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Abstract

The intended software architecture of a software system manifests the earliest and most
fundamental design decisions. To ensure that the final software product is consistent with those
design decisions and the requirements realized that way, the software architecture has to be
refined correctly. This means that the artefacts of detailed design and implementation have to
comply with the intended software architecture.

A basic task to ensure architectural compliance is the checking of architectural rules. These
rules are constraints resulting from the application of architectural principles, like patterns,
reference architectures or guidelines, and restricting the way an architecture can be refined.
However, checking those rules is difficult. Manual checks are in general not possible due to
the size and complexity of modern software systems. Architectural rules are often described
only implicitly and informally, partially due to missing description techniques; thus, realizing
powerful tool support is challenging. Moreover, compliance checking tools have to be very
flexible. The great variety of architectural rules requires expressive formalisms; in realistic
scenarios, furthermore, rules have to be checked in many different artefacts, like code of
different programming languages.

This thesis develops an approach to flexible architecture compliance checking in model-based
development approaches for component-based systems. It describes a conceptual framework
representing component-based systems as relational structures. Models are interpreted as
first-order logic statements about those structures; architectural rules, which are considered
being fundamental part of architectural models, are logical statements, too. Meta model-specific
transformation definitions specify, how instances of the meta model are transformed into logical
statements, and which architectural rules are generated if applicable. Compliance between
models can be expressed this way as semantically-founded relations between logical formulae.

The developed concepts are evaluated by a case study system following several different
architectural principles. Architectural rules are developed for those principles and are checked
for compliance. Furthermore, the concepts are implemented by a prototypical compliance
checking tool basing upon a logic-based knowledge representation and reasoning system.

Both, the conceptual framework as well as the prototypical implementation, allow very
flexible architectural compliance checking. Due to the developed formalization, a broad range
of architectural rules can be specified, largely meta model-independently. Integrating new
meta models to check compliance between their instances and a software architecture is easy.
Aside from the significant improvement of tool support compared with the state of the art,
the approach fosters furthermore a new understanding of the role of software architecture; as
blue-print for design and implementation, the need for explicitly modelled architectural rules is
emphasized.
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Architecture is music in space,
as it were a frozen music.

Friedrich Wilhelm Joseph von Schelling

It is of vital importance in most engineering disciplines that the products of design processes
are compliant with the plans or models that describe the intended product. Creation, mainte-
nance, and the operation of such products become error-prone and expensive tasks if the models
are inconsistent and do not describe the actual product. This is also true for the engineering of
software systems; they are highly complex and subject to frequent changes. Hence, compliance
with models and plans of systems is often violated, and inconsistencies arise. This works
deals with the problem of compliance with the software architecture of software systems and
proposes an approach to flexible compliance checking.

1.1. Motivation

A large number of definitions and considerations for the term “software architecture” can be
found in research and industrial practice [CBB+10, GA02, HN99, TMD09, WR05]. Although
they differ in the details, many of the definitions are similar to that used in [BCK03], which
states that a software architecture of a software system is the “fundamental organization of a
system, embodied in its components, their relationships to each other and the environment.”
In other definitions, “components” is replaced by “building blocks” or “software elements”
but at the core they are similar. Some emphasize additionally that there is no single software
architecture for a system but different views like logical, distribution, or physical architectures.
The differences are not that important, since the most important point in all of them is that
software architecture deals with the “fundamental” structures of a system. It neither contains
implementation details of single components nor a detailed design; it abstracts from details and
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determines those structures that influence the shape and the behaviour of a system at the most
general level.

The specification of a software architecture manifests hence the earliest and most far-reaching
design decisions that are made during the development of a system [BCK03]. In most software
development processes, the design of an appropriate software architecture for a system (or at
least of parts of it) is the first step after requirements elicitation. The subject of the engineering
process switches from elaborating the “what” to build to the “how” to build the system. The
selected or created software architecture influences significantly functional, non-functional,
quality, and life-cycle properties of the system to be built. Of course, the goal of a specified
intended software architecture is to guarantee properties for the system that fulfil the identified
requirements at a highest possible degree [GS94, GP95].

Due to the fundamental character of the software architecture and the design decisions it
embodies, it is hard and costly to repair or to change afterwards during refining design, imple-
mentation, and maintenance [Bal00, Som10]. Changing a software system at the architectural
level, because, for example, the existing software architecture was inappropriate or could not
fulfil emerging requirements, means to change a system in its most basic structures. Even if
it is possible at all, the changes will most probably result in massive restructuring efforts in
design specifications and code.

But even if we are sure, or even if we validate, that an appropriate software architecture
for a system has been specified, the intended software architecture will not be sufficient to
guarantee a system with correct functionality and the required quality attributes. Inadequate
detailed design and implementations can always undermine an appropriate software architecture
and lead to systems whose software architecture violates or contradicts the intended software
architecture.

It is very likely that, during the development of modern software systems and applications,
the actual software architecture will diverge from the intended one. This effect is often called
“architectural erosion” [PW92]. With increasing size and complexity of software systems,
and their degree of distribution and their longevity, the probability of architecture violations
increases, too. The complexity of the processes to develop, to maintain, and to run such large
and complex systems adds to the danger of architectural mismatches.

Even highly sophisticated experts like the Eclipse developer team are not able to stick com-
pletely with their software architecture [BBS03]. Simple rules regarding import dependencies
between packages are violated — hence the actual architecture differs from the intended one
with the possible consequences described above.

Moreover, modern software systems and applications are often part of even larger conglom-
erates of systems. Enterprise applications, for example, are embedded in enterprise-wide
IT-landscapes [JE07]. Future software systems will be more and more integrated into so called
systems-of-systems or IT-ecosystems [Nor06, MS03, HKNR08]. These overlying structures
with their own architectures may additionally constrain the design of single applications by
specifying application-spanning reference architectures, patterns and so on. This makes it even
harder for software architects and designers of software systems to guarantee the compliance
of the system with all of its architectural aspects.

Some definitions of software architecture pick up the issue of valid refinements and state
in similar ways like [BCK03] that a software architecture “contains the principles governing
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design and evolution.” In other words, the software architecture of a system provides a
framework for the system’s detailed design and its implementation. Consequently, it has
to be ensured by software architects, software designers, and programmers that a software
architecture is refined correctly by detailed design and the implementing code. Only in this
case, we can be sure that the functionality and the quality attributes guaranteed by the specified
software architecture find their way into the implemented system.

One has to come to the conclusion that it is essential for the quality of a software system
and its successful creation, maintenance, and operation that the detailed design and the imple-
mentation of a system is regularly checked for their compliance with the intended software
architecture. It it obvious that this cannot be done by hand due to the size and complexity of
modern software systems; proper tool support is required. There exist many tools for this task.
The tool SonarJ, for example, is able to check whether import statements in Java source code
are compliant with a logical layering of the system given by the software architect.

Unfortunately, current tool support is not flexible enough to easily check architectural
compliance for complex systems in all its facets. First, most tools address only a single or
few architectural aspects. As already mentioned, SonarJ, for example, focuses on architectural
layers. Especially in large systems, the software architecture is constructed by many different
relevant aspects connected like building blocks and forming the overall software architecture.
A diverse set of architectural patterns or styles, reference architectures, guidelines, and policies
is used. Each of these building blocks may define its own independent constraints for the
refining design and implementation. To our best knowledge, there is no single tool covering a
broader range of possible compliance checks towards complex architectures, or a tool that could
easily be extended to do so. Second, most tools do not consider the different kinds of artefacts
whose contents could probably be affected by architectural constraints. In complex systems,
it is likely that different modelling languages are used for different parts of the systems, that
more than one programming language is used for implementation, and that additional artefacts
like configuration files contain information that should be included in the compliance checks.
Concluding from these two issues, a hard to handle and probably expensive tool chain would
be necessary for the task of architectural compliance checking.

However, beneath the problems of current tool support, there is a deeper and more principal
problem that has to do with the way software architectures are described and understood. Often
software architectures are not described or specified explicitly, or without formal syntax or
semantics as a kind of ‘whiteboard architecture’. Compliance checking supported by tools
is simply impossible in this case. But more interesting, even description techniques and
approaches with formal syntax and semantics that claim to describe systems at the architectural
level do not solve the problem. None of them provides description techniques at a level of
abstraction allowing us to tell how the specified ‘architecture’ is further refined by detailed
design — instead the description contains a detailed design itself. For example, most component-
based approaches focuses on the definition of components and interfaces with their methods.
This is a much more detailed view onto the system than describing which layers it consists of,
and what the layering means to the way components may be structured or may communicate.
Hence, there are no seamless approaches to describe component-based software systems from
software architecture down to software design and implementation. While component-based
approaches suit as an abstraction from implementation, there remains a gap that need to be
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bridged between those approaches and software architecture development.
In conclusion, the main problem lays at the heart of architecture description. We need

to define the "architectural rules" for a software architecture and its elements. These rules
define how the software architecture can be refined during design and implementation. For
this purpose, an adequate description technique for software architectures is required. Without
addressing these issues, architectural rules cannot be properly defined and tool support cannot
be improved.

1.2. Goals and Contribution of this Work

The goal of this work is to provide an effective approach supporting software architects,
designers, and programmers to develop and maintain architecturally compliant component-
based software systems. For this purpose, it aims at facilitating a formal basis for flexible
architecture compliance checking tool support. This work introduces a logic-based conceptual
framework for architectural compliance checking to tackle the above mentioned challenges that
hinder efficient tool support so far. The framework consists basically of three main components:

• A formal representation of component-based software systems as relational structures
and a formalization of descriptions of such systems, like architectural models, design
models or implementing code, as first-order logic statements over such structures. The
formal representation allows one to abstract from specific component-based description
techniques and implementation languages. Components are understood as extension of
classes as concept of object-orientation; components are complex, instantiable types.
The functionality that a component provides or requires is specified by interfaces defin-
ing method signatures. The provided interfaces of a component are implemented by
component-local classes. Instances of components consist of a network of linked objects
at runtime. The structure of this network is specified by parts. Parts describe the objects
and the links between objects of the instantiated network, and specify those objects that
can be accessed from the environment of a component instance (provided ports), or that
can access objects in the environment (required ports). Hierarchical components can
be constructed by typing parts with components. Communication between components
takes place as synchronous or asynchronous invocation of methods between ports.

• A formal classification criterion based on the formal representation of system descrip-
tions to distinguish clearly and precisely between architectural, detailed design, and
implementation descriptions of component-based systems. The classification criterion
defines categories of first-order logic statements. These categories can be mapped to
the statements that should be made during the different phases of designing a software
system, i.e. architectural design, detailed design, and implementation. Based upon this,
those constraints will be defined that have to hold for architecturally compliant design
descriptions.

• An operationalisation of the concepts mentioned above for the model-based development
of component-based software systems. This includes particularly how to derive the
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formal representation of models as logical statements, including the architectural rules
defined by architectural models, and how to perform the compliance checks efficiently.

The developed concepts are evaluated by applying them to a practically relevant case study.
It describes a realistic component-based software system with different architectural aspects.
For these aspects, architectural rules will be defined according to the proposed conceptual
framework. The case study system will be checked for architectural compliance regarding these
aspects in different scenarios.

Furthermore, a prototypical implementation of an architectural compliance checking tool is
provided. It is able to interpret the architectural rules defined by a description written in the
developed architecture description language and to check them in UML-based component-based
design specifications and Java source code.

1.3. Structure and Content

This thesis is structured as follows. In Chapt. 2, Software Architecture Compliance - A Problem
Analysis, the problem of checking architectural compliance in today’s software development
will be analysed. It will start with the introduction of some general terms and a discussion
of the roles of architectural design, detailed design, and implementation in modern software
development, and the general difficulty to ensure architectural compliance. Afterwards, the
problem analysis will take a more focused look upon a single class of systems and one specific
development approach — component-based systems developed by following model-based
approaches.

Related approaches will be subject of Chapt. 3, State of the Art. Different classes of
approaches to architectural compliance checking will be discussed as well as methods and
principles of related fields. It will be examined why existing approaches to compliance checking
are not sufficient to provide flexible and adaptable tool support.

Chapter 4, Case Study, will introduce the case study illustrating the need for flexible archi-
tecture checking, and which will serve as application scenario for the proposed approach. Case
study is the Common Component Modelling Example (CoCoME) which is an artificial but
realistic, w.r.t. practical relevant size and complexity, component-based system. A reference
design model will be checked for architectural compliance as well as modified variants of the
system reflecting realistic modification scenarios. In these modification scenarios, different
architectural aspects of the system will be violated; these violations need to be detected by
architectural compliance checks.

Chapter 5, A Formal Framework for Architectural Compliance Checking, will describe the
proposed solution to flexible architecture compliance checking in depth. After introducing the
core ideas and some mathematical foundations, the formalization of component-based systems
themselves and descriptions of them will be explained in detail. Based on this formalization,
formal definitions of architectural rules and architectural compliance can be specified. To be
able to provide tool support, an operationalisation of the formal concepts will be introduced.

In Chapt. 6, Architectural Rules for UML as Architecture Description Language, the proposed
framework will be utilized to define architectural rules for UML. For this purpose, a UML
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profile will be introduced that covers the architectural aspects relevant for the case study. Hence,
the software architecture of the CoCoME system can be described as UML model to which
that profile is applied. It will be specified how architectural UML models are transformed
into the formal representation required for architectural compliance checking. Moreover, the
architectural rules are defined for the considered architectural aspects in the case study.

The results of executing the actual architectural compliance check of the CoCoME case
study are discussed in Chapt. 7, Architecture Compliance Checking of the Case Study. First,
the reference design model will be checked against an architectural model of the system given
in the tailored UML dialect defined before. Then, the checks in the different modification
scenarios introduced in Chapt. 4, will be presented as well as their results.

Chapter 8, Design of a Logic-Based Compliance Checking Prototype, will present a prototyp-
ical implementation of the proposed concepts. The architecture and design of the prototype will
be introduced. It is able to execute architectural compliance checks based upon the knowledge
representation and reasoning system PowerLoom. Models participating in a compliance check
are represented as logical knowledge base upon which the architectural rules are executed as
logical queries. The prototype is based upon a framework allowing us the easy integration
of models, source code, or other artefacts of different languages or schemas, and to check
their architectural compliance. This framework can be easily reused as backend for arbitrary
different architecture checking tools following the conceptual approach of this work.

The final Chapt. 9, Conclusion, will discuss the results of this thesis. The contributions of
the thesis regarding the tackled research questions will be summarized and the limitations of
the proposed approach will be examined.
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Always design a thing by considering it in its next larger
context — a chair in a room, a room in a house, a house in an
environment, an environment in a city plan.

Eliel Saarinen

The main title of this work is “Architectural Compliance in Component-Based Systems”.
To motivate the presented research and understand the problem that has lead to the proposed
approach, it is necessary to have a common understanding of the underlying domains or
fields. The single pieces of the main title suggest that the relevant fields are architecture,
in the following always understood as software architecture, compliance or conformance
management, and component-based systems.

This chapter will analyse the problems in detail leading to the need for a flexible approach
to architectural compliance checking. Section 2.1 will give a quick overview on foundations
of software architecture and the tasks of software architects. Building on that, Sec. 2.2
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will especially address the relationship between software architecture, detailed design and
implementation of software systems; it addresses the “compliance piece” of the title. It
will analyse the problems regarding conformance between software architecture and detailed
design in general, and will deepen that analysis for the special case of model-driven software
development (MDSD) approaches. Foundations of component-based systems, as final element
of the overall title and topic, will be covered in Sec. 2.3.

Section 2.4 will conclude the basic research questions derived from the problem analysis.
These research questions guide the further work; Sec. 2.5 sums up this chapter.

2.1. Foundations of Software Architecture

The roots of the field that is called software architecture today date back to the early 1970’s
when the just founded, or at least explicitly named software engineering community [NR69]
started to deal with the fundamental principles of system design. Researchers like Edsger
Dijkstra and David Parnas, among others came up with concepts like information hiding,
layering of systems, views, and many more [Dij68, Par72, Par74]; terms that are relevant
for system design in general and for architecture specifically. Nevertheless, there is still no
common and broadly accepted definition of the term software architecture.

This section introduces some foundations of software architecture, especially how the term
is used in the remaining book. Furthermore, it will give an overview of the tasks a software
architect usually faces in practice; especially the task of setting the rules for design and
implementation and checking them will be illustrated.

2.1.1. What is Software Architecture?

There exist a large number of more or less adequate definitions of the term software architecture.
The website of the renowned Software Engineering Institute of Carnegie Mellon University
[Sof] lists about 150 definitions given by members of the software architecture community.
A common core that is part of many of the substantially valuable definitions states the main
subject: software architecture is about software elements (or components, building blocks, etc.)
in a software system and the relationships between them.

However, this is a very general essence of many definitions. One of the definitions containing
this essence is that one given in the IEEE Standard 1471–2000 “Recommended Practice for
Architectural Description of Software-Intensive Systems” [IEE00]. It defines the software
architecture of a system as:

“The fundamental organization of a system embodied in its components, their
relationships to each other, and to the environment, and the principles guiding its
design and evolution.”

This definition adds two properties to the mentioned common core. First, software architec-
ture is not about every detail in the structure of a software system but about the “fundamental
organization”. The name of a loop variable in a function, for example, is surely not of archi-
tectural importance. Second, the definition emphasizes that software architecture is not about
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components alone but also about principles for the development of the system. For example,
the layering of a system [BMRS96] defined by its architecture, has implication on its imple-
mentation; there might be system parts, for example classes or functions in the lowest layer,
that cannot call methods at classes from layers above. This means that a software architecture
restricts the way a software system can evolve and be refined.

In addition to the definition above, [BCK03] adds some important aspects and states:

“The software architecture of a program or computing system is the structure or
structures of the system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them.”

First of all it adds that there is no single architecture of a system but potentially many;
this reflects the broadly accepted fact that many different views on a system make up the
overall software architecture; see, for example the 4+1 architectural model [Kru95] or the
architectural ontology defined by the already mentioned IEEE Standard 1471-2000 [IEE00].
This especially includes behavioural views on the software systems; the terms “relationships”
and “component”/”elements” in both definitions suppose that only static structures are of
interest in software architectures. This is clearly not the case. The second addition of that
definition gives also a hint for a differentiation between software architecture and further
fine-grained design. Software architecture is about components and their visible properties —
i. e. basically their interfaces in the broadest sense. The internal details of such components are
subject to software design and implementation. The definition, however, does not say at which
granularity an element in a system should be considered to be a component; at both extremes,
subsystems and methods could be seen as components in the architectural sense, with huge
implications on what is subject to architecture development and to fine-grained design.

The informal definition of the term “software architecture” that will be used in the following
concludes the definitions above:

“The software architecture of a software system is the structure or structures
of the system, which consists of components, their externally visible interfaces,
and the relationships among them. Furthermore, it defines architectural rules that
restrict and guide the further design and implementation of the architecture, as
well as its evolution.”

The sources for architectural rules are diverse:

Patterns. Architectural patterns like Layers or Pipes-and-Filters [BMRS96] define constraints
and guidelines how components and interfaces have to be realized, and how they should
interact.

Reference Architectures. These are renowned architectural, often domain-specific
blueprints of how to build systems, for example the 3-Tier-Architecture for distributed
enterprise systems [TvS08]. They influence the implementation of a system as well.

Design Principles. They describe basic guidelines for the design of systems or properties
that should be ensured to be able to create high quality software. For example, the Law
of Demeter [LH89] or the Separation of business and technical concerns [Eva03] are
principles, which of course, imply constraints on design and implementation.
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It has also to be mentioned, that rules originating from the same source may differ from
application context to application context. Often there exists alternative realizations of patterns,
or there are project-specific exceptions from design principles. Hence, architectural rules are
neither globally defined in general nor carved in stone but might be customized for specific
purposes.

2.1.2. Tasks of a Software Architect

The term “Software Architect” is rather the name of a certain role that people can play in
software development project than a specific profession based upon a dedicated education.
Understood as a role, a software architect is someone who is responsible for the software
architecture of a system.

Among the major tasks of software architects are the creation and maintenance of software
architectures. A software architect has to create an appropriate software architecture for a
software system; “appropriate” means that the architecture has to fulfil the given functional
and extra-functional requirements as far as possible. For this purpose, the software architect
has to clarify requirements and general conditions, and must resolve conflicts that arise from
competing requirements. He has to decompose the system and to identify components and
interfaces. Furthermore, he has to deal with cross-cutting technical issues that affect the
system during design, testing, and operation; for example, he has to evaluate operating systems,
programming languages, technological frameworks, etc., if necessary. Maintaining an existing
software architecture means to correct architectural errors, adapting the architecture to changing
requirements, and avoiding that intended and actual architecture diverge.

In order to create and maintain software architectures, the architect has to cooperate with
many stakeholders during diverse subtasks. Figure 2.1 shows some of those stakeholders
influencing the work of a software architect and interacting with him. The arrows are annotated
with examples of tasks he performs for, or together with the connected group of stakeholders,
or responsibilities he has to fulfil with regard to certain stakeholders. For example, he is the
prime contact for the project management regarding technical issues of a software development
project and the design decisions that are made. Together with the project manager, he plans
how the development team is staffed; this is massively influenced by the architecture because
the decomposition of the system affects the structure of the development team and its ability to
develop system parts in parallel. Figure 2.1 shows that many different stakeholders have to be
considered to clarify the requirements that a software system, and hence its architecture, has to
fulfil.

The highlighted relationship in Fig. 2.1 between software architect and software designers /

software developers is of special interest for the further investigations. One of the responsibili-
ties of the architect regarding the design and development is to control that the architecture is
correctly refined and implemented, i.e. that the design and implementation are architecturally
compliant. On the one hand, the specified components, interfaces and relationships specified
by the structures of a software architecture have to be correctly reflected and implemented; on
the other hand, the architectural rules have to be followed.

This task is very important with regard to the overall quality of the software system, as
discussed in Chapt. 1. All the valuable work of requirements engineering and software
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Figure 2.1: Tasks and responsibilities of software architects and interacting stakeholders.

architecture design can be eliminated by incorrect refinement and implementation. If the actual
software architecture does not conform to the intended architecture, the actual system is likely
not to have the quality attributes expected by the stakeholders.

It is obvious that the task of compliance checking cannot be performed manually. Current
large-scale systems have up to several hundred million lines of code; large object-oriented
systems are designed of several thousands of classes. Ensuring architectural compliance
manually for systems of that size and complexity is impossible, and even for smaller systems
time-consuming and error-prone. The software architect clearly requires tool support.

2.2. Compliant Realization of Software Architectures

In this section, we will investigate the factors causing the definition of architectural rules,
checking them, and ensuring their validity to be tough tasks. First, some general observations
will be made; the second subsection will deal with specific issues of model-driven development
approaches.

2.2.1. Software Architecture, Detailed Design, and Implementation

After conducting the requirements of a software system, the inner structures of a system are
developed. While requirements engineering elaborates what has to be build, the design of
the inner structures aims at how to build it. Note, that although the description might suggest
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Figure 2.2: The three levels of software development; the lower part shows examples of artefacts
created during development of an information system.

so, both are not strictly chronologically separate phases; depending on the process model or
strategy, like waterfall model, incremental or iterative development [Bal00, Som10], both tasks
are executed partially, in parallel, or repeatedly.

In the explanations so far it was implicitly assumed that the overall design process consists of
three different steps, namely architectural design, detailed design, and implementation, which,
again, are not necessarily separate phases. Artefacts created in those steps provide different
views on the inner structures of a system with different levels of abstraction, adding more
and more details starting at the most abstract view of the software architecture. As defined in
Sec. 2.1, the software architecture contains components and their externally visible properties,
their interfaces. These structures are refined during the detailed design and complemented by
the inner structures of components. The implementation, finally, provides the complete and
executable system, or, at least, artefacts that are automatically transformed into executable
elements, for example, source code transformed into executable binaries by compilers.

Figure 2.2 illustrates this rather short and simplified explanation of the overall design process.
At each level before implementation, developed artefacts restrict the further refinement. For
the architectural design level, these constraints are exactly those architectural rules. The lower
part of Fig. 2.2 shows a simple example. Let us assume that the system under consideration,
is an industrial information system to manage the product portfolio of an enterprise and to
manage customer data. The software architect designs a component in the architecture, which
is responsible for saving the product portfolio in a persistent database. Moreover, he states that
the component must be independent from any other component in the architecture — clearly an
architectural restriction for the refinement. The software designer responsible for the detailed
design adds details to this component; for example, he creates an Entity-Relationship-Model
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[EN10] of the data model which is the base for the functionality of the component, like creating,
modifying, saving, and removing products from the portfolio. Moreover, he creates design
models written in UML [Obj10b] to describe the classes realizing database access, queries,
and so on. These models have to conform to the architectural rule prohibiting dependencies
towards other components; it has implications on the embedding of the component’s data model
in the overall data model of the system; moreover, the UML design model cannot introduce
dependencies to other components.

Later, the developer takes this information, for example, to create a Java implementation
of those classes and to create database schemes from the ER-model. Further artefacts might
be created or integrated, like existing legacy libraries written in C. All of these artefacts can
directly or indirectly be affected by architectural rules.

Inherent Complexity of Compliance Checking

Assuming that architectural compliance cannot be guaranteed from scratch, i.e. it cannot be
ensured a-priori that design and implementation are compliant, checking compliance is required.
This is a difficult task because of the inherent complexity. This complexity is due to different
factors.

First, the heterogeneous set of artefacts that have to be checked, adds to the complexity of
the problem. As the example above shows, there are many types of artefacts that result from
single steps of the overall design process, e.g. UML-based design models, ER models, source
code of possibly different programming languages, and technology-specific artefacts. All of
those types of products can violate architectural rules and have to be checked.

The potential diversity of architectural rules is the second factor of inherent complexity. The
sources of rules are manifold; patterns, reference architectures, and design principles can cause
constraints for the further refinement of architectures. In each of these groups, the aspects the
elements address can vary widely. For example, while the layers pattern addresses the logical
structure of a systems, there are patterns affecting primarily distribution aspects or behavioural
aspects. Furthermore, the set of rules is not fix in general but can contain user specific rules that,
for example, exist due to enterprise-specific design guidelines, or specific forms of patterns and
reference architectures.

It is desirable that tool support for architectural compliance checking addresses as many
aspects of architectural rules as possible. With this goal in mind, and considering the potential
user specific tailoring of rules, the set of rules should not be fix and “hard-coded” in tool support.
This means that there has to be a description technique to describe software architectures
including architectural rules with the properties that

• architectural rules of a variety as broad as possible can be formulated, and

• architectural rules are described formally, thus they can be interpreted and checked by
tools.

In this case, tool support can address the diversity of architectural at the best possible degree.
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The Imprecise Separation of Design Levels

The inherent complexity of architecture compliance checking is tightened by the observation
that the separation between the steps in the design process — architectural design, detailed
design, and implementation — is most often unclear in practice and research1. The reason is
the degree of freedom most definitions leave to the software architect regarding the granularity
of software architectures. As already mentioned, the granularity of components is unclear —
a subsystem can be a component as well as a single class of an object-oriented system. It is
obvious that selecting different granularities affects the subjects of design at the different levels
of the design process and blurs the borders between the levels. Moreover, the general definition
stating that the structures given by software architectures are “fundamental” do not state
precisely what “fundamental” means and which structures are considered as “non-fundamental”
being subject to detailed design and implementation.

Informal attempts to define a clear separation of concerns between architectural design and
detailed design are made in software architecture literature with moderate contribution to clarify
things. Many definitions state in a similar way that “Architecture [...] is design at a higher
level of abstraction” [Kaz99] without explaining if there is “threshold abstraction level” that
separates both steps — and if there is one, how it is defined. In [CBB+10], the definition of
software architecture given there is used to define a separation: if software architecture is
about the externally visible properties of components, detailed design is about the internal
hidden properties. This definition does not help to select an appropriate granularity for software
architecture and basically says: architectural are those things that the software architect defines
to be architectural; everything else is subject to detailed design. Other definitions state that
architecture deals with issues beyond “the algorithms and data structures of computation”
[GS94] which, however, also holds for many design approaches.

As a result, a babylonian confusion of tongues can be observed regarding the terms “software
architecture” and “software design” without a common understanding of the terms but with a
sometimes synonymous usage instead. There are many examples in research and practice which
show that the same concepts are considered being “architectural” or “design” from different
points of view, or in which no clear distinction exists.

Patterns. Some patterns are sometimes considered being architectural patterns, sometimes
design patterns, depending on the understanding of the particular pattern catalogue.
For example, the Model-View-Controller pattern is listed as architectural pattern by
[BMRS96] but as design pattern by [GHJV95].

Architectural Frameworks. Existing frameworks to plan, design, and implement architec-
tures of systems or even system landscapes do often not distinguish between architecture
and detailed design. This is the case, for example, for the NATO Architectural Frame-
work (NAF), the The Open Group Architecture Framework (TOGAF), and the Zachman
Framework [NAF07, Gro09, OFS03].

1The following explanations focus on the separation of architectural design and detailed design; in general,
the confusion about this separation is much greater than that about the separation of detailed design and
implementation.
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Figure 2.3: Different classifications of abstraction levels: have rules defined by the MVC pattern to
be considered architectural?

Process Models. In process models like the V-Model XT [BMI08, FHKS09, RB11], there
exists the principle of a system decomposition but the V-Model XT, for example, does not
distinguish between the roles of a software architect and software designer; a separation
of the two design steps is not made. In fact, only the role of a software architect exists in
the standard. The Rational Unified Process [Kru03], on the contrary, uses only the term
design and does not distinguish between architectural and detailed design.

(Architectural) Specification Languages. Languages for both levels of abstraction use the
same concepts. For example, UML [Obj10b], intended as object-oriented design lan-
guage, is also used as architecture description language (ADL). Since version 2.0, it
contains concepts like components, connectors, etc. to describe systems at the archi-
tectural level. These concepts were introduced initially in dedicated ADL like Darwin,
ACME, etc. (see [MT00] for a list of ADL). The usage of the same language, e.g. UML,
for both levels without clear guideline what has to be described in which design step,
adds to the unclear separation.

But why are the impacts of unclear separation, or classification, and terminology important
for architectural compliance checking? The separation of architectural design and detailed
design does not only describe which structures are considered to be architectural but influences
also indirectly what is considered to be an architectural rule. Hence, several understandings of
architectural concepts can imply different set of architectural rules. This can have implications
on the language to describe architectural rules, the required expressiveness, and the possibility
to check rules automatically.

Figure 2.3 illustrates this circumstance graphically. The area between the vertical axes is the
space of all design concepts and potential sources for rules guiding the further refinement and/or
design of a software system, like patterns, design principles, etc. The vertical axes denote the
abstraction level and are separated into the categories of “architectural” and “detailed”; each of
these axes sets this classification of levels differently. Consequently, both separations cause
different sets of possible architectural rules.

Let us now, for example, assume that the MVC-Pattern is such a source for (architectural)
rules, which is considered architectural only in the right-hand classification. Furthermore, let us
hypothetically say that all rules defined as architectural in both separations can be specified by a
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regular language, and that MVC defines rules which can only be specified by context-sensitive
languages. This means that the formalism to describe architectural rules can be different, and
the checking of rules may be differently complex.

Concluding, to focus on the inherent complexity of architectural compliance checking, it is
necessary to define a precise classification criterion for the three abstraction classes of software
development steps.

The work of Eden, Hirshfeld, and Kazman [EHK06] provides such an abstraction classifica-
tion. It will be explained in more detail in Sec. 5.1 and further formalized in Sec. 5.2. In that
approach, general design concepts such as patterns and artefacts describing specific systems
like software architectures are understood as logical statements about systems that fulfil the
specification given by a description. Comparable to the idea of architectural rules, statements
can be intensional, i.e. they define constraints about the structures of a system in addition to
the structures themselves. As distinction between architectural and detailed design concepts
(or artefacts), there exist two categories of such constraints; local statements, once valid in a
system, remain valid no matter how the system evolves or how it is refined — their impact is
local in the sense, that they affect a dedicated part of the system; non-local statements have
global impact in the sense that the impact cannot be reduced to affect certain elements only —
they describe a global property of the system that can be lost at any time by evolving or refining
the system.

This section has illustrated the problems in the context of architectural compliance checking
abstracted from specific development approaches. In the following, we will take a look upon
model-driven software development as a specific approach, which is often claimed to solve
many of the consistency and conformance problems of software development, and which hence
might also provide solutions for the problems of architectural compliance checking.

2.2.2. Model-Driven Software Development

The motivation of model-driven software development comes from the observation that tradi-
tional development approaches are very code-centric. This means that the executable code of a
software system is considered as the main product of the process. Other higher-level specifi-
cations of the system, like requirements specifications or design specifications, are neglected
in the sense that they are often notated as box-and-lines diagrams without precise syntax and
semantics, often only as “paper” diagrams without the possibility to edit or manage them by
CASE2 tools. Some of the implications are:

• The danger of inconsistencies exists. Interrelationships between elements in different
artefacts have to be inspected manually in case of changed content to propagate changes to
related artefacts. Since those interrelationships are complex, this task is time-consuming
and error-prone.

• Higher-level descriptions cannot be used to apply code generation for repeatedly executed
task, e.g. the creation of code skeletons. Similar and re-appearing code fragments are

2abbr.: Computer-Aided Software Engineering
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manually produced instead of being able to generate code automatically with higher
productivity.

• Portability is difficult since code has to be ported manually; higher-level specifications
exist only in forms that cannot be interpreted by tools to generate code of new languages
or for new technologies.

These factors (and others) reduce productivity in classical development approaches and limit
the ability to produce software repeatable at an high quality level. A more detailed list of
problems can be found in introducing chapters of MDSD literature (e.g., [BGB10, SVC06]).

The main idea of MDSD is to shift efforts in software development from producing source
code to creating implementation- and technology-independent, general and conceptual models
of software systems. These models are input to model transformations generating more
specific models and, at the end, the executable code. In the following, the core concepts will
be illustrated by the example of the Model-Driven Architecture (MDA), the framework for
model-driven development proposed by the Object Management Group (OMG).

General Overview of MDA

The MDA [KBW03] provides a framework in the sense that it defines a terminology and a
process for model-driven development. It refers to a number of standards defined by the OMG
to make the general idea of MDSD more concrete.

A model in the terminology of the MDA is a description of a system written in a well-defined
language with defined syntax and semantics, such that tools can interpret them3. Syntax and
semantics can be defined by a meta model describing the allowed structures of well-formed
models, comparable to the formal grammar of a textual programming language. Another
standard of the OMG, the Meta Object Facility (MOF), specifies the relationship between
models and meta models as well as further levels of meta modelling [Obj06].

The MDA defines different categories of models that distinguish themselves from each other
by the level of abstraction of the view they provide onto a system. So-called Computational
Independent Models (CIM) model the requirements of a system and show “the system in the
environment in which it will operate, and thus it helps in presenting exactly what the system is
expected to do.” [Obj03].

Platform Independent Models (PIM) describe a systems abstracting from the usage of a
certain platform; a platform can be any set of technologies like programming languages,
technical frameworks, subsystems, etc. The sense of a PIM of a system is to provide a
description of the system abstracting from the actual technologies, and which hence does not
change if the platform changes. This supports modifiability and portability of systems.

Platform Specific Models (PSM), in contrast to PIM, contain in their description of systems
information about the usage of platforms. As a simple example, consider the UML class
diagrams in Fig. 2.4. The left one represents a PIM which abstracts from a specific object-
oriented programming language by depicting an object-oriented design by the common means

3This definition leaves some freedom to the degree the semantics must be defined, since many tools, depending
on their purpose, do not require a formal semantics. Indeed, many of the languages frequently used in the
MDA context, e.g. UML, do not have a precise semantics.
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PSM for Java

PIM

Figure 2.4: Examples of a platform-independent model (PIM) and a platform-specific model (PSM)
for Java.

of class diagrams. The diagram on the right represents a PSM for Java, in which datatypes
like Date are mapped to Java library classes, association ends with multiplicities greater than
one are replaced by specific implementations by lists, and public attributes are replaced by
corresponding private attributes with getter and setter methods.

Obviously, there is a refinement of the system descriptions from CIM to PIM, from PIM to
PSM, and finally from PSM into executable code. To actually address the problematic issues
of traditional approaches, MDA does not propose to do the refining steps manually but to use
semi-automatic, tool supported model transformations. Model transformation is the process
of converting a given source model into a target model. The overall concept is illustrated in
Fig. 2.5.

Model transformations in MDA rely on executable definitions of how to transform a source
model (e.g., M1) into a target model (e.g., M2). Those transformation definitions specify how
elements of a source meta model MM1 are transformed into elements of the target meta model
MM2. Transformation tools interpret these transformation definitions and execute them for the
actual source model instance resulting in a generated target model.

In the example above, to transform a PIM into a Java PSM, a transformation definition had
to be specified describing how UML models are transformed into UML models referring to
Java specific classes and concepts4. The transformation definition could state that each class is
transformed into a class with the same name, that attributes of a class in the source model are

4In this case, the meta model for source and target models would be the same, namely that of UML.
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made private in the Java model and complemented by getter and setter methods, and so on.
The OMG published the Query/View/Transformation (QVT) Specification, which is a specifi-

cation for the implementation of transformation definition languages and for model transforma-
tion tools [Obj11]. The specification defines some important features of implementations, such
as incremental transformations and persisting of tracing information. The first feature ensures
that a repeated transformation between two models transforms only modified content and does
not overwrite manual changes in the model; the second property allows tracing back the source
of generated target model content after the actual transformation process; this way, for example,
the class in a PIM could be determined that lead to the creation of a certain class in a Java
PSM. Both features allow us, in combination with models written in well-defined languages, to
address many of the mentioned problems of traditional software development, for instance, the
problem of maintenance and productivity issues caused by manual consistency management.

Today, there exist a reasonably large number of QVT implementations [LS06, Med, ATL]
and other approaches. Hence, conformance and consistency between models seem to be a
problem easy to solve for MDSD in general and MDA in particular. In the following, we will
see by showing an example written in a language implementing QVT, that there remain open
issues regarding the application of MDA to architectural compliance checking.

Architecture Model Transformation Example

The example specifies a simple transformation of architectural layers into a design model using
the popular Atlas Transformation Language (ATL) [ATL]. Since the example is very simple
and straightforward, the syntax will only be explained superficially.

Imagine, we have a meta model for the definition of architectural design models, called Arch.
The language defined by Arch allows us to draw boxes in our models representing layers. The
corresponding meta model element is hence accordingly called Layer. As already mentioned,
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Listing 2.1: ATL rule to convert layers into UML packages.

1 module Arch2Design
2 create OUT : UML from IN : Arch
3 rule Layer2Package {
4 from
5 l : Arch!Layer
6 to
7 p : UML!Package (
8 name <- l.name
9 )

10 }

layers define some architectural rules that state an element in a layer may only depend on
elements in layers below their own layer. This has to hold in the detailed design as well as in
the implementing code.

Now let us assume, that we do a detailed design using UML. Layers are represented as
packages because there does not exist a dedicated meta model element for layers in the UML
specification, and packages seem to represent them best instead — similar to layers, they can
contain other elements.

The first line of Listing 2.1 indicates that the following transformation rule is part of a
module of rules (which, for example, defines the transformation of other Arch elements). The
second line specifies that for an instance of the Arch meta model, a UML model will be created.
The specification of the actual rule starts in line three; for the element l, which is a layer (line
five), a package p is created in the target model (line seven); this package has furthermore the
property, that its name attribute is set to the same value as the name of the layer (line eight).
This transformation is executed for every layer found in the particular source model.

Of course, this transformation rule is not satisfying because it does not consider the architec-
tural rule that applies to the layer and, hence, to the package. One possibility would be to create
a corresponding constraint in the target model. It is possible in principal to create complex mo-
del structures in the target model with ATL, and it is also possible to attach constraints to model
elements in UML, for example written in the Object Constraint Language (OCL) [Obj10a].
This is added informally to the ATL rule in Listing 2.2. Such as name, also ownedRule is an
attribute UML packages possess. It contains possible constraints attached to a model element.
The transformation definition depicted in List. 2.2 creates the informally denoted constraint for
each package created for a layer (see lines 9–12). However, there are several problems with
this solution.

The first problem is a technical problem with OCL, which is the de-facto standard constraint
language for UML. Structural invariants like the constraint above are always formulated in the
context of an instantiable model element but are evaluated for the instances. If a model, for
example, specifies a class containing an integer attribute and an invariant that the attribute must
always contain a value greater zero, the constraint will be evaluated in the modelled system for
the single instances. It is not possible with OCL to define invariants in a model that restrict the
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Listing 2.2: ATL rule to convert layers into UML packages with dependency constraint.

1 module Arch2Design
2 create OUT : UML from IN : Arch
3 rule Layer2Package {
4 from
5 l : Arch!Layer
6 to
7 p : UML!Package (
8 name <- l.name
9 ownedRule = ’Nothing in this package depends on

10 something contained in a package
11 created as result of the transformation
12 of a layer above l’
13 )
14 }

model structure itself. But this is exactly, what architectural rules define. This missing feature
of OCL has been considered an important drawback in recent research [Mat10].

The second problem is a conceptual one. Let us assume, that there is a constraint language,
which we could use to define a constraint that is generated in the target model as in Listing 2.2.
For every possible kind of artefact, defined by a meta model, a corresponding constraint had to
be integrated in the set of transformation definitions containing a rule for transforming layers
into whatever would represent layer in the kind of design artefacts; the constraint would have
to be defined repeatedly for different meta models, causing overhead in maintaining the set of
rules. Instead of having defined the set of architectural rules once, as Fig. 2.2 suggests, the
same architectural rule is replicated several times in different sets of transformation rules and
different target models.

It can be stated in conclusion that architectural compliance checking mechanisms are also
required in MDSD due to the described deficiencies. Model transformations alone cannot
address the task to check constraints, defined in one model, on a set of different models as
instances of different meta models sufficiently.

2.3. Component-Based Software

This section gives a short introduction to component-based software also known as component
software. Due to its wide spread of usage, this class of software systems will be subject to the
overall theme of this work, the architectural compliance of software systems.
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2.3.1. What is Component-Based Software?

The basic idea of component-based systems is that systems are composed of custom-made
or third-party off-the-shelf components. The motivation of this approach is to combine the
advantages of custom-made and standard software in order to minimize the disadvantages
that both approaches bring if applied purely and alone. Custom-made software fulfils the
customer specific requirements often very well because it can be precisely tailored to the
customer’s needs. On the other hand, it can be quite expensive and may underlie a longer
time-to-market compared to standard software. Standard software products, in contrast, are only
slightly tailored to customer specific needs and may be cheaper compared to customer specific
solutions. On the other hand, it is in general not tailored to single customers as effectively as a
custom-made solution; moreover, a standard product might not lead to a competitive advantage
as easily as an extraordinarily well adapted custom made solution because business rivals might
use the same standard product [Szy02].

Thus, component-based software development proposes to conduct a software system out of
single components that can be either custom-made or from third parties. This allows combining
the advantages of both worlds. Consider, for example, a system made of a number of standard
components having the advantage that they do not have to be implemented by the system
provider himself. On the other hand, the configuration and “wiring” of the components leave
enough freedom to allow significant customer-specific adaptations.

The concept of components has been known for a long time in many engineering disciplines
— an oft-cited example are integrated circuits from the electric engineering field. The idea to
compose complex electronic circuits out of simple integrated circuits allows higher reuse of
components and an increased productivity. Former approaches to apply the same concepts to
the development of software are discussed in the introductive parts of the book on component
software by Clemens Szyperski [Szy02].

The same book gives an informal definition of the term of a component, which is naturally the
central construct in component-based software and always understood as software component
in the following. The definition states important properties of components:

• Components are executable units.

• Components are units of independent production and deployment. They define by inter-
faces which functionality and properties they provide to and require from the environment
and/or the surrounding system.

• Components can be composed to form systems.

• To enable composition, components conform to a certain component model and target
a particular component platform. A component platform is a technical environment, in
which a component can be deployed and executed (e.g. Enterprise Java Beans (EJB)
[BM06]). Component models will be discussed in the following section.

In this work, we will focus on the component-based systems for two reasons. First,
component-based system are today relatively wide-spread and can be found in many do-
mains. One reason is the increasing distribution of software systems which rather consist of
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communicating components than of a single monolithic block. Examples of general compo-
nent technologies accepted in industrial practice are (D)COM, .NET, the component model
of CORBA, EJB and J2EE, Spring [Szy02], to name a few. EJB, for example, provides a
component model for distributed enterprise applications. Application-specific solutions, like the
Eclipse Platform [CR08] with its plugin principle, are basically component-based systems, too.
Hence, focusing on this class of systems for the task of investigating architectural compliance
checking should reduce some complexity of the overall problem without limiting a solution to
a small and irrelevant set of software systems.

Second, the first initial thoughts for this work on architectural compliance have been caused
by observations regarding an example of a component-based system and different approaches to
describe it architecturally in an adequate way. Those observations resulted in the conclusion that
component-based design massively suffers from the general problems regarding architectural
compliance.

2.3.2. Component Models

To precisely define, how component can be executed, how they can be composed, and how
they can communicate and interact, components for a certain platform have to conform to a
certain component model. A component model consists on the one hand of a system model,
which describes runtime properties that components have; on the other hand, it often provides a
certain description technique to specify components and other relevant constructs.

System Models and Description Techniques

The system model of a component model describes runtime properties of components. In
popular component technologies, the system model describes the technical framework in which
components run. For example, the system model of EJB describes how the different kind of
beans (how components are named in EJB) are instantiated, that they run in a container, and
which and how the container manages accesses, the lifecycle of components, and so on. There
are also formal component models, like DisCComp [Rau04] describing such runtime properties
mathematically. In general, a system model describes properties like:

• How can components be composed? Are they typed and how can they be instantiated?

• Lifecycle of components, how are components created and destroyed, which states can
they run through controlled by which circumstances? How are components deployed?

• Communication aspects. How can components interact? Which kind of communication
is allowed, for example, asynchronous or synchronous communication, or both?

• How is concurrency addressed?

Systems to be build have to be specified. In different component-based development approa-
ches, different description techniques are supported. EJB, for example, is a Java technology,
hence components are specified by Java classes annotated with EJB-specific annotations in-
dicating special kinds of components (entities, session beans, message-driven beans). For
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the graphical design of EJB applications, a special UML profile exists [Obj04]. The men-
tioned DisCComp component model provides a custom-made textual specification language
[Rau04, AHKR08] as well as a graphical notation based on UML [AHKR08].

While the system model describes important runtime characteristics of the systems that can
be build, the description technique massively influences how well the systems can be described,
at which level of abstraction they can be described, and which properties can be influenced by
the designer by specification.

Component Models by Comparison

In 2007, members of the component-based software development community initiated the
CoCoME project5; the name stands for Common Component Modelling Example. More like
a competition, the purpose of the project was to compare different component models from
academia and to evaluate the state of the art in the field.

The competition was motivated by the fact that there is a large variety of component
models differing in many aspects. Different approaches have different system models realizing
concepts like components, interfaces, ports, etc. in different ways, and treat hence composition,
communication, concurrency, and deployment differently. They use different description
techniques, graphical as well as textual ones, with features for difference focuses, e.g. modelling
of non-functional properties, and are based upon different system or run-time models.

The goal of CoCoME was hence to get an overview of the existing, confusingly multifaceted
set of approaches to component-based software development and to compare their features,
strengths and weaknesses. The idea was realized to define a common exemplary system which
could be modelled by different component-based approaches. A common example allows
the research community to compare and to validate new or existing approaches, and to focus
research efforts to less intensively investigated aspects of component-based systems. At the
end, thirteen teams from academia faced the task of the competition — the modelling of a
common system with their own approach to component-based software development.

All of them were able to describe the system completely or in larger parts. Of course, the
single teams focused on the main purposes and strengths of their approaches, like description
of functional or non-functional properties, verification issues, seamless model-driven approach,
and so on. However, as one of the results, one has to observe that none of the system models or
the applied description techniques could be considered as being architectural. As we will see in
Chapt. 4, which will present the system modelled in CoCoME, there were three architectural
principles that the system followed. It seems that there has been a more or less common,
informal understanding of these principles that has been intuitively followed in design and
implementation of the system in the single teams. However, no description technique made
those principles explicit to enable us to check architectural compliance.

This result emphasizes the need for a better integration of architectural design and detailed
design for component-based systems.

5See also www.cocome.org
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2.4. Research Questions of this Work

This work deals with architectural compliance checking under certain general constraints. First,
it is assumed that a model-driven software development approach is followed in which all
relevant artefacts are instances of meta models. Second, it is assumed that the systems under
considerations are component-based software system.

Concluding from the problem analysis presented in this chapter, the main research question
is formulated as follows:

Research Question 1 (RQ 1): How can architectural compliance checking tool
support be realized that is flexible with regard to

• the large number of different meta models that have to be considered in
checking architectural compliance (RQ 1.1), and

• the variability and adaptability of different architectural rules that need to be
checked (RQ 1.2)?

As we have seen in Sec. 2.2, a solution to RQ 1.2 has to answer the question which rules
actually constitute architectural rules and how they can be described. Furthermore, we have
seen that this question is closely connected to the question how architectural design and detailed
design are distinguished. Hence, a second research question is formulated:

Research Question 2 (RQ 2): How can models of architectural design, detailed
design and implementation be distinguished from each other to clearly define a
term of architectural compliance, which, in order to provide checking tools, can be
checked algorithmically?

An approach that answers RQ 1 — which is more likely if RQ 2 is answered adequately, too
— will significantly improve tool support for architectural compliance checking, which, at the
moment, lacks flexibility in at least one of the two dimensions named above. The state of the
art of architecture compliance checking will be discussed in Chapt. 3.

2.5. Summary

This chapter has investigated the open issues of architectural compliance checking. First of all,
it has introduced an informal definition of the term software architecture and presented some of
the most important tasks software architects have to perform. Among them, there is the task of
controlling the detailed design and the implementation of the software architecture of a system
and ensuring that the intended software architecture is correctly realized, or, in other terms, that
design and implementation are architecturally compliant.

After that, the difficulty of ensuring architectural compliance has been illustrated, which
is an effect of the inherent complexity. Due to the size and complexity of software systems,
the task of compliance checking cannot be performed manually. Hence, an important issue
is tool supported compliance checking. Flexible tool support has to deal with the complexity
caused by the variety of architectural rules that exists and the multitude of different artefact
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types. We have also seen that this complexity and the resulting problems are only partially
solved in MDSD approaches which are already capable of addressing many of consistency,
conformance, or compliance issues in software development in general. Moreover, principles
of component-based software systems have been introduced. It has been argued that most of
the approaches to component-based design also suffer from the inability to express architectural
principles and constraints. Finally, the two main research questions guiding this research work
have been formulated.

In the following, we will see how available approaches to architectural compliance checking
try to address the problems identified in this chapter.
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The man who does not read good books has no advantage
over the man who can’t read them.

Mark Twain

This chapter illustrates the state-of-the-art in the field of architectural compliance check-
ing. It is structured according to a classification provided by [PTV+10], which distinguishes
Dependency Structure Matrices, Code Query Languages, and Reflexion Models as different
solution approaches; each of these classes will be presented in a single subsection providing
short descriptions of representative implementations and tools. In addition, there will be a
subsection about constraint language-based approaches.

After that, we will take a brief look on relevant neighbour research fields — architecture
description languages and the formalization of patterns.

3.1. Dependency Structure Matrix-Based Approaches

Dependency Structure Matrices (DSM) are a technique to represent and analyse complex
systems in general [Ste81]. Regarding architectural compliance checking, approaches basing
on DSM represent the simplest form of checking approaches.

The main idea is to represent systems as a square matrix; each element that is considered
as an element of the system, like components, modules, or subsystems, is represented as a
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A B C D

A X 2 0 8

B 0 X 0 0

C 0 0 X 4

D 3 0 0 X

A D B C

A X 8 2 0

D 3 X 0 0

B 0 0 X 0

C 0 4 0 X

M M (permuted) 

Figure 3.1: DSM of a sample system consisting of four modules; the permuted matrix shows that
A and D are cohesive and candidates for merging them into one single subsystem.

line and as a row of the matrix. The value ei j denotes a dependency between the element i
and the element j. Depending on the specific approach, entries are either binary (either 0 or
1), indicating whether there is a dependency or not, or any numerical value which in addition
indicates the “strength” of a dependency; in this case, a value of 0 means that there is no
dependency, a positive value indicates a dependency.

Figure 3.1 depicts this principle for the example of a software system consisting of four
subsystems. The left-hand matrix shows that the subsystem A depends on subsystems B and D,
C depends on D, and D depends on A. The values ei j indicate the number of method calls from
subsystem i to subsystem j. The software architect can easily see which dependencies exist.

Moreover, simple architecture analysis can be done manually or by tools based on analysis
of matrices. The right hand matrix in Fig. 3.1 shows the result of applying a synchronous
permutation of lines and rows to the left hand matrix, such that a filled square of cells is
created symmetrically to the main diagonal1. This indicates a circular dependency between
subsystems on the one hand, on the other hand a highly cohesive subset of subsystems which
could be merged. As a further example, a matrix that has only entries in one half of the main
diagonal indicates a system without circles. For more applications of DSM, refer for example
to [Bro01].

Lattix LDM from Lattix [SJSJ05] is a tool to create, analyse, and control a software ar-
chitecture in terms of allowed dependencies based on DSM. It uses a graphical high-level
box-and-line notation to represent subsystems of a system, and is able to check violations of
dependencies in Java bytecode, .NET code, Hibernate, Spring, and some more. Subsystems,
as denoted in an abstract manner in Fig. 3.1 are basically Java packages, depend relations are
usage relationships of any form existing in the artefacts mentioned above.

Basic architectural rules can be specified manually. There are basically two kind of rules: a
“can-use” rule specifies a source and a target subsystem and expresses that the corresponding
DSM entry is allowed to have a dependency value greater 0; a “cannot-use” rule specifies the
opposite — the entry for a dependency between source and target must be 0.

Lattix LDM supports only a very limited set of architectural rules; basically, only rules
regarding dependencies are possible. Furthermore, architectural rules are not captured in a

1The forming of such a matrix is also called partitioning, and the kind of matrix is also known as block triangular
matrix.
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software architecture model of the system but are only visible to the architect/designer/devel-
oper inside the tool. The rules have to be kept consistent to an existing architectural model
manually causing significant maintenance efforts. The system’s DSM is the main architecture
documentation, not being able to illustrate the sources of rules explicitly, like for instance the
layers that cause dependency constraints.

From the support for different architectural rules point of view, the flexibility of the tool
is hence very limited. The support for different artefact types is appreciable, although the
support for detailed design-specific artefacts is limited. Nevertheless the benefit should not
be underestimated, since the understanding of existing dependencies is the first step to an
understanding of the system and valuable, for example, for architecture recovery.

There are several architecture analysis tool that visualize actual software architectures by
DSM but combine them in order to check intended architectures with query languages or
reflexion models (see Sec. 3.2 – 3.4).

3.2. Query Language-Based Approaches

Query languages in general allow the specification of queries to retrieve information from a
pool of data. SQL as the probably most popular query language retrieves data from relational
databases (see, e.g. [EN10]). Source code query languages allow one to formulate queries upon
a base of source code and retrieve single elements or more complex substructures from it. The
purposes are diverse; queries can be used to check coding styles and conventions, searching for
errors or possibilities to apply refactoring [KP07]. In model-driven development, such query
languages are used to find the source patterns of transformation definitions or to check for
consistency constraints. Naturally, they can also be used to define queries retrieving elements
that adhere to or violate architectural rules.

The Code Query Language (CDL) [CQL] is an SQL-like language to query object-oriented
source code. Many built-in keywords and instructions specific for object-oriented system allow
easy-to-use and flexible specifications of queries and constraints. For example, a SELECT
METHODS statement returns in combination with a WHERE clause defining a condition the set of
methods in a system for which the condition holds. For example

SELECT METHODS WHERE isUsing A.doSomethingComplex()

retrieves all methods that call the doSomethingComplex method of class A. Constraints can
be checked by prepending the clause WARN IF <condition> IN <query> which causes a
warning if the condition is true for the result set retrieved by executing the query. Further
clauses do not only allow references to structural dependency properties of source code, but
also to metrics, test coverage, etc.

CQL is used in the tools NDepend [NDe] from SMACCHIA.COM and XDepend from
OCTO Technology [XDe]. NDepend is a comprehensive source code analysis tool suite,
including CQL for querying code and checking design rules. It supports all .NET programming
languages and C++. XDepend is comparable with NDepend but covers the Java market.

Tools based upon CQL provide powerful support for architectural compliance checking.
They are very flexible with regard to the different kind of rules. However, NDepend and
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XDepend only support implementation languages but not modelling language for the detailed
design. Moreover, there is no support to integrate the generation or definition of architectural
rules directly into a software architecture description. Furthermore, component-based software
and its descriptions are not considered by CQL.

A similar approach to CQL is .QL from Semmle [dMVH+07, QL]. .QL’s syntax is also
comparable to SQL and there are several built-in instructions to query object-oriented source
code. .QL’s support for custom-made queries is even more sophisticated that CQL’s, since
it is possible for users to specify their own predicates to be used in queries. This is done in
a Java-like object-oriented language which should be familiar to the targeted group of users,
namely software designers and developers.

The main critics of CQL apply also to .QL, i.e. the missing integration with software archi-
tecture models. .QL is integrated into Semmle’s source code analysis tool suite semmle/code
for Java.

JQuery [JV03, Vol06] is an approach based upon the logic programming system TyRuBA
[Vol98]; TyRuBA provides a Prolog-like logic programming language which is typed, in
contrast to Prolog [SS94]. JQuery uses TyRuBA to represent Java source code as logical
knowledge base, i.e. as logical facts and derivation rules how to derive new knowledge from
existing facts. As known from Prolog, such a knowledge base can be queried to retrieve data,
in this specific case about the represented source code.

The prototype described in [DH09] applies JQuery to enable architectural compliance
checking whereas architectural rules are embodied as logical queries that return violations of
the corresponding rules. It was applied to check architectural rules in source code; a major
drawback is that the intended architecture has to be entered manually as facts, because there is
no integration with an appropriate ADL. Moreover, the selection of JQuery restricted checkable
artefacts to Java bytecode and source code.

The research closest to the proposed approach is the logic meta programming approach
proposed by Kim Mens [Men00]. In his doctoral thesis, he describes a framework to automating
architectural conformance checking by representing architecture and implementation of a
system by a logical knowledge base. A simple architecture description language allows
describing a system as a structure of concepts and relations between concepts. Architectural
instantiation describes how a model written in this language is transformed into architectural
abstractions, which describe how concepts and relations are represented as statements of a
logic programming language. The available predicates to formulate those statements are driven
by a fixed implementation language (Smalltalk [Gol89]) and the Smalltalk Open Unification
Language (SOUL) [Wuy01], a logic programming system representing Smalltalk source code
by logical knowledge bases.

As later chapter will show, the presented work can also be understood as approach applying
logic meta programming to conformance checking, although the problem in general is inves-
tigated on a more conceptual level; however, the implementation presented in Chapter 8 is
based upon logic programming. On the conceptual level, the main difference is that in [Men00]
only architectural descriptions are understood as logical statements about implementation
artefacts, causing the mapping to depend on implementation artefacts, namely the structure
of object-oriented system as understood in Smalltalk or SOUL, respectively. The proposed
approach understands every description of a system, including the implementation, as statement
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about a class of systems, namely component-based systems, and maps descriptions onto a
common ontology. Architectural rules, which are represented in [Men00] in the mapping,
depend only on the structure of the ontology but not the implementation artefacts.

The implications are that the flexibility regarding the support of different artefacts to be
checked is greater than in the approach proposed in [Men00].

Concluding, it can be said that query-based approaches are potentially very powerful. The
expressiveness of all presented approaches allows us to cover a broad range of architectural
rules. Some of the approaches are limited regarding the artefact types that can be checked
— the flexibility ranges from single implementation languages (JQuery) to a whole set of
implementation languages (CQL). Approaches for models in general are not yet used to realize
conformance checks on detailed design model — it seems that architectural conformance is
considered to be an issue that need to be checked on source code only.

The main drawback is that software architecture models are not integrated as source of
architectural rules ([Men00] excluded to a certain degree); rules have to be specified separately
and are not part of an architectural model of the system.

3.3. Constraint Language-Based Approaches

Similar to query languages, constraint languages allow the user to specify conditions that a pool
of data must fulfil. The most prominent example is OCL which is widely used to specify such
conditions in UML models, for example to specify invariants over class structures that cannot
be expressed by class diagrams alone. Specified invariants have to be valid in all instances of
the model, i.e. for all objects and the structures they form.

The disadvantages of OCL for architectural compliance checking have been already discussed
in Sec. 2.2.2. Most approaches presented in the current section are languages to express and
evaluate constraints over source code. Note that the principles of query languages and constraint
languages are very similar in the sense that checking constraint can also be interpreted as
querying elements that violate the constraint and checking if the retrieved set of elements is
empty.

The Structural Constraint Language (SCL) is an approach to capture design intent as con-
straint over object-oriented program structures [HH06]. Its expressiveness compares to full
first-order logic whereas the terms of formulae can use predicates and functions specific for
object-oriented source code, like most of the query language-based approaches (see Sec. 3.2).
Prototype implementations of the language are available for the Java and C++ programming
languages.

A similar approach is LogEn [EKKM08] which has, compared to SCL, a less expressive
language (no usage of quantifiers) which comes with the advantage of better performance in
evaluating constraints, as the authors state. Moreover, it provides a simple graphical language
to define constraints. An interesting feature of LogEn is the possibility to define ensemblies;
these are units formed of sets of source code elements, abstracting from the single elements
and providing a more coarse-grained view on the code. Dependencies are specified between
ensemblies, allowing checking of rules, i.e. constraints, at different levels of abstraction. As
the author state themselves, the main purpose is the checking of dependencies, hence other
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architectural rules are neglected.
The Dependency Constraint language (DCL) is another constraint language-based approach

[TV09]. It defines a domain-specific language for the specification of constraints, significantly
simplifying the language but restricting it expressiveness. The user of the language defines
modules, which are sets of classes, and selects from predefined dependency constraints to
express allowed or disallowed dependencies between modules. Different types of dependencies
are allowed such as “A calls B” or “A creates B”, exemplary constraints are “can-create” to
express that a create dependency is actually allowed between two modules. The approach is
implemented by the dclcheck tool for Java.

The range of flexibility provided by query language-based approaches regarding the variety
of architectural rules differs. While SCL is based on first-order logic with object-oriented
predicates, LogEn reduces the expressiveness of the underlying logic, and DCL reduces
possibilities for the composition of constraints. In all cases, the presented query language-based
approaches seem to be more flexible. The support for different artefacts is limited to single
programming languages which might be caused by the fact that most approaches are academic
prototypes — industrial tool support is missing so far. The integration of an ADL and support
for component-based systems is missing as well.

3.4. Reflexion Model-Based Approaches

Reflexion modelling was introduced in [MNS01] as technique supporting program and system
comprehension. The assumed or intended software architecture of a system is modelled by a
high-level model, containing elements and dependencies as they are expected to be. After that,
a dependency graph is automatically extracted from the existing system artefacts, source code in
most cases. The created graph is also called the source model. In the following step, a mapping
between elements of the high-level model and the source model is created manually, capturing
the “common” elements of the intended high-level architecture and the actual structure of the
system. As a next step, the actual comparison of both is presented in a reflexion model, which
depicts

1. dependencies present in both models as solid lines (convergence),

2. dependencies present only in the source model as dashed lines (divergence), and

3. dependencies present only in the high-level model as dotted lines (absence).

The specific visualization differs from tool to tool but common is the separation of conver-
gence, divergence, and absence. Hence, the reflexion model represents violations of architec-
turally intended dependency structures and possible mismatches. There are several approaches
applying reflexion models for architecture analysis.

The Fraunhofer Software Architecture Visualization and Evaluation (SAVE) tool follows
the reflexion modelling approach [LM08, DKL09]. The intended architecture of a system,
the high-level model, is specified as UML model following the KoBRA approach to model
components [MA02]. A source model can be generated from Java, C++, or Delphi source
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code. The tool has been evaluated in several case studies [KLMN06]. Current extensions of
the approach deal with continuously checking of architectural violations instead of checking
at actively initiated checks at dedicated points in time; architectural compliance is checked
permanently in the background while software developers modify source code, giving them
instant feedback and providing a constructive support to adhere to the architecture.

The tool ConQAT [DHHJ10] is very similar to SAVE, providing a high-level graphical
modelling language and supporting a set of implementation languages. The authors emphasize
the need and support of diverse artefact types which they try to provide designing their tool
support as pipes-and-filter system which allows them to easily add filters for processing
additional artefact types. This is noteworthy because it is not clear for most of the other
approaches with limited support for different artefact types how they, or their implementations,
can be extended.

The Bauhaus tool suite allows, amongst other analysis, reflexion modelling for Ada, C,
C++, Java, and more programming languages [RVP06]. Representations of systems are either
written in Intermediate Language (IML) for a detailed view or as Resource Flow Graph (RFG)
for a coarse-grained architectural view. While IML is basically a implementation-language
independent representation of source code, RFG are hierarchical graphs whereas nodes denote
coarse-grained elements like types, components, files, etc., depending on the architectural
view. Intended architecture and actual architecture are both represented as RFG for reflexion
modelling whereas the RFG for the existing code is automatically generated.

The free tool Dependometer let the software designer describe an intended logical software
architecture in terms of layers, slices (structure elements orthogonal to layers) and subsystems
and map them to source code elements like packages or namespaces in Java, C++, or C# [Dep].
The architecture is defined as XML file. Checking generates a HTML report with navigation
capabilities allowing software designers to browse between the intended architecture and the
mapped structure in source code.

The flexibility of Dependometer is very limited in every dimension. The number of supported
artefact types is low, the only architectural rules supported are dependencies defined by layers
or slices. The definition of a software architecture in XML is very technical and not quite
intuitive.

SonarJ [Son] and Sotograph/Sotoarc [BKL04] from hello2morrow are comparable to Depen-
dometer. They structure systems architecturally also by layers and slices but provide a graphical
modelling language for the purpose of specifying the architecture of the system. While SonarJ
covers the Java market, Sotograph can also deal with C# and C++. Similar with regard to
methodology and functional range is Structure 101 from Headway Software [Str]. The criticism
passed on Dependometer is also valid for the other tools of this group — neither the set of
supported architectural rules is large, nor the supported number of development artefact types.

Concluding, there are interesting commonalities of the reflexion model-based approaches
and important differences regarding their flexibility and applicability in the setting selected
for this work. All have in common that a mapping between architecture and source code
elements (in fact, they all check source code but not detailed design artefacts) is required to
keep track how architectural elements are realized in code. In model-driven development, this
information could be partially retrieved from persisted transformation information, such that
manual creation of mappings could be easier or completely omitted. For example, consider a
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transformation definition can be specifying how to transform a component from an architecture
description to a package of Java source code. If this transformation is actually executed, and
tracing information is persisted, the same information can be used for reflexion modelling.
Hence, this redundancy of information is a minor but not unsolvable drawback in the context of
MDSD.

The single approaches illustrate that flexibility of compliance checking with regard to
different artefact types is possible using reflexion modelling. For example, Bauhaus uses an
abstraction of specific implementation languages. However, compared to query language-based
approaches or constraint-based approaches, their expressiveness to architectural rules is limited
because they do not allow the specification of arbitrary constraints about the structures they
define. This is also due to the fact that the way architectural elements can be mapped to source
code elements is limited by the expressiveness provided by the language defining the mapping,
and the fact that not every kind of source code element can be referenced.

3.5. More Related Work

The presented related work so far is directly from the field of architecture conformance checking.
Closely related are concepts of inconsistency management and model transformations in MDSD,
as well as formalization of software architectures and architectural patterns.

3.5.1. Consistency in Model-Driven Software Development

As outlined in Sec. 2.2.2, among the main MDSD concepts are techniques to address ar-
chitectural compliance checking rudimentarily. Two field are relevant in this context —
(in)consistency management and model transformation.

Inconsistency management in MDSD deals with checking and ensuring consistency between
different models or between views on the same model (when consistency is checked towards
a common meta model). Moreover, inconsistency management is also about repairing incon-
sistencies. A survey of UML-specific approaches is given in [EB04, KHR+03, UNKC08]. In
many cases, OCL is used to specify inconsistency rules, i. e. rules that describe when incon-
sistency constraints are violated, comparable to the negation of architectural rules describing
when a detailed design model conforms to an architectural model. Architectural rules defined
this way had to be defined for every combination of architectural meta model and development
artefact meta model because the shape of the inconsistency constraints depend on the structures
of the related meta models. The effort of maintaining architectural rules increases with the
number of meta models whose instances could be affected by the architectural rules. The same
problem also exists for approaches using other formalisms than OCL, like graph grammars
and transformations, like [MSD06] or query-languages for semi-structured data like XPath in
[NCEF02].

The same reason limit the applicability of model transformation approaches, as seen in
the example of Listing 2.2, even if the disadvantage of OCL — constraints are evaluated on
the instance level, relative to the modelling level a constraint is specified on — is omitted by
choosing a different formalism like graph grammars (see, e.g. [BHLW07]).
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From the theoretic point of view, the reason for the difficulties is the intensionality of
architectural rules (see Sec. 2.2). The intension of an architectural element, i.e. its constraint
restricting the further development, must be defined separately for each meta model.

3.5.2. Architecture Description and Formalization of Patterns

ADL are high-level description languages and have the potential ability to enforce architectural
conformance by construction. However, they do not support this feature per se but depend
on integrated development tools and code generators [MT00] or implementation frameworks
[MMM05] — especially constraints for the refinement of architecture specifications are rarely
supported. Hence, the same problems remain as in MDSD. An interesting approach in this
context is ArchJava [ACN02] which extends the Java language with architectural language
constructs. This simplifies the mapping of elements of the intended architecture to elements of
source code. But beside compatibility issues to existing code [AAC07], and the fact that other
artefacts cannot be accordingly annotated, the formulation of intensional architectural rules
remains an open issue also in this approach.

Formal approaches to pattern formalization are also close to the field of architectural rules.
Most approaches deal with design patterns [GHJV95]; a collection of approaches is contained
in [Tai07]. The solution part of design patterns, describing in case of object-oriented design
patterns a structure of classes, how they are interconnected and how they interact, also defines
constraints for the participating elements. Hence, a precise formalization of design patterns has
to express these issues. In fact, such constraints for architectural patterns [BMRS96] manifest
architectural rules.

However, the main difference is that most approaches do not address the question how such
a constraint defined in one model can be checked in another model, as need for the general
checking of architectural rules. Most approaches, especially those that try to integrate their
formalization into a MDSD framework like MDA, move pattern specifications and constraint
definitions to the meta model level; constraint checks, e.g. written in OCL, are executed for
the instances, i.e. models conforming to the meta model [BLE10, EBL06, FKGS04, KC09,
MCL04, MHG02]. They are thus not applicable without modifications to the problem of
inter-model constraints such as architectural rules.

3.6. Summary

It has to be stated that the state-of-the-art of architectural compliance checking in the context
of MDSD does not provide powerful and flexible tool support. Architectural conformance
checking cannot be realized with MDSD concepts alone in a satisfiable way. Since additional
single tools do not constitute flexible solutions alone, whole tool chains are required. These are
difficult to configure, to use and to maintain; potentially, they cause high acquisition costs.

The separation of software design into the three steps of architectural design, detailed design,
and implementation is not considered in any of the approaches. Artefacts that are checked for
conformance are source code of arbitrary programming languages, detailed design is ignored.
The approaches do not distinguish between architectural design and detailed design. Another
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common property of most approaches is the focus on object-oriented systems, the modelling of
component-based systems is only applied in SAVE on the architectural level.

The flexibility regarding the supported set of artefact types is difficult to judge. Just because
a conformance checking tool supports only a single programming language to be checked, it
does not mean that adopting it to other languages is impossible. To evaluate the flexibility, as
long as it is not conceptually too strongly restricted, the adoption efforts had to be considered,
which is difficult especially for commercial tools.

The most flexible approaches regarding the variety of architectural rules are query langu-
age-based and constraint-language based approaches. The expressiveness of those languages is
only limited by the formalism they use, e.g. first-order logics, and the set of system elements
and relationships that are represented in the formalism. Most approaches reflect object-oriented
systems with elements like classes or methods and relationships like inheritance or call relations.
In addition, query language-based and constraint-based approaches can be used very flexible to
define user-specific and customized rules.

Reflexion modelling approaches have limited expressiveness and hence limited flexibility
regarding architectural rules. They can only express constraints regarding dependencies,
whereas most of the constraints follow a fixed and built-in scheme; the variation point that
the user can influence is the specific mapping between architectural elements and source code
elements. The same holds for dependency structure matrices.

However, reflexion model-based approaches at least potentially provide a high-level model of
the system which can be understood as architectural model used to describe and communicate
an architecture, e.g. SAVE. The presentation of an architecture as DSM is less adequate.
Queries describing constraints on structures are often very detailed and lengthy; they are hence
not adequate to communicate a high-level view on the system under consideration.

Concluding, it must be stated that no approach addresses all dimensions of flexibility
sufficiently. In the following, the case study to which the proposed approach is applied will
be introduced; readers interested in how the proposed solution addresses the flexibility issues
might want to skip the chapter and to directly jump to Chapter 5, which describes the solution
in detail.
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Few things are harder to put up with than the annoyance of a
good example.

Mark Twain

This chapter describes the case study used to illustrate the need for a flexible architecture
compliance checking approach. It contains a realistic component-based system and different
application scenarios, in which compliance with the architecture of the system has to be
checked. Section 4.1 introduces the Trading System, the subject of the Common Component
Modelling Example, which will serve as case study. In Sec. 4.2, the rules and constraints will
be examined that the software architecture of the Trading System imposes upon the design and
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implementation. Three modification scenarios, in which compliance checking is required to
avoid architectural mismatches, will be developed in Sec. 4.3. These scenarios will be used
later to validate the proposed approach (see Chapt. 7). The chapter at hand is summed up in
Sec. 4.4.

4.1. The CoCoME - A Case Study

The application domain of the CoCoME (see also Sec. 2.3.2) is the retail industry. The
functionality of the system covers the support of business processes common in retail stores
like supermarkets. Specific use cases are, for example, the sale of goods and the management
of the inventory.

At the start of the CoCoME project, the teams got certain input to start their development
of the system. The use cases were handed out in textual form, supported by UML use case
diagrams and refining UML sequence. Furthermore, a Java-based reference implementation
of the system served as input. Class diagrams, component diagrams, and composite structure
diagrams reflect the static logical structure of the system. However, to leave some freedom to
special aspects of different approaches, they do not represent a full design specification of the
system, but visually conclude the reference implementation.

The following subsections give a short summary of the CoCoME system, which is described
in more detail in [RRPM08]. Section 4.1.1 describes the main functionality of the system and
gives a top-level view onto the physical structure for a basic understanding of the system. In
Sec. 4.1.2, the main architectural decisions will be explained. Section 4.1.3 will describe the
UML design model of CoCoME. Finally, Sec. 4.1.4 concludes with some final remarks on the
implementation.

More details about the motivation and goals of the project, the input for the teams, and
further material can be found on the CoCoME website1. The approach-specific solutions
and the evaluation of the competition results are described in detail in the CoCoME book
[RRPM08].

4.1.1. Overview of the Trading System

The CoCoME system is inspired by the book of Craig Larman [Lar04], which introduces a
fictitious “point-of-sale” system. The main use cases supported by the Trading System, this is
how the CoCoME system is also called, are depicted in Fig. 4.1.

There are two functional areas. On the one hand, the Trading System supports the cashier at
the cash desk of a store. The cashier scans product bar codes and handles the payment with the
customer; on the other hand, the Trading System provides functionality for the back-office of a
store. The overall system is hence decomposed into the Cash Desk System and the Inventory
System.

The Cash Desk System supports the cashier in the process of selling goods and the payment.
The cashier scans products, accepts cash or card payment, handles change, and so forth. There

1www.cocome.org
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Figure 4.1: The use cases of CoCoME.

are many devices at a cash desk that interact during the process of selling and payment, for
instance bar code scanners, cash boxes, and receipt printers. The interaction between these
single parts is controlled by the Cash Desk Application software. The system allows the cashier
furthermore to switch its cash desk to a kind of “fast lane mode” by analysing the latest payment
processes and detecting a high percentage of small purchases. In this express mode, a LED
sign is switched on indicating that customers with purchases up to a certain number of goods
can be handled separately.

In addition, information about purchases is directly sent to the Inventory System. It up-
dates the stock amounts of the products that are sold. This way, the stock is kept up-to-date
permanently.

The Cash Desk System has a communication structure that is typical for distributed embedded
systems [Mar05, BMRS96]. Independent, loosely coupled components interact by reacting to
events that happen to some components in the system. For example, a cash box may only open
if the cashier signals that he received cash, or a display showing the current running total has to
be updated when another good is scanned.

The physical structure of a cash desk is depicted in Fig. 4.2. A central computer, which runs
the Cash Desk System Software, is connected to the peripheral devices like cash box, bar code
scanner, receipt printer, LED sign, and credit card reader.

The actors that interact with the Inventory System are different types of managers. The store
manager is responsible for, among other tasks, setting prices and ordering new goods; the stock
manager has to check in new goods.

The Inventory System supports the store manager by allowing him to change data of the
product portfolio — the Change Price use case is one representative for similar tasks. The
store manager can furthermore inspect stock reports. The system can report goods whose stock
amount is below a defined, critical threshold indicating that new goods have to be ordered.
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Figure 4.2: Cash Desk System overview (from [RRPM08]).
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Figure 4.3: Top-level structure of the Inventory System (from [RRPM08]).

The stock manager can check incoming deliveries for consistency with the placed order by
querying the Inventory System. Furthermore, he uses the system to check-in received goods
electronically.

Figure 4.3 depicts the physical structure of the Inventory System. Central building block is
a store application server, which has access to a database to read, update, and delete relevant
data, like product data, order information, and so forth. Store and stock manager access that
data via client computers connected with the server by a network. Furthermore, the server is
also connected to the computers of the single cash desks in the cash desk line; remember, that
data of the purchase processes is used to update the inventory.

Concluding, the inventory system is a typical distributed, client-server information system
[TvS08]. Users read, update, and delete data persisted at a server, using client computers.
In contrast to the Cash Desk System, the main communication mechanism is synchronous
communication.
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4.1.2. Architecture

The main architectural decisions and aspects of CoCoME were documented textually; an
explicit architectural model was not given. Instead, detailed UML component diagrams were
handed out as documentation of the system’s logical code structure.

The main architectural aspects are the following:
Three Layer Information System. The Inventory System is a typical information system

as explained above. One common reference architecture for systems like that is a Three-Layer-
Architecture [Fow02]. It separates the components of a system into three distinct, hierarchical
groups, the layers. Dependencies between layers are only permitted from “upper” layers
to “lower” layers [BMRS96]. In general, layering decouples system parts of different levels
of abstraction, or of fields of tasks. This leads to loosely coupled and easily exchangeable
subsystems — for example, in a well layered system, changes in the upper layers will not affect
the lower layers.

The lowest layer, often named “persistence layer” or “data layer”, in this reference archi-
tecture has the tasks of persisting data and providing basic creation, access, and manipulation
operations on the persisted data. For example, the persistence layer of the Inventory System
contains a component Store, which defines entities for store and stock relevant data, for exam-
ple StockItem or ProductOrder. Furthermore, the layer contains an interface StoreQueryIf
defining methods to query the database for data; for instance, queryLowStockItems() retrieves
all stock items that are running low (see also Sec. 4.1.1).

The layer above the persistence layer is the application layer and contains the application
logic of the system. It provides complex functionality accessing the persistence layer to
create, read, update, and delete data. For example, the application layer of the Inventory
System contains a component, called StoreApp, which provides methods to order products
and roll in ordered goods. These are complex operations consisting of several calls to data
manipulation operations defined in the data layer. Only the application layer is allowed to
access the persistence layer.

The layer at the top is the graphical user interface (GUI) layer. Its task is to interact with
the users of the system and to present the output of the system to them. The components
in this layer represent elements of the GUI. They interpret user input and call functionality
of application layer components. In a three-layer information system, the business process
realized by the system is embedded into the GUI layer, too. Simplified, each component, defines
which functions are called to retrieve or manipulate data, and which other GUI components are
invoked if its own control elements are used. This way, the control flow between components
gradually reflects the business process. In contrast to four layer architectures with dedicated
process layer and workflow engine [vdAvH04], there is no decoupling of representation and
process control.

The GUI layer is not allowed to access the persistence layer directly. Concluding, the layer
structure is strict — this means each component may only access components of the same layer
or components of the layer directly below its own layer. The layering provides a separation
between representation of data and control flow, application logic which works with the data
and reflects single steps of the business process, and the data structures that contain persistent
data.
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Application Layer Interface with Copy Semantics. The layering of an information system
structures the system logically. If the system is going to be implemented as distributed client-
server or multi-tier system [TvS08], there are different possible variants to distribute logical
layers onto physical nodes [TvS08]. In distributed systems, data as well as method calls
between layers have to be transmitted between processes. If a system is realized in an object-
oriented language, there are certain pitfalls regarding the transport of data, for example between
the application layer and a GUI layer located at different. Let us assume, that a method call
at the application layer returns remote references to objects to a caller in the GUI layer. Most
probably, the caller will invoke methods at these references to retrieve the returned data. This
kind of communication can be very expensive; each call of a remote object’s method, like
reading object attribute values or navigating references to associated objects, is translated to
a remote method invocation via some middleware including marshalling and unmarshalling
of calls, etc. This is very time-consuming and requires relatively large amounts of network
resources compared to a simple transfer of data [Fow02].

A common solution to this problem is the use of data transfer objects [Fow02]. Instead of
passing references to the network of persisted objects to the GUI layer, the required fragment
of this network is copied into transfer objects. These copies are transferred to the GUI layer
via the network; the GUI, running at a remote client computer, gets its own local and hence
efficiently accessible copy of persisted data. Hence, we also say, that a component handling the
passing of data the way described, provides an interface with copy semantics (in contrast to
reference semantics).

Interfaces with copy semantics are an essential concept of service-oriented architectures
(SOA) [KBS04]. The application layer of the Inventory Layer is designed as service-oriented
system. This means that interfaces accessible from the outside of the layer, i.e. from the GUI
layer, have to use transfer objects. A more detailed look at the implications of using data
transfer objects will be given in Sec. 4.2.2.

Event-Driven Architecture. As mentioned above, the components of the Cash Desk System
interact by causing and reacting to events. The event of scanning a product bar code (which is
raised by the bar code scanner) causes reactions of other components — the running total is
updated and visualized on the cash box display; the receipt printer prints another entry of the
sale. Such a system is also said to have an event-driven architecture [YPMT09]. A common
solution to realize an event-driven architecture is to use the Event Channel pattern [BMRS96],
a special variant of the Publisher-Subscriber pattern [GHJV95].

Each component in the Event Channel Pattern can play the role of a publisher, a subscriber,
or both. A publisher creates events and puts them to the channel, while a subscriber reacts to
events that are put on the channel. When a publisher wants to “raise” an event, it calls a method
at the channel which instruct the channel to publish the event. After the event is published, it is
sent to all registered subscribers. They can react to the event as intended. The forwarding of
the event does not necessarily happen at once after it has been raised by the publisher; raising
and publishing are temporally decoupled.

An event-based architecture leads to very loosely coupled components and an easily extensi-
ble system. Since putting the event onto the channel and publishing the event are decoupled,
the event channel pattern realizes asynchronous communication between a set of components
that do not necessarily need to know each other.
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Figure 4.4: CoCoME design (top level).

In the Cash Desk System, there are actually two kinds of event channels. Each single cash
desk has a separate channel internalEC connecting the software controllers for the single
devices; the channel is for the communication among them and the communication with the
cash desk application. For the whole cash desk line, there exists an event channel externalEC, to
which the single cash desk applications register as publishers; the already mentioned application
layer component StoreApp of the inventory system registers as subscriber. The cash desks
publish “SaleRegisteredEvents” onto this channel, indicating that a sale process is finished. As
a reaction to this event, the inventory system updates the amounts of goods in the inventory.

4.1.3. Design

The main diagram types of UML to describe the static logical architecture of a system are class
diagrams, component diagrams, and composite structure diagrams. Class diagrams are used
to model interfaces of components in detail, while component diagrams provide black-box
views to components; composite structure diagrams show white-box views. Most of the UML
language elements used in one of these diagrams types can also be used in the other two types,
hence, the distinction between diagram types is not very precise (see [Obj10b]). The reference
UML design model developed for the Trading System, however, uses these three diagram types.

Figure 4.4 shows a composite structure diagram of the overall Trading System, and all
specified components. The single interfaces are omitted for clarity reasons.

The left-hand part of Fig. 4.4 depicts the Cash Desk System. There are components that
represent the software controllers for the devices installed at a cash desk. Furthermore, there
are components containing the cash desk application logic and a GUI component. They are
connected via an internal event channel component.

The right-hand part depicts the Inventory System. The layered structure can easily be seen. In
both, GUI and application layer, there are components for store-specific and reporting-specific
functionality. As mentioned earlier, the store-specific components provide the functionality of
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Figure 4.5: Component of the Trading System and details of provided interfaces; example from
the data layer.

ordering products, changing product data, and so forth, at GUI level as well as pure application
logic. Reporting functions are realized in a separate component. At persistence layer level, there
is only one component Store, which contains the data model of the system and basic operations
on the data model. The component Persistence encapsulates the technical realization of
database access.

Figure 4.5 shows combined diagrams that model the Store component from the data layer
of the Inventory System. In Fig. 4.4 was modelled, that there will be one instance of this
type in the system. The left-hand part of Fig. 4.5 shows as a composite structure diagram
depicting the inner structure of an instance of Store. The component provides several interfaces;
StoreQueryIF defines methods to query the data persisted, e.g. all products available in the
store; the other interfaces represent the entities of the data model, for instance Product and
Order. The right-hand part of Fig. 4.5 depicts a class diagram of the data model showing the
attributes of the entities and the associations between entities.

The component also defines a port with cardinality one, indicating that other components
requiring an instance of type StoreQueryIf can connect to an instance of Store.

UML defines different types of behaviour diagrams like sequence diagrams, activity diagrams,
interaction diagrams, and some more. They focus upon different behavioural aspects, for
instance, sequence diagrams and interaction diagrams are well suited to model communication
issues.

As we will see, most architectural rules that are considered here deal with communication
aspects. Since a full design specification of the Trading System is out of the scope of this
work, only communication between components will be modelled but not algorithmic details
of methods. Hence, sequence diagrams will be used, that provide appropriate means to model
the interaction between components.

Figure 4.6 shows the sequence diagram for the method getProductsWithLowStock. The
corresponding operation is defined by the interface StoreIf, for which the component StoreApp,
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Figure 4.6: Behaviour specification for methods; exemplary sequence diagram for getProd-
uctsWithLowStock.

located in the application layer, provides an implementation. This implementation calls methods
at the persistence interface first, which is modelled as a required port, called persistenceIf. The
method calls are required to establish a connection to the database and to get a transaction
context. After that, the query interface (also modelled as a required port of the application layer
component Store) is used to execute a query retrieving the corresponding data. After that, a
helper method fillProductWithStockItemTO is called to copy the data into transfer objects.

4.1.4. Implementation

The reference implementation, which was also given to the teams as input, had been realized in
Java. The source code consists of 120 classes and interfaces, or about 6,000 lines of code. It
was mainly used by the teams as a detailed reference behaviour specification, since the method
bodies naturally contain a complete behaviour description, and to get a better understanding of
the system by a runnable implementation.

During implementation, the developers paid attention to conform to the documenting UML
diagrams, especially to map components systematically to source code structures in Java, which
does not come with component-based concepts. Details regarding the implementation can be
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found in the documentation of CoCoME.
Technologies that were used for the implementation included Hibernate as object-relational

mapper and persistence mechanism [BK06] and the Java Messaging Service as a technical
off-the-shelf implementation of event channels [MRC09].

Hence, the implementation included more than only Java source code. Technologies like
Hibernate and JMS include declarative configurations, definitions, etc. Hibernate, for example,
allows XML Mapping Files to define how classes are mapped to tables of a database. They also
define how associations between classes are mapped to foreign key relationships. These features
are noteworthy because these artefacts can also be affected by architectural rules. Consider,
we define that the data model of the Trading System is separated into two subsystems, one
containing classes for data that is store-specific, one for data which is global to the enterprise,
whereas the first subsystems may not depend on the latter. In this case, this architectural rule
defines constraints that must not be violated by the definition given in the mapping files.

4.2. Examination of the Architectural Rules in CoCoME

In Sec. 4.1.2, the main architectural aspects of the Trading System have been described.
They imply rules that guide the further refinement of the system during the design and the
implementation. This section discusses those rules and describes them informally.

4.2.1. Layered Information Systems

Layers partition the set of components of a system, or a subsystem, into groups. Each of
these groups contains components that logically belong together, because they are on the
same functional abstraction level, abstract from the same more low-level details, or similar
reasons. As [CBB+10] states, each layer constitutes a virtual machine providing a cohesive set
of services which may only use layers below itself.

But as described for the layered architecture of the Inventory System (see Sec. 4.1.2), this
constraint is not enough to define every kind of layered architecture because it is not always
desirable to allow a layer to use each of the lower layers. In addition to the concept of layers, a
allowed-to-use relationship is required, modelling which layers in a system may actually use
which other layers. Fig. 4.7 depicts a box-and-lines diagram style commonly used to illustrate
layered architectures.

So far, we can conclude the following constraints for layers in general. A layer L may only
use a layer M if

• L equals M or

• L is at an higher level than M and (L,M) is in the allowed-to-use relation

Hence, a layer is correctly designed and implemented if all of its usage relations are compliant
with these constraints. However, it still has to be clarified what it means for a layer to “use”
another layer. As a first refinement, a layer L uses another layer M, if one of the entities grouped
in L uses an entity in M — these entities are components and interfaces, and everything that
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Figure 4.7: Informal layers documentation.

refines them in more detail, like classes, methods, parts, ports, connectors, and so forth.
According to [CBB+10], a system element A uses an system element B, if A’s correct operation
depends on the correct implementation of B. Thus, if A is contained in layer L, and B in layer
M, L uses M.

To make the definition of when the design or implementation of a layered architecture is
compliant, complete, it hence has to be defined which cases of usage exist:

• Usage between components and interfaces. If a component provides or requires an
interface, it assumes that the signature of the interface is what it is going to implement,
or what it requires from its environment. In other words: changes of the signature imply
changes of the providing or requiring components.

• For the same reasons, specialization between types leads to a usage relation between the
specializing and the generalized type.

• Usage of types. An interface using a type, e.g. another interface, as method argument
type or return type, or as type of a reference, depends on that type.

• Method calls. If the implementation of a component calls a method at another component
(e.g., connected via a connector to a required port), it depends on the invoked behaviour.

The last case above needs some closer observation. In the case, a component invokes
a method asynchronously, the invocation does not manifest a usage relation in the sense
mentioned here. It’s own implementation, which specifies the asynchronous invocation, does
not depend on the correct implementation of the receiver of the invocation. Contrarily the
synchronous call: the called method, for example, could incorrectly fail to terminate, causing
the caller to wait forever.

Notice, that this definition allows layered systems to communicate in the opposite direction
of the allowed-to-use relationships, at least to a limited degree, by asynchronous messages. This
is often required for callback mechanisms, used for updates in patterns like MVC [BMRS96]
or Observer [GHJV95], or to “bubble” error messages up to higher layers [CBB+10].
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These rules have implications for the design and the implementation of the “Trading System”
in CoCoME. Consider, for example, the components of the GUI layer. They are designed and
implemented in compliance with the architecture (at least regarding the layered structure), if all
they depend on is located in the GUI layer or the application layer, but not in the persistence
layer. This means that GUI components or interfaces may not rely on an interface of the
persistence layer nor be connected directly to a component of that layer nor call methods
defined there. The same applies analogously to application layer components that may not be
designed to use GUI layer components, and persistence layer components which may only use
components inside the same layer.

Figure 4.8 shows this by example. It depicts on the left hand side a simplified architectural
model describing the layers of the CoCoME Inventory System and the allowed usage relation-
ships. The arrows stereotyped with «isAllowedToUse » model these relationships. Furthermore,
the model describes how packages are assigned to layers. The package GUI is assigned to the
layer called GUI Layer. On the right hand side, there is a cut-out of the CoCoME design model
which models, among other aspects, the actually existing dependencies. For example, the
component StoreGUI requires the interface StoreIf, which provides application logic methods
relevant to the management of a store inventory. This interface is contained in a package that
is assigned to the application layer. This is modelled by a «uses» relationship between the
component and the interface. According to the architecture, this dependency is allowed because
StoreGUI is located in the GUI layer and accesses an interface in the application layer. In
contrast, the dependency towards the interface StoreQueryIf is not architecturally compliant.
The architectural model does not contain a relationship which allowing a dependency between
the GUI layer and the data layer.

The first application scenario will deal with the violation of the Trading System layer structure
(see Sec. 4.3.1). It describes the addition of a component to the Inventory System that must be
accessible from all layers.

4.2.2. Service-Oriented Interfaces

As mentioned in Sec. 4.1.2, the application layer of the Inventory System is designed to use
data transfer objects to pass data from the GUI layer to the application layer and vice versa.
These objects contain copies of data that is persisted in the data layer below. On the one hand,
copying the data avoids direct access to the data layer, on the other hand it reduces network
traffic because the number of remote method calls is reduced — instead of initiating many
method invocations to navigate between objects, the relevant part of the object network is
copied and transferred by a single method call (see. Sec. 4.1.2 for details).

The details of the concepts can be informally described by the following rules which follow
the terminology from [HRB+08]:

• The GUI layer may only connect to interfaces that are declared service interfaces.
Connectors that point inwards the layer, i.e. connectors that can be used to call methods
at application layer components, are only allowed if they point to ports providing service
interfaces.
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Architectural Model Design Model

Figure 4.8: Modelling the layers structure of the Inventory System and compliant and violating
dependencies in the design model.

• A service interface is an interface providing service methods only. Those methods use
only transfer object classes or primitive types as parameter types or result types. Each
call of a service method returns a new copy of data, i.e. a new instance of the transfer
object class. This ensures that two different clients do not share a single instance as
returned value.

• A transfer object contains only attributes of primitive types or refers to other transfer
objects; it never refers to an object which is not a transfer object. Especially objects from
the domain model are not allowed.

Different violations of these rules are possible. Figure 4.9 shows a GUI component that, on
the one hand, correctly uses the services of the interface StoreIf. This interface, which is defined
in the application layer, has only methods using only transfer object classes and primitive types.
As a representative, the method getProductsWithLowStock is depicted, which returns an
instance of the transfer object class ProductWithStockItemTO. On the other hand, the GUI
component uses the application layer incorrectly. It accesses the interface OptimizationSolverIf,
which is defined in the application layer and implemented by the application layer component
ProductDispatcher (see Fig. C.12). The depicted method of this interface is not a service

49



Chapter 4. Case Study

Architectural Model Design Model

Figure 4.9: Examples of interfaces conforming to, or violating the service-oriented architecture of
the Trading System.

method because it uses other interfaces than transfer object classes as parameter types; the
parameter type StockItem is an entity from the persistent data model.

Notice, that the goal of the rules for transfer objects and interfaces with copy semantics is
not to specify transfer objects completely. It is not constrained, for example, that a transfer
object must contain the same data values of the relevant domain model extract. Instead, we
describe a minimal set of rules that must be followed.

4.2.3. Event-Based Architecture

The event-driven architecture of the Cash Desk subsystem describes that the components in
this subsystem communicate asynchronously and are further decoupled by event channels. The
event channel has the task to forward events. Events are types whose instances can contain
any relevant data about a specific event. They are modelled as interfaces and can also be
specialized. Events are passed to the event channel and forwarded to all registered subscribers
in an asynchronous manner. The components determine themselves whether to react to an
event or not.

This means that the following rules apply:
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• There are two kinds of components in the considered subsystem: event channels and
participants; the latter are publishers or subscribers (or both).

• Components interact by raising events, modelled as a specific kind of type, and reacting
to them.

• Participants connected to the same event channel are not allowed to communicate directly
with each other using the events that should be published at the channel.

• Participants commit events to the event channel which ensures that these event are
forwarded to the other participants at some point in time. This happens decoupled from
the original commit call to provide a asynchronous communication between participants.

These rules try to avoid that the weak coupling between the components of this subsystems
is undermined by directly “wiring” two or more components, as depicted in Fig. 4.10. In this
example, all three components, cashboxCtrl, lightDisplayCtrl, and cashDeskApp, are plugged
into the same event channel according to the architecture model. This is refined correctly in the
design model specifying that those components are connected via ports to the event channel.
But there is also a direct connection between cashDeskApp and lightDisplayController. Such
a structure allows two components to communicate directly; they could exchange notifications
of events without sending them to the event channel. Other components, that have subscribed
for the same kind of events, would not be able to react to those events. This has to be avoided.
In the example, the cash desk application could notify the controller of the LED directly about
the activation of the fast lane mode; the controller can react and activate or change the text
displayed on the LED. If the event is not published on the channel, the card reader component
is not notified, and cannot deactivate itself as required in fast lane mode (see [RRPM08]).

Notice, for later sections, that communication infrastructure components like event channels
are often taken “off-the-shelf”. This also means that their behaviour and inner structure is often
not modelled explicitly. This is also the case for CoCoME using JMS (see also Sec. 4.1.4).
The correct behaviour is often taken for granted. To illustrate the approach to architectural
compliance checking, a very simple event bus will be modelled to the degree that is required to
show that the rules modelled above are followed or violated.

4.3. Detailed Modification Scenarios

Based on the reference implementation, a reference design model has been developed. In
Sec. 7.1.1, an architectural model reflecting the three described architectural aspects including
the architectural rules they defined, will be developed. The design model will be checked for
compliance with the architecture model.

Since the reference implementation, and hence the design model, can be expected to be
largely compliant, the approach will also be evaluated by scenarios introducing architectural
violations into the design model.

In the following, three modification scenarios are introduced, each leading to a system design
model that is not compliant with one of the three architectural aspects described in Sec. 4.2.
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Architectural Model Design Model

Figure 4.10: Examples of communication conforming to and violating the event-based architecture
of the Cash Desk System.
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4.3.1. Modification Scenario 1: Adding Components for
Cross-Cutting Concerns

In this scenario, the inventory system’s functionality is going to be improved by adding logging
to the inventory system. Logging is the process of recording certain events, actions, or errors
that happen during the execution of a system. The recorded information is usually saved
to file, a database, or other persistent storage mechanisms. Logging can be helpful during
system development, operation and maintenance to understand the behaviour of the system, for
example to find sources of erroneous system behaviour. Developers can log, for instance, the
values of parameters that are passed to a faulty method to analyse the circumstances leading to
occurrences of errors.

The actions that should be logged in this scenario are diverse:

• The activation of GUI elements like opening a new window in the store client software is
logged. The name of the activated element and date and time of activation are stored.

• The call of service methods of application layer components is logged. The name of the
invoked method, parameter values, and date and time of the invocation are stored.

• The execution of database queries, that are realized and encapsulated in the implementa-
tion of the Data::StoreQueryIf interface, is logged. The query string as well as time and
date of the query are stored.

Logging is available for many implementation technologies and programming languages
“off-the-self”, for example the popular log4j logging framework for Java [Gup05]. Most of them
can be understood as a component similar to the depicted one in Fig. 4.11. By a functional
interface LoggerIf, a specific logger can be created (getLogger(String)). The Logger interface
contains methods for setting a logger level, and for writing messages to a log file, a database,
etc. By defining a a log level, the developer is able to switch on or off messages of lower
relevance, for example to improve execution performance of a system that is rolled-out after
testing.

Hence, in every situation that should be logged, the system must be specified to write a
message to a logger. This means that the affected components require the interfaces defined by
Logger and depend on (at least) this interface. Regarding the layer structure of the inventory
system, the question arises to which layer Logger should be assigned.

As a first solution, we consider to add the component to the application layer, depicted in
Fig. 4.11. A subpackage for logging is created inside the package Application. All actions that
require logging are identified in the design model, and calls to logger.log(...) are added.

An architectural compliance check at this point in time should inform the designer/developer
that there is an architectural mismatch. The layer structure is violated. The problem is the
logging of database queries in the implementation of StoreQueryIf and other interfaces of the
data layer. Since the encapsulated queries should be logged, there is a dependency from the
encapsulating component to the required interface Logger located in a layer above.

Unfortunately, moving the logger component to a different layer does not solve the problem.
The component and its interfaces are required in all layers but there is no layer that can be
accessed from all layers.
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Architectural Model Design Model

Initial Solution

Figure 4.11: Design model of a logger component and incorrect embedding into layers.

The solution is to move the logger component to an additional utility layer that can be
accessed from all layers. Logging is a so-called “cross-cutting” concern that is generally
required in many components spread over the whole system [CB05]. For such cross-cutting
concerns, it is normally not possible to put a realizing component into one layer of a strictly
layered structure. Hence, the structure is relaxed by a utility layer as depicted in Fig. 4.12.

The utility layer is positioned “below” the persistence layer and access is granted from all
other layers. Consequently, it is architecturally compliant that components from all layers
require the interface Logger. After the corresponding changes to the architecture model are
applied, the architectural compliance check of the modified design model, containing logger,
dependencies towards it, and a refactored package structure, should be successful.

The compliance checks executed in this scenario are described in detail in Sec. 7.3.1. The
required architectural rules regarding layers will be defined in Sec. 6.2.1.

4.3.2. Modification Scenario 2: Interface with reference semantics

In this scenario, the stock manager desires a new functionality. He would like to retrieve
information about deliveries that are expected to arrive on the current day. A simple information
panel shall list those suppliers that are going to deliver during the day.
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Architectural Model Design Model

Final Solution

Figure 4.12: Solution for architectural violation in Modification Scenario 1: utility layer for cross-
cutting concerns.

The responsible software designer sees that integrating this function is quite simple; basically,
it can be realized by a database query selecting from all orders those, which are planned to be
shipped today, and joining them with the table of delivering partners. The software designer
knows that accessing the data layer directly from the information panel component (being a
GUI component) to retrieve the data is not allowed, due to the strictly layered architecture.

Hence, the designer decides to add a new method at the StoreIf interface of the Applica-
tion::StoreApp component called getSuppliersDeliveringToday. The method uses the query
interface of Data::Store to retrieve the required data from the database. The software designer
decides to add a corresponding query method to the query interface of the Store component
of the data layer. After that, he designs a simple GUI panel. It fills its content during pop-up
by calling getSuppliersDeliveringToday, and forwards the Supplier objects to the panel. This
solution is depicted in the leftmost section of Fig. 4.13.

The architectural compliance checks executed after these first modelling steps detect archi-
tectural mismatches. First of all, there is a dependency between GUI and data layer because
instances of ProductSupplier are passed to the new GUI panel. This is a subsequent fault of
the second issue; the designer forgot to model the method as a service method as described in
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Figure 4.13: Solution for Modification Scenario 2: Designing correct service method and transfer
objects

Sec. 4.2.2. The method has to pass transfer objects if it is going to be call from the GUI layer.
The designer seeks advice from the architecture documentation to find out if there are existing

transfer object classes he can rely on. Although there exist the interface SupplierTO, he decides
that he would like to encapsulate also basic order information in the result of the method, and
creates a class SupplierWithOrderTO. This class contains information about a supplier and a
list of orders (see middle column of Fig. 4.13).

His first attempt is to keep a reference to an Order object in the new transfer class. Of course,
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the architecture compliance check shows him that this is not correct because transfer object
keeping links to persistent objects lead the concept ad absurdum. Instead, the designer notice
his mistake and changes the type of the reference to SupplierTO, an existing transfer object
class. After this modification, the compliance checks should pass.

4.3.3. Modification Scenario 3: Direct Communication between Cash
Desk Components

In the original design, the cashier at the cash desk is heavily dependent on the correct function of
the bar code scanner. The scanner is the only possibility to process goods for sale; a possibility
to enter bar codes manually, for example in the case of an inoperable scanner, was not intended.
In this scenario, this function is added.

To enter product bar codes manually, the cashier should be able to use the keyboard of the
cash box, which is used so far only to enter the amount of money that the cashier receives from
a customer, if the latter chooses to pay cash. The designer who has the task to integrate the
new functionality notices two things: first, the implementation of the Cash Box component has
to be changed. The interpretation of keystrokes now depends on the state of the sale process;
before the cashier signals that scanning is finished and payment can start, keystrokes mean that
bar codes are entered digit by digit. After that, keystrokes mean digits of amounts of money are
entered.

Second, the designer notices that the cash box must now be able to send an event signalling
that a product bar code has been entered. He takes a look to the design documentation to get to
know the events the bar code scanner of the existing system sends, because that component
must be able to do the same thing — to notify the remaining system that a bar code has been
entered. The designer finds the interface BarcodeScannedEvent that is appropriate for his
purpose.

He re-designs the cash box component a way that it interprets keystrokes depending on
the state of the component, and configures that in “bar code mode” the input of a bar code is
finished by pressing the “Enter” key; in this case, the cash box sends an BarcodeScannedEvent
to the application component. This component can then react to this event as it usually does,
i.e. as if the event has been sent by the bar code scanner.

The architectural compliance check, however, notices a violation of the software architecture.
The reason for this is the mandatory use of the event channel in the cash desk subsystem of the
CoCoME case study. The rules examined in Sec. 4.2.3 prohibit components connected to the
same event channel to communicate by the exchange of events directly.

The solution for the mistake in this scenario is quite simple; the designer removes the direct
asynchronous call to the application component, as well as the introduced direct connections
between cash box and application component. As new and correct solution, he decouples both
components and let the cash box publish a BarcodeScannedEvent on the bus when the input
of a bar code is finished.
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Initial Solution
(final solution discards highlighted connector)

Figure 4.14: Incorrect solution for modification scenario three: adding direct communication to
the Cash Desk System.

4.4. Summary

This chapter has introduced the CoCoME case study serving as an example system for the
proposed approach to architectural compliance checking. The case study has characteristics of
small real-world software system with regard to complexity, size and architectural aspects.

The discussion so far shows that a flexible approach is required to check architectural
compliance in the CoCoME case study. Different architectural aspects, i.e. layered information
system, layer interface with copy-semantics, and event-based architecture of the software
subsystem running at the cash desks, result in different architectural rules. Hence, it is not
sufficient to apply a single approach, e.g. to check layered structures.

Furthermore, it is desirable to check different artefacts of the case study system. The obvious
ones are the Java-based implementation as well as the UML design model. But also the content
of technology specific artefacts like mapping files for Hibernate can be affected by architectural
rules.

Based on these application scenarios, the following chapters will introduce and evaluate the
proposed approach. The following chapter will introduce a formal framework to compliance
checking which includes the transformation of (architectural) models into a representation
which enables us to check rules, especially architectural rules in associated architecture, design,
and implementation models.
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The sciences do not try to explain, they hardly even try to
interpret, they mainly make models. By a model is meant a
mathematical construct which, with the addition of certain
verbal interpretations, describes observed phenomena. The
justification of such a mathematical construct is solely and
precisely that it is expected to work—that is, correctly to
describe phenomena from a reasonably wide area.

John von Neumann

This chapter will explain the conceptual framework developed to support flexible architectural
compliance checking in component-based systems. It will describe the concepts and building
blocks of the framework in detail. These building blocks are:

• A formal representation of component-based systems and models of component-based
systems. The representation can be used for models created in all three system construc-
tion stages, i.e. coarse-grained architecture design, detailed design, and implementation.

• Based on the formal representation, a clear classification criteria to distinguish their level
of abstraction. This helps us to separate clearly and formally models of the different
development phases, and enables us to formally define the compliance relation between
them.

• An operationalisation of these concepts to allow tool support for architectural compliance
checking. It describes a method to derive systematically the formal representation of
models of arbitrary meta models, and to check them for compliance.

Section 5.1 will give an overview of the building blocks of the framework. It will omit formal
definitions as far as possible and will focus on pointing out the main ideas. To prepare the
reader for the deepening sections, Sec. 5.2 will introduce some theoretical foundations required
to formalize component-based systems, models of systems, and the interrelationships between
models. Section 5.3 will address the formal representation of component-based systems and
models. In Sec. 5.4, the abstraction level classification for models is introduced and the term of
architectural compliance is formally defined. Section 5.5 deals with the operationalisation of
the concepts. The chapter is summed up in Sec. 5.6.

5.1. Overview

As mentioned above, a key factor to flexible architectural compliance checking is a formal rep-
resentation of models of component-based systems and component-based systems themselves.
A model that describes a software system is a specification of how the software system must
be structured and of how it must behave. For example, a UML composite structure diagram
stating that a component C provides an interface I being an Observable implies that a “valid”
system contains (at least) C providing I that behaves like an observable (i.e., offering the ability
to register observers, notifying observers on state changes, and so on). The model can be
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Figure 5.1: A simple system as structure and a model as logical expression.

understood as a constraint that an element of the set of all possible systems has to fulfil to be a
conform implementation of the model.

The proposed approach is based upon a formalization of component-based systems as struc-
tures known from mathematical logic, similar to the approach in [EK03]. Structures consist of
a universe of atomic entities and a set of n-ary relations over that universe. Since this is a rather
universal definition, software systems can also be represented by structures. Fig. 5.1 depicts
a structure representing a software system cut-out. It consists of an entity CustomerService
that is an element of the unary relation Class with the meaning that CustomerService is a
class. This class provides a method to send newsletters to customers; for this purpose, it calls a
getEMailAdress method on the Customer class. The call relation between both methods is
represented as a corresponding tuple of the binary relation calls.

The signature of a structure defines the relations that are actually available. A signature
is a set of relation symbols that are mapped to relations by a concrete structure. Structures
that have relations according to a signature τ are called τ-structures. τ-structures are used in
mathematical logic to define the semantics of first-order logics. A first-order logic formula
over τ-structures can contain predicates that relate to the relation symbols from τ and can be
evaluated over τ-structures.

Translated to the issue of software system representation, this interrelationship could be
used to represent models of software systems. A signature defines the symbols that can be
used to describe arbitrary systems, for example the relation symbols Class, Interface, Method,
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"Objects with true masses below the limiting mass for thermonuclear fusion of deuterium (currently calculated
 to be 13 Jupiter masses for objects of solar metallicity) that orbit stars or stellar remnants are "planets"
 (no matter how they formed)."

Extension of "Planet" (cut-out)

Intension:

Figure 5.2: Extension and intension of the concept “Planet”.

implements, defines, and calls. A concrete system, like the system in the upper part of Fig. 5.1,
is represented as a structure. The relation symbols are mapped to the specific relations of the
structure, for example, Method is mapped to MethodS.

If software systems are represented as τ-structures, models could be understood as logic
formulae over τ-structures. A system conforms to a model if and only if the formula representing
the model is satisfied by the finite structure representing the system1. The lower part of Fig. 5.1
shows a simple UML class diagram and the corresponding first-order logic expression that
trivially states that the modelled class and its method have to be present in the software system
as a conjunction of predicates.

Following this idea, we can roughly distinguish between extensional models and intensional
models. Extension and intension are terms that are used in many studies treating the usage
of signs, like linguistics, philosophy of language, logic, or mathematics. The extension of
a concept, expression or statement consists of the things to which the concept applies. The
intension, in contrast, is the set of properties, constraints or ideas that describe the concept.
Consider, for example Fig. 5.2, which depicts in the upper part a cut-out of extension of
the term “Planet” — namely the planets of the solar system. The complete extension would
additionally contain all extra solar planets. Below, the intensional definition of a planet given by
the International Astronomical Union (IAU) is printed, specifying the properties an interstellar
object must have to be considered a planet 2.

The definitions of extension and intension differ in the details from field to field, and the
definition of “intensional” is discussed very controversially in the single disciplines by different
authors [Car56, Fre92, Tex05].

The approach introduced in [EHK06] by Amnon Eden et al applies the distinction of inten-
sional and extensional statements to first-order logic formulae as representations of models
of software systems. An extensional statement, in contrast to intensional statements, is a

1in this case, a structure is said to be a model for the statement. To avoid confusion related to the usage of the
term “model” in context of MDD, we will use it carefully and only if the actual context is clear.

2See http://www.dtm.ciw.edu/boss/definition.html
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statement whose set of satisfying structures is closed under adding entities and relation tuples,
and removing entities that are not explicitly mentioned by the statement. For example, consider
again the class diagram and its statement from Fig. 5.1. Further classes, interfaces, or methods
can be added to the depicted structure without losing the property that it satisfies ϕ. The
same holds for entities that are not explicitly referenced in ϕ, for example Customer. Another
property, a statement can have, is that of locality. This property expresses that its set of models
is closed under adding entities and tuples (in contrast to non-local statements).

Eden uses this classification to classify models of the architecture, design, and implemen-
tation level by the degree of abstraction they provide. Eden comes to the conclusion that
architectural statements are in general non-local, intensional statements. For example, consider
architectural layers that define an hierarchy in a system [BMRS96]. Of course, entities like
components can be added to the system in a way that the hierarchy is violated. Thus, the original
statement, saying in a first-order logic way that accesses have to be top-down, is violated by
an extended structure. The proposed approach will use the classification of Eden and extend
it to define the compliance relationship between models of different levels of abstraction. In
addition, Eden’s framework is in a sense “implemented” by using the general formalization to
represent component-based systems.

To make efficient tool support possible, these concepts have to be operationalized. A
systematic approach to transform models into structures has to be defined as well as an efficient
way to check architectural compliance.

The overall proposed approach is concluded and illustrated in Fig. 5.3. Component-based
systems are formalized as τCBS D-structures conforming to a set of axioms called ΦCBS D. While
τCBS D defines the relation symbols that can be used to describe component-based systems,
ΦCBS D defines additional constraints that have to hold for relations in all component-based
systems. Descriptions of systems, such as architectural, design, and implementation models are
expressed as first-order logic statements. The set of satisfying structures for the corresponding
formula is the semantics of a model. An abstraction classification for models of different devel-
opment phases is introduced based on the general classification of first-order logic statements
mentioned above. Based on this separation of different model classes, the term of compliance
between models of the three development stages is defined. This definition is operationalised
and results in an algorithm to check architectural compliance.

5.2. Foundations

The mathematical foundations of the approach are τ-structures and first-order logics. This
section will give important definitions related to those foundations in order to prepare for the
formalization of component-based software systems and architectural compliance. The first
subsection will define terms related to τ-structures and their function as semantics of first-order
logics. The second subsection introduces a classification scheme of first-order logic formu-
lae that will help us to categorize and distinguish architectural, design, and implementation
models.
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Figure 5.3: Illustration of the framework’s components.

5.2.1. Structures

Mathematical structures consist of a universe of entities (also called the universe of discourse)
and a set of functions and relations over this universe. For example, the set of integers Z with
the functions + and · and the constants 0 and 1 form a structure. The functions and relations
that are available in a structure are defined by its signature.

The definition introduced in this section can be found in common textbooks about (first-)order
logics as for example [HR04] whereas the notation might vary from book to book.

Definition 1 (Signatures) A signature τ is a countable set of function and relation symbols.
Every symbol has a finite arity. Function symbols with arity 0 are called constant symbols.

In the example above, the signature {+, ·, 0, 1} provide the functions for integer mathematics.
As a further example, a very simple and incomplete signature τC for component-based systems
could consist of the two unary relations Component and Interface and the two binary relations
provides and requires.
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A signature can be interpreted in the context of a specific structure that maps function
symbols and relation symbols to a universe and specific functions and relations.

Definition 2 (τ-structures) A τ-structure A B
(︁
A, ( )A

)︁
consists of

• a non-empty set of entities A, the universe of A.

• an interpretation function ( )A that maps ever n-ary relation symbol P ∈ τ onto a n-ary
relation PA ⊆ An , and every n-ary function symbol f ∈ τ onto a function f A : An → A.

A is called a finite structure if its universe A is finite. In the following, A is implicitly the
universe of A, B the universe of B, etc., without explicitly denoting the components of the
tuples A, B, and so on.

Continuing the example from above, a component C providing an interface I and requiring
and interface J could be expressed as τC-structure A like this:

• A = {C, I, J}

• ComponentA = {C}, Inter f aceA = {I, J}

• providesA = {(C, I)}, requiresA = {(C, J)}

In contrast to common definitions from first-order logics, we will allow partial functions and
undefined constants to be mapped to function symbols of corresponding arities. The further
formalization refers to the approach in [GL90]. In case of an undefined constant for the nullary
function symbol c we will write cA = ⊥.

In the following, we will omit the superscript A for relations and functions when it is clear
which structure is meant and when the relation/function cannot be confused in the respective
context with the corresponding symbol.

There are two different ways how a structure can be part of another structure. First, both
structures can have the same signature but different universes. Second, they can differ in their
assigned signature but have the same universe.

Definition 3 (Substructures and extensions) A structure A is called a substructure ofB if all
of the following statements hold:

• A and B have the same signature τ

• A ⊆ B, with A being the universe of A, and B being the universe of B.

• RA = RB ∩ An for every relation symbol R ∈ τ, n being the arity of R

• f A = fB |A for every function symbol f ∈ τ.

B is also called an extension of A.

For example, the component example from above could be extended by a component D
providing the interface C requires. The resulting structure A′ is an extension of A:
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• A′ = A ∪ {D}

• ComponentA
′

= ComponentA ∪ {D}, Inter f aceA
′

= Inter f aceA

• providesA
′

= providesA ∪ {(D, J)}, requiresA
′

= requiresA

On the other hand, we could leave the universe of a structure as it is but add or remove
functions and relations and get new structures.

Definition 4 (Reductions and expansions) Let σ and τ be signatures with σ ⊆ τ, and A a
τ-structure. The σ-reduction of A (A � σ) is the structure that results from removing all
relations in τ∖σ from A. More formally this means that A � σ B (A′, ( )A�σ) is defined as

• A′ = A

• ( )A�σ = ( )A |σ

If B is a reduction of A, then A is called a τ-expansion of B.

For example, we could define a signature τC′ B τC ∪ {extends} and create a τC′-expansion
of A′′ with the additional relation extendsA

′′

= {(I, J)}.
Structures are used to define the semantics of first-order logics. Formulae, or statements, in

first-order logics are syntactically build of τ-terms. τ terms can be either arbitrary variables
from the set of all variables VAR or strings of the form f (t1, . . . , tn) whereas f is a n-ary function
symbol from τ and t1, . . . , tn are τ-terms.
τ-formulae are syntactically constructed by applying the known operators (conjunction,

disjunction, negation) and quantifiers to predicates that are relation symbols from τ. Terms are
used as predicate arguments.

The semantic interpretation of a first-order logic formula assigns a truth value to it that
indicates whether the formula holds or not. This depends on the assignment of values to
variables of the formula, and the interpretation of function symbols and relation symbols by
functions and relations of a specific τ-structure.

Definition 5 (Interpretations, Semantics of first-order logics, minimal structures)
Let τ be a signature. A τ-interpretation I is a tuple I B (A, β) with

• A being a τ-structure and

• β : X → A a function assigning values to variables

whereas VAR is the set of all variables and X = dom(β) ⊆ VAR.
The interpretation I does two things:

• It assigns a value JtKI ∈ A to every τ-term t.

• It assigns a value JϕKI ∈ {0, 1} to every τ-formula ϕ with f ree(ϕ) ⊆ dom(β), f ree(ϕ)
being the set of free variables in ϕ.
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The value assignment is defined inductively according to the syntactical structure of terms and
formulae:

For a term t, the value JtKI is defined by

• for t = x ∈ dom(β): JtKI B β(x)

• for t = f , f A = ⊥: JtKI is undefined

• for t = f (t1, . . . , tn): if t1, . . . , tn are defined, and f A is defined at (Jt1KI, . . . , Jt1KI), then
JtKI B f A(Jt1KI, . . . , Jt1KI), otherwise undefined.

For atomic formulae ϕ, the value JϕKI is defined by

• Jt1 = t2KI B
{︃

1 if Jt1KI, Jt2KI are defined, and Jt1KI = Jt2KI,
0 otherwise.

• JP(t1, . . . , tn)KI B

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if Jt1KI, . . . , JtnKI are defined, and(︁

Jt1KI, . . . , JtnKI
)︁
∈ PA,

0 otherwise.

The values for more complex formulae are defined inductively according to the construction
rules for junctors ¬,∧,∨ and the quantors ∃ and ∀ (see [HR04]).

An interpretation I = (A, β) is said to be a model of the formula ϕ, if and only if JϕKI = 1.
In this case, we write (A, β) |= ϕ or A |= ϕ[β]. Similar, I is a model for a set of τ-formulae Φ, if
and only if it is a model for every formula ϕ ∈ Φ.

If there is a model for a formula ϕ, ϕ is called satisfiable, otherwise unsatisfiable. If it is true
in every interpretation, it is called valid.

A model s is called minimal satisfying structure of a set of formulae Φ if and only if s |= Φ

and there does not exist a substructure s′ of s with s′ |= Φ.

For example, we could express for the component examples that it should hold that every
component must provide at least one interface:

ϕc = ∀x∃y : Component(x)→ provides(x, y)

The structures A, A′, A′′ as defined above are models for ϕc. But only A′ and A′′ satisfy the
formula ϕi expressing that every interface must be provided by at least one component:

ϕi = ∀x∃y : Inter f ace(x)→ provides(y, x)

It is obvious that a τ-formula ϕ can also evaluated by σ-interpretations, if τ ⊆ σ. In this
case, the mappings of function and relation symbols from σ∖τ are irrelevant with regard to the
interpretation of ϕ.

We will use the notation ϕ(x1, . . . , xk) for a formula ϕ that at most uses x1, . . . , xk as free
variables. In the following, we will also write A |= ϕ(a1, . . . , ak) instead of A |= ϕ[β] to express
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that A satisfies ϕ with every value assignment β that maps β(x1) = a1, . . . β(xk) = ak. We then
say “A is a model of ϕ(a1, . . . , ak).”

A sentence is a formula without free variables. In the following, we will also say “A is a
model of ϕ” for (A, β) |= ϕ and write A |= ϕ if ϕ is a sentence. Since the function β of an
interpretation assigns values to free variables, it is irrelevant for sentences.

A set of sentences can be used to define a set of axioms for a class of structures. Each
sentence of the set is valid in all structures of that class.

Definition 6 (Model class of logical sentences, axiom systems) Let Φ be a set of τ-senten-
ces. The model class of Φ is defined as

Mod(Φ) B {A : A is a structure with A |= Φ}.
We also say, that Φ is the axiom system for a class K if K = Mod(Φ).

Formulae can be semantically related, for example, a formula can imply another, or two
formulae are equivalent. These relationships can be defined in terms of the sets of models for
the related formulae.

Definition 7 (Equivalence of logical formulae) A formula ψ is an implication of a set of
formulae Φ (written Φ |= ψ), if and only if every model of Φ, that covers the free variables of
Φ ∪ {ψ}, is a model of ψ. Two formulae ϕ and ψ are equivalent, written as ϕ ≡ ψ, if {φ} |= ψ
and {ψ} |= φ.

5.2.2. Classification of First-Order Logic Statements

The set of satisfying structures defines the semantics of a formula and enables us to define
relationships between formulae like implication and equivalence. Structures can be modified
by reducing them to substructures or by extension, i.e. adding or removing elements from the
according universe. With the interpretation of structures as software systems, these operations
represent changes in a given software system. If a software system satisfies a given description,
the question arises if it still does after the modification. In the formalism the question is
re-formulated as: does the modified structure still satisfy a given formula ϕ?

The classification scheme that will be applied distinguishes formulae by the modifications
that can be made to models for a formula leading to another model of the same formula. Applied
to formulae representing statements about software systems, this scheme distinguishes formally
different abstraction levels that descriptions of software systems can provide.

Figure 5.4 depicts a structure in the upper part, and three different statements in the lower
part. Obviously, the structure is a model for each of the statements. ϕ1 states, that C1 and C2 are
components. Arbitrary entities could be added to the structure, the modified structure would
stay a model of ϕ1. Similar, entities could be removed that are not explicitly mentioned in ϕ1,
such as I1 or I2. The removal would not affect the fact that the resulting structure would still be
a model of ϕ1.
ϕ2 is a bit different. It states that C1 has to depend on some interface provided by another

component. The depicted structure satisfies this statement. However, while the addition of
arbitrary entities still leads to another model of ϕ2, the removal of some of the not explicitly
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Figure 5.4: Three statements and a satisfying structure.

mentioned entities will not lead to a model in some cases; the same structure without I2 and
without tuples containing I2 does not satisfy ϕ2.

For ϕ3, neither adding nor removing entities is “safe”. ϕ3 states that every component has to
provide at least one interface. Obviously, removing I1 or I2 results in a structure that is not a
model for ϕ3. Additions as well can lead to such a structure, for example adding a single entity
C3 being a component, would create a structure that does not satisfy ϕ3.
ϕ1, ϕ2, and ϕ3 are instances of three different classes of statements, called implementa-

tion statements (ϕ1), tactical statements (ϕ2), and strategic statements (ϕ3) [EHK06]. In the
following, we will define them formally.

First, we would like to distinguish different extensions of a structure A. If A is extended by
adding a tuple of existing entities to a relation, the resulting structure is called a modifying
extension of A. An extension is also modifying, if an added tuple refers to existing and added
entities but the relation as such is interpreted as changing the existing entity because the relation
symbol stands for a very “close” relationship. Consider, for example, adding a parameter to
a method, what could be modelled as a binary relation between two entities, would rather be
understood as modifying the method than as extending it.

More formally, this is stated in the following definition:

Definition 8 (Modifying and additive extensions of structures) Let the τ-structure B be an
extension of a given τ-structure A with B = A ∪̇ {e1, . . . , ek}. B is called a modifying extension
of A w.r.t τc ⊆ τ if

• there is (x1, . . . , xn) ∈ RB with xi ∈ A for i = 1, . . . , n and (x1, . . . , xn) < RA, or

• there is (x1, . . . , xn) ∈ RB, R ∈ τC, x1 ∈ A, and xi = e j for at least one i ∈ {2, . . . , n}.

Otherwise, B is called an additive extension of A w.r.t τC.
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Second, we will define the partial structure of a structure that results from a “clean” removal
of entities. This means that also tuples are removed that contain an entity that is removed.
Furthermore, constant symbols may not longer be mapped to deleted entities, which neither
can be in the domain of functions.

Definition 9 (Partial structure) For a given structure A, the structure A∖{e1, . . . , ek} = B is
defined as

• B = A∖{e1, . . . , ek}

• for all relation symbols R: RB B RA ∩ Bn

• for all constant symbols c: cB = cA if cA , ei, for i = 1, . . . , k, otherwise cB = ⊥

• for all other function symbols f : fB = f ′A |B, whereas

f ′A(x1, . . . , xn) B

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f A(x1, . . . , xn) if xi and e j mutually different

for i = 1, . . . , n and j = 1, . . . , k
(x1, . . . , xn) < dom( f ′A) otherwise.

As stated above, only entities can be considered for removal from models for a formula ϕ
that are not explicitly mentioned in ϕ. Of course entities cannot be used directly in formulae
because the elementary terms to construct formulae are only variables and symbols from the
signature that the formula is defined for. Thus, an explicit mention of entities in a formula is
defined as follows:

Definition 10 (Explicitly mentioned entities) Given are a τ-structure A and a τ-formula ϕ.
An entity e ∈ A is explicitly mentioned in ϕ if ϕ contains a term t = c whereas c is a constant
symbol from τ and cA = e.

With these definitions, we are able to define the category of extensional first-order logic
statements.

Definition 11 (Extensional and intensional formulae) A first-order logic τ-formula ϕ is
called extensional (w.r.t to τC ⊆ τ) if both of the two following statements hold for every
τ-structure A with A |= ϕ:

• for every subset A′ ⊆ A of entities that are not explicitly mentioned in ϕ is A∖A′ |= ϕ.

• for every additive extension (w.r.t. τC) B of A is B |= ϕ.

ϕ is called intensional (w.r.t. τC if and only if it is not extensional.

In the example depicted in Fig. 5.4 only ϕ1 is an extensional statement. The depicted structure
is an example which does not satisfy the constraints of the definition above regarding ϕ2 and
ϕ3. Hence, both statements are intensional.

Another classification criterion for first-order logic statements is locality.
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Definition 12 (Local and non-local formulae) A first-order logic τ-formula ϕ is called local
(w.r.t. τC ⊆ τ) if for every τ-structure A with A |= ϕ holds: every additive extension (w.r.t. τC)
B of A is a model of ϕ (B |= ϕ). A formula ϕ is called non-local (w.r.t. τC) if and only if it is
not local.

It is obvious that every extensional statement is also local, since the constraints for extensional
statements include those for local ones. For the same reason, every non-local statement is
intensional but not vice versa — intensional statements can either be local or non-local. ϕ2

(see. Fig. 5.4), for example, is intensional and local, ϕ3 is intensional and non-local. In
the context of software systems, we adapt the nomenclature of Eden [REF] who refers to
implementation statements (extensional), tactical statements (intensional, local), and strategic
statements (non-local).

5.3. Formal Representation of Component-Based
Systems

As introduced in Sec. 5.1, the proposed approach is based upon a representation of component-
based systems as structures of a common signature τCBS D. τCBS D defines the symbols required to
formalize all relevant aspects of component-based systems, and to formulate logical statements
about them. The relation symbols of τCBS D define the available types of entities such as
components and interfaces, and the types of relationships between them, such as “provides” or
“requires”. An axiom system is defined describing restrictions that are valid for component-
based-systems in general; for example, it states that a connection between components can only
be specified if the connected ports are type-compatible. The axiom system for component-based
systems is called ΦCBS D in the following.

This section will explain τCBS D and ΦCBS D in detail. The next subsection will give a quick
overview of τCBS D and the general form of axioms of ΦCBS D. After that, the subsequent sections
will dive into the details of the single subsets of τCBS D one by one.

5.3.1. Overview of the formalization of Component-Based Systems

Structures representing component-based systems are characterized by τCBS D on the one
hand, on the other hand by the axiom system ΦCBS D. While τCBS D defines entity types and
relationships between them, ΦCBS D defines constraints that have to hold in component-based
systems in general. More formally, we can define:

Definition 13 (Component-Based Systems) A component-based system A is an element of
KCBS D B Mod(ΦCBS D) whereas for the universe A of A holds: A ⊂ N.

Please notice, that the definition of model classes as used above implies that also τ′-structures
with τCBS D ⊆ τ

′ can be component-based systems as long as the axioms of ΦCBS D are valid for
them.

The reader familiar with UML and model-driven software development in general will in the
following notice some similarities between the concepts and terms used for τCBS D and the meta
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model of UML [Obj10b]. On the one hand, UML as a general purpose modelling language
covers also component-based systems and, thus, has language elements to cover components
and related concepts. As a standardized language supported and developed by experienced
software developers and designers, these concepts are elaborated very well. Consequently,
some of them inspired and influenced the view on component-based systems presented here.

The main differences between UML and the signature for component-based systems τCBS D

along with the axiom system ΦCBS D are the particular purposes of use. UML is a modelling
language which can be used to describe systems at different abstraction levels, for example
component-based systems. In contrast, τCBS D and ΦCBS D provide a formal, mathematical
construct to define the semantics of models describing component-based systems.

Furthermore, the meaning of the concept of a component and related concepts and their
distinction from other concepts remain very unclear in UML. Most of the properties of a
component also apply to classes in UML, a fact that manifests itself as a common super meta
class “Classifier” that plays a central part in this part of the meta model. Classifiers, and hence
classes as well as components, can be connected by associations, can have properties, can be
specialized, and can be composite structures. Thus, the differences between object-oriented
and component-based concepts are blurred and overloaded.

The separation of concepts supposed here is clear and stringent. A component is a complex
and composite, autarkic type that defines by interfaces (being collections of method signatures)
which functionalities it requires and provides. Classes are used as component-local types only.
Due to the fact that the goal of this approach is more focused on a single kind of systems,
concepts can be defined more lightweight than in a general-purpose-language like UML.

However, defining τCBS D and ΦCBS D is similar to creating a meta model for a modelling
language for component-based systems. Despite the different usage purposes mentioned above,
we will use class diagrams in addition to the pure mathematical notations. They provide a
convenient illustration mean to a quick understanding of which relation symbols and axioms
are contained in τCBS D and ΦCBS D, respectively. The mapping between class diagrams and both
structures will be explained in the following subsections.

τCBS D from a Bird’s Eye Perspective

τCBS D can be divided into six disjoint subsets, each covering a different aspect of component-
based systems. These subsets are:

τCBS D = τgen ∪̇ τtype ∪̇ τoos ∪̇ τcs ∪̇ τbhv ∪̇ τid

All relation symbols of τCBS D are either unary or binary. Unary relation symbols stand for
entity types while binary relation symbols model relationships between entities. The only
constant symbols are contained in τid to refer to entities in formulae. No further function
symbols are defined apart from that.
τgen consists of general relation symbols that are used and refined throughout the whole

signature. For example, a relation symbol “NamedElement” is used as a type for entities that
are endowed with a name, such as components and interfaces, or a relation symbol “Package”
which provides a namespace mechanism.
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τtype contains symbols for the main constructs to describe component-based systems on
the type level. Those are, for example, components and interfaces. They will be covered in
Sec. 5.3.2.

In τoos, the object-oriented aspects of component-based systems will be covered. The
contained relation symbols model classes, inheritance, and so forth. They are described in
Sec. 5.3.3.

The relation symbols in τcs deal with the inner structure of components that is defined by
ports, parts, and connectors. The structure of an overall system is very similar to the structure
of single components, thus most of the constructs are reused to define system configurations.
They will be explained in Sec. 5.3.4.
τbhv is the subset of relation symbols relevant for the behaviour description of systems and

components. For example, communication issues like method invocation or asynchronous
messaging, instance creation, etc. are reflected as relation symbols. They are explained in
Sec. 5.3.5.
τid is a countable infinite subset of constant symbols that identify entities from a structure’s

universe which is the set of integers. It is defined as

τid B {ei | i ∈ N}.

An interpretation JeiKA = i pointing to an entity of the universe of A means that this entity
has been allocated the identifier ei. JeiKA = ⊥ indicates that no such entity exists. With these
constant symbols, we are able to let formulae refer to entities by their identifier.

As already mentioned, class diagrams will be used in the following sections to illustrate
the subsets of τCBS D. Figure 5.5 depicts the general mapping from class diagrams to relation
symbols. For every class Class_A, there is a unary relation symbol “Class_A”. Attributes of
classes are mapped to binary relation symbols (see attr), whereas the first component of a tuple
refers to the class owning the attribute, and the second component to the attribute itself. The
same mapping is applied to association ends as far as they are named, e.g. rel in Fig. 5.5. Of
course, the specific interpretations of relation symbols in form of relations in specific structures
underlie additional constraints — for example, “rel” may only relate an entity e with an entity
f if e ∈ Class_A and f ∈ Class_B. These constraints and others are part of the axiom system
ΦCBS D, which is described in the following section.

The Axiom System ΦCBS D

The axiom system ΦCBS D = {CBS Di | i = 0, 1, . . .} contains τCBS D-sentences expressing
constraints that have to hold in component-based systems in general. Many of these constraints
are specific to a certain type of entity or a specific relationship. For example, we are going
to express that a class can only inherit another class if they are encapsulated by the same
component. Contrarily, there are some general classes of constraints that are represented as
sentences of similar shape for different relation symbols:

• Constraints defining the domain of unary relation symbols. Unary relation symbols
represent types of entities. To express subtyping, the relationship between subtype and
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Relation symbols:
CLASS_A (unary)
CLASS_B (unary)
attr (binary)
rel (binary)

Figure 5.5: Mapping of meta model elements to relation symbols.

supertype has to be axiomatically be defined for the corresponding relation symbols. For
example, every component is also a named entity. This is formalized as sentence that
states: e being a component implies that e is also a named element. This scheme can be
generalized.

• Constraints defining the domain of binary relation symbols. These constraints restrict the
domain of relationships between entities to certain types of entities. For example, it must
be axiomatically stated that provides is a relation between components and interfaces
only.

• Constraints defining the multiplicity an entity may appear as a component of a relation
tuple. These constraints, for example, state that a single entity may participate in a
relation exactly once. For instance, a component c must have exactly one name and, thus,
there must be exactly one tuple of the form (c,MyComponent) ∈ name for a fixed c.

Constraints of the first kind are in general defined as follows:

CBS Di = ∀x : T (x)→ T ′(X) (5.1)

whereas the unary relation T denotes a type that is subtype of a type denoted by T ′, meaning
that every entity being of type T is also of type T ′. It indicates that JTKA ⊆ JT ′KA for every
A ∈ KCBS D. Furthermore, every entity in a component-based system can only be in one type
hierarchy — for example, an interface cannot be a component at the same time. Since the
set of unary relation symbols representing types is finite, it can be stated as first-order logics
statement:

CBS Di = ∀x : T (x)→ ¬T1(x) ∧ ¬T2(x) ∧ . . . ∧ ¬Tk(x) (5.2)

with T1, . . . ,Tk being all unary relation symbols representing types that are neither subtypes
nor supertypes of the type represented by T .
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Constraints that define the domain of a relation R to certain types T1 and T2 are defined as

CBS Di = ∀x∀y : R(x, y)→ T1(x) ∧ T2(y) (5.3)

These axioms ensure for given R,T1, and T2, that in every component-based system A holds
that JRKA ⊆ JT1KA × JT2KA ⊆ A × A.3

For constraints limiting the multiplicity of an entity as a fixed component of relation tuples,
four cases are distinguished.

1. The multiplicity can range between 0 and an arbitrary number.

2. The multiplicity can range between 1 and an arbitrary number.

3. The multiplicity can range between 0 and 1.

4. The multiplicity must be exactly one.

The first case does not require any constraints. It means that, for a given entity x and a given
relation rel, that there might be an arbitrary number (including zero) of entities y with (x, y) ∈
rel. In the second case, zero is not allowed, thus, there must be at least one y. Hence, the
constraints in this case are defined as, assuming that rel is a binary relation between entities of
type T and T ′:

CBS Di = ∀x : T (x)→ ∃y : rel(x, y) (5.4)
CBS D j = ∀y : T ′(y)→ ∃x : rel(x, y) (5.5)

The first formula states that, for a fixed element at the first component, there is at least one
tuple. The second formula, as in the following pairs of axioms, states the same but for a fixed
entity at the second component.

The third case, the multiplicity ranging between 0 and 1, is defined by the constraints

CBS Di = ∀x : T (x)→ ((∀y : ¬rel(x, y)) ∨ (∃!y : rel(x, y)) (5.6)
CBS D j = ∀y : T ′(y)→ ((∀x : ¬rel(x, y)) ∨ (∃!x : rel(x, y)) (5.7)

In the case of a multiplicity of exactly one, we can write

CBS Di = ∀x : T (x)→ ∃!y : rel(x, y) (5.8)
CBS D j = ∀y : T ′(y)→ ∃!x : rel(x, y) (5.9)

Table 5.1 shows how class diagrams as illustrations of τCBS D can be mapped to the axioms
of the before mentioned shapes. Generalization obviously models the subtype relationship

3This is abbreviated as R ⊆ T1 × T2.
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Class diagram Axioms

Domain restriction for unary
relation symbols (subtyping)

see axioms 6.1 and 6.2

Domain definition for binary
relation symbols

see axiom 6.3

Multiplicity “at least one” see axioms 6.4 and 6.5

Multiplicity “exactly one” see axioms 6.6 and 6.7

Multiplicity “zero or one” see axioms 6.8 and 6.9

Table 5.1: Class diagram notation for τCBS D and corresponding axioms of ΦCBS D.
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(from τoos)

(from τoos)(from τoos)

(from τcs)

Figure 5.6: Hierarchy of type relation symbols.

between entity types. Meta classes connected by meta associations define the domain of the
binary relation symbol(s) represented by the corresponding association ends. Their multiplicity
determines which of the multiplicity constraints are contained in ΦCBS D.

In the following sections describing τCBS D, these general constraints defined for almost every
symbol of τCBS D will not be mentioned explicitly. They can be found in App. A. Only entity
type specific or relationship specific constraints will be explained explicitly in this chapter.

5.3.2. Types and Typed Elements(τtype)

The subset τtype of τCBS D defines relation symbols to formalize different kinds of types used in
component-based software development. A type can be understood as a constraint over the data
values an element can represent. For example, “integer” in a programming language constrain
the possible values an element of this type can have to a finite subset of integers. Types are
modelled in τtype as relation symbol Type ⊆ NamedElement and subsetted by a set of more
specific kind of types, as depicted in Fig. 5.6.

Beside primitive types (integer, strings, boolean, etc.), the main types used in component-
based systems are components, interfaces, and classes. All of them define complex types that
have structure and behaviour. Components, captured by Component ⊆ Classifier (see Fig. 5.6),
represent modular parts of a system at the type level, and encapsulate, or hide, their specific
implementation from the rest of the system or the environment. The functionality a component
provides or requires is defined by interfaces. A component requiring an interface I must be
“wired” to a component that provides I in order to realize its own functionality. An interface
declares the structure of a type by declaring signatures of methods and member variables. An
interface itself cannot be instantiated but needs to be implemented by classes. Classes and
interfaces are summarized by the relation symbol OOClassifier ⊆ Classifier to group these
concepts from object-orientation.

Fig. 5.7 depicts which elements can actually be typed. Members of classes or interfaces can be
typed as well as parameters of methods and local variables in method bodies. Parts are a superset
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(from τcs)
(from τoos) (from τoos)(from τbhv)

(from τgen)

Figure 5.7: Entity types that can be assigned types from τtype.

of different kinds of constituent parts that components are made of. All of these entity types as
subsets of TypedElement can participate in the relation hasType ⊆ TypedElement×Type that
reflects the typing.

Main Type Constructs: Components and Interfaces

Components and interfaces are the main type constructs in component-based systems. They rely
heavily on concepts known from object-orientation like classes, inheritance, object references,
etc. Interfaces themselves are known in object-orientation as well. τoos contains relation
symbols that capture the structural aspects of object-oriented specifications. Figure 5.8 depicts
τoos and the most important connections to other relation symbols of τCBS D. These are in
particular connections to Component.

Component ⊆ Type represents the set of components, while interfaces are formalized as
elements of the unary relation symbol Interface ⊆ Type (see Fig. 5.8). The relation symbols
providesInterface ⊆ Component× Interface and requiresInterface ⊆ Component×Interface
connects each component with the interfaces it provides or requires. The classes a component
encapsulates are reflected by the relation symbol
containsClass ⊆ Component×Class.

Components and interfaces can be grouped by packages that are modelled by Package ⊆
NamedElement. Packages provide namespaces, in which names of types are unique. Every
component and every interface must be contained in exactly one package. The relation symbol
containsPkg ⊆ Package×Package allows us to compose hierarchical package trees. (p1, p2) ∈
containsPkg indicates that p2 is a subpackage of p1. containsPkg+ denotes the transitive closure
of containsPkg; (p1, p2) ∈ containsPkg+ indicates that p1 contains p2, possibly indirectly.

It is worth noting for readers familiar with object-oriented concepts and languages, that
classes are not considered as elements grouped in packages and accessible from anywhere in
the system. Often also classes are entities that are provided by components directly, e.g. if they
reflect simple data structures with only getter and setter methods; in this case, the interface and
implementation of a class is integrated into a single unit, and not strictly separated. Since this
is not allowed in τCBS D, the most straight-forward conversion of such “data interfaces” would
be to assume a standard implementation encapsulated in the component, which provides simple
getter and setter implementations. Alternatively, τCBS D could be easily extended to integrate
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(from τgen)

(from τcs)

(from τtype)

(from τtype)

Figure 5.8: Relation symbols of τoos that model the structure of classes and interfaces, and relation
symbols that connect them to other subsets of τCBS D.

complex data types as specialization of PrimitiveType, such as records or sequences.

Running Example

Figure 5.9 depicts an example in UML notation illustrating the relation symbols introduced
so far. Notice, that the diagram is annotated with «System diagram». This indicates that the
diagram depicts a system in the meaning of a τCBS D-structure conforming to the axioms of
ΦCBS D. In contrast, latter UML diagrams, for example in Sec. 5.4, will be understood as models
of systems — these diagrams will not be annotated.

Small boxes contain for every element of the diagram a unique identifier that represents the
element in the structure. A simple package hierarchy is depicted that consists of the packages
P, P1, and P2 that contain some components and interfaces. Table 5.2 lists relation symbols of
τCBS D and how they are interpreted in the system S depicted in Fig. 5.94. The containment as

4For reasons of simplicity, we omit here the relations for name and quali f iedName. Tuples of these relations
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«System diagram»

Figure 5.9: Exemplary system S according to τCBS D, Part 1.

Relation symbol r Interpreting relation rS in the system S
Package {1, 2, 3}
Component {4, 5}
Inter f ace {6, 7, 8, 9}
containsPkg {(1, 2), (1, 3)}
containsComponent {(2, 4), (3, 5)}
containsInter f ace {(2, 6), (3, 7), (3, 8), (3, 9)}
providesInter f ace {(4, 6), (5, 7), (5, 8)}
requiresInter f ace {(4, 8), (5, 9)}

Table 5.2: Relations of the example from Fig. 5.9.

well as the provide and require relationships are reflected by the depicted binary relations.

5.3.3. Structure Specification of Object-Oriented Classifiers (τoos)

Object-oriented classifiers are interfaces and classes. Both have in common that they de-
fine members and signatures for methods, and both can inherit properties from interfaces or
classes by extending them. These commonalities are reflected in a common relation symbol
OOClassifier.

would for example be (2, “P1′′) ∈ name and (2, “P :: P1′′) ∈ quali f iedName, assuming P is the root package.
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Interfaces/Object-Oriented Classifiers

The signatures defined by a classifier are modelled by definesSignature ⊆ OOClassifier×
Signature, as depicted in Fig. 5.8. A signature is basically the name of an operation
and a list of typed parameters. The name is reflected by the relation symbol name ⊆
NamedElement× String 5. The list of parameters (Parameter) of a signature is formal-
ized by the relation symbol hasParameter ⊆ Signature×Parameter and nextParameter ⊆
Parameter×Parameter that defines a strict total order on the parameters for a fixed signature.

There are several axioms in ΦCBS D that ensure correct relations between parameters and
signatures. First, parameters related by nextParameter must belong to the same signature:

CBSD1 B ∀p∀q : nextParameter(p, q)→
∃s : (hasParameter(s, p) ∧ hasParameter(s, q))

(5.10)

If a signature has parameters, there is exactly one without predecessor and exactly one
without succeeding parameter:

CBSD2 B ∀s : ((¬∃p : hasParameter(s, p))∨
∃!p : (hasParameter(s, p) ∧ (¬∃q : nextParameter(q, p))))

(5.11)

CBSD3 B ∀s : ((¬∃p : hasParameter(s, p))∨
∃!p : (hasParameter(s, p) ∧ (¬∃q : nextParameter(p, q))))

(5.12)

The members defined by an interface (or a class) are modelled by the relation symbol
definesMember ⊆ OOClassifier×Member. Members are typed elements that can either refer
to a primitive data value or an instance of a complex type if typed with an interface or a class.

Furthermore, interfaces can subtype each other, reflected by extends ⊆ OOClassifier×
OOClassifier, whereas (i1, i2) ∈ extends indicates that i1 is subtype of i2. We furthermore define
extends+ as the transitive closure of extends. It hence contains all the tuples from extends as
well as all further tuples that reflect indirect subtype relationships between object-oriented
classifiers.

The extend relation can only exists between interfaces and interfaces, or between classes and
classes. The relation symbol implements discussed later describes the relationship between an
interface and the classes implementing it. Hence the following axiom is required:

CBSD4 B ∀x∀y : extends(x, y)→ (Class(x) ∧ Class(y))∨
(Interface(x) ∧ Interface(y))

(5.13)

The relation symbols hasMember ⊆ OOClassifier×Member and inheritsMember ⊆
OOClassifier×Member reflect inheritance at the internal, structural level of object-oriented
classifiers; as described, definesMember models members that a classifier defines itself;

5Signature, as well as every other unary relation symbol from Fig.5.8 except MethodBody, “subsets”
NamedElement. See Appendix
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inheritsMember describes which members are inherited; hasMember describes the union of
both.

The following constraints have thus to hold:

CBSD5 B ∀x∀y : ((definesMember(x, y)→ ¬ inheritsMember(x, y))∧
(inheritsMember(x, y)→ ¬ definesMember(x, y)))

(5.14)

CBSD6 B ∀x∀y : (hasMember(x, y)↔
(inheritsMember(x, y) ∨ definesMember(x, y)))

(5.15)

CBSD7 B ∀x∀y : (inheritsMember(x, y)→
∃z : ((extends(x, z) ∨ implements(x, z)) ∧ hasMember(z, y)))

(5.16)

Analogously, constraints are defined for inheritance regarding method signatures:

CBSD8 B ∀x∀y : ((definesSignature(x, y)→ ¬ inheritsSignature(x, y))∧
(inheritsSignature(x, y)→ ¬ definesSignature(x, y)))

(5.17)

CBSD9 B ∀x∀y : (hasSignature(x, y)↔
(inheritsSignature(x, y) ∨ definesSignature(x, y)))

(5.18)

CBSD10 B ∀x∀y : (inheritsSignature(x, y)→
∃z : ((extends(x, z) ∨ implements(x, z)) ∧ hasSignature(z, y)))

(5.19)

Running Example: Adding Interface Details

In Fig. 5.10, the interfaces IF2 and IF3 from Fig. 5.9 are further refined. We can see, that IF3
subtypes IF2 and that IF3 defines an additional signature. Table 5.3 lists the relation symbols
and the assigned relations for the cutout of S depicted in 5.10.

Notice that return parameters are named with “return” which cannot be explicitly seen in the
graphical notation. Furthermore, it can be seen that nextParameterS defines the order of the
parameters of a correctly regarding the axioms mentioned above.

Classes

Classes are types that are local to components. They cannot be accessed directly from outside
the component. Their semantics is apart from that identical to that one common in object-
orientation. Classes provide methods by providing method bodies (MethodBody) for signatures
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«System diagram»

Figure 5.10: Example of Fig. 5.9 further refined.

Relation symbol r Interpreting relation rS in the system S
Interface {. . . , 7, 8, . . .}
Signature {9, 10}
Parameter {11, 12, 13, 16}
PrimitiveType {14, 15}
extends {(8, 7)}
definesSignature {(7, 9), (8, 10)}
inheritsSignature {(8,9)}
hasSignature {(7,9),(8,9),(8,10)}
hasParameter {(9, 11), (9, 12), (9, 13), (10, 16)}
name {. . . , (13, “return”), (16, “return”), . . .}
nextParameter {(11, 12), (12, 13)}
hasType {. . . , (11, 7), (12, 15), (13, 14), (16, 7), . . .}

Table 5.3: Relations of the example from Fig. 5.10.

defined in the class itself, in one of its super classes, or in an implemented interface. The pro-
vided methods can also either be defined in the class itself or be inherited from extended classes.
This is expressed by the relation symbols hasMethod, definesMethod, and inheritsMethod (see
Fig. 5.8) and the following axioms:

CBSD11 B ∀x∀y : ((definesMethod(x, y)→ ¬ inheritsMethod(x, y))∧
(inheritsMethod(x, y)→ ¬ definesMethod(x, y)))

(5.20)

CBSD12 B ∀x∀y : (hasMethod(x, y)↔
(inheritsMethod(x, y) ∨ definesMethod(x, y)))

(5.21)

CBSD13 B ∀x∀y : (inheritsMethod(x, y)→
∃z : ((extends(x, z) ∨ implements(x, z)) ∧ hasMethod(z, y)))

(5.22)

The signature of a method body is assigned by implementsSignature ⊆ MethodBody×
Signature. The signature of method has of course to be part of the class which defines the
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method:

CBSD14 B ∀x∀y : (definesMethod(x, y)↔
∃s : (hasSignature(x, s) ∧ implementsSignature(y, s)))

(5.23)

Not only classes are local to components, also single inheritance hierarchies are completely
contained in single components. A class inheriting another class defined in a different compo-
nent would violate the basic principle that components can only be connected and depend on
each other by the usage of interfaces. This means that the following constraint has to hold in
every component-based system:

CBSD15 B ∀x∀y : (Class(x) ∧ extends(x, y)→
∃z : (containsClass(z, x) ∧ containsClass(z, y)))

(5.24)

A class can implement interfaces (implements ⊆ Class× Interface), as mentioned above. In
this case, the class must provide a method for every signature defined in the interface or one
of its supertypes. The relation implements+

⊆ Class× Interface contains all relations between
interfaces and implementing classes and includes also indirect implementations that arise from
classes implementing subtypes of interfaces. Hence, if a class c implements an interface i2

which is a subtype of i1, c also indirectly implements i1. More formally it has to hold that
(c, i2) ∈ implements and (i2, i1) ∈ extends implies that (c, i1) ∈ implements+. This is formally
captured in ΦCBS D by the axiom

CBSD16 B ∀c∀i :
(︀
implements+(c, i)↔

implements(c, i) ∨
(︀
∃ j : extends+( j, i) ∧ implements(c, j)

)︀
∨(︀

∃d : extends+(c, d) ∧ (implements(d, i)∨(︀
∃ j : extends+( j, i) ∧ implements(d, j)

)︀)︀)︀)︀ (5.25)

Running Example: Adding Classes

Figure 5.11 refines component B from Fig. 5.9. The component contains three classes C1,
C2, and C3 whereas C2 subclasses C1 and defines another method d. Moreover, C1 defines a
member that is typed with C3.

Table 5.4 shows the relations modelling the example of Fig. 5.11. The containment re-
lation between B and its classes is modelled by containsClassS = {(5, 23), (5, 24), (5, 25)}.
implementsS shows that C1 and C2, which are the entities with id = 23 and id = 24, respec-
tively, implement I3 (id = 8) directly and I2 (id = 7) indirectly. Both classes provide method
bodies for the signatures defined in the interfaces, as defined by de f inesMethodS . Because of
(24, 19), (24, 20) ∈ de f inesMethodS , it is also specified that C2 overwrites the implementation
of C1 for a(. . . ) and b(), since it obviously do not inherit the method bodies of C1.
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Figure 5.11: The example of Fig. 5.10 extended by classes.

Relation symbol r Interpreting relation rS in the system S
S ignature {9, 10, 30, 32}
Parameter {11, 12, 13, 16, 31, 33, 34}
PrimitiveType {14, 15}
Class {23, 24, 25}
MethodBody {17, 18, 19, 20, 21, 22}
Member {26, 29, 35}
containsClass {(5, 23), (5, 24), (5, 25)}
de f inesS ignature {(7, 9), (8, 10), (24, 30), (25, 32)}
inheritsS ignature {(8, 9), (23, 9), (23, 10), (24, 9), (24, 10)}
hasS ignature de f inesS ignatureS ∪ inheritsS ignatureS

de f inesMember {(23, 26), (25, 29), (25, 35)}
inheritsMember {(24, 26)}
hasMember de f inesMemberS ∪ inheritsMemberS

de f inesMethod {(23, 17), (23, 18), (24, 19), (24, 20), (24, 22), (25, 21)}
implements {(23, 8)}
implements+ {(23, 8), (24, 8), (23, 7), (24, 7)}
extends {(8, 7), (24, 23)}
extends+ {(8, 7), (24, 23)}
hasType {(26, 25), (29, 15), (35, 9)}

Table 5.4: Relations of the example from Fig. 5.11.
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Figure 5.12: Atomic (a) and hierarchical (b) component instances.

5.3.4. Structure Specification of Components and Systems (τcs)

It is useful to understand the structures of component-based systems at runtime in order to
introduce the concepts that are required to specify the internal structure of components and the
systems they form. The structural elements of object-oriented systems build the foundations
for the structure of component-based systems. These are mainly objects and references, also
known as links. Objects are instances of classes. Objects can send messages to each other if
there are references, or links, between them. The message receiving object reacts by invoking a
corresponding method, either synchronously or asynchronously.

Objects are hence relatively simple constructs. Their states consist of the values of their
attributes and the set of objects they are linked to [Bal99]. Components as an extension
of object-orientation allow defining complex instances that are build of arbitrarily complex
networks of objects. Instantiating a component includes creating the specified network of
objects, as well as destroying the instance means breaking the network down. Furthermore, the
definition of provided and required interfaces for components enables the designer to specify,
how the instances of a component may be accessed by other components or the system’s
environment, and which parts it needs to access itself.

Part (a) of Fig. 5.12 shows a simple component instance. The core of the component instance
c contains objects that are not accessible from any other object outside of c. All links to those
objects are instead pointing from or to objects in the outer belt of c, or remain in the inner
core. The upper part of the belt contains the only objects, the provided objects, which can be
accessed by the environment of c. Those object themselves may access objects in the inner
core of c. The lower half of the belt contains the only objects of c, the requiring objects that are
allowed to have links to objects in the environment of c. Of course, an object of the belt can be
both, provided and requiring, at the same time.

It is important to understand that, as contribution to the concept of encapsulation, a client of
the component does not know the class of a provided object it would like to access. Instead,
it only knows the interface implemented by the class and which must be one of the provided
interfaces of the component. This applies similarly to requiring objects. Their classes require
an interface that is in the component’s set of required interfaces. At runtime, this require-
ment relation is satisfied by a link between the requiring object and some instance of a class
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implementing that interface.
Furthermore, instances of components can be used as substructure of instances of other

components. This way, hierarchical components can be created. Part (b) of Fig. 5.12 shows
an example. The component instance d1 is basically the same as c with the difference that the
atomic object o2 from the core of c is replaced by a complex component instance d2. For d2, we
have to adhere to the same constraints as for c — accesses to the component are only allowed
via provided objects, accesses by the component only via requiring objects. Hence, the object
o1, which has had a link to object o2 in case (a), has now a link to a provided object of d2.

Like a class defines the attributes that instances have or the methods that can be called at
them, a component has to specify which provided and requiring objects, and which “inner
objects” form an instance of the component. The specification elements used for this task are
ports, inner parts, and connectors. They and their formalization as relation symbols of τcs ⊂

τCBS D, the signature subset used for the specification of the internal component structures, are
introduced in the following subsection.

Ports, Inner Parts, and Connectors

The elements that are used to specify the inner structure of components are called parts. Parts
are named and typed elements. The name can be understood as a role. At runtime, an instance
of the type assigned to a part will play this role and can be addressed by this name. For example,
let us assume that we have an information system with a data access component. Inside this
component, we could model two parts named “primaryDB” and “backupDB” both of type
“Database”, which could be a complex component itself.

Two kinds of parts are used to specify which objects constitute a component instance at
runtime. Inner parts define which objects are required in the core of a component. This means
that the type of an inner part defines the type of an object that plays the role given by the name
of the part. Ports do the same for objects that are either provided or requiring objects. Ports for
provided objects are called provided ports. At runtime, for each provided port an instance of the
given type exists that can be accessed from the environment of the component instance. On the
other hand, required ports are ports specifying links to required objects from the environment
of a component.

Figure 5.13 depicts the relation symbols of τCBS D that are used to formalize parts. All
parts are collected by the relation symbol Part. Parts as discussed so far are furthermore
refinements of the relation symbol SinglePart in contrast to connectors that will be discussed
later. Single parts represent roles that can be played by instances of classes or components.
Port and InnerPart refine SinglePart for the different kind of parts as mentioned above. Ports
are further distinguished into ProvidedPort and RequiredPort. The relation encapsulates ⊆
Component×Part assigns parts to the component that contains them.

All parts can be typed, since Port ⊆ TypedElement. It is important to notice that in the case
of provided ports the type assigned by the hasType relation is not the type that a client sees
when linking to the object playing the role of the port. Instead, an interface is provided by the
port which is the type visible to the environment. This is represented by the relation symbol
providedInterface ⊆ ProvidedPort× Interface. The following constraints have to hold with
regard to provided ports:
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Figure 5.13: Relation symbols in τcs to model parts.

• Only a class defined by the encapsulating component can be type of a port:

CBSD17 B ∀x∀y∀z : (Port(x) ∧ Component(y) ∧ Type(z)∧
encapsulates(y, x) ∧ hasType(x, z)→
Class(z) ∧ containsClass(y, z))

(5.26)

This also holds for required ports.

• The provided interface of a provided port must be in the set of provided interfaces of the
encapsulating component:

CBSD18 B ∀x∀y∀z : (ProvidedPort(x) ∧ Component(y) ∧ Interface(z)∧
encapsulates(y, x) ∧ providedInterface(x, z)→
providesInterface(y, z))

(5.27)

• The class being the type of a provided port has to implement the provided interface of
the port:

CBSD19 B ∀x∀y∀z : (Class(x) ∧ ProvidedPort(y) ∧ Interface(z)∧
hasType(y, x) ∧ providedInterface(y, z)→
implements+(x, z)

)︀ (5.28)

Required ports express that a component instance encapsulates objects that depend on
objects outside of the scope of the component. By the relation symbol requiredInterface ⊆
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RequiredPort× Interface the type of such a required object is determined. Similar to provided
ports, the required interface of a port has also to be required by the component:

CBSD20 B ∀x∀y∀z : (RequiredPort(x) ∧ Component(y) ∧ Interface(z)∧
encapsulates(y, x) ∧ requiredInterface(x, z)→
requiresInterface(y, z))

(5.29)

Inner parts represent roles played by instances of the component core. Those instances
cannot be accessed directly by other component instances. Thus, inner parts do not need a
distinction between their visible and their actual type.

In contrast to ports, inner parts can also be typed by components, not just classes, since
instances in the core of a component can also be component instances. This difference is
axiomatically specified by the constraint for single parts

CBSD21 B ∀x∀y : (SinglePart(x) ∧ Type(y) ∧ hasType(x, y)→
Class(y) ∨ Component(y))

(5.30)

and the port specific axioms mentioned above.
Objects can be linked, and they can play roles defined by ports or inner parts, depending on

whether they are provided, requiring, or “inner” objects of a component instance. Obviously, it
should also be possible to specify that a link has to exist between two objects playing dedicated
roles. This is done by the usage of connectors. Connectors connect a source part with a target
part indicating, that the object playing the role of the source part has a reference playing the
role of the target part. The use of connectors enables us to specify the “edges” of the network
of instances that is created when instantiating a component.

Three kinds of use cases for connectors can be distinguished that correspond to the three
kinds of generally allowed linkings between objects in components:

• Connectors between inner parts are used to specify links between objects of the compo-
nent core.

• Connectors between provided ports and inner parts specify links between required
objects and core objects.

• Connectors between inner parts/provided ports and required ports specify links between
core objects/provided objects and requiring objects, or allow the delegation of links.

• Connectors marked as delegators connect ports with the interior of a component indicat-
ing that links from the environment to the component, or links from the component to the
environment are delegated.

To understand the delegation of links, it is useful to understand how component instances can
be connected by connectors, since connectors are only able to specify links between objects.
Consider p, being typed by component A, being a inner part of component C. A has a required
port x with an interface I that is provided by the port y of a component B. There is another
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part q of component A that is typed with B. In this scenario, there will be a requiring object at
runtime, encapsulated by the component instance playing the role p, that play the role of x and
requires an instance of I. On the other hand, the instance playing the role of B encapsulates
such an object, that one playing the role of y. To specify, that those both ports should be linked,
we can specify a connector between them, defining p and q as the context of it. The context
of connector is required because ports are defined for types, namely components, and not for
specific inner parts. A port is hence defined only once per type (component). This means that a
connector between the two ports above would indicate, that every instance of A is linked with
an instance of B, not only in the context of playing certain roles (p and q) in the inner structure
of C.

Since component instances can play the roles of inner parts, it can happen that nested
requiring objects are contained in a component core. Furthermore, it can happen that such
a requiring object cannot be satisfied directly because it cannot be linked to an object of the
surrounding component’s core. The reason for this is, that the surrounding component does
not necessarily need to implement the required interface but requires it itself. Thus, an object
that can be linked to, must be found outside of the surrounding component. To specify such
circumstances, delegate connectors are used that connect a required port of an inner part’s type
with a required port of the outer component. References of nested requiring objects can this
way be delegated to the outside.

Connectors are formalized in τCBS D as members of the relation symbol Connector (see
Fig. 5.13). Connectors are considered to be parts themselves since they indicate roles and are
encapsulated by components. They connect single parts as introduced before which is modelled
by the relation symbols connectorSource ⊆ Connector× SinglePart and connectorTarget ⊆
Connector× SinglePart. The context of connectors is formalized by the relation symbols
sourceContext ⊆ Connector× InnerPart and targetContext ⊆ Connector× InnerPart.

Some general constraints hold for connectors. First of all, component-typed parts cannot be
source or target of connectors but only class-typed ones:

CBSD22 B ∀x∀y∀z : (Connector(x) ∧ SinglePart(y) ∧ SinglePart(z)∧
connectorSource(x, y) ∧ connectorTarget(x, z)→
∃t∃t′ : Class(t) ∧ Class(t′) ∧ hasType(y, t) ∧ hasType(z, t′)

)︀ (5.31)

For all connectors holds that source and target context must be parts that are encapsulated in
the same component as the connector:

CBSD23 B ∀x∀y∀z∀z′ : (Connector(x) ∧ Component(y) ∧ SinglePart(z)∧
SinglePart(z′) ∧ encapsulates(y, x) ∧ sourceContext(x, z)∧
targetContext(x, z′)→ encapsulates(y, z) ∧ encapsulates(y, z′)

)︀ (5.32)

Each connector has to correspond to one of the three cases mentioned above — this means it
either has as context two inner parts, or a provided port and an inner part, or an inner part and a
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Figure 5.14: Possible connectors between inner parts.

required port. The following axiom enforces these rules and excludes all other combinations:

CBSD24 B ∀x∀y∀z : (Connector(x) ∧ sourceContext(x, y) ∧ targetContext(x, z)→
(InnerPart(y) ∧ InnerPart(z))∨
(ProvidedPort(y) ∧ InnerPart(z))∨
(InnerPart(y) ∧ RequiredPort(z)))

(5.33)

If a connector has a context typed by a component, the corresponding end, either source or
target, must refer to a port that is defined for the type of the context under consideration:

CBSD25 B ∀x∀y∀z : (Connector(x) ∧ SinglePart(y) ∧ Component(z)∧
sourceContext(x, y) ∧ hasType(y, z)→ (∃p : Port(p)∧
connectorSource(x, p) ∧ encapsulates(z, p)))

(5.34)

CBSD26 B ∀x∀y∀z : (Connector(x) ∧ SinglePart(y) ∧ Component(z)∧
targetContext(x, y) ∧ hasType(y, z)→ (∃p : Port(p)∧
connectorTarget(x, p) ∧ encapsulates(z, p)))

(5.35)

A non-delegating connector defines that a link will be established at runtime between the
source and the target that the connector is pointing to. A delegating connector points to the
required port that delegates the link. In each case, the corresponding link is defined by a
member of the source part. The relation symbol setsMember ⊆ Connector×Member models
which member is actually set by a connector. It defines that, by specifying the connector, the
referenced member is set to the object that the connector points to6. At the same time, the type

6In case of a delegating connector, the target of the connector does not refer directly to a target object but to an
outer required port which is used for delegation.
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of this member is also the type of the connector.

CBSD27 B ∀x∀y∀z : (Connector(x) ∧ SinglePart(y) ∧Member(z)∧
connectorSource(x, y) ∧ setsMember(x, z)→
(∀t : hasType(y, t)→ hasMember(t, z))∧
(∀t : hasType(z, t)↔ hasType(x, t)))

(5.36)

The type of the target has to conform to the type of the connector:

CBSD28 B ∀x∀y∀z : (Connector(x) ∧ SinglePart(y) ∧ connectorTarget(x, y)→(︀
∀t∀t′ : hasType(y, t) ∧ hasType(x, t′)→(︀
implements+(t, t′) ∨ extends+(t, t′)

)︀)︀)︀ (5.37)

There are four possible combinations of connecting inner parts by connectors resulting from
the fact that source and target context can each be typed either by a class or a component. The
combinations are depicted in Fig. 5.14. Both, the source context and the target context are
always inner parts. The source of a connector is equal to the source context if and only if the
source context is class-typed. It is a provided port of the source context’s type if and only if the
source context is component-typed. The same rule applies to the target context:

CBSD29 B ∀x∀y∀z : Connector(x) ∧ InnerPart(y) ∧ InnerPart(z)∧
sourceContext(x, y) ∧ targetContext(x, z)→
(∃p : connectorSource(x, p) ∧ (y = p ∨ RequiredPort(p)))

(5.38)

CBSD30 B ∀x∀y∀z : Connector(x) ∧ InnerPart(y) ∧ InnerPart(z)∧
sourceContext(x, y) ∧ targetContext(x, z)→
(∃p : connectorTarget(x, p) ∧ (z = p ∨ ProvidedPort(p)))

(5.39)

Two combinations are possible to connect a provided port of a component with an inner
part — the latter is either class-typed or component-typed, as depicted in Fig. 5.15. The source
context is hence a provided port, while the target context is an inner part. These cases can be
characterized by the axiom:

CBSD31 B ∀x∀y∀z : (Connector(x) ∧ ProvidedPort(y) ∧ InnerPart(z)∧
sourceContext(x, y) ∧ targetContext(x, z)→ connectorSource(x, y)∧
(∃p : connectorTarget(x, p) ∧ (z = p ∨ ProvidedPort(p))))

(5.40)

Similar applies to the possibilities of connecting an inner part with a required port (see
Fig. 5.16). Again, the inner part can be either typed by a class or by a component:

CBSD32 B ∀x∀y∀z : (Connector(x) ∧ InnerPart(y)∧
RequiredPort(z) ∧ sourceContext(x, y) ∧ targetContext(x, z)→
connectorTarget(x, z) ∧ (∃p : connectorSource(x, p)∧
(y = p ∨ RequiredPort(p))))

(5.41)
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Figure 5.15: Possible connectors to connect provided ports with inner parts

Delegation connectors have to start at a provided port or to end at a required port:

CBSD33 B ∀x : (Connector(x) ∧ isDelegator(x, “true”)→
∃y : (sourceContext(x, y)→ ProvidedPort(y))∨
∃y : (targetContext(x, y)→ RequiredPort(y)))

(5.42)

Note that isDelegator(x, “true” distinguishes basically two kind of connectors common in
many component models. Delegators support the hierarchical composition of components
and systems by mapping externally visible elements to inner component parts (or vice versa).
“Normal” connectors configure the links in the networks of objects representing a component
instance.

In case a required port is target of a delegation connector, it must be rather understood as a
reference variable pointing to an external object than an object pointing somewhere itself. Due
to this different perspective, a required port cannot be addressed by normal and by delegation
connectors at the same time:

CBSD34 B ∀x : (RequiredPort(x)→ ((∀y : Connector(y)∧
connectorTarget(y, x)→ isDelegator(x, “true”))∨
(∀y : Connector(y) ∧ connectorTarget(y, x)→ isDelegator(x, “false”))))

(5.43)

Required ports as targets of delegation connectors are therefore typed with the required
interface, of which may only exists exactly one, of the port:

CBSD35 B ∀x∀y : Connector(x) ∧ isDelegator(x, “true”)∧
Interface(y) ∧ requiredInterface(x, y)→ ∀z : (hasType(x, z)→ z = y)

(5.44)

Running Example: Adding Parts

Figure 5.17 continues the running example of this chapter and shows the inner structure of
component B. There are two provided ports whereas ppo1 provides the interface I3 and ppo2
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Figure 5.16: Possible connectors to connect inner parts with required ports

provides the interface I2. The type and realizing classifier of ppo1 is C1; the type of ppo2
is C2. Both ports are connected with the inner part pa1 which is typed by the class C3 (see
Fig. 5.11). The connector con1 and con2 both set the corresponding member myC3, defined
in C1 (see Fig. 5.11), i.e. the attribute refers to pa1 for both provided ports. As the definition
of C3 shows, there is member g typed with I4 which has to refer to some object at runtime.
Figure 5.17 shows that this reference is delegated to the required port rp1 of B.

Table 5.5 shows the relations for the addition made in Fig. 5.17 to the running example.
New entities are parts, ports as well as inner parts and connectors. They are all encapsulated
in component B as modelled by the relation encapsulatesS , and the types of all four single
parts are set by hasTypeS . The relationships between ports and their required and provided
interfaces, respectively, are reflected by providedInterfaceS and requiredInterfaceS . For ex-
ample ppo1 providing I3 is reflected by (38, 8) ∈ providedInterfaceS . Sources and targets of
connectors are modelled by connectorSourceS and connectorTargetS . For example, the source
of con1 is modelled by (43, 38) ∈ connectorSourceS ; its target is modelled by (43, 41) ∈
connectorTargetS .

Context information is correctly modelled for all connectors by sourceContextS and
targetContextS . Due to the fact that all source and target are either class-typed parts or ports
“on the outer frame” of a component, those context relations contain the same elements as
connectorSourceS and connectorTargetS , respectively.

System Configurations

A component-based system at runtime consists of instances of components, which encapsulate
instances of classes. Component instances may enter and leave the system and the wiring
between component instances can change. The initial state of the system, i.e. the instances of
components and the links between them, is specified by system configurations. Similar to the
inner structure of components, the structure of a system can be defined by parts specifying that
an instance of a specific type plays a certain role in the system. In contrast to parts as elements
of component specifications, parts used in system configurations cannot be typed by other types
than components and connectors.

As can be seen in Fig. 5.13, system configurations are formalized by the rela-
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Figure 5.17: The inner structure of component B (Example of Fig. 5.11 refined).

Relation symbol r Interpreting relation rS in the system S
Component {. . . , 5, . . .}
Interface {. . . , 7, 8, 9, . . .}
Class {23, 24, 25}
ProvidedPort {38, 39}
RequiredPort {40}
InnerPart {41}
Connector {43, 44, 45}
encapsulates {(5, 38), (5, 39), (5, 40), (5, 41), (5, 42), (5, 43), (5, 44), (5, 45)}
hasType {. . . , (38, 23), (39, 24), (40, 9), (41, 25), . . .}
setsMember {(43, 26), (44, 26), (45, 25)}
providedInterface {(38, 8), (39, 7)}
requiredInterface {(40, 9)}
connectorSource {(43, 38), (44, 39), (45, 41)}
connectorTarget {(43, 41), (44, 41), (45, 40)}
sourceContext {(43, 38), (44, 39), (45, 41)}
targetContext {(43, 41), (44, 41), (45, 40)}

Table 5.5: Relations of the example from Fig. 5.17.
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tion symbol SystemConfiguration. The binary relation symbol configurationPart ⊆
SystemConfiguration×Part contains tuples representing parts being elements of system con-
figurations. The parts of a system configuration are either inner parts (typed by components) or
connectors. Thus, it has to hold:

CBSD36 B ∀x∀y : (Part(x) ∧ SystemConfiguration(y)∧
configurationPart(y, x)→ (InnerPart(x) ∨ Connector(x)))

(5.45)

The inner parts, as already mentioned, have to be component-typed:

CBSD37 B ∀x∀y : (InnerPart(x) ∧ SystemConfiguration(y)∧
configurationPart(y, x)→ ∀z : (hasType(x, z)→ Component(z)))

(5.46)

Of course, each part belongs either to a system configuration or to a component but not to
both at the same time. This rule is enforced by the axiom:

CBSD38 B ∀x : (Part(x)→ ((∃y : encapsulates(y, x))↔
(¬∃y : configurationPart(y, x))))

(5.47)

All axioms for single parts and connectors introduced in the previous section are also correct
for parts as elements of system configuration. The only additional constraint is that parts being
context of a connector in a system configuration, have to be in the same system configuration.

CBSD39 B ∀x∀y∀z∀z′ : (SystemConfiguration(x) ∧ Connector(y)∧
Part(z) ∧ Part(z′) ∧ sourceContext(y, z) ∧ targetContext(y, z′)→
(configurationPart(x, y)↔ (configurationPart(x, z)∧
configurationPart(x, z′)

)︀)︀)︀ (5.48)

With the relation symbols and the axioms introduced in this section, we are able to specify the
static structure of component-based systems. In the following, we will introduce the symbols
and axioms required to cover behavioural aspects.

5.3.5. Behaviour Specification (τbhv)

The behaviour of a component-based system can be understood as the system’s state change
over time [Rau04]. The system state at any point during runtime consists of the state of its
single component instances, which again is defined for each single component instance by the
state of its internal objects. Their states are defined by the values of their attributes and their
links to other objects. These states are changed by processing messages that are sent between
objects; methods are executed and evaluate attribute values, modify links, create and destroy
instances, and create and send new messages.

The behaviour of the system has to be specified at design-time. In our model of component-
based systems, behaviour is specified by method bodies that define how an object of a given
type reacts to the receiving of a certain message.
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Figure 5.18: Formalizing control flow graphs.

Furthermore, it is assumed that the behaviour specification has an imperative character. This
means that the specification consists of instruction statements that define how to change the
state of the system; for example, a specification could describe that the value of an attribute is
evaluated by sending a message to some object and passing the return value to the attribute.

Method bodies define hence a control flow describing the order of instruction statements by
sequences, conditional branches, and loops. Their specific characteristics and syntax depend
on the specification or programming language that is used.

Control flow graphs abstract from the specific language [All70]. Nodes represent statements
and directed edges indicate a sequence between two nodes. Conditional branches manifest as
nodes that have more than one outgoing edge; cycles in a graph indicate a loop.

Hence, it seems consequent to represent control flow graphs in τCBS D to reflect imperative
behaviour specification formally. The following subsection introduces the representation of
control flow graphs. After that, the subsequent subsection will describe different kinds of
statements to create and destroy instances, to assign references, and to specify communication
between objects.

Control Flow Graphs

A control flow graph is a directed graph with a dedicated root node from which each node
is reachable. Nodes represent instruction statements, edges determine the order in which
statements can be executed. Figure 5.18 depicts the relation symbols required to represent
control flow graphs.

The relation symbols StatementNode and ControlFlowEdge model the nodes and
edges of control flow graphs. They are contained in method bodies by the rela-
tion symbols containsStatement ⊆ MethodBody× StatementNode and containsEdge ⊆
MethodBody×ControlFlowEdge. Edges connect source and target statement nodes indicating a
possible sequence of statements in which the source statement is executed before the target state-
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ment. The corresponding relation symbols are srcNode ⊆ ControlFlowEdge× StatementNode
and trgNode ⊆ ControlFlowEdge× StatementNode.

Notice, that nodes are only instruction statements — the declaration of local vari-
ables is represented separately by the binary relation symbol declaresVariable ⊆

MethodBody×LocalVariable.
The root nodes of control flow graphs are captured by the symbol RootNode ⊆

StatementNode. Each method body must contain exactly one root node:

CBSD40 B ∀x : (MethodBody(x)→ ∃!y : RootNode(y) ∧ containsStatement(x, y)) (5.49)

Control flow edges, of course, only connect nodes in the same method body:

CBSD41 B ∀x, y, z, z′ : (ControlFlowEdge(x) ∧MethodBody(y) ∧ containsEdge(y, x)∧
StatementNode(z) ∧ StatementNode(z′) ∧ srcNode(x, z)∧
trgNode(x, z′)→ containsStatement(y, z) ∧ containsStatement(y, z′)

)︀
(5.50)

successorNode ⊆ StatementNode× StatementNode represents are all nodes that are directly
connected to a node by outgoing control flow edges. It has to hold hence:

CBSD42 B ∀x, y : (successorNode(x, y)↔ ∃z : ControlFlowEdge(z)∧
srcNode(z, x) ∧ trgNode(z, y))

(5.51)

The transitive closure successorNode+ thus contains all direct or indirect successor nodes.
There exist different groups of instruction statements for different kinds of behaviour. These

are statements for instance creation, instance destruction, reference assignment, method in-
vocation and returning from methods. The corresponding relation symbols are subsetting
StatementNode as depicted in Fig. 5.18.

Instance Creation

The structure specifications of components and system configurations (see Sec. 5.3.4) define
the structures that are constructed when the corresponding component is instantiated, or the
system is initialized. For each part, an instance is created. However, it is also possible to create
instances during the execution of methods. The relation symbols for creation statements in the
control flow graph are depicted in Fig. 5.19.

We distinguish between the creation of objects and the creation of component instances.
Since objects can be seen as atomic instances, their creation is simpler than that of component
instances. The latter implicitly includes the creation of instances for the parts that are defined
for the component. Formally, there are two different relation symbols — ObjectCreation
and ComponentInstanceCreation that both subset InstanceCreation. Both have in common
that they refer to the classifier that is instantiated; this is reflected by the relation symbol
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Figure 5.19: Formalization of instance creation statements.

instantiatedClassifier ⊆ InstanceCreation×Classifier. Furthermore, both kinds of creation
statement assign the newly created instance optionally to a reference variable — for example,
to a local variable or to a member.

The instantiated classifier has of course to fit to the statement; an object creation statement
cannot refer to a classifier that is a component. The constraints are the following axioms:

CBSD43 B ∀x∀y : (ObjectCreation(x) ∧ Classifier(y)∧
instantiatedClassifier(x, y)→ Class(y))

(5.52)

CBSD44 B ∀x∀y : (ComponentInstanceCreation(x) ∧ Classifier(y)∧
instantiatedClassi f ier(x, y)→ Component(y))

(5.53)

The reference variable to which the new instance is passed has to be type compatible. This
means that the instantiated classifier, as far as it is a class, has to be a subtype of the reference
variable type, or to implement it:

CBSD45 B ∀x∀y∀z∀z′ : (ObjectCreation(x) ∧ Classifier(y)∧
instantiatedClassifier(x, y) ∧ assignedTo(x, z) ∧ hasType(z, z′)→
implements+(y, z′) ∨ extends+(y, z′)

)︀ (5.54)

Consider the following example, extending the classes depicted in Fig. 5.11. Let us assume,
the method body of b in C1 declares a local variable v of type C3. Later, an instance of C3 is
created and assigned to v. In pseudo code, this could look like:

I2 b() {
C3 v; //declaration of v (id=50)
v = new C3; //instance creation
...

}

This code snippet extends the relations of the running example as depicted in Tab. 5.6. The
root node (id = 51), which is not explicitly specified in the pseudo-code above, is followed by
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Relation symbol r Interpreting relation rS in the system S
MethodBody {. . . , 18, . . .} (see Fig. 5.11)
LocalVariable {50}
StatementNode {51, 52}
RootNode {51}
ObjectCreation {52}
ControlFlowEdge {53}
Class {25} (see Fig. 5.11)
declaresVariable {(18, 50)}
containsStatement {(18, 51), (18, 52)}
containsEdge {(18, 53)}
srcNode {(53, 51)}
trgNode {(53, 52)}
successorNode {(51, 52)}
instantiatedClassifier {(52, 25)}
assignedTo {(52, 50)}
hasType {. . . , (50, 25), . . .}

Table 5.6: Relations of the example from Fig. 5.11 extended by the described object creation.

the object creation statement (id = 52). The instance is assigned to the local variable v (id = 50),
as (52, 50) ∈ assignedToS indicates. The assignment is correct regarding type-compatibility,
since the type of the v, denoted by (50, 25) ∈ hasTypeS , is the same as the instantiated classifier,
represented by (52, 25) ∈ instantiatedClassifierS .

A component-based system will normally not just create instances but also establish links
between instances (see Sec. 5.3.4). So far, we are only able to let a reference point to a newly
created instance but not to change a reference towards an existing object.

Reference Assignment

The reference assignment, manifested by the relation symbol ReferenceAssignment is another
kind of statement node. It reflects statements like

v=w

whereas v and w are type-compatible reference variables, and v is assigned the value of w;
this means, after execution v is referring to the same instance as w. Figure 5.20 depicts how
these statements are represented in τCBS D.

ReferenceAssignment is related to ReferenceVariable by two binary relation symbols.
passesValueFrom refers to the reference variable on the right hand side of the assignment
(w in the example); passesValueTo refers to the left hand side of the assignment, the reference
whose value is changed.

Many programming languages define a null reference, a reference pointing to nothing.
Uninitialized references normally point to “null”. Null can be assigned to references to indicate
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Figure 5.20: Reference assignment statements.

Relation symbol r Interpreting relation rS in the system S
LocalVariable {50, 54}
StatementNode {. . . , 55, . . .}
ReferenceAssignment {55}
declaresVariable {(18, 54)}
hasType {. . . , (54, 25), . . .}
passesValueFrom {(55, 54)}
passesValueTo {(55, 50)}

Table 5.7: Relations of the example from Tab. 5.6 extended by the object creation described above.

that the reference does not refer to an instance any more. While null itself is not typed, it can
be assigned to any reference variable. Null is defined as constant a symbol in τCBS D with the
following constraints:

CBSD46 B ¬∃x : hasType(null, x) (5.55)

CBSD47 B ¬∃x : (ReferenceAssignment(x) ∧ passesValueTo(x, null)) (5.56)

Table 5.7 summarises the most important changes to the relations from Tab. 5.6 if the
reference assignment above follows somewhere later in the body of the method b.

The local variable w (id = 54) is additionally declared. The statement node with id = 55 is
the reference assignment that passes the value from w to v, as can easily be seen by looking at
passesValueFromS and passesValueToS .

Instance Destruction

The opposite statements of statements for instance creation are instructions that tell a system to
destroy instances. If an object is destroyed, it is simply removed and not available anymore in
the system’s set of instances; if a component instance is destroyed, all of its inner objects are
destroyed as well. Fig. 5.21 depicts the relations symbols for the destruction of instances.

Similar to the creation statements, we distinguish the symbols ObjectDestruction
and ComponentInstanceDestruction. Both have in common, that they require a refer-
ence to the instance that should be destroyed, referred to by destructionReference ⊆
InstanceDestruction×ReferenceVariable. Constraints related to the destruction are: first, com-
ponent destruction statements can only refer to component instances; second, object destruction
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Figure 5.21: Relation symbols for instance destruction.

Relation symbol r Interpreting relation rS in the system S
StatementNode {. . . , 60, . . .}
ObjectDestruction {60}
destructionReference {(60, 54)}

Table 5.8: Relations of the example from Tab. 5.7 are further extended by a object destruction
statement.

statements can only refer to objects; third, null cannot be used as reference. Following axioms
ensure this in ΦCBS D:

CBSD48 B ∀x∀y∀z : (ComponentInstanceDestruction(x) ∧ Type(y)∧
ReferenceVariable(z) ∧ destructionReference(x, z)∧
hasType(z, y)→ Component(y))

(5.57)

CBSD49 B ∀x∀y∀z : (ObjectDestruction(x) ∧ Type(y)∧
ReferenceVariable(z) ∧ destructionReference(x, z)∧
hasType(z, y)→ Class(y) ∨ Interface(y))

(5.58)

CBSD50 B ∀x∀y : (ObjectDestruction(x) ∧ destructionReference(x, y)→ y , null)
(5.59)

Let us assume, the following line of pseudo code follows the previous lines of the method
body illustrated in this section so far:

delete_object w

where delete_object is the keyword for an object destruction statement. The relations of
Tab. 5.7 could be extended as depicted in Tab. 5.8 to capture the additional statement (statement
node with id = 60).

102



5.3. Formal Representation of Component-Based Systems

Figure 5.22: Method invocation statements

Method Invocation

There are two different forms of communication in component-based systems — synchronous
and asynchronous sending of messages. Both imply that a method at the receiving instance
is invoked. The sender of a synchronous message is blocked until the message is processed
by the receiver and the answer is received by the sender. After that, the sender can proceed.
In contrast, the sender of an asynchronous message drops the message and proceeds in its
own control flow. Meanwhile, the message is waiting at the receiver to be processed. While
the advantage of asynchronous messages is that the sender can continue its work, it is never
ensured for an asynchronous message that it is processed or that a result will be sent to the
original sender.

Fig. 5.22 depicts the relation symbols for method invocations. Two unary rela-
tion symbols represent the different forms of invocation, SynchronousInvocation and
AsynchronousInvocation, respectively. The commonalities are covered by MethodInvocation.
All method invocation, either synchronous or asynchronous, refer to a signature that is
called at the receiver to process the message; this is modelled by invokedSignature ⊆
MethodInvocation× Signature. The receiver object is identified by a reference variable pointing
to the object — formally the invocation and that reference variable are related by the relation
symbol invokedAt ⊆ MethodInvocation×ReferenceVariable.

The class that serves as type of the reference variable has to provide a method body for the
signature of the invocation. Otherwise, the invocation would not be possible. The following
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axiom of ΦCBS D defines this constraint:

CBSD51 B ∀x∀y∀z : (MethodInvocation(x) ∧ S ignature(y)∧
ReferenceVariable(z) ∧ invokedSignature(x, y)∧
invokedAt(x, z)→

(︀
∃t∃t′ : hasType(z, t)∧

extends+(t, t′) ∧
(︀
∃m : definesMethod(t′,m)∧

hasSignature(m, y))))

(5.60)

Furthermore, method invocations bind formal parameter to actual parameters.
ParameterBinding reflects those bindings; its reference to Parameter by formalParameter ⊆
ParameterBinding×Parameter refers to the formal parameter of a binding; actualParameter ⊆
ParameterBinding×TypedElement refers to the actual parameter that could be another refer-
ence variable or some constant symbol. Each single parameter binding for a method invoca-
tion is related to the invocation by boundParameter ⊆ MethodInvocation×ParameterBinding.
Each formal parameter has of course to be a parameter that appears in the signature:

CBSD52 B ∀x∀y∀z∀z′ : (ParameterBinding(x) ∧ Parameter(y)∧
MethodInvocation(z) ∧ Signature(z′)∧
formalParameter(x, y) ∧ boundParameter(z, x)∧
invokedSignature(z, z′)→ hasParameter(z′, y)

)︀ (5.61)

We furthermore claim that if a signature is invoked, each of the signature parameters (except
the return parameter) appears in exactly one binding as formal parameter:

CBSD53 B ∀x∀y : (MethodInvocation(x) ∧ Signature(y)∧
invokedSignature(x, y)→ (∀p : Parameter(p) ∧ hasParameter(y, p)∧
¬ name(p, “return”)→ (!∃b : ParameterBinding(b)∧
boundParameter(x, b) ∧ formalParameter(b, p))))

(5.62)

Synchronous invocations can optionally pass the result to a reference variable7. This is
represented by returnedTo ⊆ SynchronousInvocation×ReferenceVariable. It has to hold in
addition that the reference variable addressed by returnedTo is the same as that one, to which
the return parameter is bound by the corresponding binding:

CBSD54 B ∀x∀y∀z : (MethodInvocation(x) ∧ Signature(y)∧
Parameter(z) ∧ invokedSignature(x, y) ∧ hasParameter(y, z)∧
name(z, “return”)→ (∀b∀a : (boundParameter(x, b)∧
formalParameter(b, z) ∧ actualParameter(b, a))↔ returnedTo(x, a)))

(5.63)

When the receiving instance finishes the processing of a method invocation, it can return a
result to the sender. This can be any typed element that is type-compatible to the declared return

7In this model, return statements for asynchronous invocations are ignored.
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Relation symbol r Interpreting relation rS in the system S
StatementNode {. . . , 65, 70, . . .}
LocalVariable {. . . , 68, . . .}
ConstantSymbol {66} the constant “5”
AsynchronousInvocation {65}
ParameterBinding {67}
Return {70}
invokedAt {(60, 50)}
invokedSignature {(60, 32)}
formalParameter {(60, 33)}
actualParameter {(60, 66)}
boundParameter {(65, 67)}
returnedValue {(70, 68)}

Table 5.9: Relations of the example from Tab. 5.8 are further extended by an asynchronous invoca-
tion and a return statement.

type of the method. The corresponding statement is modelled in τCBS D by the relation symbol
Return. The returned element is represented by a typed element connected via returnedValue ⊆
Return×TypedElement.

Consider the following example. The exemplary method body of this section contains an
asynchronous invocation of the method c at the local variable v; the integer parameter I is
bound to the constant value “5”:

v.c(5)

Furthermore, a local variable (id = 68) with the declared type I2 is defined and returned
after some omitted operations. Table 5.9 depicts the additional relations that reflect those two
additional statements. The statement with id = 65 stands for the invocation. Its parameter
binding (id = 67) binds the constant “5” (id = 66) to formal parameter I (see Fig. 5.11, p. 85).
The method is called at v which can be seen by the fact that (60, 50) ∈ invokedAtS . The
return statement (id = 70) return the new local variable (id = 68) — correctly represented by
(70, 68) ∈ returnedValueS .

5.4. Abstraction Classification of Models and Model
Compliance

This section introduces the abstraction classes of models and relates them to the classification
common in model-driven development. The term of compliance between models is defined
based on this classification.
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5.4.1. Model-Classification in Model-Driven Development

In model-driven development, models are distinguished into platform-independent and platform-
specific models, as explained in Sec. 2.2.2. Although illustrations of frameworks like MDA
suggest a strict, global order of platform-independent and -specific models, the classification
is relative to the platform. For example, a Java-specific model can be a platform-independent
model for some component technology like EJB. Nevertheless, a platform separates the set of
all possible models into those that describe systems using the platform and those that do not.
This separation is basis for frameworks like MDA and the model-driven development process
as described in Sec. 2.2.2.

As experiences in model-driven development show [BLW05, BE08, MRA05, Sta06], plat-
form specialization is useful, since it allows building systems more efficiently by providing
automatic model and code generation — although results of experiences must be observed
carefully [MD08] . It shifts the focus from developing technology-dependent models on cre-
ating more durable conceptual models. To enable automatic model transformation and code
generation, transformation rules are defined. They describe how elements of source models are
transformed into elements of a target models.

Hence, this separation supports developers — architects, designers, and programmers —
to switch platforms because they are able to model systems independently of certain plat-
forms. Such a model does not describe what should be content of architectural, design, and
implementation models, or who should be responsible for modelling certain aspects of the
system.

Those aspects are covered by the three different classes of strategic, tactical, and implemen-
tation statement as defined in Sec. 5.2. Models can be classified by the class of the statement
they make about the system. Intuitively, the three classes distinguish models by the broadness
of their impact to the overall system and how it may evolve. Consider, for example, the natural
language statement: “A is a component, and B is an interface”. This is clearly an implemen-
tation statement and has a very limited impact; other elements than A and B can be deleted,
new elements can be added, and the statement will stay true. The statement “Component A is
an observer of C”, a design statement, has the impact that not every element can be deleted.
For example, the statement implies that C provides a method for notification, which cannot be
removed. Finally, statements like “No cyclic dependencies are allowed!”, a strategic statement,
have the greatest impact to the way the system may change; as a global constraint, it can be
violated by any addition made to the system.

The three classes can be easily mapped to the different developing steps as described in
Sec. 2.2. Constraints that need to be checked after every change of a system, i.e. strategic
statements, can surely be called “fundamental” and should be defined by software architects.
On the other hand, models or code that define no additional constraints but only facts, like
implementation statements do, are those that programmers normally construct. In between,
there is the software designer who rather decides on local design solutions and constraints than
on fundamental structures - exactly what tactical statements do.

Both classification criteria are orthogonal to each other. The first criterion, platform-
specialization, distinguishes models by technologies, programming or modelling languages.
The second criterion takes into account the system impact of design statements and who should
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Figure 5.23: Orthogonal model abstraction levels.

be responsible for them.
The combination of both criteria leads to refined illustration of model-driven development

processes, as depicted in Fig. 5.23. For each level of platform specialization, there can be
models of the three different classes strategic, tactical, or implementation, named accordingly
to the statements that they make about the system. Models on a platform-independent level
(w.r.t platform P) do not contain elements specific to that platform.

This may seem unusual at first because this means that there can be models for platforms
very closely related to the implementation of a system (e.g., a programming language) that
should be developed by software architects. But consider a statement that requires all classes to
have a common base class for the C++ implementation of the system [EK03]. This strategic
statement should of course not be made by a single programmer, but by a software architect.
On the other extreme, the statement “A is a component” is an implementation statement but on
a very abstract platform because the component technology (a platform) is not defined yet.

Fig. 5.23 also depicts model transformations as important building blocks of model-driven
development. They transform platform-independent into platform-specific models base on
transformation definitions. Model transformations can also be executed to transform models
of greater evolutionary impact into models of less greater impact class. For example, a
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transformation rule could create corresponding packages of a Java implementation for the
architectural layers, defined in a strategic statement, of a system.

One goal of using model transformation is to achieve a higher automation. This goal is
achieved to a higher degree, the more complete the generated target model is, and the less of
the model has to be created by hand. With respect to that, it is important to note that highly
intensional models, that mainly make constraint about the system, are in general less adequate
as source models for transformations, as discussed in Sec. 2.2.2. Hence, instead of compliance
by construction through transformation, compliance checking is needed as well.

In the following, we will focus on the definition of compliance between models on the same
level of platform specialization but with different level of abstraction regarding their class of
statements.

5.4.2. Definitions for the Formalization of Models

In the following, the term of a model and related concepts will be defined. Examples of models
of different abstraction levels will be given.

Models

Models provide in general a simplified view on some subject existing in reality. It is simplified
in the sense that the model contains only information relevant for the purpose of usage and
omits the full complexity of the subject.

In this work, we are interested in models that provide abstracting descriptions of component-
based systems. As always in model-based development, models should additionally have a
defined syntax. This leads to the following definition:

Definition 14 (Model of a component-based system, model classes) A model M of a
component-based system is a description of a component-based system and has the following
properties:

• M has a defined abstract syntax

• M defines a set of logical statements ΦM = ΦM
ext ∪̇ ΦM

int whereas

– each ϕ ∈ ΦM is a τM-formula, τM ⊆ τCBS D,

– ΦM
ext contains only extensional statements, and

– ΦM
int contains only intensional statements.

We furthermore call r ∈ ΦM
int a design rule if it is a local statement; it is called an

architectural rule if it is an non-local statement.

A system s ∈ KCBS D conforms to a model M if and only if s |= ΦM.
Each model M is in exactly one class of models that corresponds to the classes of statements

the model defines:

• A model M is an implementation model if and only if ΦM
int = ∅.
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• A model M is a design model if and only if ΦM
int contains only design rules.

• A model M is an architectural model if and only if ΦM
int contains architectural rules.

All references of “intensionality” or “extensionality” are meant w.r.t. τCBS D,cl, the set of close
relations from τCBS D (see Def. 16).

This definition does not restrict the term “model” to instances of meta models as common
and defined in model-driven development. According to this definition, also grammars for
textual languages or schema definitions common for XML documents can serve as syntax
definitions.

Furthermore, we define the set of satisfying structures of a model as follows:

Definition 15 (Satisfying and minimal structures/systems for models) The set ℱ M of satis-
fying structures for a model M (as an artefact in the model-driven engineering sense) is defined
as

ℱ M B {s | s |= ΦM}

whereas s are τ-structures with τ ⊇ τCBS D.
The set 𝒮M of of satisfying systems for a model M (as an artefact in the model-driven

engineering sense) is defined as

𝒮M B {s ∈ KCBS D | s |= ΦM}

The set of minimal satisfying structures for M is defined as

ℱ M
⊥ B {s is minimal structure for ΦM}

Furthermore, we define the set of minimal models for M as

𝒮M
⊥ B {s ∈ 𝒮

M | there is no substructure s′ of s with s′ ∈ 𝒮M}

The definition furthermore states that a statement’s property of being intensional or exten-
sional is determined w.r.t τCBS D,cl. This means that adding tuples from those relations constitute
a modification of a structure according to the definition of modifying and additive extensions
(see Sec. 5.2).

Definition 16 (Close relations of τCBSD) The close relations τCBS D,cl of τCBS D are defined as

τCBS D,cl B{hasMember, definesSignature, definesMethod, hasParameter
assignedTo, returnedValue, returnedTo}

Hence, the addition of tuples is interpreted as modification if it reflects one of the following
system modifications:

• The addition adds either a member to an existing classifier, a method to an existing class,
or a signature to an existing interface.
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• The addition adds parameters to an existing signature.

• The addition changes an instance creation statement without a reference, that the new
instance is assigned to, by adding such a reference.

• A return statement without a returned reference variable is changed by adding a corre-
sponding reference variable.

• A synchronous invocation statement, that does not pass the result to any reference
variable, is changed into an statement passing the result.

Concluding, this means that classifiers and interface are considered to be structural atomic
units and single statements nodes to be behavioural atomic units by definition. Adding tuples
of relations from τCBS D,cl, in which the first component is an existing entity, is interpreted as
modifying an atomic unit.

It is important for the classification of models to be aware of the atomic units and τCBS D,cl.
They basically define which sets of extensions we ignore when classifying a statement as local
or non-local. Consider, for example, a statement which states that in a concrete instantiation
of the observer pattern, the observer must provide an update method without parameters.
Intuitively, this should be a tactical statement. Once, there is a valid instantiation of the pattern
(described in a model) with a corresponding update method, the instantiation cannot become
invalid by defining new instantiations, adding components, classes, etc. But formally, adding
a parameter entity to the existing signature entity by hasParameter would be an addition that
makes the pattern instance invalid if we would not take care of the close relations. τCBS D,cl

hence defines that additions to relations in it can modify existing atomic units.

Implementation Models

According to the definition above, implementation models formulate only extensional state-
ments about component-based systems. There are no intensional constraints defined by an
implementation model of a system.

Recapitulating the definitions of Sec. 5.2, this means that a system satisfying an implementa-
tion model stays a satisfying system if it is extended or changed by removing entities that are
not explicitly mentioned in the implementation model.

Trivial examples of extensional statements are tautologies. Tautologies are satisfied in
every structure of the considered signature; they are hence satisfied in every extension and
modification of a satisfying structure. Also models that repeat, for whatever reason, as sole
statements axioms from ΦCBS D or implications of them, postulate extensional statements — the
axioms are true in every component-based systems, hence in every extension and modification
of a component-based system.

However, models stating tautologies or axioms are uncommon. In most cases, implemen-
tation models make statements comparable to the informal example of Fig. 5.2; they list the
instances of concepts, i.e. the extensions of concepts. Formally, this means that ΦM

ext for an
extensional model normally consists of formulae of the form R(c1, . . . , cn) whereas R is an
n-ary relation symbol and the ci are constant symbols, referring to single entities. Every system
providing these extensions, or supersets of them, is a valid system.
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Figure 5.24: Exemplary implementation Model MI — component specification.

Figure 5.25: Exemplary implementation Model MI — system configuration.

Fig. 5.24 depicts an exemplary UML component diagram. Note, that this and the following
UML diagrams do not represent component-based systems as Fig. 5.9–5.17 do, but models of
such systems. Hence, the diagram annotation «system model» is missing. It shows a cut-out
of a seat reservation system consisting of a GUI component and a managing component which
provides the functionality for making, modifying and removing reservations. The components
are realized with help of the observer pattern, the GUI being an observer of the reservation
manager component; whenever the set of reservations changes, every registered instance of the
GUI is notified of the modification and can react, for example, by displaying a newly freed seat.
The interfaces are implemented by classes inside the components. Fig. 5.25 shows in addition a
composite structure diagram that depicts a system configuration which connects two instances
of the components to form the system.

If we consider the two diagrams being views onto the same implementation model MI, a
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possible set of statements ΦMI could be8:

Φ
MI
int =∅

Φ
MI
ext ={Package(Gui),Package(Application),

Component(S eatGUI),Component(S eatManager),
Interface(Observer), Interface(Observable),
Class(FreeS eatsDialog),Class(S eat),
ProvidedPort(observer),RequiredPort(seats),
RequiredPort(observers),ProvidedPort( f reeS eats),
Part(sg), Part(sm), SystemConfiguration(s),
containsComponent(Gui, S eatGUI),
containsComponent(Application, S eatManager),
containsInterface(Application,Observer),
containsInterface(Application,Observable),
providesInterface(S eatGUI,Observer), providesInterface(S eatManager,
Observable), requiresInterface(S eatGUI,Observable),
requiresInterface(S eatManager,Observer),
containsClass(S eatGUI, FreeS eatDialog), containsClass(S eatManager, S eat),
implements(FreeS eatsDialog,Observer), implements(S eat,Observable),
encapsulates(S eatGUI, observer), encapsulates(S eatGUI, seats),
encapsulates(S eatManager, observers), encapsulates(S eatManager, f reeS eats),
providedInterface(observer,Observer), providedInterface( f reeS eats,
Observable), requiredInterface(seats,Observable), requiredInterface(
observers,Observer), hasType(observer, FreeS eatsDialog),
hasType( f reeS eats, S eat),
configurationPart(s, sg), configurationPart(s, sm),
configurationPart(s, con1), configurationPart(s, con2),
hasType(sg, S eatGUI), hasType(sm, S eatManager),
connectorSource(con1, seats), connectorSource(con2, observers),
connectorTarget(con1, f reeS eats), connectorTarget(con2, observer),
sourceContext(con1, sg), sourceContext(con2, sm),
targetContext(con1, sm), targetContext(con2, sg)}

The statements basically lists the elements of the relations that need to be present in a
conforming system, for example, there have to be at least two components which are the entities
with id = S eatGUI and id = S eatManager.

8We use here the names of the model elements as identifiers for simplification, instead of numbered entities and
constant symbols mapping to them.
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Figure 5.26: Sketch of an observer pattern description.

Sets of extensional statements of the form like Φ
MI
ext have the property that they have a unique

minimal structure satisfying the set; each statement refers to exactly one relation tuple, thus
the structure defining exactly these tuples is minimal. This property of this special form of
extensional statements will be exploited for the operationalization of compliance checks (see
Sec. 5.5).

Design Models

Loosely spoken, implementation models make “matter of fact” statements about systems in the
sense that they claim the existence of elements and relationships. Design models, in addition,
can postulate constraints that can be locally fulfilled. This means, once the constraint is satisfied,
the system can be extended in any way — the constraints will hold. Or to describe it from the
opposite: if an tactical statement of the model is violated, the system contains a local error.

Following Eden [EHK06], examples of statements, that design models can make, are:

• Design Patterns

• Programming Language Idioms

• Refactorings

Let us assume, for the exemplary seat reservation system exists a description how the
observer pattern works. In most cases this might be a textual description from a pattern
catalogue like [GHJV95] complemented by a UML diagram like in the left part of Fig. 5.26,
describing the interfaces that concrete observers and observables have to implement. Since
UML class diagrams are in general extensional, as discussed in [EHK06], there are some
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(informal) intensional constraints, like the one stating that the notification has to call the update
methods of the observers. This might be expressed as an τCBS D-expression as follows:

observable_calls_upd(o) B implements+(o,Observable)→
∃m∃i∃s : definesMethod(o,m)∧
name(m, “notify”) ∧ containsStatement(m, i)∧
invokedSignature(i, s)∧
name(s, “update”) ∧ invokedAt(i, observers)

If the class Seat is a proper implementation of Observable the statement
observable_calls_update(S eat) will be satisfied. Of course, this would be only a partial
descriptions of the constraints the observer patterns defines.

Hence, let us assume that the diagrams in Fig. 5.26, the depicted class diagram, and the
embedded sequence diagram, describe another model MD of the seat reservation system. Then
the corresponding sets of statements could be, omitting the details for the definition of signatures
and methods for registering and removing observers, as well as the full control flow graph for
notify:

Φ
MD
ext ={Interface(Observer), Interface(Observable),

Class(FreeS eatsDialog),Class(S eat),
implements(FreeS eatsDialog,Observer),
implements(S eat,Observable),
Member(observers), hasMember(Observable, observers),
definesSignature(Observer, updateS ),
definesSignature(Observable, noti f yS ),
definesMethod(FreeS eatDialog, updateM),
hasSignature(updateM, updateS ),
definesMethod(S eat, noti f yM),
hasSignature(noti f yM, noti f yS ),
. . . ,MethodInvocation(upd),
containsStatement(noti f yM, upd),
invokedSignature(upd, updateS ),

invokedAt(upd, observers)} ∪ Φ
MI
ext

Φ
MD
int ={observable_calls_upd(S eat)}

In contrast to the implementation models mentioned in the last section, design models do
not have a unique minimal satisfying structure in general. Their intensional design statements
usually contain free or bound variables. If a variable is bound to an existential quantifier, for
example, it is in general possible that more than one binding will lead to a minimal satisfying
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Figure 5.27: An architectural model introducing layers.

structure of the statement. In the statement above, for example, an arbitrary entity reflecting the
notify method could make the existentially quantified part true; hence, there are infinitely many
minimal satisfying structures.

Architectural Models

Architectural models, in contrast to design models, define non-local constraints. This means
that a system satisfying an architectural model can always be extended in a way that it forms a
system that does not satisfy the model. Examples for architectural models are, as describes in
[EHK06]:

• Architectural patterns and styles.

• Design principles and paradigms, like information hiding or the main principles of
object-orientation.

• Implementation guidelines.

Let us consider the layers pattern, broadly recognized as architectural pattern [BMRS96].
Layers organize the parts of systems hierarchically, and group components at different levels.
Components are only allowed to access components at the same level or a level below9.

A common reference architecture for information systems is build upon the layers pattern,
consisting of a user interface layer, the application layer and a persistence layer, as introduced
in Sec. 4.1.2. Let us assume, our seat reservation system follows this approach as depicted
in Fig. 5.27. We could assume, that layers are mapped to packages of a system and can be
formalized in an architectural model as follows:

9We will define the layer pattern and the corresponding logical statements in much more detail in Sec. 6.2.1.
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Φ
MA
ext ={Layer(guilayer), Layer(applayer),

level(guilayer, 2), level(applayer, 1),
mapsToPkg(guilayer,Gui),mapsToPkg(applayer, Application)}

∪ Φ
MI
ext

Φ
MA
int ={legalDep(guilayer), legalDep(applayer)}

legalDep is a constraint that defines for a layer that all dependencies, that exist because of
components requiring or providing interfaces, stay in a layer, or are directed towards a layer
below:

legalDep(l) B∀p∀c∀i : mapsToPkg(l, p) ∧ containsComponent(p, c)∧
(requiresInterface(c, i) ∨ providedInterface(c, i))→
(∃l′∃p′ : mapsToPkg(l′, p′) ∧ containsInterface(p′, i)∧
∀x∀x′ : (level(l, x) ∧ level(l′, x′)→ x ≤ x′))

The minimal model for MI is also a model for MA, as can obviously be seen; both interfaces
are defined in the package mapped to the application layer, hence all dependencies go from
towards the lowest layer available. Thus, all dependencies conform to the layer levels. But
such a system can be easily be extended to a non-satisfying system by adding layers below
the application layer (such as a persistence layer) which contain components that require an
observer or an observable interface.

As for design models, it cannot be assumed that an architectural model has a unique minimal
satisfying structure.

Refinement and Compliance

To define refinement and compliance between models we have to investigate relations between
their sets of structures that satisfy their statements.

Refinement is often defined by saying that every system that conforms to the refining model
is also conform to the refined model (for example, see [Rau04]), or formally sem(Mre f ining) ⊆
sem(Mre f ined) whereas sem(M) denotes the semantics of a model M in terms of systems
conforming to M.

However, in the proposed approach it is possible that, e.g. an architectural model contains
concepts, like layers, that are not available in an implementation or design model. The common
core of concepts is defined by the relation symbols in τCBS D but additional concepts can be
added. Hence, the τCBS D-reductions (see Sec. 5.2) have to be considered for refinement:

Definition 17 (Refinement between models) Let M and M′ be two models. M is a refinement
of M′ if and only if for each s ∈ 𝒮M there is a s′ ∈ 𝒮M′ such that s � τCBS D = s′ � τCBS D.

The refinement relationship between models is very strong. Intuitively spoken, every system
s for a model M is also a system for M′ if M is a refinement for M′. It is obvious that this
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constraint is too strong for the relationship between design or implementation models and
architectural models. Both kinds of models, design and implementation models, describe sets
of satisfying systems that are closed under addition of entities and tuples, which results from
the definition of locality and extensionality. Since this does not hold for non-local models
in general, the relationship between architectural models and less abstract models cannot be
described as refinement in general.

The desired relation of compliance has hence to be weaker than refinement. The minimal
satisfying systems of a model can be interpreted as those systems which are completely
described by the model; larger systems supersetting a minimal system contain elements that are
not explicitly required by the model and that are not described by it. If it is because of one of
these elements in a structure for a design model, that the system violates the constraints of an
architectural model, it is strange to say the design model is not compliant with the architectural
model. The need for that element is not expressed in the design model.

Instead, compliance of a model M with a model M′ should express that a minimal system
satisfying M should not contradict the constraints of M′. This means that each such minimal
system could be added to minimal system of M′ resulting in a satisfying system for M′. More
formally, we state:

Definition 18 (Compliance between models) Let M and M′ be two models whereas M uses
the signature τCBS D ∪ τM, M′ uses τCBS D ∪ τM′ , and τM ∩ τM′ = ∅. M is compliant with M′ if
and only if the following holds: for every s ∈ 𝒮M

⊥ there is an s′ ∈ 𝒮M′
⊥ such that for t, which

consists of the union of s and those entities and tuples of s′, that are elements of relations
defined by τM′ , holds: t ∈ 𝒮M′ .

Intuitively spoken, this definition of compliance says that M can be extended by the infor-
mation contained in M′ in a manner that it is conform to M′. By restricting the extension to
relations that are not defined in τCBS D, it is ensured that if M′ makes extensional statements
about component-based concepts (“C is a component”) are consistently modelled in M′.

Of special interest with regard to the task of architectural compliance checking are two cases
of compliance:

1. Compliance of implementation models with design models. This issue arises, for example,
if the implementation has to be checked for compliance to tactical statements like design
patterns.

2. Compliance with architectural models. This issue arises, if architectural models, con-
stituting strategic statements, have to be checked in the design and implementation of a
system.

The two cases as will be explained and discussed in the following sections.

5.4.3. Compliance of Implementation Models towards Design Models

The practical main use case, in which extensional models are checked for compliance with
a design model, is that the implementation of a system given as source code is checked
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against a design model written in UML, or any other modelling language. The definition of
compliance ensures that everything that the design tells about specific component, interfaces,
and relationships, is also implemented by source code. Because of the fact that only design-
specific concepts can be added to the systems that satisfy the logical statements defined by the
code to check if also the design model is satisfied, every component and every other concept
from τCBS D modelled in the design model has also to appear in code.

The implementation model example of Sec. 5.4.2 can now be checked for compliance
with the design model of the same section. The implementation model MI has a unique
satisfying structure which interprets the relation symbols by the minimal sets of tuples re-
quired for ΦMI , for example, Component = {S eatGUI, S eatManager} or containsClass =

{(S eatGUI, FreeS eatsDialog), (S eatManager, S eat)}. The definition above states that this
structure can be extended by a minimal system for MD if MI is compliant with MD. It can easily
be seen that this is not possible, since MD requires the existence of MethodBody tuples, for
example for the update method, that are not contained in the satisfying structure for MI . They
may not be added to the system because MethodBody is defined in τCBS D, hence there cannot
exist a minimal system for MD from which we could take the additional elements according
to the definition of compliance. MI does not specify the update method and can thus not be
compliant with the design model by definition.

Let us assume, that the diagram of Fig. 5.24 is modified by adding the necessary signatures to
the observer and observable interface, as depicted in the design model of Fig. 5.26, i.e. update
and notify signatures. Furthermore, the corresponding methods are implemented in a way that
the notification calls the update methods. Note, that the source code of that method bodies will
include many more statements, more than those specified as required in the design model.

In this case, the source code, i.e. the implementation model, is compliant with the design
model. A minimal system for the implementation code would now contain corresponding
method body entities, statement node entities, and according relationships. If observer related
tuples are added from a minimal system for MD. This leads to a system that contains the
tuples reflecting these additional facts — it is basically a structure which also satisfies MD.
Consequently, the modified implementation model is compliant with MD, since a set of design-
specific tuples, the empty set, can be added to from a structure satisfying MD.

As an interesting aspect, the compliance of an implementation model with a design model,
also implies the refinement between both, whereas the implementation model refines the design
model. Let us temporarily assume, that the considered implementation and design models do
not use additional relation symbols to that of τCBS D. According to the definition above, every
minimal satisfying system of an implementation model MI is also a model of compliant design
models. For both kind of models, we know by the definition of extensional and local statements,
that every addition to a satisfying structure leads to another satisfying structure. Hence, if every
minimal model of MI is also a satisfying structure of the design model MD, every larger model
for MI does satisfy the statements of MD, too. Hence, every satisfying system satisfies MD and
MI is a refinement of MD, too.

If MI and MD also use other relation symbols than those defined in τCBS D, the reduction to
τCBS D has to be observed. If MI uses relation symbols that are not known in MD, the case is
simple — the intensional constraints cannot use them, and hence, corresponding tuples are
irrelevant for the evaluation of the logical statements. In this case, MI is a refinement of MD,
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too. If MD uses such relation symbols, they can be important for the evaluation because they
are used as terms in the statements. However, these statements are local, thus adding tuples to a
satisfying system is safe. Hence, the same tuples could be added to a minimal system of MD,
that are inserted to form an arbitrary satisfying system for MI from a minimal system for MI.
Consequently, the refinement relationship holds also in this case.

5.4.4. Compliance towards Architectural Models

By definition, a component-based system satisfying an architectural model can be modified
in a way that it does not conform to the model anymore. Consider a system, that is layered
according to an architectural model; components can be added to the system that require and
provide interfaces from layers which they are not allowed to access. This shows that compliance
of an arbitrary model with an architectural model does not imply refinement in contrast to the
observations regarding compliance with a design model.

Let us consider the examples MD and MA of the previous section. The minimal satisfying
systems for MD contain exactly the components and classes required for the extensional state-
ments of the model, and the update methods provides an implementation for the update method
as it would be expected according to the pattern [GHJV95]. The details of the implementation
are not relevant with regard to the question if MD is compliant with MA because the statements
in MA do not refer to any relation symbols used to model method bodies.

Since the minimal models contain exactly the component and interfaces that correspond to
those in Fig.5.27, it is obvious that they can be extended to form a model for MA. All that has
to be done is to add corresponding Layer, level, and mapsToPkg tuples to such an minimal
structure. Hence, if s is a minimal model for MD the following structure s′ is a model for MA:

Layers′ = Layers ∪ {guilayer, applayer}

levels′ = levels ∪ {(guilayer, 2), (applayer, 1)}

mapsToPkgs′ = mapsToPkgs ∪ {(guilayer,Gui),
(applayer, Application)}

Rs′ = Rs for all other relation symbols

Layers, levels, and mapsToPkgs are empty sets. The addition to form s′ corresponds to the
requirements of Def. 18, and s′ is a model of MA. Thus, MD is compliant with MA

5.5. Operationalization of Compliance Checking

This chapter is about the execution of compliance checks based on the formal definitions in the
subsequent sections. The execution of compliance checks is separated into different steps.

First, models have to be transformed into logical expressions that represent the statements
contained in a model about systems. The definition of transformations is provided at the
meta-model level, every model instance is transformed according to that language-specific
rules. This aspect is covered in Sec. 5.5.1.
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In a second step, the minimal satisfying systems for models are constructed. This is only
possible if certain assumptions can be made about the models that are going to be checked.
Section 5.5.2 describes those assumptions and the generation of minimal satisfying systems in
cases when the assumptions are true.

Finally, the compliance check can be executed according to the definition of compliance.
A merged system is constructed from the minimal systems for the participating models and
serves as input for model checking. In Sec.5.5.3, a compliance checking algorithm will be
introduced.

5.5.1. Transforming Models into Logical Statements

To transform models into logical statements, we have to define the transformation rules. They
express for a certain kind of models, i.e. models written in a defined language like UML, which
logical statements are generated for a model. This means that transformation rules have to refer
to elements of the meta model, for example, to express that every instance of the UML meta
model concept Component results in the expression Component(ethis) whereas this refers to
the id of the instance.

Given such transformation rules, a model can be traversed and transformed, model element
by model element. For example, a UML model is traversed, and if a component is visited, it
is transformed according to the rule above. Other kinds of model elements are transformed
according to different rules. The union of the generated statements for the model elements
of a model M is the set ΦM of logical statements that have to be satisfied in conforming
component-based systems.

The way transformations are defined and executed should be language independent, and
hence must be independent from a specific meta model. Thus, it is helpful to assume that
all meta models are defined using the same concepts. This way we can easily define the
transformation rules as function mapping instances of those concepts to logical expressions over
τCBS D. Additionally, an algorithmic way to generate those statements language-independently
can be defined.

In the following, meta models are considered to be instances of the EMOF meta-meta
model which is a subset of the MOF approach defined by the OMG [Obj06]. In this approach,
model-driven development is separated into three different abstraction levels for artefacts called
M0, M1, M2, and M3. On M0, subjects of observations are concrete systems. Models of such
systems are on M1. The languages, in which models are written, are defined by meta models;
they are on M2. Finally, M3 defines the common meta-meta model for MOF; it describes the
languages in which meta models are written.

Figure 5.28 depicts in the topmost part the cut-out of the EMOF meta meta model which is of
special interest for the proposed transformation into logical expressions. EMOF defines as main
concepts classes of which specific meta model are constructed. Classes can define properties
typed with classes or other specializations of Type as depicted. This means, that in EMOF
meta models mainly consist of meta classes with meta attributes that refer to other classes (or
primitive types). For example, the UML meta model defines the meta class Interface as an
instance of the meta-meta class Class. Interface has a (meta) property called ownedAttribute
which is an instance of the meta-meta class Property.
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Figure 5.28: UML in the layers of the MOF.
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Taking this structure into account, we can now define that a transformation definition maps
an instance of Class (from M3) to some extensional and intensional expressions, depending on
the language or meta model L and the signature τL ⊇ τCBS D:

T L : ClassL
→ 𝒫(EXT τL) × 𝒫(INT τL)

ClassL denotes the set of instances of Class (from level M3) in L. EXT τL and INT τL ,
respectively, denote the set of extensional and intensional statements over τL.

All expression can use the variable this which is replaced during the execution of the rule by
the identifier of the model element to which the rule is applied. Furthermore, the “this.property”
whereas property denotes an inherited or owned property. The variable is replaced by the
element the property refers to by its type. If the multiplicity is greater than one, a statement
for each possible replacement is generated. This navigation works also iteratively; this.x.y
determines the property y of the element which is referenced by this.x.

Figure 5.28 depicts a cut-out of the UML meta model and a model inside the M-layers of
the (E)MOF. It shows the elements required to model the provides and requires relationships
between interfaces and components. The corresponding classes are Component and Interface.
Component has two properties, one to refer to the provided, one to the required interfaces.

The transformation rules for this are straightforward. Each instance of Component
is transformed to a corresponding extensional statement requiring a Component fact
and providesInterface and requiresInterface facts for each element in this.provides and
this.requires, respectively:

T UML(Component) B({Component(this), providesInterface(this.provides),
requiresInterface(this.requires)}, ∅)

T UML(Interface) B({Interface(this)}, ∅)

As mentioned above, we can construct ΦM for a model M written in L by traversing the
model and applying the transformation rules:

ΦM
ext =

⋃︁
m∈M

⋃︁
mt∈metatype(m)

(replace(T L(mt),m))1

ΦM
int =

⋃︁
m∈M

⋃︁
mt∈metatype(m)

(replace(T L(mt),m))2

whereas

• m is a model element in M

• metatype(m) denotes the set of meta classes, that m is instance of.

• replace(X,m) replaces in the set X ⊆ EXT τL × INT τL the variables m and m.property as
mentioned above.
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Figure 5.29: Minimal structures vs. minimal systems.

Hence, in the example model of Fig. 5.28, for the component C the expressions
Component(eC), providesInterface(eC, eI1), and requiresInterface(eC, eI2) would be generated,
as well as Interface(eI1) and Interface(eI2).

metatype(m) contains not only the direct meta type of m, like Component for a compo-
nent in a UML model but also the classes that are super classes of that direct meta type,
which are specified by linking classes by the superClass association defined in M3. Thus,
if there were a transformation definition for the meta class Type, the statements defined
in replace(T UML(Type),C) would be created, too. Analogously, the statements defined in
replace(T UML(t),C) for every superclass t of Component would be generated.

5.5.2. Generation of Minimal Systems for Models

Compliance of models, as shown in Sec. 5.4, depends on the relationship between the sets of
satisfying structures of both models’ logical statements. It has been outlined that for the model,
whose compliance with another model should be decided, the minimal satisfying structures are
of special interest — if these can be extended to satisfying structures of the model to which
compliance should be ensured, compliance between both models actually exists.

In general, it is not possible to do the check for compliance by model checking because
the set of minimal systems that satisfies the statements of model is infinite. For example, the
statement “There has to be at least one component” (∃x : Component(x)) has infinite many,
minimal satisfying structures. Furthermore, even if the minimal structure is unique, the set
of minimal systems can still be infinite, as Fig. 5.29 shows. A model, stating that two certain
components are required, has a unique minimal satisfying structure. The set of minimal systems
is infinite; the minimal structure does not satisfy the axioms in ΦCBS D but it can be extended to
“larger” structures that do so and which are minimal systems.

Hence, model checking cannot be used efficiently in the general case covering all theoretically
possible combinations of architectural, design, and implementation models. However, we can
restrict generality to practically relevant cases by making certain assumptions about model
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properties:

1. Extensional statements of models are unambiguously factual.

2. Models are intensionally complete.

3. Extensional statements of models are complete regarding ΦCBS D .

If these assumptions are true, there is a unique, minimal system satisfying the logical
statements of a model. It can furthermore be derived from the extensional statements of a
model.

Assumption 1: Extensional statements of models are unambiguously factual

The set ΦM
ext contains all the extensional statements of a model M. Those statements can have

different forms. For example, tautologies are extensional statements because they are true
in every structure. Tautologies are also true in empty structure, hence as statement defined
by a model they have no informative value regarding the systems that conform to the model.
Every statement that does not use variables but only refers to constant symbols as terms for
the arguments of predicates is extensional. The most relevant case for extensional statements
defined by models is that those statements simply list facts described by the model like “Entity
ei is a component, and provides the interface represented by entity e j”. Modelled as a predicate
logic formula, this would be a conjunction of facts.

More formally, this case could be described as a constraint over the elements of ΦM
ext. For

every ϕ ∈ ΦM
ext holds that

ϕ B
⋀︁

j=0,1,...

R j(ei1 , . . . , ein)

whereas every R j is an n-ary relation symbol.
A model, for which every extensional statement has this shape, and for which ΦM

ext is satisfi-
able at all, is called unambiguously factual. It describes only facts because every constraint
that a statement puts on satisfying structures refers directly to a defined element of the uni-
verse (given by ei’s as predicate arguments). Furthermore, it does not describe unambiguous
information like “ei is either a component or an interface”.

If every formula in ΦM
ext is unambiguously factual, then the minimal satisfying structure for

ΦM
ext is unique. The universe of that structure consists of exactly those entities that are referred

to by the constant symbols10. The relations consist of exactly those tuples that are described in
the extensional formulae.

It is obvious, that this minimal satisfying structure can be easily generated from ΦM
ext. The

statements are traversed. In every statement, the operands of the conjunction are traversed. For
every argument ei of the predicate, an element in the universe is created, unless ei has already
been visited in one of the previous statements or operands. After that, a tuple is created for the

10see the definition of ei in Sec. 5.3.
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relation, interpreting the relation symbol given by the predicate name. The tuple consists of the
elements created for the constant symbols.

In the case that M is an extensional model, this means that the minimal satisfying structure
for M can be generated automatically.

Assumption 2: Models are intensionally complete

The first assumption alone is not enough to reduce the complexity in the case that an intensional
model is subject to checking compliance with another model. Although, the minimal structure
for ΦM

ext is unique, the set of minimal structures for ΦM can still be infinite. For instance, consider
the observer pattern example from Sec. 5.4.2. If the, for example, the method bodies are not
completely modelled, there might be many minimal satisfying structures for ΦM. Nevertheless,
the minimal satisfying structure is unique, given that Assumption 1 is true.

Hence, we assume in addition that the extension of a model is complete with regard to its
own intensional constraints. This means, that the minimal satisfying structure for ΦM

ext does
also satisfy ΦM

int. Whether this is true, can be ensured by model checking.
If the model is intensionally complete, the minimal satisfying structure for the extensional

statements is also a satisfying structure for the whole model, because s |= ΦM
ext and s |= ΦM

int
implies s |= ΦM. The structure s is also minimal regarding ΦM. If there would be another
minimal structure s′ with s′ |= ΦM and s is an extension of s′ then also s′ |= ΦM

ext. As
consequence, s could not be minimal regarding ΦM

ext, leading to a contradiction. For the same
reasons, s is also a minimal satisfying structure for ΦM.

Thus, if the second assumption is true, we are able to generate the unique minimal satisfying
structure for intensional models, too. The procedure is the same as described in the previous
section.

Assumption 3: Models are conform to ΦCBS D

As depicted in Fig. 5.29, the minimal satisfying structure is not necessarily a valid component-
based system. It can violate axioms from ΦCBS D. But this does not necessarily need to be the
case. The statement “C is a component inheriting from interface I” is extensional and satisfiable
by a minimal structure — but the same structure cannot be extended to a system according
to ΦCBS D, since inheritance between components and interfaces is not defined. In this case,
the value of the minimal structure for the further compliance checking process is questionable
because no valid system can be derived from it. On the other side, the infinite set of minimal
systems cannot be used as input for model checking as mechanism to check compliance.

Hence we have to conclude, that the conformity of the extensional statements to ΦCBS D has
to be assumed. This means that the minimal satisfying structure for ΦM

ext is also a satisfying
system for ΦM

ext.
It can be concluded that, given that all three assumptions hold, a unique, minimal satisfying

system can be efficiently generated from the extensional statements that a model defines. The
three assumptions restrict the set of models that can actually be checked for compliance. The
models in that set are characterized by the fact, that they describe component-based systems
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according to ΦCBS D (Assumption 3), that they are conform to their own, inherent constraints
(Assumptions 2), and that the facts they describe are unambiguous (Assumption 1).

These extensional statements are generated from the model as described above. As a next
step, the actual compliance checks can be performed.

5.5.3. Execution of Compliance Checks

A compliance check verifies whether a model M is compliant with another model M′ according
to Definition 18 (see Sec. 5.4.2). If M is compliant to M′, then there is, following the definition,
for every minimal system s of M a minimal system s′ of M′ such that we can build the union
of s and s′ and get a satisfying system for M.

If the three assumptions described in the previous section are true, s and s′ are unique, and
can be automatically generated. In addition to this generation, the union of the structures
have to be generated, before model checking can be applied to determine whether the overall
structure is a model of M′.

The procedure can be described in pseudo-code as illustrated in Listing 6.1. Input of the
algorithm are two models M and M′, and the sets of transformation rules that are applied either
to M (T L) or M′ (T L′) whereas L is the meta model of M, and L′ is the meta model of M′.

First, the logical statements for both models are created (lines 11–12). If one of the sets
contains formulas that are not uniquely factual, the procedure throws an error (lines 15–17).
The unique minimal structure for the extensional statements of M is generated afterwards
(line 18), and is checked (a) whether it is a component-based system and (b) whether it is
intensionally complete (line 21–22). If one check fails, an error is thrown. After that, the
minimal structure s′ for M′ is created and checked analogously (lines 23–27).

Finally, the structure u as union of s and s′ is constructed (line 29). The result of the union
operator is also folded. Normally, models have their own set of identifiers, thus, two models
referring to the same logical entity attach two different identifiers to it. This entity would hence
appear twice in the union of the models, or more precisely, in the union of their structures. For
this reason, we apply a folding mechanism which defines for every unary relation symbol in the
signature, when two elements of corresponding relations are considered to be identical — for
example, two named elements are considered to be equal if they have the same qualified name.

Following the definition of compliance, the algorithm returns true, if and only if the merged
structure satisfies ΦM.

5.6. Summary

This chapter has explained the main building blocks of the formal framework for architecture
compliance checking in component-based systems. To provide such a framework, there has to
be a common formal representation of component-based systems and their models. This formal
representation is based upon the common definitions of predicate logic. Component-based
systems are structures conforming to a common signature τCBS D and obey the axiom system
ΦCBS D. The relation symbols in τCBS D reflect elements of component-based systems, like types,
static structures of types, and behaviour specifications. Models of component-based systems
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Listing 5.1: Algorithm to check architectural compliance

1 boolean checkCompliance(M,M′,T L,T L′)
2 /* checks whether model M is compliant with model M’ */
3 /* M is an instance of the meta model L */
4 /* M’ is an instance of the meta model L’ */
5 /* T L and T L′ are the sets of transformation rules */
6 /* that are applied to M and M′, respectively. */
7 /* Return ’true’ if this is the case, ’false’ if not. */
8 {
9 /* Generate logical statements for both models */

10 /* according to their transformation rules */
11 ΦM := generateStatements(M, T L);
12 ΦM′ := generateStatements(M’, T L′);
13 /* Return error if statements for M or
14 M’ are not uniquely factual */
15 if (not isUniquelyFactual(ΦM) ||
16 not isUniquelyFactual(ΦM′))
17 return error
18 Structure s := generateMinimalStructure(ΦM

ext);
19 /* Return error if M is not a system or
20 not intensionally complete */
21 if (s ̸|= ΦCBS D || s ̸|= ΦM

int)
22 return error;
23 Structure s’ := generateMinimalStructure(ΦM′);
24 /* Return error if M is not a system or
25 not intensionally complete */
26 if (s′ ̸|= ΦCBS D || s′ ̸|= ΦM′

int )
27 return error;
28 /*Construct union of structures*/
29 Structure u := fold(union(s,s’));
30 if u |= ΦM return true
31 else return false;
32 }
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are understood as logical statements over such structures; systems that satisfy the statement
formulated by a model conform to the model.

The second building block is a classification of models based upon their level of abstraction.
Three levels are distinguished. Architectural models express constraints upon systems that can
be violated if the system is extended. Examples for such statements are architectural patterns.
Design models define constraints that, if they hold in a system, cannot be violated by extending
the system. However, removing elements that are not explicitly defined in the model, can lead
to violated constraints. Implementation models, finally, are models formulating statements that
stay valid in system no matter how it is changed.

Based upon this distinction, the term of compliance has been defined. For each model, there
is the set of satisfying systems, τCBS D-structures for which the ΦCBS D-axioms hold, and which
satisfy the statements defined by the model under consideration. A subset is the set of systems
that are minimal, i.e. systems from which no element can be removed without losing the
property of satisfying the statements defined by the model. Compliance of a model M with a
model M′ is defined as the property that for each minimal model of M there is a minimal model
of M′ that way that both can be merged and result in another model of M′. Intuitively spoken
compliance expresses that integrating the information that is contained in a refining model M
into a more abstract model M′ leads to a model that in which the intensional constraints of M′

still hold.
As a third building block, the operationalization of compliance checks under the given

definition of compliance is introduced. Since the concepts base upon checking whether a
structure is a model (in the logical sense) for a logical formula, it seems natural to aim at
applying model checking techniques.

The first step to operationalize compliance checks is the transformation of models into
logical statements. The transformation rules are meta model-dependent. Hence, to define a
language-independent procedure, we have to fix the language of meta models, i. e. the meta
meta model. Assuming, that languages are meta models in the EMOF system, a procedure
to apply transformation rules while traversing a model as instance of a given meta model, is
introduced

In the second step, the minimal systems for the generated formulae are generated. To be able
to do so, some assumptions about models with practical relevance have to be made; models
have to be uniquely factual; models have to be intensionally complete; models conform to
ΦCBS D. Without these assumptions the set of minimal systems for a given model is in general
infinite; if the assumptions apply, the minimal system for a model is unique. For the subset of
models, for which the assumptions are true, an algorithm is introduced which checks two input
models for compliance.
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All space and matter, organic or inorganic, has some degree
of life in it, and matter/space is more alive or less alive
according to its structure and arrangement.

Christopher Alexander

The previous chapter has described the proposed formal framework for architectural compli-
ance checking. To apply the approach to the case study (see. Chapter 4), several issues have to
be addressed:

• The architectural rules for the architectural aspects of CoCoME described in Sec.4.2
have to be defined formally as logical formulae.

• An Architecture Description Language (ADL) has to be selected to model the archi-
tectural aspects that were only described textually and informally in [RRPM08]. Its
transformation into logical expressions, including into the architectural rules mentioned
above, has to be defined.
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• A transformation of UML models into logical expressions has to be defined.

If solutions are provided for these issues, the developed reference design model can be checked
for compliance with the architectural model written in the selected ADL.

For this task, UML was selected as ADL. Since version 2.0 of the specification, UML
provides some concepts to model architectures, like components, connectors, etc. Furthermore,
there exist many approaches to further enhance UML’s capabilities to model software architec-
tures (e.g. [RKJ04, LCM06, MKB+08]) as well as work which shows how renowned and dedi-
cated ADL like ACME, COSA, or others can be mapped to UML [GeA03, KSO06, Oqu06].

To model advanced architectural concepts which imply architectural rules, UML profiles are
used. UML profiles provide a light-weight mechanism to extend the UML meta model and
hence to introduce new language elements. It allows the user of UML to tailor the language
according to its own specific needs. Profiles define so-called stereotypes to extend existing
language elements and to introduce specific terminology or notations, which are used instead
of the predefined, standard language elements.

Profiling is used in a couple of approaches to integrate architectural concepts into UML,
e.g. architectural primitives or patterns [ZA08, RKJ04, MKB+08, KA08]. We will use profiles
to define concepts required to model the architectural aspects of CoCoME, as described in
Sec. 4.1.2. Architectural rules are attached to the stereotypes contained in the profile.

However, it is important to note that the specific ADL, or how UML is exactly extended
for the purpose of architecture description, is not of special interest here. The architectural
rules are specified in terms of τCBS D, and can hence be used in the transformation definition
according to Sec. 5.5.1 for any ADL.

The following subsections are structured as follows. Section 6.1 explains the main principles
of the UML profile mechanism.

In Sec. 6.2 the architectural rules for the three main architecture aspects of CoCoME will
be introduced: layers, interfaces with copy-semantics, and event-based architecture. For each
single architectural aspects, a set of stereotypes will be defined that are required to model it at
the architectural level or to refine it in a design model. For each stereotype, the rules, either
architectural or design, will be formally developed as logical expressions.

In Sec. 6.3, the transformation definition to generate logical statements for UML models will
be presented. One focus is the transformation of UML model elements used in class diagrams,
component diagrams, and composite structure diagrams to model the static structure of systems.
The second focus is the transformation of sequence diagrams and the elements used there to
specify the behaviour of systems. Section 6.4 concludes the chapter.

6.1. UML Profiling Mechanism

As a general purpose language, UML tries to cover as many aspects of software system
development as possible, and to be as generic as possible. It is quite natural, that there are often
situation in projects when certain specific issues cannot be modelled in an intuitive way or
cannot be expressed at all. Furthermore, innovations require often a certain time to find their
way into the UML standard. As a consequence, UML, just like any modelling language, will
probably always be incomplete to a certain degree.
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Figure 6.1: UML Profile Example (from [Obj08]).

There are two ways to tailor UML to project- or user-specific needs. First, the meta model
of UML can be modified, i.e. the language definition is changed. This is also known as
heavyweight extension of UML. While this is a rather powerful and flexible way to extend UML,
because it is possible to introduce new elements, delete old ones or change their properties, it
has also strong practical implications. Changes have to be communicated; developers familiar
with standard UML have to learn the changes to the language and get used to it; the used UML
modelling tools have to support the modification of the standard, what is most often not the
case, or have to be adapted, what is often not possible or time-consuming and expensive. Hence,
the flexibility, that comes with the modifiability of the meta model, does not pay off in many
cases.

As a second option, the so-called profiling mechanism of UML can be used. A profile defines
project- or domain-specific extensions of the UML meta model that add certain elements to the
meta model or restrict the way how language elements may be used in the project or domain.
Profiles are models at the MOF level M1, and can be dynamically applied to models, indicating
that the restrictions of the domain or project have to hold in the models. The advantage is
that the meta model of UML is not changed. Furthermore, most of the sophisticated UML
modelling tools support the creation and application of profiles.

Formally spoken, a profile is a special variant of a UML package. Figure 6.1 shows an
example from the CORBA profile defined by the OMG [Obj08]. A profile defines so-called
stereotypes. Stereotypes describe how existing meta classes can be extended, and allow
using platform or domain specific concepts, terminology, or notations, in places where the
extended meta classes could be used. For instance, Fig. 6.1 shows the CORBAHome stereotype,
indicating a special kind of interfaces, the home interfaces, which provide standard functionality
to components in CORBA, like instantiating, finding instances, etc [BW01]. The extension
relation is modelled by an arrow pointing to the extended meta class. In UML models, where a
stereotype is applied to an instance of a meta class, like an interface, the stereotype is denoted
in guillemets above the element’s name.

A stereotype can define attributes to add domain specific information to the meta class it
extends. For example, the boolean attribute of CORBAValue in Fig. 6.1 determines whether
the stereotyped interface represents a value type in CORBA whose values can be truncated (see
[BW01] for details).
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Another important part of profiles are the constraints attached to stereotypes and, hence, to the
domain specific extensions that are made by the profile. They describe boundary conditions that
have to hold if a model defines an element having the stereotype. For example, the specification
of the CORBA profile states that a home interface (remember, an interface stereotyped with
CORBAHome) can only inherit from at most one home interface. This is specified formally in
[Obj08] as OCL constraint, and can be checked on models applying the profile by adequate
UML tools.

Stereotypes can also be specialized by, and only by, stereotypes. The meaning is basically the
same as specialization between classifiers in UML; in places where the more general stereotype
can be applied, also its specializations can be applied.

In the following, UML profiles will be used to introduce aspects of architecture and design
that specify architectural or design rules for the development of a system. There will be two
profiles, the Architecture Profile and Design Profile, one for each single class of rules.

6.2. Definition of Architectural Rules for CoCoME

Three different architectural aspects needs to be modelled in an architectural model of the
CoCoME case study, and each defines a corresponding set of architectural rules. First, modelling
of layers will be introduced and the architectural rules that such a structure defines, as explained
in see Sec. 4.2.1, will be formalized. In the case study, these rules apply to the general structure
of the Inventory System. Second, the elements to model components/interfaces with copy
semantics are introduced, and their rules are formally defined (see 4.2.2). These rules apply to
the components of the application layer in the case study. Last but not least, the event-based
architecture (see Sec. 4.2.3) and its rules will be considered. In the case study, the cash desk
system must be compliant with those rules.

6.2.1. Layers

Section 4.2.1 informally described the rules that a layered architecture defines for the refinement
of the system. In conclusion, those rules are:

• Layers may only depend on other layers, if these are lower in the hierarchy, and.

• if there is an “allowed to use” relationship between the specific layers.

• Static dependencies arise from provide/require relationships between components and
interfaces, from usage or inheritance between interfaces, or from typing of parts between
components.

• Dynamic dependencies arise from method calls between classifiers whereas, due to
polymorphism, the dependency is not visible at design-time in general.

Figure 6.2 shows the fragment of the architecture profile containing the stereotypes required
to model layers. The Layer stereotype is modelled as specialization of the stereotype Group
which extends the UML meta class Package.
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Figure 6.2: UML Architecture Profile: Stereotypes to model grouping of elements (layers).

As formulated in [ZA08], components are often composed in a set which does not represent
a component itself; it does not manifest itself as instance at runtime but is only the sum of
its parts. As such, these sets are virtual and called groups, simply providing a namespace for
model elements.

Packages are the common language elements in UML to provide namespace, and can contain
“packageable elements” like classifiers (see [Obj10b]). As such, it is the prime candidate to be
the base class for the Group stereotype.

The profile defines the additional constraint for groups that they do not own elements to
express that they are virtual, but they only import elements. This means that components,
interfaces, etc., are defined in a normal package and imported into the layer. The actually
imported packages are defined by mapsToPackage dependencies (see below).

The Layer stereotype adds the level attribute to packages. It indicates the position of the
package in the layer hierarchy. Additional constraints ensure that dependencies directed from a
layer package are only allowed if the target of the dependency, in case it is stereotyped as layer,
has a lower level than the source.

It makes sense not only to introduce the Layer stereotype alone but also the more general
stereotype Group. Models of layers of a software system do not only contain the layers in many
cases, but also other groups of components, like segments [CBB+10]. These can be modelled
using the Group stereotype or, if necessary, by specializing it.

The stereotype mapsToPackage extends the meta class Dependency of the UML meta
model. A dependency denotes a directed relationship in UML, modelling that the element at its
source uses the element at the target for its specification or implementation (see [Obj10b]). A
dependency stereotyped with mapsToPackage has always a group as source and a package as
target, whereas the target package is stereotyped neither with Group nor Layer. The dependency
indicates that all elements contained in the target package are virtually grouped in the group at
the dependency source. Figure 4.8 (see p. 49) depicts an example of how to this mapping of
layers can be applied.

The last stereotype to model layers is isAllowedToUse which models allowed-to-use rela-
tionships between groups. A dependency stereotyped this way always connects groups, i.e.
packages stereotyped with Group or Layer. Notice, that the rule that dependencies starting at a
layer must target at a lower layer also holds for dependencies stereotyped with isAllowedToUse,
hence it is syntactically not correct to use the stereotype in other cases.
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To represent layers and related concepts also formally in component-based systems, we
define a signature τarch ⊇ τCBBS D which contains all relation symbols that can be used in
statements representing UML models that apply the architecture profile.
τarch contains the following relation symbols:

• Group ⊆ Package

• Layer ⊆ Group

• mapsToPackage ⊆ Layer×Package

• isAllowedToUse ⊆ Group×Group

whereas the axioms regarding the domain of relation symbols apply (see Sec. 5.3.1).
The transformation of model elements stereotyped with one of the elements of the architecture

profile into an extensional statement is straightforward; a stereotyped package p is transformed
into Layer(idp) or Group(idp), depending on the actual stereotype. Notice, that the relation
symbol domain axioms ensure that in these cases also Package(idp) has to be true. Stereotyped
dependencies are transformed into mapsToPackage(ids, idt) and isAllowedToUse(ids, idt), re-
spectively, depending on the stereotype. ids represents the entity at the source, idt the entity at
the target of the dependency, respectively.

These symbols are used to define the architectural rules that layers define. Notice, that the
first rule, dependency from top to bottom, is syntactically ensured. Since we assume that
syntactically correct models only are checked for compliance, we do not formulate a logical
expression for that part. In the following, the rule that is checked for each single layer will be
developed top-down.

The architectural rule for a group (or layer) l is defined as follows:

T UML,arch(Group) B {. . . ,¬ illegalDependenciesFromGroup(this)} (6.1)

whereas illegalDependenciesFromGroup is true, if there exist dependencies that do not
conform to an existing isAllowedToUse tuple:

illegalDependenciesFromGroup(g) B∃g′ :
(︀
groupDependency(g, g′)∧

¬ isAllowedToUse(g, g′) ∧ ¬
(︀
g′ = g

)︀)︀ (6.2)

A group dependency between g and g′ exists if g contains an element which depends on an
element contained in g′.

groupDependency(g, g′) B∃e∃e′ :
(︀
inGroup(e, g) ∧ inGroup(e′, g′) ∧ dependsOn(e, e′)

)︀
(6.3)

whereas inGroup reflects the containment relationship. An element is contained in a group,
if it is directly contained in a package which the group maps to, or one of the package’s
subpackages. This also means that elements of groups are either components or interfaces, the
only elements that are contained in packages by the definitions of τCBS D:

inGroup(e, g) B∃p :
(︀
mapsToPackage(g, p) ∧

(︀
containsComponent+(p, e)∨

containsInterface+(p, e)
)︀)︀ (6.4)
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Now, it has to be clarified and expressed, which relationships actually constitute a dependency
between components and interfaces. In expression (6.3), this is abstracted by dependsOn(e, e′).
This is defined as

dependsOn(e, e′) B
⋁︁

i=1,...,8

dependsOni(e, e
′) (6.5)

Each dependsOni defines one way elements can depend on each other. The expression
dependsOn1(e, f ) assumes that e is a component, and f is an interface. It expresses that e
depends on f if it provides the interface or requires it. The reason is that the specification of e
uses the specification of f . Hence the definition is as follows:

dependsOn1(e, f ) B providesInterface(e, f ) ∨ requiresInterface(e, f ) (6.6)

The formula corresponds to the usage between components and interfaces as mentioned
in Sec. 4.2.1. As second issue and dependency reasons specialization between types was
mentioned. Hence, extensions between interfaces have to be considered:

dependsOn2(e, f ) B Interface(e) ∧ Interface( f ) ∧ extends+(e, f ) (6.7)

Furthermore, in Sec. 4.2.1 the usage of types in different forms has been identified as source
for dependencies. One form is the usage of an interface as type of a member variable:

dependsOn3(e, f ) B Interface(e) ∧ Interface( f )∧
∃m : (hasMember(e,m) ∧ hasType(m, f ))

(6.8)

Interfaces can define signatures that use another interface as type for one of its parameters
which constitutes another form of usage of types. This case is expressed by

dependsOn4(e, f ) B Interface(e) ∧ Interface( f )∧
∃s∃p : (hasSignature(e, s) ∧ hasParameter(s, p) ∧ hasType(p, f ))

(6.9)

In case e and f are components, it is possible that e encapsulates a part typed with f . This is
also a dependency:

dependsOn5(e, f ) B Component(e) ∧ Component( f )∧
∃p : (encapsulates(e, p) ∧ hasType(p, f ))

(6.10)

The last case of dependencies mentioned in Sec. 4.2.1 is the method call relation between
components. It is reflected by the following two formulae. A component A can also depend
on a second component B if there exist two parts, one typed by A, one typed by B, and a
connector connecting them which is “used synchronously”. This means that, assuming the
A-typed part is the source, that the implementation of A calls methods synchronously on the
required port being source of the connector. The same situation occurs if the A-typed part is
inside a component C, and a request is delegated to a required port of C which is connected to
B. Figure 6.3 illustrates both cases. The first case is expressed formally by formula (6.11); the
second case is formalized by formula (6.12).
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1 2

Figure 6.3: Situations, in which a dependency between components A and B exists, due to syn-
chronous message calls via connectors.

dependsOn6(e, f ) B Component(e) ∧ Component( f )∧
∃con∃p∃q∃r : (InnerPart(p) ∧ InnerPart(q) ∧ Connector(con) ∧ hasType(p, e)∧
(hasType(q, f ) ∨ ∃t : (Class(t) ∧ containsClass( f , t) ∧ hasType(q, t)))∧
sourceContext(con, p) ∧ targetContext(con, q) ∧ connectorSource(con, r)∧
∃c∃m∃s : (containsClass(e, c) ∧ hasMethod(c,m)∧
containsStatement(m, s) ∧ SynchronousInvocation(s) ∧ invokedAt(s, r)))

(6.11)

The first four lines describe the typing of required elements and their relationships to the
considered connector. con is a connector between two contextual parts p (source) and q (target),
p is typed with the component e; q is either typed with f of with a class contained in f . The
source port of the connector is r. The last two lines express, that there has to be class in e, the
potentially dependent component, which calls a method m at the required port r.

Notice, that this definition also covers the variant of the first case in which the target context
of the connector is a component-local class; in this case, there is a dependency between the
type of the source part, and the surrounding component (i.e. C in situation 1, Fig. 6.3).

The following expression (6.12) is composed as follows. The first four lines express, that del
is a delegation connector, connecting the (required) ports rp as source and r as target. Source
context is a part typed with the component e. Lines 5–6 express that a connector has to be
present with source port r; its target context is either a part typed by f directly, or typed by
a class contained in f . Lines 7–8 express the required synchronous call to rp to constitute a
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dependency.

dependsOn7(e, f ) B Component(e) ∧ Component( f )∧
∃del∃rp∃p∃q∃r : (Connector(del) ∧ isDelegator(del, “true”)
sourceContext(del, p) ∧ hasType(p, e) ∧ connectorSource(del, rp)
connectorTarget(del, r) ∧ ∃con :
(connectorSource(con, r) ∧ targetContext(con, q)∧
(hasType(q, f ) ∨ ∃t : (Class(t) ∧ containsClass( f , t) ∧ hasType(q, t)))∧
∃c∃m∃s : (containsClass(e, c) ∧ hasMethod(c,m)∧
containsStatement(m, s) ∧ SynchronousInvocation(s) ∧ invokedAt(s, rp))))

(6.12)

Furthermore, an object can call methods on references, typed by interface, that were returned
before by a method call. Knowing only their interface by specification, the calling object can
depend on implementations dynamically, without a static dependency in the specification.

This is concluded in the following rule: a component e depends upon a component f if e
contains a class c which specifies a synchronous call on a reference variable which is possibly
dynamically typed with a class d contained in f . This is stated by the following rule:

dependsOn8(e, f ) B Component(e) ∧ Component( f )∧
∃c∃d∃m∃r∃s : (containsClass(e, c) ∧ hasMethod(c,m)∧
SynchronousInvocation(s) ∧ containsStatement(m, s) ∧ invokedAt(s, r)∧
dynamicType(r, d) ∧ containsClass( f , d))

(6.13)

The definition of the architectural rule for the stereotype Group is sufficient to describe
the architectural aspect of layering — the other stereotypes introduced so far do not specify
additional rules.

We only show an intuitive proof that the statement for a particular layer/group is indeed
intensional and non-local, i.e. it is an architectural rule. In expression (6.2), it is stated what
constitutes an illegal dependency — there exists another group with a certain property (used
but not allowed to be used). This property mainly builds upon the dependency properties of
elements that are contained in the group defined in the following expressions. Hence, just
because a group consists of elements that do not illegally depend on anything, it is not sure that
this could not be changed by adding new elements to the group. Thus, the rule cannot be local
(see Sec. 5.2) and must be non-local.

Sections 7.1 and 7.3.1 describe to which specific architectural rules the layered architecture
of the CoCoME case study leads, and how they are modelled during architecture and design
development.

Remarks on Static Analysis

The definition of dependsOn8 (see (6.13)) shows that a full analysis of dependencies between
layers or groups requires knowledge about dynamic properties of the system; due to polymor-
phism, the actual type of an object at runtime can be different from the declared type. This
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Figure 6.4: Unwanted dependency between GUI layer and data caused by dynamic type depen-
dency.

can lead to unwanted dependencies in a layered architecture. Consider the layering depicted
in Fig. 6.4. The interface J, defined in the lowest layer util, is realized by the components B
and C. This conforms to the architecture since the containing layers are allowed to access util.
Component B provides an interface used by A. This interface provides a method getAllJs()
which returns a set of instances of J. So far, everything is fine and compliant with the layering.

But what, if the method body contained in a classifier of B that realizes getAllJs() retrieves
the instances it returns from component C by calling getSomeJs():J on its required port? It
is possible that the method retrieves instances defined in C and passes it to A. This leads to a
dependency between layer gui and data which is not architecturally compliant.

For that reason, dependsOn8 contains the predicate dynamicType, which refers to the dy-
namic type of an object. However, the determination of the dynamic type of a variable (as a
representative of an object) at design time results always in an approximation of the actual
dynamic type at runtime. Due to polymorphism the actual dynamic type of a variable cannot
be known at design time in general, since it depends in general on the actual execution path
on which a variable is initialized and target of assignment statements, like reference passing
or returns from method calls (see also Sec. 5.3.5). Since a complete investigation cannot be
done efficiently, the possible dynamic types have to be approximated — this means that all
algorithms for static type analysis can return too many results in certain situations. In general,
there is a trade-off between the accuracy and the scalability of type analysis algorithms.

Well-known approaches are the Class Hierarchy Analysis (CHA) [DGC95] and Rapid Type
Analysis (RTA) [Bac97]. CHA takes the inheritance hierarchy of a program into account to
determine the type of a variable. Every subtype of the variable’s declared type is assumed to be
a possible dynamic type. RTA refines this and considers only instantiated subtypes as possible
types. Important to notice is that both approaches do not consider inter-procedural relations
in programs. This means that a program is basically a single method that is analyzed. The
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results of the analysis do not take the implementation of called methods into account. Those
algorithms have low runtime and space complexity but are also very imprecise for complex
systems.

More precise are algorithms that also consider the inter-procedural control flow in a system.
These approaches keep track of caller and called methods by constructing call graphs. This
structure is used to determine dynamic types more precisely. However, in object-oriented, and
hence in component-based systems, it is difficult to construct a call graph due to polymorphism
— compared to the procedural programs it adds to complexity to determine the target method
of a call x.foo() if the dynamic type of x cannot be determined precisely. This means that
call graph construction depends on type analysis and vice versa. As a result of this fact, most
algorithms to inter-procedural type analysis require multiple analysis iterations stopping at a
fix-point. This leads in general to a worse complexity but more precise results compared with
the approaches described above. There are several approaches that try by different means to
restrict the number of iterations [GC01, Ple96, SHR+00, TP00].

Each of these algorithms can in principal be used to determine the elements in the relation
dynamicType used in formula (6.13). Hence, the definition of the predicate is intentionally
omitted. The selected “implementation” may depend on context-specific weighting of perfor-
mance and precision.

Another useful static analysis technique for architectural compliance checking is pointer
or points-to analysis [Hin01]. Originally, the goal of points-to analysis is to decide which
references can point to which storage location, often with the purpose to decide whether two
variables can point to the same object. The most popular algorithms for points-to analysis are
from Andersen [And94] and Steensgard [Ste96], a good overview of recent research is given in
[Ram04].

The question whether two variables point to the same object arises in the definition of
architectural rules for layers in expression (6.12). With the given definition, we are able to
detect dependencies that exist due to method calls on required port, for example rp.foo()"
whereas rp is a required port. The expression does not notice a dependency if this statement
is replaced by "v=rp; v.foo()", although v will point to the same object. Although this is
a severe restriction in practice, we will omit the introduction of points-to analysis for now to
keep focus on the definition of architectural rules.

6.2.2. Service-Oriented Layer Interface

According to Sec. 4.2.2, the following rules regarding the service-oriented interface of the
application layer have to be ensured:

1. The access from the GUI layer to the application layer is limited to calls of methods
defined in service components; these are components providing at least one service
interface.

2. A service interface is an interface defining service methods only. These are methods
using only transfer object classes and primitive types for parameters and return value
types. Returned objects are always created during the call of the service method.
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Figure 6.5: Stereotypes in the Architecture Profile to model service-oriented access to layers.

3. Transfer objects refer only to other transfer objects or data entities of primitive types.

In contrast to the representation of the layers aspect in the developed profiles, the service-
oriented architecture aspect is represented in both, the architecture and the design profile. The
reason for this is simple. As we will see, a layer with service-oriented interface implies an
architectural rule about the elements contained in the layer and how they should be used. Hence,
it must be possible to model such a layer in an architectural model. The elements to model
services, transfer objects, etc. — the elements that actually make up a service-oriented layer,
however, constitute design rules, i.e. intensional but local statements about valid systems.

Thus, there is a clear separation of design responsibilities between software architect and
software designer; the software architect can model that a certain layer has to be accessed in a
service-oriented manner; the designer models which services and transfer objects are actually
necessary to provide the required functionality.

The architecture profile contains the stereotype ServiceOrientedLayer as depicted in Fig. 6.5.
It specializes Layer and hence inherits all of Layer’s constraints; furthermore, a package
stereotyped with ServiceOrientedLayer is also transformed into architectural rules according
to the transformation definition for Group (see Sec. 6.2.1). In addition, it will be transformed
into a statement that formally states the first rule from the enumeration above. Furthermore, the
stereotype isAllowedToUseServices is defined, specializing isAllowedToUse, that connects
layers (or groups), whereas it indicates that the layer at the source is allowed to use only
services of the layer at the target.

While an element stereotyped as service-oriented layer in an architecture model basically
means that access from other layers is only permitted by using services, the design profile en-
ables us to actually model services. The constraints that apply to the corresponding stereotypes
describe how a service is actually defined. Figure 6.6 depicts the three relevant stereotypes
and the extended UML meta classes. ServiceComponent marks components that provide at
least one service interface. Service marks service interfaces containing only service methods.
Transfer marks classes of transfer objects.

One might have noticed that the second and third rule of the rule enumeration above might
be expressed as OCL constraints attached to the corresponding stereotypes. For example,
it is easy to express that a service component must provide at least on interface with the
property that it is stereotyped with Service. Thus, it seems that there is no need to express a
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Figure 6.6: Stereotypes in the Design Profile to model transfer objects and services.

corresponding transformation definition for the stereotype. Regarding layers, we did the same
with the constraint describing that accesses between layers are allowed only downwards the
layer hierarchy. However, the difference is that layers are modelled in architectural models as
separate packages only; hence a corresponding “model-local” OCL constraint can be checked.
In case of the three stereotypes of Fig. 6.6, they refer to elements that will be referenced in
refining implementation models, too; a service component modelled in the design model will
somehow manifest in code. This code, an implementation model, has to conform to those
constraints — which is exactly following the design rules given in the design model.

There is no implementation model in the scenarios, in which the overall compliance checking
approach is demonstrated. Hence, the design rules are not checked to show that a separate
implementation model conforms to them. Nevertheless, they need to be checked to show that the
design model itself, being checked for compliance with an architecture model, is intensionally
complete (see Sec. 5.5.2). In the following, the architectural rules for service-oriented layers
will be developed bottom-up, starting with the design rules that service components, service
interfaces, and transfer object interfaces define.

For UML models to which the design profile is applied, we specify the signature τdesign ⊃

τCBS D, which includes the following relations symbols:

• Transfer ⊆ Interface

• Service ⊆ Interface

• ServiceComponent ⊆ Component

The transformation of model elements stereotyped in one of those three ways is straight-
forward and maps one-to-one on a statement like S tereotype(idme), e.g. if m is an interface
stereotyped as service, the extensional statement Service(em) will be generated for it.

For the intensional part of the transformation definition, we will take a look on the design
rules that transfer objects have to follow. The rules are specified for interfaces marked with the
stereotype Transfer. These interfaces define the members containing the data to be transferred.
The transformation definition is as follows:

T UML,design(Transfer) B ({. . .}, {onlyLegalMembers(this), onlyGettersAndSetters(this)})
(6.14)
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The expression onlyLegalMembers ensures that members are typed by either primitive types
or interfaces that model transfer objects. It is defined as follows:

onlyLegalMembers(x) B∀y : (hasMember(x, y)→ ∃t :
(hasType(y, t) ∧ (PrimitiveType(t) ∨ Transfer(t))))

(6.15)

Note, that, although onlyLegalMembers(this) makes a universal quantified statement, the
statement is local. The reason is that the only way to change a satisfying interpretation of the
formula into an unsatisfying one by additions is to add an element to the relation for hasMember
— by some y which is member of this but for which the right side of the implication is false.
However, hasMember is in the set of close relations and; thus, it does not affect the locality of
the statement.

onlyGettersAndSetters is a placeholder to define that only methods in transfer objects are
allowed that set the value or members or get the value. Since τCBS D allows direct access to
members, in contrast to most object-oriented programming languages in which direct access
should be avoided, there is a simple way to disallow methods different than this — there are
no methods allowed at all. We keep this short definition to avoid a lengthier and more general
definition, which would specify the form of getters and setters more precisely.

Hence, we define for the sake of clarity and simplicity:

onlyGettersAndSetters(x) B¬∃y : hasSignature(x, y) (6.16)

The transformation for elements stereotyped with Service is defined as follows:

T UML,design(Service) B ({. . .}, {hasServiceMethodsOnly(this)}) (6.17)

hasServiceMethodsOnly expresses that every signature of the interface is a service method:

hasServiceMethodsOnly(x) B∀y : (hasSignature(x, y)→
isServiceSignature(y))

(6.18)

isServiceSignature states that the signature of service methods may only use types that are
either primitive or stereotyped as Transfer:

isServiceSignature(x) B∀y : (hasParameter(x, y)→
∃t : (hasType(y, t) ∧ (PrimitiveType(t) ∨ Transfer(t))))

(6.19)

Since interfaces do not yet provide an implementation for signatures, the constraint that
every returned transfer object must be new, must be generated for the actual implementation of
a service — to be more precise, for the service components and the contained classes. Hence,
for service components the transformation is defined as follows:

T UML,design(ServiceComponent) B ({. . .}, {providesS ervice(this, this.provided)}) (6.20)

providesService states that the component provides a port for the service interface specified
in the second parameter. That port must be typed with a class implementing the service correctly
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regarding return values:

providesService(x, y) B ServiceComponent(x) ∧ Service(y)∧
providesInterface(x, y)→
∃p∃t : (ProvidedPort(p) ∧ hasType(p, t)∧
implements+(t, y) ∧ classImplementsService(t, y)

)︀ (6.21)

classImplementsService has to express the following: for every method of the class that has
a signature defined in a service interface, one of the two possibilities to return transfer objects,
in case an interface stereotyped with Transfer have to be realized:

classImplementsS ervice(x, y) B Class(x) ∧ S ervice(y)∧
implements+(x, y)→
(∀m∀s : hasMethod(x,m) ∧ implementsSignature(m, s)∧
hasSignature(y, s)→
(∃t : hasType(s, t) ∧ Trans f er(t)→
(returnsCreatedTO(m) ∨ returnsForwardedTO(m))))

(6.22)

returnsCreatedTO describes the case that the method creates a transfer object and returns it.
The method must contain an instance creation statement that passes the new transfer object to a
local variable, which is returned:

returnsCreatedTO(x) B ∃c∃d∃r∃t∃v : (containsStatement(x, c)∧
InstanceCreation(c) ∧ containsStatement(x, r) ∧ Return(r)∧
instantiatedClassifier(c, d) ∧ implements+(d, t) ∧ Transfer(t)∧
LocalVariable(v) ∧ assignedTo(c, v) ∧ returnedValue(r, v)∧
successorNode+(c, r)

)︀
(6.23)

returnsForwardedTO states that the result of a method call can be used as return value if the
called method is implementing a signature from a service interface:

returnsForwardedTO(x) B ∃c∃i∃r∃s∃t∃v : (containsStatement(x, c)∧
SynchronousInvocation(c) ∧ containsStatement(x, r) ∧ Return(r)∧
invokedSignature(c, s) ∧ definesSignature(i, s) ∧ Service(i)∧
LocalVariable(v) ∧ assignedTo(c, v) ∧ returnedTo(r, v)∧
successorNode+(c, r)

)︀
(6.24)

It is important to note that these rules do not match for all possible and correct implemen-
tations of transfer objects or services. Consider, for example, an implementation of a service
which takes the returned objects from a pool of available objects. The service implementation
ensures that an object from the pool is never used twice as return value. It can easily be seen
that this would be an implementation conforming to the informal stated rule of Sec. 4.2.2 that a
transfer object is for exclusive use of one client.
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However, this shows the borders of expressiveness of τCBS D statements. Since τCBS D does
not formalize runtime constructs like objects, thread, or execution paths, behavioural rules
about such constructs are hard or impossible to express. Section 9.2 will discuss these issues in
more detail as future work.

Concluding the previous statements, we have now realized the last two of three rules
mentioned in the beginning of this subsection; it is defined what services are, and rules for the
implementation, given by service component, are defined; it is specified, how transfer objects
are structured. Hence, we can finally define the transformation of packages that are stereotyped
by ServiceOrientedLayer and used in architectural models.

The signature τarch defines the relation symbols ServiceOrientedLayer ⊆ Layer and
isAllowedToUseServices ⊆ isAllowedToUse. For models, to which the architecture profile
is applied, the corresponding transformation definition is given:

T UML,arch(isAllowedToUseServices) B
({isAllowedToUseServices(this.source, this.target)}, ∅)

T UML,arch(ServiceOrientedLayer) B
({ServiceOrientedLayer(this)}, {onlyServicesExternallyUsed(this)})

(6.25)

The architectural rule will specify that if a method of a component defined in a service-
oriented layer is called, and if the source of the call comes from a different layer, then the target
component must be a service component. Therefore, the rule is defined informally as follows:

“For connectors towards parts that are typed by components defined in a service-
oriented layer, the following has to hold: if the source of the connector is typed by
an element in a different layer, and if this layer is allowed to access the service-
oriented layer, then the target must be a port of a service component providing a
service interface.”

Since the services return only primitive values and transfer objects, they cannot return
references to other objects providing other methods than service. Hence, it is enough to restrict
the usage of connectors as mentioned above. onlyServicesExternallyUsed is hence defined as
follows:

onlyS ervicesExternallyUsed(x) B ∀g : isAllowedToUseServices(g, x)→
connectToServicesOnly(g, x)

(6.26)

connectToServicesOnly(x, y) describes how allowed connectors must be shaped if instances
of components in group x do only use services of components defined in group y. Connectors
that are subject to the rule connect a source port p1 and a target port p2, defined by components
t1 and t2, respectively. t1 is defined in x and t2 is defined in y. Such a connector is correct if the
component defining the target port is a service component, and the target port p2 provides only
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service interfaces. This is what the following formula states:

connectToS ervicesOnly(x, y) B ∀c∀p1∀p2∀t1∀t2 :
connectorSource(c, p1) ∧ connectorTarget(c, p2)∧
encapsulates(t1, p1) ∧ encapsulates(t2, p2)∧
inGroup(t1, x) ∧ inGroup(t2, y)→
ServiceComponent(t2) ∧ (∀s : providedInterface(p2, s)→ Service(s))

(6.27)

It is obvious that the overall rule for ServiceOrientedLayer is an architectural rule.
To show that the statement is not local, let us assume we have a system that satisfies
onlyServicesExternallyUsed(x) for all service-oriented layers x and all incoming dependencies
isAllowedToUseServices. For one of those layers, we define a new component with a provided
port that does not implement a service interface. Furthermore, we create a component in a layer
connected to x via a isAllowedToUseServices dependency with a required port. Corresponding
new parts typed with the new components are created and connected by a new connector. For
the selected x, the statement onlyServicesExternallyUsed(x) is not fulfilled anymore. All new
elements are additions in the sense of the definitions given in Sec. 5.2, hence, the non-locality
of this statement is shown.

Section 7.2 will show the checks of this architectural rule for the reference design model of
CoCoME; in Sec. 7.3.2, the checks of this rule for the second modification scenario will be
presented.

6.2.3. Event-Driven Architecture

The architectural rules for the event-driven architecture of CoCoME can be summarized
informally as follows:

1. Components connect to event channels and communicate by the exchange of events.
There are components that publish events, and components that subscribe for events;
a component can play both roles at the same time. There is no direct communication
between the components using events, neither by synchronous nor asynchronous method
invocation.

2. The event channel decouples the components by receiving events from the connected
publishers and forwarding them asynchronously to the subscribers.

3. Publishers, subscribers, and event channels have to provide and implement certain
interfaces to be able to interact.

The third issue means that the single components have to be properly designed to function as
a whole. For this purpose, the design profile contains some stereotypes and constraints for the
single parts of an event-driven architecture. Those stereotypes are depicted in Fig. 6.7.

The stereotype SubscriberComponent marks components that are subscribers, or consumers,
of events. Since they have to react to events, such components have to provide an interface
defining signatures for methods that handle events of different types. Such interfaces are marked
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Figure 6.7: Stereotypes in the Design Profile to model event publishers and subscribers.

with the stereotype EventHandlerInterface and contain operations stereotyped with onEvent.
Those methods are all of similar shape; they have a single parameter typed with an interface
stereotyped with Event; it marks interfaces serving as events to publishers, subscribers, and
event channels.

Components stereotyped with PublisherComponents create events and sends them to sub-
scribers — possibly directly, if there are point-to-point connections to known subscriber
components, or indirectly by an event channel. Publisher components require an interface that
tells them by operation signatures how to send an event. Such interfaces are stereotyped with
PublisherInterface; the operations used for sending events are stereotyped with publish.

The stereotype EventChannelComponent marks components that can serve as type for
actual event channels. Elements that are typed with a component stereotyped this way can
furthermore be source of an isChannelFor dependency connecting it with those events that are
distributed using the actual event channel.

The mechanism of sending and receiving events is a special application of more general
messaging systems for the asynchronous point-to-point or broadcast exchange of messages.
These do not necessarily need to transport information about events but can also contain
simple text messages, files, etc. For this reason, there are separate stereotypes Message
and msgCallback that reflect the more general mechanisms of “off-the-shelf” messaging
frameworks that can be utilized for event-driven architectures. msgCallback marks interfaces
of messaging frameworks that subscribers must implement as callback; this way the framework
can forward messages/events to subscribers. Message is used to mark framework interfaces
that serve as “transport vehicle” for events; this means that such interfaces have members which
can potentially contain event objects, i.e. instances of Event stereotyped interfaces.

These concepts are defined in the design profile and constitute design rules for component-
based systems as it will be shown later in this section.
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Figure 6.8: Stereotypes in the architecture profile to model event channel architectures.

In the architecture profile, the overall shape of an event-based system or subsystem is
restricted by some stereotypes constituting architectural rules; the stereotypes are depicted
in Fig. 6.8. Publisher and Subscriber mark parts of system configurations that are publisher
components and subscriber components, respectively. EventChannel stereotypes parts that
play the role of an event channel. The stereotype plugsInto connects subscribers/publishers
with event channels.

The extensional transformations for all elements of the architecture and design profiles
are straightforward and similar to the introduced elements of the profiles; a model element
elem stereotyped with <Stereotype> is transformed into the statement S tereotype(eelem). For
the intensional statements, we start with the design rules, i.e. the intensional statements for
elements of the design profile.

As mentioned above, we distinguish between events and messages that carry events between
publishers and subscribers or event channels. There are no further design rules for events, but
we formalize that an event message must contain a member which can be used to carry the
event. This means that there must be a member that has a type being a supertype for all events
that the message should be able to carry:

T UML,design(EventMessage) B({. . .}, {isEventContainer(this)})
isEventContainer(x) B∃m : (hasMember(x,m)∧

∃t : (hasType(m, t)∧
∀e :
(︀
isCarrierFor(x, e)→ extends+(e, t)

)︀)︀)︀ (6.28)

The following statements are constructed in similar ways for the triple SubscriberInterface,
PublisherInterface, and EventHandlerInterface. The transformation definitions are as follows:

T UML,design(SubscriberInterface) B({. . .}, {isValidSubscriberIf (this)})

T UML,design(PublisherInterface) B({. . .}, {isValidPublisherIf (this)})

T UML,design(EventHandlerInterface) B({. . .}, {isValidEventHandlerIf (this)})

(6.29)

whereas the statements expressing the validity of a kind of interfaces require the existence of
signatures of a defined shape. For subscriber interfaces, the isValidSubscriberIf (x) is defined
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as follows:

isValidSubscriberIf (x) B SubscriberInterface(x)∧
∃s : (hasSignature(x, s) ∧ onMsgCallback(s))

(6.30)

These statements state that a subscriber interface must at least define a message callback
signature which must have at least a parameter to which the message that is published to
the subscriber can be passed. Hence, message callbacks are transformed into design rules as
follows:

T UML,design(onMsgCallback) B({. . .}, {hasMsgCallbackSig(this)})
hasMsgCallbackSig(x) B∃p∃m : (hasParameter(x, p) ∧ hasType(p,m)∧

EventMessage(m)∀q : (hasParameter(x, q)→ p = q))
(6.31)

Similar, the isValidPublisherIf (x) constrains the shape of publisher interfaces; these are
interfaces providing methods to send messages and must fulfil the following rule:

isValidPublisherIf (x) BPublisherInterface(x)∧
∃s : hasSignature(x, s) ∧ publish(s)

(6.32)

They say that publish signatures must provide a signature which has at least one parameter
typed with a message interface. This interface can contain events and can be used to transport
them.

T UML,design(publish) B({. . .}, {hasPublishSig(this)})
hasPublishSig(x) B∃p∃m : (hasParameter(x, p) ∧ hasType(p,m)∧

EventMessage(m)∀q : (hasParameter(x, q)→ p = q))
(6.33)

As the last of the three interfaces, event handler interfaces are considered. These interfaces
define signatures for methods that are called to react to events:

isValidEventHandlerIf (x) BEventHandlerInterface(x)∧
∃s : hasSignature(x, s) ∧ onEvent(s)

(6.34)

According to this rule, onEvent signatures are signatures defining a single parameter typed
with an event interface.

T UML,design(onEvent) B({. . .}, {hasOnEventSig(this)})
hasOnEventSig(x) B∃p∃e : (hasParameter(x, p) ∧ hasType(p, e)∧

Event(e) ∧ ∀q : (hasParameter(x, q)→ p = q))
(6.35)

We are now able to define how components must be shaped to serve as type for instances
that are meant to be publishers, subscribers, or event channels. The transformation definitions
are as follows:

T UML,design(SubscriberComponent) B({. . .}, {isValidSubscriberComp(this)})

T UML,design(PublisherComponent) B({. . .}, {isValidPublisherComp(this)})

T UML,design(EventChannelComponent) B({. . .}, {isValidEventChannelComp(this)})

(6.36)
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The design rules used in all three definitions are similar to each other. They define which
ports a component of a kind must provide and will require, and constrain the implementation
provided by the component if necessary. For subscriber components, the statements used in the
transformation definition are defined as follows:

isValidSubscriberComp(x) B∃s∃h : (isSubPort(s)∧
isHandlerPort(h) ∧ forwardsEvent(s, h))

isSubPort(x) BProvidedPort(x)∧
∃i : (providedInterface(x, i) ∧ SubscriberInterface(i))

isHandlerPort(x) BProvidedPort(x)∧
∃i : (providedInterface(x, i)∧
EventHandlerInterface(i))

(6.37)

Subscriber components must have a provided port providing an interface that is also a
subscriber interface. Moreover, the component must have a provided port providing an event
handler interface. The class that serves as type for the port providing the subscriber interface
must realize the msgCallback signature in a certain way; the implementation must call an event
handler method with the carried event as actual parameter:

f orwardsEvent(x, y) B ∃c : (hasType(x, c) ∧ ∀m∀s :
(hasMethod(c,m) ∧ implementsSignature(m, s) ∧ onMsgCallback(s)→
∃i∃h∃a∃e : (MethodInvocation(i) ∧ containsStatement(m, i)
∧ invokedAt(i, y) ∧ invokedSignature(i, h)
∧ onEvent(h) ∧ parameterValue(i, a)
∧ actualParameter(a, e) ∧

(︀
∃p∃t∃t′ :

hasParameter(s, p) ∧ hasType(p, t) ∧ EventMessage(t)∧
hasMember(t, e) ∧ hasType(e, t′) ∧ Event(t′)

)︀)︀)︀)︀
(6.38)

For publisher components, we require that there must be a port whose required interface is a
publisher interface:

isValidPublisherComp(x) B∃p∃i : (RequiredPort(p)∧
requiredInterface(p, i) ∧ PublisherInterface(i))

(6.39)

Event channel components must have a provided port providing a publisher interface. They
must have a required port with a subscriber interface; this port will be used to invoke the
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callback methods of subscribed components. The according design rule is defined as follows:

isValidEventChannelComp(x) B∃s∃p : (requiresSubPort(s)∧
hasPublishPort(p) ∧ forwardsMessage(p, s))

requiresSubPort(x) BRequiredPort(x)∧
∃i : (requiredInterface(x, i) ∧ SubscriberInterface(i))

hasPublishPort(x) BProvidedPort(x)∧
∃i : (providedInterface(x, i)∧
PublisherInterface(i))

(6.40)

For the class that is used as type of the port providing the publisher interface has to hold that
the implementations of publish methods invoke message callbacks at the required subscriber
port asynchronously:

f orwardsMessage(x, y) B ∃c : (hasType(x, c) ∧ ∀m∀s∀e :
(hasMethod(c,m) ∧ implementsSignature(m, s) ∧ publish(s)∧
hasParameter(s, e)→
∃i∃cb∃a (AsynchronousInvocation(i) ∧ containsStatement(m, i)
∧ invokedAt(i, y) ∧ invokedSignature(i, cb)
∧ onMsgCallback(cb) ∧ parameterValue(i, a)
∧ actualParameter(a, e))))

(6.41)

The transformation rules for the architecture profile add the non-local statements that system
parts connected to the same event channel may never communicate directly with each other. In
addition, they state the fact that parts have to be properly typed if typed at all. This is concluded
by the following transformation definitions:

T UML,arch(Subscriber) B({. . .}, {hasSubscriberType(this)})

T UML,arch(Publisher) B({. . .}, {hasPublisherType(this)})

T UML,arch(EventChannel) B({. . .}, {hasECType(this), noBypassingOfChannel(this)})

(6.42)

whereas the single has<X>Type statements are defined analogously and state the required
typing of parts:

hasSubscriberType(x) B∀y : (hasType(x, y)→ SubscriberComponent(y))
hasPublisherType(x) B∀y : (hasType(x, y)→ PublisherComponent(y))

hasECType(x) B∀y : (hasType(x, y)→ EventChannelComponent(y))
(6.43)

The statement noBypassingOfChannel(x) expresses that communication between compo-
nents plugged into a channel has to pass through the channel, and that bypassing is not allowed:
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noBypassingO fChannel(x) B ¬ (∃c∃p∃q : sourceContext(c, p)∧
targetContext(c, q) ∧ plugsInto(p, x) ∧ plugsInto(q, x) ∧ ∃q′∃i∃ j : (Event( j)
connectorTarget(c, q′) ∧ providedInterface(q′, i) ∧ dependsOn4(i, j)∧
isChannelFor(x, j)))

(6.44)

It states that it is not allowed to introduce a connector that connects two components plugged
into the same event channel if the interface of the target port makes use of events in its
signatures (see dependsOn4, (6.9)). These rules will be used to check the cash desk subsystem
of CoCoME in Sec. 7.2 for architectural compliance and to execute the checks in the third
modification scenario (see. Sec. 7.3.3).

6.3. Transformation of UML Models into Logical
Statements

The previous section introduced architectural rules for UML models to which the architecture
profile or the design profile is applied. In this section, the transformation of UML models
into extensional τCBS D-statements will be described. This means that it will be elaborated how
UML models are actually transformed into logical formulae stating which elements need to be
present in a system to conform to the model (see Sec. 5.5.1).

More formally, in this section we will define T UML according to the terminology of Sec. 5.5.1,
whereas the second component, denoting the set of resulting intensional statements is always
the empty set for standard UML. As introduced in Sec. 6.2, intensional statements come into
play when the architecture or design profile is applied. This reflects the observation, that UML
“as it is” defines extensional statements about systems only [EHK06].

Since there are many similarities in terminology and understanding of concepts between
UML and τCBS D, the transformation is straightforward in most cases. In many cases UML is
not as strict as τCBS D or the corresponding axiom systems ΦCBS D; for example, classes do not
necessarily need to be encapsulated in components. Because of those similarities, a formal
description of the transformation as in Sec. 5.5.1 will be omitted. Instead, the transformation
will be described by example and illustrated informally.

The following subsection focus on the static model aspects that are required to describe
component-based systems on the structural level as mentioned in Sec. 4.1.3. For this purpose,
class diagrams, component diagrams, and composite structure diagrams need to be transformed.
Section 6.3.2 will afterwards introduce the transformation definition for the relevant elements
of UML sequence diagrams as required to specify the behaviour of systems as introduced in
Sec. 4.1.3.

6.3.1. Transformation of Structural Model Elements

To design the static structure of a component-based system, the modeller can use the three
mentioned UML diagram types; component diagrams model components/systems as a black-
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Figure 6.9: Transformation of packages in UML models.

box; composite structure diagrams provide a white-box view on systems and components; class
diagrams are used to model details of interfaces and classes. Hence, the most relevant elements
of the UML meta model for this section are the three mentioned classifiers and some related
concepts.

Packages

Packages are used in UML to structure the overall model in separate namespaces. They have
basically the same purpose and the same properties like Package as relation symbol of τCBS D.
A UML model itself is also a special kind of package, since the meta model element Model is a
specialization of Package1. Figure 6.9 illustrates how instances of Package are transformed
into statements. It illustrates in the upper part the transformation definition of UML meta
model elements to extensional logic statements. In the lower part, an example demonstrates the
application of the transformation definition.

Every package in a model is transformed into a statement expressing that in a system this
package has to be present, whereas the unique identity of the package represented as the
constant symbol pointing to that identity (see Sec. 5.5.1). Except the root model package,
every package is owned by a package which is defined in the UML meta model by the meta
association end owner for instances of Element (see [Obj10b], p. 25). Every appearance of the
relationship between an owning package and an owned package is mapped to containsPkg ∈
τCBS D.

Classifiers

Classifier is the abstract superclass in the UML meta model to encapsulate the commonalities
that complex and instantiable types have. A classifier describes “a set of instances that

1To keep terms of UML and τCBS D distinguishable, we will use italic font to refer to an element of τCBS D, and
sans-serif to refer to UML meta model elements.

152



6.3. Transformation of UML Models into Logical Statements

have features in common” ([Obj10b], p. 53). To specify common features, classifiers can
define (among others) attributes for structural commonalities and methods for behavioural
commonalities of instances. Three specializations of the meta class Classifier are of special
interest for the transformation definition mapping UML to τCBS D-statements: components,
interfaces, and classes.

Components in UML have some important properties that differ from features of components
in τCBS D/ΦCBS D:

• As a specialization of Classifier, instances of Component can participate in general-
ization hierarchies, i.e. components can be specialized and can inherit from each other.
Inheritance in τCBS D is only possible between interfaces and classes, as described in
Sec. 5.3.2.

• Just like any other classifier, instances of Component can specify members. This means
that components can define attributes and can be connected by associations. Both is not
permitted in τCBS D, attributes and associations, which are both mapped to members, must
be defined for interfaces and classes, components can only be connected by connectors.
The internal structure of a component can only be defined by parts.

• In UML, the behaviour of components can also be defined and realized by the component
itself, comparable to classes. This means, components can specify methods and provide
implementation for them. In contrast, in τCBS D the definition of methods is given by
attaching provided interfaces to the component, and implementing them by classes which
are specified in the component. The component itself does not define behaviour.

• In UML, components can be hierarchically composed at type level. This means, that a
component can be defined as type in the scope of another component, and can be used
only there. In τCBS D, hierarchical composition of components is only possible in the
sense that components can be used as type of another component’s parts. At type level,
only classes can be used to define component-local types.

As explained in Sec. 5.3, the concepts of components and classes are not precisely separated
in UML — a fact that manifests in the weaker constraints regarding components in UML as
described above. It is hence necessary for the transformation of UML into τCBS D-statements
to deal with models that exploit the weaker constraints and define components with features
that are not possible in τCBS D. e.g. components that define attributes. In the cases above, and
also analogous in subsequent transformation definitions, transformations will be defined that
way that components are transformed if and only if the stronger constraint of τCBS D would
analogously hold in the UML model. Fig. 6.10 depicts the transformation definitions for
components2.

Components and interfaces in UML are specializations of PackageableElement, the meta
class of all elements that can be contained in packages. The relationship between a packageable

2Figure 6.10 depicts only a partial transformation definition of Component, as far as the definition of related
meta model elements have already been introduced. For example, the definition of the provided ports is
omitted here and will be added later (see Fig. 6.17).
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Figure 6.10: Transformation of UML components and interfaces as elements contained in packages.
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Figure 6.11: Transformation of provides and requires relationships.

element and its containing package is modelled by the meta association depicted in the upper left
part of Fig. 6.10, the containing package is referenced by the association end owningPackage.
The transformation definition states that for each instance of Component the extensional state-
ment Component(this) is generated, as well as containsComponent(this.owningPackage, this).
The same is done analogously for interfaces.

These statements are only generated if the constraints depicted in the note hold, otherwise
the result of executing the transformation definition is the empty set.

Components providing or requiring interfaces are modelled in UML very similar to τCBS D.
As Fig. 6.11 shows, those relationships are expressed in the UML meta model by two meta
associations, referring to the provided or required interfaces by provided and required, re-
spectively. These are mapped during the transformation of components to corresponding
providesInter f ace and requiresInter f ace statements.

Classes are used in τCBS D even more restrictive than in UML. Classes are only local to
components in τCBS D and must be defined in the context of a component (see relation symbol
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Figure 6.12: Transformation of UML classes defined in a component namespace.

containsClass, Sec. 5.3.3). UML as a general purpose modelling language is less restrictive,
since it must be possible to model classes without specifying components, for example in
object-oriented design models.

The meta class Component inherits from the meta class Namespace which serves as
container for named elements3. This means that components can be used to define local types
like classes. From this follows the first part of the transformation definition for Class as depicted
in Fig. 6.12. A class is considered for transformation if its containing namespace is a component,
and if this component is transformed into something else than the empty set of statements — if
the latter is the case, we could not extensionally claim the existence of the component containing
the class. A class with those properties is transformed into a statement corresponding to the
definitions Class(this) and containsClass(this.namespace, this). Consequently, the class D
inside the component C in the example of Fig. 6.12 is transformed as depicted.

Properties of Classifiers

The UML meta model defines so-called Features to summarize model elements that describe
structural or behavioural characteristics of classifiers. A special variant of a structural feature is
the meta class Property. A property instance can represent either an attribute of a classifier
or an association end. Furthermore, a property always belongs to an owning classifier. Since
Property is a specialization of TypedElement, every attribute or association end can be typed,
for example by another classifier or primitive type.

The upper left part of Fig. 6.13 contains the cutout of the UML meta model relevant for the
mentioned issues. It describes the transformation of attributes of classes but it is also valid for
the transformation definition of interfaces regarding attributes.

The transformation definition for classes generates a Member(this.attribute) statement for
every property that is linked to the current instance of a class via the depicted meta associ-
ation between Property and Classifier. The statement de f inesMember(this, this.attribute)
is also contained in the transformation definition. Since Property indirectly inherits from
TypedElement, the type of the property can be determined by navigating this.attr.type —

3In fact, also Package as the most prominent kind of namespace is also a specialization of Namespace.
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Figure 6.13: Transformation of properties of UML classes or interfaces.

this navigation is used to include the typing of the property in the generated statements as
hasType(this.attribute, this.attribute.type). Hence, the example in the lower part of Fig. 6.13
is transformed conforming to the definition above.

As visible by the inheritance hierarchy depicted in the same figure, interfaces share the same
required characteristics according properties as classes; hence the transformation definition of
interfaces contains the same statements depicted in Fig. 6.13.

The transformation definition concerned with properties so far apply also to association ends
owned by one of the associated classifiers. But UML defines also the meta class Association
as specialization of Classifier, thus an association can also own the connected ends. This is
required in cases when associations have more than two ends or when navigability should be
restricted.

To be consistent to the mapping of association ends owned by the participating classifiers to
statements claiming the existence of Member entities, association ends owned by an association
are mapped the same way if the following constraints hold:

• The association has exactly two ends; with more than two ends, it is not clear which
associated classifiers should define the member.

• The association end is navigable, i.e. it can be accessed by the classifier on the opposite
end of the association.

The transformation definition for associations is illustrated in Fig. 6.14. The ends of an
association, that are owned by the association and that are navigable, are linked to it via
the meta association end navigableOwnedEnd. Hence, if an association end is transformed,
a statement Member(this.navigableOwnedEnd) is created. Its type can be determined by
navigating one step further to this.navigableOwnedEnd.type. The classifier that defines this
member is that one which can be determined as type of the opposite end of the association:
this.navigableOwnedEnd.opposite.type.

Another group of features are behavioural features, contained in the UML meta model as
meta class BehaviouralFeature. The specialization Operation is of greatest interest for the
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Figure 6.14: Transformation of UML associations; only association ends owned by the association
need separate transformation.

transformation of UML models into τCBS D-statements. Operations are behavioural features of
classifiers that specify name, parameters, and types of the behaviour invoked by calling the
operation (see [Obj10b], pp. 105). Operations are hence very similar to signatures in τCBS D.

A behavioural feature, and especially an operation, can be implemented by an instance of
Behaviour. A behaviour specifies how the structure and state of instances of the classifier that
owns the behavioural features change over time (see [Obj10b], pp. 445). Behaviours associated
to operations are hence very similar MethodBody entities in τCBS D.

Figure 6.15 shows how these relationships are modelled in the UML meta model and the
transformation into τCBS D-statements. A BehavioralFeature is owned by a classifier. It defines
parameters modelled by the meta class Parameter; parameters are attached to their behavioural
feature by the meta association end operation. There are different parameter direction kinds
controlling the direction of data flow regarding a single parameter ([Obj10b], pp. 124). The
direction kind of a parameter is set by the meta attribute directionKind of Parameter.

The transformation of operations, their parameters, and the implementing behaviours is split
into three single parts. The transformation definition for operations creates a statement claiming
the existence of a signature entity, correctly typed and assigned to the correct classifier (either
interface or class). Parameters are transformed separately if they are not return parameters —
these are not required in τCBS D since the return type is defined by the type of the signature.
Statements for the parameter itself, its type, and its assignment to the right signature are created.
Furthermore, a nextParameter statement is created, setting the previous parameter in the set
ownedParameter, if there is any, into relation to the current parameter4.

To model class hierarchies, the UML meta model defines the meta class Generalization which
is connected with two meta associations pointing to the specific class and the general class,
respectively. A more specific classifier inherits all the features from the general classifier as far
as their visibilities are not private [Obj10b]. The generalization relationships is distinguished
from the InterfaceRealization. This relationship connects an interface and a classifier indicating

4Since ownedParameter is ordered, it is possible to determine the predecessor of an element in the set.
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Figure 6.15: Transformation of operations, parameters, and implementing behaviours.

that the classifier implements the interface in the sense that implementing methods are provided
for the behavioural features of the interface. Figure 6.16 shows the UML meta model cutout
containing both relationships.

The transformation definition for both is very simple; generalizations are only transformed if
the connected classifiers are both either classes or both interfaces — this corresponds to the
axiom described in ΦCBS D (see Sec. 5.3.3). In this case, the statement is created that claims that
this.specific extends this.general, depicted in the upper right part of Fig. 6.16.

The transformation of interface realizations is similar. Here the constraint has to hold that the
implementing classifier is a class because otherwise also the interface realization relationship
between components and interfaces would match the definition. The created statement is
constructed by navigating to this.implementingClassifier and this.contract.

Whether a feature is inherited from a superclass, depends on the visibility of the feature.
Inherited features, like attributes and operations, should be added in the generated statements
as inheritsMember or inheritsSignature. For this reason, this.general.attribute is navigated
and transformed if the retrieved attribute is not privately visible and transformed into a corre-
sponding inheritsMember statement. The same is done for operations, and both are repeatedly
defined for interface realizations.

The Structure of Components

UML provides also the meta class Component whose instances will we be transformed into
statements claiming the existence of Component entities in τCBS D-structures conforming to the
transformed model. There is not a direct counterpart for system configurations (see. Sec. 5.3.4)
in UML; instead, a stereotype «system configuration» is introduced. In the following, we
will consider the transformation of components without that stereotype only because the
transformation to system configuration statements is very similar since the resulting structures
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Figure 6.16: Transformation of generalizations and interface realizations.

are very similar, as can be seen in Fig. 5.13, p. 88.
In UML, parts are modelled as instances of the meta class Property that are related to their

containing classifier via the meta association end part. This is only possible for classifiers that
are also instances of the specialization StructuredClassifier ([Obj10b], p. 169), what is the
case for instances of Component which further specializes StructuredClassifier. This means
that properties contained in a component via part correspond to those parts in a τCBS D-structure
that are associated to a component by encapsulates. To distinguish inner parts from ports (see
Sec. 5.3.4), the fact can be considered that UML defines a specialization of Property called
Port. In contrast to τCBS D, UML allows complex ports that require and provide an arbitrary
number of interfaces at the same time.

Against this background, the transformation of the internal structures of components is
defined as depicted in Fig. 6.17. For all properties associated to the component by part, a state-
ment encapsulates(this.owner, this) is created. Each property that is owned by a component
and which is not a port, a statement InnerPart(this) is created; if a property is an instance of
Port, it is transformed into ProvidedPort(this) or RequiredPort(this), respectively. Statements
about type information and the relationships to provided or required interfaces (ports only) are
created accordingly.

Connectors in UML have basically the same meaning as connectors of τCBS D. In contrast
to τCBS D, in which the concept of associations does not exist, connectors can be typed by
associations in UML. A connector between two parts of a structured classifier indicates that
there can be a link at runtime between the instances playing the roles indicated by the connected
parts. The typing by an association defines more precisely which of the properties are linked by
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Figure 6.17: Transformation of parts and ports.

the connector. Since associations do not exist in τCBS D, the corresponding fact is modelled by
the setsMember relation symbol which defines the member at the source of a connector that is
set.

This leads to the following problem of mapping connectors in UML to connectors in τCBS D.
Since connectors set potentially two properties (associations have at least two ends), they
cannot be properly mapped to τCBS D-connectors that set only one member. For that reason,
only UML connectors typed by unidirectional associations are transformed in corresponding
τCBS D-statements. The navigable end of the association (connector) in UML corresponds to the
member that is set by the connector in a τCBS D-structure satisfying the statement. Of course,
the direction of the typing association has to conform to the direction of connectors in τCBS D

(see Sec. 5.3.4), this means that UML connectors have either

• one end corresponding to a navigable association end, pointing to an inner part, and a
non-navigable end pointing at a port providing an interface, or

• one end corresponding to a navigable association end, pointing to a port requiring, and a
non-navigable end pointing at an inner part, or

• both ends pointing at inner parts.

Only in these cases it is possible to generate sensible statements that are satisfiable by
structures also satisfying ΦCBS D. Figure 6.18 shows how connectors are transformed into τCBS D

statements.
A connector is transformed into a Connector statement if it is typed with an unidirec-

tional association. In the definition it is assumed, that the index j refers to the navigable
end in this.type.memberEnd of the set of association ends5. The corresponding connector

5Remember, only binary associations are considered for transformation.
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Figure 6.18: Transformation of UML connectors.

end, this.end[i], is the target of the connector. Index i denotes the opposite end. To claim
the corresponding context information for the created connector, the meta association end
ConnectorEnd.partWithPort is used; it refers to that part defining the connected port, if the
connector end refers to the port of an inner part. This reference is used to claim the context of
the connector in τCBS D. In case partWithPort is not set, the connector refers to a port of the
containing component, and statements about context information are generated accordingly.

6.3.2. Transformation of Behavioural Model Elements

As mentioned in the introduction of this chapter, UML sequence diagrams will be considered for
the transformation into τCBS D-statements as possibility to model system behaviour. Sequence
diagrams focus on the interaction aspect of system behaviour, i.e. the exchange of messages
between instances of classifiers. Other dynamic aspects, like the changes of instance states,
cannot easily be described by sequence diagrams. Since the exchange of messages is focus of
the architectural aspects and their rules considered in the case study, only the transformation
definition of UML meta model elements relevant for sequence diagrams will be presented.

The central meta model element that is captured by a sequence diagram is Interaction. An
interaction is a “unit of behaviour which focuses on the observable exchange of information”
between the participants ([Obj10b], p. 498). From this meta model element on, we will discuss
the transformation of the details of sequence diagrams.
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Figure 6.19: Transformation of interactions.

Interactions

Interactions are one of many ways to model behaviour with UML. The meta class Interaction
is a specialization of Behaviour. As such, its instances can be assigned as implementations of
behavioural features owned by classifiers, as can be seen in Fig. 6.15. Interaction can hence
especially be used to specify the behaviour of operations of classes; for a behavioural feature f,
the assigned behaviours are referred to by f.method.

A sequence diagram as a whole can be understood as a graphical representation of an
interaction. There are certain constraints that have to hold if a sequence diagram, i.e. its
underlying interaction, is subject to the transformation.

• The transformation for interactions is only defined for interactions that define the be-
haviour for operations of classes, since in τCBS D only classes define behaviour.

• There must be a lifeline named “self” inside the sequence diagram (see[Obj10b], p. 508).
The lifeline is typed with the classifier containing the operation that is specified by the
interaction.

• There is exactly one incoming message, i.e. a message coming from the diagram frame.
Its signature is that of the method the diagram specifies.

• Each messages start or ends at the lifeline named “self”.

These constraints refer to meta model elements that will be introduced later in this section,
especially Lifeline and Message. For the reader familiar with UML sequence diagrams, Fig. 4.6
(p. 45) is an example in which the constraints hold. The lifeline self is typed by StoreIfImpl
which is a class; this way, the implicitly containing classifier is graphically visualized. The
incoming message annotated with queryLowStockItems shows which method is depicted by
the diagram. Every further message starts or ends at the lifeline self.

Figure 6.19 depicts the transformation definition for Interaction.
The transformation definition for Interaction creates a MethodBody statement; moreover, an

implementsS ignature statement claims that the method body implements that signature given
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Figure 6.20: Transformation of lifelines.

by the implemented behavioural feature. Furthermore, the transformation of Interaction adds a
statement for the root node of the call graph that will be generated for the method body. The
example depicted in Fig. 6.19 shows that the interaction underlying the diagram is transformed
into a root node that is assigned to the method body that is generated for the containing class.
In the following, we will refer to this root node entity as em−root for a signature named m.

Lifelines

Lifelines are the sequence diagrams elements that depict the participants of an interaction. As
such they represent instances at runtime that interact with each other. This means that anything
in the model that is a placeholder for instances can be used as lifeline — in our case, this can
be a part or port of the surrounding component, a member of the class for which the interaction
specifies an implementation, or a local variable.

The upper left part of Fig. 6.20 shows the meta model excerpt relevant for the transformation
of lifelines. Lifelines are named elements. The part, property, etc., that a lifeline represents,
is connected by Lifeline.represents which is an instance of ConnectableElement, a subclass
of TypedElement. The interaction, i.e. the actual diagram, the lifeline is contained in, is
associated by Lifeline.interaction.

If a lifeline represents a part or member of another classifier, it will not be transformed by
the application of T UML(Li f eline). In this case, it represents a part (or port) of a component
or a member of a class; in both cases, a different transformation definition already generated
a statement claiming the existence of a corresponding reference variable. However, since
Behavior is a subclass of Class itself, it can own structural features — such features basically
represent local variables. Hence, this relationship is used to define a precondition for the
transformation definition of Lifeline; it only applies if the owner of the represented property is
the interaction itself.

The generated statements in this case are straightforward. A local variable is claimed, defined
in the method body representing the interaction. The required type of the variable is claimed by
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using this.represents.type as argument for a hasType statement.

Messages

Messages as instances of the UML meta class Message are the way how the exchange of
information is modelled in sequence diagrams. Of special interest are messages indicating
the creation and destruction of instances, the call of operations, and the return from operation
calls. The different forms of messages can be specified for a particular message by setting the
value of the meta attribute Message.messageSort. The upper left part of Fig. 6.21 depicts the
relevant part of the UML meta model.

A message is associated to at most two MessageEnd instances, denoting the sending event
(MessageEnd.sendEvent) and the receiving event (MessageEnd.receivingEvent) of the
message. MessageEnd is an abstract class and has two instantiable specializations; the meta
class MessageOccurenceSpecification represents message ends that are located on lifelines;
message ends that are located on the diagram frame, i.e. ends that indicate some event not
assigned to a lifeline, are captured by the meta class Gate which is not depicted in the diagram.

The shape of messages that are affected by the transformation definitions is restricted, as
mentioned above. Sequence diagrams as used in CoCoME model the implementation of
methods comparable to method bodies in object-oriented programming languages. Every
method call, creation or destruction method is hence sent by the “self” lifeline. Hence, a
corresponding constraint, stating that in these cases sending and receiving ends must be
instances of MessageOccurenceSpecification, have to hold.

The creation of objects during an interaction are modelled by a message m with
m.messageSort=createMessage. It points to the head of the lifeline representing the newly
created instance, as depicted in the lower left section of Fig. 6.21. This kind of message is used
to claim the existence of InstanceCreation statements in τCBS D-structures.

For messages of that kind, the transformation is defined as depicted in the upper
part of Fig. 6.21. Depending on the kind of classifier, either class or component, an
instance creation statement is generated. The instantiated classifier is determined by
this.receivingEnd.covered.represents.type; it navigates to the newly created lifeline, from
there to the feature it represents, and at last to the feature’s type. The property that is assigned
by this statements is determined by this.receivingEnd.covered.represents.

The example in the same figure shows the application of this transformation definition. The
creation message, depicted as arrow towards the rightmost lifeline, creates a. Assuming that a
is an accessible property, the corresponding lifeline is the reference variable to which the new
instance is assigned. The type of it is the type of the property/feature the lifeline represents.

The lower transformation definition of Fig. 6.21 transforms delete messages into instance
destruction statements. It determines the referenced reference variable (destructionReference)
the same way like the reference variable for the creation statement above.

Another kind of messages, specified by an according value for the meta attribute Mes-
sage.messageSort, are synchronous call messages and asynchronous call messages. As
before, for those messages, too, the sending event must be located at the “self” lifeline and
must point to the lifeline representing the feature at which the operation is called. In case of a
synchronous invocation, we have also to consider the corresponding reply message modelling
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Figure 6.21: Transformation of messages creating or destroying lifelines.
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the return of the called operation.
This information leads to the transformation definition depicted in Fig. 6.22. A synchronous

call message is transformed into a SynchronousInvocation statement. The reference of invo-
cation for invokedAt can be easily determined by the lifeline containing the receiving event.
A message m has the called signature attached by m.signature; however, the signature is
in general a NamedElement, not containing about information about parameters and types.
However, the constraints of the UML specification refine that relationship and state that, in case
m is a call message, the instance referred to by m.signature must be an instance of Operation
([Obj10b], p. 509); parameters and everything that makes up an operation (or signature in τCBS D

terminology) is accessible. The invokedSignature can hence easily be generated as depicted.
Moreover, a statement has to be generated for the case that a return value exists. This is

passed by a reply message that follows the call message. Since the set of occurrences at a
lifeline (lifeline.events) is ordered (see [Obj10b], p. 477), and an object (represented by a
lifeline) is blocked until the called operation returns, the event indicating the return must
directly follow the sending event. Assuming, that the sending event of the call message is
l.events[i], the receiving event of the reply is l.events[i+1]. In the case that the receiving event of
the call message is on the same lifeline as the sending event, the reply message is l.events[i+2].
The transformation definition uses these constraints to define the variable next marking the
reply receiving event for a call message. The transformation definition for asynchronous call
messages is analogous so far.

The generation of the returnedTo statement for synchronous call messages refers to the
argument specification of next; it is assumed that the argument of the message contains only a
single element referring to a lifeline of the interaction.

The last case of messages that are considered for transformation are reply messages starting
at the self lifeline and ending at the diagram frame, indicating the return of the method. In this
case, too, it is assumed that the list of arguments looks like the reply messages for message
calls. This is depicted in Fig. 6.23. The returnedRef statement again uses the argument meta
property to refer to the returned reference.

The argument property is also used to define the binding of actual and formal parameters
for method invocation, which is intentionally omitted here for the sake of brevity. Basically, a
constraint in the UML specification ensures that arguments must be given in the same order
as parameter of the called operation. Hence, a clear assignment between formal and actual
parameter is given and can be used to define corresponding logical statements.

Creation of Control flow graphs

So far, the transformation definition only covers statements that claim the existence of single
statement nodes in the control flow graph of a method. We will not go into the details how the
overall graph is created but give an informal description.

The transformation of a lifeline create the obligatory root node of the graph. Let us first
assume that the interaction for a method does not contain further control flow elements like
loops or conditional branches but only a sequence of messages. As already mentioned, the set
of events on a single lifeline is ordered; since all call messages, instance creation and delete
messages have to be sent by the self lifeline, this order can directly be interpreted as the call
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Figure 6.22: Transformation of messages indicating asynchronous or synchronous calls to opera-
tions.

T
ra

ns
fo

rm
at

io
n 

D
ef

in
iti

on
T

ra
ns

fo
rm

at
io

n 
A

pp
lic

at
io

n

TUML

Figure 6.23: Transformation of messages indicating the return of methods.
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graph of the method; reply messages that follow every call message are ignored in the call
graph. The final statement of the interaction, a reply message, is also the final node in the
control flow graph.

Sequence diagrams allow also the modelling of loops and alternative blocks, captured by
the meta model class CombinedFragment. There is a common superclass of Interaction
and CombinedFragment, called InteractionFragment, which is recursively connected to
Interaction according to the Composite pattern [GHJV95]. This means that it is possible to
build up interaction hierarchically like statement blocks in programming languages; two of
them are loops and conditional blocks.

Conditional blocks can easily be reflected in the control flow graphs as introduced. The first
nodes of the different paths through the branches are direct successors of the last node before
the conditional block. The last node of the paths are direct predecessors of the first node after
the conditional blocks.

The actual representation of loop blocks depends, according to the UML specification,
on the kind of loop condition for which there are many possibilities like specification of
minimal/maximal number of iterations, constraints, etc. If we assume that the condition is a
boolean expression, the loop block compares best to “while loops” in programming languages.
Formalized as control flow graph, the last node before such a loop is connected to the first
node inside the loop (executed if condition is true) and the first node after the loop (executed
if condition is false). The node representing the last statement inside the node is followed by
the first node of the loop (condition is true after an iteration) and the first node after the loop
(last iteration through loop). For the body of the loop, the control flow graph is iteratively
constructed according to the rules for sequences, conditional blocks, and loops.

6.4. Summary

The main objective of this chapter has been to provide the transformation definition for lan-
guages being able to create architectural models and design models. For this purpose, two
issues have been addressed. First, the approach that has been introduced in detail in Chapter 5
has been used to define architectural rules for UML as architecture description language. Two
UML profiles have been developed, motivated by the architectural aspects of the CoCoME
case study. An architecture profile has been specified containing several stereotypes capturing
the actual “architectural” essence of the informally identified aspects; the layering of a system
influences the allowed usage relationships; a service-oriented interface permits the usage of
certain components only; an event bus may not be bypassed. All of these rules have been
proved to be architectural, i.e. intensional and non-local. They have been formalized as logical
statements and have been used to specify the transformation definition for UML model elements
stereotyped with elements from the architecture profiles.

Parts of the informally described architectural aspects affect also design models because
they define intensional but local constraints over component-based systems. The definition of
what actually constitutes a service component or a component that is a publisher of events, can
be given as design rules. Hence, also a design profile has been introduced. A transformation
definition has been given for UML models applying this profile.
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6.4. Summary

The second issue has been the transformation definition for standard UML as foundation
for the selected architecture description language (UML + Architecture Profile) as well as
foundation for design models (UML + design model). For these purposes, we have seen in
this chapter how to transform the static structure modelled by class diagrams, component and
composite structure diagrams into extensional τCBS D-statements. Furthermore, transformation
definitions have been given for the relevant elements of UML sequence diagrams.

We are now able to check architectural compliance of UML design models with UML
architecture models applying the architecture profile. Given such models for CoCoME, the
architectural compliance of the case study can be checked.
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A man’s errors are his portals of discovery.

James Joyce

The previous chapter prepared the ground to check the architectural compliance of the
CoCoME case study; the architectural rules for the main architecture aspects have been defined,
thus it is defined “what the architecture means” for design and implementation; a simple ADL
based on UML has been defined, thus the architecture of CoCoME can be modelled; and, last
but not least, the transformation of UML has been defined, thus architecture and design model
can be transformed into logical statements. Together with the defined operationalisation, the
scene is set to check architectural compliance for the CoCoME case study.

This chapter contains the results of checking architectural compliance in the different sce-
narios; first, the developed reference design model of CoCoME is checked, and the results are
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evaluated; afterwards, the compliance checks as part of the modification scenarios introduced
in Sec. 4.3 are executed.

The chapter is structured as follows. First, the architectural model will be described. In
Sec. 7.1.2, the reference design model will be illustrated; the results of checking its compliance
with the architecture model are described in Sec. 7.2. Section 7.3 contains the three modification
scenarios in which architecture compliance checking is used to detect erroneous evolutions of
the system’s design model.

7.1. Models of the Trading System

This section presents the architectural model and the reference design model for the CoCoME
case study. First, the architectural model, the logical statements including the architectural
rules, and a minimal system for the model will be developed. In the second subsection, the
reference design model and its transformation into logical statements will be described by
example.

7.1.1. Architectural Model

The architecture model of CoCoME is a UML model to which the architecture profile introduced
in Sec. 6.2 is applied. This means that all UML language elements and the stereotypes defined
in that profile can be used. The complete architectural model is depicted in Fig. 7.1. The
illustration can be briefly separated into two areas; the upper part of the figure contains the
inventory subsystem architecture; the lower part contains the cash desk subsystem architecture.

The model describing the inventory subsystem architecture illustrates the three layers and
their mapping to a package structure as introduces in Sec. 6.2.1. This package structure in this
minimal form is also part of the architectural model; the packages contained are populated with
components and interfaces later in the design model. Between GUI layer and application layer
as well as between application layer and data layer the allowed usage relations are modelled.

Furthermore, the application layer is not simply stereotyped with Layer but with the spe-
cializing stereotype ServiceOrientedLayer (see Sec. 6.2.2). This indicates that the GUI layer,
connected by a isAllowedToUse relationship is allowed to use the application layer by the use
of service interfaces and transfer objects only.

The lower part of Fig. 7.1 models the cash desk system part of the TradingSystem. It contains
a system configuration that describes how components may interact via event channels. There
are two event channels modelled, according to the description in Sec. 4.1.2. The single device
controllers and the cash desk application are modelled by parts encapsulated in the system
configuration. They are stereotyped as publishers or subscribers depending on their usage of
events (see. Sec. 6.2.3). Note, that these parts are not typed yet. The specific components that
are going to by types of that parts will be defined in the design model.

The reference design model of CoCoME, and the modified design models developed in the
three modification scenarios, will be checked against this architectural model. The architectural
model is transformed into logical statements according to the rules defined in Sec. 6.2 and
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Figure 7.1: Architectural model of CoCoME.
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Sec. 6.3. First, we will take a look upon the extensional statements created by the general
transformation of UML models described in Sec. 6.3.

The inventory part of the architectural model defines the following extensional statements:

{Layer(eGUILayer), ServiceOrientedLayer(eApplicationLayer),
Layer(eDataLayer),
isAllowedToUse(eGUILayer, eApplicationLayer),
isAllowedToUseServices(eGUILayer, eApplicationLayer),
isAllowedToUse(eApplicationLayer, eDataLayer),
Package(eTradingS ystem),Package(eInventory),Package(eGUI),Package(eApplication),
Package(eData),
mapsToPackage(eGUILayer, eGUI),mapsToPackage(eApplicationLayer, eApplication),
mapsToPackage(eDataLayer, eData),
containsPkg(eTradingS ystem, eInventory), containsPkg(eInventory, eGUI),
containsPkg(eInventory, eApplication), containsPkg(eInventory, eData)}

(7.1)

For reasons of clarity, the statements additionally generated for model elements due to
generalization hierarchies in the meta model are omitted in the set above and the following.
For example, the statements Group(eDataLayer) and Package(eDataLayer) are also elements of the
set because Layer specializes Group which stereotypes Package.

The cash desk system architecture is transformed into the following extensional statements:

{ SystemConfiguration(eCoCoME),
EventChannel(einternalEC),EventChannel(eexternalEC),
Publisher(escannerCtrl),Publisher(ecashboxCtrl),
Publisher(ecardreaderCtrl),Publisher(ecashDeskApp),
Subscriber(eprinterCtrl), Subscriber(elightdisplayCtrl),
Subscriber(ecardreaderCtrl), Subscriber(ecashDeskApp), Subscriber(esa),
plugsInto(escannerCtrl, einternalEC), plugsInto(eprinterCtrl, einternalEC),
plugsInto(ecashboxCtrl, einternalEC), plugsInto(elightdisplayCtrl, einternalEC),
plugsInto(ecardreaderCtrl, einternalEC), plugsInto(ecashdeskApp, einternalEC),
plugsInto(ecashDeskApp, eexternalEC), plugsInto(esa, eexternalEC)}

(7.2)

The created architectural rules are completely defined by the transformation definitions given
in the architectural profile. According to those definitions, the Layer elements lead to the
following architectural rules:

{¬ illegalDependenciesFromGroup(eGUILayer),
¬ illegalDependenciesFromGroup(eApplicationLayer),
¬ illegalDependenciesFromGroup(eDataLayer)}

(7.3)
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Relation symbol Interpreting relation
Layer {eGUILayer, eApplicationLayer, eDataLayer}

ServiceOrientedLayer {eApplicationLayer}

Package {eTradingS ystem, eInventory, eGUI , eApplication, eData,
{eGUILayer, eApplicationLayer, eDataLayer}

containsPkg {(eTradingS ystem, eInventory), (eInventory, eGUI),
(eInventory, eApplication), (eInventory, eData)}

isAllowedToUse {(eGUILayer, eApplicationLayer), (eApplicationLayer, eDataLayer)}
isAllowedToUseServices {(eGUILayer, eApplicationLayer)}
mapsToPackage {(eGUILayer, eGUI), (eApplicationLayer, eApplication),

(eDataLayer, eData)}
EventChannel {einternalEC, eexternalEC}

Publisher {escannerCtrl, ecashboxCtrl, ecardreaderCtrl, ecashdeskApp}

Subscriber {eprinterCtrl, elightdisplayCtrl, ecardreaderCtrl}

{ecashdeskApp, esa}

plugsInto {(escannerCtrl, einternalEC), (eprinterCtrl, einternalEC)}
{(ecashboxCtrl, einternalEC), (elightdisplayCtrl, einternalEC)}
{(ecardreaderCtrl, einternalEC), (ecashdeskApp, einternalEC)}
{(ecashdeskApp, eexternalEC), (esa, eexternalEC)}

Table 7.1: Minimal system for the architectural model of CoCoME.

Moreover, the fact that the application layer is modelled as a service-oriented layer, implies
the following set of rules:

{onlyServicesExternallyUsed(eApplicationLayer)} (7.4)

Finally, the architecture of the cash desk subsystem leads to the following architectural rules

{noBypassingOfChannel(einternalEC), noBypassingOfChannel(eexternalEC)} (7.5)

Please note that the typing rules regarding subscribers, publishers, and event channels (see
Sec. 6.2.3, statement (6.43)) are not contained here because they are not architectural; they are
intensional but local. Since the corresponding parts are not typed, they are nevertheless fulfilled
in the architecture model.

There is a unique minimal structure of the architectural model since the generated extensional
statements are unambiguously factual (see Sec. 5.5.3). The minimal structure for the extensional
statements given in expressions (7.1) and (7.2), is defined as concluded in Table 7.1.

The minimal system of the architectural model is required to check compliance of design
models or implementation models (see Sec. 5.5.3). It can easily be seen that the minimal
structure described in Tab. 7.1 is also a system that conforms to τCBS D and ΦCBS D. The only
elements of τCBS D that are referenced are Package, containsPkg, SystemConfiguration, Part
and configurationPart. All axioms considering these elements are followed (see App. A).

Furthermore, the model is also intensionally complete. The minimal system for the exten-
sional statements that the model defines, is also a system that satisfies the intensional statements,
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i.e. the architectural rules. First, the architectural rules of the set (7.3) state that no dependen-
cies with certain properties, defined in detail in Sec. 6.2.1, are allowed. Since there are no
dependencies in the sense of the formulae dependsOni at all, the statements are obviously true
for the minimal system. Second, for the same reasons, rules defined by the service-oriented
application layer are fulfilled (see Sec. 6.2.2). The statements regarding the bypassing of event
channels are obviously true — there are not any connectors that could bypass one of the event
channels.

Concluding, all three assumptions required for compliance checking defined in Sec. 5.5.3
are true for the architectural model of CoCoME. Consequently, it can serve as input to the
algorithm to architectural compliance checking.

7.1.2. Design Model

The reference design model of CoCoME consists of a system configuration at the top-level,
detailed white- and black-box models of the single components, and sequence diagrams as
behaviour descriptions of the methods implementing operations. Since a complete description
of the design model would be out of the scope of this chapter, the model will be described only
partially in a top-down order. The system configuration is described completely, after that, only
a single component will be described in detail. A single method of the implementation of that
component will be illustrated.

A more exhaustive description of the reference design model can be found in App. C.
The description provides a complete static view on the Trading System and more exemplary
behaviour descriptions.

Fig. 7.2 depicts the inventory part of the overall system configuration. It consists of eight
components. Three of them support the system functionality to manage a store, two provide
reporting functions (see also Sec. 4.1.1). The three store-related components are distributed
over the layers, one providing the user interface associated to the functional area, one containing
the application logic, and one containing the persistent data model for stores (in contrast to
Enterprise which contains the data model relevant for whole enterprises). The layering is
visually reflected by the vertical order of the groups of components. The two additional parts
provide the technical persistence mechanisms (:Persistence) and the functionality to move
goods between stores (:ProductDispatcher).

The types of the parts are components that are contained in a subtree of the overall package
hierarchy of the TradingSystem depicted in Fig. C.1 and Fig. C.2 — which is the same like the
subtree already modelled in the architectural model (see. Fig. 7.1).

Figure 7.3 depicts those parts of the overall system configuration that model the cash desk
part of the system. Some of the ports of the parts are omitted for the sake of clarity as well as the
mapping between event channels and the events they forward modelled by isChannelFor; the
internal event channel, however, is carrier for every event defined in the system. The structure
of the subsystem with the central event channels are clearly visible. There is the internal event
channel connecting the cash desk application and the controllers for the single devices. The
external event channel connects the cash desk application with the StoreApp component of the
inventory system part. In contrast to the architectural model, which contains also a more-coarse
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Figure 7.2: Overall system configuration of the Trading System, part one.

grained description of this part of the system configuration, the parts are more detailed; they
are typed, define ports, and are connected by connectors.

The extensional statements that are generated out of the cut-out depicted in Fig. 7.2 according
to the transformation definitions described in Sec. 6.3 claim the existence of a corresponding
system configuration and the modelled parts and connectors. The following subset of the
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Figure 7.3: Overall system configuration of the the Trading System, part two.

generated extensional statements describes the reporting part of the system configuration:

{ SystemConfiguration(eCoCoME),
Part(erg),Part(era),
Connector(econ),
hasType(erg, eReportingGUI), hasType(era, eReportingApp),
configurationPart(eCoCoME, erg), configurationPart(eCoCoME, era),
configurationPart(eCoCoME, econ),
connectorSource(econ, erg−reporting), connectorTarget(econ, era−reporting),
sourceContext(econ, erg), targetContext(econ, era), . . .}

(7.6)

A complete listing of the generated statements would be too exhaustive to depict here;
the application of the transformation definitions and the transfer to the omitted elements is
straightforward.

Figure 7.3 depicts the system configuration part dealing with the cash desk system and its
components. The parts are the same as modelled in the architectural model but are completed
with types, ports, and connectors between pluggable parts and event channels. As illustrated in
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Figure 7.4: Cut-out of the design model: component ReportingApp.

App. C, all components used as types for publishers, subscriber, or event channels are properly
stereotyped as PublisherComponent, SubscriberComponent, or EventChannelComponent.
We will discuss their correct design in Sec. 7.2.

Figure 7.4 refines the type of the part ra from Fig. 7.2. There are several provided and
required interfaces; some of them are stereotyped with design-specific stereotypes like Service
for service interfaces or Transfer for classes whose instances are data transfer objects (see
Sec. 6.2.2). Furthermore, it can be seen that the component is implemented by a single
class called ReportingImpl. The only ports of the components are a provided port of type
ReportingImpl and different required ports needed to access persistent data.
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Figure 7.5: Cut-out of the design model: implementation details of ReportingApp.

A subset of the extensional statements for this fragment of the design model is

{Component(eReportingApp),
Interface(eReportingI f ), Interface(eReportTO), Interface(eS toreQueryI f ),
Service(eReportingI f ),Transfer(eReportTO),
providesInterface(eReportingApp, eReportingI f ),
providesInterface(eReportingApp, eReportTO),
requiresInterface(eReportingApp, eS toreQueryI f ),
Class(eReportingAppImpl), encapsulates(eReportingApp, eReportingAppImpl),
implements(eReportingAppImpl, eReportingI f ),
ProvidedPort(era−reporting), encapsulates(eReportingApp, era−reporting),
hasType(era−reporting, eReportingAppImpl), . . .}

(7.7)

The details of the implementation of ReportingApp are depicted in Fig. 7.5. The three
method declarations in the interface ReportingIf are transformed to Signature statements and
corresponding Parameter statements. The three unidirectional associations are transformed
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into Member and hasMember statements that relate them to the class:

{ . . . , Signature(egetS tockReport−A), Signature(egetS tockReport−B),
definesSignature(eReportingI f , egetS tockReport−A),
definesSignature(eReportingI f , egetS tockReport−A),
Parameter(estoreTO),Parameter(eentTO),
hasParameter(egetS tockReport−A, estoreTO), hasParameter(egetS tockReport−B, eentTO),
Member(eenterpriseQuery),Member(estoreQuery),Member(epersistenceI f ),
definesMember(eReportingAppImpl, eenterpriseQuery),
definesMember(eReportingAppImpl, estoreQuery),
definesMember(eReportingAppImpl, epersistenceI f ),
MethodBody(egetS tockReport−A−impl),MethodBody(egetS tockReport−B−impl),
definesMethod(eReportingAppImpl, egetS tockReport−A−impl),
definesMethod(eReportingAppImpl, egetS tockReport−B−impl),
hasSignature(egetS tockReport−A−impl, egetS tockReport−A),
hasSignature(egetS tockReport−B−impl, egetS tockReport−B), . . .}

(7.8)

Figure 7.6 depicts an example of a sequence diagram to describe the implementation of a
method. The method getStockReport(StoreTO) returns a report about the amount of goods
in the stock of a store given by the parameter . First, the method retrieves a reference to the
persistence context to read from the database. Before it actually queries the database, it starts
a transaction. After the database has been queried and the stock items are retrieved, a report
is generated from the retrieved data, i.e. name of items, remaining amount, etc. The created
report is returned.

According to the transformation rules defined in Sec. 6.3.2, the following set of extensional
statements is generated. Again, the depicted set is not complete. Moreover, the constant
symbols for the statement nodes are numbered because a naming scheme does not make sense
in their case. However, note that in a UML model they constitute uniquely identifiable model
elements and can hence be assigned a constant symbol. The following set contains mainly
the statements generated for the synchronous call of queryAllS tockItems at the store query
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Figure 7.6: Cut-out of the design model: sequence diagram for the partial behaviour of the imple-
mentation of ReportingApp.
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interface:

{ . . . ,LocalVariable(epctx), declaresVariable(egetS tockReport, epctx),
LocalVariable(estockitems), declaresVariable(egetS tockReport, estockitems),
SynchronousInvocation(e1),
containsStatement(egetS tockReport, e1),
invokedSignature(e1, equeryAllS tockItems),
invokedAt(e1, estoreQuery),
ParameterBinding(epa1),ParameterBinding(epa2),
parameterValue(e1, epa1), parameterValue(e1, epa2),
formalParameter(epa1, eparameter−id), actualParameter(epa1, estoreid),
formalParameter(epa2, eparameter−pctx), actualParameter(epa2, epctx),
returnedTo(e1, estockitems), . . .}

(7.9)

Intensional statements are generated for elements that are stereotyped with a stereotype from
the design profile for UML described in Sec. 6.2 and Appendix B.2. Those model elements
are, for example, service components, service interfaces, transfer objects, events, and event-
processing related model elements as described in Sec. 6.2.3. In the following, a fragment for
the design rules of the reference design model is given, whereas it is limited to some of the
transfer object interfaces provided by the service component StoreApp, the service StoreIf,
and the fact that StoreApp must also be valid subscriber component. The diagrams illustrating
those elements can be found in Appendix C.

{ onlyLegalMembers(eSupplierTO),

onlyGettersAndSetters(eSupplierTO),

onlyLegalMembers(eStockItemTO),
onlyGettersAndSetters(eStockItemTO),
hasServiceMethodsOnly(eStoreIf),
providesService(eStoreApp, eStoreIf),

isValidSubscriberComp(eStoreApp), . . .}

(7.10)

As described in Sec. 6.2, these statements are intensional but local and, hence, are not
architectural rules.

The depicted UML diagrams in this section are representative for similar diagrams that
describe structure and behaviour of the CoCoME case study completely. Unfortunately, a
complete description of the reference design model and the generated statements would go
beyond the scope of this section. Appendix C provides the complete static reference design
model and exemplary sequence diagrams. Together with the examples presented in this section,
the appendix, and the transformation definition given in the Sections 6.2 and 6.3, the reader
should be able to follow the results.
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Relation symbol Interpreting relation
SystemConfiguration {eCoCoME}

InnerPart {erg, era}

Connector {econ}

Component {eReportingApp}

Interface {eReportingI f , eReportTO}

Service {eReportingI f }

Transfer {eReportTO}

Class {eReportingAppImpl}

ProvidedPort {era−reporting}

configurationPart {(eCoCoME, era), (eCoCoME, erg)}
connectorSource {(econ, erg−reporting)}
connectorTarget {(econ, era−reporting)}
sourceContext {(econ, erg)}
targetContext {(econ, era)}
providesInterface {(eReportingApp, eReportingI f ), (eReportingApp, eReportTO)}
requiresInterface {(eReportingApp, eS toreQueryI f )}
encapsulates {(eReportingApp, eReportingAppImpl)}
implements {(eReportingAppImpl, eReportingI f )}
hasType {(era−reporting, eReportingAppImpl)}

Table 7.2: Minimal system cut-out for reference design model.

A minimal structure for the extensional statements contained in the sets (7.6)-(7.9) is again
straightforward: every relation symbol is interpreted by a relation that contains exactly those
elements claimed by the extensional statements. Table 7.2 illustrates the relations of the
minimal structure for the sets (7.6) and (7.7).

The minimal structure is also a minimal system, i.e. it fulfils the axioms from ΦCBS D. Without
depicting the complete minimal structure and the result of checking the validity of the axioms
for it — in fact, the prototype that will be introduced in Chapter 8 can do this — they can be
understood intuitively . The mapping between elements of the reference design model and the
minimal structure is rather one-to-one: a modelled component C maps to an entity eC that is in
the relation interpreting the relation symbol Component in the minimal structure. This means
that the axioms in ΦCBS D that address multiplicities (see App. A) hold if the multiplicities in the
model do no exceed those defined in ΦCBS D. The remaining axioms, as introduced step-by-step
in Sec. 5.3, are followed because the transformation definitions for UML models (see. Sec. 6.3)
filter those models, whose generated set of statements would claim something which cannot be
fulfilled by structures conforming to ΦCBS D.

We also omit the proof that the minimal system for the set of extensional statements also
satisfies the intensional statements of the reference design model. An informal explanation,
why the intensional statements hold, will follow for the single architectural aspects that lead to
corresponding design profile stereotypes in the next section.
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7.2. Compliance Check of the Reference Design Model

As described in Sec. 5.5, the minimal systems of both, the architectural model and the reference
design model, have to be merged in order to check whether the latter model is architecturally
compliant. This is the case if and only if the merged system satisfies the architectural rules of
the architectural model.

The following subsection will investigate whether this condition holds for the reference
design model. Therefore, the results of checking the architectural rules will be elaborated
step-by-step for each single architectural aspect.

7.2.1. Checking Layers

The rules for layers introduced in Sec. 6.2.1 refine dependencies between layers by stating how
dependencies are created by relationships between components and interfaces. These relation-
ships are compared with the existing “isAllowedToUse” relationships; if every dependency is
inside a layer (or is directed to a system part not contained in a layer at all) or conforms to the
allowed usage relations, everything is fine, and the system is correctly layered. This means for
CoCoME that the set (8.3) of architectural rules has to be checked in the merged system.

In the merged system (see previous section), there are three layers mapped to three packages.
Each of these packages, the three innermost packages in Fig. C.1, represents a complete layer;
it holds that

mapsToPkg = {(eGUILayer, eGUI), (eApplicationLayer, eApplication), (eDataLayer, eData)}

Since, we would like to know the dependencies from a layer to another, we can analyse them
package by package and take a look at the evaluation of the dependsOni expressions. The
following statements about the reference design model can be looked up in App. B.

At the GUI layer, there are only two components. dependsOn1 is only true for them for
interfaces from the application layer. dependsOn2 can never be true for the GUI layer because
there are no interfaces — the same holds for dependsOn3 and dependsOn4. dependsOn5 can
only be true for components used as parts in the system configuration because the interior of
components contain only class-typed parts in all cases; there is no dependency in the system
configuration that violates the allowed usage relations. dependsOn6(C1,C2) for a component
C1 from the GUI layer can only be true if C2 is from the application layer because the only
methods called from the GUI layer components are services at the application layer, or methods
of transfer objects, which are defined in the application layer, too. For the same reason, the
remaining dependsOn7 and dependsOn8 can neither be true for GUI components. In general,
dependsOn8 is only true for pairs of components of the inventory system, for which one of the
other dependsOni is already true; due to the fact, that in the inventory system each interface is
provided by exactly one component, and the fact, that extension between interfaces is modelled
only between interfaces of the same component, all the dependencies between components
caused by synchronous invocation are captured at interface level.

Similar observations can be made for the application layer. All provided interfaces of
components are defined in the application layer, all required interfaces are defined in the
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application layer or the data layer; dependsOn1 is hence only true in “architecturally compliant”
cases. Extension or usages between interfaces as members or signature parameters happen
only between transfer object classes: they are all defined in the application layer, hence
these expression becomes only true if both entities are “inside” the application layer; hence,
dependsOn2, dependsOn3, and dependsOn4 are true, if both or none of the arguments are from
the application layer. Synchronous method calls are only made at target objects defined in
the same layer or the data layer. Hence, dependsOn6 and dependsOn7 will only be true in
architecturally compliant cases.

For the data layer holds, that all forms of dependencies are directed to elements inside the
layer or elements not grouped in layers.

In conclusion, dependsi holds only in architecturally compliant cases, i.e. for elements of
the same layer, or for elements in layers for which an allowed usage relationships exists. Thus,
the architectural rules regarding layers defined in Sec. 6.2.1 are true for the CoCoME system;
the reference design model is architecturally compliant w.r.t the layers aspect.

7.2.2. Checking the Service-Oriented Appplication Layer Interface

To describe the architectural compliance checks for the service-oriented application layer, we
first show that the design rules defined in the reference design model are fulfilled in the model
itself, i.e. the model is intensionally complete.

The transfer objects interfaces refer only to primitive types1 and other transfer object inter-
faces. Table 7.3 illustrates for every transfer object interface which other types are used. It is
obvious that the constraints hold.

Figures C.8 and C.10 show the existing service interfaces in CoCoME — StoreIf and
ReportingIf. It can easily be seen that both use only primitive types and transfer object
interfaces as parameter and return types.

The exemplary sequence diagrams for the implementations of those services show that
returned objects are always created in the same method. According to the design rules given in
Sec. 6.2.2, the constraints for ServiceComponent are fulfilled, too.

Given this prerequisites, the architectural rules can be checked. The only
servicesExternallyUsed rule for the architectural model of CoCoME is defined for the applica-
tion layer. The only layer in the system that is restricted to use only services of the application
layer, is the GUI layer. Hence, the only possible connectors, which have to fulfil the constraints
by the architectural rule are those connecting the following parts in the system configuration
(see Fig. 7.2):

• Connector between part sg and part sa.

• Connector between part rg and part ra.

It is obvious that, given the fact that ReportingApp implements its service interface correctly,
the second connector fulfils the constraint; its target port’s type implements the service Re-
portingIf. The first connector, however, violates the constraint. Its target port storeIf does not

1Date is considered a primitive type.
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Transfer object interface Types of member
ComplexOrderTO Date, long, ComplexOrderEntryTO
ComplexOrderEntryTO long, ProductWithSupplierTO
EnterpriseTO long, String
OrderTO Date, long
OrderEntryTO long
ProductTO double, long, String
ProductAmountTO long, ProductTO
ProductMovementTO ProductAmountTO, StoreTO
ProductWithStockItemTO double, long, String, StockItemTO
ProductWithSupplierTO double, long, String, SupplierTO
ProductWithSupplierAndStockItemTO double, long, String, StockItemTO,

SupplierTO
ReportTO String
SaleTO Date, ProductWithStockItemTO
StockItemTO double, long
StoreTO long, String
StoreAndProductAmountTO long, String, ProductAmountTO
StoreWithEnterpriseTO long, String, EnterpriseTO
SupplierTO long, String

Table 7.3: Interfaces stereotyped with Transfer and types of members.

only provide the service interface StoreIf but also CashdeskConnectorIf. This interface is not
a service interface. Hence, connectsToS erviceOnly(eGUILayer, eApplicationLayer) is not true.

Note, that for the existing client in the GUI layer, i.e. the part sg, the object playing the role
of storeIf does not appear as instance of CashDeskConnectorIf because this interface is not
declared as required there. However, new GUI components could do so and invoke non-service
methods. The simplest solution to this architectural mismatch would be to implement StoreIf
and CashDeskConnectorIf separately and provide them by different ports.

7.2.3. Checking the Event-Driven Architecture

To show that the CoCoME cash desk system is architecturally compliant, we first have to show
that the design model is intensionally complete, i.e. publishers, subscribers, and event channels
are designed conforming to the design rules presented in Sec. 6.2.3.

As described in Sec. 4.1.4, the JMS framework has been used to realize the cash desk system.
To apply the defined design rules in the reference design model, the relevant parts of that
framework have to be modelled and stereotyped. Figure 7.7 depicts the important parts of the
model regarding JMS.

The interface Message is annotated as event message interface2. As the rules state, it has
to have a member which can contain those events to which it is connected by isCarrierFor

2More precisely, the interface javax.jms.ObjectMessage would have to be the stereotyped interface. For the
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Figure 7.7: Design model of JMS entities annotated with design profile stereotypes.

dependencies. Such dependencies exist towards all defined events in the system, Fig. 7.7 shows
four representatives. The member that can contain such an event is o of type Object which is
the common base class of all classes, and which can hence carry also the defined events. Thus,
the rule is valid for Message.

Furthermore, the interface TopicPublisher is stereotyped with PublisherInterface. Its publish
signature fulfils the rules that have to hold for signatures marked by the publish stereotype; it
has a parameter type marked by EventMessage, namely Message. The same holds for the
interface MessageListener which fulfils the rules for subscriber interfaces. Concluding, the
three depicted JMS interfaces are correct publisher interfaces, event message interfaces, and
subscriber interfaces, respectively, in the sense of the design rules defined in the design profile.

As a next step, it can be shown that event channel components are correctly designed. Since
there is no design model available for the JMS implementation used in CoCoME, a simple
fictitious implementation is modelled as depicted in Fig. 7.8. Assuming, that an implementation
of JMS is correct with regard to the specification, the behavioural model reflects the behaviour
of that implementation; the call of the publish method causes the asynchronous forwarding
of the message to all listening subscribers. For the reader familiar with the JMS details,
please note, that this and the following models abstract from details like connections, sessions,
etc. This simplest implementation depicted in Fig. 7.8 conforms to the rules generated for
EventChannelComponent stereotyped components.

The design of components serving as types for publishers and subscribers is similar for all
components in CoCOME playing one or more of these roles. Figure 7.9 depicts the structural
design of the cash desk application component which is both, a subscriber and a publisher
component. The structural models of other subscriber and publisher components of CoCoME
are contained in App. C.

The cash desk application is a subscriber has hence to implement a SubscriberInterface and
an EventHandlerInterface. Furthermore, for each of both interfaces it has to provide one port,
respectively. This is given by the provided port handler and the interfaces it provides, Applica-
tionHandlerIf and MessageListener. The latter fulfils the relevant design rules as discussed

sake of simplicity, we annotate the superclass javax.jms.Message.
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Figure 7.8: A fictitious implementation of an event channel in JMS.

above, and ApplicationHandlerIf is a correct event handler interface — all of its signatures
are onEvent signatures, having a single Event parameter. Concluding, CashdeskApplication
fulfils the rules regarding the structure of subscriber components.

As a publisher component, the cash desk application must specify a required port requir-
ing an interface stereotyped with PublisherInterface. This is the case for intpublisher and
extpublisher. Both require the interface TopicPublisher. Since a component instance will be
plugged into two event channels at runtime, there are two corresponding required ports. So far,
CashdeskApplication is also a conforming publisher component.

Figure 7.10 depicts the implementation of the onMessage method of the cash desk applica-
tion, provided by the class CashdeskApplicationHandlerImpl. This method is implemented in
other components in a similar way; the specific runtime type of the event, that is contained in
the forwarded message, is determined by reflection. The different possible cases are considered
in an if-statement. In each case, an onEvent method of the same object, which is also the event
handler, is called. This is exactly the behaviour that is claimed by the corresponding rule in
Sec. 6.2.3 for the special case, in which the class that implements the Subscriber interface is
the same that implements the EventHandlerInterface. This means that — beside the structural
aspects of subscribers — the behavioural rules regarding subscriber components are fulfilled,
too.

The remaining components that are relevant for the cash desk system are designed the same
way. They conform to the design rules, too, and are hence “valid” subscribers and publishers.
Hence, the design model is intensionally complete with regard to the rules that are generated
from this system part.

The architectural compliance can now be shown very easily. The only two event channels
are internalEC and externalEC (see Fig. 7.3), that connect parts typed with properly designed
subscriber and publisher components. As can be seen in Fig. 7.3, there is no connector between
any of these parts. Hence, the architectural rules of statement (7.5) are fulfilled; they constitute
a negation of an existential quantified statement over an empty set of entities. The overall
formula is hence true, and architectural compliance is shown.
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Figure 7.9: Structure of the CashDeskApplication component.

7.3. Compliance Checks for the Modification Scenarios

The previous section has described the checking of the CoCoME reference design model. The
results have revealed that there are no serious architectural mismatches in the design of the
Trading System.

This section illustrates the proposed approach and the result of its application to the three
modification scenarios introduced in Sec. 4.3. In each scenario, the reference design model,
and the architectural model if necessary, are modified and violate one of the three architectural
aspects of CoCoME as described in Sec. 4.2.
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Figure 7.10: Implementation of CashdeskApplication: how message calbbacks call event handlers.

7.3.1. Compliance in Modification Scenario 1

In this scenario, a logger component is added to the inventory system which can be used to
log events, method calls, etc. during runtime. The component is integrated into the reference
design model as depicted in Fig. 4.11 (p. 54). A new package containing new interfaces and a
logger component is added. The CoCoME system configuration is complemented by a logger
part as depicted in Fig. 7.11. Each component in the inventory system is going to log events,
therefore they connect to the only provided port of the logger component. By this port, they
can retrieve a log and write messages to it.

The architectural model is not modified for the initial solution to this scenario. The de-
sign model is contemplated by a new package, the two new additional interfaces, the logger
component, new classes and method bodies for the implementation of the component. Hence,
the set of generated extensional statements for the design models contains the following new
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Figure 7.11: System Configuration with logging component.

statements3:

{Package(elogging), containsPkg(eApplication, elogging),
Component(eLoggerComponent), Interface(eLogger), Interface(eLogI f ),
providesInterface(eLoggerComponent, eLogger),
providesInterface(eLoggerComponent, eLogI f ),
ProvidedPort(elogi f ), encapsulates(eLoggerComponent, elogi f ),
providedInterface(elogi f , eLogI f ),
Signature(egetLogger), Signature(elog),
definesSignature(eLogI f , egetLogger), definesSignature(eLogger, elog), . . .}

(7.11)

Furthermore, the system configuration is changed because the newly added “logger part” is
3Statements regarding the implementation of the logger component are omitted since they are not relevant to the

application scenario.
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specified, as well as a number of connectors between already existing parts and the logger:

{Part(esyslog), hasType(esyslog),
configurationPart(eCoCoME, esyslog),
hasType(esyslog, eLoggerComponent),
Connector(esd−to−log), configurationPart(eCoCoME, esd−to−log),
sourceContext(esd−to−log, esd), targetContext(esd−to−log, esyslog), . . .}

(7.12)

Moreover, several method calls are specified in existing method bodies that invoke the log
method of the surrounding component’s port connected to the logger part. Let us assume that
the method queryLowStockItems (see Fig. C.23) is changed in the following way: before
creating the first query it calls the method to retrieve a logger at the required port sd-req-log,
which is that one connected to the logger: sd-req-log.getLogger(). For this statement, the
following logical statements are created during the transformation:

{RequiredPort(esd−req−log), encapsulates(eReporting, esd−req−log),
SynchronousInvocation(ecall−getLogger),
containsStatement(equeryLowS tockItems, ecall−getLogger),
invokedAt(ecall−getLogger, esd−req−log), . . .}

(7.13)

Table 7.4 depicts the additional elements in the minimal system for the extensional statements
of the modified design model according to the subsets (7.11)–(7.13)4.

The evaluation of the architectural rules is now executed with the merged system consisting
of the minimal system for the modified architectural model and the modified design model.
The set of architectural rules is the same as for the unmodified CoCoME system in Sec. 7.2.

The architectural rule ¬ illegalDependenciesFromGroup(eDataLayer) evaluates to false in this
scenario for the following reason. For each component in the data layer, there is a connector
targeting at the logger component. As depicted in Tab. 7.4, at least esd−to−log ∈ Connector is
such an entity as the tuples

(esd−to−log, esd−req−log) ∈ connectorSource
(esd−to−log, elogi f ) ∈ connectorTarget

(eLoggerComponent, elogi f ), (eS tore, esd−req−log) ∈ encapsulates
(esd−to−log, esd) ∈ sourceContext

(esd−to−log, esyslog) ∈ targetContext

(7.14)

show. Additionally, as shown in the statement (7.13), there is also at least one synchronous
call via this connector, or more precisely: a synchronous method call at the required port that is
connected by the connector to the logger component5:

ecall−getLogger ∈ SynchronousInvocation
(equeryLowS tockItems, ecall−getLogger) ∈ containsStatement

(ecall−getLogger, esd−req−log) ∈ invokedAt
(7.15)

4The package structure is omitted for the sake of clarity.
5Not depicted but contained in the minimal system are the tuples modelling that there is a class in the Store

component that provides an implementation for querLowStockItem.
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Relation symbol Interpreting relation
SystemConfiguration {eCoCoME}

Component {eLoggerComponent}

Interface {eLogger, eLogI f }

Signature {egetLogger, elog}

InnerPart {esyslog}

Connector {esd−to−log}

ProvidedPort {elogI f }

RequiredPort {esd−req−log}

SynchronousInvocation {ecall−getLogger}

providesInterface {(eLoggerComponent, eLogger), (eLoggerComponent, eLogI f )}
definesSignature {(eLogI f , egetLogger), (eLogger, elog)}
configurationPart {(eCoCoME, esyslog), (eCoCoME, esd−to−log)}
encapsulates {(eLoggerComponent, elogi f ), (eS tore, esd−req−log)}
sourceContext {(esd−to−log, esd)}
targetContext {(esd−to−log, esyslog)}
connectorSource {(esd−to−log, esd−req−log)}
connectorTarget {(esd−to−log, elogi f )}
containsStatement {(equeryLowS tockItems, ecall−getLogger)}
invokedAt {(ecall−getLogger, esd−req−log)}

Table 7.4: Minimal system addition to model the logger components and calls to its interfaces.

Hence, the expression dependsOn6(eS tore, eLoggerComponent) evaluates to true (see Sec. 6.2.1):

dependsOn6(eS tore, eLoggerComponent) B Component(eS tore)∧
Component(eLoggerComponent)∧
∃con∃p∃q∃r : InnerPart(p) ∧ InnerPart(q) ∧ Connector(con) ∧ hasType(p, eS tore)∧
(hasType(q, eLoggerComponent) ∨ ∃t : (Class(t) ∧ containsClass(eLoggerComponent, t)∧
hasType(q, t))∧
sourceContext(con, p) ∧ targetContext(con, q) ∧ connectorSource(con, r)∧
∃c∃m∃s : (containsClass(e, c) ∧ hasMethod(c,m)∧
containsStatement(m, s) ∧ SynchronousInvocation(s) ∧ invokedAt(s, r))

(7.16)

for the variable binding

con = esd−req−log

p = esd

q = esyslog

r = esd−req−log

(7.17)
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Since inGroup(eReporting, eDataLayer) and inGroup(eLoggerComponent, eApplicationLayer) evaluate to
true, also groupDependency(eDataLayer, eApplicationLayer) evaluates to true. This makes
illegalDependenciesFromGroup(eDataLayer) come true and, hence, violates the architectural
rule mentioned above. This result is consistent to the scenario description of Sec. 4.3.1.

The solution proposed in the application scenario was to move the logger component to a
utility layer that can be accessed from everywhere in the inventory system. Hence, there is an
additional layer in the architectural model that is mapped to the package logging (see Fig. 4.12);
the application layer, however, is no longer mapped to that package. Of course, the new layer
defines a new architectural rule ¬illegalDependenciesFromGroup(eUtilityLayer) that has to be
checked, too.

Since, the logger does not use any of the other components, the new architectural rule
holds. Furthermore, inGroup(eLoggerComponent, eApplicationLayer) is not true anymore, such that
groupDependency(DataLayer, ApplicationLayer) becomes false, and the formerly violated
architectural rule does hold now. Instead, inGroup(eLoggerComponent, eUtilityLayer) is true, which
leads to an “allowed” group dependency only.

Hence, the compliance check returns the result that the design is now compliant with the
modified architecture containing the additional utility layer.

7.3.2. Compliance in Modification Scenario 2

In this second modification scenario, the inventory system is extended by the possibility to
determine orders that are planned to arrive on the current day. The scenario description given in
Sec. 4.3.2 shows that the correct solution is developed in three steps after which an architectural
compliance check should be executed successfully; after the first two solution attempts, checks
should report errors.

The first solution step is depicted in Fig. 7.12. It corresponds to the leftmost section of
Fig. 4.13 with the now introduced stereotypes. Moreover, it contains also the part of the system
configuration relevant for this scenario.

In this phase of the solution in the second scenario, already the check, whether
the design model is intensionally complete, will fail. As depicted, the signature
for getSuppliersDeliveringToday uses the interface ProductSupplier as return type.
This means that (egetS uppliersDeliveringToday, eProductS upplier) ∈ hasType. Furthermore, it is
also true that eProductS upplier < Transfer and eProductS upplier < PrimitiveType, hence
isServiceSignature(egetS uppliersDeliveringToday) cannot be true (see statement (6.19)). This again
causes hasServiceMethodsOnly(eS toreI f ) to be false – StoreIf is not a correct definition of a
service interface. The compliance check delivers the expected result.

The second solution attempt addresses this issue. It changes the signature to return transfer
objects. For this purpose, the designer defines a new transfer object interface named Supplier-
WithOrderTO extending an existing one, as depicted in Fig. 7.13. In addition to the members
it inherits, the interface refers to the interface ProductOrder from the persistent data model.
Since ProductOrder is not stereotyped with Transfer, this is a wrong design of a transfer object
interface.

The compliance check that is executed now detects the violation of a design rule. Due
to the mentioned association, there is an entity m with (eS upplierWithOrderTO, em) ∈ hasMember
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Figure 7.12: The first solution attempt to Modification Scenario 2.

and (em, eProductOrder) ∈ hasType. Furthermore, it holds that eProductOrder < PrimitiveType and
eProductOrder < Transfer. For this reason, onlyLegalMembers(eS upplierWithOrderTO) does not hold,
according to the statement (6.15). This means that SupplierWithOrderTO is an incorrect
specification of a transfer object interface.

The final step towards a conforming design removes the association between the created
transfer object interface and ProductOrder and replaces it by an association towards the existing
transfer object interface OrderTO. Although not depicted, we assume that the implementation
of getSuppliersDeliveringToday copies data from persistent objects into newly created transfer
objects — in analogy to getProductsWithLowStock as depicted in Fig. 4.6. Hence, we can
conclude that the design rules are fulfilled.

Now, the architectural rules have to be checked. The system configuration is the same
as in step one depicted in Fig. 7.12. Furthermore, the architectural model is unchanged
compared to the original one (see Fig. 7.1). This means that the set of architectural rules
regarding the service-oriented application layer is still the same and consists only of the rule
onlyServicesExternallyUsed(eApplicationLayer). If we assume, that the architectural mismatch
regarding that rule in the reference model (see Sec. 7.2) was resolved as proposed, the only
reason for a violation could be the connector c in Fig. 7.12. It connects two parts typed with
components of layers that are connected by an isAllowedToUseServices dependency. The
target port storeIf is providing StoreIf only, a correctly designed service interface. Hence, the
providing component is a correctly designed service component, and the architectural rules
hold. The architectural compliance check does not detect any errors after this third, final
modification.
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Figure 7.13: The second solution attempt to Modification Scenario 2.

7.3.3. Compliance in Modification Scenario 3

In this scenario, the cash box controller is modified to allow the input of a product bar
code by the keyboard of the cash box. Since the components of the cash desk are very
loosely coupled by the event-driven architecture, this additional functionality is easy to add; a
BarcodeScannedEvent already exists and is published by the bar code controller if it scans a
bar code successfully. The same event interface can now be published by the cash box controller
when the cashier enters a bar code manually. All other components can react to this kind of
event as usual and as already implemented.

However, the addition is not designed correctly. Figure 7.14 depicts the modified model and
shows that the communication between cash box controller and cash desk application happens
directly by bypassing the event channel. An architectural compliance check should detect this
mistake.

Following the proposed approach, the design model containing the modified components will
still be intensionally complete. There is only an additional required port for CashboxController,
namely appHandler, requiring the ApplicationHandlerIf. The design rules refer only to the
already existing elements of the component that are not changed. Without modelling the imple-
mentation of the component, we follow the informal description in Sec. 4.3.3 and assume that,
when a bar code is entered, a corresponding event is only forwarded via apphandler.onEvent(),
but not to the event channel.

The architectural model is the same as presented in Sec. 7.1.1 for the reference ver-
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Figure 7.14: Details of the incorrect solution to the third modification scenario.

sion of CoCoME. Hence, the architectural rules that have to be considered in this
modification scenario are the same as before: noBypassingOfChannel(internalEC) and
noBypassingOfChannel(externalEC) have to be checked.

While the latter statement is true as before — no component connected to the external event
channel is changed — the first statement becomes false because of the connector between the
required port appHandler, that is connected with the provided port handler of the cash desk
application (see Fig. 7.14). Assuming the connector connecting both is referred to by ec, the
statement (6.44) evaluates to false for x = einternalEC and c = ec:

noBypassingO fChannel(einternalEC) B ¬ (∃c∃p∃q : sourceContext(c, p)∧
targetContext(c, q) ∧ plugsInto(p, einternalEC) ∧ plugsInto(q, einternalEC)∧
∃q′∃i∃ j :

(︀
Event( j) ∧ connectorTarget(c, q′) ∧ providedInterface(q′, i)

∧ dependsOn4(i, j) ∧ isChannelFor(einternalEC, j)
)︀)︀

p and q are the cashboxCtrl and cashdeskApp parts of the system configuration, and q′ is
the target port of the connector at cashDeskApp. The provided interface of this port, the event
handler interface of the component, uses events distributed by the internal event channel. It
holds, for example:

{(einternalEC, eProductBarcodeS cannedEvent)} ⊆ isChannelFor
dependsOn4(eApplicationEventHandlerI f , eProductBarcodeS cannedEvent) = true

Thus, the inner existentially quantified part of noBypassingOfChannel evaluates to true.
Since both addressed parts are plugged into the internal event channel (see Fig. 7.3), and
therefore

{(ecashboxCtrl, einternalEC), (ecashDeskApp, einternalEC)} ⊆ plugsInto
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the overall formula evaluates to false; the architectural rule does not hold.
The solution to this issue is quite simple. The connector has to be removed, and the event

has to be published to the internal event channel. The design model of this modification differs
from the reference design model only in implementation details regarding the realization of the
new functionality; design rules and architectural rules are not affected. We hence omit a proof
that this solution is architecturally compliant.

7.4. Summary

In this chapter, the architectural compliance checks according to the proposed approach have
been executed and analysed. To check the CoCoME case study, an architectural model, written
in UML and using the developed architecture profile, has been developed. A reference design
model has been created using UML and the design profile. The results of the transformations, for
which the definitions have been given in Chapter 6, have been illustrated in excerpts, especially
the architectural and design rules that result from applying the intensional component of the
transformation definitions to the models of CoCoME.

The CoCoME system is architecturally compliant for the most part. The logical layer
structure that separated the inventory system into a GUI, an application logic, and a data part,
is not violated. The service-oriented interface that the application layer provides to the GUI
layer is not consequently realized to the last detail. Because a port that is accessed from the
GUI layer also provides a non-service interface, there is a small architectural mismatch. The
event-driven architecture of the cash desk subsystem is realized correctly.

The architectural compliance checks for the three modification scenarios have returned
the expected results. The layer assignment of a component that deals with cross-cutting
functionality has been detected as a violation of the layer structure; contrarily, moving it to a
separate utility layer that is allowed to be accessed from every other layer, has been detected as
architecturally compliant solution to this issue. The checks in the second scenario, which has
lead to the stepwise addition of a service, have detected architectural mismatches at several
points; incorrect implementations of services and transfer object interfaces have been found.
Finally, the bypassing of event channels in the third modification scenario has lead to negative
results in the corresponding architectural compliance check as expected.
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On two occasions I have been asked, “Pray, Mr. Babbage, if
you put into the machine wrong figures, will the right
answers come out?” I am not able rightly to apprehend the
kind of confusion of ideas that could provoke such a question.

Charles Babbage

This chapter introduces the prototypical realization of architectural compliance checking
tool support basing upon the formal framework and concepts introduced in the chapters
before. On the one hand, the chapter will present a specific tool prototype, called Architecture
Checker (ArCh), which implements architecture compliance checking for a dedicated set of
supported meta models. The usage of this tool will be illustrated by applying it to a cut-out
of the CoCoME modification scenarios (see Sec. 4.3). On the other hand, this chapter will
describe the realization of the main concepts of the formal framework presented in Chapt. 5 as
implementation framework; this framework realizes the formal representation of models and the
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checking of architectural rules according to the formal framework based upon the integration
of a logical knowledge representation and reasoning system. This reusable framework can be
used as backend for arbitrary compliance checking tools applying the concepts of this work.
Thus, the framework allows the implementation of such tools with less effort.

The chapter is structured as follows. Section 8.1 will present ArCh as an example of a
compliance checking tool and its usage. In Sec. 8.2, the overall architecture of a compliance
checking tool like ArCh using the developed framework will be illustrated. Section 8.3 will
describe the design of the framework, called Architectural Compliance Checking Framework,
especially interfaces to extend and to use the backend. In Sec. 8.4, we will take a look upon the
knowledge representation system PowerLoom used in the framework; Section 8.5 concludes
this chapter.

8.1. The Compliance Checking Prototype from the User
Perspective

The tool prototype ArCh realizes architectural compliance checking according to the proposed
approach. ArCh is implemented as plugin [CR08] for the popular open-source integrated
development environment Eclipse [ML05]. It integrates hence seamlessly with the look-and-
feel and the functionality of any Eclipse installation it is plugged into.

In the following, we will see step-by-step how the software architect uses ArCh to execute
the architectural compliance checks as required in the first modification scenario, the addition of
a logger component to the basic CoCoME system (Sec. 4.3.1). We assume that Eclipse is used
for the development of the CoCoME system. The architecture and design models are available
as XMI files [Obj07]; XMI is a XML dialect to represent and exchange models between
different tools. Many CASE tools, especially tools of the Eclipse Modelling Framework (EMF)
[SBPM09], are able to import and export models as XMI files.

ArCh is automatically loaded as plugin when the containing Eclipse environment is started.
The software architect invokes the functions of ArCh via the context menu of the project
explorer, as depicted in Figure 8.1. The models, or in general the documents, that need to
be checked are grouped by configurations indicating which set of models have to conform to
which architectural model. ArCh is able to manage several configurations at the same time,
allowing the architect to check architectural compliance in several projects. The architect can
see its configurations by clicking “Manage Configurations”.

The ArCh Configuration Manager shows all available configurations (see Fig. 8.2). In the
example, the architect has already created a configuration which contains two documents, listed
in the right area of the dialogue as document entries. The document named “Reference Layers
Arch” contains a model of the architectural layers of CoCoME as depicted in Fig. 4.11 (p. 54).
The model named “Design Model (Initial Logger Solution)” contains the design model which
includes the incorrect embedding of the logger component into the application layer.

Each document entry lists furthermore the physical resource representing the model and,
below the heading “Type”, its meta model. Note, that the architectural model is not a UML
model as assumed in previous chapters. The depicted meta model is equivalent to the cut-out
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Figure 8.1: The ArCh context menu.

of the architecture profile for UML dealing with layers and used instead to demonstrate the
integration of different meta models into the compliance checking tool. Together with each
meta model, the transformation definition according to Sec. 5.5 is made available to the tool,
such that the architectural rules of a model as instance of a meta model can be determined.

Moreover, for each single document entry, it can be activated whether the contained rules
— i.e., the intensional statements of a model — should be checked. Since the transformation
definitions for standard UML do not define any intensional statements (see. Sec. 6.3), enabling
the checkbox for the design model in the example would not have any effect. Each entry
can be saved in case of changes (e.g., modified name or path to resource) or removed from
the configuration (buttons “S” and “X”). The architect reassures that the entries refer to the
correct models and that the selected configuration is the “active one”; this is indicated in the
list of available configurations at the left hand side of the configuration manager. The active
configuration is that one being loaded into the knowledge representation system for the next
compliance checks.

After closing the configuration manager, the actual compliance check is executed again
via the context menu of the project explorer and the item “Check Compliance Rules”. In the
background, the models contained in the active configuration are loaded; minimal systems
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Figure 8.2: The ArCh Configuration Manager.

of the models are generated for the single models and merged into a common knowledge
base. After that, the rules of all documents1, especially the architectural rules defined by the
architecture model, are executed as queries over the knowledge base. In a separate view, the
“ArCh Rule Check Result” view, the software architect can inspect violated rules. Figure 8.3
shows the rule check result for the initial solution to the first modification scenario.

The view is separated into two different lists for different kind of rules which somehow
prioritize the execution of rules. Prerequisite rules are utility rules that ensure that preconditions
are met for the execution of constraint rules. Constraint rules are executed only if all prerequisite
rules hold. This way, a very basic prioritization of rules is implemented. Prerequisite rules
normally catch cases in which constraint rules cannot be checked in a meaningful way. For
example, a prerequisite rule for the checking of layers ensures that every layer is mapped to a
package; otherwise, checking illegal layer dependencies will not detect any violations at all.

Constraint rules are used (in this example) to express the actual architectural rules. As the
result view shows in Fig. 8.3, they are formulated as the negation of the actual architectural rule.
The corresponding query returns hence those elements that cause rule violations. The marked
line shows a human-readable text describing the violated rule, in this case a layer depending
on something that it is not allowed to depend on. In the next line, the formal definition of
the violated rule (see Sec. 8.3.2) follows; it furthermore shows the binding of the variable
?this) (see also Sec. 5.5.1) indicating for which layer the architectural rule is violated. This is
followed by all variable bindings causing the query to be true and the rule hence to be violated.

It is visible that the result corresponds to the expectations for the initial solution to Modifica-
tion Scenario 1 (see Sec. 4.3.1). Each component of the data layer using the logging interface,

1Unless a document has been marked to be ignored for checking its rules, see Fig. 8.2.
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Figure 8.3: ArCh checking results for initial solution to modification scenario one.

Figure 8.4: Adding a configuration for the final solution for modification scenario one.

which are Store, Enterprise, and Persistence, causes a rule violation.

The architect creates a second configuration (Fig. 8.4) that corresponds to the final and correct
solution of the first modification scenario — moving the logger component and its interfaces
to a cross-cutting utility layer that can be accessed from every layer. The new configuration
contains the modified architecture model and the design model describing the correct solution
as depicted in Fig. 4.12 (p. 55).

A new compliance check for this configuration, which is activated before, returns without
error, as Fig. 8.5 shows.
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Figure 8.5: The architectural rules hold for the final solution in Modification Scenario 1.

8.2. Architecture of a Compliance Checking Tool

This section presents the logical architecture of ArCh and the embedding of ArCh into Eclipse.
The described structures can be understood as blue-prints for the architecture of compliance
checking tools following the formal framework proposed in this thesis.

8.2.1. Logical Overview

The logical structure of ArCh can be separated into two main building blocks, the frontend and
the backend. This top-level architecture is depicted in Fig. 8.6.

The frontend of ArCh provides the user interface and the connection to the backend according
to the realized workflow; it ensures, for example, that the compliance check functionality of the
backend is executed when the corresponding item of the ArCh context menu has been selected,
and presents the checking results afterwards (see Fig. 8.1 and Fig. 8.3).

While the frontend of an architectural compliance checking tool is tool-specific in large
parts, the main building block of the backend is a reusable tool-independent architecture
compliance checking framework (ACC framework, see Fig. 8.6). Its functionality can be
invoked by an application interface module which allows frontends to create and manage
configurations, execute compliance checks, etc. The framework realizes the core aspects of
the formal framework introduces in Chapt. 5, i.e. checking architectural compliance between
models based on logical architectural rules that are evaluated on τCBS D-systems. For this
purpose, it applies the query mechanisms of a knowledge representation system. The overall
implementation of the framework is independent of any specific meta model in the sense that
its functionality is realized without referring to concrete types of models that participate in the
process of architecture compliance checking. The framework defines instead an interface for
document wrappers. A document wrapper implementing this interface enables the framework
to retrieve the minimal systems of models of one specific meta model. The backend of ArCh, for
example, provides wrappers for standard UML and for the architectural meta model for layers
used in the previous section. Each wrapper for itself, however, is reusable in any compliance
checking tool using the ACC framework. Together, the actual set of wrappers and the ACC
framework make up the overall backend of an ACC tool.
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Figure 8.6: Logical top-level structure of architectural compliance checking (ACC) tools applying
the developed framework.

The details of the backend will be subject of Sec. 8.3.

8.2.2. Eclipse Integration

The Eclipse platform is not a monolithic system. It consists of a relatively small core or kernel
to which additional plugins can be loaded at start-up. In fact, the kernel of Eclipse contains
an implementation of the OSGi specification [OSG03] which describes a component model
(see Sec 2.3.2); Eclipse plugins can be seen as components conforming to this component
model. The kernel is hence able to load such plugins and provides the infrastructure to connect
plugins and to enable them to interact. The minimal set of plugins required to add custom-made
applications as plugins is called the Eclipse Application Framework (EAF).

A plugin itself is a program written in Java implementing a certain interface and specifying
additionally the dependencies towards other plugins and provided services. This information is
declared in configuration files and is used by the Eclipse infrastructure to ensure that plugins
can find each other and connect to use each other’s functionality if required. For more details
on Eclipse plugins, please refer, for example, to [CR08].

The ArCh prototype is realized as a set of several Eclipse plugins. The plugin structure of
ArCh is depicted in Fig. 8.7. The frontend of ArCh is realized as single plugin. It defines, as
mentioned above, the graphical user interface and declares additional configuration information
which allows the Eclipse infrastructure to integrate the plugin properly into the standard Eclipse
framework. For example, it is specified that the ArCh menu is integrated into the context menu
of the project explorer.

In contrast to the logical frontend, the backend is distributed over different plugins. Each
wrapper is encapsulated by a single plugin as well as the ACC framework. Wrapper plugins
require an instance of the framework plugin to register the encapsulated wrappers as available
document wrappers. The set of available wrappers can be retrieved from the framework by
arbitrary frontends. This way, an existing compliance checking tool can be simply adapted
to new meta models by loading new wrapper plugins into Eclipse. At the moment, another
wrapper plugin for Java is developed, using the built-in facilities of Eclipse to traverse and wrap
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Figure 8.7: ArCh integration into Eclipse.

Java source code.
Furthermore, the ACC framework is encapsulated by a single plugin. The configuration

coming with the ACC Framework Plugin ensures that everything that is required by wrapper
plugins and frontends, i.e. the core functionality of compliance checking, all relevant data
types, and the wrapper interface, is visible to the environment.

The dependency relations depicted in Fig. 8.7 refer to the static dependencies of the overall
ArCh system. The required calls from the frontend to functions provided by the framework
have to be specified in the source code of the frontend. Furthermore, each wrapper needs to
implement an interface defined in the framework and calls operations for registering itself at
the framework. Nevertheless, there are dynamic dependencies between the framework and the
wrappers. According to the common “don’t call us, we call you” principle of frameworks, the
ACC framework will invoke wrapper methods. Statically, these calls are hidden by specifying
calls in the framework’s source code that are invoked at abstract interfaces.

8.3. The Architecture Compliance Checking Framework

The ACC framework provides reusable functionalities for architecture compliance checking
tools. It implements the main functions of compliance checking independently of the specific
meta models whose instances need to be checked by a specific compliance checking tool. The
framework is implemented in Java and consists of four subsystems as depicted in Fig. 8.8.
These subsystems are:

Core. The core subsystem provides the basic data structures to represent τ-structure as in-
troduced in Sec. 5.2 in general, and implements basic operations to construct and to
modify them. Moreover, it defines interfaces to traverse such structures, for example
in order to realize code generators transforming those structures into code for a logical
knowledge representation system. Last but not least, the framework’s core provides data
structures for the specification of logical statements in general, for example to represent
architectural rules.
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Figure 8.8: The subsystems of the ACC framework.

Wrapper. The wrapper subsystem consists of interfaces and classes for the purpose of inte-
grating meta model-specific wrappers into instances of the framework such that instances
of those meta models can be checked by tools using the framework. The main elements
of this subsystem are functional modules and data types for registering and accessing
wrappers at run-time, and a wrapper interface which must be implemented by the specific
wrappers. These wrappers deliver a τCBS D-structure representing a minimal structure for
the encapsulated model as well as the set of intensional rules that the model defines. For
this purpose, the subsystem relies on the implementation of logical structures provided
by the Core subsystem.

PowerLoomBackend The task of this subsystem is the integration of the PowerLoom knowl-
edge representation system. It translates object structures, that conform to the data types
defined in the Core subsystem, into PowerLoom knowledge bases and implements rules
checking as execution of logical queries. It implements the interface defined in Core to
traverse logical structures to realize a code generator for the representation of logical
structures in PowerLoom. The subsystem implements furthermore an abstract interface
KRSystemBackend, on which the ApplicationInterface.

ApplicationInterface. This subsystem represents the main interface for architecture com-
pliance checking tools to configure the framework for the specific purpose, to manage
the set of models participating in the compliance checking process, and to invoke the
checking functionality. For this purpose, it defines functional interfaces for the access by
frontends but also datatypes that are in addition used by the PowerLoomBackend. The
realization of checking functionality follows roughly a common scheme: the data con-
tained in a model is retrieved from the wrappers as logical structure and forwarded to the
PowerLoomBackend which transforms these structures into PowerLoom code. The Ap-
plicationInterface defines in addition the already mentioned KRSystemBackend which
abstracts from the specific backend implementation. It is depicted in Fig. 8.8 to illustrate
that a direct cyclic dependency between the subsystem and the PowerLoomBackend
subsystem is avoided this way.
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The following subsections will describe the single subsystems in detail.

8.3.1. Framework Core

Task of the Core subsystem is the implementation of finite structures and logical rules. The
classes and interfaces of the implementation are accessible to all other subsystems of the ACC
framework.

Finite Structures

Finite structures and basic operations on them are realized in the package finstr (Finite Strutures)
of the framework core. The classes implemented in this package are depicted in the upper part
of Fig. 8.9. For this diagram, as well as for all following diagrams describing the design of the
framework, holds that it depicts only a partial view on the framework implementation focusing
on the most relevant design aspects and omitting technical details.

A single finite structure as used in the framework is an instance of the class FiniteStructure.
As in the formal definition (see Sec. 5.2), a finite structure consists of a universe and a set of
relations. The universe of a finite structure is a set of entities, modelled as association between
Universe and Entity. A Relation has an arity and refers to a corresponding sequence of types
which serve as domains for the relation — e.g., a Relation instance for a binary relation must
be connected by exactly two links to instances of Type. A relation consists of tuples, modelled
by the association connecting Relation and Tuple. A tuple is a sequence of entities whereas the
size of this sequence must be equal to the arity of the containing relation, and the sequence the
entities’ type must conform to the sequence of the domains.

Types are understood as unary relations, i.e. the value of arity attribute for a instance of Type
is always one. The set of tuples of a type equals furthermore the set of entities being instances
of this type; moreover, entities are always typed. Furthermore, subtyping between types is
allowed. The boolean attribute isPrimitive indicates whether a type is primitive — entities
being instances of primitive types do not have a unique identifier and are compared by the value
they represent. Such entities are objects of the class PrimitiveValue.

The classes of this data model also define operations for the construction of finite structures.
FiniteStructure, for example, has methods to add types and relations; Relation provides
operation to add tuples to relations checking the conformance to the arity of the relation;
Universe owns operations to create new entities as instances of existing types.

The util package of the Core subsystem contains, among other elements, two interfaces
for traversing finite structures following the visitor pattern [GHJV95]. This pattern separates
functions from the class structure they operate on in order to keep the single classes cohesive.
New functions can easily be added this way without modifying elements of the class structure.

Functions are realized as Visitor classes implementing a Visitor interface. This interface
defines for each class of the class structure a visit method as depicted for FiniteStructureVisitor
in Fig. 8.9; the implementation by a concrete visitor class describes the behaviour of the visitor
if an instance of that class is traversed. Furthermore, each class of the data model contained
in the package finstr implements a Visitable interface such as VisitableElement. It defines an
accept method whose implementation performs a callback at the passed FiniteStructureVisitor
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Figure 8.9: The Core subsystem of the ACC framework.

instance invoking its visit method. A visitor traversing an object structure calls the accept
method of the object resulting in the callback of the visit method of the visitor; this dispatching
ensures for polymorphic objects the call of the “correct” visit method without the need that the
visitor knows the exact dynamic type of the object it traverses.

The usage of this pattern in the ACC framework is motivated by the separation of code gen-
eration functionality transforming finite structures into code of some knowledge representation
systems from the finite structures themselves. This way, new code generators can easily be
added without the need to modify the classes representing the elements of finite structures.

Rules

Intensional statements of models are represented by the classes in the package foexpression
(see Fig. 8.9). The class RuleDefinition represents statements as used in the transformation
definition for meta models containing free variables. The class Rule adds the possibility to
add variable bindings; it combines the definition of a rule with a potentially partial binding of
variables to specific entities of a finite structure.

The overall package is a placeholder in the prototypical implementation yet. Up till now,
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Figure 8.10: The Wrapper subsystem of the ACC framework.

rules are represented by strings only with special markers indicating variables. This means
that the strings have to conform to the language of the underlying knowledge representation
system. Instead, it would be more flexible to have an independent model of first-order logic
expressions which means that the syntax of first-order expression had to be reflected by a data
model, which will be integrated in the future.

8.3.2. Integrating Document Wrappers

The subsystem Wrapper is responsible for the integration of different meta models for the
purpose of checking instances of them for compliance. The details of the subsystem are
depicted in Fig. 8.10.

To be able to check a certain model for compliance, a wrapper for the model’s meta model
must exist. Such wrappers are implementations of the DocumentWrapper interface. The three
most important methods that have to be implemented are:

• getMinimalComponentStructure(): Returns an object that represents the minimal
τCBS D-structure for the extensional part of the wrapped model. It is assumed that only
models being unambiguously factual (see Sec. 5.5) are wrapped, such that the minimal
structure is unique and retrieved by the method.

• getPrerequisiteRules()/getConstraintRules(): Return the intensional rules
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that a model defines with the separation of prerequisite rules and constraint rules (see
Sec. 8.1).

The returned minimal structure is an instance of ComponentBaseRepresentation which
represents τCBS D-structure basing on FiniteStructure. It encapsulates a finite structure which
can be retrieved by getMinimalStructure(). ComponentBaseRepresentation has a static
initializer which reads a declarative description of τCBS D and generates a finite structure with
empty universe and all relation (symbols) defined by τCBS D. When an instance of Component-
BaseRepresentation is created, the static empty finite structure is copied to an instance field.
Wrapper implementations can then use the created object to populate the universe according to
the transformation definitions and the content of the model.

For this purpose, ComponentBaseRepresentation allows the developer of a wrapper im-
plementation to access type and relation constants that reflect the relations according to τCBS D,
such as COMPONENT as depicted in Fig. 8.10. Moreover, the class provides convenience
operations to simplify the creation of the minimal system. Instead of specifying via the encap-
sulated FiniteStructure object that an entity of type COMPONENT is created and assigned
to an entity of type PACKAGE by a tuple of the containsComponent relation, the developer
can use methods like createComponent(String compName, Entity containingPkg);
these methods aggregate and encapsulate the single creation statements.

The rules returned by the methods defined in DocumentWrapperInterface are instances of
the class Rule; each of such instances is assigned to a RuleDefinition instance reflecting the rule
specification without any variable binding as described before. The source for rule definitions
can be any source for strings, in the case of the wrapper for layered architectures, a simple text
file is attached to wrapper instances during their initialization. It contains a comma-separated
list of entries of the form

<meta model element>,<rule-def>,<rule-desc>

<meta model element> refers to the element of the meta model for which the rule is gener-
ated, <rule-def> contains the rule definition, and <rule-desc> is an informal description of
the rule definition. The actual rule definition is PowerLoom query code which will be described
partially in Sec. 8.3.4. For example, the entry

"Layer",
"(illegalLayerDependenciesFromGroup

?this ?toLayer ?srcElem ?trgElem)",
"Actual layer dependencies are not compliant

with intended ones!"

defines the architectural rules for layers. From this file, the wrapper for layer models instantiates
static RuleDefinition attributes for each entry. When analysing the wrapped model, the wrapper
retrieves every Layer instance from the model and creates a Rule instance whose rule definition
is the corresponding static rule definition and binds the variable ?this to the entity representing
the current layer. The generated rules are returned by the corresponding methods defined in
DocumentWrapperInterface.
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At the moment, there are two implementations of wrappers developed for the ArCh proto-
type. Both wrappers, for UML and for a specific meta model for layered architectures, are
implemented based upon an EMF-generated API providing access to instances of the particular
meta model. A model is programmatically traversed; the transformation definitions given in
Sec. 6.2 and Sec. 6.3, respectively, are manually translated into code. Entities and tuples corre-
sponding to the single extensional statements are created within the finite structure. Intensional
statements are generated according to the rule definitions.

So far, the developer of a wrapper knows which interfaces to use and to implement. To
integrate a wrapper into the ACC framework and to use it, the wrapper must be registered at
the framework. This is done by using the DocumentWrapperRegistry whose most important
methods are2 (see also Fig. 8.10):

• registerDocumentWrapper(DocumentType,
Class<? extends DocumentWrapperInterface>): Registers the class of a doc-

ument wrapper and assigns it to the document type given by the first parameter. Doc-
umentType encapsulates simply a string naming the meta model, for example “Layer
Architecture” in Fig. 8.2. The framework saves this way which class of wrappers is
responsible for which kind of document.

• boolean isKnownDocumentType(DocumentType): Returns whether the passed doc-
ument type is already registered.

• Class<? extends DocumentWrapperInterface>
getWrapperClassForType(DocumentType docType): Returns the wrapper class

responsible for the given document type.

All methods of DocumentWrapperRegistry are static and are usually called during the class
initialization of wrapper implementations.

This piece of information held by the DocumentWrapperRegistry is used by the Docu-
mentWrapperFactory. This class implements a factory [GHJV95] in a generic way: using the
mapping between document types and wrapper classes persisted in the registry, its only method
creates an instance of the wrapper class assigned to the given document type using reflection.
The new wrapper instance is initialized with the path to the wrapped document/model.

8.3.3. The Application Interface

The application interface contains functions and data structures to access the framework
from arbitrary tool frontends. Its functions comprise the configuration and management of
compliance checks as well as the actual implementation of the checking functionality. The basic
behaviour is simple: it retrieves the minimal structures as instances of the data model defined
in the framework core from the participating models and their wrappers, and forwards them to
the knowledge representation system in the background which transforms them into code for
PowerLoom. Rule checks are treated the same way: rules are retrieved from the wrappers and
forwarded for execution to the knowledge representation system. In the following, more details

2In Fig. 8.10, the signatures of the methods are omitted for layout reasons.
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Figure 8.11: The ApplicationInterface subsystem of the framework.

of the ApplicationInterface will be presented. Figure 8.11 shows the most important elements
of this subsystem.

Compliance Check Configurations

In Sec. 8.1 we have already seen, that compliance checking using ArCh organizes the set
of artefacts to be checked into configurations. The GUI of ArCh visualizes very closely
the logical concepts that are provided by the ApplicationInterface of the ACC framework.
As Fig. 8.11 shows, the ConfigurationManager administrates the set of compliance check
configurations, realized by the class Configuration which includes registering and deregistering
of configurations, activating them, and retrieving all available or the active configuration. A
configuration is a set of instances of DocumentEntry. Each instance of this class represents
an artefact that is part of a configuration and subject to compliance checking. It is associated
with an instance of DocumentWrapperInterface providing the wrapper for the document
represented by the document entry.

Joint Factbases

Compliance checks are executed as queries on a logical factbase representing the set of
documents/models of the active configuration. Factbases are implemented by the class Joint-
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Factbase which is a container for the single finite structures accessible by the corresponding
document wrappers. It merges the finite structures of the single wrappers and provides different
options to “fold” entities, i.e. entities of the single finite structures are considered equal accord-
ing certain properties like the fully qualified name in τCBS D-structure such that only one entity
in the merged structure is created for entities in the single structures meaning the same thing.
Instances of this class are completely independent of the knowledge representation system that
is used in the background.

Furthermore, JointFactbase keeps tracing information between model element and the
entities of the merged structure to be able to refer to model elements for the presentation of rule
check results. The user of compliance checking tools, e.g. a software architect, works with the
models but not with the formal representation, such that the representation in terms of model
elements is much more intuitive and user-friendly.

The joint factbase for a configuration is not automatically generated when a configuration is
defined, a circumstance modelled by the multiplicity 0..1 of the association between Configu-
ration and JointFactbase. Instead, the factbase is only generated if actively requested by the
frontend via the functions of the class FrameworkFunctions.

Access to the Framework Application Logic

The class FrameworkFunctions provides static operations implementing the application logic
of the main framework functionality, i. e. checking of compliance according to logical rules.
The first task is hence to create factbases. For this purpose there exist two operations:

• generateFactbase() creates a joint factbase for the configuration being active at the
moment the operation is called. If there is already a joint factbase, it will be overwritten.

• updateFactbase() creates also a factbase but checks in case of an existing factbase
whether the encapsulated documents have been modified since the last generation and
whether a new creation is necessary.

Both methods forward the internally generated JointFactbase object to the knowledge
representation system which generates the language-specific knowledge base.

The actual checking functionality can be invoked by different functions:

• checkIntensionalCompleteness() checks for each minimal structure for the
wrapped documents whether it is intensionally complete.

• checkComponentAxioms() checks for each minimal structure for the wrapped docu-
ments whether it is a component-based system. The axioms are directly loaded into
PowerLoom as predefined queries (see below).

• checkPrerequisiteRules() and

• checkConstraintRules() executes the intensional rules retrieved by the participating
wrappers as queries in PowerLoom.
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Figure 8.12: The PowerloomBackend subsystem of the ACC framework.

• checkArchitecturalCompliance() combines the previous operations to implement
a generalized version of the compliance checking algorithm described in Listing 6.1.
In contrast to the formal description, the implementation can deal with an arbitrary
number of models instead of exactly two. Furthermore, it checks all rules but not only
the architectural rules of the architectural model; if the precondition of intensional
completeness holds, only non-local rules can become wrong in the joint factbase, hence
a check of all rules is equivalent to the check of only architectural rules.

Each of these operations refers to the joint factbase of the active configuration. The class
RuleCheckResult implements a logical representation of checking results; it refers to the rule
that was executed as query by Powerloom and adds the bindings of free variables that lead
to a violation of the rule. In contrast to Rule, which contains the bindings of variables that
are defined before the query is executed, RuleCheckResult contains the bindings of the query
result.

8.3.4. Integrating Knowledge Representation Systems

Knowledge representation systems are integrated into the framework by a system-specific
implementation of the KRBackendInterface (see Fig. 8.11 and 8.12). This interface defines
methods for the creation of knowledge bases and the checking of rules. The classes used
as parameter and return types are defined in the ApplicationInterface subsystem of the ACC
framework such that the operations defined there are independent of a specific knowledge
representation system.
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The implementation of the current version of the ACC framework is provided by the Power-
LoomBackend subsystem as depicted in Fig. 8.12. Beside the implementation of the KRSys-
temBackend interface, the subsystem also implements a code generator for PowerLoom which
is realized as visitor of finite structures according to the FiniteStructureVisitor interface defined
in the subsystem Core (see Sec. 8.3.1). The generator is used by the PowerLoomBackendImpl
class, e.g. to transform the fact bases given as instances of JointFactbase into PowerLoom
knowledge bases. It generates concept and relation declarations for types and relations defined
in the encapsulated finite structures, and transforms entities and tuples into facts denoted in the
syntax of PowerLoom. More details of PowerLoom will be given in the following section.

8.4. PowerLoom

PowerLoom is a logic-based knowledge representation and reasoning system. It allows rep-
resenting knowledge in a declarative way and provides diverse mechanisms to reason about
knowledge and to make implicitly existing knowledge explicit. Knowledge is represented as
entities and relations. A knowledge base can be queried interactively or via an Java API to
retrieve data from knowledge bases that is either explicitly contained or can be derived by
inference rules.

The PowerLoom system uses a full first-order logic language to express rules and queries
with limited support for some higher-order constructs. The used syntax is the Knowledge
Interchange Format (KIF) [GF92], which is basically a prefix notation of logical formulae.
The principal undecidability of full first-order logics is addressed by limiting the reasoning
mechanisms and making them adjustable.

The main reasoning mechanism is the calculus of natural deduction (see, e.g. [HR04]), which
states how knowledge can be logically derived from existing explicit knowledge and rules in the
knowledge base. One of the mentioned limitations in the implementation of PowerLoom is for
example that the introduction of disjunctions as rule of the deduction calculus is not applied in
the standard inference level of PowerLoom. However, the configuration can be customized and
complemented by custom reasoners. Reasoning by cases is no realized at all — i.e., deducing a
statement “C is true” from “C follows from A” and “C follows from B” and “A or B is true”.

Both inference rules are more appropriate and required in application cases in which a proof
must be searched in breadth, such as in theorem provers. In that application case, the goal is
to infer a single proposition from an existing set of propositions, for example a set of axioms.
In general, it is not decidable at any point of the proof whether a rule eliminating operators or
introducing them is the best way; introduction rules add possible continuation points, while
eliminating may get the proof closer to the final proposition. Hence, every kind of deduction is
required.

The situation in checking architectural rules is different. On the one hand, there is a
large set of propositions in form of facts of elementary terms. On the other hand, there are
queries, representing architectural rules, which can be refined due to a relatively small set of
implication rules, formally denoted by the definition of partial statements (e.g., layerDepdency,
or hasPublisherInter f ace, see Sec. 6.2). These implications can be easily followed during
“forward” deduction while the large fact base can be used to introduce more precise facts by
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introducing conjunctions or applying modus ponens. A search in breadth is not as important as
in theorem provers, hence it seems that the missing deduction rules in PowerLoom will not
affect the expressiveness of architectural rules too strongly.

Since inference in first-order logic languages has worst-case exponential complexity, Power-
Loom has a number of built-in features addressing performance issues:

• Subsumption and a description classifier are used to efficiently compute the extension of
relations [Mac94]. Originally developed in description logics [BCM+10], a description
classifier computes subsumption relationships between descriptions of set of entities,
i.e. intensional descriptions of types or relations. This way, the advantage of available
type information can be applied for reasoning: a logical proposition does not need to be
checked for all entities of the universe but only for those having the correct type.

• Integrated backward-chaining and forward-chaining inference are supported. Backward
chaining starts with a logical expression as hypothesis, for which the reasoning systems
looks for an inference rule with matching consequent. This is repeated with the antecedent
instead of the hypothesis and repeated until the mechanism finds facts in the knowledge
base that prove the correctness or the falsity of the hypothesis. PowerLoom can connect
backward chaining and forward chaining and allows the declaration of rules as forward
or backward only for efficiency reasons.

• Modules partition the overall knowledge base hierarchically and can keep reasoning
focused. In PowerLoom, the overall knowledge base can be separated into different
modules. Reasoning is in normal mode module-local, such that, if the knowledge base
can be logically partitioned, reasoning can be reduced and efficiently executed on a
limited subset of the overall knowledge base.

According to [Inf06], PowerLoom’s reasoning is sound but not complete. This means that
not every logical deduction theoretically possible can be executed by PowerLoom, but those it
executes are correct. Furthermore, it always terminates due to a built-in recursion control.

Knowledge bases in PowerLoom are structured by concepts and relations whereas relations
are understood in the mathematical sense and concepts compare to unary relations or types of
entities. Before concepts and relations can actually be used in PowerLoom programs, they have
to be declared. The declaration of concepts and relations can refer to supersetting relations,
i.e. it can be specified that the set of instances of concepts or relations must be a subset of the
instances of some other concepts or relations, respectively. The following code, for example,
is generated by the PowerLoomBackend for the relations and types of the finite structure
encapsulated in every instance of ComponentBaseRepresentation. They tell PowerLoom that
there are the concepts of components and interfaces as well as provide and require relations
between them.

(defconcept COMPONENT (CLASSIFIER))
(defconcept INTERFACE (OOCLASSIFIER))
(defrelation providesInterface ((?p1 COMPONENT) (?p2 INTERFACE)))
(defrelation requiresInterface ((?p1 COMPONENT) (?p2 INTERFACE)))
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The PowerLoomBackend subsystem generates code for every relation symbol that is defined
in τCBS D and additional symbols that are meta model-specific (e.g. for Layer). The defined
concepts and relations can be used to assert facts; these represent explicit knowledge about the
entities and their membership to concepts or relationships. In PowerLoom, facts are inserted
into a knowledge base using the assert statement. The following code is generated for a finite
structure modelling that the component Store is providing the interface StoreIf:

(assert (COMPONENT id_0))
(assert (INTERFACE id_1))
(assert (name id_0 "Store"))
(assert (name id_1 "StoreIf"))
(assert (providesInterface id_0 id_1))

Such code is generated for all of the entities and relation tuples encapsulated in a FiniteStructure
instance when it is forwarded to the PowerLoomBackend for knowledge base generation.

As mentioned above, architectural compliance checking is realized as querying the logical
knowledge base. The logical formulae defined in Sec. 6.2 are translated into PowerLoom code.
Since the PowerLoom representation language supports all elements of first-order logic, the
translation is straightforward. The left hand parts of the introduced definitions are declared as
relations; the right hand part of the definitions are introduced as rules. Consider, for example,
the following code implementing the definition of illegalDependenciesFromGroup given
in (6.2):

(defrelation illegalDependenciesFromGroup
((?srcLayer GROUP)(?trgLayer GROUP)
(?srcElem ELEMENT)(?trgElem ELEMENT)))

(defrule illegalLayerDependency_rhs
(=> (and (GROUP ?l1)(GROUP ?l2)(ELEMENT ?e1)(ELEMENT ?e2)

(not (= ?l1 ?l2))
(not (isAllowedToUse ?l1 ?l2))
(groupDependency ?l1 ?l2 ?e1 ?e2)

)
(illegalDependenciesFromGroup ?l1 ?l2 ?e1 ?e2)

)
)

For user convenience, there are additional arguments compared to the formal definition in
statement (6.2). This way, the inference algorithm of PowerLoom presents not only the layers
causing a violation as answer of the query but also the components/interfaces3. The rule
definition states that a illegal dependency between groups is implied (=>) if the groups are not
equal, neither there exists a allowed usage relationships between them, and in addition there

3Nevertheless, a one-to-one translation of the formal definitions could also be done. PowerLoom is able to
present proofs for query answers consisting of the deduction steps that have been made to answer the query; in
this proof the variable bindings, and hence, which components or interfaces cause rule violations, would be
visible.
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Test Series
# Components 1 2 3 4 5 Average

10 0.13 0.16 0.17 0.16 0.16 0.156
20 0.25 0.31 0.22 0.28 0.27 0.266
50 0.53 0.52 0.50 0.52 0.55 0.524

100 1.08 1.05 1.06 1.05 1.00 1.048
500 18.20 18.58 18.17 18.03 17.61 18.118

1000 78.67 75.27 81.06 76.11 80.33 78.288
2500 514.66 503.19 503.55 502.94 510.09 506.886

Measured times in seconds

Table 8.1: Time consumption to check the architectural rules for layers in design models of different
size measured in number of components.

is a dependency between the groups; groupDependency is defined according to statement
(6.3) plus additional arguments for convenience reasons. Note, that for the correct usage of
not the default open-world-semantics of PowerLoom is restricted; with open-world seman-
tics, the non-provable fact is not considered false but to have an unknown truth value. In
this, the fact that there is no isAllowedToUse link between two layers, does not mean that
(not (isAllowedToUse ?l1 ?l2)) is true, it must be explicitly asserted or implicitly in-
ferred. The ACC framework initializes PowerLoom setting all relations and concepts to have
closed-world semantics, which is ensured by asserting

(assert (closed rel))
(assert (closed c))

for all relations rel and concepts c.
The PowerLoom backend of the ACC framework is also initialized with the axioms of ΦCBS D

which are declared as rules (defrule). This way, knowledge bases can be checked whether
they represent valid component-based systems.

Table 8.1 illustrates performance test series results for the PowerLoom implementation of
the backend as used in ArCh. Tests included the implementation of the architectural rules
for layer as described in Sec. 6.17. The checked models were UML design models and a
layered architecture defining three layers with strict layering. The design models consisted of a
defined number of components as depicted in the table. In addition to the components, the same
number of interface were generated, as well as provide and require relations4; these connected
components and interfaces randomly; moreover, components and interfaces were randomly
assigned to packages, and hence indirectly to layers. Test were executed on a common desktop
PC5. For comparison: a common installation of the Eclipse Ganymede edition comes with
several hundred up to thousands of components whereas the system has about 18 million lines
of code [Ske08].

4The number of relations were created according to the assumptions that each component is providing 1–2
interfaces and requiring 2 interfaces in average.

5Intel Core 2 CPU, 2.16GHz, 2GB RAM
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The results show that the worst-case complexity of PowerLoom in querying does not affect
checking the rule for layers. Time consumption exhibits a quadratic growth with the size of
the design model. The absolute numbers, however, show that ArCh delivers checking results
in a reasonable time at least for use cases in which checks are not permanently required. An
application scenario for large systems could be to integrate architecture compliance checks into
an automatic build process like nightly builds. As will be outlined in Sec. 9.2, tool support
has to be technically optimized to deal with large systems like those represented by the larger
models of the test series.

8.5. Conclusion and Summary

This chapter has presented the prototypical implementation of the concepts for architectural
compliance checking. It has described the usage of ArCh, a simple architectural compliance
checking prototype for Eclipse. Moreover, it has explained the overall architecture of ArCh
and provided a detailed description of the reusable ACC framework as basis for general and
more sophisticated tool support.

The ACC framework contains the main application logic of compliance checking and can
be reused by the backends of arbitrary compliance checking tools. It realizes compliance
checks as queries on a logical knowledge base implemented in PowerLoom, a powerful logical
knowledge representation and reasoning system. The artefacts that need to be checked for
compliance are integrated into the framework by wrappers implementing a wrapper interface.
Wrappers provide the minimal τCBS D-structure of the model as well as the intensional rules that
have to be checked for compliance between models. The framework retrieves those structures
and rules from the wrappers and forwards them to the underlying PowerLoom system for the
generation of knowledge bases and the execution of queries for compliance checking.

The architecture of the framework allows flexibility for tool support in the required di-
mensions. First of all, the underlying mechanism of a logical reasoning system provides
high expressiveness regarding the formulation of architectural rules. It can be compared with
query language-based approaches to compliance checking (see Sec. 3.2). The realization as
framework to which meta model-specific wrappers can be connected allows us furthermore
to easily add artefact types to compliance checking tools. Moreover, since architectural rules
are declaratively added to the wrappers, single rules or the overall set of rules can easily be
modified and adapted.

However, the effort of creating wrappers can still be reduced. First of all, instead of imple-
menting the transformation definition for a given meta model to τCBS D-statements manually,
model transformation techniques could be applied to specify the definition declaratively and
execute them in a standardized way. Moreover, it should be investigated whether wrappers for
meta models conforming to a common meta model like the MOF could be partially generated.

222



Chapter 9.

Conclusion

Contents
9.1. Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

9.1.1. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

9.1.2. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

9.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

9.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

I am glad I did it, partly because it was well worth it, and
chiefly because I shall never have to do it again.

Mark Twain

This chapter will discuss the results of this work and the proposed approach to architectural
compliance checking. The contributions will be opposed to the limitations of the approach.
Furthermore, an outlook to future research will be given. A summary will conclude the chapter
and the overall thesis.

9.1. Discussion of Results

Chapter 2 concluded with the formulation of the research questions that motivated this thesis.
The results of this thesis have to be measured by the answers it gives to that questions. We
repeat the questions from Sec. 2.4 for the further discussion:

Research Question 1 (RQ 1): How can architectural compliance checking tool
support be realized that is flexible with regard to

• the large number of different meta models that have to be considered in
checking architectural compliance (RQ 1.1), and

• the variability and adaptability of different architectural rules that need to be
checked (RQ 1.2)?
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Research Question 2 (RQ 2): How can models of architectural design, detailed
design and implementation be distinguished from each other to clearly define a
term of architectural compliance, which, in order to provide checking tools, can be
checked algorithmically?

The following subsections will discuss the contributions to these research questions and the
limitations of the solution approach presented in this work.

9.1.1. Contributions

The delivered results of this thesis are the following:

• An formal framework has been developed, which

– defines a formal representation of component-based systems and models of such
systems,

– defines the term of compliance of models/artefacts of the software development
process based upon a formal classification of models/artefacts of architectural
design, detailed design, and implementation, and

– defines an algorithmic solution to checking compliance for a reasonable subset of
models.

• Architectural rules have been specified for three “architectural” aspects: (a) layered sys-
tems as special case of specifying subsystems and relationships of allowed dependencies,
(b) service-oriented interfaces, and (c) event-driven architectures. These aspects were
separated according to the applied classification criterion into architectural and detailed
design components.

• A transformation of standard UML into the formal representation has been defined for
those parts of UML relevant for a case study, as well as for an architecture profile for
UML and a design profile.

• Prototypical tool support has been implemented evaluating the developed concepts. This
tool support consists on the one hand of an architectural compliance checking prototype
(ArCh), which has been used to evaluate the developed architectural rules in parts. On
the other hand, a reusable ACC framework has been developed, encapsulating the formal
framework for easy reuse by more sophisticated compliance checking tools.

The following subsections will discuss the contributions of these results to answer the
motivating research questions.

Contributions regarding Research Questions

The proposed approach addresses RQ 1.1 by the formal representation of models as first-order
logic statements over τCBS D-structures. This formalism is used for the extensional content of
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models as well for the rules that might be contained restricting the further refinement of the
described system by other artefacts/models of different types/meta models. The checking of
rules is also applied to that logical representation of models, hence the definition of compliance
and the proposed checking algorithm are independent of any specific meta model. To include
instances of a certain meta model into the process of architectural compliance checking, a
transformation definition must be specified describing how model elements are transformed
into logical statements over τCBS D-structures. This has be done for standard UML, UML plus a
profile for architecture description, and UML plus a profile for detailed design models.

This is a potentially powerful solution to the dimension of flexibility that is addressed
by RQ 1.1. However, the provided flexibility must not only be judged by the possibility of
integrating meta models into architectural compliance checking but also by the effort to do
so. Considerations regarding the effort of integrating new meta models must be made at two
distinct levels.

At the conceptual level, we can conclude that different meta models are supported by the
approach as far as there can be given a meaningful transformation definition specifying how
to transform an instance of the meta model into a set of corresponding τCBS D-statements. The
effort of defining such a transformation is low in cases in which the modelling language itself
contains component-based concepts and the mapping onto the τCBS D-ontology is simple. It is
more difficult if artefacts should be considered, like object-oriented programming languages,
not supporting such concepts. Although defining the mapping/transformation is harder in
these cases, one should be aware that for the application of such languages/artefact types in
component-based software development there is often a common, informal understanding
of how to represent a component; for example, guidelines or technologies exist describing
how to represent a component in Java code (e.g., EJB), or in MDSD transformation rules that
generate code for components. The same holds for other concepts from component-based
software development. This knowledge can be used for the definition of the transformation
into τCBS D-statements and is, if it has only existed implicitly or informally, made explicit and
formal to a certain degree.

At the implementation level, the effort of implementing a document wrapper must be achieved,
which adds to the effort of defining the conceptual transformation. The wrappers so far are im-
plemented by traversing the model instance and transforming it into τCBS D-structure/-statements,
respectively, whereas traversing the model is implemented manually and specifically for each
meta model. Although the transformation is basically implemented manually and procedu-
rally, and the effort could probably be lowered by using model transformation techniques
(see Sec. 8.3.2), the efforts of wrapper development seem reasonable: the implemented UML
wrapper takes about 800 lines of code1.

A comparison with the state of the art regarding RQ 1.1 is difficult, as already mentioned
in Chapt. 3, because the effort of adapting those approaches is especially difficult to judge in
cases, in which the extensibility of commercial closed-source tools had to be evaluated for
comparison. However, as a direct result, it can be stated that the proposed is not restricted to
check programming languages as all related approaches do; a UML wrapper has been realized

1Since the implementation does not realize the full transformation definition given in Sec. 6.3, this is a rough
estimation based upon the existing code size and the covered percentage of transformation definitions.
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and integrated into a working prototype (see Sec. 8.1).
As another important contribution to RQ 1.1, it should be noted that the proposed approach

does not only allow flexibility with regard to artefact types that need to be checked for com-
pliance with architectural rules but also for artefact types that define architectural rules for
architectural compliance. In contrast to existing approaches, especially reflexion modelling-
based approaches (see Sec. 3.4), rules can be attached to any modelling language that is used to
describe software architectures. There is no need to introduce another notation in addition to a
used ADL for compliance checking purposes.

RQ 1.2 is also addressed by the formal framework. It denotes architectural rules to be
intensional and non-local first-order logic statements over τCBS D-structures. The ontology
defined by τCBS D and ΦCBS D describes component-based systems in great details, such that
architectural rules have great expressiveness. It enables software architectures to describe
rules restricting type structures like inheritance, the inner structure of types like components,
interfaces, and classes, the configuration of component-based systems, and the control flow
graphs of methods as specifications of component behaviour. The framework, nevertheless,
allows extending this ontology by relation symbols to introduce new, for example architectural
concepts, like layers. Extensions to τCBS D are considered in the definition of compliance and
can be introduced technically by wrappers. As application of the concepts and for evaluation
purposes, three architectural aspects have been expressed as architectural rules. A prototype
that is able to check architectural rules as defined above has been implemented applying the
logical knowledge representation system PowerLoom.

The (architectural) rules a model defines are derived from more abstract rules that are defined
on meta model level, e.g. the architectural rule for layers in general is refined for a specific layer
in a concrete model by binding some of the free variables by a fixed scheme (see Sec. 6.2.1).
This means that the definition of the rules can be attached to the meta model for which they
are defined but can be stored separated from it in the realization. The rules are that way easily
adaptable and interchangeable which fits the requirement for easy customization.

Compared to existing approaches, the proposed approach combines the advantages of query
language-based approaches and reflexion modelling. While the first have great expressiveness,
their integration into model-based approaches is not given; reflexion modelling provides a
high-level model to the degree it is required to express dependencies but have hence limited
expressiveness. The proposed approach allows software architects to add full first-order logic
rules in a customizable way to arbitrary high-level models of software systems. From the
perspective of ADL, there is a practical contribution of the proposed approach in that far
that it allows to extend the extensional description that existing ADL provide by intensional
constraints requiring checking across a set of refining artefacts of arbitrary types.

It can be concluded that the proposed framework is a powerful solution to RQ 1 providing
the base for flexible tool support.

To address RQ 2, the abstraction classification criterion defined by [EHK06] has been
successfully refined and applied in the context of component-based systems. Architectural
concepts, for example event-based architectures, are concepts defining intensional, non-local
statements over τCBS D-structures. A model describing the application of an architectural
concept in a system consists of such non-local statements but also has “its extension”, a set of
extensional statement describing facts about systems conforming to the model.
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The notion of compliance as stated in Definition 18 as part of the formal framework applies
this separation and formally states that the extension of a model developed in the design
process must adhere to the rules that models defined at the more abstract design levels. This
is especially true for models of the detailed design and implementation that have to conform
to architectural rules. The contribution of the formal framework in this respect is a formal
definition of architectural rules as the “principles guiding the design and implementation of a
system”, based on the classification of [EHK06], and a formal notion of how it can be checked
that these “guiding principles” [IEE00] are followed.

Moreover, the formal framework and its implementation as prototypical tool realize an
algorithm for a practical relevant subset of models for which the checking can be done algorith-
mically. All of these contributions are evaluated by defining exemplary architectural rules and
applying checks in a case study.

Additional Contributions

Another contribution of this thesis is a sharpened understanding of the role of software archi-
tecture as specification for design and implementation.

This contribution affects the way how architectures are described and understood. Existing
approaches to architecture description, especially ADL, focus on extensional descriptions —
i.e., the specification of components and connectors. Intensional statements are only used in
approaches in which constraints for interaction protocols are specified whereas constraints
restrict runtime structures but not static structures of refining models. All these issues lead to
approaches that, due to the inability to specify constraints for the implementation level, provide
extensional description techniques close to the implementation level themselves.

The proposed approach shows that the creation of a software architecture and its description
can improve the development of software more efficiently if the software architecture is
seen in context of the overall development process and its task to define the rules for the
refinement. This especially includes that architectural rules are considered first-class elements
of architectural descriptions which is not supported by any approach to software architecture
description so far. Moreover, there is no integrated approach so far allowing the description
of general architectural concepts, their application in the architecture of a specific system,
together with the description of the architectural rules they define for the specific design and
implementation.

The formal framework proposed in this thesis is one step to pave the road for architec-
ture description techniques which are more focused on integrating “intensional aspects” into
architecture modelling.

9.1.2. Limitations

As already mentioned in the previous section, the transformation of models into statements
over τCBS D-structures becomes the harder the more the concepts of the modelling language
differ from the concepts in τCBS D. This does not only explicitly refer to languages that are not
component-based but must be mapped to component-oriented concepts; component models that
do not assume axioms as strict as τCBS D/ΦCBS D must be mapped with care, too; for example,
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UML allows ports that define provided and required interfaces at the same time, which is not
allowed in τCBS D. It might be possible that the proposed ontology for component-based systems
does not reflect single components models adequately enough. However, it must be stated,
that the mechanism of compliance checking does not depend on the specific signature or the
axiomatic system, and that both could be customized. Existing architectural rules, however,
had to be adapted in certain cases.

The representation of behaviour as control flow graphs and the transformation of behavioural
models into such structures might also limit the field of application of the proposed approach.
The representation is strongly influenced from object-oriented systems in which behaviour is
specified by implementing methods. A mapping of other behaviour specification techniques,
for instance contract specifications, might be difficult to realize.

Limitations of the ontology that could be resolved by simple extensions are the consideration
of concepts like multiplicities or generics which are ignored, for example, in the UML wrapper
so far.

The formulation of logical rules and their expressiveness is always limited by the applied
logic and the set of available predicates, i.e. the signature. First-order logics have proved
expressive enough for the analysed architectural rules; moreover, PowerLoom provides good
query performance for this formalism as discussed in Sec. 8.4. Nevertheless, the developed
ontology τCBS D/ΦCBS D lacks of certain expressiveness especially for rules/statements referring
to the behavioural aspects.

In fact, concepts like program traces, call sequences, and other runtime constructs are missing.
Consider, for example, the rule stating that transfer objects returned by services must be newly
created objects (see Sec. 6.2.2). There are many possibilities for valid implementations of
this: the service itself creates an object, a directly called method creates it, an indirect invoked
method creates it, and so on. It is difficult to express these possibilities as disjunction over the
valid control flow graphs that reflect these options. As already outlined in Sec. 6.2.1, it will
be necessary to integrate techniques of static program analysis to add such information to the
formal representation of component-based systems. So far, the expressiveness of the formalism
is limited with regard to dynamic aspects of component-based systems.

Additionally, the set of available relation symbols reflects sort of the abstract syntax of
architectural rules with the effect that its usage is inconvenient in certain cases. For example,
to specify a method invocation in a rule that should have a certain parameter binding, the call
itself, the binding of each single parameter, and the mapped formal and actual parameters must
be referenced by single relations tuples of arity two (see, e.g. Sec. 6.2.2). Relation symbols of
higher arity, for e.g. capturing a method invocation in a single tuple, should be defined for user
convenience.

An issue that can be seen as disadvantage but also as possibility to customize the approach,
is the definition of close relations (see Def. 16). The selection of these is in fact justified but
open for interpretation. Different understandings might interpret additions to τCBS D-structures
as modifications of existing elements that are not reflected in the set as defined. Hence, the
actually selected relations are a point of discussion but do not affect the concepts of the overall
approach.

However, it shows that there might be more reasonable solutions to define substructures in
finite structures that are considered as “a whole” with regard to the definition of locality and
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intensionality.
The definition of compliance, which basically tests whether the extension of one model

satisfies the constraints of another, is not applicable to an interesting task of compliance
checking; in principal the selected formalism would enable us to check whether a detailed
design concept in general contradicts or conforms to an architectural concept. This would mean
to test an intensional, local statement for compliance with a non-local statement. The definition
of compliance, however, refers to the extension of a model.

9.2. Future Work

There are several points for improvement and different directions to extend the presented work
that are worth considering in future work.

The current way to integrate new meta models into the framework for compliance checking
can surely be improved as outlined in Sec. 9.1. Given a common meta meta model like MOF,
it could be worth to implement meta model-independent wrappers that are initialized with
the specific meta model and the model instance to be wrapped. Declarative transformation
techniques could be applied to reduce the effort of programming wrappers; however, the effort
of defining correct declarative transformation definitions must always be compared with the
effort of implementing wrappers manually.

Although the formal representation of models has been created according to the common
concepts of component-based software and although it has been applied to describe the Co-
CoME case study, the transformation of system descriptions of different component models
would be useful to further develop the ontology τCBS D/ΦCBS D and to improve it. Moreover,
efforts in this direction to overcome the most severe limitations should be undertaken, i.e. to
allow architectural rules that are more expressive with regard to behavioural aspects.

To further improve the practical relevance of the approach, architectural rules (and also
design rules) should be defined and collected in a reusable catalogue of rules. This catalogue
could be used by developers of document wrappers and would reduce the barrier to apply
architectural compliance checking at all. Starting point could be to formalize the rules that
patterns of popular pattern catalogues define, e.g. [BMRS96].

Moreover, the formalization of architectural rules of commonly used architectural aspects
would evaluate even more deeply whether the formalization and the expressiveness of the
proposed approach cover a practical relevant subset of possible architectural rules.

Checking architectural compliance and detecting violations of rules are only the basis
for exhaustive compliance management tool support. Since software systems are large and
inherently complex, resolving violations and re-establishing compliance are difficult tasks, too.
Experiences from consistency management show that automatic resolution of inconsistencies is
only possible to a certain degree, and must often be complemented by possibilities to manually
influence inconsistency repairing [BHLW07]. Approaches must make a trade-off between the
degree of automating inconsistency repairing and the degree of human interaction in order to
provide enough tool support but leave enough freedom to the users. For example, if a tool for
architectural compliance checking detects a component in a layer causing a wrong dependency,
should it try to move the component in the “correct” layer? If it should make suggestions how
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to solve the problem, what are meaningful solutions and how can they be detected?
Another logical continuation of this approach is the execution of architectural compliance

checks at runtime. Although the main purpose is to detect architectural mismatches as soon as
possible in the life cycle of a system, checking compliance late at runtime could further ensure
architectural properties for systems that cannot be completely checked at design-time. For
example, in dynamic-adaptive systems [Nie10], the components constituting the overall system
at runtime are not even known at design time. This also means that architectural properties can
be violated at runtime and cannot be checked at design time, or only approximated.

Further investigations can be made regarding the logical formalism that should be applied
to architectural compliance checking. So far, first-order logics are applied whose principal
undecidability leads to some restriction in the applied knowledge representation and reasoning
system PowerLoom (see Sec. 8.4). There is always a trade-off between the expressiveness of
the language and the efficiency of checking logical statements. It could be investigated for
example whether description logics [BCM+10] as subset of first-order logics is able to cover a
subset of architectural rules large enough to be used in practice.

Furthermore, it should be investigated whether other logics, such as approaches to temporal
logics [GFR00] could be applied to address behavioural aspects of architectural rules more
efficiently. Consider, for example, again the rules regarding services and transfer objects.
Providing an appropriate signature τ′CBS D as improvement of τCBS D, statements like “After
returning from the service, the returned object is never again used as return value” could be
possibly formulated as temporal logic statement and evaluated. The complicated statement
over the structure of a control flow graph, or over newly added runtime concepts, would be
unnecessary.

As outlined in the previous section, the main field for future work based upon this thesis
is the description of software architecture with focus on the intensional constraints that a
software architecture defines. The approach so far is only a temporary solution to the problem
that current description techniques focus on extensional statements about systems. It allows
attaching formally denoted intensional statements to existing modelling languages.

However, the principle goal should be that the software architect can use adequate architecture
description languages providing means to both relevant things: specifying components and
connectors (dependencies) and describing the applied architecture concepts including the
architectural rules they define. Furthermore, it must be possible that software architects can rely
on a repository of such concepts and architectural rules to reuse them and to easily customize
them.

One of the most important points in this context is a proper integration of architectural
patterns and reference architectures into software architecture descriptions. As seen for layers,
patterns describe “abstract” architectural rules that are refined in the context of the software
architecture of a specific system. An integrated approach has to define how architectural rules
can be systematically derived from patterns and reference architectures.

The integration of the approach into MDSD has been made in that sense that a formalism
has been proposed how to represent models for the purpose of compliance checking. So far, it
has not been applied to use persistent mapping information of applied model transformations
for compliance checking issues. For example, the method of the presented UML profile to map
layers onto packages of a design model is to define corresponding elements (the dependency
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mapsToPkg, see Sec. 6.2.1) for software architectures, such that the mapping is an explicit part
of an architectural model. In a model-driven approach, it is also thinkable that the mapping is
realized implicitly by a transformation between architectural and design models, such that, if
the transformation approach persists tracing information, the mapping should be considered by
checking the corresponding architectural rules.

For all further developments holds that extensions to the approach should be applied to check
compliance in realistic environments, i. e. for systems with realistic size and complexity. Since
the main goal is to provide tool support in the context of architectural compliance with great
flexibility, tools support will be enhanced and improved.

The existing prototypes with the functionality as described in this thesis should be improved
with regard to usability in order to be even better accepted in more evaluating case studies.
This refers, for example, to a more user-friendly way to define and modify architectural
rules, either in a more intuitive syntax than KIF, or with support like syntax checking editors,
integrated into architectural checking tools. Moreover, usability could be improved by better
presentations of checking results, for example by highlighting the sources of violations directly
in the participating models, comparable to the presentation options of reflexion modelling
approaches.

Additionally, the existing ArCh prototype must be prepared to be applicable to realistic
large-scale systems. Although a beta-version of the tool has been applied to a medium-sized
system with about 130,000 lines of code [DDHR09], its prototypical status will hardly be able
to deal with larger systems, since the finite structures, representing the models of such systems,
are kept in memory. The persistent storage into a database, for example, is possible but not yet
realized.

9.3. Summary

This chapter has concluded the results of this thesis realizing an approach to flexible tool
support for architectural compliance checking based upon a logic-based formal framework. The
framework defines an ontology of component-based systems that is used to represent models as
logical statements about systems. This way, a formal distinction between software architecture
and the refining steps of software development has been defined, resulting in a formal and
algorithmically checkable definition of compliance.

The proposed approach allows to realize architecture compliance checking tools that are
flexible with regard to supported meta models and to variability of architectural rules. An
implementation framework allows such tools to be easily adapted to new meta models, such
that existing compliance checking functionality can be easily enhanced to new models without
the need to modify existing architectural rules. Moreover, it is not only possible to easily
integrate meta models whose instances need to be compliant with some architectural model;
also meta models for architecture description defining rules can be easily integrated.

The solution enables the specification and checking of architectural rules with the expres-
siveness of full first-order logics. In combination with the easy integration of models into the
process of checking, the resulting basis for tool support allows significantly more powerful
support in the future compared to the state of the art. This is also a result of the applied
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viewpoint on software architecture which emphasizes to understand software architecture not
only as the description of components and dependencies but as the source of fundamental
guidelines for the further development of a software system.
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Appendix A.

The Axiom System ΦCBS D

This section contains the axioms of ΦCBS D as far as omitted in Chapt. 5. The axioms describe
domain restrictions and multiplicity constraints for the relations of τCBS D. They are ordered in
alphabetically by the names of the relation symbols.

Domain restriction for actualParameter:
CBSD55 B ∀x : ∀y : actualParameter(x, y)→ ParameterBinding(x) ∧ TypedElement(y)

(A.1)

Multiplicity of actualParameter on second component for fixed first component is exactly one:

CBSD56 B ∀x : ParameterBinding(x)→ ∃!y : actualParameter(x, y) (A.2)

Domain restriction for assignedTo:
CBSD57 B ∀x : ∀y : assignedTo(x, y)→ InstanceCreation(x) ∧ ReferenceVariable(y)

(A.3)

Multiplicity of assignedTo on second component for fixed first component is at most one:
CBSD58 B ∀x : InstanceCreation(x)→ ((∀y : ¬ assignedTo(x, y))∨

(∃!y : assignedTo(x, y)))
(A.4)

AsynchronousInvocation subsets MethodInvocation:
CBSD59 B ∀x : AsynchronousInvocation(x)→ MethodInvocation(x) (A.5)

Boolean subsets PrimitiveType:
CBSD60 B ∀x : Boolean(x)→ PrimitiveType(x) (A.6)

Domain restriction for boundParameter:
CBSD61 B ∀x : ∀y : boundParameter(x, y)→ MethodInvocation(x)∧

ParameterBinding(y)
(A.7)

Multiplicity of boundParameter on on first component for fixed second component is exactly
one:
CBSD62 B ∀y : ParameterBinding(y)→ ∃!x : boundParameter(x, y) (A.8)
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Class subsets OOClassifier:
CBSD63 B ∀x : Class(x)→ OOClassifier(x) (A.9)

Classifier subsets Type:
CBSD64 B ∀x : Classifier(x)→ Type(x) (A.10)

Component subsets Classifier:
CBSD65 B ∀x : Component(x)→ Classifier(x) (A.11)

ComponentInstanceCreation subsets InstanceCreation:
CBSD66 B ∀x : ComponentInstanceCreation(x)→ InstanceCreation(x) (A.12)

ComponentInstanceDestruction subsets InstanceDestruction:
CBSD67 B ∀x : ComponentInstanceDestruction(x)→ InstanceDestruction(x) (A.13)

Domain restriction for configurationPart:
CBSD68 B ∀x : ∀y : configurationPart(x, y)→ SystemConfiguration(x) ∧ Part(y) (A.14)

Multiplicity of configurationPart on second component for fixed first component is at least
one:
CBSD69 B ∀x : SystemConfiguration(x)→ ∃y : configurationPart(x, y) (A.15)

Multiplicity of configurationPart on first component for fixed second component is at most
one:
CBSD70 B ∀y : Part(y)→ ((∀x : ¬ configurationPart(x, y))∨

(∃!x : configurationPart(x, y)))
(A.16)

Connector subsets Part:
CBSD71 B ∀x : Connector(x)→ Part(x) (A.17)

Domain restriction for connectorSource:
CBSD72 B ∀x : ∀y : connectorSource(x, y)→ Connector(x) ∧ SinglePart(y) (A.18)

Multiplicity of connectorSource on second component for fixed first component is exactly one:

CBSD73 B ∀x : Connector(x)→ ∃!y : connectorSource(x, y) (A.19)

Domain restriction for connectorTarget:
CBSD74 B ∀x : ∀y : connectorTarget(x, y)→ Connector(x) ∧ SinglePart(y) (A.20)

Multiplicity of connectorTarget on second component for fixed first component is exactly one:

CBSD75 B ∀x : Connector(x)→ ∃!y : connectorTarget(x, y) (A.21)
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ConstantSymbol subsets ReferenceVariable:
CBSD76 B ∀x : ConstantSymbol(x)→ ReferenceVariable(x) (A.22)

Domain restriction for containsClass:
CBSD77 B ∀x : ∀y : containsClass(x, y)→ Component(x) ∧ Class(y) (A.23)

Multiplicity of containsClass on on first component for fixed second component is exactly
one:
CBSD78 B ∀y : Class(y)→ ∃!x : containsClass(x, y) (A.24)

Domain restriction for containsComponent:
CBSD79 B ∀x : ∀y : containsComponent(x, y)→ Component(x) ∧ Package(y) (A.25)

Multiplicity of containsComponent on second component for fixed first component is exactly
one:
CBSD80 B ∀x : Component(x)→ ∃!y : containsComponent(x, y) (A.26)

Domain restriction for containsEdge:
CBSD81 B ∀x : ∀y : containsEdge(x, y)→ MethodBody(x) ∧ ControlFlowEdge(y)

(A.27)

Multiplicity of containsEdge on on first component for fixed second component is exactly one:

CBSD82 B ∀y : ControlFlowEdge(y)→ ∃!x : containsEdge(x, y) (A.28)

Domain restriction for containsInterface:
CBSD83 B ∀x : ∀y : containsInterface(x, y)→ Package(x) ∧ Interface(y) (A.29)

Multiplicity of containsInterface on on first component for fixed second component is exactly
one:
CBSD84 B ∀y : Interface(y)→ ∃!x : containsInterface(x, y) (A.30)

Domain restriction for containsPkg:
CBSD85 B ∀x : ∀y : containsPkg(x, y)→ Package(x) ∧ Package(y) (A.31)

Multiplicity of containsPkg on first component for fixed second component is at most one:
CBSD86 B ∀y : Package(y)→ ((∀x : ¬ containsPkg(x, y)) ∨ (∃!x : containsPkg(x, y)))

(A.32)

Domain restriction for containsStatement:
CBSD87 B ∀x : ∀y : containsStatement(x, y)→ MethodBody(x) ∧ StatementNode(y)

(A.33)
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Multiplicity of containsStatement on on first component for fixed second component is exactly
one:
CBSD88 B ∀y : StatementNode(y)→ ∃!x : containsStatement(x, y) (A.34)

Domain restriction for declaresVariable:
CBSD89 B ∀x : ∀y : declaresVariable(x, y)→ MethodBody(x) ∧ LocalVariable(y)

(A.35)

Multiplicity of declaresVariable on on first component for fixed second component is exactly
one:
CBSD90 B ∀y : LocalVariable(y)→ ∃!x : declaresVariable(x, y) (A.36)

Domain restriction for definesMember:
CBSD91 B ∀x : ∀y : definesMember(x, y)→ OOClassifier(x) ∧Member(y) (A.37)

Multiplicity of definesMember on on first component for fixed second component is exactly
one:
CBSD92 B ∀y : Member(y)→ ∃!x : definesMember(x, y) (A.38)

Domain restriction for definesMethod:
CBSD93 B ∀x : ∀y : definesMethod(x, y)→ Class(x) ∧MethodBody(y) (A.39)

Multiplicity of definesMethod on on first component for fixed second component is exactly
one:
CBSD94 B ∀y : MethodBody(y)→ ∃!x : definesMethod(x, y) (A.40)

Domain restriction for definesSignature:
CBSD95 B ∀x : ∀y : definesSignature(x, y)→ OOClassifier(x) ∧ Signature(y) (A.41)

Multiplicity of definesSignature on on first component for fixed second component is exactly
one:
CBSD96 B ∀y : Signature(y)→ ∃!x : definesSignature(x, y) (A.42)

Domain restriction for destructionReference:
CBSD97 B ∀x : ∀y : destructionReference(x, y)→ InstanceDestruction(x)∧

ReferenceVariable(y)
(A.43)

Multiplicity of destructionReference on second component for fixed first component is exactly
one:
CBSD98 B ∀x : InstanceDestruction(x)→ ∃!y : destructionReference(x, y) (A.44)

Domain restriction for extends:
CBSD99 B ∀x : ∀y : extends(x, y)→ OOClassifier(x) ∧ OOClassifier(y) (A.45)
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Float subsets PrimitiveType:
CBSD100 B ∀x : Float(x)→ PrimitiveType(x) (A.46)

Domain restriction for formalParameter:
CBSD101 B ∀x : ∀y : formalParameter(x, y)→ ParameterBinding(x) ∧ Parameter(y)

(A.47)

Multiplicity of formalParameter on second component for fixed first component is exactly
one:
CBSD102 B ∀x : ParameterBinding(x)→ ∃!y : formalParameter(x, y) (A.48)

Domain restriction for hasMember:
CBSD103 B ∀x : ∀y : hasMember(x, y)→ OOClassifier(x) ∧Member(y) (A.49)

Multiplicity of hasMember on first component for fixed second component is at least one:
CBSD104 B ∀y : Member(y)→ ∃x : hasMember(x, y) (A.50)

Domain restriction for hasMethod:
CBSD105 B ∀x : ∀y : hasMethod(x, y)→ Class(x) ∧MethodBody(y) (A.51)

Multiplicity of hasMethod on first component for fixed second component is at least one:
CBSD106 B ∀y : MethodBody(y)→ ∃x : hasMethod(x, y) (A.52)

Domain restriction for hasParameter:
CBSD107 B ∀x : ∀y : hasParameter(x, y)→ Signature(x) ∧ Parameter(y) (A.53)

Multiplicity of hasParameter on on first component for fixed second component is exactly
one:
CBSD108 B ∀y : Parameter(y)→ ∃!x : hasParameter(x, y) (A.54)

Domain restriction for hasSignature:
CBSD109 B ∀x : ∀y : hasSignature(x, y)→ OOClassifier(x) ∧ Signature(y) (A.55)

Multiplicity of hasSignature on first component for fixed second component is at least one:
CBSD110 B ∀y : Signature(y)→ ∃x : hasSignature(x, y) (A.56)

Domain restriction for hasType:
CBSD111 B ∀x : ∀y : hasType(x, y)→ TypedElement(x) ∧ Type(y) (A.57)

Multiplicity of hasType on second component for fixed first component is at most one:
CBSD112 B ∀x : TypedElement(x)→ ((∀y : ¬ hasType(x, y)) ∨ (∃!y : hasType(x, y)))

(A.58)

Multiplicity of hasType on on first component for fixed second component is exactly one:
CBSD113 B ∀y : Type(y)→ ∃!x : hasType(x, y) (A.59)
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Domain restriction for implements:
CBSD114 B ∀x : ∀y : implements(x, y)→ Class(x) ∧ Interface(y) (A.60)

Domain restriction for implementsSignature:
CBSD115 B ∀x : ∀y : implementsSignature(x, y)→ MethodBody(x) ∧ Signature(y)

(A.61)

Multiplicity of implementsSignature on second component for fixed first component is exactly
one:
CBSD116 B ∀x : MethodBody(x)→ ∃!y : implementsSignature(x, y) (A.62)

Domain restriction for inheritsMember:
CBSD117 B ∀x : ∀y : inheritsMember(x, y)→ OOClassifier(x) ∧Member(y) (A.63)

Domain restriction for inheritsMethod:
CBSD118 B ∀x : ∀y : inheritsMethod(x, y)→ Class(x) ∧MethodBody(y) (A.64)

Domain restriction for inheritsSignature:
CBSD119 B ∀x : ∀y : inheritsSignature(x, y)→ OOClassifier(x) ∧ Signature(y) (A.65)

InnerPart subsets SinglePart:
CBSD120 B ∀x : InnerPart(x)→ SinglePart(x) (A.66)

InstanceCreation subsets StatementNode:
CBSD121 B ∀x : InstanceCreation(x)→ StatementNode(x) (A.67)

InstanceDestruction subsets StatementNode:
CBSD122 B ∀x : InstanceDestruction(x)→ StatementNode(x) (A.68)

Domain restriction for instantiatedClassifier:
CBSD123 B ∀x : ∀y : instantiatedClassifier(x, y)→ InstanceCreation(x) ∧ Classifier(y)

(A.69)

Multiplicity of instantiatedClassifier on second component for fixed first component is exactly
one:
CBSD124 B ∀x : InstanceCreation(x)→ ∃!y : instantiatedClassifier(x, y) (A.70)

Integer subsets PrimitiveType:
CBSD125 B ∀x : Integer(x)→ PrimitiveType(x) (A.71)
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Domain restriction for invokedAt:
CBSD126 B ∀x : ∀y : invokedAt(x, y)→ MethodInvocation(x) ∧ ReferenceVariable(y)

(A.72)

Multiplicity of invokedAt on second component for fixed first component is exactly one:
CBSD127 B ∀x : MethodInvocation(x)→ ∃!y : invokedAt(x, y) (A.73)

Domain restriction for invokedSignature:
CBSD128 B ∀x : ∀y : invokedSignature(x, y)→ MethodInvocation(x) ∧ Signature(y)

(A.74)

Multiplicity of invokedSignature on second component for fixed first component is exactly
one:
CBSD129 B ∀x : MethodInvocation(x)→ ∃!y : invokedSignature(x, y) (A.75)

LocalVariable subsets ReferenceVariable:
CBSD130 B ∀x : LocalVariable(x)→ ReferenceVariable(x) (A.76)

Interface subsets OOClassifier:
CBSD131 B ∀x : Interface(x)→ OOClassifier(x) (A.77)

Domain restriction for isDelegator:
CBSD132 B ∀x : ∀y : isDelegator(x, y)→ Connector(x) ∧ Boolean(y) (A.78)

Multiplicity of isDelegator on second component for fixed first component is exactly one:
CBSD133 B ∀x : Connector(x)→ ∃!y : isDelegator(x, y) (A.79)

Member subsets ReferenceVariable:
CBSD134 B ∀x : Member(x)→ ReferenceVariable(x) (A.80)

MethodInvocation subsets StatementNode:
CBSD135 B ∀x : MethodInvocation(x)→ StatementNode(x) (A.81)

Domain restriction for name:
CBSD136 B ∀x : ∀y : name(x, y)→ NamedElement(x) ∧ String(y) (A.82)

Multiplicity of name on second component for fixed first component is exactly one:
CBSD137 B ∀x : NamedElement(x)→ ∃!y : name(x, y) (A.83)

Domain restriction for nextParameter:
CBSD138 B ∀x : ∀y : nextParameter(x, y)→ Parameter(x) ∧ Parameter(y) (A.84)
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Multiplicity of nextParameter on second component for fixed first component is at most one:
CBSD139 B ∀x : Parameter(x)→ ((∀y : ¬ nextParameter(x, y))∨

(∃!y : nextParameter(x, y)))
(A.85)

Multiplicity of nextParameter on first component for fixed second component is at most one:
CBSD140 B ∀y : Parameter(y)→ ((∀x : ¬ nextParameter(x, y))∨

(∃!x : nextParameter(x, y)))
(A.86)

ObjectCreation subsets InstanceCreation:
CBSD141 B ∀x : ObjectCreation(x)→ InstanceCreation(x) (A.87)

ObjectDestruction subsets InstanceDestruction:
CBSD142 B ∀x : ObjectDestruction(x)→ InstanceDestruction(x) (A.88)

OOClassifier subsets Classifier:
CBSD143 B ∀x : OOClassifier(x)→ Classifier(x) (A.89)

Package subsets NamedElement:
CBSD144 B ∀x : Package(x)→ NamedElement(x) (A.90)

Parameter subsets ReferenceVariable:
CBSD145 B ∀x : Parameter(x)→ ReferenceVariable(x) (A.91)

Part subsets ReferenceVariable:
CBSD146 B ∀x : Part(x)→ ReferenceVariable(x) (A.92)

Domain restriction for passesValueFrom:
CBSD147 B ∀x : ∀y : passesValueFrom(x, y)→ ReferenceAssignment(x)∧

ReferenceVariable(y)
(A.93)

Multiplicity of passesValueFrom on second component for fixed first component is exactly
one:
CBSD148 B ∀x : ReferenceAssignment(x)→ ∃!y : passesValueFrom(x, y) (A.94)

Domain restriction for passesValueTo:
CBSD149 B ∀x : ∀y : passesValueTo(x, y)→ ReferenceAssignment(x)∧

ReferenceVariable(y)
(A.95)

Multiplicity of passesValueTo on second component for fixed first component is exactly one:
CBSD150 B ∀x : ReferenceAssignment(x)→ ∃!y : passesValueTo(x, y) (A.96)
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Port subsets SinglePart:
CBSD151 B ∀x : Port(x)→ SinglePart(x) (A.97)

PrimitiveType subsets Type:
CBSD152 B ∀x : PrimitiveType(x)→ Type(x) (A.98)

Domain restriction for providedInterface:
CBSD153 B ∀x : ∀y : providedInterface(x, y)→ ProvidedPort(x) ∧ Interface(y) (A.99)

Multiplicity of providedInterface on second component for fixed first component is exactly
one:
CBSD154 B ∀x : ProvidedPort(x)→ ∃!y : providedInterface(x, y) (A.100)

ProvidedPort subsets Port:
CBSD155 B ∀x : ProvidedPort(x)→ Port(x) (A.101)

Domain restriction for providesInterface:
CBSD156 B ∀x : ∀y : providesInterface(x, y)→ Component(x) ∧ Interface(y) (A.102)

Multiplicity of providesInterface on second component for fixed first component is at least
one:
CBSD157 B ∀x : Component(x)→ ∃y : providesInterface(x, y) (A.103)

Domain restriction for qualifiedName:
CBSD158 B ∀x : ∀y : qualifiedName(x, y)→ NamedElement(x) ∧ String(y) (A.104)

Multiplicity of qualifiedName on second component for fixed first component is exactly one:
CBSD159 B ∀x : NamedElement(x)→ ∃!y : qualifiedName(x, y) (A.105)

ReferenceAssignment subsets StatementNode:
CBSD160 B ∀x : ReferenceAssignment(x)→ StatementNode(x) (A.106)

ReferenceVariable subsets TypedElement:
CBSD161 B ∀x : ReferenceVariable(x)→ TypedElement(x) (A.107)

Domain restriction for requiredInterface:
CBSD162 B ∀x : ∀y : requiredInterface(x, y)→ RequiredPort(x) ∧ Interface(y) (A.108)

Multiplicity of requiredInterface on second component for fixed first component is exactly
one:
CBSD163 B ∀x : RequiredPort(x)→ ∃!y : requiredInterface(x, y) (A.109)
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RequiredPort subsets Port:
CBSD164 B ∀x : RequiredPort(x)→ Port(x) (A.110)

Domain restriction for requiresInterface:
CBSD165 B ∀x : ∀y : requiresInterface(x, y)→ Component(x) ∧ Interface(y) (A.111)

Return subsets StatementNode:
CBSD166 B ∀x : Return(x)→ StatementNode(x) (A.112)

Domain restriction for returnedRef :
CBSD167 B ∀x : ∀y : returnedRef (x, y)→ Return(x)∧

ReferenceVariable(y)
(A.113)

Multiplicity of returnedRef on second component for fixed first component is at most one:
CBSD168 B ∀x : Return(x)→ ((∀y : ¬ returnedRef (x, y))∨

(∃!y : returnedRef (x, y)))
(A.114)

Domain restriction for returnedTo:
CBSD169 B ∀x : ∀y : returnedTo(x, y)→ SynchronousInvocation(x)∧

ReferenceVariable(y)
(A.115)

Multiplicity of returnedTo on second component for fixed first component is at most one:
CBSD170 B ∀x : SynchronousInvocation(x)→ ((∀y : ¬ returnedTo(x, y))∨

(∃!y : returnedTo(x, y)))
(A.116)

Domain restriction for returnedValue:
CBSD171 B ∀x : ∀y : returnedValue(x, y)→ Return(x) ∧ ReferenceVariable(y) (A.117)

Multiplicity of returnedValue on second component for fixed first component is at most one:
CBSD172 B ∀x : Return(x)→ ((∀y : ¬ returnedValue(x, y))∨

(∃!y : returnedValue(x, y)))
(A.118)

RootNode subsets StatementNode:
CBSD173 B ∀x : RootNode(x)→ StatementNode(x) (A.119)

Domain restriction for setsMember:
CBSD174 B ∀x : ∀y : setsMember(x, y)→ Connector(x) ∧Member(y) (A.120)

Multiplicity of setsMember on second component for fixed first component is at most one:
CBSD175 B ∀x : Connector(x)→ ((∀y : ¬ setsMember(x, y))∨

(∃!y : setsMember(x, y)))
(A.121)

SinglePart subsets Part:
CBSD176 B ∀x : SinglePart(x)→ Part(x) (A.122)
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Signature subsets TypedElement:
CBSD177 B ∀x : Signature(x)→ TypedElement(x) (A.123)

Domain restriction for sourceContext:
CBSD178 B ∀x : ∀y : sourceContext(x, y)→ Connector(x) ∧ InnerPart(y) (A.124)

Multiplicity of sourceContext on second component for fixed first component is at most one:
CBSD179 B ∀x : Connector(x)→ ((∀y : ¬ sourceContext(x, y))∨

(∃!y : sourceContext(x, y)))
(A.125)

Domain restriction for srcNode:
CBSD180 B ∀x : ∀y : srcNode(x, y)→ ControlFlowEdge(x) ∧ StatementNode(y) (A.126)

Multiplicity of srcNode on second component for fixed first component is exactly one:
CBSD181 B ∀x : ControlFlowEdge(x)→ ∃!y : srcNode(x, y) (A.127)

String subsets PrimitiveType:
CBSD182 B ∀x : String(x)→ PrimitiveType(x) (A.128)

Domain restriction for successorNode:
CBSD183 B ∀x : ∀y : successorNode(x, y)→ StatementNode(x) ∧ StatementNode(y)

(A.129)

SynchronousInvocation subsets MethodInvocation:
CBSD184 B ∀x : SynchronousInvocation(x)→ MethodInvocation(x) (A.130)

Domain restriction for targetContext:
CBSD185 B ∀x : ∀y : targetContext(x, y)→ Connector(x) ∧ InnerPart(y) (A.131)

Multiplicity of targetContext on second component for fixed first component is at most one:
CBSD186 B ∀x : Connector(x)→ ((∀y : ¬ targetContext(x, y))∨

(∃!y : targetContext(x, y)))
(A.132)

Domain restriction for trgNode:
CBSD187 B ∀x : ∀y : trgNode(x, y)→ ControlFlowEdge(x) ∧ StatementNode(y) (A.133)

Multiplicity of trgNode on second component for fixed first component is exactly one:
CBSD188 B ∀x : ControlFlowEdge(x)→ ∃!y : trgNode(x, y) (A.134)

Type subsets NamedElement:
CBSD189 B ∀x : Type(x)→ NamedElement(x) (A.135)
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TypedElement subsets NamedElement:
CBSD190 B ∀x : TypedElement(x)→ NamedElement(x) (A.136)
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Appendix B.

The Architecture and Design Profiles
for UML

B.1. The Architecture Profile

The architecture profile defined in this section contains stereotypes to extend standard UML
with concepts to by able to model architectural concepts applied in the case study of this work
(see Sec. 4.1.2 and Sec. 4.2). Figure B.1 depicts the overall profile. This section describes the
single elements of the profile in alphabetical order.

Figure B.1: The Architecture Profile.

B.1.1. EventChannel

Extended Meta Class

Property
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Icon

Description

This stereotypes marks properties which represent an event channel in a system configuration
or in a component.

Constraints and Transformation

• Instances of Property stereotyped with «EventChannel» must be part of a component
which can optionally be stereotyped with «system ».

T UML,arch(EventChannel) B
({EventChannelthis}, {hasECType(this), noBypassingOfChannel(this)})

For refinement of architectural rules see (6-42) – (6.44).

B.1.2. Group

Extended Meta Class

Package

Icon

None.

Description

This stereotype marks “virtual” packages that logically group model elements. This means that
the elements are not owned by such packages. Instead they are owned by other packages to
which groups can be mapped. This way, it is possible to model groups or group hierarchies that
cross-cut the primary package structure.

Constraints and Transformation

• The set of owned elements must be empty.

T UML,arch(Group) B {Group(this),¬ illegalDependenciesFromGroup(this)}

For refinement of architectural rules see (6.1) – (6.13).
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B.1.3. isAllowedToUse

Extended Meta Class

Dependency

Icon

None.

Description

This stereotypes expresses that is allowed to have dependencies between the group at the
source of the relationship towards the target of the relationship. Dependencies between groups
manifest as dependencies between packages to which the participating groups are mapped by
«mapsToPkg».

Constraints and Transformation

• Source as well as target of the dependency must be stereotyped with «Group» or with a
specialization of it.

T UML,arch(isAllowedToUse) B ({isAllowedToUse(this.source, this.target)}, ∅)

B.1.4. isAllowedToUseServices

Extended Meta Class

Dependency, specializes «isAllowedToUse».

Icon

None.

Description

Marks dependencies towards service-oriented layers expressing that the group at the source of
the dependency may only use the explicitly marked services of the layer.

Constraints and Transformation

• Source of dependency must be a package stereotyped with «Group» or with one of its
specializations.

• Target of dependency must be a package stereotyped with «ServiceOrientedLayer».
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T UML,arch(isAllowedToUseServices) B
({isAllowedToUseServices(this.source, this.target)}, ∅)

The transformation definition of «isAllowedToUse» also applies to instances stereotyped with
«isAllowedToUseServices».

B.1.5. Layer

Extended Meta Class

Package, specialization of Group.

Icon

Description

Layers are a special form of groups. They can be used to structure the model content hierarchi-
cally. A package stereotyped with «Layer» defines a layer level (attribute level, which defines a
hierarchical order between layers regarding «isAllowedToUse» relationships.

Constraints and Transformation

• For all outgoing «isAllowedToUse» dependencies of l has to hold: if the target m is
stereotyped with «Layer», then the level of m must be lower than that of l.

T UML,arch(Layer) B ({Layer(this), level(this, this.level)}, ∅)

The transformation of «Group» also applies to instances of «Layer».

B.1.6. mapsToPkg

Extended Meta Class

Dependency

Icon

None.

Description

This stereotype marks dependency between groups and “non-virtual” packages expressing to
which packages a group, or one of its specializations, is mapped.
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Constraints and Transformation

• Source of dependency must be stereotyped with «Group» or a specialization like Layer.

• Target of dependency may not be stereotyped with «Group» or a specialization like
Layer.

T UML,arch(mapsToPkg) B ({mapsToPkg(this.source, this.target)}, ∅)

B.1.7. PluggablePart

Extended Meta Class

Property

Icon

None.

Description

This stereotype is an abstract super class for instantiable stereotypes representing properties
that can be plugged into event channels indicating that they are either able to receive or publish
events (or both).

Constraints and Transformation

• Property must be part of a component, optionally stereotyped with «system».

T UML,arch(PluggablePart) B ({PluggablePart(this)}, ∅)

B.1.8. plugsInto

Extended Meta Class

Dependency

Icon

None.

Description

Connects pluggable parts with an EventChannel instance modelling that a pluggable part
is able to publish and receive events, depending on the instantiated specialization, via the
connected channel.
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Constraints and Transformation

• Source of dependency must be stereotyped with «PluggablePart» or one of its special-
izations.

• Target of dependency must be stereotyped with «EventChannel» or one of its specializa-
tions.

T UML,arch(plugsInto) B ({plugsInto(this.source, this.target)}, ∅)

B.1.9. Publisher

Extended Meta Class

Property, specializes «PluggablePart».

Icon

Description

Marks properties that are publishers of events at one or more connected event channels.

Constraints and Transformation

T UML,arch(Publisher) B({Publisher(this)}, {hasPublisherType(this)})

The transformation definition of «PluggablePart» also applies to instances stereotyped with
«PluggablePart».
For refinement of architectural rules see (6.42) and (6.43)

B.1.10. ServiceOrientedLayer

Extended Meta Class

Package, specializes «Layer».
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Icon

Description

This stereotype marks a special variant of layers providing services (see App. B.2) to clients of
the layer.

Constraints and Transformation

T UML,arch(ServiceOrientedLayer) B
({ServiceOrientedLayer(this)}, {onlyServicesExternallyUsed(this)})

The transformation definitions of «Group» and «Layer» also apply to instances stereotyped
with «Subscriber».
For refinement of architectural rules see (6.25) – (6.27).

B.1.11. Subscriber

Extended Meta Class

Property, specializes «PluggablePart».

Icon

Description

Marks properties that are subscribers to events at one or more connected event channels.

Constraints and Transformation

T UML,arch(Subscriber) B({Subscriber(this)}, {hasSubscriberType(this)})

The transformation definition of «PluggablePart» also applies to instances stereotyped with
«Subscriber».
For refinement of architectural rules see (6.42) and (6.43).
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B.2. The Design Profile

The design profile covers the parts of the considered architectural aspects that need to be
expressed at the detailed design level. Fig. B.2 shows an overview of all available stereotypes
defined by the profile. They will be described in detail in the following subsections.

Figure B.2: The Design Profile.

B.2.1. Event

Extended Meta Class

Interface
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Icon

Description

Marks interfaces that represent events.

Constraints and Transformation

T UML,design(Event) B({Event(this)}, ∅)

B.2.2. EventChannelComponent

Extended Meta Class

Component

Icon

Description

This stereotype marks components that provide the functionality required to implement event
channels. This means that (a) it provides a port at which event can be published, (b) it requires
ports at which subscribers can be informed about events, and (c) it forwards events correctly
between publishers and subscribers.

Constraints and Transformation

T UML,design(EventChannelComponent) B
({EventChannelComponent(this)}, {isValidEventChannelComp(this)})

For refinement of design rules see (6.36), (6.37), and (6.40).
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B.2.3. EventHandlerInterface

Extended Meta Class

Interface

Icon

None.

Description

This stereotype marks interfaces responsible for processing events at subscribers.

Constraints and Transformation

T UML,design(EventHandlerInterface) B
({EventHandlerInterface}, {isValidEventHandlerIf (this)})

For refinement of design rules see (6.29), (6.34), and (6.35).

B.2.4. EventMessage

Extended Meta Class

Interface

Icon

Description

Marks interfaces that are able to transport events via an event channel — this means, that an
interface marked as «EventMessage» is somehow able to save or forward objects whose type
is implementing a «Event» interface.

Constraints and Transformation

T UML,design(EventMessage) B({EventMessage(this)}, {isEventContainer(this)})

For refinement of design rules see (6.28).
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B.2.5. isCarrierFor

Extended Meta Class

Dependency

Icon

None.

Description

Represent the information which events can be transported by an instance of «EventMessage».
It connects this instances with those event that can be processed by the event message for the
purpose of forwarding by an event channel. While interfaces stereotyped with «EventMes-
sage» are mostly elements of a technical messaging framework, «Event» instances are mostly
application-specific. «isCarrierFor» connects both levels.

Constraints and Transformation

• Source of dependency must be an interface stereotyped with «EventMessage».

• Target of dependency must be an interface stereotyped with «Event».

T UML,design(isCarrierFor) B({isCarrierFor(this.source, this.target)}, ∅)

B.2.6. isChannelFor

Extended Meta Class

Dependency

Icon

None.

Description

This stereotypes relates properties playing the role of event channels and the event that are
actually forwarded by this specific event channel.

Constraints and Transformation

• Source of dependency must be property whose type is stereotyped with «EventChannel-
Component».

• Target of dependency must stereotyped with «Event».

T UML,design(isChannelFor) B({isChannelFor(this.source, this.target)}, ∅)
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B.2.7. msgCallback

Extended Meta Class

Operation

Icon

None.

Description

Marks methods of subscribers that serve as callback for the the event channel

Constraints and Transformation

T UML,design(onMsgCallback) B
({onMsgCallback(this)}, {hasMsgCallbackSig(this)})

For refinement of design rules see (6.31)

B.2.8. onEvent

Extended Meta Class

Operation

Icon

None.

Description

Marks operations that implement the reacting behaviour of event subscribers to a certain event.

Constraints and Transformation

T UML,design(onEvent) B({onEvent(this)}, {hasOnEventSig(this)})

For refinement of design rules see (6.35).

B.2.9. publish

Extended Meta Class

Operation
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Icon

None.

Description

Marks operation that can be called to publish event. Mostly provided by event channels or
other event distribution concepts.

Constraints and Transformation

T UML,design(publish) B({publish(this}, {hasPublishSig(this)})

For refinement of design rules see (6.33).

B.2.10. PublisherComponent

Extended Meta Class

Component

Icon

Description

This stereotype marks components that are going to publish event at event channels. They
require a publisher interface and are connected to an event channel at runtime providing such
an interface.

Constraints and Transformation

T UML,design(PublisherComponent) B
({PublisherComponent(this)}, {isValidPublisherComp(this)})

(B.1)

For refinement of design rules see (6.36) and (6.39).

B.2.11. PublisherInterface

Extended Meta Class

Interface
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Icon

Description

Marks interfaces used for the purpose of publishing events. Such interface define at least one
operation stereotyped with «publish».

Constraints and Transformation

T UML,design(PublisherInterface) B
({PublisherInterface(this)}, {isValidPublisherIf (this)})

For refinement of design rules see (6.29), (6.32), and (6.33).

B.2.12. Service

Extended Meta Class

Interface

Icon

Description

This stereotype marks service interfaces, i.e. interfaces providing only operations with copy
semantics (see Sec. 4.2.2 and 6.2.2.

Constraints and Transformation

T UML,design(Service) B ({Service(this)}, {hasServiceMethodsOnly(this)})

For refinement of design rules see (6.17) – (6-19).
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B.2.13. ServiceComponent

Extended Meta Class

Component

Icon

Description

Marks components providing services, or more precisely, providing at least one interface
stereotyped with «Service».

Constraints and Transformation

T UML,design(ServiceComponent) B
({ServiceComponent(this)}, {providesS ervice(this, this.provided)})

For refinement of design rules see (6.20) – (6.24).

B.2.14. SubscriberComponent

Extended Meta Class

Component

Icon

Description

Marks components realizing subscribers. Such component provide a subscriber interface and
an event handler interface to react to events forwarded by event channels (see «EventHandler-
Interface» and «SubscriberInterface»).
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Constraints and Transformation

T UML,design(SubscriberComponent) B
({SubscriberComponent}, {isValidSubscriberComp(this)})

For refinement of design rules see (6.36) – (6.38).

B.2.15. SubscriberInterface

Extended Meta Class

Interface

Icon

Description

Marks interfaces providing subscriber functionality by providing a message call back. All
subscribers need to implement an interface stereotyped with «SubscriberInterface».

Constraints and Transformation

T UML,design(SubscriberInterface) B
({SubscriberInterface(this)}, {isValidSubscriberIf (this)})

(B.2)

For refinement of design rules see (6.29) – (6.30).

B.2.16. Transfer

Extended Meta Class

Interface

Icon
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Description

Marks interfaces for transfer objects. Transfer objects instantiate classes that implement an
interface stereotyped with «Transfer».

Constraints and Transformation

T UML,design(Transfer) B ({Transfer(this}, {onlyLegalMembers(this), onlyGettersAndSetters(this)})

For refinement of design rules see (6.14) – (6.16).

261





Appendix C.

The Reference Design Model of
CoCoME

The Figures C.1 and C.2 illustrate the grouping of components and interfaces in packages.
Fig. C.1 focuses on the components and interfaces of the inventory subsystem. The components
and interfaces of the cash desk subsystem are depicted in Fig. C.2
The system configuration of the CoCoME system is depicted in Fig. C.3 and Fig. C.4 whereas
the first shows the parts constituting the inventory subsystem; the latter shows the cash desk
system. The figures provide two partial views on the same single system configuration.
The Fig. C.5 - C.7 show the components of the Data subpackage in the inventory system. They
provide the types for the parts that constitute the data layer of the system at runtime.
The Fig. C.8 - C.13 show the components of the Application subpackage in the inventory
system. They provide the types for the parts that constitute the application layer of the system
at runtime.
The Fig. C.14 - C.21 show the components of the cash desk subsystem of CoCoME.
Figures C.22 - C.24 show representative sequence diagrams.
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Figure C.1: Package structure of the inventory subsystem.
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Figure C.2: Package structure of the cash desk subsystem.
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Figure C.3: Partial illustration of the CoCoME system configuration (Inventory System).
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Figure C.4: Partial illustration of the CoCoME system configuration (Cashdesk System).
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Figure C.5: The Store component and related interfaces.

Figure C.6: The Enterprise component and related interfaces.
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Figure C.7: The Persistence component and related interfaces.
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Figure C.8: The StoreApp component and related interfaces.
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Figure C.9: Implementation details of StoreApp.

Figure C.10: The component ReportingApp and related interfaces.
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Figure C.11: Implementation details of ReportingApp.

Figure C.12: The component ProductDispatcherApp and related interfaces.
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Figure C.13: Implementation details of ProductDispatcherApp.
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Figure C.14: The CashDeskApplication component and related interfaces.
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Figure C.15: The CardReader component and related interfaces.
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Figure C.16: The CashBox component and related interfaces.
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Figure C.17: The LightDisplay component and related interfaces.
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Figure C.18: The Printer component and related interfaces.
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Figure C.19: The Scanner component and related interfaces.

Figure C.20: The JMSEventChannel component and related interfaces.
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Figure C.21: Events defined in CoCoME as interfaces of a helper component EventProvider.
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Figure C.22: Sequence diagram for getProductsWithLowStock implemented by component Store-
App.
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Figure C.23: Sequence diagram for queryLowStockItems implemented by component Store.
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Figure C.24: Sequence diagram for rollInReceivedOrder implemented by component StoreApp.
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