns:xsl=” h t t p : / /www.w3. org /1999/XSL/

Transform” xmlns:xmi=” h t t p : / / schema .omg. org / spec /XMI/ 2 . 1 ”>
3

4 <xsl:output method=” t e x t ” encoding=”ISO−8859−1” />
5

6 <xsl:template match=” / ”>
7 <xsl:apply−templates />
8 </ xsl:template>

There are two templates controlling the packages to be translated. The first template
states that if any UML package has a name other than ‘framework’ or ‘helpers’, then
the package is ignored, i.e. not included in the output generation. A package is
identified by being a <packagedElement> node with an attribute value xmi:type of
‘uml:Package’.
‘framework’ is the package holding the classes defined for the DML framework,
while ‘helpers’ contains the class featureDeselector with its association deselects
that were added in CHAPTER 10.1 in order to enable the relation of configuration
information to the DML model.
If a package is found with the name ‘framework’ or ‘helpers’, then for all contained
<packagedElement> nodes, the templates described below are applied.

10 <xsl:template match=”packagedElement [@xmi:type = ’ uml:Package ’ and @name
! = ’ framework ’ and @name! = ’ helpers ’] ”>

11 < !−− do nothing , s i n c e t h i s i s not a r c h i t e c t u r e r e l e v an t −−>
12 </ xsl:template>
13

14 <xsl:template match=”packagedElement [@xmi:type = ’ uml:Package ’ and (
@name= ’ framework ’ or @name= ’ helpers ’)] ”>

15 %% c r e a t e e x p l i c i t framework elements %%
16 <xsl:apply−templates s e l e c t =”packagedElement” />
17 </ xsl:template>

The rule for the translation of classes is: look for all <packagedElement> nodes where
the attribute xmi:type is set to the value ‘uml:Class’. If this class has a parent class,

165

UML to Nivel translations

i.e. if generalization/@general is set to the ID of the parent, then output:
subclassOf D(<name of the class>,<name of the parent class>) .

Otherwise output:
topLevel D(<name of the class>) .
hasPotency D(<name of the class > ,3) .

Note that the potency is always set to 3. This is due to the design decision1 to place
all the framework element on level 3.

19 <xsl:template match=”packagedElement [@xmi:type = ’ uml:Class ’] ”>
20 < !−− l ook f o r c l a s s d e f i n i t i o n s : c l a s s e s at top l e v e l (−>

topLeve l D and hasPotency D) , and sub c l a s s e s (−> subclassOf D)
−−>

21 <xsl :variable name=” generalID ” s e l e c t =” g e n e r a l i z a t i o n / @general ” />
22 <xsl :variable name=”generalName” s e l e c t =” / / packagedElement [@xmi:id

=$generalID] /@name” />
23 <xsl :variable name=” c l a s s I D ” s e l e c t =”@xmi:id” />
24 <xsl :variable name=”className” s e l e c t =”@name” />
25 <xsl:choose>
26 <xsl:when t e s t =”$generalID ”>
27 subclassOf D (<xsl:value−of s e l e c t =”@name” /> ,<xsl:value−of

s e l e c t =” / / packagedElement [@xmi:id=$generalID] /@name” />)
.

28 </xsl:when>
29 <xsl:otherwise>
30 topLevel D (<xsl:value−of s e l e c t =”@name” />) .
31 hasPotency D (<xsl:value−of s e l e c t =”@name” /> , 3) .
32 </ xsl:otherwise>
33 </ xsl:choose>

Note that at this point of the code, we haven’t yet left the translation of a class. I.e.,
the template is not yet closed. We have to translate the class’s attributes now. This
is done by a named call to the template ‘translateAttribute’, which will be described
below.

35 < !−− l ook f o r a t t r i b u t e s −−>
36 <xsl:call−template name=” t r a n s l a t e A t t r i b u t e ” />
37 </ xsl:template>

The next template describes the translation of enumerations. If a <packagedElement
> has an xmi:type value of ‘uml:Enumeration’, then the output for each literal
(ownedLiteral) defined for this enumeration is:
contains(<name of the enumeration>,<value of the l i t e r a l >) .

Note that the enumeration itself has no representative in the Nivel syntax. This
is implicitly done by definition of a value domain, which is created by using the
name of the enumeration to span the domain of the enumeration values.

39 <xsl:template match=”packagedElement [@xmi:type = ’ uml:Enumeration ’] ”>
40 <xsl :variable name=” c l a s s I D ” s e l e c t =”@xmi:id” />

1See CHAPTER 10.4.4.

166

UML to Nivel translations

41 <xsl :variable name=”className” s e l e c t =”@name” />
42 <xsl:for−each s e l e c t =” ownedLiteral ”>
43 contains (<xsl:value−of s e l e c t =”$className” /> ,<xsl:value−of

s e l e c t =”@name” />) .
44 </ xsl:for−each>
45 </ xsl:template>

Similar to the template translating simple classes, the translation of associations
and association classes is covered by a separate template. The following template
applies to <packagedElement> nodes where the value of the attribute xmi:type is either
‘uml:Association’, or ‘uml:AssociationClass’.
In all cases, the template creates an association shortcut2 according to the following
pattern:

scn association D(<name of the association / a s s o c i a t i o n C l a s s >,3,<name of
f i r s t role >,<class name of f i r s t role >,<name of second role >,<class

name of second role >) .

47 <xsl:template match=”packagedElement [@xmi:type = ’ uml:Association ’ or
@xmi:type = ’ uml:AssociationClass ’] ”>

48 < !−− l ook f o r a s s o c i a t i o n s −−>
49 <xsl :variable name=” generalID ” s e l e c t =” g e n e r a l i z a t i o n / @general ” />
50 <xsl :variable name=”assoName” s e l e c t =”@name” />
51 <xsl :variable name=” assoID ” s e l e c t =”@xmi:id” />
52 <xsl :variable name=”superName” s e l e c t =” / / packagedElement [@xmi:id=$

generalID] /@name” />
53 s c n a s so c i a t i on D (<xsl:value−of s e l e c t =”$assoName” /> ,3 ,< !−−
54 −−><xsl:for−each s e l e c t =” / / * [@association =$assoID] ”>< !−−
55 −−><xsl :variable name=” r e f ” s e l e c t =”@xmi:id” />< !−−
56 −−><xsl :variable name=”roleName” s e l e c t =” / / * [@xmi:id=$ r e f] /

@name” />< !−−
57 −−><xsl:value−of s e l e c t =” / / * [@xmi:id=$ r e f] /@name” /> ,<

xsl:value−of s e l e c t =” / / packagedElement [@xmi:id = / / * [@xmi:id
=$ r e f] / @type] /@name” />< !−−

58 −−><x s l : i f t e s t =” posit ion () != l a s t () ”> ,</ x s l : i f>
59 </ xsl:for−each>) .

If the association does not have a generalization, then it must be a top level class:

topLevel D(<name of the association / association class>) .

60 <x s l : i f t e s t =”not ($superName) ”>
61 topLevel D (<xsl:value−of s e l e c t =”$assoName” />) .
62 </ x s l : i f>

Otherwise, if an association is a specialization of another association, then a sub-
class relation has to be added:

subclassOf D(<name of the association / association class>,<name of the
parent>) .

2See CHAPTER 10.4.3 for a description of this shortcut.

167

UML to Nivel translations

63 <x s l : i f t e s t =”$superName”>
64 subclassOf D (<xsl:value−of s e l e c t =”$assoName” /> ,<xsl:value−of

s e l e c t =”$superName” />) .
65 </ x s l : i f>

Like above for the classes, an association class can have attributes. These are output
here by the template ‘translateAttribute’, which is described below.

67 < !−− l ook f o r a t t r i b u t e s in case i t s an Asso c ia t i onC las s −−>
68 <xsl:call−template name=” t r a n s l a t e A t t r i b u t e ” />
69 </ xsl:template>

The template ‘translateAttribute’ is looking for <ownedAttribute> subnodes. If the
attribute is typed as an enumeration, then the following code is generated:

hasAttr D(<name of the class / association class>,<name of the a t t r i b u t e >)
,2 ,<name of the enumeration> ,1 ,1) .

Note that the potency is always set to 2, and for the sake of simplicity, the cardinali-
ties are always set to a minimum and maximum of 1.
If the attribute is not typed, a string type is assumed.

71 <xsl:template name=” t r a n s l a t e A t t r i b u t e ”>
72 <xsl:for−each s e l e c t =” ownedAttribute ”>
73 <xsl :variable name=” type ” s e l e c t =”@type” />
74 <xsl:choose>
75 <xsl:when t e s t =”$type ”>
76 <xsl :variable name=” attr ibuteType ” s e l e c t =” / /

packagedElement [@xmi:id=$type] ” />
77 <x s l : i f t e s t =”$ attr ibuteType [@xmi:type = ’

uml:Enumeration ’] ”>
78 hasAttr D (<xsl:value−of s e l e c t =” . . / @name” /> ,<

xsl:value−of s e l e c t =”@name” /> ,2 ,<xsl:value−of
s e l e c t =”$ attr ibuteType /@name” /> , 1 , 1) .

79 </ x s l : i f>
80 </xsl:when>
81 <xsl:otherwise>< !−− i n t e r p r e t as s t r i n g −−>
82 hasAttr D (<xsl:value−of s e l e c t =” . . / @name” /> ,<

xsl:value−of s e l e c t =”@name” /> ,2 ,<xsl:value−of
s e l e c t =”@name” /> , 1 , 1) .

83 </ xsl:otherwise>
84 </ xsl:choose>
85 </ xsl:for−each>
86 </ xsl:template>

The last template simply states that if any text is found while parsing the input file,
it is not output directly to the result file.

88 <xsl:template match=” t e x t () ” />
89 </ xsl : s tylesheet>

168

UML to Nivel translations

4. Transform DML architecture package to Nivel

This section describes the script implementing the translation of a DML architecture
provided as a UML model in XMI format to Nivel syntax.
The header here is the same as the one in the previous section.

1 <?xml version=” 1.0 ” encoding=”ISO−8859−1” ?>
2 <xsl : s tylesheet version=” 2.0 ” xmlns:xsl=” h t t p : / /www.w3. org /1999/XSL/

Transform” xmlns:xmi= ’ h t t p : / / schema .omg. org / spec /XMI/ 2 . 1 ’>
3

4 <xsl:output method=” t e x t ” encoding=”ISO−8859−1” />
5

6 <xsl:template match=” / ”>
7 <xsl:apply−templates />
8 </ xsl:template>

If a package is found that is named neither ‘architecture’, nor ‘framework’ or
‘helpers’, then it is ignored.

10 <xsl:template match=”packagedElement [@xmi:type = ’ uml:Package ’ and @name
! = ’ a r c h i t e c t u r e ’ and @name! = ’ framework ’ and @name! = ’ helpers ’] ”>

11 < !−− do nothing , s i n c e t h i s i s not a r c h i t e c t u r e r e l e v an t −−>
12 </ xsl:template>

As mentioned above, the purpose of this script is to translate all classes in the DML
architecture to Nivel syntax. This purpose is fulfilled by a template farther below.
When this is done during translation, all classes defined in the DML architecture
reside at level 2 of the Nivel model and can be instantiated on level 1 for a concrete
DML. Since there are classes in the DML framework that have to be instantiated at
level 1, too, like feature, there have to be representatives of these classes in level 2.
This is due to the implementation of deep instantiation in the Nivel framework.
These representatives are understood as implicit classes: a class in the framework
implies a representative class in the architecture to be able to instantiate the class in
a DML.
In order to enable the creation of framework elements in a DML, each element in
the DML framework is instantiated at level 2 as an instance with the same name,
but having the string ‘ ARCH’ appended to its name. This new element can then
be referred to in a Nivel DML as an element of level 2 representing an element that
actually resides on level 3.
The template following this description is realizing this approach. If a package is
found with the name ‘framework’ or ‘helpers’, then for all classes, associations, and
association classes the following code is generated:

instanceOf D(<name of the class> ARCH,<name of the class>) .

If such an element is involved within an association, it must be assured that all
associated classes that were defined in the parent association are compatible with
the subclasses. For this purpose the predicate scn subAssociationMultiple D is used.
This predicate has been explained in CHAPTER 10.4.3. The predicate is inserted

169

UML to Nivel translations

whenever a class in the DML framework is related to an association. The result in
such a case is:
scn subAssociationMultiple D(<name of the framework association> ARCH,<

name of the framework association>,<name of association end 1>,<name of
the class assigned to association end 1> ARCH,<name of a s s o c i a t i n g end
2>,<name of the class assigned to association end 2>) .

Note that the type of association end 1 is concatenated with ‘ ARCH’. This ensures
that any implicit architecture element created by the template at hand is associated
to any subclass of the class assigned to association end 2.

14 <xsl:template match=”packagedElement [@xmi:type = ’ uml:Package ’ and (
@name= ’ framework ’ or @name= ’ helpers ’)] ”>

15 %% c r e a t e i m p l i c i t a r c h i t e c t u r e elements from ’<x s l : v a l u e−o f
s e l e c t =”@name”/> ’ %%

16 <xsl:for−each s e l e c t =”packagedElement [@xmi:type = ’ uml:Class ’ or
@xmi:type = ’ uml:Association ’ or @xmi:type = ’ uml:AssociationClass
’] ”>

17 <xsl :variable name=” c l a s s I D ” s e l e c t =”@xmi:id” />
18 instanceOf D (<xsl:value−of s e l e c t =”@name” /> ARCH,<xsl:value−of

s e l e c t =”@name” />) .
19 <xsl :variable name=” generalID ” s e l e c t =” g e n e r a l i z a t i o n / @general

” />
20 <xsl :variable name=”className” s e l e c t =”@name” />
21 <xsl:for−each s e l e c t =” / / * [@type=$ c l a s s I D] ”> < !−− l ook ing f o r ”

ownedAttribute ” and ”ownedEnd”−−>
22 <xsl :variable name=” thisEnd ” s e l e c t =” . ” />
23 <xsl :variable name=” assoID ” s e l e c t =” @association ” />
24 <xsl :variable name=” asso ” s e l e c t =” / / packagedElement [

@xmi:id=$assoID] ” />
25 <xsl :variable name=”otherEnd” s e l e c t =” / / * [@xmi:id !=$

thisEnd / @xmi:id and @association=$assoID] ” />
26 scn subAssociationMultiple D (<xsl:value−of s e l e c t =”$asso /

@name” /> ARCH,<xsl:value−of s e l e c t =”$asso /@name” /> ,<
xsl:value−of s e l e c t =”$thisEnd /@name” /> ,<xsl:value−of
s e l e c t =” / / * [@xmi:id=$thisEnd / @type] /@name” /> ARCH,<
xsl:value−of s e l e c t =”$otherEnd /@name” /> ,<xsl:value−of
s e l e c t =” / / * [@xmi:id=$otherEnd / @type] /@name” />) .

27 </ xsl:for−each>
28 </ xsl:for−each>
29 </ xsl:template>

The next template simply completes the list of templates parsing the packages. It
states that if the package ‘architecture’ is found, then the rest of the script is applied
to its elements.

31 <xsl:template match=”packagedElement [@xmi:type = ’ uml:Package ’ and @name
= ’ a r c h i t e c t u r e ’] ”>

32 %% c r e a t e e x p l i c i t a r c h i t e c t u r e elements %%
33 <xsl:apply−templates s e l e c t =”packagedElement” />
34 </ xsl:template>

If a class is found in the architecture package, make it an instance of its parent class
in the DML framework:

170

UML to Nivel translations

instanceOf D(<name of the class>,<name of the parent class>) .

Then, the predicate scn subAssociationMultiple D is applied to any association
end related to the class, like we have done above for implicit classes.

36 <xsl:template match=”packagedElement [@xmi:type = ’ uml:Class ’] ”>
37 <xsl :variable name=” generalID ” s e l e c t =” g e n e r a l i z a t i o n / @general ” />
38 <xsl :variable name=”generalName” s e l e c t =” / / packagedElement [@xmi:id

=$generalID] /@name” />
39 <xsl :variable name=” c l a s s I D ” s e l e c t =”@xmi:id” />
40 <xsl :variable name=”className” s e l e c t =”@name” />
41 instanceOf D (<xsl:value−of s e l e c t =”@name” /> ,<xsl:value−of s e l e c t =”

/ / packagedElement [@xmi:id=$generalID] /@name” />) .
42 < !−− f o r each as so c i a t i on , c r e a t e a subAssoc ia t i on that i n h e r i t s

from the parent a s s o c i a t i on −−>
43 <xsl:for−each s e l e c t =” / / * [@type=$generalID] ”> < !−− l ook ing f o r ”

ownedAttribute ” and ”ownedEnd”−−>
44 <xsl :variable name=”endID” s e l e c t =”@xmi:id” />
45 <xsl :variable name=” assoID ” s e l e c t =” @association ” />
46 <xsl :variable name=” asso ” s e l e c t =” / / packagedElement [@xmi:id=$

assoID] ” />
47 <xsl :variable name=”assoName” s e l e c t =”$asso /@name” />
48 <xsl :variable name=”otherEnd” s e l e c t =” / / * [@xmi:id !=$endID and

@association =$assoID] ” />
49 <xsl :variable name=” o t h e r A t t r i b u t e ” s e l e c t =” / / * [@xmi:id=$

otherEnd / @xmi:id] ” />
50 scn subAssociationMultiple D (<xsl:value−of s e l e c t =”$assoName” /

> ARCH,<xsl:value−of s e l e c t =”$assoName” /> ,<xsl:value−of
s e l e c t =”@name” /> ,<xsl:value−of s e l e c t =”$className” /> ,<
xsl:value−of s e l e c t =”$ o t h e r A t t r i b u t e /@name” /> ,<xsl:value−of

s e l e c t =” / / * [@xmi:id=$ o t h e r A t t r i b u t e / @type] /@name” />) .< !−−
* i s l ook ing f o r ” ownedAttribute ” and ”ownedEnd”−−>

51 </ xsl:for−each>
52 </ xsl:template>

For associations and association classes, the translation is quite the same as for
classes, but at the end of the following template, a role playing is defined for all
association ends attached to the association:
playsRoleIn D(<class of the association end>,<name of the association end

>,<name of the association>) .

54 <xsl:template match=”packagedElement [@xmi:type = ’ uml:Association ’ or
@xmi:type = ’ uml:AssociationClass ’] ”>

55 <xsl :variable name=” generalID ” s e l e c t =” g e n e r a l i z a t i o n / @general ” />
56 <xsl :variable name=”assoName” s e l e c t =”@name” />
57 <xsl :variable name=”superName” s e l e c t =” / / packagedElement [@xmi:id=$

generalID] /@name” />
58 instanceOf D (<xsl:value−of s e l e c t =”$assoName” /> ,<xsl:value−of

s e l e c t =”$superName” />) .
59 < !−− f o r each as so c i a t i on , c r e a t e a subAssoc ia t i on that i n h e r i t s

from the parent a s s o c i a t i on −−>
60 <xsl:for−each s e l e c t =” / / * [@type=$generalID] ”> < !−− l ook ing f o r ”

ownedAttribute ” and ”ownedEnd”−−>

171

UML to Nivel translations

61 <xsl :variable name=” thisEnd ” s e l e c t =” . ” />
62 <xsl :variable name=” assoID ” s e l e c t =” @association ” />
63 <xsl :variable name=” asso ” s e l e c t =” / / packagedElement [@xmi:id=$

assoID] ” />
64 <xsl :variable name=”otherEnd” s e l e c t =” / / * [@xmi:id !=$ thisEnd /

@xmi:id and @association =$assoID] ” />
65 scn subAssociationMultiple D (<xsl:value−of s e l e c t =”$asso /@name

” /> ,<xsl:value−of s e l e c t =”$asso /@name” /> ,<xsl:value−of
s e l e c t =”$thisEnd /@name” /> ,<xsl:value−of s e l e c t =” / / * [@xmi:id
=$thisEnd / @type] /@name” /> ,<xsl:value−of s e l e c t =”$otherEnd /
@name” /> ,<xsl:value−of s e l e c t =” / / * [@xmi:id=$otherEnd / @type
] /@name” />) .

66 </ xsl:for−each>
67 <xsl:for−each s e l e c t =”ownedEnd”>
68 <xsl :variable name=” r e f ” s e l e c t =”@xmi:id” />
69 <xsl :variable name=”roleName” s e l e c t =” / / * [@xmi:id=$ r e f] /@name”

/>
70 playsRoleIn D (<xsl:value−of s e l e c t =” / / packagedElement [@xmi:id

= / / * [@xmi:id=$ r e f] / @type] /@name” /> ,<xsl:value−of s e l e c t =”
/ / * [@xmi:id=$ r e f] /@name” /> ,<xsl:value−of s e l e c t =”$assoName”
/>) .

71 </ xsl:for−each>
72 </ xsl:template>
73

74 <xsl:template match=” t e x t () ” />
75 </ xsl : s tylesheet>

5. Transform DML package to Nivel

Here, the XSL implementation of the translation of a DML to a UML model in XMI
format to Nivel syntax is explained.
The script starts with a common XSL script header. Note that the output format is
‘text’.

1 <?xml version=” 1.0 ” encoding=”ISO−8859−1” ?>
2 <xsl : s tylesheet version=” 2.0 ” xmlns:xsl=” h t t p : / /www.w3. org /1999/XSL/

Transform” xmlns:xmi=” h t t p : / / schema .omg. org / spec /XMI/ 2 . 1 ”>
3

4 <xsl:output method=” t e x t ” encoding=”ISO−8859−1” />
5

6 <xsl:template match=” / ”>
7 <xsl:apply−templates />
8 </ xsl:template>

The first functional template is the following. It states that every package that is
neither named ‘dml’, nor ‘extension’ and ‘configuration’ is ignored in the output.

10 <xsl:template match=”packagedElement [@xmi:type = ’ uml:Package ’ and @name
! = ’ dml ’ and @name! = ’ extension ’ and @name! = ’ configuration ’] ”>

11 < !−− do nothing , s i n c e t h i s i s not dml r e l e v an t −−>
12 </ xsl:template>

172

UML to Nivel translations

The next two templates represent the opposite of the previous template. If a package
found is either named ‘dml’ ‘extension’, or ‘configuration’, then its contents are
transfered to the output model. In case of ‘extension’, another lparse comment
is placed in the output file. Comments do not have an impact on functionality,
though.

14 <xsl:template match=”packagedElement [@xmi:type = ’ uml:Package ’ and (
@name= ’dml ’ or @name= ’ configuration ’]) ”>

15 %% c r e a t i n g development model l i n e content %%
16 <xsl:apply−templates s e l e c t =”packagedElement” />
17 </ xsl:template>
18

19 <xsl:template match=”packagedElement [@xmi:type = ’ uml:Package ’ and @name
= ’ extension ’] ”>

20 %% c r e a t i n g development model l i n e extension content %%
21 <xsl:apply−templates s e l e c t =”packagedElement” />
22 </ xsl:template>

The main work to be done during creation of a Nivel DML model is to look out
for instances. These are identified in <packagedElement> nodes with a <xmi:type>
attribute value of ‘uml:InstanceSpecification’. An instance must have a classifier.
The output generated by the template below is the following:

instanceOf D(<name of the instance>,<name of the c l a s s i f i e r >) .
instanceOf d(<name of the instance>,<name of the c l a s s i f i e r >) .

An instance is here both declared (<instanceOf D>) and actualized (<instanceOf d>).
This ensures that the instance is actual an element in the model and smodels will
not be tempted to remove the element from the model in search of a stable model
without it.
In case the instance is an instance of a DML framework element, then an ‘ ARCH’ is
added to the name of the classifier, because otherwise, the Nivel framework would
identify a consistency error when finding an instance at level 1 that is directly
related to another instance residing at level 3.

instanceOf D(<name of the instance>,<name of the c l a s s i f i e r > ARCH) .
instanceOf d(<name of the instance>,<name of the c l a s s i f i e r > ARCH) .

If an instance in the model is not named, then the XSL script inserts a randomly
generated name, instead. This name is created using the XSL function generate−id.
The parameter is the node the name is created for, assuring that the same identifier
is created again at later times if the same node is passed to the function.
If we look into the details, we notice that the classifier is identified in two possible
ways. It’s either stored as an attribute right with the <packagedElement> node. That’s
the way MagicDraw represents the classifier information. Or, the classifier might be
stored in a sub-node <classifier>. This is the way the Eclipse Modeling Framework
stores classifiers.

24 <xsl:template match=”packagedElement [@xmi:type = ’
uml:InstanceSpecif icat ion ’] ”>

25 <xsl :variable name=” c l a s s i f i e r I D ”>

173

UML to Nivel translations

26 <xsl:choose>
27 <xsl:when t e s t =” @ c l a s s i f i e r ”> < !−− MagicDraw uses

c l a s s i f i e r a t t r i b u t e −−>
28 <xsl:value−of s e l e c t =” @ c l a s s i f i e r ” />
29 </xsl:when>
30 <xsl:otherwise> < !−− E c l i p s e Modeling Framework uses

c l a s s i f i e r sub element −−>
31 <xsl:value−of s e l e c t =” c l a s s i f i e r / @xmi:idref ” />
32 </ xsl:otherwise>
33 </ xsl:choose>
34 </ xsl :variable>
35 <xsl :variable name=” c l a s s i f i e r N a m e ” s e l e c t =” / / packagedElement [

@xmi:id=$ c l a s s i f i e r I D] /@name” />
36 <xsl :variable name=” instance ” s e l e c t =” . ” />
37 <xsl :variable name=”instanceName”>
38 <xsl:choose>
39 <xsl:when t e s t =”@name! = ’ ’ ”><xsl:value−of s e l e c t =”@name” /><

/xsl:when>
40 <xsl:otherwise><xsl:value−of s e l e c t =” generate− id (.) ” /></

xsl:otherwise>
41 </ xsl:choose>
42 </ xsl :variable>
43 < !−− only go on i f t h e r e i s a c l a s s i f i e r −−>
44 <x s l : i f t e s t =”$ c l a s s i f i e r N a m e ”>
45 < !−− i f the c l a s s i f i e r comes out o f the framework , the

appendix ” ARCH” i s added to i t s name ! −−>
46 instanceOf D (<xsl:value−of s e l e c t =”$instanceName” /> ,<

xsl:value−of s e l e c t =”$ c l a s s i f i e r N a m e ” /><x s l : i f t e s t =” / / * [
@xmi:id=$ c l a s s i f i e r I D] / . . / @name= ’ framework ’ or / / * [@xmi:id
=$ c l a s s i f i e r I D] / . . / @name= ’ helpers ’ ”> ARCH</ x s l : i f>) .

47 < !−− make the in s tanc e ac tua l ! −−>
48 instanceOf d (<xsl:value−of s e l e c t =”$instanceName” /> ,<

xsl:value−of s e l e c t =”$ c l a s s i f i e r N a m e ” /><x s l : i f t e s t =” / / * [
@xmi:id=$ c l a s s i f i e r I D] / . . / @name= ’ framework ’ or / / * [@xmi:id
=$ c l a s s i f i e r I D] / . . / @name= ’ helpers ’ ”> ARCH</ x s l : i f>) .

49 <xsl:apply−templates s e l e c t =” s l o t ”>
50 <xsl:with−param name=”instanceName” s e l e c t =”$instanceName”

/>
51 <xsl:with−param name=” instance ” s e l e c t =”$ instance ” />
52 </ xsl:apply−templates>
53 </ x s l : i f>
54 </ xsl:template>

Some instances will have associations to other instances. This information is stored
in <slot> nodes lying within a <packagedElement>.
If an attribute has the type string, indicated by slot value ‘uml:LiteralString’ for the
node <xmi:type>, then the following output is generated:

hasValue D(<name of the instance>,<name of the association end ’ s type>,<
value of the s l o t >) .

contains(<name of the a s s o c i a t i o n end ’ s type>,<value of the s l o t >) .

This adds both the slot value to the instance, as well as to the domain of possible

174

UML to Nivel translations

values for the string. This domain has to be stated in order to keep the amount of
alternatives to be checked by smodels within finite bounds.
If the slot represents the end of an association, then the role playing is added to the
model:

playsRoleIn D(<name of the r e l a t e d element>,<name of the association end
>,<name of the instance >) .

If the slot represents the value of an enumeration, the following code is generated:

hasValue D(<name of the instance>,<name of the association end ’ s type>,<
value of the s l o t >) .

Here, no contains predicate is needed since the domain of values for the enumeration
has already been spanned in the DML framework.
As above, when an instance has not been fitted with a name, the function generate−id
is used. The function creates the same identifier that was created during instanti-
ation of the element, since the function is actually returning a hash code of the
element.

56 <xsl:template match=” s l o t ”>
57 <xsl:param name=”instanceName” />
58 <xsl:param name=” instance ” />
59

60 <xsl :variable name=” roleID ” s e l e c t =” @definingFeature ” />
61 <xsl :variable name=” r o l e ” s e l e c t =” / / * [@xmi:id=$ roleID] ” />
62 <xsl :variable name=” targetInstanceID ” s e l e c t =” value / @instance ” />
63 <xsl :variable name=” t a r g e t I n s t a n c e ” s e l e c t =” / / * [@xmi:id=$

targetInstanceID] ” />
64 < !−− only i n t e r p r e t t h i s s l o t as r o l e i f i t s not a l i t e r a l −−>
65 <xsl:choose>
66 <xsl:when t e s t =” value / @xmi:type = ’ u m l : L i t e r a l S t r i n g ’ ”>
67 hasValue D (<xsl:value−of s e l e c t =”$instanceName” /> ,<

xsl:value−of s e l e c t =”$ r o l e /@name” /> ,<xsl:value−of
s e l e c t =” value / @value” />) .

68 contains (<xsl:value−of s e l e c t =”$ r o l e /@name” /> ,<
xsl:value−of s e l e c t =” value / @value” />) .

69 </xsl:when>
70 <xsl:when t e s t =”not (/ / ownedLiteral [@xmi:id=$ targetInstanceID])

”>
71 <xsl :variable name=”elementName”>
72 <x s l : i f t e s t =”not ($ t a r g e t I n s t a n c e /@name) ”>
73 <xsl:value−of s e l e c t =” generate− id ($ t a r g e t I n s t a n c e)

” />
74 </ x s l : i f>
75 <x s l : i f t e s t =”$ t a r g e t I n s t a n c e /@name”>
76 <xsl:value−of s e l e c t =”$ t a r g e t I n s t a n c e /@name” />
77 </ x s l : i f>
78 </ xsl :variable>
79 playsRoleIn D (<xsl:value−of s e l e c t =”$elementName” /> ,<

xsl:value−of s e l e c t =”$ r o l e /@name” /> ,<xsl:value−of
s e l e c t =”$instanceName” />) .

80

175

UML to Nivel translations

81 </xsl:when>
82 <xsl:otherwise>
83 hasValue D (<xsl:value−of s e l e c t =”$instanceName” /> ,<

xsl:value−of s e l e c t =”$ r o l e /@name” /> ,<xsl:value−of
s e l e c t =”$ t a r g e t I n s t a n c e /@name” />) .

84 </ xsl:otherwise>
85 </ xsl:choose>
86 </ xsl:template>

The rest of the script is self-explaining, the more as it has already been explained
above.

88 <xsl:template match=” t e x t () ” />
89

90 </ xsl : s tylesheet>

176

DML in Nivel syntax

6. Transformed DML framework in Nivel syntax

This section contains the complete DML framework illustrated in FIGURE 9.2 in
Nivel syntax.
The code is identical to the code generated by the UML-to-Nivel transformation
for the DML framework (see CHAPTER 10.4.4), but it is stripped off whitespaces and
dispensable newlines.

1 scn association D (d e s e l e c t s , 3 , d e s e l e c t o r , f e a t u r e D e s e l e c t o r ,
deselectedFeature , f e a t u r e) .

2 topLevel D (d e s e l e c t s) .
3

4 topLevel D (f e a t u r e D e s e l e c t o r) .
5 hasPotency D (f e a t u r e D e s e l e c t o r , 3) .
6

7 topLevel D (f e a t u r e) .
8 hasPotency D (feature , 3) .
9

10 subclassOf D (contentElement , modelElement) .
11

12 topLevel D (operand) .
13 hasPotency D (operand , 3) .
14

15 scn association D (modifies , 3 , operation , changeOperation , t a r g e t , modelElement
) .

16 topLevel D (modifies) .
17

18 scn association D (boundConstraint , 3 , oper , constraintOperand , constr ,
c o n s t r a i n t) .

19 topLevel D (boundConstraint) .
20

21 topLevel D (c o n s t r a i n t) .
22 hasPotency D (constraint , 3) .
23 hasAttr D (constraint , invalMode , 2 , invalidityMode , 1 , 1) .
24

25 scn association D (constrainedElement , 3 , constr , constraint , element ,
contentElement) .

26 topLevel D (constrainedElement) .
27

28 scn association D (r e l a t i o n , 3 , source , contentElement , t a r g e t , contentElement) .
29 subclassOf D (r e l a t i o n , contentElement) .
30

31 contains (operatorType ,opAND) .

177

DML in Nivel syntax

32 contains (operatorType ,opOR) .
33 contains (operatorType ,opNOT) .
34 contains (operatorType ,opXOR) .
35 contains (operatorType , opID) .
36

37 scn association D (belongs to , 3 , element , modelElement , capsule , f e a t u r e) .
38 topLevel D (belongs to) .
39

40 subclassOf D (rootTerm , term) .
41

42 scn association D (operands , 3 , operandsContainer , term , operandsContained ,
operand) .

43 topLevel D (operands) .
44

45 scn association D (rootFeature , 3 , root , feature , model , featureModel) .
46 topLevel D (rootFeature) .
47

48 subclassOf D (term , operand) .
49 hasAttr D (term , operator , 2 , operatorType , 1 , 1) .
50

51 contains (cardinalityType , mandatory) .
52 contains (cardinalityType , optional) .
53

54 scn association D (parameter , 3 , operation , changeOperation , param , modelElement
) .

55 topLevel D (parameter) .
56

57 scn association D (subfeature , 3 , whole , feature , part , f e a t u r e) .
58 topLevel D (subfeature) .
59 hasAttr D (subfeature , c a r d i n a l i t y , 2 , cardinalityType , 1 , 1) .
60

61 subclassOf D (typeConstraint , c o n s t r a i n t) .
62 hasAttr D (typeConstraint , constrainedTypeName , 2 , constrainedTypeName

, 1 , 1) .
63

64 subclassOf D (constraintOperand , operand) .
65

66 topLevel D (featureModel) .
67 hasPotency D (featureModel , 3) .
68

69 topLevel D (modelElement) .
70 hasPotency D (modelElement , 3) .
71

72 contains (invalidityMode , i n v a l i d) .
73 contains (invalidityMode , true) .
74 contains (invalidityMode , f a l s e) .
75

76 subclassOf D (changeOperation , modelElement) .

178

DML in Nivel syntax

7. Transformed DML architecture in Nivel syntax

This section contains the complete exemplary DML architecture illustrated in FIG-
URE 9.2.
The code is identical to the code generated by the UML-to-Nivel transformation
for DML architectures (see CHAPTER 10.4.4), but it is stripped off whitespaces and
dispensable newlines.

1 instanceOf D (product , contentElement) .
2 scn subAssociationMultiple D (relation ARCH , r e l a t i o n , source , product ,

t a r g e t , contentElement) .
3 scn subAssociationMultiple D (relation ARCH , r e l a t i o n , t a r g e t , product ,

source , contentElement) .
4 scn subAssociationMultiple D (constrainedElement ARCH ,

constrainedElement , element , product , constr , c o n s t r a i n t) .
5

6 instanceOf D (modif iesResponsibi l i ty , modifies) .
7 playsRoleIn D (changeProductResponsibility , operation ,

m o d i f i e s R e s p o n s i b i l i t y) .
8 playsRoleIn D (r e s p o n s i b i l i t y , t a r g e t , m o d i f i e s R e s p o n s i b i l i t y) .
9

10 instanceOf D (role , contentElement) .
11 scn subAssociationMultiple D (relation ARCH , r e l a t i o n , source , role , t a r g e t

, contentElement) .
12 scn subAssociationMultiple D (relation ARCH , r e l a t i o n , t a r g e t , role , source

, contentElement) .
13 scn subAssociationMultiple D (constrainedElement ARCH ,

constrainedElement , element , role , constr , c o n s t r a i n t) .
14

15 instanceOf D (hasToBeResponsibleFor , c o n s t r a i n t) .
16 scn subAssociationMultiple D (boundConstraint ARCH , boundConstraint ,

constr , hasToBeResponsibleFor , oper , constraintOperand) .
17 scn subAssociationMultiple D (constrainedElement ARCH ,

constrainedElement , constr , hasToBeResponsibleFor , element ,
contentElement) .

18

19 instanceOf D (newRole , parameter) .
20 playsRoleIn D (changeProductResponsibility , operation , newRole) .
21 playsRoleIn D (role , param , newRole) .
22

23 instanceOf D (r e s p o n s i b i l i t y , r e l a t i o n) .
24 playsRoleIn D (role , source , r e s p o n s i b i l i t y) .
25 playsRoleIn D (product , t a r g e t , r e s p o n s i b i l i t y) .
26

27 instanceOf D (changeProductResponsibility , changeOperation) .
28 scn subAssociationMultiple D (modifies ARCH , modifies , operation ,

changeProductResponsibility , t a r g e t , modelElement) .
29 scn subAssociationMultiple D (parameter ARCH , parameter , operation ,

changeProductResponsibility , param , modelElement) .
30

31 instanceOf D (constrainedRole , constrainedElement) .
32 playsRoleIn D (hasToBeResponsibleFor , constr , constrainedRole) .

179

DML in Nivel syntax

33 playsRoleIn D (role , element , constrainedRole) .
34

35 instanceOf D (constrainedProduct , constrainedElement) .
36 playsRoleIn D (hasToBeResponsibleFor , constr , constrainedProduct) .
37 playsRoleIn D (product , element , constrainedProduct) .
38

39 instanceOf D (hasToBeRelatedToAny , typeConstraint) .
40

41 instanceOf D (deselects ARCH , d e s e l e c t s) .
42

43 instanceOf D (featureDeselector ARCH , f e a t u r e D e s e l e c t o r) .
44 scn subAssociationMultiple D (deselects ARCH , d e s e l e c t s , d e s e l e c t o r ,

featureDeselector ARCH , deselectedFeature , f e a t u r e) .
45

46 instanceOf D (feature ARCH , f e a t u r e) .
47 scn subAssociationMultiple D (deselects ARCH , d e s e l e c t s ,

deselectedFeature , feature ARCH , d e s e l e c t o r , f e a t u r e D e s e l e c t o r) .
48 scn subAssociationMultiple D (belongs to ARCH , belongs to , capsule ,

feature ARCH , element , modelElement) .
49 scn subAssociationMultiple D (rootFeature ARCH , rootFeature , root ,

feature ARCH , model , featureModel) .
50 scn subAssociationMultiple D (subfeature ARCH , subfeature , whole ,

feature ARCH , part , f e a t u r e) .
51 scn subAssociationMultiple D (subfeature ARCH , subfeature , part ,

feature ARCH , whole , f e a t u r e) .
52

53 instanceOf D (contentElement ARCH , contentElement) .
54 scn subAssociationMultiple D (relation ARCH , r e l a t i o n , source ,

contentElement ARCH , t a r g e t , contentElement) .
55 scn subAssociationMultiple D (relation ARCH , r e l a t i o n , t a r g e t ,

contentElement ARCH , source , contentElement) .
56 scn subAssociationMultiple D (constrainedElement ARCH ,

constrainedElement , element , contentElement ARCH , constr , c o n s t r a i n t) .
57

58 instanceOf D (operand ARCH , operand) .
59 scn subAssociationMultiple D (operands ARCH , operands , operandsContained ,

operand ARCH , operandsContainer , term) .
60

61 instanceOf D (modifies ARCH , modifies) .
62

63 instanceOf D (boundConstraint ARCH , boundConstraint) .
64

65 instanceOf D (constraint ARCH , c o n s t r a i n t) .
66 scn subAssociationMultiple D (boundConstraint ARCH , boundConstraint ,

constr , constraint ARCH , oper , constraintOperand) .
67 scn subAssociationMultiple D (constrainedElement ARCH ,

constrainedElement , constr , constraint ARCH , element , contentElement) .
68

69 instanceOf D (constrainedElement ARCH , constrainedElement) .
70

71 instanceOf D (relation ARCH , r e l a t i o n) .
72

180

DML in Nivel syntax

73 instanceOf D (belongs to ARCH , belongs to) .
74

75 instanceOf D (rootTerm ARCH , rootTerm) .
76

77 instanceOf D (operands ARCH , operands) .
78

79 instanceOf D (rootFeature ARCH , rootFeature) .
80

81 instanceOf D (term ARCH , term) .
82 scn subAssociationMultiple D (operands ARCH , operands , operandsContainer ,

term ARCH , operandsContained , operand) .
83

84 instanceOf D (parameter ARCH , parameter) .
85

86 instanceOf D (subfeature ARCH , subfeature) .
87

88 instanceOf D (typeConstraint ARCH , typeConstraint) .
89

90 instanceOf D (constraintOperand ARCH , constraintOperand) .
91 scn subAssociationMultiple D (boundConstraint ARCH , boundConstraint , oper

, constraintOperand ARCH , constr , c o n s t r a i n t) .
92

93 instanceOf D (featureModel ARCH , featureModel) .
94 scn subAssociationMultiple D (rootFeature ARCH , rootFeature , model ,

featureModel ARCH , root , f e a t u r e) .
95

96 instanceOf D (modelElement ARCH , modelElement) .
97 scn subAssociationMultiple D (modifies ARCH , modifies , t a r g e t ,

modelElement ARCH , operation , changeOperation) .
98 scn subAssociationMultiple D (belongs to ARCH , belongs to , element ,

modelElement ARCH , capsule , f e a t u r e) .
99 scn subAssociationMultiple D (parameter ARCH , parameter , param ,

modelElement ARCH , operation , changeOperation) .
100

101 instanceOf D (changeOperation ARCH , changeOperation) .
102 scn subAssociationMultiple D (modifies ARCH , modifies , operation ,

changeOperation ARCH , t a r g e t , modelElement) .
103 scn subAssociationMultiple D (parameter ARCH , parameter , operation ,

changeOperation ARCH , param , modelElement) .

8. Transformed DML in Nivel syntax

This section contains the complete exemplary DML illustrated in FIGURE 9.3, after
execution of configuration and modification by the DML environment.
The code is identical to the code generated by the UML-to-Nivel transformation
for DML’s (see CHAPTER 10.4.4), but it is stripped off whitespaces and dispensable
newlines.

1 instanceOf D (subterm1 , term ARCH) .
2 instanceOf d (subterm1 , term ARCH) .

181

DML in Nivel syntax

3 hasValue D (subterm1 , operator ,opXOR) .
4

5 instanceOf D (d1e206 , belongs to ARCH) .
6 instanceOf d (d1e206 , belongs to ARCH) .
7 playsRoleIn D (pmResp4pm, element , d1e206) .
8 playsRoleIn D (projManagement , capsule , d1e206) .
9

10 instanceOf D (d1e219 , belongs to ARCH) .
11 instanceOf d (d1e219 , belongs to ARCH) .
12 playsRoleIn D (projManagement , capsule , d1e219) .
13 playsRoleIn D (projectManual , element , d1e219) .
14

15 instanceOf D (d1e232 , boundConstraint ARCH) .
16 instanceOf d (d1e232 , boundConstraint ARCH) .
17 playsRoleIn D (qaHasToBeResponsible4qaManual , constr , d1e232) .
18 playsRoleIn D (operand3 , oper , d1e232) .
19

20 instanceOf D (d1e245 , operands ARCH) .
21 instanceOf d (d1e245 , operands ARCH) .
22 playsRoleIn D (mainManagementProducts , operandsContainer , d1e245) .
23 playsRoleIn D (subterm1 , operandsContained , d1e245) .
24

25 instanceOf D (pmrepo , featureModel ARCH) .
26 instanceOf d (pmrepo , featureModel ARCH) .
27

28 instanceOf D (projectManager , r o l e) .
29 instanceOf d (projectManager , r o l e) .
30

31 instanceOf D (qaHasToBeRelated2anyProduct , hasToBeRelatedToAny) .
32 instanceOf d (qaHasToBeRelated2anyProduct , hasToBeRelatedToAny) .
33 hasValue D (qaHasToBeRelated2anyProduct , constrainedTypeName , product) .
34 contains (constrainedTypeName , product) .
35 hasValue D (qaHasToBeRelated2anyProduct , invalMode , f a l s e) .
36

37 instanceOf D (operand1 , constraintOperand ARCH) .
38 instanceOf d (operand1 , constraintOperand ARCH) .
39

40 instanceOf D (pmHasToBeResponsible4pmManual , hasToBeResponsibleFor) .
41 instanceOf d (pmHasToBeResponsible4pmManual , hasToBeResponsibleFor) .
42 hasValue D (pmHasToBeResponsible4pmManual , invalMode , i n v a l i d) .
43

44 instanceOf D (qaHasToBeResponsible4qaManual , hasToBeResponsibleFor) .
45 instanceOf d (qaHasToBeResponsible4qaManual , hasToBeResponsibleFor) .
46 hasValue D (qaHasToBeResponsible4qaManual , invalMode , f a l s e) .
47

48 instanceOf D (d1e295 , boundConstraint ARCH) .
49 instanceOf d (d1e295 , boundConstraint ARCH) .
50 playsRoleIn D (operand1 , oper , d1e295) .
51 playsRoleIn D (pmHasToBeResponsible4pmManual , constr , d1e295) .
52

53 instanceOf D (projectManual , product) .
54 instanceOf d (projectManual , product) .

182

DML in Nivel syntax

55

56 instanceOf D (subterm2 , term ARCH) .
57 instanceOf d (subterm2 , term ARCH) .
58 hasValue D (subterm2 , operator ,opNOT) .
59

60 instanceOf D (d1e318 , belongs to ARCH) .
61 instanceOf d (d1e318 , belongs to ARCH) .
62 playsRoleIn D (projManagement , capsule , d1e318) .
63 playsRoleIn D (projectManager , element , d1e318) .
64

65 instanceOf D (d1e331 , operands ARCH) .
66 instanceOf d (d1e331 , operands ARCH) .
67 playsRoleIn D (subterm1 , operandsContainer , d1e331) .
68 playsRoleIn D (subterm2 , operandsContained , d1e331) .
69

70 instanceOf D (mainManagementProducts , rootTerm ARCH) .
71 instanceOf d (mainManagementProducts , rootTerm ARCH) .
72 hasValue D (mainManagementProducts , operator ,opAND) .
73

74 instanceOf D (d1e468 , boundConstraint ARCH) .
75 instanceOf d (d1e468 , boundConstraint ARCH) .
76 playsRoleIn D (operand2 , oper , d1e468) .
77 playsRoleIn D (qaHasToBeRelated2anyProduct , constr , d1e468) .
78

79 instanceOf D (orgModel , feature ARCH) .
80 instanceOf d (orgModel , feature ARCH) .
81

82 instanceOf D (d1e483 , rootFeature ARCH) .
83 instanceOf d (d1e483 , rootFeature ARCH) .
84 playsRoleIn D (orgModel , root , d1e483) .
85 playsRoleIn D (pmrepo , model , d1e483) .
86

87 instanceOf D (d1e496 , subfeature ARCH) .
88 instanceOf d (d1e496 , subfeature ARCH) .
89 hasValue D (d1e496 , c a r d i n a l i t y , mandatory) .
90 playsRoleIn D (orgModel , whole , d1e496) .
91 playsRoleIn D (projManagement , part , d1e496) .
92

93 instanceOf D (operand3 , constraintOperand ARCH) .
94 instanceOf d (operand3 , constraintOperand ARCH) .
95

96 instanceOf D (d1e517 , constrainedRole) .
97 instanceOf d (d1e517 , constrainedRole) .
98 playsRoleIn D (projectManager , element , d1e517) .
99 playsRoleIn D (pmHasToBeResponsible4pmManual , constr , d1e517) .

100

101 instanceOf D (d1e530 , constrainedProduct) .
102 instanceOf d (d1e530 , constrainedProduct) .
103 playsRoleIn D (pmHasToBeResponsible4pmManual , constr , d1e530) .
104 playsRoleIn D (projectManual , element , d1e530) .
105

106 instanceOf D (pmResp4pm, r e s p o n s i b i l i t y) .

183

DML in Nivel syntax

107 instanceOf d (pmResp4pm, r e s p o n s i b i l i t y) .
108 playsRoleIn D (projectManager , source , pmResp4pm) .
109 playsRoleIn D (projectManual , t a r g e t , pmResp4pm) .
110

111 instanceOf D (d1e556 , operands ARCH) .
112 instanceOf d (d1e556 , operands ARCH) .
113 playsRoleIn D (operand3 , operandsContained , d1e556) .
114 playsRoleIn D (subterm1 , operandsContainer , d1e556) .
115

116 instanceOf D (d1e569 , operands ARCH) .
117 instanceOf d (d1e569 , operands ARCH) .
118 playsRoleIn D (operand2 , operandsContained , d1e569) .
119 playsRoleIn D (subterm2 , operandsContainer , d1e569) .
120

121 instanceOf D (projManagement , feature ARCH) .
122 instanceOf d (projManagement , feature ARCH) .
123

124 instanceOf D (operand2 , constraintOperand ARCH) .
125 instanceOf d (operand2 , constraintOperand ARCH) .
126

127 instanceOf D (d1e587 , operands ARCH) .
128 instanceOf d (d1e587 , operands ARCH) .
129 playsRoleIn D (mainManagementProducts , operandsContainer , d1e587) .
130 playsRoleIn D (operand1 , operandsContained , d1e587) .

184

DML semantics

9. Semantics for constraint restriction

This section covers the semantics for constraint restriction embedded in the DML
environment. It contains all rules concerning constraints, without the definition
of the constraintIsFulfilled predicate. This predicate is part of the DML architecture,
while the following rules belong to the DML framework and must not be altered
during DML architecture creation.
The code can be divided into several sections:

• Shortcuts and Helpers (lines 1ff.): These are used in the other sections.

• Spanning variant room(lines 48ff.): For each operand in any term, one of
two states are initially assumed. It may be either satisfied or unsatisfied.
This code section creates two model variants for each operand. In accordance
to additional rules defined below, none, one, or both variants may be dis-
carded from the set of stable models.

• Semantics for constraint synchronization (lines 57ff.): The complete span-
ning of variant space is synchronized with the actual satisfaction status of
operands.

• Assembly of terms using boolean operators (lines 75ff.): implementation
of boolean logics for the combination of operands to terms.

• Semantics of the attribute invalMode (lines 157ff.): In case of a configured
and reduced DML model, some constraints may point to targets that were
removed from the model. The semantics of invalMode specify how to evaluate
such a constraint.

The following code is documented inline. With the short descriptions above, and
the exact specification in the code, it should be possible to get the meaning. In
some cases, further descriptions are provided inline.

1 %% SHORTCUTS AND HELPERS %%
2 %% Shortcuts %%
3 % Sho r t cu t f o r a s s o c i a t i on ”boundConstraint ” i n s t an c e s between

BoundConstraint and c on s t r a i n t
4 operand2constraint (Operand , Constraint) :− instanceOf tp (Constraint ,

constraint , 2) ,
5 instanceOf tp (Operand , constraintOperand , 2) ,
6 instanceOf tp (BoundConstraint , boundConstraint , 2) ,

185

DML semantics

7 playsRoleIn D (Constraint , constr , BoundConstraint) ,
8 playsRoleIn D (Operand , oper , BoundConstraint) .
9

10 % Sho r t cu t f o r a s s o c i a t i on ” cons t ra inedElement ” in s t an c e s between an
c on s t r a i n t and a contentElement

11 constrainedElement (Constraint , Element) :− instanceOf tp (Element ,
contentElement , 2) ,

12 instanceOf tp (Constraint , constraint , 2) ,
13 instanceOf tp (Asso , constrainedElement , 2) ,
14 playsRoleIn D (Element , element , Asso) ,
15 playsRoleIn D (Constraint , constr , Asso) .
16

17 % Sho r t cu t f o r the type s p e c i f i e d by a t ypeCons t ra in t
18 constrainedType (Constraint , Type) :− instanceOf tp (Type , contentElement , 1) ,
19 instanceOf tp (Constraint , typeConstraint , 2) ,
20 hasValue D (Constraint , constrainedType , Type) .
21

22 % Sho r t cu t s f o r a c c e s s to operands o f terms
23 isOperandOf (Operand , Term) :− instanceOf tp (Operands , operands , 2) ,
24 instanceOf tp (Operand , operand , 2) ,
25 instanceOf tp (Term , term , 2) ,
26 playsRoleIn D (Term , operandsContainer , Operands) ,
27 playsRoleIn D (Operand , operandsContained , Operands) .
28 areOperandsOf (Operand , Operand2 , Term) :− instanceOf tp (Operand , operand , 2) ,
29 instanceOf tp (Operand2 , operand , 2) ,
30 instanceOf tp (Term , term , 2) ,
31 Operand != Operand2 ,
32 isOperandOf (Operand , Term) ,
33 isOperandOf (Operand2 , Term) .
34

35 % Sho r t cu t s f o r ope ra to rTypes
36 opTypeAND(Term) :− instanceOf tp (Term , term , 2) ,
37 hasValue D (Term , operator ,opAND) .
38 opTypeNOT(Term) :− instanceOf tp (Term , term , 2) ,
39 hasValue D (Term , operator ,opNOT) .
40 opTypeID (Term) :− instanceOf tp (Term , term , 2) ,
41 hasValue D (Term , operator , opID) .
42 opTypeOR (Term) :− instanceOf tp (Term , term , 2) ,
43 hasValue D (Term , operator ,opOR) .
44 opTypeXOR(Term) :− instanceOf tp (Term , term , 2) ,
45 hasValue D (Term , operator ,opXOR) .

The following rule represents the implementation of Requirement 1 we know from
CHAPTER 10.4.6.

48 %% SPAN VARIANTS %%
49 % An operand may e i t h e r be s a t i s f i e d , or un sa t i s f i e d , neve r both !
50 1 { satisf iedOperand (Operand) , unsatisfiedOperand (Operand) } 1 :−

instanceOf tp (Operand , operand , 2) .

This next rule implements Requirement 3 from CHAPTER 10.4.6.

52 % A roo t operand that i s u n s a t i s f i e d d i s q u a l i f i e s the model con ta in ing i t !
53 :− unsatisfiedOperand (RootTerm) ,

186

DML semantics

54 instanceOf tp (RootTerm , rootTerm , 2) .

The following rules assure that if a constraint is identified as satisfied, then the
model variant where it is marked as unsatisfied is discarded, and vice versa.

57 %% DEFINE SEMANTICS FRAMEWORK FOR CONSTRAINTS %%
58 % Discard a l l models were c o n s t r a i n t I s F u l f i l l e d and sa t i s f i e dOpe rand are

unsynchronized f o r a cons t ra in tOperand / c on s t r a i n t pa i r
59 :− 1 { c o n s t r a i n t I s F u l f i l l e d (Constraint) , satisf iedOperand (Operand) } 1 ,
60 operand2constraint (Operand , Constraint) ,
61 instanceOf tp (Operand , constraintOperand , 2) ,
62 instanceOf tp (Constraint , constraint , 2) .
63

64 % Discard a l l models were checkUnsat i s f i edOperand and unsa t i s f i edOpe rand
are unsynchronized

65 :− 1 { c o n s t r a i n t I s N o t F u l f i l l e d (Constraint) , unsatisfiedOperand (Operand)
} 1 ,

66 operand2constraint (Operand , Constraint) ,
67 instanceOf tp (Operand , constraintOperand , 2) ,
68 instanceOf tp (Constraint , constraint , 2) .
69

70 % I f the semant ics p rov ided in the a r c h i t e c t u r e does not i n f e r the
p r e d i c a t e c o n s t r a i n t I s F u l f i l l e d f o r a cons t r a in t , then the c on s t r a i n t
i s not f u l f i l l e d .

71 c o n s t r a i n t I s N o t F u l f i l l e d (Constraint) :− not c o n s t r a i n t I s F u l f i l l e d (
Constraint) ,

72 instanceOf tp (Constraint , constraint , 2) .

The operator logics implement Requirement 2 from CHAPTER 10.4.6. It discards all
models were any of the boolean logics is not set correctly. For example, think of a
term x with two operands a and b that has an operatorType of opAND.
Remember that the rule in line 50 creates four possible models for each assignment
of satisfiedOperand and unsatisfiedOperand to a and b. term x implies with its associated
AND logics that all models have to be discarded that do not have both the predicates
satisfiedOperand(a) and satisfiedOperand(b) set. Thus, three models will be regarded as
invalid that contain the following predicates:

1. unsatisfiedOperand(a). satisfiedOperand(b).

2. satisfiedOperand(a). unsatisfiedOperand(b).

3. unsatisfiedOperand(a). unsatisfiedOperand(b).

75 %% DEFINE LOGICS FOR OPERATORS %%
76 %% opAND %%
77 % the model i s i n va l i d i f term i s s a t i s f i e d , and any operand i s not

s a t i s f i e d
78 :− instanceOf tp (Term , term , 2) ,
79 instanceOf tp (Operand , operand , 2) ,
80 opTypeAND(Term) ,
81 satisf iedOperand (Term) ,
82 isOperandOf (Operand , Term) ,

187

DML semantics

83 not satisf iedOperand (Operand) .
84 % the model i s i n va l i d i f term i s un sa t i s f i e d , and both operands are

s a t i s f i e d
85 :− instanceOf tp (Term , term , 2) ,
86 instanceOf tp (Operand , operand , 2) ,
87 instanceOf tp (Operand2 , operand , 2) ,
88 opTypeAND(Term) ,
89 not satisf iedOperand (Term) ,
90 areOperandsOf (Operand , Operand2 , Term) ,
91 satisf iedOperand (Operand) ,
92 satisf iedOperand (Operand2) .
93

94 %% opOR %%
95 % the model i s i n va l i d i f term i s s a t i s f i e d , and both operands are not
96 :− instanceOf tp (Term , term , 2) ,
97 instanceOf tp (Operand , operand , 2) ,
98 instanceOf tp (Operand2 , operand , 2) ,
99 opTypeOR (Term) ,

100 satisf iedOperand (Term) ,
101 areOperandsOf (Operand , Operand2 , Term) ,
102 not satisf iedOperand (Operand) ,
103 not satisf iedOperand (Operand2) .
104 % the model i s i n va l i d i f term i s un sa t i s f i e d , and any operand i s

s a t i s f i e d
105 :− instanceOf tp (Term , term , 2) ,
106 instanceOf tp (Operand , operand , 2) ,
107 opTypeOR (Term) ,
108 not satisf iedOperand (Term) ,
109 isOperandOf (Operand , Term) ,
110 satisf iedOperand (Operand) .
111

112 %% opXOR %%
113 % the model i s i n va l i d i f term i s s a t i s f i e d , and both operand are

s a t i s f i e d
114 :− instanceOf tp (Term , term , 2) ,
115 instanceOf tp (Operand , operand , 2) ,
116 instanceOf tp (Operand2 , operand , 2) ,
117 opTypeXOR(Term) ,
118 satisf iedOperand (Term) ,
119 areOperandsOf (Operand , Operand2 , Term) ,
120 satisf iedOperand (Operand) ,
121 satisf iedOperand (Operand2) .
122 % the model i s i n va l i d i f term i s s a t i s f i e d , and both operand are not

s a t i s f i e d
123 :− instanceOf tp (Term , term , 2) ,
124 instanceOf tp (Operand , operand , 2) ,
125 instanceOf tp (Operand2 , operand , 2) ,
126 opTypeXOR(Term) ,
127 satisf iedOperand (Term) ,
128 areOperandsOf (Operand , Operand2 , Term) ,
129 not satisf iedOperand (Operand) ,
130 not satisf iedOperand (Operand2) .

188

DML semantics

131 % the model i s i n va l i d i f term i s un sa t i s f i e d , and exa c t l y one operand i s
s a t i s f i e d

132 :− 1 { satisf iedOperand (Operand) , satisf iedOperand (Operand2) } 1 ,
133 instanceOf tp (Term , term , 2) ,
134 instanceOf tp (Operand , operand , 2) ,
135 instanceOf tp (Operand2 , operand , 2) ,
136 opTypeXOR(Term) ,
137 not satisf iedOperand (Term) ,
138 areOperandsOf (Operand , Operand2 , Term) .
139

140 %% opNOT %%
141 % the model i s inva l id , i f the term i s s a t i s f i e d and the operand i s , too ,

or i f both are not
142 :− 1 { satisf iedOperand (Term) , not satisf iedOperand (Operand) } 1 ,
143 instanceOf tp (Term , term , 2) ,
144 instanceOf tp (Operand , operand , 2) ,
145 opTypeNOT(Term) ,
146 isOperandOf (Operand , Term) .
147

148 %% opID %%
149 % the model i s inva l id , i f the term i s s a t i s f i e d and the operand i sn ’ t , o r

v i c e v e r sa
150 :− 1 { satisf iedOperand (Term) , satisf iedOperand (Operand) } 1 ,
151 instanceOf tp (Term , term , 2) ,
152 instanceOf tp (Operand , operand , 2) ,
153 opTypeID (Term) ,
154 isOperandOf (Operand , Term) .

The semantics of constraint’s attribute invalMode is shown below. The comments
at the beginning of the following code describe in natural language how to handle
the three different values invalid, true, and false.

157 %% SEMANTICS OF invalMode %%
158 %% Check i f a constraint that ought to have targets does not have a target

; %%
159 % Background : a f t e r r e du c t i on of the model , i t may be that the t a r g e t o f a
160 % con s t r a i n t may have been removed from the model . I f t h i s i s the case , i t
161 % has to be s t a t e d how th i s c on s t r a i n t i s to be i n t e r p r e t e d . A c on s t r a i n t
162 % has an a t t r i b u t e ” invalMode” that can have t h r e e va lues :
163 % a) i n va l i d − the whole term using t h i s c on s t r a i n t must be r ega rded as

eva lua t ing to f a l s e
164 % b) t r u e − the c on s t r a i n t i s r e ga rded as eva lua t ing to t r u e
165 % c) f a l s e − the c on s t r a i n t i s r e ga rded as eva lua t ing to f a l s e
166 constraintHasTarget (Constraint) :−
167 instanceOf tp (Constraint , constraint , 2) ,
168 instanceOf tp (Target , contentElement , 2) ,
169 constrainedElement (Constraint , Element) .
170

171 % See c on s t r a i n t as un sa t i s f i e d , i f invalMode i s f a l s e and no t a r g e t s
172 c o n s t r a i n t I s N o t F u l f i l l e d (Constraint) :− not constraintHasTarget (Constraint

) ,
173 instanceOf tp (Constraint , constraint , 2) ,
174 hasValue D (Constraint , invalMode , f a l s e) .

189

DML semantics

175

176 % See c on s t r a i n t as s a t i s f i e d , i f invalMode i s f a l s e and no t a r g e t s
177 c o n s t r a i n t I s F u l f i l l e d (Constraint) :− not constraintHasTarget (Constraint) ,
178 instanceOf tp (Constraint , constraint , 2) ,
179 hasValue D (Constraint , invalMode , true) .
180

181 % A con s t r a i n t i s r e ga rded inva l id , i f invalMode i s ’ i n va l i d ’ .
182 invalidConstraint (Constraint) :− not constraintHasTarget (Constraint) ,
183 instanceOf tp (Constraint , constraint , 2) ,
184 hasValue D (Constraint , invalMode , i n v a l i d) .
185

186 invalidOperand (Operand) :− operand2constraint (Operand , Constraint) ,
187 instanceOf tp (Constraint , constraint , 2) ,
188 instanceOf tp (Operand , constraintOperand , 2) ,
189 invalidConstraint (Constraint) .
190

191 % Any term using an in va l i d operand i s i t s e l f i n va l i d
192 invalidOperand (Term) :− isOperandOf (Operand , Term) ,
193 instanceOf tp (Operand , operand , 2) ,
194 instanceOf tp (Term , term , 2) ,
195 invalidOperand (Operand) .
196

197 % Any inva l i d Operand i s un s a t i s f i e d
198 unsatisfiedOperand (Operand) :− invalidOperand (Operand) ,
199 instanceOf tp (Operand , operand , 2) .

190

Bibliography and indices

191

Bibliography

[AEH+08] Ove Armbrust, Jan Ebell, Ulrike Hammerschall, Jürgen Münch, and
Daniela Thoma. Experiences and results from tailoring and deploying a
large process standard in a company. Software Process: Improvement and
Practice, 13(4):301–309, John Wiley & Sons, Chichester, Great Britain,
July 2008.

[AF98] Paul Allen and Stuart Frost. Component-Based Development for Enterprise
Systems: Applying the SELECT Perspective. Cambridge University Press,
1998.

[AG01] Michalis Anastasopoulos and Cristina Gacek. Implementing product
line variabilities. ACM SIGSOFT Software Engineering Notes, 26(3):109–
117, ACM, New York, USA, 2001.

[AK01] Colin Atkinson and Thomas Kühne. The essence of multilevel meta-
modeling. In Proceedings of the 4th International Conference on The Unified
Modeling Language, Modeling Languages, Concepts, and Tools, pages 19–33.
Springer-Verlag, 2001.

[AK02] Colin Atkinson and Thomas Kühne. Profiles in a strict metamodeling
framework. Science of Computer Programming, 44(1):5–22, 2002.

[AKM+08] Ove Armbrust, Masafumi Katahira, Yuko Miyamoto, Jürgen Münch,
Haruka Nakao, and Alexis Ocampo. Scoping software process models -
initial concepts and experience from defining space standards. In Pro-
ceedings of the International Conference on Software Process, 2008, volume
5007 of LNCS, pages 160 – 172, Springer, Berlin/Heidelberg, Germany,
May 2008.

[AKM+09] Ove Armbrust, Masafumi Katahira, Yuko Miyamoto, Jürgen Münch,
Haruka Nakao, and Alexis Ocampo. Scoping software process lines.
Software Process: Improvement and Practice, 14(3):181–197, John Wiley &
Sons, New York, USA, 2009.

[AM09] Timo Asikainen and Tomi Männistö. Nivel: a metamodelling language
with a formal semantics. Software and Systems Modeling, 8(4):521–549,
2009.

192

Bibliography

[AMS06] Timo Asikainen, Tomi Mannisto, and Timo Soininen. A unified con-
ceptual foundation for feature modelling. In Proceedings of the 10th
International Software Product Line Conference, 2006, pages 31–40, IEEE
Computer Society, Washington, USA, 2006.

[ANS04] ANSI American National Standards Institute. Ansi/eia-649-a 2004: Na-
tional consensus standard for configuration management, 2004.

[Arm08] Ove Armbrust. Leitfaden zur Modelleinführung im Rahmen der
organisations-spezifischen Anpassung des V-Modell XT. Technical
Report 013.08/D, Institut für Experimentelles Software Engineering
(IESE), March 2008.

[Asi07] Timo Asikainen. Nivel on the soberit software business and engi-
neering institute webpage, version made public on 2007-8-29. http:

//www.soberit.tkk.fi/nivel/, 2007.

[Asi08] Timo Asikainen. A conceptual modeling approach to software variability.
PhD thesis, Helsinki University of Technology, 2008.

[ASU92] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilerbau, volume 1.
Addison-Wesley, Bonn, 2nd edition, 1992.

[Atk97] Colin Atkinson. Meta-Modeling for distributed object environments.
In Proceedings of the 1st International Conference on Enterprise Distributed
Object Computing, EDOC ’97, pages 90–101, IEEE Computer Society,
Washington, DC, USA, 1997.

[BBM05] Kathrin Berg, Judith Bishop, and Dirk Muthig. Tracing software prod-
uct line variability: from problem to solution space. In Proceedings of the
2005 annual research conference of the South African institute of computer
scientists and information technologists on IT research in developing coun-
tries, pages 182–191, South African Institute for Computer Scientists
and Information Technologists, White River, South Africa, 2005.

[BBvB+01] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew
Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve
Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas. Manifesto
for agile software development. http://agilemanifesto.org/, 2001.
Access: 8th January 2010.

[BCG83] Robert Balzer, Thomas E. Cheatham, Jr., and Cordell Green. Software
technology in the 1990’s: Using a new paradigm. Computer, 16(11):39–
45, 1983.

193

http://www.soberit.tkk.fi/nivel/
http://www.soberit.tkk.fi/nivel/
http://agilemanifesto.org/

Bibliography

[Ben87] Herbert D. Benington. Production of large computer programs. In
Proceedings of the 9th international conference on Software Engineering,
pages 299–310, IEEE Computer Society Press, Monterey, CA, USA, 1987.

[BF01] Kent Beck and Martin Fowler. Planning extreme programming. Addison-
Wesley, 2001.

[BFG+02] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, Henk Ob-
bink, and Klaus Pohl. Variability issues in software product lines. In
Proceedings of the 4th InternationalWorkshop on Software Product-Family
Engineering, 2001, LNCS, pages 303–338, Springer, Berlin/Heidelberg,
Germany, 2002.

[BFT09] Christian Bartelt, Edward Fischer, and Thomas Ternité. Paradigmen zur
Variabilitätsbeschreibung von Vorgehensmodellen. In Stefan Fischer,
Erik Maehle, and Rüdiger Reischuk, editors, INFORMATIK 2009 – Im
Focus das Leben, volume P-154 of GI-Lecture Notes in Informatics, pages
3507–3521, Bonner Köllen, Bonn, September 2009.

[BMI97] BMI Bundesministerium des Innern. V-Model [97] – development
standard for it-systems of the federal republic of germany, lifecycle pro-
cess model, brief description. http://v-modell.iabg.de/index.php?

option=com_docman&task=doc_details&gid=13&Itemid=30, 1997. Ac-
cess: 12th January 2010.

[BMI08] BMI Bundesministerium des Innern. V-Model XT 1.3 HTML documen-
tation. http://ftp.tu-clausthal.de/pub/institute/informatik/

v-modell-xt/Releases/1.3/V-Modell%20XT%20HTML%20English/, 2008.
Access: 13th January 2010.

[BMI10] BMI Bundesministerium des Innern. Das V-Modell XT. http://www.

v-modell-xt.de, 2010. Access: 13th January 2010.

[BMMB97] Jan Bosch, Peter Molin, Michael Mattsson, and PerOlof Begtsson.
Object-oriented frameworks: Problems & experiences. Research Re-
port HKR-RES-97/9-SE, University of Karlskrona/Ronneby, Ronneby,
Sweden, 1997.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal. A System of Patterns: Pattern-Oriented Software Ar-
chitecture. John Wiley & Sons, Chichester, Great Britain, 1st edition,
1996.

[Boe88] Barry W. Boehm. A spiral model of software development and enhance-
ment. Computer, 21(5):61–72, IEEE Computer Society, Los Alamitos,,
May 1988.

194

http://v-modell.iabg.de/index.php?option=com_docman&task=doc_details&gid=13&Itemid=30
http://v-modell.iabg.de/index.php?option=com_docman&task=doc_details&gid=13&Itemid=30
http://ftp.tu-clausthal.de/pub/institute/informatik/v-modell-xt/Releases/1.3/V-Modell%20XT%20HTML%20English/
http://ftp.tu-clausthal.de/pub/institute/informatik/v-modell-xt/Releases/1.3/V-Modell%20XT%20HTML%20English/
http://www.v-modell-xt.de
http://www.v-modell-xt.de

Bibliography

[BPS04] Danilo Beuche, Holger Papajewski, and Wolfgang Schröder-Preikschat.
Variability management with feature models. Science of Computer Pro-
gramming, 53(3):333–352, Elsevier, Amsterdam, Netherlands, 2004.

[BR05] Manfred Broy and Andreas Rausch. Das neue V-Modell XT: Ein an-
passbares Modell für Software und Systems Engineering. Informatik
Spektrum, 28(3):220–229, Springer, Berlin/Heidelberg, Germany, June
2005.

[CKK06] Krzysztof Czarnecki, Chang Hwan Peter Kim, and Karl Trygve Kalleberg.
Feature models are views on ontologies. In Proceedings of the 10th Inter-
national Software Product Line Conference, SPLC 2006, pages 41–51, IEEE
Computer Society, Washington, USA, 2006.

[CN02] Paul Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley Professional, August 2002.

[Coc93] Alistair A. R. Cockburn. The impact of object-orientation on application
development. IBM Systems Journal, 32(3):420–444, 1993.

[CW98] Reidar Conradi and Bernhard Westfechtel. Version models for software
configuration management. ACMComput. Surv., 30(2):232–282, 1998.

[DIN01] DIN Deutsches Institut für Normung. DIN 69901: Projektmanagement;
Projektmanagementsysteme; . . . , 2001.

[dOGHM05] Edson Alves de Oliveira, Jr., Itana M. S. Gimenes, Elisa Hatsue Moriya
Huzita, and José Carlos Maldonado. A variability management process
for software product lines. In Proceedings of the Conference of the Centre
for Advanced Studies on Collaborative research, 2005, pages 225–241. IBM
Press, 2005.

[DSB09] Sybren Deelstra, Marco Sinnema, and Jan Bosch. Variability assess-
ment in software product families. Information and Software Technology,
51(1):195–218, Butterworth-Heinemann, Newton, USA, 2009.

[Ecl10a] Eclipse. ATL, atlas transformation language, version 3.1.0. http://www.
eclipse.org/atl/, June 2010. Access: 20th July 2010.

[Ecl10b] Eclipse. Eclipse modeling framework. http://www.eclipse.org/emf,
2010.

[EV10] J. Laurenz Eveleens and Chris Verhoef. The rise and fall of the Chaos
Report figures. IEEE Software, 27(1):30–36, 2010.

[FK07] Martin Fritzsche and Patrick Keil. Kategorisierung etablierter vorge-
hensmodelle und ihre verbreitung in der deutschen Software-Industrie.
Technical Report TUM-I0717, Technische Universität München, 2007.

195

http://www.eclipse.org/atl/
http://www.eclipse.org/atl/
http://www.eclipse.org/emf

Bibliography

[FM92] Kevin Forsberg and Harold Mooz. The relationship of systems engineer-
ing to the project cycle. Engineering Managament Journal, 4(3):36–43,
1992.

[FM01] Kevin Forsberg and Harold Mooz. A visual explanation of development
methods and strategies including the waterfall, spiral, vee, vee+, vee++
models. In Proceedings of the International Council for Systems Engineering
Conference, INCOSE 2001, http://www.csm.com/Repository/Model/rep/
o/pdf/VisualExplanationofModels.pdf, Melbourne, Australia, 2001.

[FR05] Rainer Frömming and Andreas Rausch. Migration of persistent object
models using XMI. In Hongji Yang, editor, Advances in UML and XML
Based Software Evolution, pages 92–104. Idea Group Publishing, Jul 2005.

[FW06] Joyce Fortune and Diana White. Framing of project critical success
factors by a systems model. International Journal of Project Management,
24(1):53–65, 2006.

[GHJV94] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides.
Design Patterns. Elements of Reusable Object-Oriented Software. Addison
Wesley, Amsterdam, Netherlands, 1st edition, 1994.

[Gib97] J. Paul Gibson. Feature requirements models: Understanding interac-
tions. In Proceedings of the IEEE Fourth International Workshop on Feature
Interactions in Networks and Distributed Systems, FIW’97, pages 46–60,
IOS Press, Amsterdam, Netherlands, 1997.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics
for logic programming. In Proceedings of the 5th International Conference
and Symposium on Logic Programming, 1988, pages 1070–1080. MIT Press,
1988.

[Gla06] Robert L. Glass. The Standish report: does it really describe a software
crisis? Commun. ACM, 49(8):15–16, 2006.

[Gna07] Michael Andreas Josef Gnatz. Vom Vorgehensmodell zum Projektplan.
PhD thesis, Technische Universität München, München, Germany,
December 2007.

[Gol09] Golimojo. Make object-oriented programming easier with only six
lines of javascript. http://www.golimojo.com/etc/js-subclass.html,
2009. Access: 13th August 2009.

[HHMS04] Bernd Hindel, Klaus Hörmann, Markus Müller, and Jürgen Schmied.
Basiswissen Software-Projektmanagement. Dpunkt.Verlag GmbH, 1st
edition, June 2004.

196

http://www.csm.com/Repository/Model/rep/o/pdf/Visual Explanation of Models.pdf
http://www.csm.com/Repository/Model/rep/o/pdf/Visual Explanation of Models.pdf
http://www.golimojo.com/etc/js-subclass.html

Bibliography

[HK10a] Jonas Helming and Maximilian Kögel. Unicase. http://unicase.org,
2010.

[HK10b] Markus Herrmannsdörfer and Maximilian Kögel. Towards a generic op-
eration recorder for model evolution. In Proceedings of the International
Workshop on Model Comparison in Practice, IWMCP’2010, pages 76 – 81,
ACM, New York, USA, July 2010.

[IEE98] IEEE Computer Society. IEEE 828-1998: IEEE standard for software
configuration management plans, 1998. ISBN 0-7381-0331-4.

[ISB03] ISB Informatikstrategieorgan Bund. HERMES – Führen und Ab-
wickeln von Projekten der Informations- und Kommunikation-
stechnik (IKT) – Grundwissen. http://www.hermes.admin.ch/ikt_

projektfuehrung/handbuecher/handbucher-als-pdf-zum-download/

hermes-grundwissen/at_download/file, 2003. Access: 13th January
2010.

[ISB09] ISB Informatikstrategieorgan Bund. Die Entwicklung von HER-
MES. http://www.hermes.admin.ch/ueber-hermes/projekte?set_

language=de&cl=de, 2009. Access: 13th January 2010.

[ISO95] ISO International Organisation for Standardization. ISO/IEC 12207:
Software life cycle processes. http://www.abelia.com/docs/12207cpt.

pdf, 1995.

[ISO00] ISO International Organisation for Standardization. ISO 9001: Quality
management systems requirements. http://www.iso9001.qmb.info/,
2000. Access: 7th January 2010.

[ISO03] ISO International Organisation for Standardization. ISO/IEC
10007:2003: Quality management systems – guidelines for configu-
ration management, 2003.

[ISO06] ISO International Organisation for Standardization. ISO/IEC 15504:
Spice (software process improvement and capability determination),
2006.

[ISO09] ISO International Organisation for Standardization. ISO 31000: Risk
management – principles and guidelines on implementation, 2009.

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software
Development Process. Addison-Wesley Professional, 1st edition, 1999.

[Joh91] Ralph E. Johnson. Reusing object-oriented design. Technical Report
UIUCDCS 91-1696, University of Illinois, Illinois, USA, 1991.

197

http://unicase.org
http://www.hermes.admin.ch/ikt_projektfuehrung/handbuecher/handbucher-als-pdf-zum-download/hermes-grundwissen/at_download/file
http://www.hermes.admin.ch/ikt_projektfuehrung/handbuecher/handbucher-als-pdf-zum-download/hermes-grundwissen/at_download/file
http://www.hermes.admin.ch/ikt_projektfuehrung/handbuecher/handbucher-als-pdf-zum-download/hermes-grundwissen/at_download/file
http://www.hermes.admin.ch/ueber-hermes/projekte?set_language=de&cl=de
http://www.hermes.admin.ch/ueber-hermes/projekte?set_language=de&cl=de
http://www.abelia.com/docs/12207cpt.pdf
http://www.abelia.com/docs/12207cpt.pdf
http://www.iso9001.qmb.info/

Bibliography

[Joh02] Rod Johnson. Expert One-on-One J2EE Design and Development. Wrox
Press, 2002.

[JS02] Lawrence G. Jones and Albert L. Soule. Software process improve-
ment and product line practice: Capability Maturity Model Integration
(CMMI) and the framework for software product line practice. Techni-
cal Report CMU/SEI-2002-TN-012, Software Engineering Institute, July
2002.

[KCH+90] Kyo Kang, Sholom Cohen, James A. Hess, William Novak, and
A. Spencer Peterson. Feature-Oriented Domain Analysis (FODA) feasibil-
ity study. Technical Report CMU/SEI-90-TR-021, Software Engineering
Institute, 1990.

[KH10a] Maximilian Kögel and Jonas Helming. Emfstore. http://emfstore.org,
2010.

[KH10b] Maximilian Kögel and Jonas Helming. EMFStore - a model repository
for EMF models. In Proceedings of the 32nd ACM/IEEE International Con-
ference on Software Engineering, ICSE 2010, Track on Information Research
Demos, pages 307–308, ACM, New York, USA, 2010.

[KL02] Arun Kishan and Monica Lam. Dynamic kernel modification and
extensibility. Technical report, Stanford University, Stanford, 2002.

[KN05] Marco Kuhrmann and Dirk Niebuhr. Das V-Modell XT in der Praxis - IT-
WiBe. In Roland Petrasch, Reinhard Höhn, Stephan Höppner, Herbert
Wetzel, and Manuela Wiemers, editors, Proceedings of the 12.Workshop
der FachgruppeWI-VM der Gesellschaft für Informatik e.V. (GI), Entschei-
dungsfall Vorgehensmodelle, 2005, pages 81–92, Shaker, Aachen, Ger-
many, 2005.

[Kna04] Peter Knauber. Managing the evolution of software product lines. In
Proceedings of the 8th International Conference on Software Reuse, ICSR-8,
2004, LNCS, Springer, Berlin/Heidelberg, Germany, 2004.

[KR01] Frank Keienburg and Andreas Rausch. Using XML/XMI for tool sup-
ported evolution of UML models. In Proceedings of 34th annual Hawaii
international conference on system sciences, HICSS’34, pages 3–6. IEEE
Computer Society, Jan 2001.

[Kru00] Philippe Kruchten. The Rational Unified Process: An Introduction.
Addison-Wesley Professional, 2nd edition, 2000.

[KS07] Thomas Kühne and Daniel Schreiber. Can programming be liberated
from the two-level style: multi-level programming with deepjava. ACM
SIGPLAN Notices, 42(10):229–244, October 2007.

198

http://emfstore.org

Bibliography

[KT09] Marco Kuhrmann and Thomas Ternité. Das V-Modell XT 1.3 - Neuerun-
gen für Anwender und Prozessingenieure. In Reinhard Höhn and Oliver
Linssen, editors, Proceedings of the 16.Workshop der FachgruppeWI-VM
der Gesellschaft für Informatik e.V. (GI), Vorgehensmodelle und Implemen-
tierungsfragen Akquisition - Lokalisierung - soziale Manahmen -Werkzeuge,
pages 97–108, Shaker, Aachen, Germany, April 2009.

[Kuh05] Marco Kuhrmann. Projektspezifische Anpassungen nach dem Tailor-
ing des V-Modell XT durchführen. In Hubert Biskup and Ralf Kneu-
per, editors, Proceedings of the 13. Workshop der Fachgruppe WI-VM der
Gesellschaft für Informatik e.V. (GI), Nutzen und Nutzung von Vorgehens-
modellen, 2006, pages 27–42, Shaker, Aachen, Germany, 2005.

[Kuh08] Marco Kuhrmann. Konstruktion modularer Vorgehensmodelle. PhD thesis,
Technische Universität München, July 2008.

[LK04] Kwanwoo Lee and Kyo C. Kang. Feature Dependency Analysis for Product
Line Component Design, pages 69–85. LNCS. Springer, Berlin/Heidelberg,
Germany, 2004.

[LMT07] Shirley Lacy, Ivor MacFarlane, and Sharon Taylor. ITIL – Service Transi-
tion. TSO The Stationary Office, 2007.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of
subtyping. ACM Transactions on Programming Languages and Systems,
16(6):1811–1841, ACM, New York, USA, 1994.

[Mär05] Friedhelm Märsch. EJBs und J2EE - Enterprise-Anwendungen konzipieren &
programmieren. W3L, 2005.

[MC99] Luis Mandel and Maŕıa Cengarle. On the expressive power of OCL.
In Proceedings of the International Conference on Formal Methods, FM’99,
volume 1708 of LNCS, pages 854–874, Springer, Berlin/Heidelberg, Ger-
many, 1999.

[McG04] John D. McGregor. Software product lines. Journal of Object Technology,
3(3):65–74, 2004.

[MJ82] Daniel D. McCracken and Michael A. Jackson. Life cycle concept con-
sidered harmful. SIGSOFT Softw. Eng. Notes, 7(2):29–32, 1982.

[MT99] Victor W. Marek and Mirosław Truszcyński. Stable models and an
alternative logic programming paradigm. In Krzysztof R. Apt, Victor W.
Marek, Mirek Truszczyński, and David S. Warren, editors, The Logic
Programming Paradigm: a 25-year Perspective, pages 375–398. Springer,
1999.

199

Bibliography

[Nat07] National ITS Architecture Team. Systems engineering for intelligent
transportation systems. Technical Report FHWA-HOP-07-069, Depart-
ment of Transportation, Office of Operations, Washington, DC, USA,
2007.

[Nie99] Ilkka Niemelä. Logic programs with stable model semantics as a con-
straint programming paradigm. Annals of Mathematics and Artificial
Intelligence, 25(3):241–273, November 1999.

[Nob00] James Noble. Basic relationship patterns. In Neil Harrison, Brian Foote,
and Hans Rohnert, editors, Pattern Languages of Program Design 4, pages
73–94. Addison-Wesley Longman, Amsterdam, Netherlands, 2000.

[NSS99] Ilkka Niemelä, Patrik Simons, and Timo Soininen. Stable model seman-
tics of weight constraint rules. In Proceedings of the 5th International
Conference on Logic Programming and Nonmonotonic Reasoning, 1999, vol-
ume 1730 of LNCS, pages 317–331, Springer, London, UK, 1999.

[NSS00] Ilkka Niemelä, Patrik Simons, and Tommi Syrjänen. Smodels: A system
for answer set programming. In Proceedings of the 8th International
Workshop on Non-Monotonic Reasoning, 2000, April 2000.

[OBM05] Alexis Ocampo, Fabio Bella, and Jürgen Münch. Software process com-
monality analysis. Software Process: Improvement and Practice, Special
Issue on the 5th International Workshop on Software Process Simulation and
Modeling, ProSim 2004, 10(3):273–285, John Wiley & Sons, Chichester,
Great Britain, August 2005.

[Ode94] James Odell. Power types. Journal of Object-Oriented Programming, 7(2):8–
12, May 1994.

[OGC02] OGC Office of Government Commerce, editor. Managing Successful
Projects with PRINCE2. TSO The Stationary Office, 2002.

[OGC09a] OGC Office of Government Commerce. PRINCE2 – background. http:
//www.ogc.gov.uk/methods_prince_2__background.asp, 2009. Access:
13th January 2010.

[OGC09b] OGC Office of Government Commerce. PRojects IN Controlled En-
vironments Home. http://www.prince-officialsite.com/home/home.
asp, 2009. Access: 13th January 2010.

[OM09] Alexis Ocampo and Jürgen Münch. Rationale modeling for software
process evolution. Softw. Process, 14(2):85–105, 2009.

[OMG06] OMG Object Management Group. Meta Object Facility (MOF) Core
Specification, version 2.0. http://www.omg.org/spec/MOF/2.0/, Jan-
uary 2006. Access: 10th November 2009.

200

http://www.ogc.gov.uk/methods_prince_2__background.asp
http://www.ogc.gov.uk/methods_prince_2__background.asp
http://www.prince-officialsite.com/home/home.asp
http://www.prince-officialsite.com/home/home.asp
http://www.omg.org/spec/MOF/2.0/

Bibliography

[OMG07a] OMG Object Management Group. MOF 2.0/XMI mapping, ver-
sion 2.1.1. http://www.omg.org/technology/documents/formal/xmi.

htm, December 2007. Access: 25th May 2010.

[OMG07b] OMG Object Management Group. UML 2.1.1, omg unified modeling
language (omg uml), superstructure, version 2.1.1. http://schema.omg.
org/spec/UML/2.1.1/, August 2007. Access: 30th July 2010.

[OMG08a] OMG Object Management Group. QVT, MOF 2.0 query / views / trans-
formations, version 1.0. http://www.omg.org/spec/QVT/1.0/, April
2008. Access: 20th July 2010.

[OMG08b] OMG Object Management Group. Software Process Engineering
Meta-Model (SPEM), version 2.0. http://www.omg.org/technology/

documents/formal/spem.htm, April 2008. Access: 19th June 2009.

[OMG10a] OMG Object Management Group. OCL 2.2, object constraint language.
http://www.omg.org/spec/OCL/2.2/, February 2010. Access: 12th May
2010.

[OMG10b] OMG Object Management Group. UML 2.3, omg unified modeling
language (omg uml), superstructure, version 2.3. http://schema.omg.
org/spec/UML/2.3/, May 2010. Access: 24th June 2010.

[OMR09] Alexis Ocampo, Jürgen Münch, and William E. Riddle. Incrementally
introducing process model rationale support in an organization. In
Proceedings of the International Conference on Software Process: Trustworthy
Software Development Processes, ICSP 2009, volume 5543 of LNCS, pages
330–341. Springer, 2009.

[OS07] Alexis Ocampo and Mart́ın Soto. Connecting the rationale for changes
to the evolution of a process. In Prodeedings of the International Con-
ference on Product-Focused Software Process Improvement, PROFES 2007,
volume 4589/2007 of LNCS, pages 160–174. Springer, 2007.

[PF02] Stephen R. Palmer and John M. Felsing. A Practical Guide to Feature
Driven Development. Prentice Hall, 2002.

[Pit93] Matthew Pittman. Lessons learned in managing object-oriented devel-
opment. IEEE Software, 10(1):43–53, 1993.

[PSU09a] PSU Pennsylvania State University. CiteseerX website. http://

citeseerx.ist.psu.edu, 2009. Access: 19th June 2009.

[PSU09b] PSU Pennsylvania State University. CiteseerX website: Search results for
“feature-oriented domain analysis”. http://citeseerx.ist.psu.edu/

search?q=title%3A(Feature-Oriented+Domain+Analysis)+AND+year%

3A1990&sort=cite&ic=1, 2009. Access: 19th June 2009.

201

http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://schema.omg.org/spec/UML/2.1.1/
http://schema.omg.org/spec/UML/2.1.1/
http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/technology/documents/formal/spem.htm
http://www.omg.org/technology/documents/formal/spem.htm
http://www.omg.org/spec/OCL/2.2/
http://schema.omg.org/spec/UML/2.3/
http://schema.omg.org/spec/UML/2.3/
http://citeseerx.ist.psu.edu
http://citeseerx.ist.psu.edu
http://citeseerx.ist.psu.edu/search?q=title%3A(Feature-Oriented+Domain+Analysis)+AND+year%3A1990&sort=cite&ic=1
http://citeseerx.ist.psu.edu/search?q=title%3A(Feature-Oriented+Domain+Analysis)+AND+year%3A1990&sort=cite&ic=1
http://citeseerx.ist.psu.edu/search?q=title%3A(Feature-Oriented+Domain+Analysis)+AND+year%3A1990&sort=cite&ic=1

Bibliography

[PvdLM06] Klaus Pohl, Frank van der Linden, and Andreas Metzger. Software prod-
uct line variability management. In Proceedings of the 10th International
on Software Product Line Conference, 2006, page 219, IEEE Computer
Society, Washington, USA, 2006.

[RK08] Maryam Razavian and Ramtin Khosravi. Modeling variability in busi-
ness process models using UML. In Proceedings of the 5th International
Conference on Information Technology: NewGenerations, ITNG2008, pages
82–87, IEEE Computer Society, Washington, USA, 2008.

[Rom05] Dieter Rombach. Integrated software process and product lines. In
Mingshu Li, Barry Boehm, and Leon J. Osterweil, editors, Unifying the
Software Process Spectrum, volume 3840 of LNCS, pages 83 – 90. Springer,
Berlin/Heidelberg, Germany, May 2005.

[Roy87] Winston W. Royce. Managing the development of large software sys-
tems: concepts and techniques. In Proceedings of the 9th international
conference on Software Engineering, pages 328–338, IEEE Computer Soci-
ety Press, Monterey, CA, USA, 1987.

[Sam01] Johannes Sametinger. Software Engineering with Reusable Components.
Springer, Berlin/Heidelberg, Germany, 1st edition, 2001.

[SB01] Ken Schwaber and Mike Beedle. Agile Software Development with Scrum.
Prentice Hall, 2001.

[Sch06] Arnd Schnieders. Variability mechanism centric process family archi-
tectures. In Proceedings of the 13th Annual IEEE International Symposium
andWorkshop on Engineering of Computer Based Systems, ECBS 2006, pages
289–298, IEEE Computer Society, Washington, USA, 2006.

[SCO07] Borislava Simidchieva, Lori Clarke, and Leon Osterweil. Representing
process variation with a process family. In Proceedings of the Interna-
tional Conference on Software Process, ICSP 2007, LNCS, pages 109–120,
Springer, Berlin/Heidelberg, Germany, 2007.

[SEI06] SEI Software Engineering Institute. Capability Maturity Model Integra-
tion. http://www.sei.cmu.edu/cmmi/, 2006. Access: 19th June 2009.

[Smu00] Raymond M. Smullyan. Forever Undecided. Oxford Paperbacks, Novem-
ber 2000.

[SNS02] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and
implementing the stable model semantics. Artificial Intelligence, 138(1-
2):181–234, 2002.

202

http://www.sei.cmu.edu/cmmi/

Bibliography

[SP06] Arnd Schnieders and Frank Puhlmann. Variability mechanisms in
E-Business process families. In Proceedings of the 9th International Confer-
ence on Business Information Systems, BIS 2006, volume P-85 of GI-Lecture
Notes in Informatics, pages 583–601, Bonner Köllen, Bonn, Germany,
2006.

[Spr09] SpringSource. Official Spring website. http://www.springsource.org/,
2009. Access: 19th June 2009.

[Sta94] Standish Group International. The CHAOS report, reprint. http://

www.projectsmart.co.uk/docs/chaos-report.pdf, 1994. Access: 4th
January 2010.

[Sun09] Sun Microsystems. Official Java EE website. http://java.sun.com/

javaee/, 2009. Access: 19th June 2009.

[SvGB02] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. A taxonomy of vari-
ability realization techniques. Software Practice & Experience, 35(8):705—
754, John Wiley & Sons, Chichester, Great Britain, 2002.

[Tai96] Antero Taivalsaari. On the notion of inheritance. ACM Computing
Surveys, 28(3):438–479, ACM, New York, USA, 1996.

[TC06] Gabriele Taentzer and Giovanni Toffetti Carughi. A Graph-Based ap-
proach to transform XML documents. In Proceedings of the International
Conference on Fundamental Approaches to Software Engineering, FASE 2006,
volume 3922 of LNCS. Springer, 2006.

[Ter09] Thomas Ternité. Process lines: a product line approach designed for
process model development. In Proceedings of the 35th EUROMICRO
Conference on Software Engineering and Advanced Applications, SPPI Track,
SEAA 2009, pages 173–180, IEEE Computer Society, Washington, USA,
2009.

[vGBS01] Jilles van Gurp, Jan Bosch, and Mikael Svahnberg. On the notion
of variability in software product lines. In Proceedings of the Working
IEEE/IFIP Conference on Software Architecture, WICSA’01, pages 45–54.
IEEE Computer Society, 2001.

[VMX09] VMXT Project Team. V-Modell XT Editor and V-Modell XT Projektassis-
tent. http://fourever.sourceforge.net/, 2009. Access: 04th August
2010.

[W3C99] W3C World Wide Web Consortium. XSL transformations (XSLT), ver-
sion 1.0. http://www.w3.org/TR/xslt, November 1999. Access: 20th
July 2010.

203

http://www.springsource.org/
http://www.projectsmart.co.uk/docs/chaos-report.pdf
http://www.projectsmart.co.uk/docs/chaos-report.pdf
http://java.sun.com/javaee/
http://java.sun.com/javaee/
http://fourever.sourceforge.net/
http://www.w3.org/TR/xslt

Bibliography

[Was06] Hironori Washizaki. Building software process line architectures from
bottom up. In Proceedings of the 7th International Conference, PROFES
2006, volume 4034 of LNCS, pages 415–421. Springer, Berlin/Heidelberg,
Germany, 2006.

[Weg90] Peter Wegner. Concepts and paradigms of object-oriented program-
ming. ACM SIGPLAN OOPS Messenger, 1(1):7–87, ACM, New York, USA,
1990.

[Wik10] Wikipedia Community. IBM rational unified process. http://en.

wikipedia.org/wiki/IBM_Rational_Unified_Process, 2010. Access:
13th January 2010.

[Wis06] Alexander Wise. Little-JIL 1.5 language report. Technical Report UM-
CS-2006-51, University of Massachusetts, Amherst, USA, 2006.

[WZ88] Peter Wegner and Stanley Zdonik. Inheritance as an incremental modi-
fication mechanism or what like is and isn’t like. In Proceedings of the
EuropeanConference onObject-Oriented Programming, ECOOP 1988, LNCS,
pages 55–77, Springer, Berlin/Heidelberg, Germany, 1988.

[Zav93] Pamela Zave. Feature interactions and formal specifications in telecom-
munications. Computer, 26(8):20–29, IEEE Computer Society, Los Alami-
tos, USA, 1993.

[ZTSJ09] Liming Zhu, Tu Tran, Mark Staples, and Ross Jeffery. Technical software
development process in the XML domain. In Proceedings of the Interna-
tional Conference on Software Process, ICSP 2009, volume 5543 of LNCS,
pages 246–255, Springer, Berlin/Heidelberg, Germany, 2009.

204

http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process
http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process

Index of DML framework entities

This is a list of all elements of the DML framework that were discussed in the thesis.
Note that not all association ends were described in the text. Therefore, some may
not appear in this index.

B

belongs to84 f., 87, 89 f., 109, 127, 137,
153 ff.

boundConstraint 101, 104

C

cardinality . 125
cardinalityType.84, 125
changeOperation . . 82 f., 85, 89 f., 111,

137 f., 144, 156 ff., 162
constr . 95
constrainedElement 95, 100, 102–105,

130
constrainedProduct 129 f.
constrainedRole 129 f.
constrainedTypeName100, 103 f., 130
constraint 89 f., 92–95, 98, 100 ff.,

104 f., 128–131, 142, 185, 189
constraintOperand . 98, 101, 104, 108
contentElement. . .82 f., 85, 94 f., 100,

120 f., 125 ff., 130

D

deselects 109, 154, 165

E

element . 95

F

false . 100, 105, 189

feature . . 82 ff., 86 f., 89 ff., 105, 108 f.,
126, 128, 137 f., 153 ff., 169

featureDeselector . . 109, 153, 155, 165
featureModel 84, 86, 108

H

hasToBeResponsibleFor 102

I

invalid.100, 105, 128, 189
invalMode . . 100, 104 f., 128, 185, 189

M

mandatory . 125
modelElement82 ff., 86 f., 90, 125, 137
modifies. .82 f.

O

opAND 101, 104, 187
operand.98, 101, 104, 185
operands. .101, 187
operator . 104
operatorType 101, 187
opID . 101
opNOT . 101, 104
opOR . 101
optional . 125
opXOR . 101, 104

Q

qaManual . 104

205

Index of DML framework entities

R

relation 80, 83, 85, 87, 94, 103 ff., 121,
125 ff.

rootFeature . 84
rootTerm 98, 101, 104 f., 108, 112, 131

S

source . 125
subfeature 83 f., 86, 89, 108 f., 125

T

target . 125 f., 128
term . . 98, 101, 104, 108, 131, 185, 187
true. .100, 189
typeConstraint.92 ff., 96, 98, 100,

102 ff., 130, 142

206

Index (content)

A

activity model.11, 16
agile models 10, 13
analytical restriction . . see restriction,

analytical

C

change management 10, 15
change operation . . 43, 48, 53, 58, 75,

82, 85, 88, 90, 111
code-and-fix programming 10, 11
configurability . 28, 28 (def.), 81, 83 f.,

86 f., 89, 137
configuration 29, 58, 85 f., 88
configuration framework 28
configuration management. . . .10, 15
configuration unit.29
constraint restriction . . see restriction,

constraint
contributes (SPEM) 43
core asset engineer21, 48, 80, 93 f., 96,

137, 139, 142, 144
customization .20

D

deep instantiation 116
development model. . . .9 ff. (def.), 53
development model line see DML
development paradigms 11
DML 6, 52, 54 (def.), 78–91
DML architecture 52, 53 (def.), 84–89
DML environment . . 54 (def.), 85, 88,

98, 89–98

DML framework 6, 52, 53 (def.),
81–84, 86

DML manager21, 80, 84, 107, 109, 112
DML user 21, 56, 80, 90

E

effect script 111, 156, 163
extends (SPEM) . 43
extends-replaces (SPEM).43
extensibility . . 28, 36 (def.), 54, 81, 83,

87, 139
extension . 57
extension DML . 55
extension framework 35
extension model 37, 55, 87

F

feature . 31, 83, 85 f.
feature model 31, 53, 81, 83, 86 f., 137
feature type . 30, 83

alternative . 30
mandatory. .30
optional . 30

framework core . 81

I

incremental development 10, 12
initial state see state, initial
iterative development 10, 12

K

knowledge pool 53, 81, 83, 86

207

Index (content)

L

location model 11, 16
lparse . 113, 120

M

modifiability . 28, 58, 75, 81 f., 87, 139
modification.48, 88
modification framework 40, 43

N

Nivel . 112, 115

O

objective management 81
organization engineer . 21, 48, 55, 80,

90, 135
organization management 81

P

process line . 78
process model 11, 16
product linessee software product line
product model 11, 15, 54, 85
project management 10, 14
project portfolio management.81
prototyping . 10, 12

Q

quality management 10, 14

R

rationale model 11, 16
reference area 15, 85
reference DML . 55
reference model 37, 55, 87
Relationship Object 70
replaces (SPEM).43
restriction

analytical 48, 58, 141
constraint46, 49, 92, 100, 142, 144
manual . 46

syntax . 46
transformational . . 47, 48, 58, 141,

144
reuse oriented models 10, 13
risk management 10, 15
role model 11, 15, 54, 85

S

shallow instantiation 116
smodels 113, 115, 120, 127, 142
software product line 29, 30 (def.)
software product line architecture.30

(def.)
stagewise development 10, 11
state

initial . 28, 40
varied 28, 38, 40, 47

strict meta-modeling 116 (def.)
Subclassing .73
syntax restriction see restriction,

syntax

T

tailoring.21, 66, 84, 89
transformation based models . . 10, 13
transformational restriction.see

restriction, transformational

V

V-Model XT . 70
V-shaped models.10, 12
variability 6, 27, 28, 35
variability subject.27
variability type . 28
varied state see state, varied

W

Whole-Part pattern 65

208

	List of Figures
	List of Tables
	List of Definitions
	Preface
	I The Domain of Development Model Adaptation
	1 Introduction
	1.1 Research issues
	1.2 Solution approach
	1.3 Thesis structure

	2 Adaptation of development models
	2.1 Development models
	2.1.1 Approaches for successful project execution
	2.1.2 Development model reference areas (sub-models)
	2.1.3 Common development models

	2.2 Development model adaptation
	2.2.1 Conformity
	2.2.2 Timeline of model evolution

	2.3 The need for development model adaptation
	2.4 Adaptable development models
	2.5 Problems in current adaptations
	2.5.1 Macroscopic problems
	2.5.2 Microscopic problems

	3 On the notion of variability
	3.1 Three types of variability
	3.2 Configurability
	3.2.1 Instances of configurability
	3.2.2 Properties of a configuration framework
	3.2.3 Configuration mechanisms
	3.2.4 Precautions for the design of configurability

	3.3 Extensibility
	3.3.1 Instances of extensibility
	3.3.2 Properties of an extension framework
	3.3.3 Extension mechanisms

	3.4 Modifiability
	3.4.1 Instances of indirect modification
	3.4.2 Properties of a modification framework
	3.4.3 Modification mechanisms

	4 On the notion of variant restriction
	4.1 Transformational restriction
	4.2 Analytical restriction
	4.2.1 Syntax restriction
	4.2.2 Constraint restriction
	4.2.3 Manual restriction

	4.3 Relation between the restriction types

	5 Description of the conception approach
	5.1 Creation of development model lines
	5.2 Variation mechanisms of a development model line
	5.2.1 Support for the creation of variants
	5.2.2 Support for the restriction of variants

	5.3 Concept development strategy

	II Conception of variable Development Models
	6 Variability design approaches
	6.1 Configurability design approach
	6.1.1 Related design pattern: whole-part
	6.1.2 Configurability structure

	6.2 Extensibility design approach
	6.2.1 Related design pattern: relationship object
	6.2.2 Extensibility structure

	6.3 Modifiability design approach
	6.3.1 Related design pattern: subclassing
	6.3.2 Modifiability structure

	7 Development model lines
	7.1 Developer roles in a DML
	7.2 Structure of a DML framework
	7.2.1 Framework core
	7.2.2 Knowledge pool
	7.2.3 Feature model

	7.3 An exemplary DML architecture
	7.4 An exemplary DML
	7.5 An exemplary DML extension
	7.6 DML environment
	7.7 Upgrading the underlying DML

	8 Concept for constraint restriction
	8.1 Motivational aspects
	8.2 Constraint restriction example
	8.3 What has not yet been investigated

	9 Constrained development model lines
	9.1 DML framework with constraint restriction
	9.1.1 Constraints
	9.1.2 Terms

	9.2 Exemplary DML architecture with constraint restriction
	9.3 Exemplary DML with constraint restriction

	10 Implementation
	10.1 DML modeling using UML
	10.2 Configuration: selection and reduction
	10.3 Transformation: execution of change operations
	10.4 Constraint checking
	10.4.1 Formal basis
	10.4.2 Spanning an array of stable models
	10.4.3 Nivel
	10.4.4 DML expressed in Nivel
	10.4.5 Semantics of features
	10.4.6 Semantics of constraints

	III The Results
	11 Discussion
	11.1 Review on the development model creation process
	11.1.1 Limitations
	11.1.2 Implications

	11.2 Review on variability mechanisms
	11.2.1 Configurability
	11.2.2 Extensibility
	11.2.3 Modifiability

	11.3 Review on variant restriction
	11.3.1 Transformational restriction
	11.3.2 Analytical restriction

	11.4 Comparison with stated problems
	11.5 Implementation technologies
	11.5.1 Modeling language
	11.5.2 Model transformations
	11.5.3 Constraint checking

	12 Conclusion

	Appendix
	Model transformations for the DML environment
	1 DML reduction: XSL implementation
	2 DML transformation: XSL implementation

	UML to Nivel translations
	3 Transform DML framework package to Nivel
	4 Transform DML architecture package to Nivel
	5 Transform DML package to Nivel

	DML in Nivel syntax
	6 Transformed DML framework in Nivel syntax
	7 Transformed DML architecture in Nivel syntax
	8 Transformed DML in Nivel syntax

	DML semantics
	9 Semantics for constraint restriction

	Bibliography and indices
	Bibliography
	Index of DML framework entities
	Index (content)

