Sebastian Herold

Architectural Compliance in
Component-Based Systems

Foundations, Specification, and Checking of
Architectural Rules

SSE-Dissertation 5

Software
: Systems Institut fur Informatik
2 ___/| Engineering Lehrstuhl von Prof. Dr. Andreas Rausch

Architectural Compliance in
Component-Based Systems

Foundations, Specification, and Checking of Architectural Rules

Doctoral Thesis
(Dissertation)

to be awarded the degree of
Doctor rerum naturalium
(Dr. rer. nat.)

submitted by
Sebastian Herold

from Diisseldorf

approved by the Department of Informatics,
Clausthal University of Technology

2011

Dissertation Clausthal, SSE-Dissertation 5, 2011

Chairperson of the Board of Examiners
Prof. Dr. Jorg P. Miiller

Chief Reviewer
Prof. Dr. Andreas Rausch

2. Reviewer
Prof. Dr. Niels Pinkwart

3. Reviewer
Dr. Clemens Szyperski

Date of oral examination: September 5, 2011

Cover picture: ©r.lopatitsch / pixelio.de

Abstract

The intended software architecture of a software system manifests the earliest and most
fundamental design decisions. To ensure that the final software product is consistent with those
design decisions and the requirements realized that way, the software architecture has to be
refined correctly. This means that the artefacts of detailed design and implementation have to
comply with the intended software architecture.

A basic task to ensure architectural compliance is the checking of architectural rules. These
rules are constraints resulting from the application of architectural principles, like patterns,
reference architectures or guidelines, and restricting the way an architecture can be refined.
However, checking those rules is difficult. Manual checks are in general not possible due to
the size and complexity of modern software systems. Architectural rules are often described
only implicitly and informally, partially due to missing description techniques; thus, realizing
powerful tool support is challenging. Moreover, compliance checking tools have to be very
flexible. The great variety of architectural rules requires expressive formalisms; in realistic
scenarios, furthermore, rules have to be checked in many different artefacts, like code of
different programming languages.

This thesis develops an approach to flexible architecture compliance checking in model-based
development approaches for component-based systems. It describes a conceptual framework
representing component-based systems as relational structures. Models are interpreted as
first-order logic statements about those structures; architectural rules, which are considered
being fundamental part of architectural models, are logical statements, too. Meta model-specific
transformation definitions specify, how instances of the meta model are transformed into logical
statements, and which architectural rules are generated if applicable. Compliance between
models can be expressed this way as semantically-founded relations between logical formulae.

The developed concepts are evaluated by a case study system following several different
architectural principles. Architectural rules are developed for those principles and are checked
for compliance. Furthermore, the concepts are implemented by a prototypical compliance
checking tool basing upon a logic-based knowledge representation and reasoning system.

Both, the conceptual framework as well as the prototypical implementation, allow very
flexible architectural compliance checking. Due to the developed formalization, a broad range
of architectural rules can be specified, largely meta model-independently. Integrating new
meta models to check compliance between their instances and a software architecture is easy.
Aside from the significant improvement of tool support compared with the state of the art,
the approach fosters furthermore a new understanding of the role of software architecture; as
blue-print for design and implementation, the need for explicitly modelled architectural rules is
emphasized.

Acknowledgement/Danksagung

Auf dem Weg zur Fertigstellung dieses Biichleins haben mich viele Menschen begleitet. An
dieser Stelle mochte ich mich bei all denjenigen bedanken, die somit bewusst oder unbewusst
zum Gelingen dieser Arbeit beigetragen haben.

Ich bedanke mich bei Prof. Dr. Andreas Rausch, meinem Doktorvater, der mich immer ermutigt
hat, das Thema der Architekturkonformitiit anzugehen und zu verfolgen. Die Diskussionen mit
ithm zum Thema dieser Dissertation im Speziellen und zu Softwaretechnik im Allgemeinen
habe ich immer als fruchtbar und forderlich empfunden. Des Weiteren bedanke ich mich bei
ihm fiir die abwechslungs- und lehrreiche Arbeit, die ich als Mitglied seiner Arbeitsgruppe in
den letzten Jahren ausiiben durfte.

Prof. Dr. Niels Pinkwart danke ich fiir seine Bereitschaft, recht kurzfristig als Zweitgutachter
der vorliegenden Dissertation zu fungieren.

AulBerdem bedanke ich mich bei Dr. Clemens Szyperski als weiteren Nebengutachter. Trotz
engen Zeitplans hat er es sich nicht nehmen lassen, wertvolle Anmerkungen zur Verbesserung
dieser Arbeit zu geben.

Mein besonderer Dank gebiihrt zudem meinen Kollegen des Lehrstuhls fiir Software Systems
Engineering, insbesondere den Personen, die mit mir in Projekten zusammen gearbeitet,
Vorlesungen betreut oder wissenschaftlich diskutiert und publiziert haben. Fast noch mehr als
die konstruktive Zusammenarbeit wird mir die Atmosphire am Lehrstuhl in Erinnerung bleiben.
Der fast unerschiitterliche und sehr spezielle Humor des Lehrstuhls hat mir insbesondere in
schwierigen Phasen des Schreibens sehr geholfen! Ich hoffe, dass das “Biotop SSE”, der
Zusammenbhalt und die Lehrstuhlkiiche bzw. der Kickertisch als Horte des Absurden erhalten
bleiben und noch vielen von Euch auf dem Weg zur Promotion helfen [Cha01].

Ich danke Stefan Wittek und Patrick Dohrmann, die durch ihre Hiwi-Tétigkeiten und Abschlus-
sarbeiten Teile des Prototyps bzw. wichtige Vorarbeiten realisiert haben. Fiir die durch penible
Anmerkungen zu Euren Arbeiten und die durch Designlt entstandenen Unannehmlichkeiten
mochte ich mich entschuldigen.

Fiir das Review dieser Arbeit und inhaltliche Diskussionen zu Architekturthemen bedanke ich
mich bei Constanze Deiters. Alle im Text noch enthaltenen Fehler und Unstimmigkeiten habe
ich erst nach ihren Reviews eingefiigt und konnten daher nicht von ihr entdeckt werden! Uber
das Korrekturlesen hinaus hat Constanze mich zudem stets moralisch unterstiitzt, den Riicken
frei gehalten (und gestérkt) sowie meine literarischen Launen ertragen. Fiir den Glauben an
mich, die Geduld und das Verstindnis bedanke ich mich und hoffe Dir die gleiche Hilfe sein zu
konnen.

Bei Holger Klus bedanke ich mich ebenfalls fiir das Review von Teilen dieser Arbeit sowie fiir
den Erfahrungsaustausch wihrend der Promotionszeit. Wegen des fast synchronen Beginns
unserer Zeit als wissenschaftliche Mitarbeiter und unserer tatsachlich synchronen Umziige
ins schone Goslar, waren unsere Gespriche zu Dissertation und Gott und den Harz fiir mich
besonders wertvoll.

Meiner Familie, insbesondere meinen Eltern, danke ich fiir ihre Unterstiitzung in allen Bere-
ichen des Lebens wihrend meiner akademischen Ausbildung und bisherigen Laufbahn.

Meinen Freunden gilt mein tief empfundener Dank fiir freizeitliche Ablenkung und Zerstreuung,
insbesondere aber auch dafiir, dass sie mich nach langem dissertationsbedingtem Abtauchen
noch als einen der ihren erkennen! Ihr habt meinerseits in letzter Zeit bei weitem nicht die
Aufmerksamkeit bekommen, die ihr verdient héttet. Sofern gewiinscht, wird dies nun wieder
anders!

Sebastian Herold Goslar, im Juni 2011.

Contents

List of Figures Xi
List of Tables Xv
List of Definitions XVii

1. Introduction 1
I.1. Motivation o e e e e e e e 1
1.2. Goals and Contribution of this Work 4
1.3. Structureand Content 5

2. Software Architecture Compliance - A Problem Analysis 7
2.1. Foundations of Software Architecture 8
2.1.1. Whatis Software Architecture? 8

2.1.2. Tasks of a Software Architect 10

2.2. Compliant Realization of Software Architectures 11
2.2.1. Software Architecture, Detailed Design, and Implementation 11

2.2.2. Model-Driven Software Development 16

2.3. Component-Based Software 21
2.3.1. What is Component-Based Software? 22

2.3.2. ComponentModels 23

2.4. Research QuestionsofthisWork 25
2.5, Summary L e e e e 25

3. State of the Art 27
3.1. Dependency Structure Matrix-Based Approaches 27
3.2. Query Language-Based Approaches 29
3.3. Constraint Language-Based Approaches 31
3.4. Reflexion Model-Based Approaches 32
3.5. MoreRelated Work 34
3.5.1. Consistency in Model-Driven Software Development 34

3.5.2. Architecture Description and Formalization of Patterns 35

3.6, Summary e e e 35

4. Case Study 37
4.1. The CoCoME-A CaseStudy 38
4.1.1. Overview of the Trading System 38

vii

Contents

viii

4.1.2. Architecture e
4.1.3. Design
4.1.4. Implementation

4.2. Examination of the Architectural Rulesin CoCoME
4.2.1. Layered Information Systems
4.2.2. Service-Oriented Interfaces
4.2.3. Event-Based Architecture,

4.3. Detailed Modification Scenarios
4.3.1. Modification Scenario 1: Adding Components for Cross-Cutting Con-
CEIMS . v v v v o e e e e e e e e

4.3.2. Modification Scenario 2: Interface with reference semantics
4.3.3. Modification Scenario 3: Direct Communication between Cash Desk
Components e

4.4, Summary e e e

A Formal Framework for Architectural Compliance Checking
S.0. Overview e e
5.2. Foundations
52,10 Structureso
5.2.2. Classification of First-Order Logic Statements
5.3. Formal Representation of Component-Based Systems
5.3.1. Overview of the formalization of Component-Based Systems
5.3.2. Types and Typed Elements(tye)o
5.3.3. Structure Specification of Object-Oriented Classifiers (7,55)
5.3.4. Structure Specification of Components and Systems (7.,)
5.3.5. Behaviour Specification (7p4,)
5.4. Abstraction Classification of Models and Model Compliance
5.4.1. Model-Classification in Model-Driven Development
5.4.2. Definitions for the Formalization of Models
5.4.3. Compliance of Implementation Models towards Design Models . . .
5.4.4. Compliance towards Architectural Models
5.5. Operationalization of Compliance Checking
5.5.1. Transforming Models into Logical Statements
5.5.2. Generation of Minimal Systems forModels
5.5.3. Execution of Compliance Checks
5.6. Summary L.

Architectural Rules for UML as Architecture Description Language

6.1. UML Profiling Mechanism

6.2. Definition of Architectural Rules for CoCoME.
6.2.1. Layers. e
6.2.2. Service-Oriented Layer Interface
6.2.3. Event-Driven Architecture

59
60
63
64
68
71
71
77
80
86
96
105
106
108
117
119
119
120
123
126
126

6.3. Transformation of UML Models into Logical Statements
6.3.1. Transformation of Structural Model Elements
6.3.2. Transformation of Behavioural Model Elements

6.4, Summary e e e e e

. Architecture Compliance Checking of the Case Study

7.1. Models of the Trading System
7.1.1. Architectural Model
7.1.2. DesignModel

7.2. Compliance Check of the Reference Design Model
7.2.1. Checking Layers

7.2.2. Checking the Service-Oriented Appplication Layer Interface

7.2.3. Checking the Event-Driven Architecture
7.3. Compliance Checks for the Modification Scenarios
7.3.1. Compliance in Modification Scenario 1
7.3.2. Compliance in Modification Scenario2
7.3.3. Compliance in Modification Scenario3
T4, Summary e e

. Design of a Logic-Based Compliance Checking Prototype

8.1. The Compliance Checking Prototype from the User Perspective . . .
8.2. Architecture of a Compliance Checking Tool
8.2.1. Logical Overview
8.2.2. Eclipse Integration
8.3. The Architecture Compliance Checking Framework
8.3.1. FrameworkCore
8.3.2. Integrating Document Wrappers
8.3.3. The Application Interface
8.3.4. Integrating Knowledge Representation Systems
84. PowerLoom
8.5. Conclusionand Summary

. Conclusion
9.1. DiscussionofResults
9.1.1. Contributions
9.1.2. Limitations i e e
92. Future Work e
93. Summary

. The Axiom System @)

. The Architecture and Design Profiles for UML

B.1. The Architecture Profile
B.1.1. EventChannel

Contents

X

Contents

B.1.2. Group e 246
B.1.3. isAllowedToUse 247
B.1.4. isAllowedToUseServices 247
B.1.5. Layer 248
B.1.6. mapsToPkg 248
B.1.7. PluggablePart 249
B.1.8. plugsinto 249
B.1.9. Publisher 250
B.1.10. ServiceOrientedLayer 250
B.1.11. Subscriber 251

B.2. The Design Profile 252
B.2.1. Event 252
B.2.2. EventChannelComponent 253
B.2.3. EventHandlerInterface 254
B.2.4. EventMessage 254
B.2.5. isCarrierFor L 255
B.2.6. isChannelFor 255
B.2.7. msgCallback 256
B.2.8. onEvent 256
B.29. publish 256
B.2.10. PublisherComponent 257
B.2.11. PublisherInterface 257
B.2.12. Service 258
B.2.13. ServiceComponent 259
B.2.14. SubscriberComponent 259
B.2.15. SubscriberInterface oL 260
B.2.16. Transfer 260

C. The Reference Design Model of CoCoME 263
Bibliography 283

List

2.1.
2.2.

2.3.
24.

2.5.
3.1.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

4.7.
4.8.

4.9.
4.10.

4.11.
4.12.

4.13.

4.14.

5.1

of Figures

Tasks and responsibilities of software architects and interacting stakeholders.

The three levels of software development; the lower part shows examples of
artefacts created during development of an information system.
Different classifications of abstraction levels: have rules defined by the MVC
pattern to be considered architectural?
Examples of a platform-independent model (PIM) and a platform-specific
model (PSM) forJava.
General concept of transforming a source model M, into a target model M,. .

DSM of a sample system consisting of four modules; the permuted matrix
shows that A and D are cohesive and candidates for merging them into one
single subsystem.

The use cases of CoOCoME.
Cash Desk System overview (from [RRPMOS8]).
Top-level structure of the Inventory System (from [RRPMOS8]).
CoCoME design (top level).,
Component of the Trading System and details of provided interfaces; example
fromthedatalayer.
Behaviour specification for methods; exemplary sequence diagram for get-
ProductsWithLowStock. oL
Informal layers documentation.,
Modelling the layers structure of the Inventory System and compliant and
violating dependencies in the design model.
Examples of interfaces conforming to, or violating the service-oriented archi-
tecture of the Trading System.,
Examples of communication conforming to and violating the event-based
architecture of the Cash Desk System.
Design model of a logger component and incorrect embedding into layers. . .
Solution for architectural violation in Modification Scenario 1: utility layer for
CrOSS-CUttING CONCEINS. . . « .« . v v v v v et et et et e e e e e
Solution for Modification Scenario 2: Designing correct service method and
transfer objects L.
Incorrect solution for modification scenario three: adding direct communication
to the Cash Desk System.

A simple system as structure and a model as logical expression.

11

28

44

49

52
54

xi

LIST OF FIGURES

Xii

5.2.
5.3.
54.
5.5.
5.6.
5.7.
5.8.

5.9.

5.10.
5.11.
5.12.
5.13.
5.14.
5.15.
5.16.
5.17.
5.18.
5.19.
5.20.
5.21.
5.22.
5.23.
5.24.
5.25.
5.26.
5.27.
5.28.
5.29.

6.1.
6.2.
6.3.

6.4.

6.5.
6.6.
6.7.
6.8.
6.9.
6.10.

6.11.

Extension and intension of the concept “Planet”. 62
[lustration of the framework’s components. 64
Three statements and a satisfying structure. 69
Mapping of meta model elements to relation symbols. 74
Hierarchy of type relation symbols. 77
Entity types that can be assigned types from ttype. 78
Relation symbols of 7,,, that model the structure of classes and interfaces, and

relation symbols that connect them to other subsets of 7¢cpsp. 79
Exemplary system S according to 7cgsp, Part 1. 80
Example of Fig. 5.9 furtherrefined. 83
The example of Fig. 5.10 extended by classes. 85
Atomic (a) and hierarchical (b) component instances. 86
Relation symbolsin 7., tomodel parts. 88
Possible connectors between inner parts. L. 91
Possible connectors to connect provided ports with inner parts 93
Possible connectors to connect inner parts with required ports 94
The inner structure of component B (Example of Fig. 5.11 refined). 95
Formalizing control flow graphs. 97
Formalization of instance creation statements. 99
Reference assignment statements. 101
Relation symbols for instance destruction. 102
Method invocation statements oL 103
Orthogonal model abstraction levels. 107
Exemplary implementation Model M; — component specification. 111
Exemplary implementation Model M; — system configuration. 111
Sketch of an observer pattern description. 113
An architectural model introducing layers. 115
UML in the layersof the MOF. 121
Minimal structures vs. minimal systems. 123
UML Profile Example (from [Obj08]). 131
UML Architecture Profile: Stereotypes to model grouping of elements (layers). 133

Situations, in which a dependency between components A and B exists, due to

synchronous message calls via connectors. 136
Unwanted dependency between GUI layer and data caused by dynamic type

dependency. L 138
Stereotypes in the Architecture Profile to model service-oriented access to layers. 140
Stereotypes in the Design Profile to model transfer objects and services. . . . 141
Stereotypes in the Design Profile to model event publishers and subscribers. . 146
Stereotypes in the architecture profile to model event channel architectures. . 147
Transformation of packages in UML models. 152
Transformation of UML components and interfaces as elements contained in

packages. 154
Transformation of provides and requires relationships. 154

6.12.
6.13.
6.14.

6.15.
6.16.
6.17.
6.18.
6.19.
6.20.
6.21.
6.22.

6.23.

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.

7.7.
7.8.
7.9.

7.10.

7.11.
7.12.
7.13.
7.14.

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.

8.7.
8.8.
8.9.

8.10.
8.11.

LIST OF FIGURES

Transformation of UML classes defined in a component namespace. 155
Transformation of properties of UML classes or interfaces. 156
Transformation of UML associations; only association ends owned by the

association need separate transformation. Lo 157
Transformation of operations, parameters, and implementing behaviours. . . . 158
Transformation of generalizations and interface realizations. 159
Transformation of parts and ports. 160
Transformation of UML connectors. 161
Transformation of interactions., 162
Transformation of lifelines. 163
Transformation of messages creating or destroying lifelines. 165
Transformation of messages indicating asynchronous or synchronous calls to

OPETatioNS. v v vttt e e e e e 167
Transformation of messages indicating the return of methods. 167
Architectural model of CoCoME. 173
Overall system configuration of the Trading System, partone. 177
Overall system configuration of the the Trading System, part two. 178
Cut-out of the design model: component ReportingApp. 179
Cut-out of the design model: implementation details of ReportingApp.. . . . 180
Cut-out of the design model: sequence diagram for the partial behaviour of the

implementation of ReportingApp. L. 182
Design model of JMS entities annotated with design profile stereotypes. . . . 188
A fictitious implementation of an event channel in JMS. 189
Structure of the CashDeskApplication component. 190
Implementation of CashdeskApplication: how message calbbacks call event

handlers. L 191
System Configuration with logging component. 192
The first solution attempt to Modification Scenario 2. 196
The second solution attempt to Modification Scenario2. 197
Details of the incorrect solution to the third modification scenario. 198
The ArChcontextmenu. 203
The ArCh Configuration Manager. 204
ArCh checking results for initial solution to modification scenario one. 205
Adding a configuration for the final solution for modification scenario one. . . 205
The architectural rules hold for the final solution in Modification Scenario 1. . 206

Logical top-level structure of architectural compliance checking (ACC) tools

applying the developed framework., 207
ArCh integration into Eclipse. L. 208
The subsystems of the ACC framework. 209
The Core subsystem of the ACC framework. 211
The Wrapper subsystem of the ACC framework. 212
The Applicationinterface subsystem of the framework. 215

Xiii

LIST OF FIGURES

Xiv

8.12. The PowerloomBackend subsystem of the ACC framework. 217
B.1. The Architecture Profile. 245
B.2. The Design Profile., 252
C.1. Package structure of the inventory subsystem. 264
C.2. Package structure of the cash desk subsystem. 265

C.3. Partial illustration of the CoCoME system configuration (Inventory System). 266
C.4. Partial illustration of the CoCoME system configuration (Cashdesk System). 267

C.5. The Store component and related interfaces. 268
C.6. The Enterprise component and related interfaces. 268
C.7. The Persistence component and related interfaces. 269
C.8. The StoreApp component and related interfaces. 270
C.9. Implementation details of StoreApp. 271
C.10. The component ReportingApp and related interfaces. 271
C.11.Implementation details of ReportingApp. 272
C.12. The component ProductDispatcherApp and related interfaces. 272
C.13.Implementation details of ProductDispatcherApp. 273
C.14.The CashDeskApplication component and related interfaces. 274
C.15.The CardReader component and related interfaces. 275
C.16. The CashBox component and related interfaces. 276
C.17.The LightDisplay component and related interfaces. 277
C.18.The Printer component and related interfaces. 277
C.19.The Scanner component and related interfaces. 278
C.20. The JMSEventChannel component and related interfaces. 278

C.21.Events defined in CoCoME as interfaces of a helper component EventProvider. 279
C.22.Sequence diagram for getProductsWithLowStock implemented by component

StoreApp. e 280
C.23.Sequence diagram for queryLowStockltems implemented by component Store.281
C.24. Sequence diagram for rollinReceivedOrder implemented by component Store-

List of Tables

5.1.
5.2.
5.3.
54.
5.5.
5.6.
5.7.

5.8.

5.9.

7.1.
7.2.
7.3.
7.4.

8.1.

Class diagram notation for 7¢gsp and corresponding axioms of @cpsp. 76
Relations of the example from Fig. 59. 80
Relations of the example from Fig. 5.10. 83
Relations of the example from Fig. 5.11. 85
Relations of the example from Fig. 5.17. 95
Relations of the example from Fig. 5.11 extended by the described object creation. 100

Relations of the example from Tab. 5.6 extended by the object creation de-

scribedabove. L 101
Relations of the example from Tab. 5.7 are further extended by a object destruc-

tion statement. e e e 102
Relations of the example from Tab. 5.8 are further extended by an asynchronous

invocation and a return statement. L 105
Minimal system for the architectural model of CoCoME. 175
Minimal system cut-out for reference design model. 184
Interfaces stereotyped with Transfer and types of members. 187
Minimal system addition to model the logger components and calls to its

interfaces. L 194

Time consumption to check the architectural rules for layers in design models
of different size measured in number of components. 221

XV

List of Definitions

Definition 1.
Definition 2.
Definition 3.
Definition 4.
Definition 5.
Definition 6.
Definition 7.
Definition 8.
Definition 9.

Definition 10.
Definition 11.
Definition 12.
Definition 13.
Definition 14.
Definition 15.
Definition 16.
Definition 17.
Definition 18.

Signatures e e e 64
T-SITUCTUTES . . v o v v o o e e e e e e e e e e e e e 65
Substructures and extensions L 65
Reductions and expansions 66
Interpretations, Semantics of first-order logics, minimal structures . . . 66
Model class of logical sentences, axiom systems 68
Equivalence of logical formulae 68
Modifying and additive extensions of structures 69
Partial structureo Lo 70
Explicitly mentioned entities 70
Extensional and intensional formulae 70
Local and non-local formulae 71
Component-Based Systems 71
Model of a component-based system, model classes 108
Satisfying and minimal structures/systems formodels 109
Closerelations of Tcpsp « « v v v v v v v v o o e 109
Refinement betweenmodels 116
Compliance between models 117

xXvil

Chapter 1.

Introduction

Contents
1.1, Motivation o0 i it i ittt ittt e e e
1.2. Goals and Contribution of thisWork
1.3. StructureandContent.,

Architecture is music in space,
as it were a frozen music.

Friedrich Wilhelm Joseph von Schelling

It is of vital importance in most engineering disciplines that the products of design processes
are compliant with the plans or models that describe the intended product. Creation, mainte-
nance, and the operation of such products become error-prone and expensive tasks if the models
are inconsistent and do not describe the actual product. This is also true for the engineering of
software systems; they are highly complex and subject to frequent changes. Hence, compliance
with models and plans of systems is often violated, and inconsistencies arise. This works
deals with the problem of compliance with the software architecture of software systems and
proposes an approach to flexible compliance checking.

1.1. Motivation

A large number of definitions and considerations for the term “software architecture” can be
found in research and industrial practice [CBB*10, GA02, HN99, TMD09, WRO05]. Although
they differ in the details, many of the definitions are similar to that used in [BCKO03], which
states that a software architecture of a software system is the “fundamental organization of a
system, embodied in its components, their relationships to each other and the environment.”
In other definitions, “components” is replaced by “building blocks™ or “software elements”
but at the core they are similar. Some emphasize additionally that there is no single software
architecture for a system but different views like logical, distribution, or physical architectures.
The differences are not that important, since the most important point in all of them is that
software architecture deals with the “fundamental” structures of a system. It neither contains
implementation details of single components nor a detailed design; it abstracts from details and

Chapter 1. Introduction

determines those structures that influence the shape and the behaviour of a system at the most
general level.

The specification of a software architecture manifests hence the earliest and most far-reaching
design decisions that are made during the development of a system [BCKO03]. In most software
development processes, the design of an appropriate software architecture for a system (or at
least of parts of it) is the first step after requirements elicitation. The subject of the engineering
process switches from elaborating the “what” to build to the “how” to build the system. The
selected or created software architecture influences significantly functional, non-functional,
quality, and life-cycle properties of the system to be built. Of course, the goal of a specified
intended software architecture is to guarantee properties for the system that fulfil the identified
requirements at a highest possible degree [GS94, GP95].

Due to the fundamental character of the software architecture and the design decisions it
embodies, it is hard and costly to repair or to change afterwards during refining design, imple-
mentation, and maintenance [Bal00O, Som10]. Changing a software system at the architectural
level, because, for example, the existing software architecture was inappropriate or could not
fulfil emerging requirements, means to change a system in its most basic structures. Even if
it is possible at all, the changes will most probably result in massive restructuring efforts in
design specifications and code.

But even if we are sure, or even if we validate, that an appropriate software architecture
for a system has been specified, the intended software architecture will not be sufficient to
guarantee a system with correct functionality and the required quality attributes. Inadequate
detailed design and implementations can always undermine an appropriate software architecture
and lead to systems whose software architecture violates or contradicts the intended software
architecture.

It is very likely that, during the development of modern software systems and applications,
the actual software architecture will diverge from the intended one. This effect is often called
“architectural erosion” [PW92]. With increasing size and complexity of software systems,
and their degree of distribution and their longevity, the probability of architecture violations
increases, too. The complexity of the processes to develop, to maintain, and to run such large
and complex systems adds to the danger of architectural mismatches.

Even highly sophisticated experts like the Eclipse developer team are not able to stick com-
pletely with their software architecture [BBS03]. Simple rules regarding import dependencies
between packages are violated — hence the actual architecture differs from the intended one
with the possible consequences described above.

Moreover, modern software systems and applications are often part of even larger conglom-
erates of systems. Enterprise applications, for example, are embedded in enterprise-wide
IT-landscapes [JEO7]. Future software systems will be more and more integrated into so called
systems-of-systems or IT-ecosystems [Nor06, MS03, HKNROS]. These overlying structures
with their own architectures may additionally constrain the design of single applications by
specifying application-spanning reference architectures, patterns and so on. This makes it even
harder for software architects and designers of software systems to guarantee the compliance
of the system with all of its architectural aspects.

Some definitions of software architecture pick up the issue of valid refinements and state
in similar ways like [BCKO03] that a software architecture “contains the principles governing

1.1. Motivation

design and evolution.” In other words, the software architecture of a system provides a
framework for the system’s detailed design and its implementation. Consequently, it has
to be ensured by software architects, software designers, and programmers that a software
architecture is refined correctly by detailed design and the implementing code. Only in this
case, we can be sure that the functionality and the quality attributes guaranteed by the specified
software architecture find their way into the implemented system.

One has to come to the conclusion that it is essential for the quality of a software system
and its successful creation, maintenance, and operation that the detailed design and the imple-
mentation of a system is regularly checked for their compliance with the intended software
architecture. It it obvious that this cannot be done by hand due to the size and complexity of
modern software systems; proper tool support is required. There exist many tools for this task.
The tool Sonar], for example, is able to check whether import statements in Java source code
are compliant with a logical layering of the system given by the software architect.

Unfortunately, current tool support is not flexible enough to easily check architectural
compliance for complex systems in all its facets. First, most tools address only a single or
few architectural aspects. As already mentioned, SonarJ, for example, focuses on architectural
layers. Especially in large systems, the software architecture is constructed by many different
relevant aspects connected like building blocks and forming the overall software architecture.
A diverse set of architectural patterns or styles, reference architectures, guidelines, and policies
is used. Each of these building blocks may define its own independent constraints for the
refining design and implementation. To our best knowledge, there is no single tool covering a
broader range of possible compliance checks towards complex architectures, or a tool that could
easily be extended to do so. Second, most tools do not consider the different kinds of artefacts
whose contents could probably be affected by architectural constraints. In complex systems,
it is likely that different modelling languages are used for different parts of the systems, that
more than one programming language is used for implementation, and that additional artefacts
like configuration files contain information that should be included in the compliance checks.
Concluding from these two issues, a hard to handle and probably expensive tool chain would
be necessary for the task of architectural compliance checking.

However, beneath the problems of current tool support, there is a deeper and more principal
problem that has to do with the way software architectures are described and understood. Often
software architectures are not described or specified explicitly, or without formal syntax or
semantics as a kind of ‘whiteboard architecture’. Compliance checking supported by tools
is simply impossible in this case. But more interesting, even description techniques and
approaches with formal syntax and semantics that claim to describe systems at the architectural
level do not solve the problem. None of them provides description techniques at a level of
abstraction allowing us to tell how the specified ‘architecture’ is further refined by detailed
design — instead the description contains a detailed design itself. For example, most component-
based approaches focuses on the definition of components and interfaces with their methods.
This is a much more detailed view onto the system than describing which layers it consists of,
and what the layering means to the way components may be structured or may communicate.
Hence, there are no seamless approaches to describe component-based software systems from
software architecture down to software design and implementation. While component-based
approaches suit as an abstraction from implementation, there remains a gap that need to be

Chapter 1. Introduction

bridged between those approaches and software architecture development.

In conclusion, the main problem lays at the heart of architecture description. We need
to define the "architectural rules" for a software architecture and its elements. These rules
define how the software architecture can be refined during design and implementation. For
this purpose, an adequate description technique for software architectures is required. Without
addressing these issues, architectural rules cannot be properly defined and tool support cannot
be improved.

1.2. Goals and Contribution of this Work

The goal of this work is to provide an effective approach supporting software architects,
designers, and programmers to develop and maintain architecturally compliant component-
based software systems. For this purpose, it aims at facilitating a formal basis for flexible
architecture compliance checking tool support. This work introduces a logic-based conceptual
framework for architectural compliance checking to tackle the above mentioned challenges that
hinder efficient tool support so far. The framework consists basically of three main components:

e A formal representation of component-based software systems as relational structures
and a formalization of descriptions of such systems, like architectural models, design
models or implementing code, as first-order logic statements over such structures. The
formal representation allows one to abstract from specific component-based description
techniques and implementation languages. Components are understood as extension of
classes as concept of object-orientation; components are complex, instantiable types.
The functionality that a component provides or requires is specified by interfaces defin-
ing method signatures. The provided interfaces of a component are implemented by
component-local classes. Instances of components consist of a network of linked objects
at runtime. The structure of this network is specified by parts. Parts describe the objects
and the links between objects of the instantiated network, and specify those objects that
can be accessed from the environment of a component instance (provided ports), or that
can access objects in the environment (required ports). Hierarchical components can
be constructed by typing parts with components. Communication between components
takes place as synchronous or asynchronous invocation of methods between ports.

e A formal classification criterion based on the formal representation of system descrip-
tions to distinguish clearly and precisely between architectural, detailed design, and
implementation descriptions of component-based systems. The classification criterion
defines categories of first-order logic statements. These categories can be mapped to
the statements that should be made during the different phases of designing a software
system, i.e. architectural design, detailed design, and implementation. Based upon this,
those constraints will be defined that have to hold for architecturally compliant design
descriptions.

e An operationalisation of the concepts mentioned above for the model-based development
of component-based software systems. This includes particularly how to derive the

1.3. Structure and Content

formal representation of models as logical statements, including the architectural rules
defined by architectural models, and how to perform the compliance checks efficiently.

The developed concepts are evaluated by applying them to a practically relevant case study.
It describes a realistic component-based software system with different architectural aspects.
For these aspects, architectural rules will be defined according to the proposed conceptual
framework. The case study system will be checked for architectural compliance regarding these
aspects in different scenarios.

Furthermore, a prototypical implementation of an architectural compliance checking tool is
provided. It is able to interpret the architectural rules defined by a description written in the
developed architecture description language and to check them in UML-based component-based
design specifications and Java source code.

1.3. Structure and Content

This thesis is structured as follows. In Chapt. 2, Software Architecture Compliance - A Problem
Analysis, the problem of checking architectural compliance in today’s software development
will be analysed. It will start with the introduction of some general terms and a discussion
of the roles of architectural design, detailed design, and implementation in modern software
development, and the general difficulty to ensure architectural compliance. Afterwards, the
problem analysis will take a more focused look upon a single class of systems and one specific
development approach — component-based systems developed by following model-based
approaches.

Related approaches will be subject of Chapt. 3, State of the Art. Different classes of
approaches to architectural compliance checking will be discussed as well as methods and
principles of related fields. It will be examined why existing approaches to compliance checking
are not sufficient to provide flexible and adaptable tool support.

Chapter 4, Case Study, will introduce the case study illustrating the need for flexible archi-
tecture checking, and which will serve as application scenario for the proposed approach. Case
study is the Common Component Modelling Example (CoCoME) which is an artificial but
realistic, w.r.t. practical relevant size and complexity, component-based system. A reference
design model will be checked for architectural compliance as well as modified variants of the
system reflecting realistic modification scenarios. In these modification scenarios, different
architectural aspects of the system will be violated; these violations need to be detected by
architectural compliance checks.

Chapter 5, A Formal Framework for Architectural Compliance Checking, will describe the
proposed solution to flexible architecture compliance checking in depth. After introducing the
core ideas and some mathematical foundations, the formalization of component-based systems
themselves and descriptions of them will be explained in detail. Based on this formalization,
formal definitions of architectural rules and architectural compliance can be specified. To be
able to provide tool support, an operationalisation of the formal concepts will be introduced.

In Chapt. 6, Architectural Rules for UML as Architecture Description Language, the proposed
framework will be utilized to define architectural rules for UML. For this purpose, a UML

Chapter 1. Introduction

profile will be introduced that covers the architectural aspects relevant for the case study. Hence,
the software architecture of the CoCoME system can be described as UML model to which
that profile is applied. It will be specified how architectural UML models are transformed
into the formal representation required for architectural compliance checking. Moreover, the
architectural rules are defined for the considered architectural aspects in the case study.

The results of executing the actual architectural compliance check of the CoCoME case
study are discussed in Chapt. 7, Architecture Compliance Checking of the Case Study. First,
the reference design model will be checked against an architectural model of the system given
in the tailored UML dialect defined before. Then, the checks in the different modification
scenarios introduced in Chapt. 4, will be presented as well as their results.

Chapter 8, Design of a Logic-Based Compliance Checking Prototype, will present a prototyp-
ical implementation of the proposed concepts. The architecture and design of the prototype will
be introduced. It is able to execute architectural compliance checks based upon the knowledge
representation and reasoning system PowerLoom. Models participating in a compliance check
are represented as logical knowledge base upon which the architectural rules are executed as
logical queries. The prototype is based upon a framework allowing us the easy integration
of models, source code, or other artefacts of different languages or schemas, and to check
their architectural compliance. This framework can be easily reused as backend for arbitrary
different architecture checking tools following the conceptual approach of this work.

The final Chapt. 9, Conclusion, will discuss the results of this thesis. The contributions of
the thesis regarding the tackled research questions will be summarized and the limitations of
the proposed approach will be examined.

Chapter 2.

Software Architecture Compliance - A
Problem Analysis

Contents

2.1. Foundations of Software Architecture 8
2.1.1. What is Software Architecture?
2.1.2. Tasks of a Software Architect 10

2.2. Compliant Realization of Software Architectures 11
2.2.1. Software Architecture, Detailed Design, and Implementation 11
2.2.2. Model-Driven Software Development 16

2.3. Component-Based Software 21
2.3.1. What is Component-Based Software? 22
2.3.2. ComponentModels 23

2.4. Research QuestionsofthisWork 25

25, SUMMATY &« v v v v v v v vttt e e ettt e ottt e oo o e e s o 25

Always design a thing by considering it in its next larger
context — a chair in a room, a room in a house, a house in an
environment, an environment in a city plan.

Eliel Saarinen

The main title of this work is “Architectural Compliance in Component-Based Systems”.
To motivate the presented research and understand the problem that has lead to the proposed
approach, it is necessary to have a common understanding of the underlying domains or
fields. The single pieces of the main title suggest that the relevant fields are architecture,
in the following always understood as software architecture, compliance or conformance
management, and component-based systems.

This chapter will analyse the problems in detail leading to the need for a flexible approach
to architectural compliance checking. Section 2.1 will give a quick overview on foundations
of software architecture and the tasks of software architects. Building on that, Sec. 2.2

Chapter 2. Software Architecture Compliance - A Problem Analysis

will especially address the relationship between software architecture, detailed design and
implementation of software systems; it addresses the “compliance piece” of the title. It
will analyse the problems regarding conformance between software architecture and detailed
design in general, and will deepen that analysis for the special case of model-driven software
development (MDSD) approaches. Foundations of component-based systems, as final element
of the overall title and topic, will be covered in Sec. 2.3.

Section 2.4 will conclude the basic research questions derived from the problem analysis.
These research questions guide the further work; Sec. 2.5 sums up this chapter.

2.1. Foundations of Software Architecture

The roots of the field that is called software architecture today date back to the early 1970’s
when the just founded, or at least explicitly named software engineering community [NR69]
started to deal with the fundamental principles of system design. Researchers like Edsger
Dijkstra and David Parnas, among others came up with concepts like information hiding,
layering of systems, views, and many more [Dij68, Par72, Par74]; terms that are relevant
for system design in general and for architecture specifically. Nevertheless, there is still no
common and broadly accepted definition of the term software architecture.

This section introduces some foundations of software architecture, especially how the term
is used in the remaining book. Furthermore, it will give an overview of the tasks a software
architect usually faces in practice; especially the task of setting the rules for design and
implementation and checking them will be illustrated.

2.1.1. What is Software Architecture?

There exist a large number of more or less adequate definitions of the term software architecture.
The website of the renowned Software Engineering Institute of Carnegie Mellon University
[Sof] lists about 150 definitions given by members of the software architecture community.
A common core that is part of many of the substantially valuable definitions states the main
subject: software architecture is about software elements (or components, building blocks, etc.)
in a software system and the relationships between them.

However, this is a very general essence of many definitions. One of the definitions containing
this essence is that one given in the IEEE Standard 1471-2000 “Recommended Practice for
Architectural Description of Software-Intensive Systems” [IEE00]. It defines the software
architecture of a system as:

“The fundamental organization of a system embodied in its components, their
relationships to each other, and to the environment, and the principles guiding its
design and evolution.”

This definition adds two properties to the mentioned common core. First, software architec-
ture is not about every detail in the structure of a software system but about the “fundamental
organization”. The name of a loop variable in a function, for example, is surely not of archi-
tectural importance. Second, the definition emphasizes that software architecture is not about

2.1. Foundations of Software Architecture

components alone but also about principles for the development of the system. For example,
the layering of a system [BMRS96] defined by its architecture, has implication on its imple-
mentation; there might be system parts, for example classes or functions in the lowest layer,
that cannot call methods at classes from layers above. This means that a software architecture
restricts the way a software system can evolve and be refined.

In addition to the definition above, [BCKO03] adds some important aspects and states:

“The software architecture of a program or computing system is the structure or
structures of the system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them.”

First of all it adds that there is no single architecture of a system but potentially many;
this reflects the broadly accepted fact that many different views on a system make up the
overall software architecture; see, for example the 4+1 architectural model [Kru95] or the
architectural ontology defined by the already mentioned IEEE Standard 1471-2000 [IEEQ0].
This especially includes behavioural views on the software systems; the terms “relationships”
and “component”/’elements” in both definitions suppose that only static structures are of
interest in software architectures. This is clearly not the case. The second addition of that
definition gives also a hint for a differentiation between software architecture and further
fine-grained design. Software architecture is about components and their visible properties —
1. e. basically their interfaces in the broadest sense. The internal details of such components are
subject to software design and implementation. The definition, however, does not say at which
granularity an element in a system should be considered to be a component; at both extremes,
subsystems and methods could be seen as components in the architectural sense, with huge
implications on what is subject to architecture development and to fine-grained design.

The informal definition of the term “software architecture” that will be used in the following
concludes the definitions above:

“The software architecture of a software system is the structure or structures
of the system, which consists of components, their externally visible interfaces,
and the relationships among them. Furthermore, it defines architectural rules that
restrict and guide the further design and implementation of the architecture, as
well as its evolution.”

The sources for architectural rules are diverse:

Patterns. Architectural patterns like Layers or Pipes-and-Filters [BMRS96] define constraints
and guidelines how components and interfaces have to be realized, and how they should
interact.

Reference Architectures. These are renowned architectural, often domain-specific
blueprints of how to build systems, for example the 3-Tier-Architecture for distributed
enterprise systems [TvS08]. They influence the implementation of a system as well.

Design Principles. They describe basic guidelines for the design of systems or properties
that should be ensured to be able to create high quality software. For example, the Law
of Demeter [LH89] or the Separation of business and technical concerns [Eva03] are
principles, which of course, imply constraints on design and implementation.

Chapter 2. Software Architecture Compliance - A Problem Analysis

It has also to be mentioned, that rules originating from the same source may differ from
application context to application context. Often there exists alternative realizations of patterns,
or there are project-specific exceptions from design principles. Hence, architectural rules are
neither globally defined in general nor carved in stone but might be customized for specific
purposes.

2.1.2. Tasks of a Software Architect

The term “Software Architect” is rather the name of a certain role that people can play in
software development project than a specific profession based upon a dedicated education.
Understood as a role, a software architect is someone who is responsible for the software
architecture of a system.

Among the major tasks of software architects are the creation and maintenance of software
architectures. A software architect has to create an appropriate software architecture for a
software system; “appropriate” means that the architecture has to fulfil the given functional
and extra-functional requirements as far as possible. For this purpose, the software architect
has to clarify requirements and general conditions, and must resolve conflicts that arise from
competing requirements. He has to decompose the system and to identify components and
interfaces. Furthermore, he has to deal with cross-cutting technical issues that affect the
system during design, testing, and operation; for example, he has to evaluate operating systems,
programming languages, technological frameworks, etc., if necessary. Maintaining an existing
software architecture means to correct architectural errors, adapting the architecture to changing
requirements, and avoiding that intended and actual architecture diverge.

In order to create and maintain software architectures, the architect has to cooperate with
many stakeholders during diverse subtasks. Figure 2.1 shows some of those stakeholders
influencing the work of a software architect and interacting with him. The arrows are annotated
with examples of tasks he performs for, or together with the connected group of stakeholders,
or responsibilities he has to fulfil with regard to certain stakeholders. For example, he is the
prime contact for the project management regarding technical issues of a software development
project and the design decisions that are made. Together with the project manager, he plans
how the development team is staffed; this is massively influenced by the architecture because
the decomposition of the system affects the structure of the development team and its ability to
develop system parts in parallel. Figure 2.1 shows that many different stakeholders have to be
considered to clarify the requirements that a software system, and hence its architecture, has to
fulfil.

The highlighted relationship in Fig. 2.1 between software architect and software designers /
software developers is of special interest for the further investigations. One of the responsibili-
ties of the architect regarding the design and development is to control that the architecture is
correctly refined and implemented, i.e. that the design and implementation are architecturally
compliant. On the one hand, the specified components, interfaces and relationships specified
by the structures of a software architecture have to be correctly reflected and implemented; on
the other hand, the architectural rules have to be followed.

This task is very important with regard to the overall quality of the software system, as
discussed in Chapt. 1. All the valuable work of requirements engineering and software

10

2.2. Compliant Realization of Software Architectures

Project _ _
*|s technical contact for project management
Manager . . :
*Cooperation during staffing development team
*Responsible to monitor technical risk
Requirements Engineer / Customer 'Respon5|ble for design decisions

*Clarify requirements / *|s advisor/trainer regarding technologies

general conditions *|s coordinator at interfaces
*Resolve requirements \ *Get feedback from ,developer view"
conflicts/trade-offs *Control the correct realization of SA

*Get feedback from
,customer view” Software Archltect

*Clarify required resources,

v red Software Designer / Developer
service level agreements, etc.
* Clarify technical limitations

. *Define desired quality properties
Technical 9 y prop
. . *Deliver component for testing
Administration *Cooperation during tests

Quality Assurance / Testing

Figure 2.1: Tasks and responsibilities of software architects and interacting stakeholders.

architecture design can be eliminated by incorrect refinement and implementation. If the actual
software architecture does not conform to the intended architecture, the actual system is likely
not to have the quality attributes expected by the stakeholders.

It is obvious that the task of compliance checking cannot be performed manually. Current
large-scale systems have up to several hundred million lines of code; large object-oriented
systems are designed of several thousands of classes. Ensuring architectural compliance
manually for systems of that size and complexity is impossible, and even for smaller systems
time-consuming and error-prone. The software architect clearly requires tool support.

2.2. Compliant Realization of Software Architectures

In this section, we will investigate the factors causing the definition of architectural rules,
checking them, and ensuring their validity to be tough tasks. First, some general observations
will be made; the second subsection will deal with specific issues of model-driven development
approaches.

2.2.1. Software Architecture, Detailed Design, and Implementation

After conducting the requirements of a software system, the inner structures of a system are
developed. While requirements engineering elaborates what has to be build, the design of
the inner structures aims at how to build it. Note, that although the description might suggest

11

Chapter 2. Software Architecture Compliance - A Problem Analysis

Architecture Detailed Implementation
Design De5|gn
v (O] W
Architecture Design Implementation
Description Artefacts Artefacts
restricts restrict
restricts
A TS (Dt e UML Models for Java source code
Components
E C source code
N B . ER data model N Configuration files
- .
SQL schemes

Figure 2.2: The three levels of software development; the lower part shows examples of artefacts
created during development of an information system.

so, both are not strictly chronologically separate phases; depending on the process model or
strategy, like waterfall model, incremental or iterative development [Bal00, Som10], both tasks
are executed partially, in parallel, or repeatedly.

In the explanations so far it was implicitly assumed that the overall design process consists of
three different steps, namely architectural design, detailed design, and implementation, which,
again, are not necessarily separate phases. Artefacts created in those steps provide different
views on the inner structures of a system with different levels of abstraction, adding more
and more details starting at the most abstract view of the software architecture. As defined in
Sec. 2.1, the software architecture contains components and their externally visible properties,
their interfaces. These structures are refined during the detailed design and complemented by
the inner structures of components. The implementation, finally, provides the complete and
executable system, or, at least, artefacts that are automatically transformed into executable
elements, for example, source code transformed into executable binaries by compilers.

Figure 2.2 illustrates this rather short and simplified explanation of the overall design process.
At each level before implementation, developed artefacts restrict the further refinement. For
the architectural design level, these constraints are exactly those architectural rules. The lower
part of Fig. 2.2 shows a simple example. Let us assume that the system under consideration,
is an industrial information system to manage the product portfolio of an enterprise and to
manage customer data. The software architect designs a component in the architecture, which
is responsible for saving the product portfolio in a persistent database. Moreover, he states that
the component must be independent from any other component in the architecture — clearly an
architectural restriction for the refinement. The software designer responsible for the detailed
design adds details to this component; for example, he creates an Entity-Relationship-Model

12

2.2. Compliant Realization of Software Architectures

[EN10] of the data model which is the base for the functionality of the component, like creating,
modifying, saving, and removing products from the portfolio. Moreover, he creates design
models written in UML [Obj10b] to describe the classes realizing database access, queries,
and so on. These models have to conform to the architectural rule prohibiting dependencies
towards other components; it has implications on the embedding of the component’s data model
in the overall data model of the system; moreover, the UML design model cannot introduce
dependencies to other components.

Later, the developer takes this information, for example, to create a Java implementation
of those classes and to create database schemes from the ER-model. Further artefacts might
be created or integrated, like existing legacy libraries written in C. All of these artefacts can
directly or indirectly be affected by architectural rules.

Inherent Complexity of Compliance Checking

Assuming that architectural compliance cannot be guaranteed from scratch, i.e. it cannot be
ensured a-priori that design and implementation are compliant, checking compliance is required.
This is a difficult task because of the inherent complexity. This complexity is due to different
factors.

First, the heterogeneous set of artefacts that have to be checked, adds to the complexity of
the problem. As the example above shows, there are many types of artefacts that result from
single steps of the overall design process, e.g. UML-based design models, ER models, source
code of possibly different programming languages, and technology-specific artefacts. All of
those types of products can violate architectural rules and have to be checked.

The potential diversity of architectural rules is the second factor of inherent complexity. The
sources of rules are manifold; patterns, reference architectures, and design principles can cause
constraints for the further refinement of architectures. In each of these groups, the aspects the
elements address can vary widely. For example, while the layers pattern addresses the logical
structure of a systems, there are patterns affecting primarily distribution aspects or behavioural
aspects. Furthermore, the set of rules is not fix in general but can contain user specific rules that,
for example, exist due to enterprise-specific design guidelines, or specific forms of patterns and
reference architectures.

It is desirable that tool support for architectural compliance checking addresses as many
aspects of architectural rules as possible. With this goal in mind, and considering the potential
user specific tailoring of rules, the set of rules should not be fix and “hard-coded” in tool support.
This means that there has to be a description technique to describe software architectures
including architectural rules with the properties that

e architectural rules of a variety as broad as possible can be formulated, and

e architectural rules are described formally, thus they can be interpreted and checked by
tools.

In this case, tool support can address the diversity of architectural at the best possible degree.

13

Chapter 2. Software Architecture Compliance - A Problem Analysis

The Imprecise Separation of Design Levels

The inherent complexity of architecture compliance checking is tightened by the observation
that the separation between the steps in the design process — architectural design, detailed
design, and implementation — is most often unclear in practice and research!. The reason is
the degree of freedom most definitions leave to the software architect regarding the granularity
of software architectures. As already mentioned, the granularity of components is unclear —
a subsystem can be a component as well as a single class of an object-oriented system. It is
obvious that selecting different granularities affects the subjects of design at the different levels
of the design process and blurs the borders between the levels. Moreover, the general definition
stating that the structures given by software architectures are “fundamental” do not state
precisely what “fundamental” means and which structures are considered as “non-fundamental”
being subject to detailed design and implementation.

Informal attempts to define a clear separation of concerns between architectural design and
detailed design are made in software architecture literature with moderate contribution to clarify
things. Many definitions state in a similar way that “Architecture [...] is design at a higher
level of abstraction” [Kaz99] without explaining if there is “threshold abstraction level” that
separates both steps — and if there is one, how it is defined. In [CBB*10], the definition of
software architecture given there is used to define a separation: if software architecture is
about the externally visible properties of components, detailed design is about the internal
hidden properties. This definition does not help to select an appropriate granularity for software
architecture and basically says: architectural are those things that the software architect defines
to be architectural; everything else is subject to detailed design. Other definitions state that
architecture deals with issues beyond “the algorithms and data structures of computation”
[GS94] which, however, also holds for many design approaches.

As a result, a babylonian confusion of tongues can be observed regarding the terms “software
architecture” and “software design” without a common understanding of the terms but with a
sometimes synonymous usage instead. There are many examples in research and practice which
show that the same concepts are considered being “architectural” or “design” from different
points of view, or in which no clear distinction exists.

Patterns. Some patterns are sometimes considered being architectural patterns, sometimes
design patterns, depending on the understanding of the particular pattern catalogue.
For example, the Model-View-Controller pattern is listed as architectural pattern by
[BMRS96] but as design pattern by [GHJV9S].

Architectural Frameworks. Existing frameworks to plan, design, and implement architec-
tures of systems or even system landscapes do often not distinguish between architecture
and detailed design. This is the case, for example, for the NATO Architectural Frame-
work (NAF), the The Open Group Architecture Framework (TOGAF), and the Zachman
Framework [NAF07, Gro09, OFS03].

IThe following explanations focus on the separation of architectural design and detailed design; in general,
the confusion about this separation is much greater than that about the separation of detailed design and
implementation.

14

2.2. Compliant Realization of Software Architectures

abstraction abstraction
level level
AN N
| ©
=5
i o] archi-
T o
—_—r tectural
T «MVC
E e —
© detailed
o]
design concepts

Classification A Classification B

Figure 2.3: Different classifications of abstraction levels: have rules defined by the MVC pattern to
be considered architectural?

Process Models. In process models like the V-Model XT [BMI08, FHKS09, RB11], there
exists the principle of a system decomposition but the V-Model XT, for example, does not
distinguish between the roles of a software architect and software designer; a separation
of the two design steps is not made. In fact, only the role of a software architect exists in
the standard. The Rational Unified Process [Kru03], on the contrary, uses only the term
design and does not distinguish between architectural and detailed design.

(Architectural) Specification Languages. Languages for both levels of abstraction use the
same concepts. For example, UML [Obj10b], intended as object-oriented design lan-
guage, is also used as architecture description language (ADL). Since version 2.0, it
contains concepts like components, connectors, etc. to describe systems at the archi-
tectural level. These concepts were introduced initially in dedicated ADL like Darwin,
ACME, etc. (see [MTOO] for a list of ADL). The usage of the same language, e.g. UML,
for both levels without clear guideline what has to be described in which design step,
adds to the unclear separation.

But why are the impacts of unclear separation, or classification, and terminology important
for architectural compliance checking? The separation of architectural design and detailed
design does not only describe which structures are considered to be architectural but influences
also indirectly what is considered to be an architectural rule. Hence, several understandings of
architectural concepts can imply different set of architectural rules. This can have implications
on the language to describe architectural rules, the required expressiveness, and the possibility
to check rules automatically.

Figure 2.3 illustrates this circumstance graphically. The area between the vertical axes is the
space of all design concepts and potential sources for rules guiding the further refinement and/or
design of a software system, like patterns, design principles, etc. The vertical axes denote the
abstraction level and are separated into the categories of “architectural” and “detailed”; each of
these axes sets this classification of levels differently. Consequently, both separations cause
different sets of possible architectural rules.

Let us now, for example, assume that the MV C-Pattern is such a source for (architectural)
rules, which is considered architectural only in the right-hand classification. Furthermore, let us
hypothetically say that all rules defined as architectural in both separations can be specified by a

15

Chapter 2. Software Architecture Compliance - A Problem Analysis

regular language, and that MV C defines rules which can only be specified by context-sensitive
languages. This means that the formalism to describe architectural rules can be different, and
the checking of rules may be differently complex.

Concluding, to focus on the inherent complexity of architectural compliance checking, it is
necessary to define a precise classification criterion for the three abstraction classes of software
development steps.

The work of Eden, Hirshfeld, and Kazman [EHKO06] provides such an abstraction classifica-
tion. It will be explained in more detail in Sec. 5.1 and further formalized in Sec. 5.2. In that
approach, general design concepts such as patterns and artefacts describing specific systems
like software architectures are understood as logical statements about systems that fulfil the
specification given by a description. Comparable to the idea of architectural rules, statements
can be intensional, i.e. they define constraints about the structures of a system in addition to
the structures themselves. As distinction between architectural and detailed design concepts
(or artefacts), there exist two categories of such constraints; local statements, once valid in a
system, remain valid no matter how the system evolves or how it is refined — their impact is
local in the sense, that they affect a dedicated part of the system; non-local statements have
global impact in the sense that the impact cannot be reduced to affect certain elements only —
they describe a global property of the system that can be lost at any time by evolving or refining
the system.

This section has illustrated the problems in the context of architectural compliance checking
abstracted from specific development approaches. In the following, we will take a look upon
model-driven software development as a specific approach, which is often claimed to solve
many of the consistency and conformance problems of software development, and which hence
might also provide solutions for the problems of architectural compliance checking.

2.2.2. Model-Driven Software Development

The motivation of model-driven software development comes from the observation that tradi-
tional development approaches are very code-centric. This means that the executable code of a
software system is considered as the main product of the process. Other higher-level specifi-
cations of the system, like requirements specifications or design specifications, are neglected
in the sense that they are often notated as box-and-lines diagrams without precise syntax and
semantics, often only as “paper” diagrams without the possibility to edit or manage them by
CASE? tools. Some of the implications are:

e The danger of inconsistencies exists. Interrelationships between elements in different
artefacts have to be inspected manually in case of changed content to propagate changes to
related artefacts. Since those interrelationships are complex, this task is time-consuming
and error-prone.

e Higher-level descriptions cannot be used to apply code generation for repeatedly executed
task, e.g. the creation of code skeletons. Similar and re-appearing code fragments are

Zabbr.: Computer-Aided Software Engineering

16

2.2. Compliant Realization of Software Architectures

manually produced instead of being able to generate code automatically with higher
productivity.

e Portability is difficult since code has to be ported manually; higher-level specifications
exist only in forms that cannot be interpreted by tools to generate code of new languages
or for new technologies.

These factors (and others) reduce productivity in classical development approaches and limit
the ability to produce software repeatable at an high quality level. A more detailed list of
problems can be found in introducing chapters of MDSD literature (e.g., [BGB10, SVC06]).
The main idea of MDSD is to shift efforts in software development from producing source
code to creating implementation- and technology-independent, general and conceptual models
of software systems. These models are input to model transformations generating more
specific models and, at the end, the executable code. In the following, the core concepts will
be illustrated by the example of the Model-Driven Architecture (MDA), the framework for
model-driven development proposed by the Object Management Group (OMG).

General Overview of MDA

The MDA [KBWO03] provides a framework in the sense that it defines a terminology and a
process for model-driven development. It refers to a number of standards defined by the OMG
to make the general idea of MDSD more concrete.

A model in the terminology of the MDA is a description of a system written in a well-defined
language with defined syntax and semantics, such that tools can interpret them®. Syntax and
semantics can be defined by a meta model describing the allowed structures of well-formed
models, comparable to the formal grammar of a textual programming language. Another
standard of the OMG, the Meta Object Facility (MOF), specifies the relationship between
models and meta models as well as further levels of meta modelling [Obj06].

The MDA defines different categories of models that distinguish themselves from each other
by the level of abstraction of the view they provide onto a system. So-called Computational
Independent Models (CIM) model the requirements of a system and show “the system in the
environment in which it will operate, and thus it helps in presenting exactly what the system is
expected to do.” [Obj03].

Platform Independent Models (PIM) describe a systems abstracting from the usage of a
certain platform; a platform can be any set of technologies like programming languages,
technical frameworks, subsystems, etc. The sense of a PIM of a system is to provide a
description of the system abstracting from the actual technologies, and which hence does not
change if the platform changes. This supports modifiability and portability of systems.

Platform Specific Models (PSM), in contrast to PIM, contain in their description of systems
information about the usage of platforms. As a simple example, consider the UML class
diagrams in Fig. 2.4. The left one represents a PIM which abstracts from a specific object-
oriented programming language by depicting an object-oriented design by the common means

3This definition leaves some freedom to the degree the semantics must be defined, since many tools, depending
on their purpose, do not require a formal semantics. Indeed, many of the languages frequently used in the
MDA context, e.g. UML, do not have a precise semantics.

17

Chapter 2. Software Architecture Compliance - A Problem Analysis

Customer /'
Date -dateOfBirth +name : String / S
1 0..* |+customnr : long /
/ -name : String
1.* / -customnr : long
/ -dateOfBirth : java.util.Date
/ -addresses : List<Address>
Address // +getName() : String
= -addresses +getCustomnr() : long
o on - // +getDateOfBirth() : java.util.Date
+C! Y d r|_n|g t 1. / +getAddresses() : List<Address>
R nteger / +setName(name : String)
/ PSM for Java +setCustomnr(nr : long)
/ +setDayOfBirth(date : java.util.Date
/ +addAddress(addr : Address)
/
PIM / Address
// -street : String
/ -city : String
/ -zipcode : int
/ +getStreet() : String
// +getCity() : String
/ +getZipcode() : int
/ +setStreet(street : String)
/ +setCity(city : String)
+setZipcode(zip : int)

Figure 2.4: Examples of a platform-independent model (PIM) and a platform-specific model (PSM)
for Java.

of class diagrams. The diagram on the right represents a PSM for Java, in which datatypes
like Date are mapped to Java library classes, association ends with multiplicities greater than
one are replaced by specific implementations by lists, and public attributes are replaced by
corresponding private attributes with getter and setter methods.

Obviously, there is a refinement of the system descriptions from CIM to PIM, from PIM to
PSM, and finally from PSM into executable code. To actually address the problematic issues
of traditional approaches, MDA does not propose to do the refining steps manually but to use
semi-automatic, tool supported model transformations. Model transformation is the process
of converting a given source model into a target model. The overall concept is illustrated in
Fig. 2.5.

Model transformations in MDA rely on executable definitions of how to transform a source
model (e.g., M;) into a target model (e.g., M>). Those transformation definitions specify how
elements of a source meta model MM, are transformed into elements of the target meta model
M M,. Transformation tools interpret these transformation definitions and execute them for the
actual source model instance resulting in a generated target model.

In the example above, to transform a PIM into a Java PSM, a transformation definition had
to be specified describing how UML models are transformed into UML models referring to
Java specific classes and concepts*. The transformation definition could state that each class is
transformed into a class with the same name, that attributes of a class in the source model are

“In this case, the meta model for source and target models would be the same, namely that of UML.

18

2.2. Compliant Realization of Software Architectures

Meta Models

defined by

Q Language
L2

defined by

Langua eJq
: ﬁ__l

written irﬁ?

Transformation Definition

Ei' specified by i‘i
source for": @ generates":

Model M, Model M,

Transformation

Figure 2.5: General concept of transforming a source model M, into a target model M5.

made private in the Java model and complemented by getter and setter methods, and so on.

The OMG published the Query/View/Transformation (QVT) Specification, which is a specifi-
cation for the implementation of transformation definition languages and for model transforma-
tion tools [Obj11]. The specification defines some important features of implementations, such
as incremental transformations and persisting of tracing information. The first feature ensures
that a repeated transformation between two models transforms only modified content and does
not overwrite manual changes in the model; the second property allows tracing back the source
of generated target model content after the actual transformation process; this way, for example,
the class in a PIM could be determined that lead to the creation of a certain class in a Java
PSM. Both features allow us, in combination with models written in well-defined languages, to
address many of the mentioned problems of traditional software development, for instance, the
problem of maintenance and productivity issues caused by manual consistency management.

Today, there exist a reasonably large number of QVT implementations [LS06, Med, ATL]
and other approaches. Hence, conformance and consistency between models seem to be a
problem easy to solve for MDSD in general and MDA in particular. In the following, we will
see by showing an example written in a language implementing QV'T, that there remain open
issues regarding the application of MDA to architectural compliance checking.

Architecture Model Transformation Example

The example specifies a simple transformation of architectural layers into a design model using
the popular Atlas Transformation Language (ATL) [ATL]. Since the example is very simple
and straightforward, the syntax will only be explained superficially.

Imagine, we have a meta model for the definition of architectural design models, called Arch.
The language defined by Arch allows us to draw boxes in our models representing layers. The
corresponding meta model element is hence accordingly called Layer. As already mentioned,

19

Chapter 2. Software Architecture Compliance - A Problem Analysis

Listing 2.1: ATL rule to convert layers into UML packages.

module Arch2Design
create OUT : UML from IN : Arch
rule Layer2Package {
from
1l : Arch!Layer
to
p : UML!Package (
name <- 1.name

layers define some architectural rules that state an element in a layer may only depend on
elements in layers below their own layer. This has to hold in the detailed design as well as in
the implementing code.

Now let us assume, that we do a detailed design using UML. Layers are represented as
packages because there does not exist a dedicated meta model element for layers in the UML
specification, and packages seem to represent them best instead — similar to layers, they can
contain other elements.

The first line of Listing 2.1 indicates that the following transformation rule is part of a
module of rules (which, for example, defines the transformation of other Arch elements). The
second line specifies that for an instance of the Arch meta model, a UML model will be created.
The specification of the actual rule starts in line three; for the element 1, which is a layer (line
five), a package p is created in the target model (line seven); this package has furthermore the
property, that its name attribute is set to the same value as the name of the layer (line eight).
This transformation is executed for every layer found in the particular source model.

Of course, this transformation rule is not satisfying because it does not consider the architec-
tural rule that applies to the layer and, hence, to the package. One possibility would be to create
a corresponding constraint in the target model. It is possible in principal to create complex mo-
del structures in the target model with ATL, and it is also possible to attach constraints to model
elements in UML, for example written in the Object Constraint Language (OCL) [Obj10a].
This is added informally to the ATL rule in Listing 2.2. Such as name, also ownedRule is an
attribute UML packages possess. It contains possible constraints attached to a model element.
The transformation definition depicted in List. 2.2 creates the informally denoted constraint for
each package created for a layer (see lines 9—-12). However, there are several problems with
this solution.

The first problem is a technical problem with OCL, which is the de-facto standard constraint
language for UML. Structural invariants like the constraint above are always formulated in the
context of an instantiable model element but are evaluated for the instances. If a model, for
example, specifies a class containing an integer attribute and an invariant that the attribute must
always contain a value greater zero, the constraint will be evaluated in the modelled system for
the single instances. It is not possible with OCL to define invariants in a model that restrict the

20

2.3. Component-Based Software

Listing 2.2: ATL rule to convert layers into UML packages with dependency constraint.

module Arch2Design
create OUT : UML from IN : Arch
rule Layer2Package {
from
1l : Arch!Layer
to
p : UML!Package (
name <- 1.name
ownedRule = ’'Nothing in this package depends on
something contained in a package
created as result of the transformation
of a layer above 1’

model structure itself. But this is exactly, what architectural rules define. This missing feature
of OCL has been considered an important drawback in recent research [Mat10].

The second problem is a conceptual one. Let us assume, that there is a constraint language,
which we could use to define a constraint that is generated in the target model as in Listing 2.2.
For every possible kind of artefact, defined by a meta model, a corresponding constraint had to
be integrated in the set of transformation definitions containing a rule for transforming layers
into whatever would represent layer in the kind of design artefacts; the constraint would have
to be defined repeatedly for different meta models, causing overhead in maintaining the set of
rules. Instead of having defined the set of architectural rules once, as Fig. 2.2 suggests, the
same architectural rule is replicated several times in different sets of transformation rules and
different target models.

It can be stated in conclusion that architectural compliance checking mechanisms are also
required in MDSD due to the described deficiencies. Model transformations alone cannot
address the task to check constraints, defined in one model, on a set of different models as
instances of different meta models sufficiently.

2.3. Component-Based Software

This section gives a short introduction to component-based software also known as component
software. Due to its wide spread of usage, this class of software systems will be subject to the
overall theme of this work, the architectural compliance of software systems.

21

Chapter 2. Software Architecture Compliance - A Problem Analysis

2.3.1. What is Component-Based Software?

The basic idea of component-based systems is that systems are composed of custom-made
or third-party off-the-shelf components. The motivation of this approach is to combine the
advantages of custom-made and standard software in order to minimize the disadvantages
that both approaches bring if applied purely and alone. Custom-made software fulfils the
customer specific requirements often very well because it can be precisely tailored to the
customer’s needs. On the other hand, it can be quite expensive and may underlie a longer
time-to-market compared to standard software. Standard software products, in contrast, are only
slightly tailored to customer specific needs and may be cheaper compared to customer specific
solutions. On the other hand, it is in general not tailored to single customers as effectively as a
custom-made solution; moreover, a standard product might not lead to a competitive advantage
as easily as an extraordinarily well adapted custom made solution because business rivals might
use the same standard product [Szy02].

Thus, component-based software development proposes to conduct a software system out of
single components that can be either custom-made or from third parties. This allows combining
the advantages of both worlds. Consider, for example, a system made of a number of standard
components having the advantage that they do not have to be implemented by the system
provider himself. On the other hand, the configuration and “wiring” of the components leave
enough freedom to allow significant customer-specific adaptations.

The concept of components has been known for a long time in many engineering disciplines
— an oft-cited example are integrated circuits from the electric engineering field. The idea to
compose complex electronic circuits out of simple integrated circuits allows higher reuse of
components and an increased productivity. Former approaches to apply the same concepts to
the development of software are discussed in the introductive parts of the book on component
software by Clemens Szyperski [Szy02].

The same book gives an informal definition of the term of a component, which is naturally the
central construct in component-based software and always understood as software component
in the following. The definition states important properties of components:

e Components are executable units.

e Components are units of independent production and deployment. They define by inter-
faces which functionality and properties they provide to and require from the environment
and/or the surrounding system.

e Components can be composed to form systems.

e To enable composition, components conform to a certain component model and target
a particular component platform. A component platform is a technical environment, in
which a component can be deployed and executed (e.g. Enterprise Java Beans (EJB)
[BMO6]). Component models will be discussed in the following section.

In this work, we will focus on the component-based systems for two reasons. First,
component-based system are today relatively wide-spread and can be found in many do-
mains. One reason is the increasing distribution of software systems which rather consist of

22

2.3. Component-Based Software

communicating components than of a single monolithic block. Examples of general compo-
nent technologies accepted in industrial practice are (D)COM, .NET, the component model
of CORBA, EJB and J2EE, Spring [Szy(02], to name a few. EJB, for example, provides a
component model for distributed enterprise applications. Application-specific solutions, like the
Eclipse Platform [CRO8] with its plugin principle, are basically component-based systems, too.
Hence, focusing on this class of systems for the task of investigating architectural compliance
checking should reduce some complexity of the overall problem without limiting a solution to
a small and irrelevant set of software systems.

Second, the first initial thoughts for this work on architectural compliance have been caused
by observations regarding an example of a component-based system and different approaches to
describe it architecturally in an adequate way. Those observations resulted in the conclusion that
component-based design massively suffers from the general problems regarding architectural
compliance.

2.3.2. Component Models

To precisely define, how component can be executed, how they can be composed, and how
they can communicate and interact, components for a certain platform have to conform to a
certain component model. A component model consists on the one hand of a system model,
which describes runtime properties that components have; on the other hand, it often provides a
certain description technique to specify components and other relevant constructs.

System Models and Description Techniques

The system model of a component model describes runtime properties of components. In
popular component technologies, the system model describes the technical framework in which
components run. For example, the system model of EJB describes how the different kind of
beans (how components are named in EJB) are instantiated, that they run in a container, and
which and how the container manages accesses, the lifecycle of components, and so on. There
are also formal component models, like DisCComp [Rau04] describing such runtime properties
mathematically. In general, a system model describes properties like:

e How can components be composed? Are they typed and how can they be instantiated?

e Lifecycle of components, how are components created and destroyed, which states can
they run through controlled by which circumstances? How are components deployed?

e Communication aspects. How can components interact? Which kind of communication
is allowed, for example, asynchronous or synchronous communication, or both?

e How is concurrency addressed?

Systems to be build have to be specified. In different component-based development approa-
ches, different description techniques are supported. EJB, for example, is a Java technology,
hence components are specified by Java classes annotated with EJB-specific annotations in-
dicating special kinds of components (entities, session beans, message-driven beans). For

23

Chapter 2. Software Architecture Compliance - A Problem Analysis

the graphical design of EJB applications, a special UML profile exists [Obj04]. The men-
tioned DisCComp component model provides a custom-made textual specification language
[Rau04, AHKROS8] as well as a graphical notation based on UML [AHKRO08].

While the system model describes important runtime characteristics of the systems that can
be build, the description technique massively influences how well the systems can be described,
at which level of abstraction they can be described, and which properties can be influenced by
the designer by specification.

Component Models by Comparison

In 2007, members of the component-based software development community initiated the
CoCoME project’; the name stands for Common Component Modelling Example. More like
a competition, the purpose of the project was to compare different component models from
academia and to evaluate the state of the art in the field.

The competition was motivated by the fact that there is a large variety of component
models differing in many aspects. Different approaches have different system models realizing
concepts like components, interfaces, ports, etc. in different ways, and treat hence composition,
communication, concurrency, and deployment differently. They use different description
techniques, graphical as well as textual ones, with features for difference focuses, e.g. modelling
of non-functional properties, and are based upon different system or run-time models.

The goal of CoCoME was hence to get an overview of the existing, confusingly multifaceted
set of approaches to component-based software development and to compare their features,
strengths and weaknesses. The idea was realized to define a common exemplary system which
could be modelled by different component-based approaches. A common example allows
the research community to compare and to validate new or existing approaches, and to focus
research efforts to less intensively investigated aspects of component-based systems. At the
end, thirteen teams from academia faced the task of the competition — the modelling of a
common system with their own approach to component-based software development.

All of them were able to describe the system completely or in larger parts. Of course, the
single teams focused on the main purposes and strengths of their approaches, like description
of functional or non-functional properties, verification issues, seamless model-driven approach,
and so on. However, as one of the results, one has to observe that none of the system models or
the applied description techniques could be considered as being architectural. As we will see in
Chapt. 4, which will present the system modelled in CoCoME, there were three architectural
principles that the system followed. It seems that there has been a more or less common,
informal understanding of these principles that has been intuitively followed in design and
implementation of the system in the single teams. However, no description technique made
those principles explicit to enable us to check architectural compliance.

This result emphasizes the need for a better integration of architectural design and detailed
design for component-based systems.

3See also www.cocome.org

24

2.4. Research Questions of this Work

2.4. Research Questions of this Work

This work deals with architectural compliance checking under certain general constraints. First,
it is assumed that a model-driven software development approach is followed in which all
relevant artefacts are instances of meta models. Second, it is assumed that the systems under
considerations are component-based software system.

Concluding from the problem analysis presented in this chapter, the main research question
is formulated as follows:

Research Question 1 (RQ 1): How can architectural compliance checking tool
support be realized that is flexible with regard to

e the large number of different meta models that have to be considered in
checking architectural compliance (RQ 1.1), and

o the variability and adaptability of different architectural rules that need to be
checked (RQ 1.2)?

As we have seen in Sec. 2.2, a solution to RQ 1.2 has to answer the question which rules
actually constitute architectural rules and how they can be described. Furthermore, we have
seen that this question is closely connected to the question how architectural design and detailed
design are distinguished. Hence, a second research question is formulated:

Research Question 2 (RQ 2): How can models of architectural design, detailed
design and implementation be distinguished from each other to clearly define a
term of architectural compliance, which, in order to provide checking tools, can be
checked algorithmically?

An approach that answers RQ 1 — which is more likely if RQ 2 is answered adequately, too
— will significantly improve tool support for architectural compliance checking, which, at the
moment, lacks flexibility in at least one of the two dimensions named above. The state of the
art of architecture compliance checking will be discussed in Chapt. 3.

2.5. Summary

This chapter has investigated the open issues of architectural compliance checking. First of all,
it has introduced an informal definition of the term software architecture and presented some of
the most important tasks software architects have to perform. Among them, there is the task of
controlling the detailed design and the implementation of the software architecture of a system
and ensuring that the intended software architecture is correctly realized, or, in other terms, that
design and implementation are architecturally compliant.

After that, the difficulty of ensuring architectural compliance has been illustrated, which
is an effect of the inherent complexity. Due to the size and complexity of software systems,
the task of compliance checking cannot be performed manually. Hence, an important issue
is tool supported compliance checking. Flexible tool support has to deal with the complexity
caused by the variety of architectural rules that exists and the multitude of different artefact

25

Chapter 2. Software Architecture Compliance - A Problem Analysis

types. We have also seen that this complexity and the resulting problems are only partially
solved in MDSD approaches which are already capable of addressing many of consistency,
conformance, or compliance issues in software development in general. Moreover, principles
of component-based software systems have been introduced. It has been argued that most of
the approaches to component-based design also suffer from the inability to express architectural
principles and constraints. Finally, the two main research questions guiding this research work
have been formulated.

In the following, we will see how available approaches to architectural compliance checking
try to address the problems identified in this chapter.

26

Chapter 3.
State of the Art

Contents

3.1. Dependency Structure Matrix-Based Approaches 27
3.2. Query Language-Based Approaches 29
3.3. Constraint Language-Based Approaches 31
3.4. Reflexion Model-Based Approaches 32
35. MoreRelatedWork00 34

3.5.1. Consistency in Model-Driven Software Development 34

3.5.2. Architecture Description and Formalization of Patterns 35
3.6, SUMMATY . & & ¢ v v v v e v e e o e o o o oot o oo s oo o oo soeosas 35

The man who does not read good books has no advantage
over the man who can’t read them.

Mark Twain

This chapter illustrates the state-of-the-art in the field of architectural compliance check-
ing. It is structured according to a classification provided by [PTV*10], which distinguishes
Dependency Structure Matrices, Code Query Languages, and Reflexion Models as different
solution approaches; each of these classes will be presented in a single subsection providing
short descriptions of representative implementations and tools. In addition, there will be a
subsection about constraint language-based approaches.

After that, we will take a brief look on relevant neighbour research fields — architecture
description languages and the formalization of patterns.

3.1. Dependency Structure Matrix-Based Approaches

Dependency Structure Matrices (DSM) are a technique to represent and analyse complex
systems in general [Ste81]. Regarding architectural compliance checking, approaches basing
on DSM represent the simplest form of checking approaches.

The main idea is to represent systems as a square matrix; each element that is considered
as an element of the system, like components, modules, or subsystems, is represented as a

27

Chapter 3. State of the Art

M M (permuted)
AlB|C]|D AlD[B]|C
Alx|2]0]8 AlXx|8]2]0
Blo|x|o0o]oO D|I3|x]|ofo
clo|ofx]|a Blof[o|[Xx]o
D|3]|ofofx clo|4]ofx

Figure 3.1: DSM of a sample system consisting of four modules; the permuted matrix shows that
A and D are cohesive and candidates for merging them into one single subsystem.

line and as a row of the matrix. The value ¢;; denotes a dependency between the element i
and the element j. Depending on the specific approach, entries are either binary (either O or
1), indicating whether there is a dependency or not, or any numerical value which in addition
indicates the “strength” of a dependency; in this case, a value of 0 means that there is no
dependency, a positive value indicates a dependency.

Figure 3.1 depicts this principle for the example of a software system consisting of four
subsystems. The left-hand matrix shows that the subsystem A depends on subsystems B and D,
C depends on D, and D depends on A. The values ¢;; indicate the number of method calls from
subsystem i to subsystem j. The software architect can easily see which dependencies exist.

Moreover, simple architecture analysis can be done manually or by tools based on analysis
of matrices. The right hand matrix in Fig. 3.1 shows the result of applying a synchronous
permutation of lines and rows to the left hand matrix, such that a filled square of cells is
created symmetrically to the main diagonal!. This indicates a circular dependency between
subsystems on the one hand, on the other hand a highly cohesive subset of subsystems which
could be merged. As a further example, a matrix that has only entries in one half of the main
diagonal indicates a system without circles. For more applications of DSM, refer for example
to [BroO1].

Lattix LDM from Lattix [SJSJO05] is a tool to create, analyse, and control a software ar-
chitecture in terms of allowed dependencies based on DSM. It uses a graphical high-level
box-and-line notation to represent subsystems of a system, and is able to check violations of
dependencies in Java bytecode, .NET code, Hibernate, Spring, and some more. Subsystems,
as denoted in an abstract manner in Fig. 3.1 are basically Java packages, depend relations are
usage relationships of any form existing in the artefacts mentioned above.

Basic architectural rules can be specified manually. There are basically two kind of rules: a
“can-use” rule specifies a source and a target subsystem and expresses that the corresponding
DSM entry is allowed to have a dependency value greater 0; a “cannot-use” rule specifies the
opposite — the entry for a dependency between source and target must be 0.

Lattix LDM supports only a very limited set of architectural rules; basically, only rules
regarding dependencies are possible. Furthermore, architectural rules are not captured in a

I'The forming of such a matrix is also called partitioning, and the kind of matrix is also known as block triangular
matrix.

28

3.2. Query Language-Based Approaches

software architecture model of the system but are only visible to the architect/designer/devel-
oper inside the tool. The rules have to be kept consistent to an existing architectural model
manually causing significant maintenance efforts. The system’s DSM is the main architecture
documentation, not being able to illustrate the sources of rules explicitly, like for instance the
layers that cause dependency constraints.

From the support for different architectural rules point of view, the flexibility of the tool
is hence very limited. The support for different artefact types is appreciable, although the
support for detailed design-specific artefacts is limited. Nevertheless the benefit should not
be underestimated, since the understanding of existing dependencies is the first step to an
understanding of the system and valuable, for example, for architecture recovery.

There are several architecture analysis tool that visualize actual software architectures by
DSM but combine them in order to check intended architectures with query languages or
reflexion models (see Sec. 3.2 — 3.4).

3.2. Query Language-Based Approaches

Query languages in general allow the specification of queries to retrieve information from a
pool of data. SQL as the probably most popular query language retrieves data from relational
databases (see, e.g. [EN10]). Source code query languages allow one to formulate queries upon
a base of source code and retrieve single elements or more complex substructures from it. The
purposes are diverse; queries can be used to check coding styles and conventions, searching for
errors or possibilities to apply refactoring [KPO7]. In model-driven development, such query
languages are used to find the source patterns of transformation definitions or to check for
consistency constraints. Naturally, they can also be used to define queries retrieving elements
that adhere to or violate architectural rules.

The Code Query Language (CDL) [CQL] is an SQL-like language to query object-oriented
source code. Many built-in keywords and instructions specific for object-oriented system allow
easy-to-use and flexible specifications of queries and constraints. For example, a SELECT
METHODS statement returns in combination with a WHERE clause defining a condition the set of
methods in a system for which the condition holds. For example

SELECT METHODS WHERE isUsing A.doSomethingComplex()

retrieves all methods that call the doSomethingComplex method of class A. Constraints can
be checked by prepending the clause WARN IF <condition> IN <query> which causes a
warning if the condition is true for the result set retrieved by executing the query. Further
clauses do not only allow references to structural dependency properties of source code, but
also to metrics, test coverage, etc.

CQL is used in the tools NDepend [NDe] from SMACCHIA.COM and XDepend from
OCTO Technology [XDe]. NDepend is a comprehensive source code analysis tool suite,
including CQL for querying code and checking design rules. It supports all . NET programming
languages and C++. XDepend is comparable with NDepend but covers the Java market.

Tools based upon CQL provide powerful support for architectural compliance checking.
They are very flexible with regard to the different kind of rules. However, NDepend and

29

Chapter 3. State of the Art

XDepend only support implementation languages but not modelling language for the detailed
design. Moreover, there is no support to integrate the generation or definition of architectural
rules directly into a software architecture description. Furthermore, component-based software
and its descriptions are not considered by CQL.

A similar approach to CQL is .QL from Semmle [dMVH*07, QL]. .QL’s syntax is also
comparable to SQL and there are several built-in instructions to query object-oriented source
code. .QL’s support for custom-made queries is even more sophisticated that CQL’s, since
it is possible for users to specify their own predicates to be used in queries. This is done in
a Java-like object-oriented language which should be familiar to the targeted group of users,
namely software designers and developers.

The main critics of CQL apply also to .QL, i.e. the missing integration with software archi-
tecture models. .QL is integrated into Semmle’s source code analysis tool suite semmle/code
for Java.

JQuery [JV03, Vol06] is an approach based upon the logic programming system TyRuBA
[Vol98]; TyRuBA provides a Prolog-like logic programming language which is typed, in
contrast to Prolog [SS94]. JQuery uses TyRuBA to represent Java source code as logical
knowledge base, i.e. as logical facts and derivation rules how to derive new knowledge from
existing facts. As known from Prolog, such a knowledge base can be queried to retrieve data,
in this specific case about the represented source code.

The prototype described in [DH09] applies JQuery to enable architectural compliance
checking whereas architectural rules are embodied as logical queries that return violations of
the corresponding rules. It was applied to check architectural rules in source code; a major
drawback is that the intended architecture has to be entered manually as facts, because there is
no integration with an appropriate ADL. Moreover, the selection of JQuery restricted checkable
artefacts to Java bytecode and source code.

The research closest to the proposed approach is the logic meta programming approach
proposed by Kim Mens [Men00]. In his doctoral thesis, he describes a framework to automating
architectural conformance checking by representing architecture and implementation of a
system by a logical knowledge base. A simple architecture description language allows
describing a system as a structure of concepts and relations between concepts. Architectural
instantiation describes how a model written in this language is transformed into architectural
abstractions, which describe how concepts and relations are represented as statements of a
logic programming language. The available predicates to formulate those statements are driven
by a fixed implementation language (Smalltalk [Gol89]) and the Smalltalk Open Unification
Language (SOUL) [WuyOl], a logic programming system representing Smalltalk source code
by logical knowledge bases.

As later chapter will show, the presented work can also be understood as approach applying
logic meta programming to conformance checking, although the problem in general is inves-
tigated on a more conceptual level; however, the implementation presented in Chapter 8 is
based upon logic programming. On the conceptual level, the main difference is that in [Men00]
only architectural descriptions are understood as logical statements about implementation
artefacts, causing the mapping to depend on implementation artefacts, namely the structure
of object-oriented system as understood in Smalltalk or SOUL, respectively. The proposed
approach understands every description of a system, including the implementation, as statement

30

3.3. Constraint Language-Based Approaches

about a class of systems, namely component-based systems, and maps descriptions onto a
common ontology. Architectural rules, which are represented in [Men(00] in the mapping,
depend only on the structure of the ontology but not the implementation artefacts.

The implications are that the flexibility regarding the support of different artefacts to be
checked is greater than in the approach proposed in [Men00].

Concluding, it can be said that query-based approaches are potentially very powerful. The
expressiveness of all presented approaches allows us to cover a broad range of architectural
rules. Some of the approaches are limited regarding the artefact types that can be checked
— the flexibility ranges from single implementation languages (JQuery) to a whole set of
implementation languages (CQL). Approaches for models in general are not yet used to realize
conformance checks on detailed design model — it seems that architectural conformance is
considered to be an issue that need to be checked on source code only.

The main drawback is that software architecture models are not integrated as source of
architectural rules ([Men00] excluded to a certain degree); rules have to be specified separately
and are not part of an architectural model of the system.

3.3. Constraint Language-Based Approaches

Similar to query languages, constraint languages allow the user to specify conditions that a pool
of data must fulfil. The most prominent example is OCL which is widely used to specify such
conditions in UML models, for example to specify invariants over class structures that cannot
be expressed by class diagrams alone. Specified invariants have to be valid in all instances of
the model, i.e. for all objects and the structures they form.

The disadvantages of OCL for architectural compliance checking have been already discussed
in Sec. 2.2.2. Most approaches presented in the current section are languages to express and
evaluate constraints over source code. Note that the principles of query languages and constraint
languages are very similar in the sense that checking constraint can also be interpreted as
querying elements that violate the constraint and checking if the retrieved set of elements is
empty.

The Structural Constraint Language (SCL) is an approach to capture design intent as con-
straint over object-oriented program structures [HHO6]. Its expressiveness compares to full
first-order logic whereas the terms of formulae can use predicates and functions specific for
object-oriented source code, like most of the query language-based approaches (see Sec. 3.2).
Prototype implementations of the language are available for the Java and C++ programming
languages.

A similar approach is LogEn [EKKMO08] which has, compared to SCL, a less expressive
language (no usage of quantifiers) which comes with the advantage of better performance in
evaluating constraints, as the authors state. Moreover, it provides a simple graphical language
to define constraints. An interesting feature of LogEn is the possibility to define ensemblies;
these are units formed of sets of source code elements, abstracting from the single elements
and providing a more coarse-grained view on the code. Dependencies are specified between
ensemblies, allowing checking of rules, i.e. constraints, at different levels of abstraction. As
the author state themselves, the main purpose is the checking of dependencies, hence other

31

Chapter 3. State of the Art

architectural rules are neglected.

The Dependency Constraint language (DCL) is another constraint language-based approach
[TVO09]. It defines a domain-specific language for the specification of constraints, significantly
simplifying the language but restricting it expressiveness. The user of the language defines
modules, which are sets of classes, and selects from predefined dependency constraints to
express allowed or disallowed dependencies between modules. Different types of dependencies
are allowed such as “A calls B” or “A creates B”, exemplary constraints are “can-create” to
express that a create dependency is actually allowed between two modules. The approach is
implemented by the dclcheck tool for Java.

The range of flexibility provided by query language-based approaches regarding the variety
of architectural rules differs. While SCL is based on first-order logic with object-oriented
predicates, LogEn reduces the expressiveness of the underlying logic, and DCL reduces
possibilities for the composition of constraints. In all cases, the presented query language-based
approaches seem to be more flexible. The support for different artefacts is limited to single
programming languages which might be caused by the fact that most approaches are academic
prototypes — industrial tool support is missing so far. The integration of an ADL and support
for component-based systems is missing as well.

3.4. Reflexion Model-Based Approaches

Reflexion modelling was introduced in [MNSO1] as technique supporting program and system
comprehension. The assumed or intended software architecture of a system is modelled by a
high-level model, containing elements and dependencies as they are expected to be. After that,
a dependency graph is automatically extracted from the existing system artefacts, source code in
most cases. The created graph is also called the source model. In the following step, a mapping
between elements of the high-level model and the source model is created manually, capturing
the “common” elements of the intended high-level architecture and the actual structure of the
system. As a next step, the actual comparison of both is presented in a reflexion model, which
depicts

1. dependencies present in both models as solid lines (convergence),
2. dependencies present only in the source model as dashed lines (divergence), and
3. dependencies present only in the high-level model as dotted lines (absence).

The specific visualization differs from tool to tool but common is the separation of conver-
gence, divergence, and absence. Hence, the reflexion model represents violations of architec-
turally intended dependency structures and possible mismatches. There are several approaches
applying reflexion models for architecture analysis.

The Fraunhofer Software Architecture Visualization and Evaluation (SAVE) tool follows
the reflexion modelling approach [LMO08, DKL09]. The intended architecture of a system,
the high-level model, is specified as UML model following the KoOBRA approach to model
components [MA0O2]. A source model can be generated from Java, C++, or Delphi source

32

3.4. Reflexion Model-Based Approaches

code. The tool has been evaluated in several case studies [KLMNO6]. Current extensions of
the approach deal with continuously checking of architectural violations instead of checking
at actively initiated checks at dedicated points in time; architectural compliance is checked
permanently in the background while software developers modify source code, giving them
instant feedback and providing a constructive support to adhere to the architecture.

The tool ConQAT [DHHIJ10] is very similar to SAVE, providing a high-level graphical
modelling language and supporting a set of implementation languages. The authors emphasize
the need and support of diverse artefact types which they try to provide designing their tool
support as pipes-and-filter system which allows them to easily add filters for processing
additional artefact types. This is noteworthy because it is not clear for most of the other
approaches with limited support for different artefact types how they, or their implementations,
can be extended.

The Bauhaus tool suite allows, amongst other analysis, reflexion modelling for Ada, C,
C++, Java, and more programming languages [RVP06]. Representations of systems are either
written in Intermediate Language (IML) for a detailed view or as Resource Flow Graph (RFG)
for a coarse-grained architectural view. While IML is basically a implementation-language
independent representation of source code, RFG are hierarchical graphs whereas nodes denote
coarse-grained elements like types, components, files, etc., depending on the architectural
view. Intended architecture and actual architecture are both represented as RFG for reflexion
modelling whereas the RFG for the existing code is automatically generated.

The free tool Dependometer let the software designer describe an intended logical software
architecture in terms of layers, slices (structure elements orthogonal to layers) and subsystems
and map them to source code elements like packages or namespaces in Java, C++, or C# [Dep].
The architecture is defined as XML file. Checking generates a HTML report with navigation
capabilities allowing software designers to browse between the intended architecture and the
mapped structure in source code.

The flexibility of Dependometer is very limited in every dimension. The number of supported
artefact types is low, the only architectural rules supported are dependencies defined by layers
or slices. The definition of a software architecture in XML is very technical and not quite
intuitive.

SonarJ [Son] and Sotograph/Sotoarc [BKL04] from hello2morrow are comparable to Depen-
dometer. They structure systems architecturally also by layers and slices but provide a graphical
modelling language for the purpose of specifying the architecture of the system. While Sonar]J
covers the Java market, Sotograph can also deal with C# and C++. Similar with regard to
methodology and functional range is Structure 101 from Headway Software [Str]. The criticism
passed on Dependometer is also valid for the other tools of this group — neither the set of
supported architectural rules is large, nor the supported number of development artefact types.

Concluding, there are interesting commonalities of the reflexion model-based approaches
and important differences regarding their flexibility and applicability in the setting selected
for this work. All have in common that a mapping between architecture and source code
elements (in fact, they all check source code but not detailed design artefacts) is required to
keep track how architectural elements are realized in code. In model-driven development, this
information could be partially retrieved from persisted transformation information, such that
manual creation of mappings could be easier or completely omitted. For example, consider a

33

Chapter 3. State of the Art

transformation definition can be specifying how to transform a component from an architecture
description to a package of Java source code. If this transformation is actually executed, and
tracing information is persisted, the same information can be used for reflexion modelling.
Hence, this redundancy of information is a minor but not unsolvable drawback in the context of
MDSD.

The single approaches illustrate that flexibility of compliance checking with regard to
different artefact types is possible using reflexion modelling. For example, Bauhaus uses an
abstraction of specific implementation languages. However, compared to query language-based
approaches or constraint-based approaches, their expressiveness to architectural rules is limited
because they do not allow the specification of arbitrary constraints about the structures they
define. This is also due to the fact that the way architectural elements can be mapped to source
code elements is limited by the expressiveness provided by the language defining the mapping,
and the fact that not every kind of source code element can be referenced.

3.5. More Related Work

The presented related work so far is directly from the field of architecture conformance checking.
Closely related are concepts of inconsistency management and model transformations in MDSD,
as well as formalization of software architectures and architectural patterns.

3.5.1. Consistency in Model-Driven Software Development

As outlined in Sec. 2.2.2, among the main MDSD concepts are techniques to address ar-
chitectural compliance checking rudimentarily. Two field are relevant in this context —
(in)consistency management and model transformation.

Inconsistency management in MDSD deals with checking and ensuring consistency between
different models or between views on the same model (when consistency is checked towards
a common meta model). Moreover, inconsistency management is also about repairing incon-
sistencies. A survey of UML-specific approaches is given in [EB0O4, KHR"03, UNKCOS]. In
many cases, OCL is used to specify inconsistency rules, i. e. rules that describe when incon-
sistency constraints are violated, comparable to the negation of architectural rules describing
when a detailed design model conforms to an architectural model. Architectural rules defined
this way had to be defined for every combination of architectural meta model and development
artefact meta model because the shape of the inconsistency constraints depend on the structures
of the related meta models. The effort of maintaining architectural rules increases with the
number of meta models whose instances could be affected by the architectural rules. The same
problem also exists for approaches using other formalisms than OCL, like graph grammars
and transformations, like [MSDO06] or query-languages for semi-structured data like XPath in
[NCEFO02].

The same reason limit the applicability of model transformation approaches, as seen in
the example of Listing 2.2, even if the disadvantage of OCL — constraints are evaluated on
the instance level, relative to the modelling level a constraint is specified on — is omitted by
choosing a different formalism like graph grammars (see, e.g. [BHLWO7]).

34

3.6. Summary

From the theoretic point of view, the reason for the difficulties is the intensionality of
architectural rules (see Sec. 2.2). The intension of an architectural element, i.e. its constraint
restricting the further development, must be defined separately for each meta model.

3.5.2. Architecture Description and Formalization of Patterns

ADL are high-level description languages and have the potential ability to enforce architectural
conformance by construction. However, they do not support this feature per se but depend
on integrated development tools and code generators [MTO0O0] or implementation frameworks
[MMMOS5] — especially constraints for the refinement of architecture specifications are rarely
supported. Hence, the same problems remain as in MDSD. An interesting approach in this
context is ArchJava [ACNO2] which extends the Java language with architectural language
constructs. This simplifies the mapping of elements of the intended architecture to elements of
source code. But beside compatibility issues to existing code [AACO07], and the fact that other
artefacts cannot be accordingly annotated, the formulation of intensional architectural rules
remains an open issue also in this approach.

Formal approaches to pattern formalization are also close to the field of architectural rules.
Most approaches deal with design patterns [GHJV95]; a collection of approaches is contained
in [Tai07]. The solution part of design patterns, describing in case of object-oriented design
patterns a structure of classes, how they are interconnected and how they interact, also defines
constraints for the participating elements. Hence, a precise formalization of design patterns has
to express these issues. In fact, such constraints for architectural patterns [BMRS96] manifest
architectural rules.

However, the main difference is that most approaches do not address the question how such
a constraint defined in one model can be checked in another model, as need for the general
checking of architectural rules. Most approaches, especially those that try to integrate their
formalization into a MDSD framework like MDA, move pattern specifications and constraint
definitions to the meta model level; constraint checks, e.g. written in OCL, are executed for
the instances, i.e. models conforming to the meta model [BLE10, EBL06, FKGS04, KC09,
MCLO04, MHGO02]. They are thus not applicable without modifications to the problem of
inter-model constraints such as architectural rules.

3.6. Summary

It has to be stated that the state-of-the-art of architectural compliance checking in the context
of MDSD does not provide powerful and flexible tool support. Architectural conformance
checking cannot be realized with MDSD concepts alone in a satisfiable way. Since additional
single tools do not constitute flexible solutions alone, whole tool chains are required. These are
difficult to configure, to use and to maintain; potentially, they cause high acquisition costs.
The separation of software design into the three steps of architectural design, detailed design,
and implementation is not considered in any of the approaches. Artefacts that are checked for
conformance are source code of arbitrary programming languages, detailed design is ignored.
The approaches do not distinguish between architectural design and detailed design. Another

35

Chapter 3. State of the Art

common property of most approaches is the focus on object-oriented systems, the modelling of
component-based systems is only applied in SAVE on the architectural level.

The flexibility regarding the supported set of artefact types is difficult to judge. Just because
a conformance checking tool supports only a single programming language to be checked, it
does not mean that adopting it to other languages is impossible. To evaluate the flexibility, as
long as it is not conceptually too strongly restricted, the adoption efforts had to be considered,
which is difficult especially for commercial tools.

The most flexible approaches regarding the variety of architectural rules are query langu-
age-based and constraint-language based approaches. The expressiveness of those languages is
only limited by the formalism they use, e.g. first-order logics, and the set of system elements
and relationships that are represented in the formalism. Most approaches reflect object-oriented
systems with elements like classes or methods and relationships like inheritance or call relations.
In addition, query language-based and constraint-based approaches can be used very flexible to
define user-specific and customized rules.

Reflexion modelling approaches have limited expressiveness and hence limited flexibility
regarding architectural rules. They can only express constraints regarding dependencies,
whereas most of the constraints follow a fixed and built-in scheme; the variation point that
the user can influence is the specific mapping between architectural elements and source code
elements. The same holds for dependency structure matrices.

However, reflexion model-based approaches at least potentially provide a high-level model of
the system which can be understood as architectural model used to describe and communicate
an architecture, e.g. SAVE. The presentation of an architecture as DSM is less adequate.
Queries describing constraints on structures are often very detailed and lengthy; they are hence
not adequate to communicate a high-level view on the system under consideration.

Concluding, it must be stated that no approach addresses all dimensions of flexibility
sufficiently. In the following, the case study to which the proposed approach is applied will
be introduced; readers interested in how the proposed solution addresses the flexibility issues
might want to skip the chapter and to directly jump to Chapter 5, which describes the solution
in detail.

36

Chapter 4.
Case Study

Contents

41. The CoCoME-ACaseStudyot 38
4.1.1. Overview of the Trading System 38
4.1.2. Architecture. 41
4.1.3. Design 43
4.1.4. Implementation 45
4.2. Examination of the Architectural Rulesin CoCoME 46
4.2.1. Layered Information Systems 46
4.2.2. Service-Oriented Interfaces 48
4.2.3. Event-Based Architecture0, 50
4.3. Detailed Modification Scenarios 51

4.3.1. Modification Scenario 1: Adding Components for Cross-Cutting
ConCerns o o it e e e 53
4.3.2. Modification Scenario 2: Interface with reference semantics 54

4.3.3. Modification Scenario 3: Direct Communication between Cash Desk
Components e 57

T 11 111 11 1 58

Few things are harder to put up with than the annoyance of a
good example.

Mark Twain

This chapter describes the case study used to illustrate the need for a flexible architecture
compliance checking approach. It contains a realistic component-based system and different
application scenarios, in which compliance with the architecture of the system has to be
checked. Section 4.1 introduces the Trading System, the subject of the Common Component
Modelling Example, which will serve as case study. In Sec. 4.2, the rules and constraints will
be examined that the software architecture of the Trading System imposes upon the design and

37

Chapter 4. Case Study

implementation. Three modification scenarios, in which compliance checking is required to
avoid architectural mismatches, will be developed in Sec. 4.3. These scenarios will be used
later to validate the proposed approach (see Chapt. 7). The chapter at hand is summed up in
Sec. 4.4.

4.1. The CoCoME - A Case Study

The application domain of the CoCoME (see also Sec. 2.3.2) is the retail industry. The
functionality of the system covers the support of business processes common in retail stores
like supermarkets. Specific use cases are, for example, the sale of goods and the management
of the inventory.

At the start of the CoCoME project, the teams got certain input to start their development
of the system. The use cases were handed out in textual form, supported by UML use case
diagrams and refining UML sequence. Furthermore, a Java-based reference implementation
of the system served as input. Class diagrams, component diagrams, and composite structure
diagrams reflect the static logical structure of the system. However, to leave some freedom to
special aspects of different approaches, they do not represent a full design specification of the
system, but visually conclude the reference implementation.

The following subsections give a short summary of the CoCoME system, which is described
in more detail in [RRPMOS8]. Section 4.1.1 describes the main functionality of the system and
gives a top-level view onto the physical structure for a basic understanding of the system. In
Sec. 4.1.2, the main architectural decisions will be explained. Section 4.1.3 will describe the
UML design model of CoCoME. Finally, Sec. 4.1.4 concludes with some final remarks on the
implementation.

More details about the motivation and goals of the project, the input for the teams, and
further material can be found on the CoCoME website!. The approach-specific solutions
and the evaluation of the competition results are described in detail in the CoCoME book
[RRPMOS].

4.1.1. Overview of the Trading System

The CoCoME system is inspired by the book of Craig Larman [Lar04], which introduces a
fictitious “point-of-sale” system. The main use cases supported by the Trading System, this is
how the CoCoME system is also called, are depicted in Fig. 4.1.

There are two functional areas. On the one hand, the Trading System supports the cashier at
the cash desk of a store. The cashier scans product bar codes and handles the payment with the
customer; on the other hand, the Trading System provides functionality for the back-office of a
store. The overall system is hence decomposed into the Cash Desk System and the Inventory
System.

The Cash Desk System supports the cashier in the process of selling goods and the payment.
The cashier scans products, accepts cash or card payment, handles change, and so forth. There

'www.cocome.org

38

4.1. The CoCoME - A Case Study

TradingSystem

ManageExpress ReceiveOrdered

Checkout Products
— StockManager
Cashier
(ManageExpressChecﬁout)
/ ProductExchange
e ShowDelivery L
Reports EnterpriseManager

ProcessSale

extension points ChangePrice
ManageExpressCheckout

ShowStockReports

X

™ StoreManager
OrderProducts

Figure 4.1: The use cases of CoCoME.

Customer

are many devices at a cash desk that interact during the process of selling and payment, for
instance bar code scanners, cash boxes, and receipt printers. The interaction between these
single parts is controlled by the Cash Desk Application software. The system allows the cashier
furthermore to switch its cash desk to a kind of “fast lane mode” by analysing the latest payment
processes and detecting a high percentage of small purchases. In this express mode, a LED
sign is switched on indicating that customers with purchases up to a certain number of goods
can be handled separately.

In addition, information about purchases is directly sent to the Inventory System. It up-
dates the stock amounts of the products that are sold. This way, the stock is kept up-to-date
permanently.

The Cash Desk System has a communication structure that is typical for distributed embedded
systems [Mar05, BMRS96]. Independent, loosely coupled components interact by reacting to
events that happen to some components in the system. For example, a cash box may only open
if the cashier signals that he received cash, or a display showing the current running total has to
be updated when another good is scanned.

The physical structure of a cash desk is depicted in Fig. 4.2. A central computer, which runs
the Cash Desk System Software, is connected to the peripheral devices like cash box, bar code
scanner, receipt printer, LED sign, and credit card reader.

The actors that interact with the Inventory System are different types of managers. The store
manager is responsible for, among other tasks, setting prices and ordering new goods; the stock
manager has to check in new goods.

The Inventory System supports the store manager by allowing him to change data of the
product portfolio — the Change Price use case is one representative for similar tasks. The
store manager can furthermore inspect stock reports. The system can report goods whose stock
amount is below a defined, critical threshold indicating that new goods have to be ordered.

39

Chapter 4. Case Study

Cash Desk

Computer
Bar Code P

Scanner

3

—_ Caowm [
= i
::::: |

\w 2 =
- >

Receipt Printer
Cash Box

Figure 4.2: Cash Desk System overview (from [RRPMO08]).

LED Sign

Card Reader

Store Application

Line

Store Clients
-‘ fi

Figure 4.3: Top-level structure of the Inventory System (from [RRPMOS]).

The stock manager can check incoming deliveries for consistency with the placed order by
querying the Inventory System. Furthermore, he uses the system to check-in received goods
electronically.

Figure 4.3 depicts the physical structure of the Inventory System. Central building block is
a store application server, which has access to a database to read, update, and delete relevant
data, like product data, order information, and so forth. Store and stock manager access that
data via client computers connected with the server by a network. Furthermore, the server is
also connected to the computers of the single cash desks in the cash desk line; remember, that
data of the purchase processes is used to update the inventory.

Concluding, the inventory system is a typical distributed, client-server information system
[TvS08]. Users read, update, and delete data persisted at a server, using client computers.
In contrast to the Cash Desk System, the main communication mechanism is synchronous
communication.

40

4.1. The CoCoME - A Case Study

4.1.2. Architecture

The main architectural decisions and aspects of CoOCoME were documented textually; an
explicit architectural model was not given. Instead, detailed UML component diagrams were
handed out as documentation of the system’s logical code structure.

The main architectural aspects are the following:

Three Layer Information System. The Inventory System is a typical information system
as explained above. One common reference architecture for systems like that is a Three-Layer-
Architecture [Fow02]. It separates the components of a system into three distinct, hierarchical
groups, the layers. Dependencies between layers are only permitted from “upper’” layers
to “lower” layers [BMRS96]. In general, layering decouples system parts of different levels
of abstraction, or of fields of tasks. This leads to loosely coupled and easily exchangeable
subsystems — for example, in a well layered system, changes in the upper layers will not affect
the lower layers.

The lowest layer, often named “‘persistence layer” or “data layer”, in this reference archi-
tecture has the tasks of persisting data and providing basic creation, access, and manipulation
operations on the persisted data. For example, the persistence layer of the Inventory System
contains a component Store, which defines entities for store and stock relevant data, for exam-
ple Stockltem or ProductOrder. Furthermore, the layer contains an interface StoreQuery|f
defining methods to query the database for data; for instance, queryLowStockltems() retrieves
all stock items that are running low (see also Sec. 4.1.1).

The layer above the persistence layer is the application layer and contains the application
logic of the system. It provides complex functionality accessing the persistence layer to
create, read, update, and delete data. For example, the application layer of the Inventory
System contains a component, called StoreApp, which provides methods to order products
and roll in ordered goods. These are complex operations consisting of several calls to data
manipulation operations defined in the data layer. Only the application layer is allowed to
access the persistence layer.

The layer at the top is the graphical user interface (GUI) layer. Its task is to interact with
the users of the system and to present the output of the system to them. The components
in this layer represent elements of the GUI. They interpret user input and call functionality
of application layer components. In a three-layer information system, the business process
realized by the system is embedded into the GUI layer, too. Simplified, each component, defines
which functions are called to retrieve or manipulate data, and which other GUI components are
invoked if its own control elements are used. This way, the control flow between components
gradually reflects the business process. In contrast to four layer architectures with dedicated
process layer and workflow engine [vdAvHO04], there is no decoupling of representation and
process control.

The GUI layer is not allowed to access the persistence layer directly. Concluding, the layer
structure is strict — this means each component may only access components of the same layer
or components of the layer directly below its own layer. The layering provides a separation
between representation of data and control flow, application logic which works with the data
and reflects single steps of the business process, and the data structures that contain persistent
data.

41

Chapter 4. Case Study

Application Layer Interface with Copy Semantics. The layering of an information system
structures the system logically. If the system is going to be implemented as distributed client-
server or multi-tier system [TvS08], there are different possible variants to distribute logical
layers onto physical nodes [TvS08]. In distributed systems, data as well as method calls
between layers have to be transmitted between processes. If a system is realized in an object-
oriented language, there are certain pitfalls regarding the transport of data, for example between
the application layer and a GUI layer located at different. Let us assume, that a method call
at the application layer returns remote references to objects to a caller in the GUI layer. Most
probably, the caller will invoke methods at these references to retrieve the returned data. This
kind of communication can be very expensive; each call of a remote object’s method, like
reading object attribute values or navigating references to associated objects, is translated to
a remote method invocation via some middleware including marshalling and unmarshalling
of calls, etc. This is very time-consuming and requires relatively large amounts of network
resources compared to a simple transfer of data [Fow02].

A common solution to this problem is the use of data transfer objects [Fow02]. Instead of
passing references to the network of persisted objects to the GUI layer, the required fragment
of this network is copied into transfer objects. These copies are transferred to the GUI layer
via the network; the GUI, running at a remote client computer, gets its own local and hence
efficiently accessible copy of persisted data. Hence, we also say, that a component handling the
passing of data the way described, provides an interface with copy semantics (in contrast to
reference semantics).

Interfaces with copy semantics are an essential concept of service-oriented architectures
(SOA) [KBS04]. The application layer of the Inventory Layer is designed as service-oriented
system. This means that interfaces accessible from the outside of the layer, i.e. from the GUI
layer, have to use transfer objects. A more detailed look at the implications of using data
transfer objects will be given in Sec. 4.2.2.

Event-Driven Architecture. As mentioned above, the components of the Cash Desk System
interact by causing and reacting to events. The event of scanning a product bar code (which is
raised by the bar code scanner) causes reactions of other components — the running total is
updated and visualized on the cash box display; the receipt printer prints another entry of the
sale. Such a system is also said to have an event-driven architecture [YPMT(09]. A common
solution to realize an event-driven architecture is to use the Event Channel pattern [BMRS96],
a special variant of the Publisher-Subscriber pattern [GHJV95].

Each component in the Event Channel Pattern can play the role of a publisher, a subscriber,
or both. A publisher creates events and puts them to the channel, while a subscriber reacts to
events that are put on the channel. When a publisher wants to “raise” an event, it calls a method
at the channel which instruct the channel to publish the event. After the event is published, it is
sent to all registered subscribers. They can react to the event as intended. The forwarding of
the event does not necessarily happen at once after it has been raised by the publisher; raising
and publishing are temporally decoupled.

An event-based architecture leads to very loosely coupled components and an easily extensi-
ble system. Since putting the event onto the channel and publishing the event are decoupled,
the event channel pattern realizes asynchronous communication between a set of components
that do not necessarily need to know each other.

42

4.1. The CoCoME - A Case Study

«system configuration» o
CoCoME
cardreaderCtrl N internalEC
cashDeskApp ’ storeGUI ‘ ’ reportingGUI ‘
- | | |
2 \2
printerCtrl - > externalEC L JstoreApp ‘ LreportingApp ‘ productDispApp
e L
> 7
[= 2
lightdisplayCtrl > s ~ N A
| | ~ |
/ ZOL
V i \ V4
cashboxCtrl > ’ storeData ‘ ’ enterpriseData ‘ persistence
Cash Desk System Inventory System

Figure 4.4: CoCoME design (top level).

In the Cash Desk System, there are actually two kinds of event channels. Each single cash
desk has a separate channel internalEC connecting the software controllers for the single
devices; the channel is for the communication among them and the communication with the
cash desk application. For the whole cash desk line, there exists an event channel externalEC, to
which the single cash desk applications register as publishers; the already mentioned application
layer component StoreApp of the inventory system registers as subscriber. The cash desks
publish “SaleRegisteredEvents” onto this channel, indicating that a sale process is finished. As
a reaction to this event, the inventory system updates the amounts of goods in the inventory.

4.1.3. Design

The main diagram types of UML to describe the static logical architecture of a system are class
diagrams, component diagrams, and composite structure diagrams. Class diagrams are used
to model interfaces of components in detail, while component diagrams provide black-box
views to components; composite structure diagrams show white-box views. Most of the UML
language elements used in one of these diagrams types can also be used in the other two types,
hence, the distinction between diagram types is not very precise (see [Obj10b]). The reference
UML design model developed for the Trading System, however, uses these three diagram types.

Figure 4.4 shows a composite structure diagram of the overall Trading System, and all
specified components. The single interfaces are omitted for clarity reasons.

The left-hand part of Fig. 4.4 depicts the Cash Desk System. There are components that
represent the software controllers for the devices installed at a cash desk. Furthermore, there
are components containing the cash desk application logic and a GUI component. They are
connected via an internal event channel component.

The right-hand part depicts the Inventory System. The layered structure can easily be seen. In
both, GUI and application layer, there are components for store-specific and reporting-specific
functionality. As mentioned earlier, the store-specific components provide the functionality of

43

Chapter 4. Case Study

Stockitem ® stockltems -product Product ®

+name : String
+barcode : Integer

+salesPrice : double

+minStock : Integer 0.." <@ isStockedAs1

Ordergntry Produc¢tOrder

ProductOrder ()

" +deliveryDate : date
places B> 0. +orderingDate : date

+name : String | -store -orders
+location : String [

T

PersistenceContext

E +amount : Integer +purchasePrice : double
Stochit |+maxStock : Integer
Store ockitem ' +incomingAmount :Integer -product 1
OrderEntry O] 1o
. 0..* [-stockltems +amount :Integer 0.+
«component» = : .
StoreApp ! owns - =
StoreQuerylf : A entries | 1.. .
: hasEntries A
. 1 -store
' -order,
' Store (O

Figure 4.5: Component of the Trading System and details of provided interfaces; example from
the data layer.

ordering products, changing product data, and so forth, at GUI level as well as pure application
logic. Reporting functions are realized in a separate component. At persistence layer level, there
is only one component Store, which contains the data model of the system and basic operations
on the data model. The component Persistence encapsulates the technical realization of
database access.

Figure 4.5 shows combined diagrams that model the Store component from the data layer
of the Inventory System. In Fig. 4.4 was modelled, that there will be one instance of this
type in the system. The left-hand part of Fig. 4.5 shows as a composite structure diagram
depicting the inner structure of an instance of Store. The component provides several interfaces;
StoreQuerylF defines methods to query the data persisted, e.g. all products available in the
store; the other interfaces represent the entities of the data model, for instance Product and
Order. The right-hand part of Fig. 4.5 depicts a class diagram of the data model showing the
attributes of the entities and the associations between entities.

The component also defines a port with cardinality one, indicating that other components
requiring an instance of type StoreQuerylf can connect to an instance of Store.

UML defines different types of behaviour diagrams like sequence diagrams, activity diagrams,
interaction diagrams, and some more. They focus upon different behavioural aspects, for
instance, sequence diagrams and interaction diagrams are well suited to model communication
issues.

As we will see, most architectural rules that are considered here deal with communication
aspects. Since a full design specification of the Trading System is out of the scope of this
work, only communication between components will be modelled but not algorithmic details
of methods. Hence, sequence diagrams will be used, that provide appropriate means to model
the interaction between components.

Figure 4.6 shows the sequence diagram for the method getProductsWithLowStock. The
corresponding operation is defined by the interface Storelf, for which the component StoreApp,

44

4.1. The CoCoME - A Case Study

self:StoreIfImpI| | persistencelf =] | petx: (O txctx : O storeQuery |
T T Persistence Transaction

getProductsWithLowStock() | Context Context
| |

getPersistenceContext() | |
|
é pctx |
|

<_resilt-r
|

|
fiIIProductWithSltockltemTO(stockItemsi:"resuIt"

|

|

|

| |

Figure 4.6: Behaviour specification for methods; exemplary sequence diagram for getProd-
uctsWithLowStock.

located in the application layer, provides an implementation. This implementation calls methods
at the persistence interface first, which is modelled as a required port, called persistencelf. The
method calls are required to establish a connection to the database and to get a transaction
context. After that, the query interface (also modelled as a required port of the application layer
component Store) is used to execute a query retrieving the corresponding data. After that, a
helper method fillProductWithStockltemTO is called to copy the data into transfer objects.

4.1.4. Implementation

The reference implementation, which was also given to the teams as input, had been realized in
Java. The source code consists of 120 classes and interfaces, or about 6,000 lines of code. It
was mainly used by the teams as a detailed reference behaviour specification, since the method
bodies naturally contain a complete behaviour description, and to get a better understanding of
the system by a runnable implementation.

During implementation, the developers paid attention to conform to the documenting UML
diagrams, especially to map components systematically to source code structures in Java, which
does not come with component-based concepts. Details regarding the implementation can be

45

Chapter 4. Case Study

found in the documentation of CoCoME.

Technologies that were used for the implementation included Hibernate as object-relational
mapper and persistence mechanism [BKO06] and the Java Messaging Service as a technical
off-the-shelf implementation of event channels [MRC09].

Hence, the implementation included more than only Java source code. Technologies like
Hibernate and JMS include declarative configurations, definitions, etc. Hibernate, for example,
allows XML Mapping Files to define how classes are mapped to tables of a database. They also
define how associations between classes are mapped to foreign key relationships. These features
are noteworthy because these artefacts can also be affected by architectural rules. Consider,
we define that the data model of the Trading System is separated into two subsystems, one
containing classes for data that is store-specific, one for data which is global to the enterprise,
whereas the first subsystems may not depend on the latter. In this case, this architectural rule
defines constraints that must not be violated by the definition given in the mapping files.

4.2. Examination of the Architectural Rules in CoCoME

In Sec. 4.1.2, the main architectural aspects of the Trading System have been described.
They imply rules that guide the further refinement of the system during the design and the
implementation. This section discusses those rules and describes them informally.

4.2.1. Layered Information Systems

Layers partition the set of components of a system, or a subsystem, into groups. Each of
these groups contains components that logically belong together, because they are on the
same functional abstraction level, abstract from the same more low-level details, or similar
reasons. As [CBB*10] states, each layer constitutes a virtual machine providing a cohesive set
of services which may only use layers below itself.

But as described for the layered architecture of the Inventory System (see Sec. 4.1.2), this
constraint is not enough to define every kind of layered architecture because it is not always
desirable to allow a layer to use each of the lower layers. In addition to the concept of layers, a
allowed-to-use relationship is required, modelling which layers in a system may actually use
which other layers. Fig. 4.7 depicts a box-and-lines diagram style commonly used to illustrate
layered architectures.

So far, we can conclude the following constraints for layers in general. A layer L may only
use a layer M if

e L equals M or
e L is at an higher level than M and (L,M) is in the allowed-to-use relation

Hence, a layer is correctly designed and implemented if all of its usage relations are compliant
with these constraints. However, it still has to be clarified what it means for a layer to “use”
another layer. As a first refinement, a layer L uses another layer M, if one of the entities grouped
in L uses an entity in M — these entities are components and interfaces, and everything that

46

4.2. Examination of the Architectural Rules in CoCoME

|
|
1
v l Key
1
A i Layer
1
J ' A—> B

1“Ais allowed to use B”
1

Figure 4.7: Informal layers documentation.

refines them in more detail, like classes, methods, parts, ports, connectors, and so forth.
According to [CBB*10], a system element A uses an system element B, if A’s correct operation
depends on the correct implementation of B. Thus, if A is contained in layer L, and B in layer
M, L uses M.

To make the definition of when the design or implementation of a layered architecture is
compliant, complete, it hence has to be defined which cases of usage exist:

e Usage between components and interfaces. If a component provides or requires an
interface, it assumes that the signature of the interface is what it is going to implement,
or what it requires from its environment. In other words: changes of the signature imply
changes of the providing or requiring components.

e For the same reasons, specialization between types leads to a usage relation between the
specializing and the generalized type.

e Usage of types. An interface using a type, e.g. another interface, as method argument
type or return type, or as type of a reference, depends on that type.

e Method calls. If the implementation of a component calls a method at another component
(e.g., connected via a connector to a required port), it depends on the invoked behaviour.

The last case above needs some closer observation. In the case, a component invokes
a method asynchronously, the invocation does not manifest a usage relation in the sense
mentioned here. It’s own implementation, which specifies the asynchronous invocation, does
not depend on the correct implementation of the receiver of the invocation. Contrarily the
synchronous call: the called method, for example, could incorrectly fail to terminate, causing
the caller to wait forever.

Notice, that this definition allows layered systems to communicate in the opposite direction
of the allowed-to-use relationships, at least to a limited degree, by asynchronous messages. This
is often required for callback mechanisms, used for updates in patterns like MVC [BMRS96]
or Observer [GHJV95], or to “bubble” error messages up to higher layers [CBB*10].

47

Chapter 4. Case Study

These rules have implications for the design and the implementation of the “Trading System”
in CoCoME. Consider, for example, the components of the GUI layer. They are designed and
implemented in compliance with the architecture (at least regarding the layered structure), if all
they depend on is located in the GUI layer or the application layer, but not in the persistence
layer. This means that GUI components or interfaces may not rely on an interface of the
persistence layer nor be connected directly to a component of that layer nor call methods
defined there. The same applies analogously to application layer components that may not be
designed to use GUI layer components, and persistence layer components which may only use
components inside the same layer.

Figure 4.8 shows this by example. It depicts on the left hand side a simplified architectural
model describing the layers of the CoCoME Inventory System and the allowed usage relation-
ships. The arrows stereotyped with «isAllowedToUse » model these relationships. Furthermore,
the model describes how packages are assigned to layers. The package GUI is assigned to the
layer called GUI Layer. On the right hand side, there is a cut-out of the CoCoME design model
which models, among other aspects, the actually existing dependencies. For example, the
component StoreGUI requires the interface Storelf, which provides application logic methods
relevant to the management of a store inventory. This interface is contained in a package that
is assigned to the application layer. This is modelled by a «uses» relationship between the
component and the interface. According to the architecture, this dependency is allowed because
StoreGUI is located in the GUI layer and accesses an interface in the application layer. In
contrast, the dependency towards the interface StoreQuerylf is not architecturally compliant.
The architectural model does not contain a relationship which allowing a dependency between
the GUI layer and the data layer.

The first application scenario will deal with the violation of the Trading System layer structure
(see Sec. 4.3.1). It describes the addition of a component to the Inventory System that must be
accessible from all layers.

4.2.2. Service-Oriented Interfaces

As mentioned in Sec. 4.1.2, the application layer of the Inventory System is designed to use
data transfer objects to pass data from the GUI layer to the application layer and vice versa.
These objects contain copies of data that is persisted in the data layer below. On the one hand,
copying the data avoids direct access to the data layer, on the other hand it reduces network
traffic because the number of remote method calls is reduced — instead of initiating many
method invocations to navigate between objects, the relevant part of the object network is
copied and transferred by a single method call (see. Sec. 4.1.2 for details).

The details of the concepts can be informally described by the following rules which follow
the terminology from [HRB*08]:

e The GUI layer may only connect to interfaces that are declared service interfaces.
Connectors that point inwards the layer, i.e. connectors that can be used to call methods
at application layer components, are only allowed if they point to ports providing service
interfaces.

48

4.2. Examination of the Architectural Rules in CoCoME

Architectural Model Design Model

Ay =
«mapsToPackage»
V _____ > Gul «component» =
«Layer» StoreGUI —l—
GUI Layer

|
. «uses»

«isAllowedToUse»

| |
QW — QD @
|
Application «uses» |
V _«miPSE’Pa_ckage»% Application ;
Storelf @
«Layer»
Application Layer

«isAllowedToUse»

\4
V! «mapsToPackage»

————— N Data

Data

|

|

|

|

|

|

[
\
StoreQuerylf (

«Layer»
Data Layer

Figure 4.8: Modelling the layers structure of the Inventory System and compliant and violating
dependencies in the design model.

e A service interface is an interface providing service methods only. Those methods use
only transfer object classes or primitive types as parameter types or result types. Each
call of a service method returns a new copy of data, i.e. a new instance of the transfer
object class. This ensures that two different clients do not share a single instance as
returned value.

e A transfer object contains only attributes of primitive types or refers to other transfer
objects; it never refers to an object which is not a transfer object. Especially objects from
the domain model are not allowed.

Different violations of these rules are possible. Figure 4.9 shows a GUI component that, on
the one hand, correctly uses the services of the interface Storelf. This interface, which is defined
in the application layer, has only methods using only transfer object classes and primitive types.
As a representative, the method getProductsWithLowStock is depicted, which returns an
instance of the transfer object class ProductWithStockltemTO. On the other hand, the GUI
component uses the application layer incorrectly. It accesses the interface OptimizationSolverlf,
which is defined in the application layer and implemented by the application layer component
ProductDispatcher (see Fig. C.12). The depicted method of this interface is not a service

49

Chapter 4. Case Study

Architectural Model Design Model
GUI
«component» =]
SomeNewGUI

—

—

«Layer» | |
GUI Layer 0 «uses» Ol«uses»
1
| —
\ «isAllowedToUse» | Application | !
\ 2
| «Service»)
[Storelf
| +getProductsWithLowStock() :ProductWithStockltemTOI[0..*]
«ServiceOrientedLayer» [
L

N OptimisationSolverlf C
+solveOptimization(Stockltem...)

Application Layer

«Transfer»
ProductWithStockltemTO

Figure 4.9: Examples of interfaces conforming to, or violating the service-oriented architecture of
the Trading System.

method because it uses other interfaces than transfer object classes as parameter types; the
parameter type Stockltem is an entity from the persistent data model.

Notice, that the goal of the rules for transfer objects and interfaces with copy semantics is
not to specify transfer objects completely. It is not constrained, for example, that a transfer
object must contain the same data values of the relevant domain model extract. Instead, we
describe a minimal set of rules that must be followed.

4.2.3. Event-Based Architecture

The event-driven architecture of the Cash Desk subsystem describes that the components in
this subsystem communicate asynchronously and are further decoupled by event channels. The
event channel has the task to forward events. Events are types whose instances can contain
any relevant data about a specific event. They are modelled as interfaces and can also be
specialized. Events are passed to the event channel and forwarded to all registered subscribers
in an asynchronous manner. The components determine themselves whether to react to an
event or not.
This means that the following rules apply:

50

4.3. Detailed Modification Scenarios

e There are two kinds of components in the considered subsystem: event channels and
participants; the latter are publishers or subscribers (or both).

e Components interact by raising events, modelled as a specific kind of type, and reacting
to them.

e Participants connected to the same event channel are not allowed to communicate directly
with each other using the events that should be published at the channel.

e Participants commit events to the event channel which ensures that these event are
forwarded to the other participants at some point in time. This happens decoupled from
the original commit call to provide a asynchronous communication between participants.

These rules try to avoid that the weak coupling between the components of this subsystems
is undermined by directly “wiring” two or more components, as depicted in Fig. 4.10. In this
example, all three components, cashboxCtrl, lightDisplayCtrl, and cashDeskApp, are plugged
into the same event channel according to the architecture model. This is refined correctly in the
design model specifying that those components are connected via ports to the event channel.
But there is also a direct connection between cashDeskApp and lightDisplayController. Such
a structure allows two components to communicate directly; they could exchange notifications
of events without sending them to the event channel. Other components, that have subscribed
for the same kind of events, would not be able to react to those events. This has to be avoided.
In the example, the cash desk application could notify the controller of the LED directly about
the activation of the fast lane mode; the controller can react and activate or change the text
displayed on the LED. If the event is not published on the channel, the card reader component
is not notified, and cannot deactivate itself as required in fast lane mode (see [RRPMOS]).

Notice, for later sections, that communication infrastructure components like event channels
are often taken “off-the-shelf”. This also means that their behaviour and inner structure is often
not modelled explicitly. This is also the case for CoCoME using JMS (see also Sec. 4.1.4).
The correct behaviour is often taken for granted. To illustrate the approach to architectural
compliance checking, a very simple event bus will be modelled to the degree that is required to
show that the rules modelled above are followed or violated.

4.3. Detailed Modification Scenarios

Based on the reference implementation, a reference design model has been developed. In
Sec. 7.1.1, an architectural model reflecting the three described architectural aspects including
the architectural rules they defined, will be developed. The design model will be checked for
compliance with the architecture model.

Since the reference implementation, and hence the design model, can be expected to be
largely compliant, the approach will also be evaluated by scenarios introducing architectural
violations into the design model.

In the following, three modification scenarios are introduced, each leading to a system design
model that is not compliant with one of the three architectural aspects described in Sec. 4.2.

51

Chapter 4. Case Study

Architectural Model Design Model
«system configuration» =] «system configuration» =]
CoCoME CoCoME
«PublisherComponent» =| internal |
«plugsinto» «SubscriberComponent» EC:

: cashboxCtrl : JMSEvent
«Publisher» A > «EventChanneI»,;' CashBoxController Channel
«Subscriber» internalEC
cashboxCtrl

Q

«Subscriber»)

lightdisplayCtrl | «SubscriberComponent» g]

lightDisplayCtrl :
LightDisplayController

«plugsinto»

1

«plugsinto» |

«Publisher»
«Subscriber»

cashDeskApp

«PublisherComponent»

«SubscriberComponent»
cashDeskApp :

CashDeskApplication

Figure 4.10: Examples of communication conforming to and violating the event-based architecture
of the Cash Desk System.

52

4.3. Detailed Modification Scenarios

4.3.1. Modification Scenario 1: Adding Components for
Cross-Cutting Concerns

In this scenario, the inventory system’s functionality is going to be improved by adding logging
to the inventory system. Logging is the process of recording certain events, actions, or errors
that happen during the execution of a system. The recorded information is usually saved
to file, a database, or other persistent storage mechanisms. Logging can be helpful during
system development, operation and maintenance to understand the behaviour of the system, for
example to find sources of erroneous system behaviour. Developers can log, for instance, the
values of parameters that are passed to a faulty method to analyse the circumstances leading to
occurrences of errors.
The actions that should be logged in this scenario are diverse:

e The activation of GUI elements like opening a new window in the store client software is
logged. The name of the activated element and date and time of activation are stored.

e The call of service methods of application layer components is logged. The name of the
invoked method, parameter values, and date and time of the invocation are stored.

e The execution of database queries, that are realized and encapsulated in the implementa-
tion of the Data::StoreQuerylf interface, is logged. The query string as well as time and
date of the query are stored.

Logging is available for many implementation technologies and programming languages
“off-the-self”, for example the popular log4j logging framework for Java [Gup05]. Most of them
can be understood as a component similar to the depicted one in Fig. 4.11. By a functional
interface Loggerlf, a specific logger can be created (getLogger(String)). The Logger interface
contains methods for setting a logger level, and for writing messages to a log file, a database,
etc. By defining a a log level, the developer is able to switch on or off messages of lower
relevance, for example to improve execution performance of a system that is rolled-out after
testing.

Hence, in every situation that should be logged, the system must be specified to write a
message to a logger. This means that the affected components require the interfaces defined by
Logger and depend on (at least) this interface. Regarding the layer structure of the inventory
system, the question arises to which layer Logger should be assigned.

As a first solution, we consider to add the component to the application layer, depicted in
Fig. 4.11. A subpackage for logging is created inside the package Application. All actions that
require logging are identified in the design model, and calls to logger.log(...) are added.

An architectural compliance check at this point in time should inform the designer/developer
that there is an architectural mismatch. The layer structure is violated. The problem is the
logging of database queries in the implementation of StoreQuerylf and other interfaces of the
data layer. Since the encapsulated queries should be logged, there is a dependency from the
encapsulating component to the required interface Logger located in a layer above.

Unfortunately, moving the logger component to a different layer does not solve the problem.
The component and its interfaces are required in all layers but there is no layer that can be
accessed from all layers.

53

Chapter 4. Case Study

Initial Solution

Architectural Model

—— =

ngapsToPackage» GUI
- T T = >

«Layer»
GUI Layer

Design Model

Application::logging |

Loglf O
+getLogger(loggerName : String)

|

|

|

|

|

|

|

|

! |

\ I ?
] |
Q «mapsToPackage»9 Application : +IogL(r:gsZirStrin§

|

|

|

|

|

|

|

|

|

|

|

«isAllowedToUse»

— ! .

«Layer»
«componenty =]

LoggerComponent

Applicati_on Layer

«isAllowedToUse»

\%

V!_«m_apsToPackage» Data
T T >

«Layer»
Data Layer

Figure 4.11: Design model of a logger component and incorrect embedding into layers.

The solution is to move the logger component to an additional utility layer that can be
accessed from all layers. Logging is a so-called “cross-cutting” concern that is generally
required in many components spread over the whole system [CB05]. For such cross-cutting
concerns, it is normally not possible to put a realizing component into one layer of a strictly
layered structure. Hence, the structure is relaxed by a utility layer as depicted in Fig. 4.12.

The utility layer is positioned “below” the persistence layer and access is granted from all
other layers. Consequently, it is architecturally compliant that components from all layers
require the interface Logger. After the corresponding changes to the architecture model are
applied, the architectural compliance check of the modified design model, containing logger,
dependencies towards it, and a refactored package structure, should be successful.

The compliance checks executed in this scenario are described in detail in Sec. 7.3.1. The
required architectural rules regarding layers will be defined in Sec. 6.2.1.

4.3.2. Modification Scenario 2: Interface with reference semantics

In this scenario, the stock manager desires a new functionality. He would like to retrieve
information about deliveries that are expected to arrive on the current day. A simple information
panel shall list those suppliers that are going to deliver during the day.

54

4.3. Detailed Modification Scenarios

Final Solution

Architectural Model Design Model
|
Utility
V «mapsToPackage»[
«Layer»
GUI Layer «isAllowedToUse» I
. I Utility::logging |
I I
! Loglf O

v «isAllowedToUse»

\/\/

«isAllowedToUse»

+getLogger(loggerName : String)

lﬁ Logger O

+log(msg : String)

|
| i

«Layer» «Layer»
Application Layer Utility Layer
- «componenty =]
LoggerComponent

«isAllowedToUse»
\Z
V! «isAllowedToUse»

«Layer»
Data Layer

-——=>

Figure 4.12: Solution for architectural violation in Modification Scenario 1: utility layer for cross-
cutting concerns.

The responsible software designer sees that integrating this function is quite simple; basically,
it can be realized by a database query selecting from all orders those, which are planned to be
shipped today, and joining them with the table of delivering partners. The software designer
knows that accessing the data layer directly from the information panel component (being a
GUI component) to retrieve the data is not allowed, due to the strictly layered architecture.

Hence, the designer decides to add a new method at the Storelf interface of the Applica-
tion::StoreApp component called getSuppliersDeliveringToday. The method uses the query
interface of Data::Store to retrieve the required data from the database. The software designer
decides to add a corresponding query method to the query interface of the Store component
of the data layer. After that, he designs a simple GUI panel. It fills its content during pop-up
by calling getSuppliersDeliveringToday, and forwards the Supplier objects to the panel. This
solution is depicted in the leftmost section of Fig. 4.13.

The architectural compliance checks executed after these first modelling steps detect archi-
tectural mismatches. First of all, there is a dependency between GUI and data layer because
instances of ProductSupplier are passed to the new GUI panel. This is a subsequent fault of
the second issue; the designer forgot to model the method as a service method as described in

55

Chapter 4. Case Study

Initial Solution First Improvement Final Solution

Presentation Layer

«component» =]
DeliveryInfoPanel

«componenty =]
DeliveryinfoPanel

«components =]
DeliveryinfoPanel

store store store
AN
AN
AN
N
Storelf Storelf Storelf

+getSuppliersDeliveringToday()
: SupplierWithOrderTO

+getSuppliersDeliveringToday()
: ProductSupplier

+getSuppliersDeliveringToday()
: SupplierWithOrderTO

P4
storelf -
-~

N

-~
storelf storelf _

- 2]

«component»

«component» @ «component» E

StoreApp StoreApp StoreApp
! storeQuery —]
storeQuery storeQuery SupplierTO

SupplierTO

I

SupplierWithOrderTo ()

I

SupplierWithOrderTO0 ()

OrderTO Q !

0..*

0.*

Appligation Layer

Vv

StoreQuerylf C

+queryWhoDeliversToday()
: ProductSupplier

\z
ProductSupplier O)

0 *
ProductOrder O

Data Layer

Figure 4.13: Solution for Modification Scenario 2: Designing correct service method and transfer
objects

Sec. 4.2.2. The method has to pass transfer objects if it is going to be call from the GUI layer.

The designer seeks advice from the architecture documentation to find out if there are existing
transfer object classes he can rely on. Although there exist the interface SupplierTO, he decides
that he would like to encapsulate also basic order information in the result of the method, and
creates a class SupplierWithOrderTO. This class contains information about a supplier and a
list of orders (see middle column of Fig. 4.13).

His first attempt is to keep a reference to an Order object in the new transfer class. Of course,

56

4.3. Detailed Modification Scenarios

the architecture compliance check shows him that this is not correct because transfer object
keeping links to persistent objects lead the concept ad absurdum. Instead, the designer notice
his mistake and changes the type of the reference to SupplierTO, an existing transfer object
class. After this modification, the compliance checks should pass.

4.3.3. Modification Scenario 3: Direct Communication between Cash
Desk Components

In the original design, the cashier at the cash desk is heavily dependent on the correct function of
the bar code scanner. The scanner is the only possibility to process goods for sale; a possibility
to enter bar codes manually, for example in the case of an inoperable scanner, was not intended.
In this scenario, this function is added.

To enter product bar codes manually, the cashier should be able to use the keyboard of the
cash box, which is used so far only to enter the amount of money that the cashier receives from
a customer, if the latter chooses to pay cash. The designer who has the task to integrate the
new functionality notices two things: first, the implementation of the Cash Box component has
to be changed. The interpretation of keystrokes now depends on the state of the sale process;
before the cashier signals that scanning is finished and payment can start, keystrokes mean that
bar codes are entered digit by digit. After that, keystrokes mean digits of amounts of money are
entered.

Second, the designer notices that the cash box must now be able to send an event signalling
that a product bar code has been entered. He takes a look to the design documentation to get to
know the events the bar code scanner of the existing system sends, because that component
must be able to do the same thing — to notify the remaining system that a bar code has been
entered. The designer finds the interface BarcodeScannedEvent that is appropriate for his
purpose.

He re-designs the cash box component a way that it interprets keystrokes depending on
the state of the component, and configures that in “bar code mode” the input of a bar code is
finished by pressing the “Enter” key; in this case, the cash box sends an BarcodeScannedEvent
to the application component. This component can then react to this event as it usually does,
i.e. as if the event has been sent by the bar code scanner.

The architectural compliance check, however, notices a violation of the software architecture.
The reason for this is the mandatory use of the event channel in the cash desk subsystem of the
CoCoME case study. The rules examined in Sec. 4.2.3 prohibit components connected to the
same event channel to communicate by the exchange of events directly.

The solution for the mistake in this scenario is quite simple; the designer removes the direct
asynchronous call to the application component, as well as the introduced direct connections
between cash box and application component. As new and correct solution, he decouples both
components and let the cash box publish a BarcodeScannedEvent on the bus when the input
of a bar code is finished.

57

Chapter 4. Case Study

Initial Solution
(final solution discards highlighted connector)

«system configuration» =]
CoCoME
internalEC : | «PublisherComponent» = |
JMSEvent «SubscriberComponent»
Chaannel cashDeskApp :
CashDeskApplication
handlergm calls handler.
onEvent(BarcodeScannedEvent)
apphandler
«PublisherComponent» |
«SubscriberComponent»
casboxCtrl :
CashBoxController

Figure 4.14: Incorrect solution for modification scenario three: adding direct communication to
the Cash Desk System.

4.4. Summary

This chapter has introduced the CoCoME case study serving as an example system for the
proposed approach to architectural compliance checking. The case study has characteristics of
small real-world software system with regard to complexity, size and architectural aspects.

The discussion so far shows that a flexible approach is required to check architectural
compliance in the CoCoME case study. Different architectural aspects, i.e. layered information
system, layer interface with copy-semantics, and event-based architecture of the software
subsystem running at the cash desks, result in different architectural rules. Hence, it is not
sufficient to apply a single approach, e.g. to check layered structures.

Furthermore, it is desirable to check different artefacts of the case study system. The obvious
ones are the Java-based implementation as well as the UML design model. But also the content
of technology specific artefacts like mapping files for Hibernate can be affected by architectural
rules.

Based on these application scenarios, the following chapters will introduce and evaluate the
proposed approach. The following chapter will introduce a formal framework to compliance
checking which includes the transformation of (architectural) models into a representation
which enables us to check rules, especially architectural rules in associated architecture, design,
and implementation models.

58

Chapter 5.

A Formal Framework for Architectural

Compliance Checking

Contents
SA. OVEIVIEW . . v v v v it s et e e e e e e e e e e e 60
52. Foundationsttt ittt etnnneeenn 63
5210 Structures e 64
5.2.2. Classification of First-Order Logic Statements 68
5.3. Formal Representation of Component-Based Systems 71
5.3.1. Overview of the formalization of Component-Based Systems 71
5.3.2. Types and Typed Elements(t;ype) oo 0oL 77
5.3.3. Structure Specification of Object-Oriented Classifiers (7,os) 80
5.3.4. Structure Specification of Components and Systems (7¢5) 86
5.3.5. Behaviour Specification (Tppy) « . - - . o .o oo 96
5.4. Abstraction Classification of Models and Model Compliance 105
5.4.1. Model-Classification in Model-Driven Development 106
5.4.2. Definitions for the Formalization of Models 108
5.4.3. Compliance of Implementation Models towards Design Models 117
5.4.4. Compliance towards Architectural Models 119
5.5. Operationalization of Compliance Checking 119
5.5.1. Transforming Models into Logical Statements 120
5.5.2. Generation of Minimal Systems for Models 123
5.5.3. Execution of Compliance Checks 126
5.6 SUMMATY . . o v v v vt vttt e e et et e ettt et 126

59

Chapter 5. A Formal Framework for Architectural Compliance Checking

The sciences do not try to explain, they hardly even try to
interpret, they mainly make models. By a model is meant a
mathematical construct which, with the addition of certain
verbal interpretations, describes observed phenomena. The
justification of such a mathematical construct is solely and
precisely that it is expected to work—that is, correctly to
describe phenomena from a reasonably wide area.

John von Neumann

This chapter will explain the conceptual framework developed to support flexible architectural
compliance checking in component-based systems. It will describe the concepts and building
blocks of the framework in detail. These building blocks are:

e A formal representation of component-based systems and models of component-based
systems. The representation can be used for models created in all three system construc-
tion stages, i.e. coarse-grained architecture design, detailed design, and implementation.

e Based on the formal representation, a clear classification criteria to distinguish their level
of abstraction. This helps us to separate clearly and formally models of the different
development phases, and enables us to formally define the compliance relation between
them.

e An operationalisation of these concepts to allow tool support for architectural compliance
checking. It describes a method to derive systematically the formal representation of
models of arbitrary meta models, and to check them for compliance.

Section 5.1 will give an overview of the building blocks of the framework. It will omit formal
definitions as far as possible and will focus on pointing out the main ideas. To prepare the
reader for the deepening sections, Sec. 5.2 will introduce some theoretical foundations required
to formalize component-based systems, models of systems, and the interrelationships between
models. Section 5.3 will address the formal representation of component-based systems and
models. In Sec. 5.4, the abstraction level classification for models is introduced and the term of
architectural compliance is formally defined. Section 5.5 deals with the operationalisation of
the concepts. The chapter is summed up in Sec. 5.6.

5.1. Overview

As mentioned above, a key factor to flexible architectural compliance checking is a formal rep-
resentation of models of component-based systems and component-based systems themselves.
A model that describes a software system is a specification of how the software system must
be structured and of how it must behave. For example, a UML composite structure diagram
stating that a component C provides an interface / being an Observable implies that a *“valid”
system contains (at least) C providing [that behaves like an observable (i.e., offering the ability
to register observers, notifying observers on state changes, and so on). The model can be

60

5.1. Overview

|
5 .
ServicelF & & Persistable ! Key
[Interface] \e*\ \?gb \ [Interface] X
S NS |
. bée %\ot’ Q/@’b é}(\o ’ ! o
N & 0 | (AB)e R
) ® 8 g2 I A—> B ,
5 =0 5 !
£ £
= calls 5 X
% p e,% %f~ g- :
ElL 7 2% = @ XeR
! €
|
CustomerServices Customer ! [)F(K]
[Class] [Class] !

Universe U ={Servicelnterface, CustomerServices, sendNewsletter, getEMailAddress, Customer, Persistable}
Interface® = {Servicelnterface, Persistable}

Class® ={CustomerServices, Customer}

Method® = {sendNewsletter, getEMailAddress)

implementss ={(CustomerServices, Servicelnterface),(Customer, Persistable)}

definess ={(CustomerServices, sendNewsletter),(Customer, getEMailAddress)}

calls® = {(sendNewsletter, getEMailAddress)}

CustomerServices

¢ = class(CustomerSe rvices) A method (sendNewsle tter) A
+sendNewsletter() defines(CustomerSe rvices, sendNewsle tter)

Figure 5.1: A simple system as structure and a model as logical expression.

understood as a constraint that an element of the set of all possible systems has to fulfil to be a
conform implementation of the model.

The proposed approach is based upon a formalization of component-based systems as struc-
tures known from mathematical logic, similar to the approach in [EKO03]. Structures consist of
a universe of atomic entities and a set of n-ary relations over that universe. Since this is a rather
universal definition, software systems can also be represented by structures. Fig. 5.1 depicts
a structure representing a software system cut-out. It consists of an entity CustomerService
that is an element of the unary relation Class with the meaning that CustomerService is a
class. This class provides a method to send newsletters to customers; for this purpose, it calls a
getEMailAdress method on the Customer class. The call relation between both methods is
represented as a corresponding tuple of the binary relation calls.

The signature of a structure defines the relations that are actually available. A signature
is a set of relation symbols that are mapped to relations by a concrete structure. Structures
that have relations according to a signature 7 are called 7-structures. T-structures are used in
mathematical logic to define the semantics of first-order logics. A first-order logic formula
over T-structures can contain predicates that relate to the relation symbols from 7 and can be
evaluated over 7-structures.

Translated to the issue of software system representation, this interrelationship could be
used to represent models of software systems. A signature defines the symbols that can be
used to describe arbitrary systems, for example the relation symbols Class, Interface, Method,

61

Chapter 5. A Formal Framework for Architectural Compliance Checking

Extension of "Planet" (cut-out)

Intension:
"Objects with true masses below the limiting mass for thermonuclear fusion of deuterium (currently calculated
to be 13 Jupiter masses for objects of solar metallicity) that orbit stars or stellar remnants are "planets"
(no matter how they formed)."

Figure 5.2: Extension and intension of the concept “Planet”.

implements, defines, and calls. A concrete system, like the system in the upper part of Fig. 5.1,
is represented as a structure. The relation symbols are mapped to the specific relations of the
structure, for example, Method is mapped to MethodS.

If software systems are represented as 7-structures, models could be understood as logic
formulae over 7-structures. A system conforms to a model if and only if the formula representing
the model is satisfied by the finite structure representing the system'. The lower part of Fig. 5.1
shows a simple UML class diagram and the corresponding first-order logic expression that
trivially states that the modelled class and its method have to be present in the software system
as a conjunction of predicates.

Following this idea, we can roughly distinguish between extensional models and intensional
models. Extension and intension are terms that are used in many studies treating the usage
of signs, like linguistics, philosophy of language, logic, or mathematics. The extension of
a concept, expression or statement consists of the things to which the concept applies. The
intension, in contrast, is the set of properties, constraints or ideas that describe the concept.
Consider, for example Fig. 5.2, which depicts in the upper part a cut-out of extension of
the term “Planet” — namely the planets of the solar system. The complete extension would
additionally contain all extra solar planets. Below, the intensional definition of a planet given by
the International Astronomical Union (IAU) is printed, specifying the properties an interstellar
object must have to be considered a planet 2.

The definitions of extension and intension differ in the details from field to field, and the
definition of “intensional” is discussed very controversially in the single disciplines by different
authors [Car56, Fre92, Tex05].

The approach introduced in [EHKO06] by Amnon Eden et al applies the distinction of inten-
sional and extensional statements to first-order logic formulae as representations of models
of software systems. An extensional statement, in contrast to intensional statements, is a

lin this case, a structure is said to be a model for the statement. To avoid confusion related to the usage of the
term “model” in context of MDD, we will use it carefully and only if the actual context is clear.
2See http://www.dtm.ciw.edu/boss/definition.html

62

5.2. Foundations

statement whose set of satisfying structures is closed under adding entities and relation tuples,
and removing entities that are not explicitly mentioned by the statement. For example, consider
again the class diagram and its statement from Fig. 5.1. Further classes, interfaces, or methods
can be added to the depicted structure without losing the property that it satisfies ¢. The
same holds for entities that are not explicitly referenced in ¢, for example Customer. Another
property, a statement can have, is that of locality. This property expresses that its set of models
is closed under adding entities and tuples (in contrast to non-local statements).

Eden uses this classification to classify models of the architecture, design, and implemen-
tation level by the degree of abstraction they provide. Eden comes to the conclusion that
architectural statements are in general non-local, intensional statements. For example, consider
architectural layers that define an hierarchy in a system [BMRS96]. Of course, entities like
components can be added to the system in a way that the hierarchy is violated. Thus, the original
statement, saying in a first-order logic way that accesses have to be top-down, is violated by
an extended structure. The proposed approach will use the classification of Eden and extend
it to define the compliance relationship between models of different levels of abstraction. In
addition, Eden’s framework is in a sense “implemented” by using the general formalization to
represent component-based systems.

To make efficient tool support possible, these concepts have to be operationalized. A
systematic approach to transform models into structures has to be defined as well as an efficient
way to check architectural compliance.

The overall proposed approach is concluded and illustrated in Fig. 5.3. Component-based
systems are formalized as 7¢pg p-structures conforming to a set of axioms called ®¢psp. While
Tcpsp defines the relation symbols that can be used to describe component-based systems,
®cpsp defines additional constraints that have to hold for relations in all component-based
systems. Descriptions of systems, such as architectural, design, and implementation models are
expressed as first-order logic statements. The set of satisfying structures for the corresponding
formula is the semantics of a model. An abstraction classification for models of different devel-
opment phases is introduced based on the general classification of first-order logic statements
mentioned above. Based on this separation of different model classes, the term of compliance
between models of the three development stages is defined. This definition is operationalised
and results in an algorithm to check architectural compliance.

5.2. Foundations

The mathematical foundations of the approach are 7-structures and first-order logics. This
section will give important definitions related to those foundations in order to prepare for the
formalization of component-based software systems and architectural compliance. The first
subsection will define terms related to 7-structures and their function as semantics of first-order
logics. The second subsection introduces a classification scheme of first-order logic formu-
lae that will help us to categorize and distinguish architectural, design, and implementation
models.

63

Chapter 5. A Formal Framework for Architectural Compliance Checking

4

Architecture Model

represented as

Abstraction Classification / (PA\

o\f Models (logical statement, non-
~ local) -
S s
~ P d
~ rd
S o Component-Based P
O Systems

. . .’epresented as

. . . Tcepsp-Structures
-/ \fulfillingCDCBSD—
axioms
o

represented as represented as

¢
(PD (extensi{)nal)

(intensional, local)

Design Model Implementation Model

Figure 5.3: Illustration of the framework’s components.

5.2.1. Structures

Mathematical structures consist of a universe of entities (also called the universe of discourse)
and a set of functions and relations over this universe. For example, the set of integers Z with
the functions + and - and the constants 0 and 1 form a structure. The functions and relations
that are available in a structure are defined by its signature.

The definition introduced in this section can be found in common textbooks about (first-)order
logics as for example [HR04] whereas the notation might vary from book to book.

Definition 1 (Signatures) A signature 7 is a countable set of function and relation symbols.
Every symbol has a finite arity. Function symbols with arity 0 are called constant symbols.

In the example above, the signature {+, -, 0, 1} provide the functions for integer mathematics.
As a further example, a very simple and incomplete signature 7¢ for component-based systems
could consist of the two unary relations Component and Interface and the two binary relations
provides and requires.

64

5.2. Foundations
A signature can be interpreted in the context of a specific structure that maps function
symbols and relation symbols to a universe and specific functions and relations.
Definition 2 (7-structures) A 7-structure U := (A, ()91) consists of
e a non-empty set of entities A, the universe of .

e an interpretation function ()" that maps ever n-ary relation symbol P € 7 onto a n-ary
relation P* C A" , and every n-ary function symbol f € T onto a function f* : A" — A.

A is called a finite structure if its universe A is finite. In the following, A is implicitly the
universe of 2, B the universe of B, etc., without explicitly denoting the components of the
tuples A, B, and so on.

Continuing the example from above, a component C providing an interface I and requiring
and interface J could be expressed as 7¢-structure U like this:

e A={C,1,J}
e Component” = {C}, Inter face™ = {I, J}
o provides™ = {(C,)}, requires™ = {(C, J)}

In contrast to common definitions from first-order logics, we will allow partial functions and
undefined constants to be mapped to function symbols of corresponding arities. The further
formalization refers to the approach in [GL90]. In case of an undefined constant for the nullary
function symbol ¢ we will write ¢* = 1.

In the following, we will omit the superscript 2 for relations and functions when it is clear
which structure is meant and when the relation/function cannot be confused in the respective
context with the corresponding symbol.

There are two different ways how a structure can be part of another structure. First, both
structures can have the same signature but different universes. Second, they can differ in their
assigned signature but have the same universe.

Definition 3 (Substructures and extensions) A structure U is called a substructure of B if all
of the following statements hold:

e A and B have the same signature T

e A C B, with A being the universe of 2, and B being the universe of B.
e R¥ = R® N A" for every relation symbol R € 7, n being the arity of R
o = f3 |y for every function symbol f € 7.

B is also called an extension of 2.

For example, the component example from above could be extended by a component D
providing the interface C requires. The resulting structure U’ is an extension of A:

65

Chapter 5. A Formal Framework for Architectural Compliance Checking

e A’ =AU{D}

9’
tJI

o Component™ = Component™ U (D}, Inter face™ = Inter face™

aw oA

e provides¥ = provides® U {(D, J)}, requires® = requires
On the other hand, we could leave the universe of a structure as it is but add or remove
functions and relations and get new structures.

Definition 4 (Reductions and expansions) Let o and 7 be signatures with o C 7, and U a
7-structure. The o-reduction of A (A | o) is the structure that results from removing all
relations in 7\o from A. More formally this means that A | o := (A’ ()M17) is defined as

e A=A
e M=),

If B is a reduction of A, then A is called a T-expansion of B.

For example, we could define a signature 7¢ = 7¢ U {extends} and create a 7 -expansion
of A” with the additional relation extends™ = {(I, J)}.

Structures are used to define the semantics of first-order logics. Formulae, or statements, in
first-order logics are syntactically build of 7-ferms. T terms can be either arbitrary variables
from the set of all variables VAR or strings of the form f(#, ..., ?,) whereas f is a n-ary function
symbol from 7 and 74, ..., t, are T-terms.

7-formulae are syntactically constructed by applying the known operators (conjunction,
disjunction, negation) and quantifiers to predicates that are relation symbols from 7. Terms are
used as predicate arguments.

The semantic interpretation of a first-order logic formula assigns a truth value to it that
indicates whether the formula holds or not. This depends on the assignment of values to
variables of the formula, and the interpretation of function symbols and relation symbols by
functions and relations of a specific 7-structure.

Definition 5 (Interpretations, Semantics of first-order logics, minimal structures)
Let 7 be a signature. A t-interpretation J is a tuple J = (2, §) with

e U being a 7-structure and
e 3: X — A afunction assigning values to variables

whereas VAR is the set of all variables and X = dom(B) C VAR.
The interpretation I does two things:

e It assigns a value [t] € A to every r-term t.

e It assigns a value [¢]° € {0, 1} to every r-formula ¢ with free(¢) C dom(B), free(p)
being the set of free variables in ¢.

66

5.2. Foundations

The value assignment is defined inductively according to the syntactical structure of terms and
formulae:
For a term ¢, the value [¢]” is defined by

o fort = x € dom(B): [{]° = B(x)
o fort=f, f* = L: [{]° is undefined

o fort = f(t,....t,): if t1,....1, are defined, and f* is defined at ([t], ..., [n]"), then
I° = FA(u]>, ..., [t1]?), otherwise undefined.

For atomic formulae ¢, the value [¢]° is defined by

o [= 0] = 1 if [t,]7, [2]° are defined, and [#;]° = [&.]°,
=270 otherwise.

1 if[4]°,...,[t]° are defined, and

o [P(tr,....t0)]° = (1% .. [t]®) € PV,
0 otherwise.

The values for more complex formulae are defined inductively according to the construction
rules for junctors —, A, V and the quantors 3 and V (see [HR04]).

An interpretation I = (2, B) is said to be a model of the formula ¢, if and only if [¢]* = 1.
In this case, we write (U, 8) | ¢ or A | ¢[B]. Similar, J is a model for a set of 7-formulae ®, if
and only if it is a model for every formula ¢ € ©.

If there is a model for a formula ¢, ¢ is called satisfiable, otherwise unsatisfiable. If it is true
in every interpretation, it is called valid.

A model s is called minimal satisfying structure of a set of formulae © if and only if s = ®
and there does not exist a substructure s’ of s with s’ | ®.

For example, we could express for the component examples that it should hold that every
component must provide at least one interface:

¢, = Yx3dy : Component(x) — provides(x,y)

The structures A, A’, A" as defined above are models for ¢.. But only A" and A satisfy the
formula ¢; expressing that every interface must be provided by at least one component:

¢; = VYx3y : Inter face(x) — provides(y, x)

It is obvious that a 7-formula ¢ can also evaluated by o-interpretations, if 7 C o. In this
case, the mappings of function and relation symbols from o\t are irrelevant with regard to the
interpretation of ¢.

We will use the notation ¢(xy, ..., x;) for a formula ¢ that at most uses xi, ..., x; as free
variables. In the following, we will also write U = ¢(ay, ..., a;) instead of A | ¢[B] to express

67

Chapter 5. A Formal Framework for Architectural Compliance Checking

that 2 satisfies ¢ with every value assignment S that maps 8(x;) = ay, ... B(xy) = a;. We then
say “Uis a model of p(ay,...,a;).”

A sentence i1s a formula without free variables. In the following, we will also say “U is a
model of ¢” for (2, B) E ¢ and write A | ¢ if ¢ is a sentence. Since the function B of an
interpretation assigns values to free variables, it is irrelevant for sentences.

A set of sentences can be used to define a set of axioms for a class of structures. Each
sentence of the set is valid in all structures of that class.

Definition 6 (Model class of logical sentences, axiom systems) Let ® be a set of 7-senten-
ces. The model class of ® is defined as

Mod(®) := {U : Wis a structure with A E O}.

We also say, that @ is the axiom system for a class K if X = Mod(®).

Formulae can be semantically related, for example, a formula can imply another, or two
formulae are equivalent. These relationships can be defined in terms of the sets of models for
the related formulae.

Definition 7 (Equivalence of logical formulae) A formula ¢ is an implication of a set of
formulae @ (written @ [= i), if and only if every model of @, that covers the free variables of
® U {y}, is a model of ¥. Two formulae ¢ and y are equivalent, written as ¢ = ¥, if {¢} E
and {y/} E ¢.

5.2.2. Classification of First-Order Logic Statements

The set of satisfying structures defines the semantics of a formula and enables us to define
relationships between formulae like implication and equivalence. Structures can be modified
by reducing them to substructures or by extension, i.e. adding or removing elements from the
according universe. With the interpretation of structures as software systems, these operations
represent changes in a given software system. If a software system satisfies a given description,
the question arises if it still does after the modification. In the formalism the question is
re-formulated as: does the modified structure still satisfy a given formula ¢?

The classification scheme that will be applied distinguishes formulae by the modifications
that can be made to models for a formula leading to another model of the same formula. Applied
to formulae representing statements about software systems, this scheme distinguishes formally
different abstraction levels that descriptions of software systems can provide.

Figure 5.4 depicts a structure in the upper part, and three different statements in the lower
part. Obviously, the structure is a model for each of the statements. ¢, states, that C; and C, are
components. Arbitrary entities could be added to the structure, the modified structure would
stay a model of ¢;. Similar, entities could be removed that are not explicitly mentioned in ¢,
such as /; or I. The removal would not affect the fact that the resulting structure would still be
a model of ¢;.

@5 1s a bit different. It states that C; has to depend on some interface provided by another
component. The depicted structure satisfies this statement. However, while the addition of
arbitrary entities still leads to another model of ¢,, the removal of some of the not explicitly

68

5.2. Foundations

Key

A:{ClaC27]]9I2}

R
COMPONENT ={C,,C,}

[}
|
[}
I
o 8 3 |
2 3 2 INTERFACE ={1,1,} :
2 s = provides={(C,,1,),(C,,1,)} |
< requires ={(C,,1,)} !
[}
C] C2 : . XeR
[COMPONENT] [COMPONENT] : [)Fé]
[}
_ 2 ©, = COMPONENT (C)) A o
§ 8 o, =COMPONENT(C))A| 3ady:(INTERFACE(x) A #y = Vx: COMPONENT (x)
& 8| COMPONENT (C,) COMPONENT (y) A — (Jy: INTERFACE (y)
i requires(C,,x) A provides(y, x)) A provides(x, y))

Figure 5.4: Three statements and a satisfying structure.

mentioned entities will not lead to a model in some cases; the same structure without /, and
without tuples containing /, does not satisfy ;.

For ¢3, neither adding nor removing entities is “safe”. 3 states that every component has to
provide at least one interface. Obviously, removing /; or I, results in a structure that is not a
model for ¢;. Additions as well can lead to such a structure, for example adding a single entity
C; being a component, would create a structure that does not satisfy ¢s.

©1, @2, and 3 are instances of three different classes of statements, called implementa-
tion statements (¢;), tactical statements (¢,), and strategic statements (¢3) [EHKO06]. In the
following, we will define them formally.

First, we would like to distinguish different extensions of a structure 2. If A is extended by
adding a tuple of existing entities to a relation, the resulting structure is called a modifying
extension of A. An extension is also modifying, if an added tuple refers to existing and added
entities but the relation as such is interpreted as changing the existing entity because the relation
symbol stands for a very “close” relationship. Consider, for example, adding a parameter to
a method, what could be modelled as a binary relation between two entities, would rather be
understood as modifying the method than as extending it.

More formally, this is stated in the following definition:

Definition 8 (Modifying and additive extensions of structures) Let the T-structure B be an
extension of a given 7-structure A with B = A U {ey, ..., e:}. B is called a modifying extension
of Uwrtt. Ctif

e thereis (xy,...,x,) € R®withx; € Afori=1,...,nand (x,...,x,) ¢ R", or
o thereis (x1,...,x,) ER®, Re€1c, x; €A, and x; = ejforatleastonei € {2,...,n}.

Otherwise, B is called an additive extension of A w.r.t Tc.

69

Chapter 5. A Formal Framework for Architectural Compliance Checking

Second, we will define the partial structure of a structure that results from a “clean” removal
of entities. This means that also tuples are removed that contain an entity that is removed.
Furthermore, constant symbols may not longer be mapped to deleted entities, which neither
can be in the domain of functions.

Definition 9 (Partial structure) For a given structure 2, the structure A\{ey,..., e} = B is
defined as

e B=A\{ey,...,e)

for all relation symbols R: R® := R" N B"

e for all constant symbols c¢: ¢® = " if " # ¢;, fori =1, ..., k, otherwise ¢® = L

for all other function symbols f: f® = f'* |5, whereas

~ ., x) if x; and e; mutually different
FEx, X)) = fori=1,...,nand j=1,...,k
(x1,...,%,) ¢ dom(f'*) otherwise.

As stated above, only entities can be considered for removal from models for a formula ¢
that are not explicitly mentioned in ¢. Of course entities cannot be used directly in formulae
because the elementary terms to construct formulae are only variables and symbols from the
signature that the formula is defined for. Thus, an explicit mention of entities in a formula is
defined as follows:

Definition 10 (Explicitly mentioned entities) Given are a 7-structure U and a 7-formula ¢.
An entity e € A is explicitly mentioned in ¢ if ¢ contains a term ¢ = ¢ whereas c is a constant
symbol from 7 and ¢ = e.

With these definitions, we are able to define the category of extensional first-order logic
statements.

Definition 11 (Extensional and intensional formulae) A first-order logic 7-formula ¢ is
called extensional (w.r.t to T¢ C 7) if both of the two following statements hold for every
7-structure A with A | ¢:

o for every subset A’ C A of entities that are not explicitly mentioned in ¢ is A\A" = ¢.
e for every additive extension (w.r.t. 7¢) B of Ais B .

¢ is called intensional (w.r.t. T¢ if and only if it is not extensional.

In the example depicted in Fig. 5.4 only ¢, is an extensional statement. The depicted structure
is an example which does not satisfy the constraints of the definition above regarding ¢, and
3. Hence, both statements are intensional.

Another classification criterion for first-order logic statements is locality.

70

5.3. Formal Representation of Component-Based Systems

Definition 12 (Local and non-local formulae) A first-order logic 7-formula ¢ is called local
(w.r.t. ¢ C 1) if for every 7-structure A with A = ¢ holds: every additive extension (w.r.t. T¢)
B of A is a model of ¢ (B | ¢). A formula ¢ is called non-local (w.r.t. 7¢) if and only if it is
not local.

It is obvious that every extensional statement is also local, since the constraints for extensional
statements include those for local ones. For the same reason, every non-local statement is
intensional but not vice versa — intensional statements can either be local or non-local. ¢,
(see. Fig. 5.4), for example, is intensional and local, ¢5 is intensional and non-local. In
the context of software systems, we adapt the nomenclature of Eden [REF] who refers to
implementation statements (extensional), tactical statements (intensional, local), and strategic
statements (non-local).

5.3. Formal Representation of Component-Based
Systems

As introduced in Sec. 5.1, the proposed approach is based upon a representation of component-
based systems as structures of a common signature T¢psp. Tcpsp defines the symbols required to
formalize all relevant aspects of component-based systems, and to formulate logical statements
about them. The relation symbols of 7¢gsp define the available types of entities such as
components and interfaces, and the types of relationships between them, such as “provides” or
“requires”. An axiom system is defined describing restrictions that are valid for component-
based-systems in general; for example, it states that a connection between components can only
be specified if the connected ports are type-compatible. The axiom system for component-based
systems is called ®@¢pgp in the following.

This section will explain 7¢gsp and @c¢psp in detail. The next subsection will give a quick
overview of T¢psp and the general form of axioms of ®cpgp. After that, the subsequent sections
will dive into the details of the single subsets of 7¢gsp one by one.

5.3.1. Overview of the formalization of Component-Based Systems

Structures representing component-based systems are characterized by 7¢gsp on the one
hand, on the other hand by the axiom system ®¢psp. While 7¢psp defines entity types and
relationships between them, ®¢psp defines constraints that have to hold in component-based
systems in general. More formally, we can define:

Definition 13 (Component-Based Systems) A component-based system U is an element of
Kepsp = Mod(®cpsp) whereas for the universe A of A holds: A C N,

Please notice, that the definition of model classes as used above implies that also 7’-structures
with 7¢cgsp C 7' can be component-based systems as long as the axioms of ®@¢psp are valid for
them.

The reader familiar with UML and model-driven software development in general will in the
following notice some similarities between the concepts and terms used for 7¢gsp and the meta

71

Chapter 5. A Formal Framework for Architectural Compliance Checking

model of UML [Obj10b]. On the one hand, UML as a general purpose modelling language
covers also component-based systems and, thus, has language elements to cover components
and related concepts. As a standardized language supported and developed by experienced
software developers and designers, these concepts are elaborated very well. Consequently,
some of them inspired and influenced the view on component-based systems presented here.

The main differences between UML and the signature for component-based systems T¢gsp
along with the axiom system ®cpsp are the particular purposes of use. UML is a modelling
language which can be used to describe systems at different abstraction levels, for example
component-based systems. In contrast, Tcpsp and Pcpsp provide a formal, mathematical
construct to define the semantics of models describing component-based systems.

Furthermore, the meaning of the concept of a component and related concepts and their
distinction from other concepts remain very unclear in UML. Most of the properties of a
component also apply to classes in UML, a fact that manifests itself as a common super meta
class “Classifier” that plays a central part in this part of the meta model. Classifiers, and hence
classes as well as components, can be connected by associations, can have properties, can be
specialized, and can be composite structures. Thus, the differences between object-oriented
and component-based concepts are blurred and overloaded.

The separation of concepts supposed here is clear and stringent. A component is a complex
and composite, autarkic type that defines by interfaces (being collections of method signatures)
which functionalities it requires and provides. Classes are used as component-local types only.
Due to the fact that the goal of this approach is more focused on a single kind of systems,
concepts can be defined more lightweight than in a general-purpose-language like UML.

However, defining t¢psp and ®@cpsp is similar to creating a meta model for a modelling
language for component-based systems. Despite the different usage purposes mentioned above,
we will use class diagrams in addition to the pure mathematical notations. They provide a
convenient illustration mean to a quick understanding of which relation symbols and axioms
are contained in 7¢sp and Dcpsp, respectively. The mapping between class diagrams and both
structures will be explained in the following subsections.

7cpsp from a Bird’s Eye Perspective

Tcpsp can be divided into six disjoint subsets, each covering a different aspect of component-
based systems. These subsets are:

TcBSD = Tgen) Trype U Toos) Tes U Thhy U Tid

All relation symbols of 7¢gsp are either unary or binary. Unary relation symbols stand for
entity types while binary relation symbols model relationships between entities. The only
constant symbols are contained in 7, to refer to entities in formulae. No further function
symbols are defined apart from that.

Tgen CONSIsts of general relation symbols that are used and refined throughout the whole
signature. For example, a relation symbol “NamedElement” is used as a type for entities that
are endowed with a name, such as components and interfaces, or a relation symbol “Package”
which provides a namespace mechanism.

72

5.3. Formal Representation of Component-Based Systems

Tiype CONtains symbols for the main constructs to describe component-based systems on
the type level. Those are, for example, components and interfaces. They will be covered in
Sec. 5.3.2.

In 7,,s, the object-oriented aspects of component-based systems will be covered. The
contained relation symbols model classes, inheritance, and so forth. They are described in
Sec. 5.3.3.

The relation symbols in 7., deal with the inner structure of components that is defined by
ports, parts, and connectors. The structure of an overall system is very similar to the structure
of single components, thus most of the constructs are reused to define system configurations.
They will be explained in Sec. 5.3.4.

Ty 18 the subset of relation symbols relevant for the behaviour description of systems and
components. For example, communication issues like method invocation or asynchronous
messaging, instance creation, etc. are reflected as relation symbols. They are explained in
Sec. 5.3.5.

7,4 1S a countable infinite subset of constant symbols that identify entities from a structure’s
universe which is the set of integers. It is defined as

T = {e; | i € N}.

An interpretation [e;]" = i pointing to an entity of the universe of A means that this entity
has been allocated the identifier ¢;. [¢;]* = L indicates that no such entity exists. With these
constant symbols, we are able to let formulae refer to entities by their identifier.

As already mentioned, class diagrams will be used in the following sections to illustrate
the subsets of 7¢psp. Figure 5.5 depicts the general mapping from class diagrams to relation
symbols. For every class Class_A, there is a unary relation symbol “Class_A”. Attributes of
classes are mapped to binary relation symbols (see attr), whereas the first component of a tuple
refers to the class owning the attribute, and the second component to the attribute itself. The
same mapping is applied to association ends as far as they are named, e.g. rel in Fig. 5.5. Of
course, the specific interpretations of relation symbols in form of relations in specific structures
underlie additional constraints — for example, “rel” may only relate an entity e with an entity
fifee Class_A and f € Class_B. These constraints and others are part of the axiom system
®¢psp, which is described in the following section.

The Axiom System ®Ocp5p

The axiom system ®cpsp = {CBSD; | i = 0,1,...} contains 7¢psp-sentences expressing
constraints that have to hold in component-based systems in general. Many of these constraints
are specific to a certain type of entity or a specific relationship. For example, we are going
to express that a class can only inherit another class if they are encapsulated by the same
component. Contrarily, there are some general classes of constraints that are represented as
sentences of similar shape for different relation symbols:

o Constraints defining the domain of unary relation symbols. Unary relation symbols
represent types of entities. To express subtyping, the relationship between subtype and

73

Chapter 5. A Formal Framework for Architectural Compliance Checking

Class_A
-attr

Relation symbols:
CLASS_A (unary)
CLASS_B (unary)
attr (binary)

-rel rel (binary)

Class_B

Figure 5.5: Mapping of meta model elements to relation symbols.

supertype has to be axiomatically be defined for the corresponding relation symbols. For
example, every component is also a named entity. This is formalized as sentence that
states: e being a component implies that e is also a named element. This scheme can be
generalized.

o Constraints defining the domain of binary relation symbols. These constraints restrict the
domain of relationships between entities to certain types of entities. For example, it must
be axiomatically stated that provides is a relation between components and interfaces
only.

e Constraints defining the multiplicity an entity may appear as a component of a relation
tuple. These constraints, for example, state that a single entity may participate in a
relation exactly once. For instance, a component ¢ must have exactly one name and, thus,
there must be exactly one tuple of the form (¢, MyComponent) € name for a fixed c.

Constraints of the first kind are in general defined as follows:

CBSD;=Vx:T(x) - T'(X) (5.1)

whereas the unary relation 7 denotes a type that is subtype of a type denoted by 7', meaning
that every entity being of type T is also of type T’. It indicates that [T]* € [T']" for every
A € Xcpsp. Furthermore, every entity in a component-based system can only be in one type
hierarchy — for example, an interface cannot be a component at the same time. Since the
set of unary relation symbols representing types is finite, it can be stated as first-order logics
Statement:

CBSD; =Vx:T(x) = =T (x) A =Tr(x) A ... A =Ti(x) (5.2)

with T, ..., T; being all unary relation symbols representing types that are neither subtypes
nor supertypes of the type represented by 7.

74

5.3. Formal Representation of Component-Based Systems

Constraints that define the domain of a relation R to certain types 7 and 7, are defined as

CBSD; =VxVy: R(x,y) = Ti(x) A T1(y) (5.3)

These axioms ensure for given R, Ty, and 75, that in every component-based system 2 holds
that [R]* C [T1]* X [T2]* € Ax A3

For constraints limiting the multiplicity of an entity as a fixed component of relation tuples,
four cases are distinguished.

1. The multiplicity can range between 0 and an arbitrary number.
2. The multiplicity can range between 1 and an arbitrary number.
3. The multiplicity can range between O and 1.

4. The multiplicity must be exactly one.

The first case does not require any constraints. It means that, for a given entity x and a given
relation rel, that there might be an arbitrary number (including zero) of entities y with (x,y) €
rel. In the second case, zero is not allowed, thus, there must be at least one y. Hence, the
constraints in this case are defined as, assuming that rel is a binary relation between entities of
type T and T":

CBSD; =Vx:T(x)— Ay :rel(x,y) 5.4
CBSD; =Vy: T'(y) = dx : rel(x,y) (5.5)

The first formula states that, for a fixed element at the first component, there is at least one
tuple. The second formula, as in the following pairs of axioms, states the same but for a fixed
entity at the second component.

The third case, the multiplicity ranging between O and 1, is defined by the constraints

CBSD; =Vx:T(x) = ((Vy: —rel(x,y)) v Ay : rel(x,y)) (5.6)
CBSD;=Vy: T'(y) = ((Vx : =rel(x,y)) vV Alx : rel(x, y)) 5.7

In the case of a multiplicity of exactly one, we can write

CBSD; =Vx:T(x)— Aly:rel(x,y) (5.8)
CBSD; =Vy:T'(y) — Alx : rel(x,y) (5.9)

Table 5.1 shows how class diagrams as illustrations of 7¢gsp can be mapped to the axioms
of the before mentioned shapes. Generalization obviously models the subtype relationship

3This is abbreviated as R € Ty X T.

75

Chapter 5. A Formal Framework for Architectural Compliance Checking

| Class diagram

Axioms

Domain restriction for unary
relation symbols (subtyping)

see axioms 6.1 and 6.2

Multiplicity “zero or one”

0.1

Domain definition for binary i -rel .
. see axiom 6.3

relation symbols
e T -rel .

Multiplicity “at least one” 1.7 see axioms 6.4 and 6.5
C e e e . T -rel .

Multiplicity “exactly one 1 see axioms 6.6 and 6.7

T -rel

see axioms 6.8 and 6.9

Table 5.1: Class diagram notation for 7¢psp and corresponding axioms of @cpgsp.

76

5.3. Formal Representation of Component-Based Systems

Type
[|
Classifier PrimitiveType
| | | |
Component OOClassifier | String | | Boolean|
(from t.) (from Toos)
Integer Float
| |
Interface Class
(from Toos) (from Toos)

Figure 5.6: Hierarchy of type relation symbols.

between entity types. Meta classes connected by meta associations define the domain of the
binary relation symbol(s) represented by the corresponding association ends. Their multiplicity
determines which of the multiplicity constraints are contained in @cggp.

In the following sections describing 7¢psp, these general constraints defined for almost every
symbol of 7¢gsp will not be mentioned explicitly. They can be found in App. A. Only entity
type specific or relationship specific constraints will be explained explicitly in this chapter.

5.3.2. Types and Typed Elements(r,,.)

The subset 7, of Tcpsp defines relation symbols to formalize different kinds of types used in
component-based software development. A type can be understood as a constraint over the data
values an element can represent. For example, “integer” in a programming language constrain
the possible values an element of this type can have to a finite subset of integers. Types are
modelled in 7,y,, as relation symbol Type C NamedElement and subsetted by a set of more
specific kind of types, as depicted in Fig. 5.6.

Beside primitive types (integer, strings, boolean, etc.), the main types used in component-
based systems are components, interfaces, and classes. All of them define complex types that
have structure and behaviour. Components, captured by Component C Classifier (see Fig. 5.6),
represent modular parts of a system at the type level, and encapsulate, or hide, their specific
implementation from the rest of the system or the environment. The functionality a component
provides or requires is defined by interfaces. A component requiring an interface / must be
“wired” to a component that provides / in order to realize its own functionality. An interface
declares the structure of a type by declaring signatures of methods and member variables. An
interface itself cannot be instantiated but needs to be implemented by classes. Classes and
interfaces are summarized by the relation symbol OOClassifier C Classifier to group these
concepts from object-orientation.

Fig. 5.7 depicts which elements can actually be typed. Members of classes or interfaces can be
typed as well as parameters of methods and local variables in method bodies. Parts are a superset

77

Chapter 5. A Formal Framework for Architectural Compliance Checking

TypedElement -hasType Type

:

ReferenceVariable
(from 7g,)

T
| I |

Member LocalVariable Parameter
(from Toos) (from Ty,) (from Toos)

Part
(from t.)

Figure 5.7: Entity types that can be assigned types from 7type.

of different kinds of constituent parts that components are made of. All of these entity types as
subsets of TypedElement can participate in the relation hasType C TypedElement X Type that
reflects the typing.

Main Type Constructs: Components and Interfaces

Components and interfaces are the main type constructs in component-based systems. They rely
heavily on concepts known from object-orientation like classes, inheritance, object references,
etc. Interfaces themselves are known in object-orientation as well. 7,,, contains relation
symbols that capture the structural aspects of object-oriented specifications. Figure 5.8 depicts
T,0s and the most important connections to other relation symbols of 7¢gsp. These are in
particular connections to Component.

Component C Type represents the set of components, while interfaces are formalized as
elements of the unary relation symbol Interface C Type (see Fig. 5.8). The relation symbols
providesInterface € Component X Interface and requiresInterface C Component XInterface
connects each component with the interfaces it provides or requires. The classes a component
encapsulates are reflected by the relation symbol
containsClass € Component X Class.

Components and interfaces can be grouped by packages that are modelled by Package C
NamedElement. Packages provide namespaces, in which names of types are unique. Every
component and every interface must be contained in exactly one package. The relation symbol
containsPkg C Package X Package allows us to compose hierarchical package trees. (p;, p») €
containsPkg indicates that p, is a subpackage of p;. containsPkg" denotes the transitive closure
of containsPkg; (p1, p») € containsPkg" indicates that p; contains p,, possibly indirectly.

It is worth noting for readers familiar with object-oriented concepts and languages, that
classes are not considered as elements grouped in packages and accessible from anywhere in
the system. Often also classes are entities that are provided by components directly, e.g. if they
reflect simple data structures with only getter and setter methods; in this case, the interface and
implementation of a class is integrated into a single unit, and not strictly separated. Since this
is not allowed in 7¢gsp, the most straight-forward conversion of such “data interfaces” would
be to assume a standard implementation encapsulated in the component, which provides simple
getter and setter implementations. Alternatively, 7¢gsp could be easily extended to integrate

78

5.3. Formal Representation of Component-Based Systems

|0 1 0.* -containsPkg
Package -containsinterface Interface Type -hasType
(from Tye,) 1 0..* (from T,y;,c)] 0+
1 . Member
-providesinterface
= 1.7
() - i [= f= [
g reqmreslnterfafe 8[0. 80" 5[0."
g. 0.. [= [
" 9] [5]
8 -implements 0..* > = >
7 7 @ 7}
c O = ©
© £) <
5 0.* K (=] (O
8lo.*|0.* |0. - .
Class OOClassifier
Component I
(from 7T5) .
1 0.. -extends
containsClass 0.*
() 0.% (4 (4
1 |0 1. 1 0.* |1.*
MethodBody . o 3
0. 55
-definesMethod o o g
D D =
0.* a al 2
-inheritsMethod o =
0.* 8. €L.8],
210.* SFp0.* 0..
-hasMethod 0.7 <
-implementsSignature Signature
0..* 1
Type -hasType Parameter | _hasParameter Y 1
(from Tyyp.) 1 0.* o
0.1 0..1|-nextParameter

Figure 5.8: Relation symbols of 7., that model the structure of classes and interfaces, and relation
symbols that connect them to other subsets of T¢psp.

complex data types as specialization of PrimitiveType, such as records or sequences.

Running Example

Figure 5.9 depicts an example in UML notation illustrating the relation symbols introduced
so far. Notice, that the diagram is annotated with «System diagram». This indicates that the
diagram depicts a system in the meaning of a 7¢pgp-structure conforming to the axioms of
®cpsp. In contrast, latter UML diagrams, for example in Sec. 5.4, will be understood as models
of systems — these diagrams will not be annotated.

Small boxes contain for every element of the diagram a unique identifier that represents the
element in the structure. A simple package hierarchy is depicted that consists of the packages
P, P1, and P2 that contain some components and interfaces. Table 5.2 lists relation symbols of
Tepsp and how they are interpreted in the system S depicted in Fig. 5.9*. The containment as

“#For reasons of simplicity, we omit here the relations for name and qualifiedName. Tuples of these relations

79

Chapter 5. A Formal Framework for Architectural Compliance Checking

«System diagram»

1
(A
[7] o 5]
- 2] P2
CI:?\ «component» E]—_—C
O\ «component» g|/< B 14
i A 12 Q|
[5]
4] g y
2O] [BO|] (4O
IEI 1O +a() +b()

(o]

Figure 5.9: Exemplary system S according to 7¢ps p, Part 1.

Relation symbol r

| Interpreting relation r° in the system S

Package
Component
Interface
containsPkg
containsComponent
containslnter face
provideslInter face
requireslnter face

{1,2,3}
{4,5}
{6,7,8,9}
{(1,2), (1,
{2,4),6,

{(4,8), (5,

3)}
5)}

N}

{(2,6),(3,7).(3,8),(3,9)}
{(4,6),(5,7),(5,8)}

Table 5.2: Relations of the example from Fig. 5.9.

well as the provide and require relationships are reflected by the depicted binary relations.

5.3.3. Structure Specification of Object-Oriented Classifiers (7,,;)

Object-oriented classifiers are interfaces and classes. Both have in common that they de-
fine members and signatures for methods, and both can inherit properties from interfaces or
classes by extending them. These commonalities are reflected in a common relation symbol

OOClassifier.

would for example be (2, “P1”") € name and (2,“P :: P1"") € qualified Name, assuming P is the root package.

80

5.3. Formal Representation of Component-Based Systems

Interfaces/Object-Oriented Classifiers

The signatures defined by a classifier are modelled by definesSignature C OOClassifier X
Signature, as depicted in Fig. 5.8. A signature is basically the name of an operation
and a list of typed parameters. The name is reflected by the relation symbol name C
NamedElement x String °. The list of parameters (Parameter) of a signature is formal-
ized by the relation symbol hasParameter C Signature X Parameter and nextParameter C
Parameter X Parameter that defines a strict total order on the parameters for a fixed signature.
There are several axioms in ®@¢gsp that ensure correct relations between parameters and

signatures. First, parameters related by nextParameter must belong to the same signature:

CBSD, =VpVYg : tP t ,q) —
1 pYq : nextParameter(p, q) (5.10)

ds : (hasParameter(s, p) A hasParameter(s, q))

If a signature has parameters, there is exactly one without predecessor and exactly one
without succeeding parameter:

CBSD, := Vs : (—=3p : hasParameter(s, p)) V

5.11
A!'p : (hasParameter(s, p) A (—3q : nextParameter(q, p)))) ()

CBSD; := VYs : ((=3p : hasParameter(s, p)) V

5.12
A!p : (hasParameter(s, p) A (—3q : nextParameter(p, q)))) ()

The members defined by an interface (or a class) are modelled by the relation symbol
definesMember C OOClassifier x Member. Members are typed elements that can either refer
to a primitive data value or an instance of a complex type if typed with an interface or a class.

Furthermore, interfaces can subtype each other, reflected by extends C OOClassifier X
OOClassifier, whereas (i1, i) € extends indicates that i; is subtype of i,. We furthermore define
extends® as the transitive closure of extends. It hence contains all the tuples from extends as
well as all further tuples that reflect indirect subtype relationships between object-oriented
classifiers.

The extend relation can only exists between interfaces and interfaces, or between classes and
classes. The relation symbol implements discussed later describes the relationship between an
interface and the classes implementing it. Hence the following axiom is required:

CBSD, = VxVy : extends(x,y) — (Class(x) A Class(y))V

(5.13)
(Interface(x) A Interface(y))

The relation symbols hasMember C OOClassifier x Member and inheritsMember C

OOClassifier x Member reflect inheritance at the internal, structural level of object-oriented
classifiers; as described, definesMember models members that a classifier defines itself;

SSignature, as well as every other unary relation symbol from Fig.5.8 except MethodBody, “subsets”
NamedElement. See Appendix

81

Chapter 5. A Formal Framework for Architectural Compliance Checking

inheritsMember describes which members are inherited; hasMember describes the union of
both.
The following constraints have thus to hold:

CBSDs = VxVy : ((definesMember(x,y) — — inheritsMember(x,y)) A

5.14

(inheritsMember(x,y) — — definesMember(x,y))) ()

CBSDg := YxVy : (hasMember(x,y) < (5.15)
(inheritsMember(x,y) V definesMember(x,y))) ’

CBSD; = VxVy : (inheritsMember(x,y) — (5.16)
dz : ((extends(x, z) V implements(x, z)) A\ hasMember(z,y))) ’

Analogously, constraints are defined for inheritance regarding method signatures:

CBSDyg = VxVy : ((definesSignature(x,y) — —inheritsSignature(x,y)) A (5.17)
(inheritsSignature(x,y) — — definesSignature(x,y))) '

CBSDy := VxVy : (hasSignature(x,y) < (5.18)
(inheritsSignature(x,y) V definesSignature(x,y))) '

CBSDy = VxVy : (inheritsSignature(x,y) — (5.19)

dz : ((extends(x, z) V implements(x, 7)) A hasSignature(z,y)))

Running Example: Adding Interface Details

In Fig. 5.10, the interfaces |IF2 and IF3 from Fig. 5.9 are further refined. We can see, that IF3
subtypes IF2 and that IF3 defines an additional signature. Table 5.3 lists the relation symbols
and the assigned relations for the cutout of S depicted in 5.10.

Notice that return parameters are named with “return” which cannot be explicitly seen in the
graphical notation. Furthermore, it can be seen that nextParameter’® defines the order of the
parameters of a correctly regarding the axioms mentioned above.

Classes

Classes are types that are local to components. They cannot be accessed directly from outside
the component. Their semantics is apart from that identical to that one common in object-
orientation. Classes provide methods by providing method bodies (MethodBody) for signatures

82

5.3. Formal Representation of Component-Based Systems

«System diagram»
[7]
+a(par1 : 12, par2 : Integer) : void N —

Lo Jl1tl[7][12] [15] [13][14]

Figure 5.10: Example of Fig. 5.9 further refined.

Relation symbol r \ Interpreting relation 7° in the system S ‘

Interface {.. -
Signature {9, 10}
Parameter {11,12,13, 16}
PrimitiveType {14, 15}
extends {(8,7)}

definesSignature {(7,9), (8,10)}

inheritsSignature | {(8,9)}

hasSignature {(7,9),(8,9),(8,10)}

hasParameter {(9,11),(9,12), (9, 13), (10, 16)}

name {...,(13,“return), (16, “return”), .. .}
nextParameter {(11 12),(12,13)}

hasType {...,(11,7),(12,15),(13,14),(16,7), ...}

Table 5.3: Relations of the example from Fig. 5.10.

defined in the class itself, in one of its super classes, or in an implemented interface. The pro-
vided methods can also either be defined in the class itself or be inherited from extended classes.
This is expressed by the relation symbols hasMethod, definesMethod, and inheritsMethod (see
Fig. 5.8) and the following axioms:

CBSDy; = VxVy : ((definesMethod(x,y) — — inheritsMethod(x,y)) A

5.20

(inheritsMethod(x,y) — —definesMethod(x,))) ()

CBSDy, = VxVy : (hasMethod(x,y) < (5.21)
(inheritsMethod(x,y) V definesMethod(x, y))) '

CBSDy; = VxVy : (inheritsMethod(x,y) — (5.22)

Az : ((extends(x,z) V implements(x, z)) A hasMethod(z, y)))

The signature of a method body is assigned by implementsSignature C MethodBody X
Signature. The signature of method has of course to be part of the class which defines the

83

Chapter 5. A Formal Framework for Architectural Compliance Checking

method:

CBSDyy = VxVy : (definesMethod(x,y) <

5.23
ds : (hasSignature(x, s) A implementsSignature(y, s))) ()

Not only classes are local to components, also single inheritance hierarchies are completely
contained in single components. A class inheriting another class defined in a different compo-
nent would violate the basic principle that components can only be connected and depend on
each other by the usage of interfaces. This means that the following constraint has to hold in
every component-based system:

CBSD;5 = VxVy : (Class(x) A extends(x,y) —

. . (5.24)
dz : (containsClass(z, x) A containsClass(z,)))

A class can implement interfaces (implements C Class X Interface), as mentioned above. In
this case, the class must provide a method for every signature defined in the interface or one
of its supertypes. The relation implements™ C Class X Interface contains all relations between
interfaces and implementing classes and includes also indirect implementations that arise from
classes implementing subtypes of interfaces. Hence, if a class ¢ implements an interface i,
which is a subtype of ij, ¢ also indirectly implements i;. More formally it has to hold that
(c,ip) € implements and (i, ;) € extends implies that (c,i;) € implements™. This is formally
captured in O¢psp by the axiom

CBSD, = VcVi : (implements™(c,i) &
implements(c,i) vV (3] : extends™(j,i) A implements(c, j)) V
(3d : extends*(c,d) A (implements(d, i)V
(3j : extends™(j, i) A implements(d, j)))))

(5.25)

Running Example: Adding Classes

Figure 5.11 refines component B from Fig. 5.9. The component contains three classes C1,
C2, and C3 whereas C2 subclasses C1 and defines another method d. Moreover, C1 defines a
member that is typed with C3.

Table 5.4 shows the relations modelling the example of Fig. 5.11. The containment re-
lation between B and its classes is modelled by containsClassS = {(5,23),(5,24), (5, 25)}.
implementsS shows that C1 and C2, which are the entities with id = 23 and id = 24, respec-
tively, implement I3 (id = 8) directly and 12 (id = 7) indirectly. Both classes provide method
bodies for the signatures defined in the interfaces, as defined by de finesMethod® . Because of
(24, 19), (24,20) € definesMethod® , it is also specified that C2 overwrites the implementation
of C1 for a(...) and b(), since it obviously do not inherit the method bodies of C1.

84

5.3. Formal Representation of Component-Based Systems

«System diagram» [5‘] «component» =]
] B
13 @) c1 25
+a(pari : I2 par2 Integer) void K— — t~myC3: C3| T
(o [l7 Tral [1s] [rolte] | oL —os] a]fee
AN
+b() : g 14
LI 35
Not explicitly depicted:

Method bodies for a and b in C1:

Method bodies for a and b in C2:

+c(i: Integer) : Integer|
34

Method body for c in C3: Method body for d in C2:

Figure 5.11: The example of Fig. 5.10 extended by classes.

Relation symbol r \ Interpreting relation 7° in the system S

Signature
Parameter
PrimitiveT ype
Class
MethodBody
Member
containsClass
definesS ignature
inheritsS ignature
hasS ignature
definesMember
inheritsMember
hasMember
definesMethod
implements
implements*
extends

extends”
hasType

{9, 10, 30, 32}

{11,12,13,16, 31,33, 34}

{14,15}

{23,24,25}

{17,18,19,20,21,22}

{26, 29, 35}

{(5,23),(5,24),(5,25)}

{(7,9),(8,10), (24, 30), (25, 32)}
{(8,9),(23,9),(23,10),(24,9), (24, 10)}
definesS ignature® U inheritsS ignature®
{(23,26), (25, 29), (25, 35)}

{(24,26)}

definesMemberS U inheritsMember’
{(23,17),(23,18),(24,19), (24, 20), (24,22),(25,21)}
{(23,8)}

{(23,8),(24,8),(23,7), (24, 7)}
{(8,7),(24,23)}

{(8,7),(24,23)}
{(26,25),(29,15),(35,9)}

Table 5.4: Relations of the example from Fig. 5.11.

85

Chapter 5. A Formal Framework for Architectural Compliance Checking

(a) b
(b) Key
g belt
provided objects Component
ﬁ Instance
’ H ds ® Object
c ' requiring objects Link /
Reference

Figure 5.12: Atomic (a) and hierarchical (b) component instances.

5.3.4. Structure Specification of Components and Systems (7.,)

It is useful to understand the structures of component-based systems at runtime in order to
introduce the concepts that are required to specify the internal structure of components and the
systems they form. The structural elements of object-oriented systems build the foundations
for the structure of component-based systems. These are mainly objects and references, also
known as links. Objects are instances of classes. Objects can send messages to each other if
there are references, or links, between them. The message receiving object reacts by invoking a
corresponding method, either synchronously or asynchronously.

Objects are hence relatively simple constructs. Their states consist of the values of their
attributes and the set of objects they are linked to [Bal99]. Components as an extension
of object-orientation allow defining complex instances that are build of arbitrarily complex
networks of objects. Instantiating a component includes creating the specified network of
objects, as well as destroying the instance means breaking the network down. Furthermore, the
definition of provided and required interfaces for components enables the designer to specify,
how the instances of a component may be accessed by other components or the system’s
environment, and which parts it needs to access itself.

Part (a) of Fig. 5.12 shows a simple component instance. The core of the component instance
¢ contains objects that are not accessible from any other object outside of c. All links to those
objects are instead pointing from or to objects in the outer belt of ¢, or remain in the inner
core. The upper part of the belt contains the only objects, the provided objects, which can be
accessed by the environment of c¢. Those object themselves may access objects in the inner
core of ¢. The lower half of the belt contains the only objects of ¢, the requiring objects that are
allowed to have links to objects in the environment of ¢. Of course, an object of the belt can be
both, provided and requiring, at the same time.

It is important to understand that, as contribution to the concept of encapsulation, a client of
the component does not know the class of a provided object it would like to access. Instead,
it only knows the interface implemented by the class and which must be one of the provided
interfaces of the component. This applies similarly to requiring objects. Their classes require
an interface that is in the component’s set of required interfaces. At runtime, this require-
ment relation is satisfied by a link between the requiring object and some instance of a class

86

5.3. Formal Representation of Component-Based Systems

implementing that interface.

Furthermore, instances of components can be used as substructure of instances of other
components. This way, hierarchical components can be created. Part (b) of Fig. 5.12 shows
an example. The component instance d; is basically the same as ¢ with the difference that the
atomic object 0, from the core of ¢ is replaced by a complex component instance d,. For d,, we
have to adhere to the same constraints as for ¢ — accesses fo the component are only allowed
via provided objects, accesses by the component only via requiring objects. Hence, the object
01, which has had a link to object 0, in case (a), has now a link to a provided object of d,.

Like a class defines the attributes that instances have or the methods that can be called at
them, a component has to specify which provided and requiring objects, and which “inner
objects” form an instance of the component. The specification elements used for this task are
ports, inner parts, and connectors. They and their formalization as relation symbols of 7., C
Tcasp, the signature subset used for the specification of the internal component structures, are
introduced in the following subsection.

Ports, Inner Parts, and Connectors

The elements that are used to specify the inner structure of components are called parts. Parts
are named and typed elements. The name can be understood as a role. At runtime, an instance
of the type assigned to a part will play this role and can be addressed by this name. For example,
let us assume that we have an information system with a data access component. Inside this
component, we could model two parts named “primaryDB” and “backupDB” both of type
“Database”, which could be a complex component itself.

Two kinds of parts are used to specify which objects constitute a component instance at
runtime. /nner parts define which objects are required in the core of a component. This means
that the type of an inner part defines the type of an object that plays the role given by the name
of the part. Ports do the same for objects that are either provided or requiring objects. Ports for
provided objects are called provided ports. At runtime, for each provided port an instance of the
given type exists that can be accessed from the environment of the component instance. On the
other hand, required ports are ports specifying links to required objects from the environment
of a component.

Figure 5.13 depicts the relation symbols of 7¢psp that are used to formalize parts. All
parts are collected by the relation symbol Part. Parts as discussed so far are furthermore
refinements of the relation symbol SinglePart in contrast to connectors that will be discussed
later. Single parts represent roles that can be played by instances of classes or components.
Port and InnerPart refine SinglePart for the different kind of parts as mentioned above. Ports
are further distinguished into ProvidedPort and RequiredPort. The relation encapsulates C
Component X Part assigns parts to the component that contains them.

All parts can be typed, since Port C TypedElement. It is important to notice that in the case
of provided ports the type assigned by the hasType relation is not the type that a client sees
when linking to the object playing the role of the port. Instead, an interface is provided by the
port which is the type visible to the environment. This is represented by the relation symbol
providedInterface C ProvidedPort X Interface. The following constraints have to hold with
regard to provided ports:

87

Chapter 5. A Formal Framework for Architectural Compliance Checking

Component -encapsulates Part -configurationParts SystemConfiguration
0..1 1.* 1.% 0..1
Connector -connectorSource SinglePart
-isDelegation : boolean 0. !
-connectorTarget
0..* 1
0.x |o.*]o.* ‘ﬁ
-sourceContext InnerPart Port
0.1
-targetContext
0..1
0.1| -setsMember Interface -providedinterface ProvidedPort
(from Toos) 1 «
(?Ilember) - 0..
TOM Toos . i
1r(-:-*qwredlnterface EEeSTedPort
. 0..*

Figure 5.13: Relation symbols in 7., to model parts.

¢ Only a class defined by the encapsulating component can be type of a port:

CBSDq; = VxVyVz : (Port(x) A Component(y) A Type(z)A
encapsulates(y, x) A hasType(x,z7) — (5.26)
Class(z) A containsClass(y, z))

This also holds for required ports.

e The provided interface of a provided port must be in the set of provided interfaces of the
encapsulating component:

CBSDys = VxVyVz : (ProvidedPort(x) A Component(y) A Interface(z) A\
encapsulates(y, x) A\ providediInterface(x,z) — (5.27)
providesinterface(y, z))

e The class being the type of a provided port has to implement the provided interface of
the port:

CBSDyy = VxVyVz : (Class(x) A ProvidedPort(y) A Interface(z)A\
hasType(y, x) A providedInterface(y, z) — (5.28)

implements™(x, 7))

Required ports express that a component instance encapsulates objects that depend on
objects outside of the scope of the component. By the relation symbol requiredInterface C

88

5.3. Formal Representation of Component-Based Systems

RequiredPort X Interface the type of such a required object is determined. Similar to provided
ports, the required interface of a port has also to be required by the component:

CBSD, = VxVyVz : (RequiredPort(x) A Component(y) A Interface(z)A
encapsulates(y, x) A requiredInterface(x,z) — (5.29)
requiresinterface(y, z))

Inner parts represent roles played by instances of the component core. Those instances
cannot be accessed directly by other component instances. Thus, inner parts do not need a
distinction between their visible and their actual type.

In contrast to ports, inner parts can also be typed by components, not just classes, since
instances in the core of a component can also be component instances. This difference is
axiomatically specified by the constraint for single parts

CBSDy; = VxVy : (SinglePart(x) A Type(y) A hasType(x,y) —

(5.30)
Class(y) Vv Component(y))

and the port specific axioms mentioned above.

Objects can be linked, and they can play roles defined by ports or inner parts, depending on
whether they are provided, requiring, or “inner” objects of a component instance. Obviously, it
should also be possible to specify that a link has to exist between two objects playing dedicated
roles. This is done by the usage of connectors. Connectors connect a source part with a target
part indicating, that the object playing the role of the source part has a reference playing the
role of the target part. The use of connectors enables us to specify the “edges” of the network
of instances that is created when instantiating a component.

Three kinds of use cases for connectors can be distinguished that correspond to the three
kinds of generally allowed linkings between objects in components:

e Connectors between inner parts are used to specify links between objects of the compo-
nent core.

o Connectors between provided ports and inner parts specify links between required
objects and core objects.

o Connectors between inner parts/provided ports and required ports specify links between
core objects/provided objects and requiring objects, or allow the delegation of links.

e Connectors marked as delegators connect ports with the interior of a component indicat-
ing that links from the environment zo the component, or links from the component to the
environment are delegated.

To understand the delegation of links, it is useful to understand how component instances can
be connected by connectors, since connectors are only able to specify links between objects.
Consider p, being typed by component A, being a inner part of component C. A has a required
port x with an interface / that is provided by the port y of a component B. There is another

89

Chapter 5. A Formal Framework for Architectural Compliance Checking

part g of component A that is typed with B. In this scenario, there will be a requiring object at
runtime, encapsulated by the component instance playing the role p, that play the role of x and
requires an instance of /. On the other hand, the instance playing the role of B encapsulates
such an object, that one playing the role of y. To specify, that those both ports should be linked,
we can specify a connector between them, defining p and ¢q as the context of it. The context
of connector is required because ports are defined for types, namely components, and not for
specific inner parts. A port is hence defined only once per type (component). This means that a
connector between the two ports above would indicate, that every instance of A is linked with
an instance of B, not only in the context of playing certain roles (p and ¢) in the inner structure
of C.

Since component instances can play the roles of inner parts, it can happen that nested
requiring objects are contained in a component core. Furthermore, it can happen that such
a requiring object cannot be satisfied directly because it cannot be linked to an object of the
surrounding component’s core. The reason for this is, that the surrounding component does
not necessarily need to implement the required interface but requires it itself. Thus, an object
that can be linked to, must be found outside of the surrounding component. To specify such
circumstances, delegate connectors are used that connect a required port of an inner part’s type
with a required port of the outer component. References of nested requiring objects can this
way be delegated to the outside.

Connectors are formalized in 7¢cpsp as members of the relation symbol Connector (see
Fig. 5.13). Connectors are considered to be parts themselves since they indicate roles and are
encapsulated by components. They connect single parts as introduced before which is modelled
by the relation symbols connectorSource C Connector X SinglePart and connectorlarget C
Connector X SinglePart. The context of connectors is formalized by the relation symbols
sourceContext C Connector X InnerPart and targetContext C Connector X InnerPart.

Some general constraints hold for connectors. First of all, component-typed parts cannot be
source or target of connectors but only class-typed ones:

CBSD,; = VxVyVz : (Connector(x) A SinglePart(y) A SinglePart(z)A
connectorSource(x,y) A\ connectorlarget(x,z) — (5.31)
A3t : Class(t) A Class(t') A hasType(y, t) A hasType(z,t))

For all connectors holds that source and target context must be parts that are encapsulated in
the same component as the connector:

CBSDy; = VxVyV¥zV7 : (Connector(x) A Component(y) A SinglePart(z) A\
SinglePart(7") A encapsulates(y, x) A sourceContext(x, z) A\ (5.32)
targetContext(x,7') — encapsulates(y,z) A encapsulates(y,?’))

Each connector has to correspond to one of the three cases mentioned above — this means it
either has as context two inner parts, or a provided port and an inner part, or an inner part and a

90

5.3. Formal Representation of Component-Based Systems

el -
- -

Key:
Connector T el [P]provided c __D_t_(b don '
___________ > [R]required omponent (border 4
src trg Component-typed with port Part is context
part with port Class-typed part port

Figure 5.14: Possible connectors between inner parts.

required port. The following axiom enforces these rules and excludes all other combinations:

CBSD,4 = VxVyVz : (Connector(x) A sourceContext(x,y) A targetContext(x,z) —
(InnerPart(y) A InnerPart(z)) V
(ProvidedPort(y) A InnerPart(z)) V
(InnerPart(y) A RequiredPort(z)))

(5.33)

If a connector has a context typed by a component, the corresponding end, either source or
target, must refer to a port that is defined for the type of the context under consideration:

CBSD,s = VxVyVz : (Connector(x) A SinglePart(y) A Component(z)A
sourceContext(x,y) A hasType(y,z) — (Ap : Port(p)A (5.34)

connectorSource(x, p) A encapsulates(z, p)))

CBSDy¢ = VxVyVz : (Connector(x) A SinglePart(y) A Component(z)A
targetContext(x,y) A hasType(y,z) — (Ap : Port(p)A (5.35)
connectorTarget(x, p) A encapsulates(z, p)))

A non-delegating connector defines that a link will be established at runtime between the
source and the target that the connector is pointing to. A delegating connector points to the
required port that delegates the link. In each case, the corresponding link is defined by a
member of the source part. The relation symbol setsMember C Connector X Member models
which member is actually set by a connector. It defines that, by specifying the connector, the
referenced member is set to the object that the connector points to®. At the same time, the type

®In case of a delegating connector, the target of the connector does not refer directly to a target object but to an
outer required port which is used for delegation.

91

Chapter 5. A Formal Framework for Architectural Compliance Checking

of this member is also the type of the connector.

CBSD,; = VxVyVz : (Connector(x) A SinglePart(y) A Member(z)A
connectorSource(x,y) A setsMember(x,z) —
(Vt : hasType(y,t) — hasMember(t,z))A
(Yt : hasType(z,t) < hasType(x,1)))

(5.36)

The type of the target has to conform to the type of the connector:

CBSD,s := VxVyVz : (Connector(x) A SinglePart(y) A connectorTarget(x,y) —
(YEVY @ hasType(y, t) A hasType(x,t") — (5.37)
(implements™(t,1") V extends* (t,1'))))

There are four possible combinations of connecting inner parts by connectors resulting from
the fact that source and target context can each be typed either by a class or a component. The
combinations are depicted in Fig. 5.14. Both, the source context and the target context are
always inner parts. The source of a connector is equal to the source context if and only if the
source context is class-typed. It is a provided port of the source context’s type if and only if the
source context is component-typed. The same rule applies to the target context:

CBSD,g = VxVyVz : Connector(x) A InnerPart(y) A InnerPart(z)A
sourceContext(x,y) A targetContext(x,z) — (5.38)
(Ap : connectorSource(x, p) A (y = p V RequiredPort(p)))

CBSD3yy = YxVyV¥z : Connector(x) A InnerPart(y) A InnerPart(z)A
sourceContext(x,y) A targetContext(x,z) — (5.39)
(Ap : connectorlarget(x, p) A (z = p V ProvidedPort(p)))

Two combinations are possible to connect a provided port of a component with an inner
part — the latter is either class-typed or component-typed, as depicted in Fig. 5.15. The source
context is hence a provided port, while the target context is an inner part. These cases can be
characterized by the axiom:

CBSD3; = VxVyVz : (Connector(x) A ProvidedPort(y) A InnerPart(z) A
sourceContext(x,y) A targetContext(x,z) — connectorSource(x,y)A (5.40)

(Ap : connectorTarget(x, p) A (z = p V ProvidedPort(p))))

Similar applies to the possibilities of connecting an inner part with a required port (see
Fig. 5.16). Again, the inner part can be either typed by a class or by a component:
CBSDs; = VxVyVz : (Connector(x) A InnerPart(y)A
RequiredPort(z) A sourceContext(x,y) A targetContext(x,z) — (5.41)

connectorTarget(x,z) A (Ap : connectorSource(x, p)A
(y = p V RequiredPort(p))))

92

5.3. Formal Representation of Component-Based Systems

Key:
Connector FE:T T [P]provided c __l:l_t_(b don '
___________ > [R]required omponent (border -
src trg Component-typed with port Part is context
part with port Class-typed part port

Figure 5.15: Possible connectors to connect provided ports with inner parts

Delegation connectors have to start at a provided port or to end at a required port:

CBSDs; = VYx : (Connector(x) A isDelegator(x, “true”) —
dy : (sourceContext(x,y) — ProvidedPort(y)) V (5.42)
dy : (targetContext(x,y) — RequiredPort(y)))

Note that isDelegator(x, “true” distinguishes basically two kind of connectors common in
many component models. Delegators support the hierarchical composition of components
and systems by mapping externally visible elements to inner component parts (or vice versa).
“Normal” connectors configure the links in the networks of objects representing a component
instance.

In case a required port is target of a delegation connector, it must be rather understood as a
reference variable pointing to an external object than an object pointing somewhere itself. Due
to this different perspective, a required port cannot be addressed by normal and by delegation
connectors at the same time:

CBSD3y := Vx : (RequiredPort(x) — ((Yy : Connector(y)A
connectorTarget(y, x) — isDelegator(x, “true”)) v (5.43)
(Vy : Connector(y) A connectorTarget(y, x) — isDelegator(x, “false”))))

Required ports as targets of delegation connectors are therefore typed with the required
interface, of which may only exists exactly one, of the port:

CBSD;5 = VxVy : Connector(x) A isDelegator(x, “true”)A (5.44)
Interface(y) A requiredInterface(x,y) — Yz : (hasType(x,z) = z =) '

Running Example: Adding Parts

Figure 5.17 continues the running example of this chapter and shows the inner structure of
component B. There are two provided ports whereas ppo1 provides the interface 13 and ppo2

93

Chapter 5. A Formal Framework for Architectural Compliance Checking

__. —
i -
Key:
Connector FE:T T [P]provided c __l:l_t_(b don '
___________ > [R]required omponent (border -
src trg Component-typed with port Part is context
part with port Class-typed part port

Figure 5.16: Possible connectors to connect inner parts with required ports

provides the interface 12. The type and realizing classifier of ppo1 is C1; the type of ppo2
is C2. Both ports are connected with the inner part pal which is typed by the class C3 (see
Fig. 5.11). The connector con1 and con2 both set the corresponding member myC3, defined
in C1 (see Fig. 5.11), i.e. the attribute refers to pal for both provided ports. As the definition
of C3 shows, there is member g typed with 14 which has to refer to some object at runtime.
Figure 5.17 shows that this reference is delegated to the required port rp1 of B.

Table 5.5 shows the relations for the addition made in Fig. 5.17 to the running example.
New entities are parts, ports as well as inner parts and connectors. They are all encapsulated
in component B as modelled by the relation encapsulates®, and the types of all four single
parts are set by hasType® . The relationships between ports and their required and provided
interfaces, respectively, are reflected by providedinterface® and requiredinterface’® . For ex-
ample ppo1 providing 13 is reflected by (38, 8) € providedinterface® . Sources and targets of
connectors are modelled by connectorSource® and connectorTarget® . For example, the source
of con1 is modelled by (43,38) € connectorSource’; its target is modelled by (43,41) €
connectorTarget® .

Context information is correctly modelled for all connectors by sourceContext® and
targetContext® . Due to the fact that all source and target are either class-typed parts or ports
“on the outer frame” of a component, those context relations contain the same elements as
connectorSource® and connectorTarget® , respectively.

System Configurations

A component-based system at runtime consists of instances of components, which encapsulate
instances of classes. Component instances may enter and leave the system and the wiring
between component instances can change. The initial state of the system, i.e. the instances of
components and the links between them, is specified by system configurations. Similar to the
inner structure of components, the structure of a system can be defined by parts specifying that
an instance of a specific type plays a certain role in the system. In contrast to parts as elements
of component specifications, parts used in system configurations cannot be typed by other types
than components and connectors.

As can be seen in Fig. 5.13, system configurations are formalized by the rela-

94

5.3. Formal Representation of Component-Based Systems

«System diagram»
5|
«component» =] =]
B
13 143] 41] 25
O [—I con1 (sets member myC3) pa1 C3
_'ppo1 1 C1
«delegate»
12 con3 (sets member g)
"l con2 (sets member myC3)
O—11
ppo2 : C2
39| 24
L,
rp1 4
14 El

Figure 5.17: The inner structure of component B (Example of Fig. 5.11 refined).

Relation symbol r \ Interpreting relation 7° in the system S

Component
Interface

Class
ProvidedPort
RequiredPort
InnerPart
Connector
encapsulates
hasType
setsMember
providedInterface
requiredInterface
connectorSource
connectorlarget
sourceContext
targetContext

-
789 ..}

3 24,25}
8,39}
0}

1}
43,44, 45)

{..
{..
{2
{3
{4
{4
{
{(5,38),(5,39),(5,40),(5,41),(5,42),(5,43),(5,44), (5,45)}
{...,(38,23),(39,24),(40,9),(41,25), .. .}

{(43 26),(44,26), (45,25)}

{(38,8),(39,7)}

{(40,9)}

{(43,38),(44,39), (45,41)}

{(43,41), (44,41), (45,40)}

{(43,38),(44,39),(45,41)}

{(43,41), (44,41), (45,40)}

Table 5.5: Relations of the example from Fig. 5.17.

95

Chapter 5. A Formal Framework for Architectural Compliance Checking

tion symbol SystemConfiguration. The binary relation symbol configurationPart ¢C
SystemConfiguration X Part contains tuples representing parts being elements of system con-
figurations. The parts of a system configuration are either inner parts (typed by components) or
connectors. Thus, it has to hold:

CBSD3g := VxVy : (Part(x) A SystemConfiguration(y)A

5.45
configurationPart(y, x) — (InnerPart(x) V Connector(x))) ()

The inner parts, as already mentioned, have to be component-typed:
CBSD3; = VxVy : (InnerPart(x) A SystemConfiguration(y)A (5.46)

configurationPart(y, x) — Yz : (hasType(x, z) — Component(z)))

Of course, each part belongs either to a system configuration or to a component but not to
both at the same time. This rule is enforced by the axiom:

CBSD3g == Vx : (Part(x) — ((Ay : encapsulates(y, x)) < (5.47)
(—=3y : configurationPart(y, x)))) '
All axioms for single parts and connectors introduced in the previous section are also correct
for parts as elements of system configuration. The only additional constraint is that parts being
context of a connector in a system configuration, have to be in the same system configuration.

CBSDgyy = VxVyVYzV7 : (SystemConfiguration(x) A Connector(y)A

Part(z) A Part(z") A sourceContext(y, z) A targetContext(y,z’) — (5.48)
(configurationPart(x,y) < (configurationPart(x, 7)\ ’

configurationPart(x, 7'))))

With the relation symbols and the axioms introduced in this section, we are able to specify the
static structure of component-based systems. In the following, we will introduce the symbols
and axioms required to cover behavioural aspects.

5.3.5. Behaviour Specification (7,,)

The behaviour of a component-based system can be understood as the system’s state change
over time [Rau04]. The system state at any point during runtime consists of the state of its
single component instances, which again is defined for each single component instance by the
state of its internal objects. Their states are defined by the values of their attributes and their
links to other objects. These states are changed by processing messages that are sent between
objects; methods are executed and evaluate attribute values, modify links, create and destroy
instances, and create and send new messages.

The behaviour of the system has to be specified at design-time. In our model of component-
based systems, behaviour is specified by method bodies that define how an object of a given
type reacts to the receiving of a certain message.

96

5.3. Formal Representation of Component-Based Systems

LocalVariable | jeclaresVariable 1 MethodBody
0“*
1 1
-containsStatement|0..* -containsEdge|0..*
StatementNode sreNode ControlFlowEdge

1 0.*

0..” trgNode
1 0.*

-/successorNodes |0..* T

InstanceCreation InstanceDestruction ReferenceAssignment Methodinvocation Return

Figure 5.18: Formalizing control flow graphs.

Furthermore, it is assumed that the behaviour specification has an imperative character. This
means that the specification consists of instruction statements that define how to change the
state of the system; for example, a specification could describe that the value of an attribute is
evaluated by sending a message to some object and passing the return value to the attribute.

Method bodies define hence a control flow describing the order of instruction statements by
sequences, conditional branches, and loops. Their specific characteristics and syntax depend
on the specification or programming language that is used.

Control flow graphs abstract from the specific language [All70]. Nodes represent statements
and directed edges indicate a sequence between two nodes. Conditional branches manifest as
nodes that have more than one outgoing edge; cycles in a graph indicate a loop.

Hence, it seems consequent to represent control flow graphs in 7¢pgp to reflect imperative
behaviour specification formally. The following subsection introduces the representation of
control flow graphs. After that, the subsequent subsection will describe different kinds of
statements to create and destroy instances, to assign references, and to specify communication
between objects.

Control Flow Graphs

A control flow graph is a directed graph with a dedicated root node from which each node
is reachable. Nodes represent instruction statements, edges determine the order in which
statements can be executed. Figure 5.18 depicts the relation symbols required to represent
control flow graphs.

The relation symbols StatementNode and ControlFlowEdge model the nodes and
edges of control flow graphs. They are contained in method bodies by the rela-
tion symbols containsStatement C MethodBody X StatementNode and containsEdge C

MethodBody x ControlFlowEdge. Edges connect source and target statement nodes indicating a
possible sequence of statements in which the source statement is executed before the target state-

97

Chapter 5. A Formal Framework for Architectural Compliance Checking

ment. The corresponding relation symbols are srcNode C ControlFlowEdge X StatementNode
and trgNode C ControlFlowEdge x StatementNode.

Notice, that nodes are only instruction statements — the declaration of local vari-
ables is represented separately by the binary relation symbol declaresVariable C
MethodBody X LocalVariable.

The root nodes of control flow graphs are captured by the symbol RootNode C
StatementNode. Each method body must contain exactly one root node:

CBSDy = Vx : (MethodBody(x) — Ay : RootNode(y) A containsStatement(x,y)) (5.49)

Control flow edges, of course, only connect nodes in the same method body:

CBSDy; :=Vx,y,z,7' : (ControlFlowEdge(x) A MethodBody(y) A containsEdge(y, x)A
StatementNode(z) A StatementNode(z') A srcNode(x, 2)A

trgNode(x,7') — containsStatement(y, z) A containsStatement(y, 7))
(5.50)

successorNode C StatementNode X StatementNode represents are all nodes that are directly
connected to a node by outgoing control flow edges. It has to hold hence:

CBSDy; = Vx,y : (successorNode(x,y) < Az : ControlFlowEdge(z)A

(5.51)
srcNode(z, x) A trgNode(z, y))

The transitive closure successorNode™ thus contains all direct or indirect successor nodes.

There exist different groups of instruction statements for different kinds of behaviour. These
are statements for instance creation, instance destruction, reference assignment, method in-
vocation and returning from methods. The corresponding relation symbols are subsetting
StatementNode as depicted in Fig. 5.18.

Instance Creation

The structure specifications of components and system configurations (see Sec. 5.3.4) define
the structures that are constructed when the corresponding component is instantiated, or the
system is initialized. For each part, an instance is created. However, it is also possible to create
instances during the execution of methods. The relation symbols for creation statements in the
control flow graph are depicted in Fig. 5.19.

We distinguish between the creation of objects and the creation of component instances.
Since objects can be seen as atomic instances, their creation is simpler than that of component
instances. The latter implicitly includes the creation of instances for the parts that are defined
for the component. Formally, there are two different relation symbols — ObjectCreation
and ComponentInstanceCreation that both subset InstanceCreation. Both have in common
that they refer to the classifier that is instantiated; this is reflected by the relation symbol

98

5.3. Formal Representation of Component-Based Systems

Classifier -instantiatedClassifier InstanceCreation -assignedTo ReferenceVariable
1 0..* 0..* 0..1
ComponentinstanceCreation ObjectCreation

Figure 5.19: Formalization of instance creation statements.

instantiatedClassifier C InstanceCreation X Classifier. Furthermore, both kinds of creation
statement assign the newly created instance optionally to a reference variable — for example,
to a local variable or to a member.

The instantiated classifier has of course to fit to the statement; an object creation statement
cannot refer to a classifier that is a component. The constraints are the following axioms:

CBSDy; = VYxVy : (ObjectCreation(x) A Classifier(y)A

. : . (5.52)
instantiatedClassifier(x,y) — Class(y))

CBSDyy = VxVy : (ComponentInstanceCreation(x) A Classifier(y)A

5.53
instantiatedClassifier(x,y) — Component(y)) ()

The reference variable to which the new instance is passed has to be type compatible. This
means that the instantiated classifier, as far as it is a class, has to be a subtype of the reference
variable type, or to implement it:

CBSDys := YxVyVzV7' : (ObjectCreation(x) A Classifier(y)A
instantiatedClassifier(x, y) A assignedTo(x, z) A hasType(z,7") — (5.54)
implements™(y,7') V extends™(y, 7))

Consider the following example, extending the classes depicted in Fig. 5.11. Let us assume,
the method body of b in C1 declares a local variable v of type C3. Later, an instance of C3 is
created and assigned to v. In pseudo code, this could look like:

I2 bQO {
C3 v; //declaration of v (id=50)
v = new C3; //instance creation

This code snippet extends the relations of the running example as depicted in Tab. 5.6. The
root node (id = 51), which is not explicitly specified in the pseudo-code above, is followed by

99

Chapter 5. A Formal Framework for Architectural Compliance Checking

| Relation symbol r | Interpreting relation ° in the system S
MethodBody {.. ..} (see Fig. 5.11)
LocalVariable {50}

StatementNode {51,52}
RootNode {51}
ObjectCreation {52}
ControlFlowEdge {53}

Class {25} (see Fig. 5.11)
declaresVariable {(18,50)}
containsStatement {(18,51),(18,52)}
containsEdge {(18,53)}
srcNode {(53,51)}
trgNode {(53,52)}
successorNode {(51,52)}
instantiatedClassifier | {(52,25)}
assignedlo {(52,50)}
hasType {...,(50,25),...}

Table 5.6: Relations of the example from Fig. 5.11 extended by the described object creation.

the object creation statement (id = 52). The instance is assigned to the local variable v (id = 50),
as (52,50) € assignedTo® indicates. The assignment is correct regarding type-compatibility,
since the type of the v, denoted by (50, 25) € hasTypeS , 1s the same as the instantiated classifier,
represented by (52, 25) € instantiatedClassifier® .

A component-based system will normally not just create instances but also establish links
between instances (see Sec. 5.3.4). So far, we are only able to let a reference point to a newly
created instance but not to change a reference towards an existing object.

Reference Assignment

The reference assignment, manifested by the relation symbol ReferenceAssignment is another
kind of statement node. It reflects statements like

V=W

whereas v and w are type-compatible reference variables, and v is assigned the value of w;
this means, after execution v is referring to the same instance as w. Figure 5.20 depicts how
these statements are represented in T¢cpsp.

ReferenceAssignment is related to ReferenceVariable by two binary relation symbols.
passesValueFrom refers to the reference variable on the right hand side of the assignment
(w in the example); passesValueTo refers to the left hand side of the assignment, the reference
whose value is changed.

Many programming languages define a null reference, a reference pointing to nothing.
Uninitialized references normally point to “null”. Null can be assigned to references to indicate

100

5.3. Formal Representation of Component-Based Systems

-passesValueFrom

ReferenceAssignment 0~ 1 ReferenceVariable
-passesValueTo
0..* 1

Figure 5.20: Reference assignment statements.

| Relation symbol r | Interpreting relation 7 in the system S
LocalVariable {50, 54}

StatementNode {..)

ReferenceAssignment | {55 }

declaresVariable {(18,54)}

hasType {...,(54,25),...}

passesValueFrom {(55 54)}

passesValueTo {(55,50)}

Table 5.7: Relations of the example from Tab. 5.6 extended by the object creation described above.

that the reference does not refer to an instance any more. While null itself is not typed, it can
be assigned to any reference variable. Null is defined as constant a symbol in 7¢pgp With the
following constraints:

CBSDyg := —3x : hasType(null, x) (5.55)

CBSDy; = —dx : (ReferenceAssignment(x) A passesValueTo(x, null)) (5.56)

Table 5.7 summarises the most important changes to the relations from Tab. 5.6 if the
reference assignment above follows somewhere later in the body of the method b.

The local variable w (id = 54) is additionally declared. The statement node with id = 55 is
the reference assignment that passes the value from w to v, as can easily be seen by looking at
passesValueFrom® and passesValueTo® .

Instance Destruction

The opposite statements of statements for instance creation are instructions that tell a system to
destroy instances. If an object is destroyed, it is simply removed and not available anymore in
the system’s set of instances; if a component instance is destroyed, all of its inner objects are
destroyed as well. Fig. 5.21 depicts the relations symbols for the destruction of instances.
Similar to the creation statements, we distinguish the symbols ObjectDestruction
and ComponentinstanceDestruction. Both have in common, that they require a refer-
ence to the instance that should be destroyed, referred to by destructionReference C
InstanceDestruction X ReferenceVariable. Constraints related to the destruction are: first, com-
ponent destruction statements can only refer to component instances; second, object destruction

101

Chapter 5. A Formal Framework for Architectural Compliance Checking

InstanceDestruction -destructionReference ReferenceVariable
0.* 1
ComponentinstanceDestruction ObjectDestruction

Figure 5.21: Relation symbols for instance destruction.

| Relation symbol r | Interpreting relation r* in the system S
StatementNode {...,60,...}

ObjectDestruction {60}
destructionReference | {(60,54)}

Table 5.8: Relations of the example from Tab. 5.7 are further extended by a object destruction
statement.

statements can only refer to objects; third, null cannot be used as reference. Following axioms
ensure this in ®cpgp:

CBSDyg = VxVyVz : (ComponentInstanceDestruction(x) A Type(y)A
ReferenceVariable(z) A destructionReference(x, z) A\ (5.57)
hasType(z,y) — Component(y))

CBSDy9 = YxVyVz : (ObjectDestruction(x) A Type(y)A
ReferenceVariable(z) A destructionReference(x, z)A\ (5.58)
hasType(z,y) — Class(y) V Interface(y))

CBSDs = VxVy : (ObjectDestruction(x) A destructionReference(x,y) — y # null)
(5.59)

Let us assume, the following line of pseudo code follows the previous lines of the method
body illustrated in this section so far:

delete_object w

where delete_object is the keyword for an object destruction statement. The relations of
Tab. 5.7 could be extended as depicted in Tab. 5.8 to capture the additional statement (statement
node with id = 60).

102

5.3. Formal Representation of Component-Based Systems

ReferenceVariable _invokedAt MethodInvocation —
1 0.*)
1 S , ,
0..1 0..1 | -returnedTo -invokedSignature| 1
-retirnedRef Signature
-parameterValue|0..*
TypedElement -actualParameter -
1 0 ParameterAssigment
B ator -formalParameter
1 0..*
0.*
Synchronousinvocation Asynchronousinvocation
Return
0“*

Figure 5.22: Method invocation statements

Method Invocation

There are two different forms of communication in component-based systems — synchronous
and asynchronous sending of messages. Both imply that a method at the receiving instance
is invoked. The sender of a synchronous message is blocked until the message is processed
by the receiver and the answer is received by the sender. After that, the sender can proceed.
In contrast, the sender of an asynchronous message drops the message and proceeds in its
own control flow. Meanwhile, the message is waiting at the receiver to be processed. While
the advantage of asynchronous messages is that the sender can continue its work, it is never
ensured for an asynchronous message that it is processed or that a result will be sent to the
original sender.

Fig. 5.22 depicts the relation symbols for method invocations. Two unary rela-
tion symbols represent the different forms of invocation, Synchronouslnvocation and
AsynchronousInvocation, respectively. The commonalities are covered by MethodInvocation.
All method invocation, either synchronous or asynchronous, refer to a signature that is
called at the receiver to process the message; this is modelled by invokedSignature C
MethodInvocation X Signature. The receiver object is identified by a reference variable pointing
to the object — formally the invocation and that reference variable are related by the relation
symbol invokedAt C MethodInvocation X ReferenceVariable.

The class that serves as type of the reference variable has to provide a method body for the
signature of the invocation. Otherwise, the invocation would not be possible. The following

103

Chapter 5. A Formal Framework for Architectural Compliance Checking

axiom of ®cpgp defines this constraint:

CBSDs; = VxVyVz : (MethodInvocation(x) A Signature(y)A
ReferenceVariable(z) A invokedSignature(x, y)A
invokedAt(x,z) — (13t : hasType(z, f)A (5.60)
extends™ (t,t") A (Am : definesMethod(t', m)A
hasSignature(m,y))))

Furthermore, method invocations bind formal parameter to actual parameters.
ParameterBinding reflects those bindings; its reference to Parameter by formalParameter C
ParameterBinding x Parameter refers to the formal parameter of a binding; actualParameter C
ParameterBinding X TypedElement refers to the actual parameter that could be another refer-
ence variable or some constant symbol. Each single parameter binding for a method invoca-
tion is related to the invocation by boundParameter C MethodInvocation X ParameterBinding.
Each formal parameter has of course to be a parameter that appears in the signature:

CBSDs; := VxVyVzV7' : (ParameterBinding(x) A Parameter(y)A
MethodlInvocation(z) A Signature(zZ)A
(z) A Sig () (5.61)

formalParameter(x,y) A boundParameter(z, x)\

invokedSignature(z,7') — hasParameter(z',y))

We furthermore claim that if a signature is invoked, each of the signature parameters (except
the return parameter) appears in exactly one binding as formal parameter:

CBSDs; = VYxVy : (MethodInvocation(x) A Signature(y)A
invokedSignature(x,y) — (¥p : Parameter(p) A hasParameter(y, p)A (5.62)
= name(p, “return”) — (13b : ParameterBinding(b) A\ '

boundParameter(x, b) A\ formalParameter(b, p))))

Synchronous invocations can optionally pass the result to a reference variable’. This is
represented by returnedTo C SynchronousInvocation X ReferenceVariable. It has to hold in
addition that the reference variable addressed by returnedTo is the same as that one, to which
the return parameter is bound by the corresponding binding:

CBSDsy = VxVyVz : (MethodInvocation(x) A Signature(y)A
Parameter(z) A invokedSignature(x,y) A hasParameter(y, z)A (5.63)
name(z, “return”) — (¥YbV¥a : (boundParameter(x, b)A ’

formalParameter(b, z) A actualParameter(b, a)) < returnedTo(x, a)))

When the receiving instance finishes the processing of a method invocation, it can return a
result to the sender. This can be any typed element that is type-compatible to the declared return

7In this model, return statements for asynchronous invocations are ignored.

104

5.4. Abstraction Classification of Models and Model Compliance

| Relation symbol r | Interpreting relation r¥ in the system S |
StatementNode {.. 65 70,...}
LocalVariable {.. .
ConstantSymbol {66} the constant “5”
AsynchronousInvocation | {65}
ParameterBinding {67}
Return {70}
invokedAt {(60,50)}
invokedSignature {(60, 32)}
formalParameter {(60,33)}
actualParameter {(60, 66)}
boundParameter {(65,67))
returnedValue {(70,68)}

Table 5.9: Relations of the example from Tab. 5.8 are further extended by an asynchronous invoca-
tion and a return statement.

type of the method. The corresponding statement is modelled in 7¢gsp by the relation symbol
Return. The returned element is represented by a typed element connected via returnedValue C
Return x TypedElement.

Consider the following example. The exemplary method body of this section contains an
asynchronous invocation of the method c at the local variable v; the integer parameter / is
bound to the constant value “5”:

v.c(5)

Furthermore, a local variable (id = 68) with the declared type 12 is defined and returned
after some omitted operations. Table 5.9 depicts the additional relations that reflect those two
additional statements. The statement with id = 65 stands for the invocation. Its parameter
binding (id = 67) binds the constant “5” (id = 66) to formal parameter [(see Fig. 5.11, p. 85).
The method is called at v which can be seen by the fact that (60, 50) € invokedAt>. The
return statement (id = 70) return the new local variable (id = 68) — correctly represented by
(70, 68) € returnedValue® .

5.4. Abstraction Classification of Models and Model
Compliance

This section introduces the abstraction classes of models and relates them to the classification
common in model-driven development. The term of compliance between models is defined
based on this classification.

105

Chapter 5. A Formal Framework for Architectural Compliance Checking

5.4.1. Model-Classification in Model-Driven Development

In model-driven development, models are distinguished into platform-independent and platform-
specific models, as explained in Sec. 2.2.2. Although illustrations of frameworks like MDA
suggest a strict, global order of platform-independent and -specific models, the classification
is relative to the platform. For example, a Java-specific model can be a platform-independent
model for some component technology like EJB. Nevertheless, a platform separates the set of
all possible models into those that describe systems using the platform and those that do not.
This separation is basis for frameworks like MDA and the model-driven development process
as described in Sec. 2.2.2.

As experiences in model-driven development show [BLWO05, BEOS, MRAOS5, Sta06], plat-
form specialization is useful, since it allows building systems more efficiently by providing
automatic model and code generation — although results of experiences must be observed
carefully [MDOS] . It shifts the focus from developing technology-dependent models on cre-
ating more durable conceptual models. To enable automatic model transformation and code
generation, transformation rules are defined. They describe how elements of source models are
transformed into elements of a target models.

Hence, this separation supports developers — architects, designers, and programmers —
to switch platforms because they are able to model systems independently of certain plat-
forms. Such a model does not describe what should be content of architectural, design, and
implementation models, or who should be responsible for modelling certain aspects of the
system.

Those aspects are covered by the three different classes of strategic, tactical, and implemen-
tation statement as defined in Sec. 5.2. Models can be classified by the class of the statement
they make about the system. Intuitively, the three classes distinguish models by the broadness
of their impact to the overall system and how it may evolve. Consider, for example, the natural
language statement: “A is a component, and B is an interface”. This is clearly an implemen-
tation statement and has a very limited impact; other elements than A and B can be deleted,
new elements can be added, and the statement will stay true. The statement “Component A is
an observer of C”, a design statement, has the impact that not every element can be deleted.
For example, the statement implies that C provides a method for notification, which cannot be
removed. Finally, statements like “No cyclic dependencies are allowed!”, a strategic statement,
have the greatest impact to the way the system may change; as a global constraint, it can be
violated by any addition made to the system.

The three classes can be easily mapped to the different developing steps as described in
Sec. 2.2. Constraints that need to be checked after every change of a system, i.e. strategic
statements, can surely be called “fundamental” and should be defined by software architects.
On the other hand, models or code that define no additional constraints but only facts, like
implementation statements do, are those that programmers normally construct. In between,
there is the software designer who rather decides on local design solutions and constraints than
on fundamental structures - exactly what tactical statements do.

Both classification criteria are orthogonal to each other. The first criterion, platform-
specialization, distinguishes models by technologies, programming or modelling languages.
The second criterion takes into account the system impact of design statements and who should

106

5.4. Abstraction Classification of Models and Model Compliance

P-independent models defining

Strategic tactical implementation
statements statements statements
A A A

(d wioped 1am)
|oA9T NI

L () [e [

/ 7, / .
2
©
=
P-specific models defining g %
Strategic tactical implementation B
statements statements statements

” transformation and compliance checks

Figure 5.23: Orthogonal model abstraction levels.

be responsible for them.

The combination of both criteria leads to refined illustration of model-driven development
processes, as depicted in Fig. 5.23. For each level of platform specialization, there can be
models of the three different classes strategic, tactical, or implementation, named accordingly
to the statements that they make about the system. Models on a platform-independent level
(w.r.t platform P) do not contain elements specific to that platform.

This may seem unusual at first because this means that there can be models for platforms
very closely related to the implementation of a system (e.g., a programming language) that
should be developed by software architects. But consider a statement that requires all classes to
have a common base class for the C++ implementation of the system [EK03]. This strategic
statement should of course not be made by a single programmer, but by a software architect.
On the other extreme, the statement “A is a component” is an implementation statement but on
a very abstract platform because the component technology (a platform) is not defined yet.

Fig. 5.23 also depicts model transformations as important building blocks of model-driven
development. They transform platform-independent into platform-specific models base on
transformation definitions. Model transformations can also be executed to transform models
of greater evolutionary impact into models of less greater impact class. For example, a

107

Chapter 5. A Formal Framework for Architectural Compliance Checking

transformation rule could create corresponding packages of a Java implementation for the
architectural layers, defined in a strategic statement, of a system.

One goal of using model transformation is to achieve a higher automation. This goal is
achieved to a higher degree, the more complete the generated target model is, and the less of
the model has to be created by hand. With respect to that, it is important to note that highly
intensional models, that mainly make constraint about the system, are in general less adequate
as source models for transformations, as discussed in Sec. 2.2.2. Hence, instead of compliance
by construction through transformation, compliance checking is needed as well.

In the following, we will focus on the definition of compliance between models on the same
level of platform specialization but with different level of abstraction regarding their class of
Statements.

5.4.2. Definitions for the Formalization of Models

In the following, the term of a model and related concepts will be defined. Examples of models
of different abstraction levels will be given.

Models

Models provide in general a simplified view on some subject existing in reality. It is simplified
in the sense that the model contains only information relevant for the purpose of usage and
omits the full complexity of the subject.

In this work, we are interested in models that provide abstracting descriptions of component-
based systems. As always in model-based development, models should additionally have a
defined syntax. This leads to the following definition:

Definition 14 (Model of a component-based system, model classes) A model M of a
component-based system is a description of a component-based system and has the following
properties:

e M has a defined abstract syntax

e M defines a set of logical statements ®¥ = @2/ U ®¥ whereas

— each ¢ € ® is a t-formula, 7y C Teasp,
- M

.; contains only extensional statements, and

— @Y contains only intensional statements.

We furthermore call r € @) a design rule if it is a local statement; it is called an
architectural rule if it is an non-local statement.

A system s € Kepsp conforms to a model M if and only if s E OV,
Each model M is in exactly one class of models that corresponds to the classes of statements
the model defines:

e A model M is an implementation model if and only if ®¥ = 0.

108

5.4. Abstraction Classification of Models and Model Compliance

e A model M is a design model if and only if ®) contains only design rules.
e A model M is an architectural model if and only if ® contains architectural rules.

All references of “intensionality” or “extensionality” are meant w.r.t. Tcgsp ., the set of close
relations from 7cpsp (see Def. 16).

This definition does not restrict the term “model” to instances of meta models as common
and defined in model-driven development. According to this definition, also grammars for
textual languages or schema definitions common for XML documents can serve as syntax
definitions.

Furthermore, we define the set of satisfying structures of a model as follows:

Definition 15 (Satisfying and minimal structures/systems for models) The set ¥ of satis-
fying structures for a model M (as an artefact in the model-driven engineering sense) is defined
as

FM = (5] s E OM)

whereas s are T-structures with 7 2 Tcpsp.
The set SM of of satisfying systems for a model M (as an artefact in the model-driven
engineering sense) is defined as

SY = {s € Kepsp | s E D}
The set of minimal satisfying structures for M is defined as
FM = {s is minimal structure for ®"}
Furthermore, we define the set of minimal models for M as
S = {s € S¥ | there is no substructure s’ of s with s’ € S¥}

The definition furthermore states that a statement’s property of being intensional or exten-
sional is determined w.r.t T¢gsp ;- This means that adding tuples from those relations constitute
a modification of a structure according to the definition of modifying and additive extensions
(see Sec. 5.2).

Definition 16 (Close relations of 7¢gsp) The close relations 7¢psp o Of Tcpsp are defined as

Tepsp.el -={hasMember, definesSignature, definesMethod, hasParameter

assignedlo, returnedValue, returnedTo}

Hence, the addition of tuples is interpreted as modification if it reflects one of the following
system modifications:

e The addition adds either a member to an existing classifier, a method to an existing class,
or a signature to an existing interface.

109

Chapter 5. A Formal Framework for Architectural Compliance Checking

e The addition adds parameters to an existing signature.

e The addition changes an instance creation statement without a reference, that the new
instance is assigned to, by adding such a reference.

e A return statement without a returned reference variable is changed by adding a corre-
sponding reference variable.

e A synchronous invocation statement, that does not pass the result to any reference
variable, is changed into an statement passing the result.

Concluding, this means that classifiers and interface are considered to be structural atomic
units and single statements nodes to be behavioural atomic units by definition. Adding tuples
of relations from 7¢gsp 1, In Which the first component is an existing entity, is interpreted as
modifying an atomic unit.

It is important for the classification of models to be aware of the atomic units and 7¢gsp /-
They basically define which sets of extensions we ignore when classifying a statement as local
or non-local. Consider, for example, a statement which states that in a concrete instantiation
of the observer pattern, the observer must provide an update method without parameters.
Intuitively, this should be a tactical statement. Once, there is a valid instantiation of the pattern
(described in a model) with a corresponding update method, the instantiation cannot become
invalid by defining new instantiations, adding components, classes, etc. But formally, adding
a parameter entity to the existing signature entity by hasParameter would be an addition that
makes the pattern instance invalid if we would not take care of the close relations. T¢gsp e
hence defines that additions to relations in it can modify existing atomic units.

Implementation Models

According to the definition above, implementation models formulate only extensional state-
ments about component-based systems. There are no intensional constraints defined by an
implementation model of a system.

Recapitulating the definitions of Sec. 5.2, this means that a system satisfying an implementa-
tion model stays a satisfying system if it is extended or changed by removing entities that are
not explicitly mentioned in the implementation model.

Trivial examples of extensional statements are tautologies. Tautologies are satisfied in
every structure of the considered signature; they are hence satisfied in every extension and
modification of a satisfying structure. Also models that repeat, for whatever reason, as sole
statements axioms from ®¢gsp or implications of them, postulate extensional statements — the
axioms are true in every component-based systems, hence in every extension and modification
of a component-based system.

However, models stating tautologies or axioms are uncommon. In most cases, implemen-
tation models make statements comparable to the informal example of Fig. 5.2; they list the
instances of concepts, i.e. the extensions of concepts. Formally, this means that ®¥_ for an
extensional model normally consists of formulae of the form R(cy,...,c,) whereas R is an
n-ary relation symbol and the c; are constant symbols, referring to single entities. Every system
providing these extensions, or supersets of them, is a valid system.

110

5.4. Abstraction Classification of Models and Model Compliance

|
GUI Application
«component» = «component» =
SeatGUI Observer SeatManager
observer : FreeSeatsDialog I:]/O ObseNeT')\[:I observers

Seat

Observable
seats |: Observable
freeSeats : Seat

FreeSeatsDialog

Figure 5.24: Exemplary implementation Model M; — component specification.

sg: SeatGUl | sm : SeatManager |
seats freeSeats
observer observers

Figure 5.25: Exemplary implementation Model M; — system configuration.

Fig. 5.24 depicts an exemplary UML component diagram. Note, that this and the following
UML diagrams do not represent component-based systems as Fig. 5.9-5.17 do, but models of
such systems. Hence, the diagram annotation «system model» is missing. It shows a cut-out
of a seat reservation system consisting of a GUI component and a managing component which
provides the functionality for making, modifying and removing reservations. The components
are realized with help of the observer pattern, the GUI being an observer of the reservation
manager component; whenever the set of reservations changes, every registered instance of the
GUI is notified of the modification and can react, for example, by displaying a newly freed seat.
The interfaces are implemented by classes inside the components. Fig. 5.25 shows in addition a
composite structure diagram that depicts a system configuration which connects two instances
of the components to form the system.

If we consider the two diagrams being views onto the same implementation model M, a

111

Chapter 5. A Formal Framework for Architectural Compliance Checking

possible set of statements ®* could be®:

O =0

d)eMx’, ={Package(Gui), Package(Application),
Component(S eatGUI), Component(S eatManager),
Interface(Observer), Interface(Observable),
Class(FreeS eatsDialog), Class(S eat),
ProvidedPort(observer), RequiredPort(seats),
RequiredPort(observers), ProvidedPort(freeS eats),
Part(sg), Part(sm), SystemConfiguration(s),
containsComponent(Gui, S eatGU]I),
containsComponent(Application, S eatManager),
containsinterface(Application, Observer),
containslnterface(Application, Observable),
providesInterface(S eatGUI, Observer), providesInterface(S eatManager,
Observable), requiresinterface(S eatGUI, Observable),
requiresinterface(S eatManager, Observer),
containsClass(S eatGUI, FreeS eatDialog), containsClass(S eatManager, S eat),
implements(FreeS eatsDialog, Observer), implements(S eat, Observable),
encapsulates(S eatGUI, observer), encapsulates(S eatGU, seats),
encapsulates(S eatManager, observers), encapsulates(S eatManager, freeS eats),
providedInterface(observer, Observer), providedInterface(freeS eats,
Observable), requiredInterface(seats, Observable), requiredInterface(
observers, Observer), hasType(observer, FreeS eatsDialog),
hasType(freeS eats, S eat),
configurationPart(s, sg), configurationPart(s, sm),
configurationPart(s, conl), configurationPart(s, con2),
hasType(sg, S eatGUI), hasType(sm, S eatManager),
connectorSource(conl, seats), connectorSource(con2, observers),
connectorTarget(conl, freeS eats), connectorTarget(con2, observer),
sourceContext(conl, sg), sourceContext(con2, sm),

targetContext(conl, sm), targetContext(con2, sg)}

The statements basically lists the elements of the relations that need to be present in a
conforming system, for example, there have to be at least two components which are the entities
with id = SeatGUI and id = S eatManager.

8We use here the names of the model elements as identifiers for simplification, instead of numbered entities and
constant symbols mapping to them.

112

5.4. Abstraction Classification of Models and Model Compliance

Observable ()]
+registerObserver(observer : Observer):void | _ _ _ _ _ _ Seat
+removeObserver(observer : Observer) : void
g EERCEssrver ©
0.1 -observable \
. | |
\ notify |
\ loop J| T
notify has to call [for each p in s.observers] I
observers.update() method update) !
A]
|
DT |
0.* +observers | |
Observer O FreeSeatsDialog
+update() : void

Figure 5.26: Sketch of an observer pattern description.

Sets of extensional statements of the form like d)xj have the property that they have a unique
minimal structure satisfying the set; each statement refers to exactly one relation tuple, thus
the structure defining exactly these tuples is minimal. This property of this special form of
extensional statements will be exploited for the operationalization of compliance checks (see

Sec. 5.5).

Design Models

Loosely spoken, implementation models make “matter of fact” statements about systems in the
sense that they claim the existence of elements and relationships. Design models, in addition,
can postulate constraints that can be locally fulfilled. This means, once the constraint is satisfied,
the system can be extended in any way — the constraints will hold. Or to describe it from the
opposite: if an tactical statement of the model is violated, the system contains a local error.
Following Eden [EHKO06], examples of statements, that design models can make, are:

e Design Patterns
e Programming Language Idioms

e Refactorings

Let us assume, for the exemplary seat reservation system exists a description how the
observer pattern works. In most cases this might be a textual description from a pattern
catalogue like [GHIV95] complemented by a UML diagram like in the left part of Fig. 5.26,
describing the interfaces that concrete observers and observables have to implement. Since
UML class diagrams are in general extensional, as discussed in [EHKO06], there are some

113

Chapter 5. A Formal Framework for Architectural Compliance Checking

(informal) intensional constraints, like the one stating that the notification has to call the update
methods of the observers. This might be expressed as an 7¢gsp-expression as follows:

observable_calls_upd(o) := implements* (0, Observable) —
Am3ids : definesMethod(o, m)A
name(m, “notify”) A containsStatement(m, i)\
invokedSignature(i, s)A\

name(s, “update”) A invokedAt(i, observers)

If the class Seat is a proper implementation of Observable the statement
observable_calls_update(S eat) will be satisfied. Of course, this would be only a partial
descriptions of the constraints the observer patterns defines.

Hence, let us assume that the diagrams in Fig. 5.26, the depicted class diagram, and the
embedded sequence diagram, describe another model M), of the seat reservation system. Then
the corresponding sets of statements could be, omitting the details for the definition of signatures
and methods for registering and removing observers, as well as the full control flow graph for
notify:

CDQ?; ={Interface(Observer), Interface(Observable),
Class(FreeS eatsDialog), Class(S eat),
implements(FreeS eatsDialog, Observer),
implements(S eat, Observable),
Member(observers), hasMember(Observable, observers),
definesSignature(Observer, updates),
definesSignature(Observable, notifys),
definesMethod(FreeS eatDialog, updatey),
hasSignature(updatey, updatey),
definesMethod(S eat, notifyy),
hasSignature(notifyy, notifys),
..., MethodInvocation(upd),
containsStatement(notifyy, upd),
invokedSignature(upd, updates),
invokedAt(upd, observers)} U d)eMx’t
oMp ={observable_calls_upd(S eat)}

int

In contrast to the implementation models mentioned in the last section, design models do
not have a unique minimal satisfying structure in general. Their intensional design statements
usually contain free or bound variables. If a variable is bound to an existential quantifier, for
example, it is in general possible that more than one binding will lead to a minimal satisfying

114

5.4. Abstraction Classification of Models and Model Compliance

GUI
guilayer, level=2
N «component» =]
mapsTo SeatGUI
Application
Observer ()
applayer, level=1 «component» =]
mapsTo SeatManager
Observable ()

Figure 5.27: An architectural model introducing layers.

structure of the statement. In the statement above, for example, an arbitrary entity reflecting the
notify method could make the existentially quantified part true; hence, there are infinitely many
minimal satisfying structures.

Architectural Models

Architectural models, in contrast to design models, define non-local constraints. This means
that a system satisfying an architectural model can always be extended in a way that it forms a
system that does not satisfy the model. Examples for architectural models are, as describes in
[EHKO06]:

e Architectural patterns and styles.

e Design principles and paradigms, like information hiding or the main principles of
object-orientation.

e Implementation guidelines.

Let us consider the layers pattern, broadly recognized as architectural pattern [BMRS96].
Layers organize the parts of systems hierarchically, and group components at different levels.
Components are only allowed to access components at the same level or a level below®.

A common reference architecture for information systems is build upon the layers pattern,
consisting of a user interface layer, the application layer and a persistence layer, as introduced
in Sec. 4.1.2. Let us assume, our seat reservation system follows this approach as depicted
in Fig. 5.27. We could assume, that layers are mapped to packages of a system and can be
formalized in an architectural model as follows:

9We will define the layer pattern and the corresponding logical statements in much more detail in Sec. 6.2.1.

115

Chapter 5. A Formal Framework for Architectural Compliance Checking

QM4 ={Layer(guilayer), Layer(applayer),

ext

level(guilayer, 2), level(applayer, 1),
mapsToPkg(guilayer, Gui), mapsT oPkg(applayer, Application)}
U oM

ext

O™+ ={legalDep(guilayer), legalDep(applayer)}

int

legalDep is a constraint that defines for a layer that all dependencies, that exist because of
components requiring or providing interfaces, stay in a layer, or are directed towards a layer
below:

legalDep(l) :=VpVcVi: mapsToPkg(l, p) A containsComponent(p, c)A
(requiresInterface(c, i) V providedInterface(c,i)) —
@AI'3Ap’ : mapsToPkg(l', p’) A containsinterface(p’, i)\
YxVx' : (level(l, x) A level(l', x") — x < X))

The minimal model for M! is also a model for M*, as can obviously be seen; both interfaces
are defined in the package mapped to the application layer, hence all dependencies go from
towards the lowest layer available. Thus, all dependencies conform to the layer levels. But
such a system can be easily be extended to a non-satisfying system by adding layers below
the application layer (such as a persistence layer) which contain components that require an
observer or an observable interface.

As for design models, it cannot be assumed that an architectural model has a unique minimal
satisfying structure.

Refinement and Compliance

To define refinement and compliance between models we have to investigate relations between
their sets of structures that satisfy their statements.

Refinement is often defined by saying that every system that conforms to the refining model
is also conform to the refined model (for example, see [Rau04]), or formally sem(M.. fining) <
sem(M . fineq) Whereas sem(M) denotes the semantics of a model M in terms of systems
conforming to M.

However, in the proposed approach it is possible that, e.g. an architectural model contains
concepts, like layers, that are not available in an implementation or design model. The common
core of concepts is defined by the relation symbols in 7¢psp but additional concepts can be
added. Hence, the tpsp-reductions (see Sec. 5.2) have to be considered for refinement:

Definition 17 (Refinement between models) Let M and M’ be two models. M is a refinement
of M’ if and only if for each s € S¥ there is a s’ € SM such that s | Tcpsp = 8" | Teasp-

The refinement relationship between models is very strong. Intuitively spoken, every system
s for a model M is also a system for M’ if M is a refinement for M’. It is obvious that this

116

5.4. Abstraction Classification of Models and Model Compliance

constraint is too strong for the relationship between design or implementation models and
architectural models. Both kinds of models, design and implementation models, describe sets
of satisfying systems that are closed under addition of entities and tuples, which results from
the definition of locality and extensionality. Since this does not hold for non-local models
in general, the relationship between architectural models and less abstract models cannot be
described as refinement in general.

The desired relation of compliance has hence to be weaker than refinement. The minimal
satisfying systems of a model can be interpreted as those systems which are completely
described by the model; larger systems supersetting a minimal system contain elements that are
not explicitly required by the model and that are not described by it. If it is because of one of
these elements in a structure for a design model, that the system violates the constraints of an
architectural model, it is strange to say the design model is not compliant with the architectural
model. The need for that element is not expressed in the design model.

Instead, compliance of a model M with a model M’ should express that a minimal system
satisfying M should not contradict the constraints of M’. This means that each such minimal
system could be added to minimal system of M’ resulting in a satisfying system for M’. More
formally, we state:

Definition 18 (Compliance between models) Let M and M’ be two models whereas M uses
the signature 7cgsp U Ty, M’ uses Tegsp U Ty, and 7y N Ty = O. M is compliant with M’ if
and only if the following holds: for every s € S there is an s € S¥" such that for ¢, which
consists of the union of s and those entities and tuples of s’, that are elements of relations
defined by 7, holds: t € SM'.

Intuitively spoken, this definition of compliance says that M can be extended by the infor-
mation contained in M’ in a manner that it is conform to M’. By restricting the extension to
relations that are not defined in Tcpsp, it is ensured that if M’ makes extensional statements
about component-based concepts (“C is a component”) are consistently modelled in M’.

Of special interest with regard to the task of architectural compliance checking are two cases
of compliance:

1. Compliance of implementation models with design models. This issue arises, for example,
if the implementation has to be checked for compliance to tactical statements like design
patterns.

2. Compliance with architectural models. This issue arises, if architectural models, con-
stituting strategic statements, have to be checked in the design and implementation of a
system.

The two cases as will be explained and discussed in the following sections.
5.4.3. Compliance of Implementation Models towards Design Models

The practical main use case, in which extensional models are checked for compliance with
a design model, is that the implementation of a system given as source code is checked

117

Chapter 5. A Formal Framework for Architectural Compliance Checking

against a design model written in UML, or any other modelling language. The definition of
compliance ensures that everything that the design tells about specific component, interfaces,
and relationships, is also implemented by source code. Because of the fact that only design-
specific concepts can be added to the systems that satisfy the logical statements defined by the
code to check if also the design model is satisfied, every component and every other concept
from 7¢psp modelled in the design model has also to appear in code.

The implementation model example of Sec. 5.4.2 can now be checked for compliance
with the design model of the same section. The implementation model M; has a unique
satisfying structure which interprets the relation symbols by the minimal sets of tuples re-
quired for ®"!, for example, Component = {SeatGUI, S eatManager} or containsClass =
{(SeatGUI, FreeS eatsDialog), (S eatManager, S eat)}. The definition above states that this
structure can be extended by a minimal system for M, if M; is compliant with Mp,. It can easily
be seen that this is not possible, since M requires the existence of MethodBody tuples, for
example for the update method, that are not contained in the satisfying structure for M;. They
may not be added to the system because MethodBody is defined in 7¢ps p, hence there cannot
exist a minimal system for My from which we could take the additional elements according
to the definition of compliance. M; does not specify the update method and can thus not be
compliant with the design model by definition.

Let us assume, that the diagram of Fig. 5.24 is modified by adding the necessary signatures to
the observer and observable interface, as depicted in the design model of Fig. 5.26, i.e. update
and notify signatures. Furthermore, the corresponding methods are implemented in a way that
the notification calls the update methods. Note, that the source code of that method bodies will
include many more statements, more than those specified as required in the design model.

In this case, the source code, i.e. the implementation model, is compliant with the design
model. A minimal system for the implementation code would now contain corresponding
method body entities, statement node entities, and according relationships. If observer related
tuples are added from a minimal system for Mp. This leads to a system that contains the
tuples reflecting these additional facts — it is basically a structure which also satisfies Mp,.
Consequently, the modified implementation model is compliant with M, since a set of design-
specific tuples, the empty set, can be added to from a structure satisfying M.

As an interesting aspect, the compliance of an implementation model with a design model,
also implies the refinement between both, whereas the implementation model refines the design
model. Let us temporarily assume, that the considered implementation and design models do
not use additional relation symbols to that of 7¢psp. According to the definition above, every
minimal satisfying system of an implementation model M; is also a model of compliant design
models. For both kind of models, we know by the definition of extensional and local statements,
that every addition to a satisfying structure leads to another satisfying structure. Hence, if every
minimal model of M, is also a satisfying structure of the design model Mp, every larger model
for M; does satisfy the statements of Mp, too. Hence, every satisfying system satisfies Mp and
M; is a refinement of Mp, too.

If M; and M), also use other relation symbols than those defined in 7¢gsp, the reduction to
Tcpsp has to be observed. If M, uses relation symbols that are not known in M), the case is
simple — the intensional constraints cannot use them, and hence, corresponding tuples are
irrelevant for the evaluation of the logical statements. In this case, M, is a refinement of M),

118

5.5. Operationalization of Compliance Checking

too. If Mp uses such relation symbols, they can be important for the evaluation because they
are used as terms in the statements. However, these statements are local, thus adding tuples to a
satisfying system is safe. Hence, the same tuples could be added to a minimal system of Mp,
that are inserted to form an arbitrary satisfying system for M; from a minimal system for M;.
Consequently, the refinement relationship holds also in this case.

5.4.4. Compliance towards Architectural Models

By definition, a component-based system satisfying an architectural model can be modified
in a way that it does not conform to the model anymore. Consider a system, that is layered
according to an architectural model; components can be added to the system that require and
provide interfaces from layers which they are not allowed to access. This shows that compliance
of an arbitrary model with an architectural model does not imply refinement in contrast to the
observations regarding compliance with a design model.

Let us consider the examples M, and M, of the previous section. The minimal satisfying
systems for M, contain exactly the components and classes required for the extensional state-
ments of the model, and the update methods provides an implementation for the update method
as it would be expected according to the pattern [GHJV95]. The details of the implementation
are not relevant with regard to the question if M), is compliant with M, because the statements
in M, do not refer to any relation symbols used to model method bodies.

Since the minimal models contain exactly the component and interfaces that correspond to
those in Fig.5.27, it is obvious that they can be extended to form a model for M. All that has
to be done is to add corresponding Layer, level, and mapsT oPkg tuples to such an minimal
structure. Hence, if s is a minimal model for M), the following structure s’ is a model for My:

Layer® = Layer® U {guilayer, applayer}
level® = level® U {(guilayer,2), (applayer, 1)}
mapsToPkg* = mapsToPkg® U {(guilayer, Gui),
(applayer, Application)}

/

R’ = R’ for all other relation symbols

Layer?®, level®, and mapsToPkg® are empty sets. The addition to form s’ corresponds to the
requirements of Def. 18, and s’ is a model of M. Thus, M, is compliant with M,

5.5. Operationalization of Compliance Checking

This chapter is about the execution of compliance checks based on the formal definitions in the
subsequent sections. The execution of compliance checks is separated into different steps.

First, models have to be transformed into logical expressions that represent the statements
contained in a model about systems. The definition of transformations is provided at the
meta-model level, every model instance is transformed according to that language-specific
rules. This aspect is covered in Sec. 5.5.1.

119

Chapter 5. A Formal Framework for Architectural Compliance Checking

In a second step, the minimal satisfying systems for models are constructed. This is only
possible if certain assumptions can be made about the models that are going to be checked.
Section 5.5.2 describes those assumptions and the generation of minimal satisfying systems in
cases when the assumptions are true.

Finally, the compliance check can be executed according to the definition of compliance.
A merged system is constructed from the minimal systems for the participating models and
serves as input for model checking. In Sec.5.5.3, a compliance checking algorithm will be
introduced.

5.5.1. Transforming Models into Logical Statements

To transform models into logical statements, we have to define the transformation rules. They
express for a certain kind of models, i.e. models written in a defined language like UML, which
logical statements are generated for a model. This means that transformation rules have to refer
to elements of the meta model, for example, to express that every instance of the UML meta
model concept Component results in the expression Component(e,,;;) whereas this refers to
the id of the instance.

Given such transformation rules, a model can be traversed and transformed, model element
by model element. For example, a UML model is traversed, and if a component is visited, it
is transformed according to the rule above. Other kinds of model elements are transformed
according to different rules. The union of the generated statements for the model elements
of a model M is the set ®" of logical statements that have to be satisfied in conforming
component-based systems.

The way transformations are defined and executed should be language independent, and
hence must be independent from a specific meta model. Thus, it is helpful to assume that
all meta models are defined using the same concepts. This way we can easily define the
transformation rules as function mapping instances of those concepts to logical expressions over
Tcpsp- Additionally, an algorithmic way to generate those statements language-independently
can be defined.

In the following, meta models are considered to be instances of the EMOF meta-meta
model which is a subset of the MOF approach defined by the OMG [Obj06]. In this approach,
model-driven development is separated into three different abstraction levels for artefacts called
My, M, M,, and M5. On M,, subjects of observations are concrete systems. Models of such
systems are on M;. The languages, in which models are written, are defined by meta models;
they are on M,. Finally, M5 defines the common meta-meta model for MOF;<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>