
Harald Klein

Collaborative Processes of
Enterprises

Supporting Global Development

SSE-Dissertation 6

Software
Systems
Engineering

Institut für Informatik
Lehrstuhl von Prof. Dr. Andreas Rausch

Collaborative Processes of Enterprises:

Supporting Global Development

D o c t o r a l T h e s i s
(D i s s e r t a t i o n)

To be awarded the degree

Doctor rerum naturalium (Dr. rer. nat)

submitted by

Harald Klein

from Neumarkt / OPf.

Approved by the Faculty of Informatics
Clausthal University of Technology,

Date of oral examination

… … 2012

Chairperson of the Board of Examiners

Prof. Dr. …

Chief Reviewer
Prof. Dr. Andreas Rausch

Reviewer
Prof. Dr. Jürgen Münch

Collaborative Processes of Enterprises:

Supporting Global Development

Harald Klein

Abstract

Globalization has been one of the big trends for years in development. Due to diverse
countries and cultures, it is still challenging to streamline all collaborating parties and to
consolidate the existing expert knowledge in a way that “going global” brings value added to
distributed projects. Therefore, global and distributed collaborations often lack effectiveness
and efficiency, because workflows and processes usually do not fit together. This, in turn,
leads to miscommunication and consequently to higher amount of rework and significant risk
of failure in distributed development projects.
Original organizational processes of each collaborating entity should be kept as far as
possible to benefit from each organization’s productivity even in a collaborative environment.
For this reason, this dissertation addresses the following research questions:

1. How does a structure of a process framework for globally defined development
projects look like?

2. What is the added value of such a process framework for process- responsible persons
in development organizations?

This work offers a structured approach of how organizations are able to collaborate from a
process perspective. For this purpose, several standard collaboration scenarios are created that
help development organizations setting up an integrated process environment. These
integration scenarios are Integration with equivalent processes, Horizontal Integration,
Additive Vertical Integration, Alternative Vertical Integration, Merging Integration, and
Hierarchical Integration. These scenarios are in its majority based on practical experiences
from industry and literature review. The characteristic of each integration scenario is that it
comes with a connector – a so-called Mediator – that can be used for collaborative process
definition. A mediator is a process pattern that is used to connect two or more processes
resulting in a new collaborative process by simultaneously keeping the original ones as much
as possible. This ensures that organizations find themselves in the new collaborative
processes environment which enables and motivates them to contribute to distributed projects
with full capability.
The scenario approach is the preferred solution idea due to simplicity and intuitiveness when
used in practice. Thereby, the number and type of defined scenarios represent most likely
business constellations from practice. For modeling the Unified Modeling Language (UML)
is used due to standardized and popular character.
The original contribution of this thesis encompasses a) a set of process patterns, b)
comprehensive guideline deploying these patterns, c) mathematically formalization of these
process patterns graph- based notation for accurate understanding and automation purposes,
and d) practice- proven benefits documentation of this approach in two case studies.
The major benefits of this process integration approach are a) Velocity of Process Setup
through pre-defined process integration mediators, b) Consistency of Process Integration by
having pre-checked and valid process diagrams incorporating control- and objects flow c)
Applicability of Approach in every process domain, d) Adaptability of Process Integration
Approach to each collaborative scenario if necessary and e) Role Concept to clearly define
responsibilities of any defined task.
The approach has been applied in two case studies. Given the limitations of case studies, the
results indicate that communication effort was only twice as high as in a comparable co-
located development projects that were not using the process pattern approach. This is 20%
below the common standard, which says that communication is 2.5 times higher in distributed
than projects running on one site. In turn, the amount of rework (15%) and risk of failure
(progress of burn down chart) turned out to be same like or at least comparable to projects
conducted co-locally.

Danksagung des Autors

An dieser Stelle bietet sich die Gelegenheit mich bei Allen zu bedanken, die mich bei der
Erstellung dieser Dissertation unterstützt haben. Diese Arbeit entstand als externer Doktorand
am Lehrstuhl Prof. Dr. Andreas Rausch an der Technischen Universität Clausthal.

Zunächst bedanke ich mich bei Prof. Dr. Andreas Rausch für die Übernahme der
Doktorvaterschaft wodurch die Promotion überhaupt erst zustande gekommen ist. Seine
tatkräftige Unterstützung bei der Meinungsbildung während der Konzeptionsphase hat
wesentlich zum Gelingen der wissenschaftlichen Arbeit beigetragen. Gern erinnere ich mich
zurück an so manch’ sehr früh am Morgen oder spät am Abend stattgefundene
Telefonkonferenz, um die Probleme bei weltweit, verteilten Kollaborationen zu diskutieren.
Prof. Rausch hat es zu jeden Zeitpunkt verstanden, mich zu den jeweils nächsten Schritten
und schlussendlich zur Einreichung dieser Arbeit zu motivieren.
Bei Prof. Dr. Jürgen Münch bedanke ich mich für die prompte Bereitschaft, die Erstellung des
Zweigutachtens zu übernehmen.
Das Sekretariat – in persona Annett Panterodt – hat mich in allen logistischen Belangen stets
freundlich und hilfsbereit unterstützt. Herzlich Dank dafür!

Des Weiteren gilt der Dank meiner Familie, meinem Vater, meiner Mutter und meiner
Schwester, die ein besonderes Verständnis und Rücksicht auf meine Doppelbelastung
genommen haben und sich stets um den Stand der Arbeit besorgt gezeigt haben.

Für sehr viele wertvolle Review-Kommentare bedanke ich mich bei meinem ehemaligen
Kollegen der Siemens Corporate Technology, Dr. Günter Böckle. Er hat nicht nur für den
nötigen Feinschliff der Promotion gesorgt, sondern ist auch maßgeblich dafür verantwortlich,
dass ein Kontakt mit Prof. Rausch erst überhaupt zustande kam.
Des Weiteren gilt mein Dank meinem Kollegen Hilmar aus dem Spring von Siemens Energy
für seinen wertvollen Blick als Außenstehender auf diese Arbeit.

Inhaltlich haben mir in der Anfangsphase Dr. Edward Fischer und in der Endphase Dr.
Christian Bartelt vom Lehrstuhl Prof. Rausch wertvolle Anregungen gegeben. Ohne ihre
Hilfe und Unterstützung wäre diese Arbeit bestimmt nicht das geworden, was sie heute ist.
Für die liebevolle Aufnahme als „Externer“ an den Lehrstuhl von Prof. Rausch gebührt mein
Dank auch allen Lehrstuhl-Mitarbeitern.

Im Besonderen danke ich meiner Lebensgefährtin Marion Neubauer, die besonders während
der Erstellung der Promotionsschrift so manche Stimmungsschwankung mit viel
Entgegenkommen erwidert hat und durch viele fürsorgliche Worte einige für mich
hoffungslose Situationen zum Besseren gewendet hat.

Contents

 i

Contents

CONTENTS...I

1 INTRODUCTION... 1

1.1 Statement of the problem ..2

1.2 Objectives and Research Questions..3

1.3 Scope of the Dissertation..3

1.4 Definitions and Terms..4

1.5 Structure of this Dissertation ..5

1.6 Assumptions..6

1.7 Limitations and delimitations ...6
1.7.1 Limitations ...6
1.7.2 Delimitations..6

2 RELATED WORK... 9

2.1 Organizational Business Processes ...9
2.1.1 Fundamental Terminology...9
2.1.2 Business Process Management ..11
2.1.3 General Process Problem of Organizations..13
2.1.4 Benefits of Business Process Management..14

2.2 Product Lifecycle Management (PLM)..16
2.2.1 PLM Design...17
2.2.2 Benefits of PLM...19

2.3 Product Development Process (PDP) ...20
2.3.1 Characteristics of PDP ...21
2.3.2 Challenges of PDP...22

2.4 Software Development Models and Modeling ...24
2.4.1 Diagrams and Connectors ..24
2.4.2 Process (Meta-) Modeling..25
2.4.3 Software Process Modeling Techniques ..26
2.4.4 Software Development Models..29

2.5 Global Product Development and Engineering ...34
2.5.1 Companies going abroad..35
2.5.2 Terminology...38
2.5.3 Global Development Processes..41
2.5.4 Cooperative Development Models...46

2.6 General Empirical Studies...49

2.7 Cultural Aspects ...51

2.8 Communication in Collaborations..52

Contents

 ii

2.9 Process Models and Globalization – tying it all together ... 53

3 THE APPROACH FROM A BIRD’S EYE VIEW................55

3.1 Application of the Process Integration Approach... 55

3.2 Major Challenges on Process Integration.. 56

3.3 Solution Concept for Process Integration.. 58
3.3.1 Mediator Pattern.. 59
3.3.2 Artifact Synchronization and Handover Concept.. 60
3.3.3 Role Model.. 64

4 SOLUTION SCENARIOS ...69

4.1 Preliminaries .. 69
4.1.1 Integration Possibilities ... 70
4.1.2 Illustrating Example .. 70

4.2 Scenarios for Process Integration... 72
4.2.1 Semantically Equivalent Processes ... 72
4.2.2 Horizontal Integration ... 73
4.2.3 Additive Vertical Integration... 75
4.2.4 Alternative Vertical Integration... 79
4.2.5 Merging Integration... 83
4.2.6 Hierarchical Integration... 92
4.2.7 Alternative Approaches for Software Development Collaborations 102

4.3 Formalization... 104
4.3.1 Role Definition.. 108
4.3.2 Closed Sub-graph Definition... 109
4.3.3 Hierarchical Graph Definition... 110
4.3.4 Mapping Methodology Definition... 111
4.3.5 Semantically Equivalent Processes ... 113
4.3.6 Horizontal Integration ... 116
4.3.7 Additive Vertical Integration... 118
4.3.8 Alternative Vertical Integration... 121
4.3.9 Merging Integration... 124
4.3.10 Hierarchical Integration... 127

5 CASE STUDY..137

5.1 General Aspects ... 137

5.2 Case Study 1: Scenario from Automobile Industry.. 138
5.2.1 Case Study Questions.. 138
5.2.2 Application Scenario ... 139
5.2.3 Development Scenario .. 139
5.2.4 Organizational Process Definitions ... 140
5.2.5 Collaborative Process Definition... 145
5.2.6 Summary Case Study 1: Scenario from Automobile Industry .. 153

5.3 Case Study 2: Scenario from Agile Development ... 155
5.3.1 Case Study Questions.. 155
5.3.2 Organization’s Process Definition... 156
5.3.3 Collaborative Process Definition... 158
5.3.4 Assessment of the Derived Process... 161
5.3.5 Validity of Results... 166

Contents

 iii

5.3.6 Summary Case Study 2: Scenario from Agile Development ...168

6 DISCUSSION.. 169

6.1 Major Issues of Process Integration Approach ...169
6.1.1 Accuracy of Mediator Definition...169
6.1.2 Interfaces: Different Inputs and Outputs..170
6.1.3 Empirical Validation Possibilities..171

6.2 Benefits of the Process Integration Approach ...171

7 OVERALL SUMMARY AND FURTHER RESEARCH............... 173

BIBLIOGRAPHY.. 177

LIST OF FIGURES ... 187

LIST OF TABLES... 191

Contents

 iv

1 Introduction

 1

1 Introduction
Development processes today concern all development disciplines like software engineering
and hardware engineering, which include mechanical engineering and electrical engineering
[133]. Explicit definition and installation of such processes are increasingly important since
the developed products1 are also growing with respect to incorporated features and non-
functional requirements, e.g. performance, safety, security, etc., which results in much higher
complexity.

Besides hardware engineering as the major development domain, software engineering
emerged as an essential discipline within product development. Therefore, the software
portion of products increased considerably in the last decades. Following a statement of
Boehm [22], the ability of any organization to survive the rough market conditions will
depend more and more on software in the future.

Software Engineering is a very young discipline compared to, e.g., Hardware Engineering.
Since the expression was coined by Fritz Bauer at the conference in Garmisch-Partenkirchen
in the late sixties, Software Engineering emerged intensively regarding importance in the last
forty years. Significant effort and advances have been made in Software Engineering
especially regarding better manageability, higher predictability, and, in general, the use of
more systematic development approaches. This has been achieved by the improvement of
software lifecycle models, sophisticated architectures, more effective planning and
controlling methods, and better tooling [142].

A significant advantage of software is that it provides competitive differentiation and rapid
adaptability to competitive change. This means that software facilitates rapid tailoring of
products and services to different market sectors, which makes feature implementation
through software solutions very attractive. For instance, the product creation of a mobile
phone can be done by making use of software platforms. Once such a platform is defined and
implemented, adaptation towards different mobile phones is relatively easy. Additionally,
several mobile phone models might also be differentiated by just deactivating certain
software features.

Another example comes from the automobile industry. The installed engines for cars are
usually configured using software and appropriate algorithms, which allow the automobile
manufacturer to simply change the engine characteristics, e.g., towards more power, without
any more development effort. Especially, in this business software gains more and more
importance. In 1990, only 16% of an automobile’s total value accounted to software; in 2001,
this number has grown to 25%; today, we are at 40%. Premium class automobile vehicles
contain up to one gigabyte on-board software [73].

Further industries are also concerned by growing software complexity, e.g., energy (e.g.
instrumentation and controls (I&C) for power plant automation), or in the healthcare sector
(e.g. computed tomography, magnetic resonance).

However, software engineering is also one of the most challenging disciplines during product
development. Generally, organizations and their development processes are pressurized to
react in a highly flexible market with innovative products dynamically and quickly on

1 All statements made in this dissertation are valid for products and systems likewise; for defintion of terms
please refer to chapter 1.4

1.2 Objectives and Research Questions

 2

steadily changing market requirements. Simultaneously, development departments have to
meet quality goals, cost restrictions, and they have to fulfill country-specific, local standards
[42]. These market challenges are the main causes that make (software) products more and
more complex over time.

Growing complexity and challenges require expert knowledge for respective product features
in certain domains, e.g., database technology, search algorithms, security etc.

Furthermore, highly qualified employees are indispensable for development organizations
today. Especially the concentration on their core competencies is necessary to stay
competitive in their respective business. This is due to the fact that, on one hand, rivalry in
business capabilities increases steadily. On the other hand, it is too expensive for companies
to build up every required competence in every existing development site. Additionally,
development organizations benefit from having local business partners in those countries
where they want to sell products.

Since specialized experts are not always available locally when they are needed,
organizations are forced to expand their staff sourcing on a worldwide basis. Global sourcing
is easily realizable these days within many engineering disciplines (e.g. software, hardware,
mechanic etc.) due to the fact that development is majorly conducted computer-based, and
engineers can contribute to products via Internet from anywhere all over the world. Thereby,
any design software is installed on company internal servers that are accessible from
wherever it is necessary.

Skilled employees coming from all over the world must be given a structured way and
guidance of how product development and business is done in a respective company.
Therefore, globally defined processes get increasingly important to integrate new or
temporary employees into business environment properly. This approach expands local
development to distributed development that comes along with globalization in order to get
best talents available for specific tasks.

However, the major problem that development companies have is the lack of collaborative
processes for distributed development. This simply results from the fact that processes in
general are often seen as an unnecessary burden, which can easily be avoided by just omitting
it.

A collaborative process connects two or more organization specific and local processes in
order to make use of specific organizational capabilities for project challenges. Thereby, the
original processes are not changed. A collaborative process works as a facilitator for
organizations’ success. This fact is well known and accepted among development
organization so far, however, there are only a few collaborative processes or mechanism
defined that describe how to connect different processes globally from various organizations.
Organizations often argue that they never ever have needed explicitly defined processes for
doing successful business. Furthermore, the organizations have seldom appropriate structures
and capabilities, i.e. roles, responsibilities, and especially methods to address this issue. Well-
defined processes for collaborative development will significantly reduce friction between
participants, avoid double work, and reduce conflicts at the developed constituents and thus
reduce development cost and time.

1.1 Statement of the problem

Global development environments where two or more separate organizational units work
together to develop a product require collaborative processes that allow for integration of

1 Introduction

 3

respective organizational processes. Process integration needs to be done in a way that
original processes are kept as defined in the respective organization. This is crucial since
development organizations can deploy specific skills and capabilities best by using a familiar
process environment.

Therefore, collaborating organizations can only effectively work together if they are allowed
to follow their specific organizational, institutionalized processes. If processes are changed
rapidly and too often companies get inefficient in their day-to-day work. This is due to
existing organizational culture, which processes are directly connected to. Cultural change
would need time and wide acceptance throughout the entire workforce.

For this purpose, organizations must have an approach that connects respective organizational
processes and explicitly indicates process issues, e.g., process inconsistencies like
missing/wrong artifacts to be handed over etc.

Unfortunately, there are only a few – if any at all – approaches defined that are capable to
address global and distributed development issues of how to define and set up processes for
global collaborations. This work focuses on this problem and comes up with a methodology
to define collaborative processes with two or more organizations that are able to be executed
in a distributed project on a global basis.

1.2 Objectives and Research Questions

This dissertation pursues two goals.

1. The core of this work shall define and describe a process structure that allows two or
more development organizations to collaborate in a globally dispersed project. This
resulting structured methodology shall be easy to use and is intended to be handled
intuitively.

2. Furthermore, the value add of the process framework will be proven in an illustrative
case study that is based on consideration of real development projects and experiences.

Therefore, the research questions can be formulated as follows:

1. How does a structure of a process framework for globally and distributed defined
development projects look like?

2. What is the added value of such a process framework for process- responsible persons
in development organizations?

1.3 Scope of the Dissertation

Global development is a potentially huge field of different activities. Besides processes,
various people and cultures, these activities include also collaborative tools that are crucial
for global and distributed development, e.g., configuration management, design, and
simulation etc. This work focuses primarily on the definition of processes that are used in a
global development project environment. Thereby, a mechanism shall be developed that
connects two or more processes in a way that a new collaborative process is created. This new
collaborative process is then executed to run a globally defined project.

1.4 Definitions and Terms

 4

In order to illustrate the added value and the validity of the process framework, a case study
will be conducted and also documented in this work.

In terms of the considered case study, the dissertation focuses mainly on software
development. However, the process framework is not limited to software development
process, but can also be used to connect processes in any environment, e.g., hardware
development.

1.4 Definitions and Terms

Artifact: Any type of documented process output, e.g.,
descriptions, plans, code

Cross Enterprise Engineering (CEE)2: Collaboration beyond any organizational borders

Collaboration: Working together without being located in one
place, e.g., room, building, or site

Efficiency: “Do things right”, i.e., to achieve a defined goal
by using minimal resources (inputs)

Effectiveness: “Do the right things”, i.e., to do those things that
lead to the desired goal

Feature: Performance characteristic or attribute of a
(software) product as a result from development

Globalization: This term is used in the sense of “global
collaboration”

Mediator: A mediator is a pattern that is used to connect
two or more processes resulting in a new
collaborative process (See chapter 3.3.1)

Process Tailoring3: Making, altering, or adapting a process
description for a particular end.

Process Owner: A role that is fully responsible for a respective
process in terms of execution, result generation,
and maintenance

Process Engineer: A role that designs a process according the
constraints and requirements of the process
owner

Product: A “thing produced by labor or effort” or the
“result of an act or a process”

Scenario: A scenario is an environment that applies and
illustrates the use of a mediator by using
exemplary processes

System4: - A set of interacting or interdependent
components forming an integrated whole

2 refer to [42]
3 refer to [133]

1 Introduction

 5

- A set of elements (often called 'components'
instead) and relationships, which are different
from relationships of the set or its elements to
other elements or sets

Truck Factor5: Number of people the project could lose before it
gets into serious trouble

XP: eXtreme Programming: An agile software
development methodology intended to better
react to changing customer requirements by
advocating frequent software releases

1.5 Structure of this Dissertation

The structure of this dissertation is as shown in Figure 1. Thereby, the left side shows the
chapters on theory; whereas, the right side illustrates practical chapters that have been
“derived” from the respective theory. Chapters depicted in the middle are the general ones.

Chapter 1Chapter 1

IntroductionIntroduction

Chapter 1Chapter 1

IntroductionIntroduction

Chapter 2Chapter 2

Related WorkRelated Work

Chapter 2Chapter 2

Related WorkRelated Work

Chapter 3Chapter 3

The Approach from
a Bird’s Eye view

The Approach from
a Bird’s Eye view

Chapter 3Chapter 3

The Approach from
a Bird’s Eye view

The Approach from
a Bird’s Eye view

Chapter 4Chapter 4

Solution Scenarios Solution Scenarios

Chapter 4Chapter 4

Solution Scenarios Solution Scenarios

Chapter 5Chapter 5

Case Studies Case Studies

Chapter 5Chapter 5

Case Studies Case Studies

Chapter 6Chapter 6

Discussion Discussion

Chapter 6Chapter 6

Discussion Discussion

Chapter 7Chapter 7

Summary Summary

Chapter 7Chapter 7

Summary Summary

Chapter 5.1Chapter 5.1

Illustrative Case StudyIllustrative Case Study

Chapter 5.1Chapter 5.1

Illustrative Case StudyIllustrative Case Study

Chapter 5.2Chapter 5.2

Exploratory Case StudyExploratory Case Study

Chapter 5.2Chapter 5.2

Exploratory Case StudyExploratory Case Study

Figure 1: Structure of Dissertation

4 http://en.wikipedia.org/wiki/System
5 http://www.agileadvice.com/archives/2005/05/truck_factor.html

1.6 Limitations and delimitations

 6

1.6 Assumptions

The solution concept of this dissertation assumes that those organizations, which participate
in collaborations, have (development) processes already in place prior to the definition of any
collaborative process. The respective organization automatically follows those defined
processes in their day- to- day work. Processes are an inherent part of their business. Thereby,
a collection of sub-process descriptions is also accepted as a kind of organizational process.

1.7 Limitations and delimitations

1.7.1 Limitations

Due to the huge field of potential study possibilities, this work is limited.

The dissertation will not focus on tools, meaning software applications or databases to
support a global project set-up. These software applications usually support the product
lifecycle management or specific sub-processes like requirement engineering, e.g., ‘Dynamic
Object-Oriented Requirements System’ (DOORS), ‘Requisite Pro’ or testing, e.g., Test
Director. Tools are supportive key elements for successful distributed collaborations, e.g., for
configuration management or requirement engineering and should not be neglected during
collaboration set-up.

Mechanisms on how to implement quality assurance are not considered in this work.

Tools environment are also used in project environments called Virtual Reality (VR). These
tool environments support virtual product development and reduce the complexity of a
project [42]. Although this is strongly related to this dissertation, it will not be considered in
detail.

Applicability of this approach is limited by the different processes used in various process
domains, i.e., it will be difficult for, e.g., a software design process to get input from
configuration management process.

Development collaborations typically use a certain type of development model. Ten years ago,
the ‘Waterfall Model’ has been the most commonly applied model. Nowadays, modern
development uses ‘Agile Development’ or at least iterative development, e.g., using the
Rational Unified Process (RUP). This dissertation will not discuss such models. Also
benchmarking models like the Capability Maturity Model Integration will not be subject of
this work.

Cultural aspects are not considered in this work, although it is common sense that it is very
important to be considered during the set-up of global distributed development projects. For a
short abstract of cultural aspects, please refer to section 2.7.

1.7.2 Delimitations

This dissertation mainly considers software development processes, but is not limited to them.
The used approach is also applicable for any other types of processes, e.g., hardware
development, marketing, human resources. The nature of processes from an atomic point of
view makes that possible, i.e., every process step – no matter in which environment defined

1 Introduction

 7

and used – consists of an activity, in-/outputs, roles, methods etc. Since the approach of this
work deals with that level of granularity, it is predestined to be used in various domains.

This dissertation does provide mechanism to handle recursive processes, since not all
processes are created and defined prior to execution.

1.7 Limitations and delimitations

 8

2 Related Work

 9

2 Related Work
The purpose of this chapter is to introduce and explain related terminology and work of other
authors related to this dissertation. Additionally, this section motivates processes, which is
supported by data based examples in terms of necessity and benefits. Furthermore, typically
process issues in (globally distributed) development organization are addressed. Additionally,
several statements are proven by data examples.

2.1 Organizational Business Processes

2.1.1 Fundamental Terminology

The term “process” is very manifold, and the meaning depends on the environment used. In a
business environment, several process terms or combinations of that are established. But what
is a process? Before collaborative processes are discussed, this work gives some basic
definitions.

2.1.1.1 Process

Basically, a process is a transformation that consists of several activities. This transformation
gets a defined input and creates a defined output. Input factors could be machinery materials,
equipment, manpower, raw materials, energy, or information. The generated output of the
process encompasses products and services [122]. The International Standard Organization
(ISO) defines “process” as a set of interdependent activities, which converts inputs to results
[40]. A process is determined by various parameters, such as scope, content, or structure.

2.1.1.2 Software Processes

A software (development) process is a structured approach to create a software product.
Software is special insofar that it is immaterial and cannot be touched. In contrast to
traditional hardware development, software processes use their own proprietary methods and
tools for creating the product. These methods/tools are incorporated in a structure, which
typically consists of several phases that include but are not limited to:

• Requirement Engineering
• Architecture and Design
• Implementation
• Verification and Validation (Test)
• Maintenance

In order to improve software process performance, a personal software process (PSPSM) in
general has been developed by Humphrey. Having requirement specification as input PSPSM
defines several phases, which provide data-oriented, disciplined methods based on improved
planning, commitment, and quality [66].

2.1 Organizational Business Processes

 10

2.1.1.3 Business Processes

‘Business Process’ is an umbrella term, which defines all processes that occur in any business
environment, e.g., marketing, sales, controlling, quality assurance, supplier management, as
well as development or human resources.

Using a formal definition, a business process consists of a set of activities that are performed
coordinatively in an organizational and technical environment. These activities typically
realize the business goal jointly. Each business process is enacted by a single organization,
but it may also interact with business processes performed by other organizations [143].

The challenge for any business process is the way of its definition in order to generate or
produce valuable output for either internal or external recipients/customers. These outputs
might satisfy, for instance, a requirement specification from a customer or an internal quality
review checklist from the quality management process.

Figure 2 exemplary illustrates the terms ‘process’ and ‘business process’. However, this is by
far not a complete (sub-) process definition, but rather a general process activity model that
can be used to define executable processes.

Input Transformation Output

Process

consists of a sequence of steps which create outputs based on inputs

Business Process

consists of cross organizational and cross functional connection of
activities that create added value towards customer expectations and

contribute to goals derived from strategy.

Requirement
from Customer

Value-adding
Activities

Benefit
for Customer

Figure 2: Definition: Process and Business Process

Many definitions of business processes have emerged over time. For better understanding,
some of those, which support this work best, are described in the following.

Davenport defines in [40] business processes as a structured, measured set of activities
designed to produce a specific output for a particular customer or market. It implies a strong
emphasis on how work is done within an organization, whereas, the product’s focus on what.
A process is thus a specific ordering of work activities across time and space, with a
beginning and an end, and clearly defined inputs and outputs: a structure for action. Processes

2 Related Work

 11

are the structure by which an organization does what is necessary to produce value for its
customers.

Hammer and Champy see business processes as a collection of activities that takes one or
more kinds of input and creates an output that is of value to the customer [59].

A definition that considers cross functionality in organizations is given in [114]: “A business
process is a series of steps designed to produce a product or service. Most processes (...) are
cross-functional, spanning the ‘white space’ between the boxes on the organization chart.
Some processes result in a product or service that is received by an organization's external
customer. We call these primary processes. Other processes produce products that are
invisible to the external customer, but essential to the effective management of the business.
We call these support processes. “

In [137] Scheer and Zimmermann describe a business process as an activity, which is
important for the added value of the company from project kick-off until termination.

For further definitions please consider [100], [133], [53], [77].

The value adding activities need to be connected beyond functional and organizational
borders. These coordination activities generate significant cost and issues in organizations.
Therefore, the discipline Business Process Management (BPM) has been defined to attend to
these issues [122].

2.1.2 Business Process Management

Business Process Management (BPM) has reached significant importance in business and
development organizations in the last years. Referring to a survey conducted around IT
decision maker 67% of the interviewed organizations are strongly or very strongly engaged in
doing BPM [69]. Most of them – about 95% - consider BPM to be important or even very
important [49]. This is also reflected in the trend that development organizations are strongly
interested to initially define or re-engineer their defined process in order to decrease cost and
reduce the overall lead time. This gets more important as (software) product and the
appropriate development effort get more and more complex.

This shows that business and development processes are key instruments for the
understanding and the successful execution of a business. Consequently, processes visualize
their own business and make it easier to control and improve the business, especially in very
complex environments.

A BPM concept consists of several aspects, which need to be fulfilled to successfully do
BPM. Figure 3 shows an overview of such a concept. The major framework of BPM is the (1)
organizational strategy mainly driven by (2) customer. All activities are oriented towards
these two aspects.

Figure 4 gives some more explanation and definition of what the single duties of BPM are
and what they are responsible for [122].

2.1 Organizational Business Processes

 12

Business Strategy
C

us
to

m
er

 /
S

ta
ke

ho
ld

er

C
us

to
m

er
 /

S
ta

ke
ho

ld
er

Information- and Communication Technology

Business Process Management

Business ProcessesBusiness Processes

Process
Management

Process
Organization

Process
Controlling

Process Optimization

Figure 3: Integrated Business Process Management [122]

Process Organization
� Identification, structuring, modeling and weighting of

business processes
� Roles and responsibilities
� Incorporation of business process into organizational structure

Process Controlling
� Definition of process targets and measures
� Measurement of control of process performance
� Process reporting
� Conduction of process assessments

Process Optimization

� Continuous process improvement
� Reengineering of business processes (if necessary)

Process
Management

Process Culture

Behavior

Motivation

Communication

Figure 4: Scope of Duties of integrated Business Process Management

2 Related Work

 13

2.1.3 General Process Problem of Organizations

Although organizations are aware of many potentials resulting from process management,
many companies suffer from process deficiencies. Schmelzer [122] describes that major
problems in organizations originate from two aspects: Effectiveness and Efficiency.

The term ‘Effectiveness’ can be paraphrased with “do the right things” and means, e.g.,
defining the right success factors, develop appropriate core competencies, penetrate the right
markets, and develop the right products for those markets. However, many organizations
suffer from deficiencies concerning these effectiveness factors. Examples are:

• missing persuasive vision
• unclear strategic goals
• unclear market goals
• insufficient knowledge about (potential) success factors
• inadequate knowledge about customer problems
• unclear product- and process goals

These deficiencies typically result in unsatisfied employees and especially unsatisfied
customers, which are even more critical [122].

In contrast to effectiveness, the term ‘Efficiency’ can be paraphrased with “do things right”,
which is more economic- oriented than ‘Effectiveness’. Figure 5 shows some problems that
result from a low efficiency in an organization.

� many claims

� many defects

� many changes

� high product cost

� long cycle times

� time to market

� product ramp-up

� product launch

� insufficient delivery reliability

� lack of ability to deliver

� high inventory

� low flexibility

Uncontrolled
Processes

Figure 5: Problems resulting from non-controlled processes

This lack of efficiency is mainly driven by the problem that processes are not designed
efficiently and not controlled, although they could be controllable. In several cases, processes
are executed that generate almost no additional business value. Too many interfaces are
defined that need tremendously more coordination than are actually necessary, which

2.1 Organizational Business Processes

 14

increases cost and lowers profitability. Therefore, cost, time, and quality are the major
parameters that drive efficiency in an organization [122].

The empirical studies mentioned in the previous section also give some evidence for process
deficiencies in organizations. Fink [43] states that process-orientation is a major driver to
increase efficiency and effectiveness. However, only 56% of the considered organizations
have defined a process-responsible person; 36% have the process views with appropriate Key
Process Indicators (KPI) incorporated into the controlling. Only 22% of the interviewed
organizations stated to have transparent process lead times and process costs [43].

Referring to [49] only 9% of the interview organizations have a process- responsible person
with business responsibility (budget) and only 7% use a reference model comprehensively.

The deficiencies in BPM should be identified and addressed by the integrated BPM approach
shown in Figure 3 and Figure 4.

2.1.4 Benefits of Business Process Management

The responsibility of BPM is to optimize the organizational process and, thereby, improve
effectiveness and efficiency of processes that result in sustainable increase of the companies’
value. Organizational processes and process management respectively in organizations are
major drivers of business’ success in organizations and gain essential benefits. Schmelzer
[122] stated that the most important benefits of process management are:

• Higher transparency of the contribution of process’ value added to the overall value
added gets better measureable

• Better process efficiency due to reductions of interfaces and resulting material and
information flows

Important Topics in Process Management

56%

59%

67%

77%

80%

84%

90%

0% 20% 40% 60% 80% 100%

…

Evaluation of Business Processes

Integration of Applications

Design Organization-External Processes

Increase of Process Effectiveness

Standardization of Processes

Modelling and Optimization

% of Nominations in the Poll

Figure 6: Important Topics in Process Management [69]

This is the summarized result from several empirical studies conducted by Fink [43], Bach
and Biemann [7], Gadatsch [49], and IDS [69]. The latter brings up two essential aspects in
terms of process management.

2 Related Work

 15

First, organizations recognize that process management contains important topics to be
addressed in order to be successful in business. Figure 6 illustrates that organizations are
aware of the importance of processes and process management. In this case, organizations
might tend to spend significant effort for process definition and improvement. They
apparently think that there is much potential for improvement to be realized along the value
chain, especially towards productivity, cost reduction, and increase in effectiveness.
Furthermore, organizations want to follow a more integrated process approach, which means
that processes of customers, suppliers, and business partners also need to be included and
integrated into the own process landscape.

Second, organizations realize significant benefits from processes defined and process
management, which is shown in Figure 7. Besides the “Faster Processing of Orders” (63%)
cost reduction (61%) and higher product quality (52%) are major benefits from organizations’
perspective.

Benefits of Process Management

9%

38%

44%

49%

52%

61%

63%

0% 20% 40% 60% 80%

Miscellaneous

Increased Degree of Innovation

Higher Customer Satisfaction

Higher Flexibility

Higher Product Quality

Cost Reduction

Faster processing of orders

% of Nominations in the Poll

Figure 7: Benefits of Process Management [69]

But how does BPM contribute to development?

Successful companies typically measure their processes performance with Key Process
Indicators (KPI). Based on these measurements, improvement potentials are derived and
implemented in appropriated improvement projects that typically should be conducted with
the same importance like other projects in an organization.

Business processes are the foundation for development processes, because BPM generates
data and information that are valuable input for development processes. This is briefly
explained with two examples.

Example: Generating Product Requirements

Requirement Engineering is a substantial sub-process within development. In
order to source this process marketing department gets and evaluates data from
the relevant market in such a way that requirements for future products can be
derived. This information is taken as input for the development department.

2.2 Product Lifecycle Management (PLM)

 16

Example: Cost Reduction

Management typically drives development cost reduction (Figure 3), i.e., the
decision comes from business strategy. This decision is a subject for process
optimization and executed by process management and controlling.

BPM allows for having the right data and information available when it is needed. If BPM is
oriented towards product development, the concept is called Product Lifecycle Management
(PLM). Using this approach makes development controllable and manageable [18]. The PLM
concept is discussed in the following section.

2.2 Product Lifecycle Management (PLM)

All processes that are considered for problem solution purpose are covered by Product
Lifecycle Management (PLM) throughout this entire thesis. Therefore, PLM is introduced
and classified within business process environment.

Product Lifecycle Management

H
um

an
 R

es
ou

rc
e

M
an

ag
em

en
t

Business Process Engine

P
or

ta
l

Product 1 Product n…

Sales

Material Management

Production

Accounting W
or

kf
lo

w
 M

an
ag

em
en

t

E
A

I

Service 1

Service 2

Service 3

…

…

Service m

E
n

te
rp

ri
s

e

R
e

s
o

u
rc

e

M
a

n
a

g
e

m
e

n
t

Ext. Service

Figure 8: Product Lifecycle Management and Business Process Platforms

The Product Lifecycle in general spans from the first product idea, development and
production, sales and maintenance, until phase- out and recycling of the product. This process
model mechanism is illustrated using a matrix structure (Figure 8) involving several
departments, which need different types of information [18]. These types are, e.g., Sales,
Production, or Accounting on one hand (horizontal arrows); on the other hand, products 1...n
to be developed (vertical arrows) take use of those process domains. Workflow management,
which coordinates interfaces between products and process domains, and Enterprise-
Application Integration (EAI) are controlled by the Business Process Engine – as the core of

2 Related Work

 17

PLM. Sourcing is done by Human Resources department, which make sure that appropriate
people are available for activities to be done.

PLM is consequently a comprehensive, systematic, and controlled concept for managing and
developing products and their related information of the whole Product Lifecycle [123].
Following the definition of Sääksvuori the concepts’ intention is to “control and steer the
process of creating, handling, distributing, and recording product- relevant information.”[116].
This relevant information is basically a compilation of business rules, methods, processes,
guidelines, and instructions. The concept provides an overview of all business relevant
processes, their interrelationships, and furthermore gives instructions how to comprehensively
fulfill the requirements of the desired product for a successful contribution to the desired
market. Although it is a significant success factor to the PLM under IT control, PLM does not
refer to any individual software application or method, but it is a wide totality [116].

A product lifecycle is highly individualistic and typically tailor- made to each organization.
This means that every product lifecycle encompasses similar process steps or phases, but the
concrete process instance differs from each organization. The creation and respective
implementation of a PLM framework can fail if insufficient structures of the framework are
in place, which makes processes hardly manageable and controllable. The following section
shows the PLM design and argues the benefits of a PLM framework [133].

2.2.1 PLM Design

A typical PLM landscape is divided in three different areas that contain different types of
processes. Figure 9 depicts such a framework and concentrates on functions, not on products
as shown in Figure 8. Three main process types are distinguished:

• Core processes that are directly interrelated with products and its development
• Management processes, which control the core processes
• Support processes, that assist the core processes during execution

Assignment of process types depends heavily on value added to the entire business. Core
processes encompass value add processes, which have an end-to-end character. This means
that those processes range from stakeholders, which give input for generating the first product
idea, to those customers the final product is sold to.

Management process control those core processes towards the defined strategy, e.g., Strategic
Planning, if other markets with other product requirements need to be penetrated.

The third type is support processes, which supplement core processes during execution.
Human Resources (HR) department, for instance, supports development departments with
identification of demands and hiring of additional employees with special knowledge for the
development of future products [18].

The processes per process type in Figure 9 are not in an appropriate order required by the
product lifecycle. This would not make sense on this level, because interaction paths are only
reasonable if they are associated with concrete activities or action and corresponding artifacts
or output respectively. Moreover, a comprehensive overview of all defined (sub-) processes
should have been given.

2.2 Product Lifecycle Management (PLM)

 18

Management ProcessesManagement Processes

Strategic planning
& Implementation

Budgeting &
Controlling

Operational
Management

Risk and
compliance

management

Business Process
Management

Core ProcessesCore Processes

Support ProcessesSupport Processes

Human
Resources

Finance &
Legal

Communication &
Information

Management

Facility
Management

Research &
Development

Production Logistics
Customer
Service

Procurement
Marketing &

Sales
Financial
Services

Figure 9: Product Lifecycle Management (PLM) Framework

Sääksvuori and Immonen [116] illustrate their product lifecycle in Figure 10. This graphic
does also not consider any order of processes and activities. Moreover, it illustrates the wide
totality of varying functions to support all process around the product lifecycle. Additionally,
indicated by blues arrows, it is shown that the PLM is not a closed and isolated system, but it
interacts with suppliers, service partners, and especially with customers.

Manufacturing

Part
manufacturing

Project
management

Sales and
marketing

Design
and

engineering

Sub-contracting

Sourcing
and

procurement

After sales

Partners

CustomersSuppliers

Service
partners

Internal

Processes

Figure 10: Product Lifecycle including interfaces

2 Related Work

 19

2.2.2 Benefits of PLM

Such a PLM framework gains many advantages if defined in a supportive way for
development organizations.

Generally, managers think that a structured approach using PLM comes with significant
business benefits, which makes PLM as a key lever to meet strategic goals. Figure 11
illustrates that 71% of the interviewed managers said to use PLM as a key lever for the
reduction of “Time to Market”, which is prior to reduction of development cost (69%), the
increase in product quality (59%), and the improvement of innovation (47%).

[%] of interviewed managers who see PLM as the key lever to
achive the strategic goals

47%

59%

69%

71%

0% 20% 40% 60% 80%

Improve Innovation

Increase product quality

Reduce product development cost

Reduce "Time to Market"

Figure 11: Strategic Goals of Managers interviewed

The dependencies of BPM and PLM get visible by comparing Figure 11 to Figure 7 in terms
of results within the selection of criteria as well as the voting for each criterion.

However, the quantitative calculation of a PLM concept in terms of return of investment
(ROI) is still a challenging topic, which is heavily discussed among experts. Actually, there is
no quantified standard answer to this question, because every PLM is differently defined and
executed in organizations. Following Arnold et al. [5] a rule of thumb is that by having a
structured PLM in place one (1) Euro effort in bug fixing save more than 1.000 EURO in
subsequent development phases. This is only a very rough estimation from industry
experience that might not always be applicable. Generally, the benefits of course increase if
more effort is taken in early development phases. However, this is no absolute linear
relationship, which means that effect of benefits in “later phases” decreases the more budget
any organization is spending in early development phases. Taking budget constraints into
consideration a development environment has to find a compromise on how to distribute the
budget between early and late development phases to get an overall benefit.

However, quantified benefits can only be measured if there is defined quantified baseline
before a process improvement. This makes it merely possible to compare process indicators,
e.g., “lead time” before and after improvements.

This means, in turn, that it is rather reasonable to provide some aspects that are typically
nominated when it comes to estimating the ROI of PLM. These aspects are either estimations
or results from improvement projects conducted in those organizations that have PLM already
in place and have optimized their specific PLM. Arnold et al. state that the following success

2.3 Product Development Process (PDP)

 20

factors, which influence each other, are improved by introducing PLM [5]: Lead time, Cost,
and Quality.

However, the improvement of these success factors results in several additional business
benefits. Table 1 shows some of these business criteria that are positively influenced by
improving the ‘influencing factors’ [38]. For instance, if lead time and cost are reduced, the
business benefit “time to market” is also positively influenced, and, therefore, also reduced.

If processes are able to contribute to influencing factors, the business success factors are also
improved.

Table 1: How Success Factors are influenced

Complete integration of
engineering workflows

Savings through re-use of
original data

Reduction of wastages

Speed of information exchange

Provision of framework for
further product and process
optimization

Influencing F
actors

QualityCost Lead Time
(Time to Market)

Success Factors

Product and process complexity
better controllable

Higher competitiveness

Reduction of prototyping cost

Complete integration of
engineering workflows

Savings through re-use of
original data

Reduction of wastages

Speed of information exchange

Provision of framework for
further product and process
optimization

Influencing F
actors

QualityCost Lead Time
(Time to Market)

Success Factors

Product and process complexity
better controllable

Higher competitiveness

Reduction of prototyping cost

2.3 Product Development Process (PDP)

A major goal of PLM is to support consistently the Product Development Process (PDP)
using methods, models, and tools [123]. The resulting challenges and benefits are described
in the subsequent sections.

Product DevelopmentProduct Development

Requirement
Product
Planning

Development
Process
Planning

Manufacturing Operations Recycling

Product EvolutionProduct Evolution

Production
Development

Product Creation

Figure 12: Relation between 'Product Development’, ‘Product Creation’, ‘Production development’ [42]

2 Related Work

 21

The PDP is a part of the PLM und encompasses those activities and processes that are directly
connected with development and product creation. This affected processes span from
requirements until process planning for production. In turn this means that processes like
‘Production’, ‘Commissioning and Operations’, and ‘Phase out’ / ‘Recycling’ are not
considered. This is also depicted in Figure 12.

PDP results in a product, which consists of all production- and product documentation,
feasibility studies, product specifications, and models and draft documentation needed to
specify production means [42], [76].
Figure 13 shows a concrete product development cycle, which describes a manufacturing-
oriented PDP, since process planning is included. Due to its nature, a purely software-
oriented PDP would exclude process planning, which is, in this context, typically needed for
manufacturing. Software development does not incorporate a classical production process like
an assembly line. However, if, in turn, organizations consider institutionalizing processes for
after- sales support to delivery software upgrade/update packages, planning and definition of
a respective distribution process are essential.

Product Planning

Product Design Product Development

Product Simulation

Digital Master

SCM Planning

Process Planning
Technical

Documentation

MRO Planning

Figure 13: Phases of Product Development Process (PDP) [42]

2.3.1 Characteristics of PDP

Due to its nature, PDPs have some special characteristics that make them somewhat different
to other organizational processes such as Sales or Procurement process [76].

Non- deterministic approach
Development processes are, due to their nature, not deterministic, i.e., product development
always comes along with a specific portion of innovation and creativity that might change the
original planned direction to be taken. The reason for this phenomenon is that at the
beginning of product development, the specific knowledge for the final product is not yet
available. This makes reliable planning of what the final result will look like very challenging,

2.3 Product Development Process (PDP)

 22

which means, that a typical development project, e.g., needs some more project plan updates
during its lifetime than other project plans, e.g., installation projects.

Iterative development
Iterations and “jumping back” to former development steps are also unique characteristics of
a development process. This is often necessary, because adequate quality requirements are
not fulfilled after the first iteration.

Significant creative portion
Development processes deal with the fact that something has to be created. This makes a
significant portion of creativity during process execution necessary in order to meet any
innovative requirement. Realization of attractive and innovative products is crucial for
organizations to stay competitive in their business. Additionally, creativity depends on the
capabilities and knowledge of individuals that underlines the non- deterministic approach.

Standardization
Highly innovative products require adequate processes that give developers the freedom to
drive product development creatively, e.g., software or hardware products. This, in turn,
makes a general standardization almost impossible. This means that development processes
cannot be standardized and, therefore, need a significant portion or customizing and
adaptation to a specific organization. Best example is the Rational Unified Process (RUP)
from IBM. This iterative development process model actually comes with all aspects
necessary for development. Nevertheless, the process model needs to be customized
(“Tailoring” � See chapter 1.4) to be usable for a concrete organization.

Distribution of processes
The increasing dispersion is also a typical characteristic of development processes. Other
processes like accounting are, in the meantime, also subject to outsourcing and dispersion, but
not to that degree development processes are. The reason for this trend towards distribution is
manifold, e.g., increasing cost pressure, specific development knowledge, enforcement to
penetrate additional market etc. This special topic is discussed later in detail in chapter 2.5.

2.3.2 Challenges of PDP

PDP faced enormous challenges during the last decade. Among others, several reasons are
responsible for this trend [116]:

• Growing competition and tighter budgets
• Globalization of business
• Shortening of delivery times
• Shortening of product development cycles
• Tightening of quality requirements / legislation

On one hand, product lifecycle gets shorter; on the other hand, product complexity increases
exponentially. Figure 14 illustrates this phenomenon using the trend from the automobile
industry. The number of vehicle derivates sold decreases at an increasing variety of derivates
produced. One reason for this trend is that automobile manufacturers address country-specific
and culture-specific features and customer preferences. Handling of higher product variety
results in a much higher (internal) process complexity.

2 Related Work

 23

???
Alternative Drive
Hybrid Vehicle

Pickup
Off-Road Off-Road

SUV SUV
Roadster Roadster

MPV MPV
Convertable Convertable Convertable
Hatchback Hatchback Hatchback

Estate Car Estate Car Estate Car Estate Car

Compact Vehicle Compact Vehicle Compact Vehicle Compact Vehicle
Coupe Coupe Coupe Coupe Coupe

Sports Car Sports Car Speed Car Sports Car Sports Car
Limousine Limousine Limousine Limousine Limousine

60-69 70-79 80-89 90-99 > 2000

Complexity of Processes

Numbers of variante
manufactured

Figure 14: Trends of product strategic in the automobile industry [42]

Furthermore, global business environment makes it increasingly difficult to survive in the
development business. In order to address the customer’s need with increasing accuracy,
organizations are enforced to provide the market with more product variants. This causes
additional pressure on processes, especially towards process platforms and product line
management [106]. The defined processes are forced to be optimized in order to work more
efficiently.

Moreover, organizations have to handle the fact that indeed products get continuously more
complex, but customers have been also given more and more opportunities to influence
products’ features and configuration, which is necessary to be still attractive for customers.

Organizations are challenged by strategic adaptations that are necessary to successfully
compete in a local, national, and even an international market. A survey conducted by
Accenture [36] in 2008 asked renowned European IT organizations about their upcoming
changes and challenges within in the next five years. The result is depicted in Figure 15.
Amazingly, about 90% of the interviewed organizations need to align their R&D strategy
globally. 85% want to improve their innovation capabilities, and 72% are challenged by
establishing engineering collaborations. This reflects a clear trend towards globalizations and
collaborations.

2.4 Software Development Models and Modeling

 24

21%

52%

55%

68%

71%

85%

90%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Answers (%)

Miscellaneous

Reduction of Product(data) Complexity

Engineering Collaboration

Establish Global R&D Strategy

C
ha

lle
ng

es
Challenges of european IT organizaitons within the next 5 years

(conducted in 2008)

Figure 15: Challenges of European IT organizations within the next five years

2.4 Software Development Models and Modeling

2.4.1 Diagrams and Connectors

Software Models are often illustrated by using diagrams. In general, a diagram is a two/three
dimensional representation that shows information in a geometric way. There is an enormous
amount of different diagram types available. Basic diagram types encompass graph-based
diagrams (e.g. tree diagram, network diagram, Venn diagram, or flow chart), chart diagrams
(e.g. histogram, bar chart), and others (e.g. three dimensional diagram). For an overview of
diagram types please refer to [146].

State diagram is often used in conjunction with flow charts (graph-based diagrams). Figure 16
gives a differentiation of these terms. Whereas the state machine is the performed respond
action to an explicit event, the flow chart does not need explicit events, but rather transitions
from one node to the subsequent node [117].

Figure 16: Comparison Sate Diagram (a) and Flow Chart (b)

2 Related Work

 25

State diagrams in UML are the basis for UML activity diagrams, which are primarily used for
this dissertation.

Connectors are a basic element for modeling of diagrams or charts. Referring to Figure 16,
the connectors are ‘edges’ between various states (=a) or nodes (=b). In computer science, a
connector is the connection, i.e., pointer or a link between any data structure. Referring to
Figure 21, the connector is represented by the directed arc of a petri net.

In informatics, especially processor programming, the definition of connector is a so-called
(bit-wise) composition operator. The major operators that are relevant for this dissertation are
the bitwise operators XOR, OR, and AND, which are well known as primitive actions that
can be directly used by a computer processor [112]. This work takes advantage from these
operators by accurately assigning responsibilities to specific tasks within the role model
provided. The basic definitions encompass [17]:

• XOR - takes two bit patterns of equal length and performs the logical XOR operation
on each pair of corresponding bits. The result in each position is 1 if the two bits are
different, and 0 if they are the same.

• OR - takes two bit patterns of equal length, and produces another one of the same
length by matching up corresponding bits and performing the logical inclusive OR
operation on each pair of corresponding bits.

• AND - takes two binary representations of equal length and performs the logical AND
operation on each pair of corresponding bits. In each pair, the result is 1 if the first bit
is 1 AND the second bit is 1. Otherwise, the result is 0.

2.4.2 Process (Meta-) Modeling

Process modeling within development organizations (also known as Business Process
Modeling) is the activity of illustrating and representing processes of an organization. This
visualization follows the purpose to get better process support in terms of definition, control,
and adherence by users. Additionally, processes are in the right “shape” to be analyzed and
improved, due to process structure already given. Process modeling is mainly challenged by
connecting several processes of the same nature together to one abstract process, which can
be applied in as many cases as possible in reality. Thereby, a process Meta model may consist
of several abstraction levels like illustrated in Figure 17 [32], [100].

Process Meta-Meta Models (M0-level)
The Object Management Group (OMG) has defined a four layer modeling architecture called
Meta Object Facility (MOFTM), which originated from UML [24]. The MOFTM provides a
Meta-Meta model on the top level, also called M0-level in Figure 17. From this level Meta
models are derived [100].

Process Meta Models (M1-level)
Process Meta modeling is one type of Meta-Meta modeling, which is especially used in
software and system engineering. There are several well-known Process Meta models
assigned to M1-level in Figure 17. OMG has defined the UML Meta model.

Furthermore, the OMG has also defined the Software Process Engineering Metamodel
(SPEM). SPEM defines and models software development processes and its components [79].

2.4 Software Development Models and Modeling

 26

The basis of SPEM is a subset of UML Meta model resulting in a process description that was
provided especially to software development industry.

Another Meta model that has been derived from UML Meta model is British Ministry of
Defense Architecture Framework (MODAF). The MODAF Meta Model extended the UML
Meta model 2.1 by creating a UML profile resulting in an architecture framework, which
defines a standardized way of conducting Enterprise Architecture, originally developed by the
UK Ministry of Defence [96].

+title = "Casablanca"(String)

Video

+title = "Casablanca"(String)

Video

Class

Attributes InstanceClass_

M0:
MOF 2.0

M1:
UML 2.0

M3:
Objects of
Reality

M2:
User Model

«instanceOf»

«snapshot»

«instanceOf»«instanceOf»«instanceOf»

«instanceOf»

«instanceOf»

«instanceOf»

«instanceOf»

Figure 17: Four Layer Architecture of the Meta-Object Facility (MOF)

Process Models (M2-level)
Process models in (software) engineering are a networked sequence of activities that express
an organizational development strategy and allow them to conduct evolution [133]. These
models are derived from Meta models, which would be M1-level in Figure 17 referring to the
MOF framework.

Process Instances (M3-level)
The M3-level, which is the lowest level in OMG’s MOFTM provides all data and objects of
reality for the layers above.

2.4.3 Software Process Modeling Techniques

Techniques to model business process such as the flow chart, functional flow block diagram,
control flow diagram, Gantt chart, or PERT diagram have emerged since the beginning of the
20th century. The most often used business modeling methods are Event-driven Process
Chains (EPC) and Business Process Modeling Notation (BPMN). Software engineering takes

2 Related Work

 27

advantages from Unified Modeling Language (UML). Although there are many other
modeling techniques, e.g., Cognition enhanced Natural language Information Analysis
Method (CogNIAM), Extended Business Modeling Language (xBML), ICAM DEFinition
(IDEF0) [140], these are commonly used standards when it comes to process or software
modeling. The three methods are shortly introduced in the following.

BPMN’s objective is to support business process modeling resulting in a business process
diagram that is intuitive to users even in a complex process environment. Figure 18 depicts an
example of a chart using BPMN.

Figure 18: Example of a Business Process Modeling Notation chart

UML is a general-purpose modeling language and is the pre-dominant language for
visualization (object-oriented) software engineering and modeling. This technique supports
specification, construction, and documentation of especially software intensive systems.
However, the variety of graphic notation techniques also allows for software process
modeling (e.g. by using UML activity diagrams), because it combines techniques of data
modeling (e.g. entity relationship diagrams), business modeling (work flows), object
modeling, and component modeling. The variety of UML diagram is illustrated in a collage in
Figure 19 [100].

These are divided in

• Structured Diagrams, e.g. class diagrams, component diagrams
• Behavior Diagrams, e.g. activity diagram, use case diagram, UML state machine
• Interaction Diagrams, e.g. sequence diagram, timing diagram

2.4 Software Development Models and Modeling

 28

Figure 19: A collage of UML diagrams

Cut Check

Data View Control View Functional View

SubscriberSubscriber

ClaimClaim

AdjusterAdjuster

Organized View

Figure 20: The four views of an Event-driven Process Chain (EPC)

Event-driven Process Chain (EPC) is a widely used type of flowchart used for business
process modeling and process improvement. It is a multiple-view approach that is able to link
the control view to roles and to entities in the corporate data view and functional view, which

2 Related Work

 29

is depicted in Figure 20. EPCs are the preferred modeling technique in SAP/R36 and ARIS
[133], [58].

Petri Nets are a mathematical modeling language for describing distributed systems that were
invented in August 1939 by Carl Adam for the purpose of describing chemical processes [53].
A petri net also offers a graphical notation, which consists of places (state elements or p-
elements), transitions (transition elements, t-elements) and directed arcs. The arcs connect
places and transitions in a way that they run from places to transitions and vice versa. Places
may contain a natural number of tokens, which are distributed over all places of the net. This
so-called marking enables the transitions to fire or transform all input tokens (from input
places) to the output places through the directed arcs. Figure 21 shows a petri net with basic t-
and p-elements, directed arcs, and tokens [40].

P1

P2

P4

P3

T1 T2

Figure 21: Example of a Petri Net

The principle of directed arcs or directed graph is applied for the classic form of a state
diagram, which is a finite state machine. A state diagram is the graphical representation of a
finite state machine. This tool is used especially in computer science to describe system
behaviors. Thereby, the system needs to be set up with a finite number of states. There are
numerous types of state machines, e.g., deterministic finite state machine (DFA), non-
deterministic finite state machine (NFA), generalized non- deterministic finite state machine
(GNFA), or Moore machine. For more information on state machines, please refer to [148].
Alternatively, state machines can be represented by State Transition Tables [117].

2.4.4 Software Development Models

Each process model consists of several basic elements that are necessary to be able to
describe any desired process. These core elements are:

• Activities, sub-processes, and activity chains
• Input and Output parameter
• Actors for activities
• Objects (data, artifacts)
• Events and messages
• Branching and merging

6 System Analysis and Program Development (SAP) developing an Entrprise Resource Planning System

2.4 Software Development Models and Modeling

 30

• Checks and decisions
• Interfaces to other/external processes

Activities are connected via relationships to an activity structure or flow. These activities are
performed by roles and responsibilities, meaning the employees of an organization. They are
supported by additional resources like machines or computers (IT-infrastructure). Each
activity is executed by applying a defined method, which takes information or knowledge and
precedes it respectively (artifacts). Branching and merging are methods for parallelization in
terms of activity execution [76].

One of the first process models used for software development was the Waterfall model
(Figure 22). This sequential design process was originally a process model for hardware
development and has been adapted for software engineering due to the lack of model at the
beginning of software engineering. The model consists of numerous development steps
starting from requirement engineering down to operation and maintenance phase, respectively
[112].

System

Requirements

Software
Requirements

Analysis

Program
Design

Coding

Testing

Operations

Figure 22: Waterfall process model (incl. fallback loop)

A further development of the Waterfall model is the V-model [21]. A major characteristic is
that each development step on the left arm of the “V” comes along with an appropriate
counterpart test activity on the right arm. The major difference to the waterfall model is that
test phases are defined as succession of development activities on the right V-arm (Figure 23).

The V-model XT® - as the latest revision - is one example of a comprehensive process model
providing as hands-on support for product development. The V-model XT® is the
international acknowledged standard development model for conducting IT projects [79].
This model is actually a so-called procedural model, since it provides very supportive hands-
on descriptions on how to run a software project. In order to define those non-mandatory
process model elements necessary for a concrete project, Tailoring (� See chapter 1.4) is
applied.

2 Related Work

 31

System Requirement
Analysis

System Architecture

System Design

Software Architecture

Software Design

Unit Test

Integration Test

System Integration

Acceptance and
Utilization

Time
D

et
ai

lin
g

Figure 23: V-Model

The V-model has been also the basis for the W-model as a further extension [134]. Compared
to the V-model, W-model defines the test activities already in parallel to development
activities Figure 24.

Debugging &
Changing

Debugging &
Changing

Debugging &
Changing

Debugging &
Changing

Acceptance
Test

System
Test

Integration
Test

Unit
Test

Planning
Unit Test

Planning
Integr. Test

Planning
System Test

Start Testing
activities

Detailed
Design

Architectural
Design

Specification

Requirements

Code

Figure 24: W-model

2.4 Software Development Models and Modeling

 32

A further type of process model is the Spiral model. The Spiral model combines the idea of
iterative development (prototyping) with the systematic, controlled aspects of the Waterfall
model. The Spiral model also explicitly includes risk management within development. As
depicted in Figure 25 the product to be developed is refined every iteration of the spiral. This
allows for incremental releases of the product each time around the spiral [20].

Cumulative cost

Determine
objectives

Identify and
resolve risks

Plan the next
iteration

Development
and test

Review

Release

Detailed
design

Code

Integration

Test

Implementation

Operational
prototypePrototype 2Prototype 1

Test plan Verification &
validation

Development
plan

Verification &
validation

Concept of
requirements

Concept of
operation

Requirements
plan

Requirements Draft

Progress11 22

3344

Figure 25: Spiral model

The Rational Unified Process (RUP) is another iterative and incremental software
development process model [53]. RUP is a specific implementation of the Unified Process
that uses the UML as description language (Figure 26).

Requirements

Business
modeling

Implementation

Analysis &
Design

TransitionConstructionElaborationInception

T1C1E2E1I1

Deployment

Test

T2C4C3C2

Requirements

Business
modeling

Implementation

Analysis &
Design

TransitionConstructionElaborationInception

T1C1E2E1I1

Deployment

Test

T2C4C3C2

Time
Figure 26: Rational Unified Process (RUP)

2 Related Work

 33

Specific characteristic encompasses not a single concrete prescriptive process, but rather an
adaptable process framework, also intended to be tailored (� See chapter 1.4) by the
development organizations and software project teams. Business value is delivered
incrementally in time-boxed cross-discipline iterations [79]. Figure 26 gives a short sketch on
efforts that typically occur in various iteration phases.

Agile Software Development basically consists of a couple of software development
methodologies origin form iterative and incremental software development. It is based on the
Agile Manifesto7 in which this term was first introduced in 2001 [15].

24 hours

2–4
weeks

Daily Scrum
meeting

Sprint
backlog

Product backlog

Potentially
shippable
product
increment

Figure 27: Overview of SCRUM in agile development

Software development methods encompass besides others Scrum [125], Crystal Clear,
Extreme Programming, Adaptive Software Development, Feature Driven Development, and
Dynamic Systems Development Method. Thereby, SCRUM is the central project
management method used in Agile Development (Figure 17).

The Capability Maturity Model Integration (CMMI®) also counts to process models as a
quasi-standard [133]. CMMI is a collection of best practices that has been derived from
industry, government, and scientists. Currently there are three constellations available:

1. Product and service development — CMMI for Development (CMMI-DEV),
2. Service establishment, management, and delivery — CMMI for Services (CMMI-

SVC), and
3. Product and service acquisition — CMMI for Acquisition (CMMI-ACQ).

CMMI may guide development organization on one hand through process development and
improvement. On the other hand, it supports organizations appraising its processes and
developing process maturity. This is done by means of maturity levels (Figure 28).

7 http://agilemanifesto.org/

2.5 Global Product Development and Engineering

 34

Level 1
Initial

Level 1
Initial

Level 2
Managed
Level 2

Managed

Level 3
Defined
Level 3
Defined

Level 4
Quantitatively

Managed

Level 4
Quantitatively

Managed

Level 5
Optimizing

Level 5
Optimizing

Process unpredictable & amorphous,
poorly controlled and reactive

Process characterized for projects and
is often reactive

Process characterized for organization
and is proactive
(Projects tailor their process for organization's standard)

Process measured and
controlled

Focus on quantitative process
improvement

Characteristics of the Maturity Levels

Figure 28: Maturity levels of CMMI

Based on defined process models, concrete instances of processes are derived that can be
executed during project run. This level of a process model is defined in the M2 layer in the
MOF framework as introduced in Figure 17. The concrete process instantiation on this level
is the consolidated description of actions and activities that result in artifacts created by using
defined methods (Objects of Reality, M3 layer in Figure 17).

Further process improvement modes are described and defined in standards ISO 9000 [72]
and ISO/IEC 15504 Software Process Improvement Capability Determination (SPICE) [71].

2.5 Global Product Development and Engineering

The phenomenon of globalization goes back to the seventeenth century when so-called
“multi-national companies” appeared, which operated in multiple countries. These global
acting organizations play an important role in terms of trading, like the first multinational
organization "The Dutch East Indies Company”, founded in 1602.

A major trend towards globalization started with a first wave in the nineteenth century. In this
time, laissez-faire economic theory occurred and enforced nations to reduce or remove tariffs
that limited the movement of goods. Additionally, the acceptance of the gold standard in the
second half of the nineteenth century led to more global- oriented activities.

The second wave of globalization began near the end of the Second World War with a
meeting in New Hampshire in 1944 that led to the foundation of The World Bank, The
International Monetary Fund.

The computer industry became also an essential part of multinational business, since the
computer itself attracted many industry organizations, not only from business machines,
electronics, defense industry, but also included important entrepreneurial start-ups. These
were among others: General Electric (formed in 1895 and entered the computer industry in
the 1950s), IBM (consolidated in the tabulating business in 1911), Hewlett Packard (formed

2 Related Work

 35

in 1939 as an instrument maker and entered the computing industry in the 1960s), EDS
(formed in 1962 to serve large users of computers), Microsoft (formed in 1975 to provide
products in the microcomputer software industry), and Dell (formed in 1984 to provide
microcomputer hardware).

The Offshoring business model had been started in the 1960s in the semiconductor
manufacturing. U.S. companies, also begun in the 1970s, began to move to move
manufacturing activities such as labor-intensive chip assembly to low-wage countries in East
Asia, including Singapore or Hong Kong. European companies followed later. Amazingly, by
end of the 1980s, East Asia had the capacity to provide circuit boards and electronics
products to the entire world. Software and IT services sector started the Offshoring wave in
the early 1980s.

In the 1990s India, which was among the early entrants in the Offshoring business, began
with so-call “body-shopping”. This was the process of sending trained programmers to work
for a few months in another country on the client firm’s premises. This was followed by a
blended strategy in which some of the work was done on the client’s site and some at the
vendor’s site in India.

In the last five to ten years, facilities even began to carry out IT-enabled business processes
such as accounting. More recently, Indian firms have begun to move up the value chain to do
IT-enabled knowledge processing such as reading X-rays, conducting patient analyses, and
carrying out IT research and advanced development. (Sources: [1], [6], [141]).

Although it is been thirty years that companies are trying to take development advantages for
this “networking trend”. This means that development of desired (sub-) products takes place
in those sites that fit best into overall organizational strategy, e.g., low- cost countries.
Therefore, it does not matter where people with respective key knowledge come from as long
as they are able to get “online”. Serious development process activities on a global basis,
however, started within the last decade. For general aspects and research, please consider [63],
[86], [94], [29].

These days Research and Development (R&D) experiences a tremendous trend to distributed
and global development. Going “global” is a popular business model and still accelerates in
many development organizations around the globe. Buzz words like ‘Globalization’ or
‘Internationalization’ are often used by top managers to emphasize current and future
business trends and strategy.

But why are globalization and cooperation with foreign organizations so interesting for
development organizations?

In the subsequent section, globalization is discussed from various points of views.

2.5.1 Companies going abroad

As already highlighted in the previous section, globalizations of especially software
development started in the 1980s. This new trend was characterized by prior technology-
oriented companies that tried to boost their innovative capabilities by setting up globally
dispersed team and building globally R&D networks. The wave of globalization lasts until
today.

2.5 Global Product Development and Engineering

 36

Company Trends: International Activities
(Changes between 1990 and 2002 in %)

Source: Handbook Global Production

1990 2002

59,959,9

50,250,2

Portion of
employees
abroad

55,655,6

46,346,3
Portion of
assets
abroad

65,265,2

60,160,1

Portion of
Revenue
generated
abroad

+20%

+8,5%

+20%

Figure 29: International Activities of Companies [136]

This means that companies located, e.g., in Germany move their business activities more and
more abroad or at least include foreign workforce into their specific business processes. This
is shown in Figure 29, which compares number of employees, assets, and foreign revenue in
1990 and 2002. As illustrated, the workforce and assets abroad grew by 20%. The portion of
revenue organizations achieved abroad increased by 8.5%. These numbers make clear that
international business is apparently important for companies in Germany.

Internationalization concerns especially outsourcing activities of several business domains.
Figure 30 shows offshore penetration of five different sectors, namely R&D, Engineering, IT,
Finance, and Human resources. As one can see, IT has by far the highest off-shoring
penetration. However, the major source of IT, which is R&D and Engineering have the
steepest growth rate of 38% and 50%. Therefore, the steadily remaining assumption that only
IT service and help desks are subject to off-shoring cannot be confirmed anymore.

2 Related Work

 37

0

10

20

30

40

50

60

70

80

[%]

R&D Engineering IT Finance HR

Offshore penetration

Auto, Industry, Manufacturing

Financial Services

Consumer, Media

ICT

Health, Pharma, Bio

Growth rate
2006: 38%

Growth rate
2006: 50%

Figure 30: Offshoring and globalization across industries

Using a concrete example from a company, the trend to globalization is once again depicted
in Figure 31, which describes the job shifting from a Siemens perspective[128], [129], [130],
[131], [153]. Siemens is a German technology company that experiences a shift of employees
working in Germany towards abroad. In 1993, about 60% (238.000) of the overall 391.000
employees were working in Germany. Ten years later (2003), about 60% (247.000) of the
workforce is employed abroad. Today in 2011, only one third (127.000) Siemens employees
work in Germany alone. This trend signals a movement of Siemens activities to other
countries than Germany.

Globalization is furthermore indicated by turning around the point of view, i.e., looking at
globalization from a low-cost country's position, e.g., India. This country has generated a
significant increase in revenues within software engineering exports in the last ten years.
Figure 32 demonstrates that India’s exports in IT and software engineering have been
increased almost exponentially since 1998. China also plays a considerable role in terms of
software and IT services exports. Its Software and IT Service exports have not been boosted
like those of India, but China’s revenue increase is also remarkable. This means, in turn, that
organizations in high-cost countries are heading for India to get software implemented at
lower cost rates.

2.5 Global Product Development and Engineering

 38

Job Shifting at Siemens

0
50.000

100.000
150.000
200.000
250.000

300.000
350.000
400.000
450.000
500.000

1993 2003 2005 2006 2007 2008 2009 2010 2011

Year

N
um

be
r

of
 E

m
pl

oy
ee

s

Abroad

Germany

Figure 31: Job Shifting at Siemens AG

0

10

20

30

40

50

60

B
ill

io
n

U
S

$

1998 2000 2002 2004 2006 2008 2010

Year

Software and IT Services Export (in Billion US$)

India

China

Figure 32: Software Engineering export revenues from India and China [79]

2.5.2 Terminology

The term “Global (Product) Development” is used if team members from different and
multiple geographic locations participating in one development project 0[118]. Those team
members could be within one country, but they might also be dispersed all over the globe.
Thereby, collaborations lead to a valuable network of cooperation between customers,
suppliers, and partners [18]. This section first provides some different terminology and
definition on Global Development.

2 Related Work

 39

In general there are some major terms related to off-shoring, which are depicted in Figure 33
[98]. The explanation of this terminology requires a defined perspective. For definition
purposes, it is assumed that the following definitions are seen and shortly explained from a
German company’s perspective, which is “Onshore/In-house” [79], [92].

• Onsite/In-house
Processes and development of products are not to be given to any other organizations
(in Germany and abroad). Therefore, they stay “In-house” or “Onsite” respectively.

• Onshore
Processes or development of products are given to a domestic supplier. If the master
company is German, the onshore supplier is also a German organization.

• Nearshore
Processes or development of products are given to a supplier on the same continent.
From the German perspective “Nearshore” would concern, e.g., Poland.

• Offshore
Processes or development of products are given to a supplier, which is not on the same
continent. From the German perspective “Offshore” would concern, e.g., India.

e.g. Indiae.g. Germany e.g. Poland

OnshoreOnshore
(also:

domestic
Home-shore)

OnshoreOnshore
(also:

domestic
Home-shore)

NearshoreNearshore OffshoreOffshore

Master Company
Area

Master Company
Area

OnshoreOnshore

InhouseInhouse

Europe Asia

CountryCountry

Continent

Own resourcesOwn resources Resources of a collaborative
service partner & its name

Resources of a collaborative
service partner & its name

Figure 33: Terms and relations concerning off- and on-shoring

The term ‘Offshore’ is the one most often used when talking about business movements
abroad. Typically, all three defined process types (operational processes, support/service
processes, and core processes according Figure 9) of PLM processes are potentially subject to
off-shoring.

Interestingly, management processes, e.g., ‘Strategic Planning & Implementation’, are
normally not off-shored. The point is, that by giving these processes away would mean that
any organization gives the whole business away, which is typically not intended.

However, the ‘Off-shore’- models are rather useful for business improvement in terms of cost
reduction etc. The (software) development discipline itself is rather less positively affected.

2.5 Global Product Development and Engineering

 40

This was also stated by Dieter Rombach during his Keynote Speech at the International
Conference on Global Software Engineering (ICGSE)8 in Limerick July, 2009: “A software
development project with two teams in one location is hard enough to conduct successfully.
Why does anyone think it will be easier by putting 5.000 miles in-between?”

This means that geographical dispersed development projects face enormous challenges
concerning set-up, management, and controlling. Therefore, the cost reduction effect has to
over-compensate the additional coordination and communication effort that a project takes on
by going off-shore.

Furthermore, several authors defined terms to describe cross-border development and
engineering activities.

Eigner and Stelzer [42] have defined Cross Enterprise Engineering (CEE) that expresses the
collaboration beyond any organizational borders. The original term comes from James
Champy, who describes the term X-Engineering (“Cross-Engineering”) as the following:

“The walls between a company, its customers, and its suppliers – even
between competitors – are coming down. In a world of free-flowing
information and Products, X-ENGINEERING the cooperation reveals a
radical new vision of the Cooperation.” [31]

Champy talks about a multi-dimensional cooperation and collaboration by either organization
internally or between customers and suppliers [31]. Thereby, organizational borders are not
relevant anymore and all disciplines, e.g., software - or hardware development, etc. are
supported throughout the whole product development process (PDP). This innovative
engineering approach is depicted in Figure 34.

Mechanical
Engineering

Product Lifecycle

integrated

multi-
disciplinary

Electrical
Engineering

Software

Services
Disciplines

Planning Design
Develop-

ment Execution Production Service

Accepted by users

federated

Pro
du

ct
 C

re
at

io
n

Net
w

or
k

Figure 34: Multi-dimensional collaboration based on Cross Enterprise Engineering

8 International Conference on Global Software Engineering

2 Related Work

 41

Scheer et al. [18] define the term “Collaborative Engineering” and emphasize the importance
of collaboration during development phase. Following their statements this approach gets
more and more necessary, since suppliers are not only delivering single spare parts any longer,
but rather entire system components to the Original Equipment Manufacturer (OEM). But
development of whole system components requires very close cooperation with the customer,
which is the OEM. This, in turn, makes adequate processes along the value chain
indispensable. Figure 35 illustrates the general idea of collaborative engineering.

CustomerCustomer Project StatusProject Status Final ReviewFinal Review

Project ManagerProject Manager

Development PartnerDevelopment Partner

Project
Documentation

Repository

Project
Documentation

Repository

Monitoring of
Project Status
Monitoring of
Project Status Internal ReviewInternal Review

Product
Specification

Product
Specification

Comparison &
Acceptance

Comparison &
Acceptance

Design draftDesign draft Development
finishing

Development
finishing

Figure 35: Collaborative Engineering and Project Management

2.5.3 Global Development Processes

Global development is not an approach that happened overnight. This trend emerged in the
course of time with the necessity to reduce cost and development time. The basis for changes
of the PDP depicted in Figure 36 is the PDP in Figure 12.

PE1
PE2

PE3

PE5

PP1
PP2

PP3
PP4

PP5

PE4
PE1

PE2

PE3

PE5

PP1
PP2

PP3
PP4

PP5

PE4

Serial
Engineering
(1985 – 1995)

Simultaneous
Engineering
(1995 – 2005)

Cross Enterprise
Engineering
(> 2005)

Product Development

ProductionTime to production

Product Development

Production

Production

Time to production

Time to production

PE: Product Development
PP: Product Production

Production Development

Production Development

Figure 36: Changes in Product Development Processes [42]

Following the original Serial Engineering approach PDP and process planning for production
is executed sequentially. In order to resist the pressure to reduce ‘time-to-market’, the ‘time-

2.5 Global Product Development and Engineering

 42

to-production’ has been shortened over the last decades. Simultaneous Engineering had a
little overlap of PDP with production planning; the so-called Cross Enterprise Engineering
approach of [42] muddles the two phases almost completely and leads to parallelism of
engineering. The parallelism decreases lead time for the price of more complexity, which
additionally comes along with globalism.

2.5.3.1 Motivation for Global Development

Although it is very challenging to setup and lead global development projects, many
development organizations following this path towards global developments (See Chapter
2.5.1). One major reason for expanding development business globally is cost. Wages and
salaries are typically way lower in low-cost countries, e.g., India or China compared to the
United States of America or Europe. An empirical study of Lamersdorf et al. [86] shows that
cost and access to people are prioritized criteria to go global before other factors (See Table
2). For this survey, twelve practitioners from eleven companies with essential experiences in
distributed software development in middle or senior management positions have been
interviewed. Participating companies came from many different domains, such as satellite
development, educational software, and software services. All of them were medium-sized or
large with the smallest company having about 900 employees. Eight out of ten were
headquartered in the U.S., one was based in Europe, and one is located in India.

Table 2: Reasons for Initiating Distributed Development

9Access to people

1Knowledge of Markets

1Required by Customer

1Risk Reduction

Criterion Prioritizing Weight

Cost 9

Mergers and Acquisition 1

9Access to people

1Knowledge of Markets

1Required by Customer

1Risk Reduction

Criterion Prioritizing Weight

Cost 9

Mergers and Acquisition 1

Furthermore, the access to a large pool of trained people motivates especially development
organizations to setting up distributed projects. The success of a research and development
department (R&D) is mainly driven by the innovative potential of the personnel. However,
the desired competency is usually not always available in this country, where it is needed,
which makes it beneficial to set-up distributed projects for collaboration [45].

Further motivating factors for conducting projects in distributed environments are [94], [63].

• Increased productivity: This is possible by doing development “following the sun” or
to take advantage from hiring highly-educated and trained personnel

• Market proximity: Organizations are able to ‘exploit’ the proximity to the potential
customer, e.g., more accurate derivation of product requirements. The look and feel of
a future product is also better adapted and harmonized with local markets.

2 Related Work

 43

• Governmental policies and incentives: some governments give incentive to foreign
investors if investments are made in their country; those countries are even more
attractive for foreign investors.

• Shorter Time-to-market: In some cases Time-to-market and delivery time is shorter
since products are not needed to be transported to the country where they are sold.

2.5.3.2 Critical Success Factors of global development projects

Each development projects’ success depends on critical factors that are discussed in the
following section. Due to its special character, the necessity of fulfilling these success factors
is much higher in distributed and global projects than in a collocated development
environment. This should not be confused with success factors of PLM that have been
discussed in chapter 2.2.2.

Reduce Ambiguity
Ambiguity is still a big issue during development projects in conjunction with partners that
are not collocated. Requirement and design specifications are just put over like “over the
fence” wondering that some parts have been misunderstood or misinterpreted by other parties.
Consequently, developers came up with a running product that typically meets the full
requirements, but does not necessarily follow the “spirit” of the specification. This is mainly
due to the fact that organizational processes, management and engineering practices and
methods, different level of experience and know-how, and in general, the culture differs
significantly within the development partner. In projects that are set-up in a distributed
environment, it is hardly possible to clarify these ambiguities by just talking to a colleague at
the next door. The partners are very often time shifted by eight or more hours, which means
that clarifications of problems and questions are only possible by indirect ways of
communication, such as e-mail. Direct ways of communications, such as video or telephone
conference, are only feasible, if at all, by exceeding the working limit of one partner. For
example, for conducting a video conference meeting with colleagues from Beijing, China
(time shift to Germany + 8:00 hours), either the Germans need to rise very early or the
Chinese need to stay longer in the office.

Maximize Stability
Stabilization in engineering projects is a big issue due to frequent alterations. Requirement
often change during project run, project roles are exchanged, and in the worst case even the
processes are modified. To address these problems methods like “Agile Development” are
introduced to organizations, which work very well if the teams are collocated. Therefore,
stabilization is an essential factor within an engineering project that is set-up globally with
dispersed teams.

Understand Dependencies of Complexity
The increasing complexity of products results in higher complexity and volume of project
tasks. This fact correlates with the dependencies of these project tasks. It is very important to
determine the sequence of project tasks and their interdependencies before project starts. This
reduces potentially idle time of development teams and increases the chance to develop the
right product the first time. Therefore, the communication and information sharing need to be
established very accurately and carefully. Therefore, a meeting structure must be defined in a
way that all developers get the necessary information by attending only those meetings,
which are relevant for their work items assigned.

2.5 Global Product Development and Engineering

 44

Facilitate Coordination
Globally distributed projects need facilitation of coordination to a much higher degree than
projects conducted in one location. Communication is very often associated with coordination,
but there are many more possibilities to coordinate a project. These are besides others
processes, management practices or product line architectures. The problem to be solved is to
find a balance between overhead and risk. This means that an enormous process framework
reduces risk, but increases the overhead tremendously resulting in high internal process costs.
On the other hand, fully orienting the coordination on management practices like
management by objectives makes the overhead cost of the project going down, but the risk of
failure goes up since the project structure loses traceability, controllability, and repeatability.

Balance Flexibility and Rigidity
Finding an adequate balance between flexibility and rigidity is a major challenge for globally
distributed development projects. Flexibility of all participating teams is necessary, because
each team has different processes, culture, or background with special domain knowledge and
organizational practices. Therefore, the process framework should be set-up in a way that
allows for smooth adaptation of all these differences in-between the development teams. It is
also advantageous if the processes in a global set-up encompass a little of the “agile spirit”
instead of insisting on absolutely adherence to processes. However, projects should not
follow processes that are ad hoc defined and their fulfillment is hardly controlled. Since we
have those differences, in cultures and background, a consequently defined structure is very
important for a successful development project, which means on one hand that the customer
gets what he really needs. On the other hand, the project should not run out of cost, but rather
achieve economic success.

Having the characteristics of a PDP and the critical success factors of projects defined (Table
3) a comparison of these categories bears an area of conflict.

Table 3: Conflict Areas between PDP Characteristics & Projects’ Critical Success Factors

Critical Success Factors of global
development projects

Critical Success Factors of global
development projects Characteristics of PDPCharacteristics of PDP

� Non deterministic approach
� Iterative development
� Significant creativity included
� Standardization
� Distribution of processes

� Non deterministic approach
� Iterative development
� Significant creativity included
� Standardization
� Distribution of processes

� Reduce Ambiguity
� Maximize Stability
� Understand dependencies of

complexity
� Facilitate Coordination
� Balance flexibility and rigidity

� Reduce Ambiguity
� Maximize Stability
� Understand dependencies of

complexity
� Facilitate Coordination
� Balance flexibility and rigidity

This means, e.g., “Maximize Stability” is in contradiction to “Non-deterministic approach”.
Considering the benefits of PLM in chapter 2.2.2, it turns out that an effective solution to
overcome this conflict is the definition of organizational processes and the introduction of
PLM. For instance, if PLM reduces Time-to-market, it is implied that that development
procedures and process need to have a certain kind of stability, which is, in turn, critical
success factors of development projects.

2 Related Work

 45

2.5.3.3 Challenges to Global Development Processes

Global oriented projects either exceed challenges or/and suffer from additional or other
challenges. Studies have shown that a global project set-up takes about 2.5 times longer to
coordinate than a local one. The major reasons are the following ones [76], [18], [106], [41]:

Complexity of Project
Due to its nature, globally defined projects are more complex than local ones. Since those
projects have many different organizations with various participants that might never may
have met before. Therefore, the number of interfaces, especially the first-time relationships of
project members increases exponentially. This makes a smart and structured approach
absolutely necessary to be able to coordinate a cross-organizational teaming set-up, manage
evolution, and monitor the progress of development.

Different Cultures
Different countries have different cultures, which also leads to problems in global
development projects. For instance, in specific countries team members are not used to take
part in telephone conferences and rather prefer to email the questions and issues. In case
organizations are not aware of that problem, this practice waste much time until every
participant has exchanged this information the way he is used to communicating.

Another example concerns the small talk at the beginning of a call. Some cultures find it rude
directly coming to the point without having a little talk about something complete different,
e.g., some ‘private’ topics. In turn, it might be fairly annoying or even frustrating for the other
party, if their counterparts never come to the point directly.

Different development process
Globally dispersed teams that have been just “assembled” from different organizations have
typically a different culture in place of how the product develops. Each of them has
internalized a certain type of process that is common for them. A global project set-up has to
handle that issue by incorporating all those different types of processes and approaches
towards an integrated PDP. This integrated PDP is necessary to have all resources working in
the same directions with on major goal, e.g., common understanding of product requirements,
usage of methods that are compatible to each other, commitment to time schedules of the
project.

Furthermore, as shown in section 2.1 ‘Organizational Business Processes’, an organization
can realize cost reductions by process optimizations, which, in turn, increase efficiency
significantly. If organizations move to low-cost countries for further cost reductions, it is
crucial to also optimize the global processes. This prevents the risk that efficiency
enhancements through, e.g., lower salaries are undone by just using inefficient global
processes.

Varying Knowledge and Infrastructure
One reason why global development projects are set-up is the lack of knowledge needed for
development of future products. However, this advantage grows to a tremendous problem
when organizations try to plug in special knowledge from specialized resources from
anywhere in the world into their own organizations. The reason for this issue is that other
project members also get in touch with the new knowledge and vice versa, which leads to
integration issues immediately. Furthermore, other resources of different experience and
knowledge in terms of, e.g., methods, tool, or models, which also coin developed products.

2.5 Global Product Development and Engineering

 46

This might influence final integration of sub-products. The alignment of knowledge means to
spend big effort on training, delegations, or to extend travelling to bring the experts together.

Logistic Problems
Daily project communication is mainly dependent on infrastructure with dispersed teams.
This means that network resources and infrastructure needs to be planned and set up. If this is
not done very thoroughly, the daily work in global projects runs inefficiently. This is caused
by a very slow network connectivity, which is consequently overloaded and breaks down
after a while, which automatically leads to unplanned downtime of the whole project. This
might also concern telephones since telephone nowadays also works with a data line over the
internet (“Voice over IP”).

Communication Issues
It is also quite obvious that in a globally dispersed project set up, communication from
management to the workforce is anticipated to go rather slowly and with a high portion of
fuzziness. If one imagines that the manager is located 5.000 miles away from him, a sound
communication strategy is crucial in order to reach every employee and team member, no
matter where in the world he is actually working. Only this approach guarantees high
transparency in decision-making processes, which in turn makes management again reliable
and accepted in the whole project and company.

2.5.4 Cooperative Development Models

The core of this dissertation is based on the studies of Xitong Li et al. [86] who developed
patterns to document and protocol web service composition. This work basically deals with
the management and control of messages that are transferred between entities (i.e. ‘sender’
and ‘receiver’) to realize protocol mediation in the field of Service-oriented Architecture
(SoA). The idea of mediator patterns has been modified for this work insofar that the
mediator realizes the connection points of diverse organizational processes. More about
process frameworks and patterns can be found in [27] and [144].

Meyer B. defined a development model that differs significantly from conventional models
[93]. This model creates coarse software architecture of the entire software system which is
then divided in sub-projects representing components of a system. These components are
developed by small development teams. Figure 37 shows that Meyer also aims for a
sequential development process, however, not for the whole system, but only for sub-systems
or components as mentioned before. Those projects might run simultaneous, i.e., various
project goals are achieved at various points of times. After development of a component (sub-
project) a review takes place that identifies those components that are potentially subject to
re-use. These components are provided to the overall development process. The approach
generates a parallel process or at least one with little overlaps, which, in turn, requires an
intensive amount of coordination and communication.

2 Related Work

 47

Generalization

Verification and
Validation

Verification and
Validation

Implementation

Design

Architecture
(draft)

Feasibility study

Break down into
Sub-projects

(Cluster)

P
ro

je
ct

 ti
m

e

Specification

Cluster 1

Generalization

Verification and
Validation

Verification and
Validation

Implementation

Design

Specification

Cluster n

Figure 37: Cluster model of Meyer B. [93]

Cooperative development in software engineering with a major focus on processes is an
essential topic of Altmann and Pomberger [1]. In their work, they emphasize the importance
of processes and challenges of global project set-ups with dispersed team. Those challenges
of software projects encompass:

• Increasing complexity
• Non- formalized processes that cannot be automated
• High risk potential
• High documentation effort
• High communication necessity

Due to the importance of processes, they have developed a model for cooperative software
development processes. This model, which is actually a Meta model, consists of two parts:
the product view and the predominant process view (Figure 38). The definition of these views
is based on the studies of Floyd/Züllighoven who also distinguish product and process-
related activities [44].

2.5 Global Product Development and Engineering

 48

Process View

Product View

Process History

Role

Message

....

Configuration

Working Step

Prototype Library
Description

Comment

Description_2

Artefact

Working Area

Document

Working Context Working Plan

Project Plan

Executables

...

Action Item

Process Model

Team Team Member

Adminstrator

*

Creator

*

*

*

Creator

*

*
*

Editor

*

*

*

*

Assessor

*

*

Assessor

*

*

*

*

**

*

*
1 *1*1

*1

*

*

*

Figure 38: Model for cooperative software development processes

Product-related activities focus on requirement engineering and system development
resulting in the final software product. This software product consists of prototypes,
executable code, and documentation. In their approach, the product development process can
be divided in different phases that require pre-defined work results or artifacts respectively.

Process-related activities concern coordination and cooperation of the product development
process and encompass product administration, quality assurance, and project coordination,
which is basically project management. For the purpose of product administration baselines
for all artifacts are defined. These baselines are references for product status in a collaborative
project. The status are synchronized and used for the next development iteration.

V-Model XT® is another development model and the standard model of the Federal Republic
of Germany and guideline for planning and conduction of development projects [85]. It is
related to this work insofar that it brings in a sub-order relationship as a special characteristic
[79]. This relationship enables every customer in major project to conclude one or more sub-
contracts with any contractor necessary. This allows for more flexibility of the customer to
get special features that require special knowledge implemented even on short notice.

2 Related Work

 49

Figure 39: Illustration of a sub-order relationship (“Unterauftrag”) in V-Model XT

Furthermore, model aspects in global development projects has been intensively discussed
and evaluated by Prikladnicki. He has defined a capability model in a global collaborative
context. This model captures patterns of evolution in the practice of distributed software
development in internal offshoring projects [106].

In [106] Prikladnicki and Audy have defined a set of criteria to define geographically
distributed environments or scenarios, respectively. Based on these scenarios, a general
model is defined, which includes several contribution level of an organization in a distributed
software environment.

Furthermore, Prikladnicki comes up with a reference model for global software engineering
with a detail discussion about factors that enable multinationals corporations to operate
successfully across geographic and cultural boundaries [106].

In [86] a multi-criteria based Development Distribution Model for making decision on global
development projects is illustrated. This model does not only consider cost as a decision
criteria for setting up global projects but takes into account parameter like workforce
capabilities, innovation potential of different regions, or cultural factors.

Sooraj and Pratap consider coordination aspects and problem in [133]. They use an inter-sited
coordination index for overcoming coordination and communication problems using
simulation.

2.6 General Empirical Studies

A major empirical study has been conducted in this field of research by A. Avritzer et al. in
the Global Studio Project (GSP) at Siemens Corporate Research [7]. This experimental
research project has been set up at six universities with about 30 developers in five countries
and four continents. The core consists of one central team responsible for important upfront
work, e.g., architecture definition and several remote teams that were filling in the gaps. The
GSP encompass the following principles:

• Hybrid centralized/distributed management, i.e. different places for execution of
various development domain, e.g., software processes are developed by the central
team; testing is done by a remote team (compare Figure 40)

• Iterative development using a two week iteration cycle

2.6 General Empirical Studies

 50

• Minimization of cross team communication; this was managed by the central team

• Formalism of documentation: The project followed the principle that the higher the
distance of sites the more formalism is necessary to execute process domains. For
instance, the Requirement Specification has been done with less formalism due to the
availability of domain experts in the central team. This minimizes communication for
requirement clarification. The Test Specification, however, was created by a remote
team and, therefore, needed more abundant documentation.

Identify
Business Case

and Goals

Identify Domain
Experts

Form Architecture
 and Requirement

Team

Form
Development
and Testing

Teams

Define
Architecture
and Identify
Components

Define High
Level

Requirements

Elaborate
Interfaces and

Detailed
Requirements

Implement
Components

Unit and
Component

Test

Define
Integration Test

Execute
Intetgration

Tests

Testing TeamProject Management Central Team Development Team(s)

Figure 40: GSP Version 3.0 Process

Wichmann describes his personal experience about offshore collaboration in [145]. This
report is from the mechanical engineering industry and related to software engineering. He
provides an activity diagram using the UML that shows the responsibilities of the project
partners at the local site and the offshore site (Figure 41). Wichmann does not describe
typical challenges of a dispersed development project; moreover, he defines criteria that
product sub-products have to meet to be selected for development offshore. Those criteria
encompass, e.g., low communication effort with experts, defined requirements of the
component, a very sound cost-benefit-relationship, offshore development of those
components without core competencies requirements etc.

For more experience, reports and in- depth information, please consider [62], [94], [62], [19].

2 Related Work

 51

Accept
work

assignment

Implementation
 & test

Deliver
product

Create
specification

and test cases

Give
work

assignment

Support

Accept
delivery

Plan
re-work

Customer (local) Partner (offshore)

Work
assignment

Delivery
of product

Figure 41: Offshore activities (coarse-grained)

2.7 Cultural Aspects

Collaboration in international context is not only driven by technical and process aspects.
Often, the culture plays an essential role and decides whether or not a project is successful.
Therefore, culture is an essential challenge in global development projects, which is
absolutely necessary to be considered. The culture of organizations encompasses the way they
act and behave in daily life and how they react to certain stimulus from outside.
Organizational leaders are typically not comprehensively aware of the power of any culture
around the world. Culture can be responsible for success or failure of a business.

In order to analyze this phenomenon in the context of business negotiation, Hofstede
evaluated 116.000 questionnaires from a multinational data base at IBM. The data covered 64
countries and up to 53 different cultures worldwide. Hofstede defined five dimensions of
culture and categorized the 53 cultures into these dimensions for validation purposes [62].

Another cultural model with even seven dimensions was developed by Trompenaar as a result
of an empirical study. For more details on Trompenaar’s work please refer to [139].

These cultural evaluations of Hofstede and Trompenaar describe tendencies and not
characteristics or even categorizations of individuals! Consequently, a country's scores should
not be interpreted as deterministic.

However, it is very interesting to know upfront if organizations are willing to collaborate with
other organization from other countries. The leaders and decision makers should be aware of
what dimensions of culture exist and what the tendency or collaborations of any country
prefers. Referring to ‘Power Distance’9 it is, for instance, crucial to know, whether an

9 Power distance is the extent to which the less powerful members of organizations and institutions (like the
family) accept and expect that power is distributed unequally [62]

Discipline Local Team Offshore Team

Requirements local

Offshore specification local

Analysis and Design local

Implementation & Test
- core modules

- related modules

local

Implementation & Test
- based on related
modules

 offshore

System test offshore

Deployment local

Configuration- and change
management

local offshore

Environment local

2.8 Communication in Collaborations

 52

individual should talk to a superior or to an individual in order to effectuate anything. For
further in-depth discussions on cultural behavior, please refer to [106], [62], [139].

Culture in the context of global engineering has often been analyzed by several and various
authors. A great many case studies have been conducted in this field of research.

Boden et al. analyze culture and knowledge management and illustrate by means of some
realistic cases that knowledge management is an important bridge between people and
cultures [19].

Casey explores the difference of cultures in a multinational organization within a three year
case study where people from Ireland and Malaysia were taking part in projects. He shows
that “improvement of cultures” could have the opposite effect if done too rapidly [28].

Al-Ani and Redmiles were talking about trust in dispersed development team. They come to
the conclusion that trust is rather an issue in large and diverse development teams. In such
team constellations, trust is higher among authoritative team member, e.g., team leader [12].

Further detailed studies are documented in [53], [106], [40], [59], [94], [40], [67].

2.8 Communication in Collaborations

Communication is seen as one of the most important aspects in collaborations with worldwide
distributed teams. This is documented in work from authors all over the world. The
dependencies of communication and distance have been intensively discussed by Herbsleb in
[62], [30]. He argues that communication of modification requests take about 2.5 times longer
in a cross site environment than in a common location. There is also evidence that colleagues
that are not located same-site feel less ‘teamness’ than others. This makes it very difficult to
help and assist in times of high workload.

Prikladnicki’s work [106] also considers the ‘teamness’ factor by exploring the phenomenon
of perceived proximity of team members in collaborative projects. This means that even if
teams are physically very close to each other, they might be very far from an individual’s
perception point of view. Therefore, the perceived proximity (Figure 42) of team members is
crucial [148]. Quadrants 1 and 4 define a high perceived proximity. However, the perceived
proximity can also be low, although collaborating teams are co-located (Number 3).

Serce F.C et al. provide an empirical study with 152 participating students from Panama,
Turkey, United States (U.S.), and United Kingdom (UK) on communication behavior in a
globally-conducted software development project [133]. For this purpose, types of
communication behaviors that occur when student teams are engaged in a software
development project are defined and evaluated. The study concludes with the result that
communication correlates with task type, culture, and GPA10. Those teams with above
average communication behavior were outperforming other teams. More aspect about
communication in global collaborations can be found in [3].

In the last decade "Chat“ or “Instant Messaging” as a preferred communication medium
became more and more important in development organizations. Following [62] each
developer spends at least 75 minutes for communication through this “modern” media. This
aspect is also discussed in [62].

10 Grade Point Average (GPA)

2 Related Work

 53

Further experience on instant messaging in global software development projects are
discussed in [99].

4
“Far-but-Close”

1

3
2

“Close-but-Far”

High perceived

proximity

Low perceived

proximity

Low physical proximity

(global dispersion)

High physical proximity

(co-location)

Figure 42: The paradox of perceived proximity

2.9 Process Models and Globalization – tying it all together

As stated in the previous sections, organizations have process models and approaches defined
that support development departments during project execution. Processes are a necessary
and helpful mean, especially for projects with high complexity, i.e., a high number of parties
involved, variety of domains contributing to a project, or high number of software lines of
code to be developed for the final product. Typically, these processes are defined locally
including, at most, all domestic partners.

The trend towards globally distributed development arises with a couple of additional issues
that organizations have to handle: teams that are dispersed all over the world hamper
communication in projects and, moreover, miscommunication and misunderstandings due to
differences in language and culture occur. Additionally, every organization has its specific
defined processes in place, which are more or less comprehensively defined. This definition
follows the culture of the respective organization, which also depends on the resident country
of a collaborating organization. The more sub-processes of a project are distributed all over
the world, the more communications difficulties.

Changing the process of organizations in order to better fit into a distributed collaborative
project would require the respective organizational culture of the supplier to change. However,
this, in turn, negatively influences organizational performance during the project, if resources
have to follow an unaccustomed way of working.

In order to resolve this dilemma, processes need to be capable for global collaborations. This
means that they require well defined and integrated process descriptions from each of the
participating parties. These aspects contribute significantly to the problem definition and to
the solution of this dissertation’s approach.

2.9 Process Models and Globalization – tying it all together

 54

3 The Approach from a Bird’s eye view

 55

3 The Approach from a Bird’s eye view
This section provides an overview of the actual problems and issues that make the subsequent
solution necessary. In addition, the basic solution concept is introduced.

As stated before, new trends and desires from customers enforce organizations to drive
innovation tremendously towards attractive products. This requires special knowledge, which
is sometimes not available in development departments, which compels those organizations
to investigate the world-wide resources know-how-pool and hire those competencies desired
for the next development project. This openness to include employees or even organizations
from all over the world into development projects enforces organizations to set up global and
distributed processes, since not every needed resource is willing to move. This makes
collaborative and distributed development projects special in a way that the personnel
working on a distributed project cannot meet easily in person as it is possible in projects that
are run in one location. For this reason, special process set-ups that adequately support such a
distributed environment need to be defined.

3.1 Application of the Process Integration Approach

It is assumed that two or more distributed organizations want to run a project together. For the
purpose of better illustration, we consider three organizations. These organizations have
organizational processes in place as depicted in Figure 43. Thereby, Organizations A and B
have processes defined on “System Development” – level; whereas, Organization C has its
processes defined on “Software Development” – level.

Organization A (Master)

System Test

System
Implementation

System Design

System
Requirement
Specification

System Test
Record

System Design
Specification

Implemented
System

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Organization B (Supplier)

System Test

System
Implementation

System Design

System
Requirement
Specification

System Design
Specification

Implemented
System

System Test
Record

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Organization C (Supplier)

Software Test

Software
Implementation

Software Design

Software Test
Record

Implemented
Software

Software Design
Specification

Software
Requirement
Specification

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Figure 43: Initial Processes of Organizations A, B, and C

3.2 Major Challenges on Process Integration

 56

For the purpose of collaboration, respective process owners and responsible process engineers
(See Chapter 1.4) have firstly to clarify who will be the lead organization of the entire
collaborative project. This is necessary since the lead organization’s process (in this case
Organization A (Master) in Figure 43) is the one that integrates sub-processes or activities of
other organizations. The depicted processes have that label on the very top of the activity.

3.2 Major Challenges on Process Integration

If there will be a collaboration project between two or more parties, the master organization –
as the driver of the project – typically wants to integrate some activities from other
organizations into its own process; thereby, some activities are done exclusively by one
organization, others in parallel or conjointly. However, the integration or the change of
processes always occurs with issues outlined in the following.

Proneness to processes
Development organizations typically want to keep their own processes as far as possible since
the established processes are kind of customized to the organization. Ad hoc process changes,
which might be unavoidable in process-based collaborations, would rather evoke uncertainty
and confusedness within the workforce of any organization. This reduces the acceptance of
the process and therefore the productivity of the development department. The role of the
Master is detailly described in chapter 3.3.3.1.

Organization A (Master)

System Test

System
Implementation

System Design

System
Requirement
Specification

System Test
Record

System Design
Specification

Implemented
System

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Organization B (Supplier)

System Test

System
Implementation

System Design

System
Requirement
Specification

System Design
Specification

Implemented
System

System Test
Record

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Figure 44: Integration challenge of semantically different processes

?

3 The Approach from a Bird’s eye view

 57

Semantic difference of processes
Each organization has usually their proprietary processes defined containing own process
descriptions, artifacts, roles etc. Even if activities have the same label, e.g., System
Implementation as shown in Figure 44 of both Organization A and B, they are typically
semantically different. This means that System Implementation of Organization A is not the
same as the one of Organization B differing, for instance, in artifacts, methods, or roles used
during execution of this activity.

Role concept
Project constellations with more than one project partner often lack of clear definition of roles
and responsibilities. This results in work delays since action items are rather pushed away in
order to minimize the individual workload.

Organization A (Master)

System Test

System
Implementation

System Design

System
Requirement
Specification

System Test
Record

System Design
Specification

Implemented
System

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Organization C (Supplier)

Software
Implementation

Software Test

Software Design

Implemented
Software

Software
Requirement
Specification

Software Test
Record

Software Design
Specification

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Figure 45: Integration challenge of processes granularity levels

Granularity of processes
Further problems originate from the granularity of processes defined by each organization. As
depicted in Figure 44, Organization A and B have processes defined on a system
implementation level, which might be adequate for its product development and business. In
contrast to Organization A, Organization C has only its software development process in
place (Figure 45). Compared to Organization A and B, the process of Organization C (for a
collaboration scenario) is documented on a finer grained level (software level vs. system
level).

?

3.3 Solution Concept for Process Integration

 58

In order to solve all these issues, the challenge for process management group is the
clarification of what exactly happens during integration of other organization’s activities or
processes. This problem is symbolized with a question mark in Figure 44 and Figure 45.

3.3 Solution Concept for Process Integration

The following chapter briefly sketches the solution idea of the process integration approach.
This is necessary since a global development project encounters many challenges that need to
be handled, e.g. project complexity, communication issues, logistic problems, different
cultures etc. (See chapter 2.5.3.3).

Organization A (Master)

System Test

System
Implementation

System Design

System
Requirement
Specification

System Test
Record

System Design
Specification

Implemented
System

Organization B (Supplier)

System Test

System
Implementation

System Design

System
Requirement
Specification

Implemented
System

System Test
Record

System Design
Specification

a)

b)

d)

c2) c1)

Mediator

Mediator

Figure 46: Mediator Introduction for Process Integration

First, all collaborating parties have to identify those sub-processes are relevant for
collaboration, which is important to avoid double or even redundant work. Figure 46 marks
those sub-processes (red rectangles) that will be integrated into the resulting collaborative
process. Organization A (Master) decides to integrate System Implementation (=c2) and the
resulting artifact of Organization B (Supplier). It is also crucial to define clear responsibilities
prior to process and/or project execution to deliver specified artifacts, e.g., in Figure 46 the
Implemented System is provided by Organization B. However, is Organization B also
exclusively responsible for that artifact within the collaborative process? Therefore, a role
concept to be defined needs to clarify such questions.

Second, the identified sub-processes and activities need to be connected. The connecting
arrows are depicted in Figure 46. The process flow in this case would then be: “a – b – c2 –
d”. As already mentioned, processes are typically different from a semantics perspective, this
means System Implementation of Organization A (=c1) and B (=c2) have the same label, but
the meaning is different in terms of used methodologies, resulting artifacts, etc. This means

3 The Approach from a Bird’s eye view

 59

that processes cannot be just connected. Therefore, an “interface” is necessary that handles
semantic differences between processes by explicitly indicating interface issues and
inconsistencies and, thereby, providing a resolving solution.

In order to handle this issue a connector is introduced, which is called ‘Mediator’. Generally,
a mediator is an interface to connect cross-organizational processes. In Figure 46,
Organization A wants to outsource System Implementation (=c1) to Organization B (=c2).

Towards a common understanding, the terms Mediator and Scenario are defined in chapter
1.4 (Definitions and Terms).

3.3.1 Mediator Pattern

As described, a “mediator” is actually a “mediator pattern” in terms of an interface that
consists of several different actions. An exemplary mediator pattern is shown in Figure 51,
which illustrates the auxiliary function showing how to bring together two or more
semantically different processes.

<Action Y>

<Action X>

Handover

Handover

<Action Z>

(Organization A (Master)
AND

Organization B (Supplier))

Organization B (Supplier)Organization A (Master)

Artifact 4

Artifact 1 Artifact 2

Artifact 3

Control Flow

Control Flow

Control Flow

Control Flow

Figure 47: Exemplary mediator pattern for process integration

The mediator’s purpose is to guide the procedure of how to connect processes and workflows
before collaboration starts. Due to the help of these auxiliary functions it is possible to
exchange either single actions/activities or even whole action chains from any process.
Therefore, the mediators look differently, depending on the scenario applied.

These mediators are modeled with UML activity diagram terminology (swim lane diagram),
but do not necessarily follow the exact UML modeling conventions [100], since they have
only an auxiliary character (e.g. missing start and end nodes). A mediator typically consists of
at least three swim lanes, one for each Organization A and B and another swim lane for
interfacing organizations. Furthermore, it contains the notation for control flow and object
flow. Mediators with only one swim lane will be explained as special case in chapter 4.2.5.

3.3 Solution Concept for Process Integration

 60

As shown in Figure 47, additional actions (“Handover”) are necessary to get two or more
processes connected. The Handover basically deals with the issue how to convert e.g. Artifact
1 (in Figure 47) as output of <Action X> into Artifact 2, which is input for <Action Z>.
Therefore, these activities are the crucial interface of Master and Supplier(s) to discuss and
consecutively define details about the handover of artifacts from Master to Supplier(s) and
backwards.

This addresses especially:

Documents:
There is clarification necessary whether or not the Master provides all relevant documents the
Supplier needs to successfully conduct its relevant development portion. Furthermore,
resulting documents/artifacts shall be handed over in a defined format, e.g. source code,
specification etc. (The artifact handling will be described in detail in chapter 3.3.2).

Development method:
It needs to be clarified whether or not the Supplier is able to follow a desired development
model (e.g. iterative or agile development). This might be necessary to fulfill quality
restriction to get an admission or license for desired market, e.g., FDA11 conform
development of product like a computer tomography for the U.S. market.

Knowledge:
The Supplier has to state whether or not enough and adequate know-how is available in his
organization to accomplish desired tasks successfully.

3.3.2 Artifact Synchronization and Handover Concept

During synchronization or hand-over activities organization has to compare and agree upon
desired artifacts that need to be delivered from the master organization to supplier
organization and vice versa. This is typically a very complex procedure organizations have to
walk through, since considered processes are semantically not equivalent, which also
concerns the corresponding artifacts. Moreover, this is the “crux of the matter” that decides
on the successfulness of any collaboration. Therefore, it is necessary to give both process and
project manager hand-on support on what artifacts are typically exchanged during handover
or synchronization activities. However, this work will not provide a set of artifacts that must
be provided at any process step during development.

3.3.2.1 Number and Types of Artifacts

In order to show the methodology and functionality of the handover process, Figure 48
provides a more detailed view into the handover activity. As depicted in the mediator pattern
in Figure 47, one single artifact was given as “the” input for the Handover. This artifact
represents a potential variety of artifacts, which is handed over in a software development
process. Within the handover activity, respective parties decide on what artifacts are
necessary for the next upcoming process step; there might be not only one single artifact, but
a potential variety of outputs needed to proceed further development steps. This means, in
turn, that the handover activity needs to check whether or not content of existing artifacts
from the prior organization (“Organization A”) does meet the minimum needs of the

11 FDA = Food and Drug Administration of the United States of America

3 The Approach from a Bird’s eye view

 61

following organization (“Organization B”), which takes those artifacts as input. This
resolution of differences between input and output artifacts is furthermore an essential part of
the collaboration. The following section illustrates the handover scenarios by using one
representative document for all potential artifacts.

1. Organization A provides exactly the input Organization B needs

As depicted in Figure 48, input and output artifacts are the same, which is symbolized by both
the identical number of sections that are incorporated into the artifact and the identical color
code that symbolizes identical content. In this case there is no interface problem since the
inputs correspond with the outputs.

Handover

Section 3Section 3

Section 2

Section 1Section 1

Section 2no artifact changes

Artifact 1
Organization A

Artifact 2
Organization B

<Action Y>

<Action X>

Handover

Handover

<Action Z>

(Organization A (Master)
AND

Organization B (Supplier))

Organization B (Supplier)Organization A (Master)

Artifact 4

Artifact 1 Artifact 2

Artifact 3

Control Flow

Control Flow

Control Flow

Control Flow

Figure 48: Artifact Handover in Detail: corresponding input and output artifacts

2. Organization A provides less content than Organization B needs

In this case the process to be integrated requires additional and different content (“sections”)
than the input artifacts are able to provide. As illustrated in Figure 49, Organizations B needs
an additional “Section 4” in the artifact handed over. If these issues already pop up during
process definition, process manager shall drive the process definition towards a solution.
These insufficiencies are identified latest during the handover/ synchronization meeting when
all relevant parties conduct the respective handover/synchronization activity.

In any case, it has to be decided whether
a. Organization A have to provide the missing content (the gap between output from A

and necessary input for B)

3.3 Solution Concept for Process Integration

 62

This situation obviously occurs when Organization A, for instance, just misses any
artifacts to create during development

b. Organization B has to provide the missing content (the gap between output from A
and necessary input for B)

This often occurs if Organization B follows a higher process capability than
Organization A. This means that Organization B requires, e.g., lots of statistics for
statistical process control in order to address their process needs. If Organization A
does not use any statistical process control for managing projects, it is by nature
unable to provide any of these statistics and artifacts to adequately support the
software provider’s process requirements.

c. The parties accept the deficiency between out- and input and continue executing the
collaborative process. In this case, no further action would be necessary. This means
that Organization B omits its own process requirements in terms of statistical process
control etc.

Handover

Section 1Section 1

Section 3Section 3

Section 2

Section 4

Section 2

Section 4

Artifact 1
Organization A

Artifact 2
Organization B

Figure 49: Missing Artifact during Handover

3. Organization A provides more content than Organization B needs

If too many artifacts are created by Organization A that exceed the needs of Organization B
(Figure 50), there is no bottleneck or any other reason that would prevent the process from
further being executed. Moreover, Organization A probably will think about optimizing its
process for this specific collaboration by just omitting the creation of artifact’s “Section 3”.
Exceeding process needs just for sake of the own process takes too much effort and time
required in this case.

Handover

Section 3

Section 2

Section 1Section 3

Section 2

Section 1

Artifact 1
Organization A

Artifact 2
Organization B

Figure 50: More Artifacts provided than necessary

As mentioned before, proper artifact exchange is an essential lever, which decides how
successful software development collaborations are. For this reason, there is a list of artifact
types with corresponding examples that might be crucial for collaborations. This list is

3 The Approach from a Bird’s eye view

 63

derived by comparing and consolidating model outputs from e.g. CMMI® [133], V-model
XT® [79], and IEEE 12207 [73].

Table 4: Crucial Artifact Types for Software Development Collaborations

---Baselines

---Change requests

---Concepts/Proposals

� Checklists
� List of decision criteria
� List of interfaces
� Actions
� Agreement
� Recommendation

Records

---Audits

---Reports

---Code

Artifact Type Corresponding Example
Plans ---

Specifications � Requirement
� Design
� Architecture

Descriptions � Manual
� Analysis
� Strategy
� Dependencies
� Constraints
� Guidelines

---Baselines

---Change requests

---Concepts/Proposals

� Checklists
� List of decision criteria
� List of interfaces
� Actions
� Agreement
� Recommendation

Records

---Audits

---Reports

---Code

Artifact Type Corresponding Example
Plans ---

Specifications � Requirement
� Design
� Architecture

Descriptions � Manual
� Analysis
� Strategy
� Dependencies
� Constraints
� Guidelines

3.3.2.2 Quality of Artifacts

As stated before, the number and types of artifacts that are transferred to the counterpart
organization needs to be defined prior to process execution. Besides that, the quality of
transferred artifacts is in many businesses very crucial (e.g. Healthcare business observed by
FDA, security rules in nuclear power plant etc.) and therefore shall be defined. This means
that certain mechanisms have to be institutionalized in collaborative business setup ups that
allow for getting a consistent product quality throughout the entire collaboration.

Quality is inspected by mapping the existing output, e.g., source code or specification, to a
defined set of criteria any artifact has to fulfill. This is typically done in milestone/quality
gate review meetings in which all relevant parties participate, i.e., the suppliers and receivers.

Quality is jeopardized whenever artifacts’ responsibility changes, i.e., if they are interchanged
through interfaces between parties. Especially a collaborative process needs to address
potential quality issues before they even occur by establishing quality review respectively.
However, quality mechanisms are not particularly considered in this work.

3.3 Solution Concept for Process Integration

 64

3.3.3 Role Model

A role model becomes necessary within collaborations of two or more organizations. The
purpose is to get responsibilities of specific actions and activities clarified prior to
collaboration start. This reduces confusion during project run especially in global distributed
projects.

This thesis provides a role model for accurately assigning responsibilities to appropriate tasks.
Generally, different responsibility levels can be distinguished, whereupon three different
levels of responsibilities are shown in Table 5 and explained in the following.

Although this work will not focus on on task responsibility level all three levels of
responsibility (according to Table 5) are discussed to get a comprehensive feeling of potential
responsibility domains.

Table 5: Role Model Definition Level

Project Responsibility

Master

Supplier

Project

activity

activity

activity

activity

activity

activity

activity

Activity Responsibility

Master Master
AND

Supplier

Supplier

activity activity

activity

activity

activity

activity

activity

Project

3 The Approach from a Bird’s eye view

 65

Task Responsibility

Master Master
AND

Supplier

Supplier

<activity>
Requ. Engineer

<activity>
SW Architect

<activity>
Test Manager

<activity>
Mediator

<activity>
Quality Mgr

<activity>
SW Engineer

<activity>
SW Tester

Project

3.3.3.1 Project Responsibility

If two or more organizations are working together, a leadership organization, a so-call
“Master”-organization shall be defined. Consequently, all other collaborating organizations
are Suppliers. This differentiation results from observations from practice, where in most of
the cases, one organization takes on the Master role. This is similar to a consortium where a
so-called “Sole mandated lead arranger” is defined that manages all consortium internal
affairs [74]. Consortium is a Latin word, meaning 'partnership, association or society' and is
derived from consors 'partner', itself from con- 'together' and sors 'fate', meaning owner of
means or comrade.

The role of the Master organization depends on the strength of collaboration. In Figure 51,
three different types of collaboration strengths are modeled. The master organization is only
explicitly existent in case of weak and medium strength collaboration, whereas it is implicitly
modeled in strong or tight collaborations (high strength). The definition of ‘strength’ follows
the number of communication or synchronization (yellow diamond) points (white arrow).

Start End= Milestones, Synchronization

Blackbox
Blackbox

Blackbox
Blackbox

Blackbox
Blackbox

Blackbox
Blackbox Med.

Master

= Communication

Strong
Master

Blackbox
Blackbox Weak

Master
Figure 51: Project Responsibility: Strength of collaboration

3.3 Solution Concept for Process Integration

 66

In the ‘weak’ case, only a few synchronization points are taking place; in the ‘strong’ case,
synchronization and communication are done throughout the entire process. This is also
illustrated by having the Master directly included into the process.

Examples for the ‘weak’ case are processes that are well established and optimized, such as
delivery of spare parts. In this case, less critical issues are to be discussed, e.g. the number of
spare parts to be delivered.

The ‘medium’ case concerns, e.g., development of additional features based on an existing
platform in software or hardware development.

The strong case typically takes place if new innovative features are developed, especially if
more domains need to be included, e.g., “Global Positioning System (GPS)12” or the
European pendant “Galileo”13 navigation system. This requires both software and hardware
development in conjunction with satellite and network connections. The “Toll Collect14”
system in Germany is an example where several organizations are linked together by setting
up a consortium. In this case, the Master organization would be the consortium leader
responsible for project’s success and failure.

3.3.3.2 Activity Responsibility

In order to exactly define which organization is included and responsible for executing
various activities and actions, three role connectors have been defined. Table 6 summarizes
those connectors that are available on organizational level for collaborations.

Remarks: the term “Role” is seen here on organizational level.

Table 6: Definition of Role Connectors

<no connector> Exclusively one organization is executing an action

∧ (“AND”) Both organizations are executing an action

∨ (“OR”) Either Organization A or B or both executing an action

⊗ (“XOR”) Either A or B, but exactly one organization is executing an action

The role concept is illustratively applied in the scenario in Figure 52 (Remark: It is assumed
that Organization A (“Master”) and Organization B (“Supplier”) have semantically equivalent
processes defined). The swim lane diagram defines task responsibilities in the headline of
each swim lane (marked with a green box in Figure 52). Therefore, the Master is in charge of
System Design by his own. System Implementation is done by both Master and Supplier as the
“AND” connection according to Table 6 in the headlines shows. Finally, the Supplier is
solely responsible for System Test. The termination node goes back to the Master since this
organization initiates the entire collaboration.

12 http://en.wikipedia.org/wiki/Global_Positioning_System; 2010, Nov-25
13 http://en.wikipedia.org/wiki/Galileo_%28satellite_navigation%29; 2010, Nov-25
14 http://www.toll-collect.de/

3 The Approach from a Bird’s eye view

 67

System Design

System
Implementation

System Test

(Organization A (Master)
AND

Organization B (Supplier))

Organization B (Supplier)Organization A (Master)

Control Flow

Control
Flow

Control Flow

Control
Flow

Figure 52: Activity Responsibility: Organizational Role Definition

3.3.3.3 Task Responsibility

Based on the activity assignment of relevant activities/actions content- specific roles have to
be defined and assigned to those activities. Thereby, content- specific and collaboration
specific roles are differentiated. Table 7 depicts a set of potential roles, which is not limited to
those. All described roles might be defined, however, these are not mandatory.

Content- specific roles are typically defined anyway in organizations that contributed with
specific artifacts, e.g., Requirement Specification to organizational processes.

In contrast, the role Mediator is typically defined in collaboration. This role would be
responsible for early recognition and mediation of cross organizational conflicts and/or
appropriate escalation to senior management.

Furthermore, there are also roles that can be allocated in both categories. Besides the Project
Manager as a core role, Tool Administrator, Quality Manager, or Configuration Manager
might be crucial for projects' success in a global and distributed development environment.

Table 7: Task Responsibility: Specific Roles

Content specific Collaboration specific
Requirement Engineer Mediator
System/Software Architect …
Software Engineer
Hardware Designer
Hardware Engineer
Test Manager
…

Project Manager

…

Tool Administrator
Quality Manager

Configuration Manager

3.3 Solution Concept for Process Integration

 68

4 Solution Scenarios

 69

4 Solution Scenarios
“Deal with the difficult

while it is still easy.

Solve large problems

when they are still small.

Preventing large problems

by taking small steps

is easier than solving them.

By small actions

great things are accomplished.”

- Lao Tzu (604-531 BC)

As illustrated in previous sections global development project are enormously stipulated by
development challenges. The following section provides a solution for these challenges
containing a process- based methodology how two or more organizations can work together
in a globally distributed development environment. The result is a new collaborative process,
which contains the original sub-processes of the collaborating organizations.

These collaborative processes are described by a set of standard collaboration scenarios,
which have been derived from industry experience and literature review. The scenarios
incorporate the introduced mediator that helps development organizations setting up an
integrated process environment.

4.1 Preliminaries

The following processes and all subsequent defined scenarios are modeled using activity
diagrams according to UML [24], [114], [75]. All control flows in the diagrams are in bold.
For better readability, the following action color codes (Table 8) are used throughout all
activity diagrams.

Table 8: Legend and Color Codes for Activity Diagrams Usage

<Organization A>

<Organization A>

Actions executed by Organization A

(including alternative color, exclusively used)

<Organization B>

Actions executed by Organization B

4.1 Preliminaries

 70

<Organization C>

Actions executed by Organization C

<Organization D>

Actions executed by Organization D (Case Study 1)

<Organization E>

Actions executed by Organization E (Case Study 1)

<New action>

Actions that are newly defined to connect original processes
for setting up a collaborative process

<Evolutionary action>

Actions, that are newly defined or derived based on the input
of existing actions from collaborative organizations
(“evolutionary”)

<hierarchical
action>

Hierarchical Action (=trident) of any organization respectively

Remarks: color code might vary due to respective needs

4.1.1 Integration Possibilities

Integration of activities into other activities is a basis for collaboration in general. Process
integration enables companies to master the challenge of having people located around the
world, working for one project. These processes can be implemented in different ways,
depending on the strategy a development organization is willing to pursue. Three basic
integration strategies are explained in the following:

1. First, the Master can enforce the supplier to completely accept and follow his (the
master’s) processes. In this case, there is no further integration approach necessary
since the processes to be used are somewhat dictated by the master.

2. Second, the master might include some selected activities from the supplier’s
processes. In this case, there is a need to define an approach on how to comprise other
organizations' processes.

3. Last, the process is set up on a global basis with dispersed teams. This means that
organizational processes are set up in a joint way by having several organizations or
companies working together as equivalent partners with a defined lead.

This work focuses on the second and third integration possibilities, since the first approach
does not leave any remaining unclear process issues to be clarified due to clear process
guidelines provided by the Master organization.

4.1.2 Illustrating Example

In order to illustrate the concept ideas, this section provides a small concurrent example
(Figure 53), which applies the explained theory.

Remarks: Due to the fact that the collaboration set-ups are different depending on the
scenario shown, the root process of some scenarios shown later on will slightly differ from

4 Solution Scenarios

 71

the initial root process in Figure 53. This is necessary to illustrate clearly the functionality of
the appropriate functionality of the overall approach and the resulting collaborative process in
each case.

Nevertheless, the basic root scenario consists of two organizations: Organization A, which
functions as the ‘Master’ and Organization B/C as the ‘Supplier’.

From an industry point of view, the Master is that organization, which initiates the entire
collaboration and makes itself responsible for managing and controlling it [62]. This
encompasses, e.g., the definition of desired (sub-) products and work packages, the
identification of additional, special competence for implementation, hardware development,
or testing to optimize overall collaborative effectiveness and efficiency. The ‘Master’
organization is typically the one that receives all work products, so-called artifacts that are
produced or developed during project run. In turn, ‘Master’ does not mean that the complete
workflow of the Master’s organization is mandatory for all organizations to follow.

The other collaborating organizations are ‘Suppliers’. The suppliers provide special
competences that make them attractive for the Master, so that the Master is coerced from an
economical/technological point of view to collaborate with the supplier(s). A special
competence of the supplier is, e.g., special knowledge in any technical domain. Strategic
advantages of a supplier from a Master’s view are, e.g., the supplier’s location to penetrate
new markets or a low- cost development site.

As already implicitly mentioned, complex development projects might include more than one
supplier. Nevertheless, the process integration approach of this work is scalable in a way that
it fully supports participation of more than one supplier.

Organization C (Supplier)Organization A (Master) Organization B (Supplier)

System Test System Test

System
Implementation

System Design System Design

System
Implementation

Software Test

Software
Implementation

Software Design

Software Test
Record

Implemented
Software

Software Design
Specification

Software
Requirement
Specification

System
Requirement
Specification

System
Requirement
Specification

Implemented
System

System Test
Record

System Test
Record

System Design
Specification

Implemented
System

System Design
Specification

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Figure 53: Root processes of Organization A, B and C

Based on the root processes of Organizations A, B and C in Figure 53, different types of
collaborations and are explained in the following. This work does not define one single model,

4.2 Scenarios for Process Integration

 72

which is useable for all types of collaborations that might occur anytime. Moreover, a few
typical collaboration scenarios from practice are generalized so that they can be applied to
any defined process [83], [82].

The Master and each Supplier know their own specific development process and approach
only from their point of view. As depicted in Figure 53, the process of Organization A and B
consists of three actions System Design, System Implementation, and System Test.
Organization C defines its processes on a finer grained level, i.e. Software Design, Software
Implementation, and Software Test. Of course, this does not represent an entire product
lifecycle; however, it is a sufficient part for illustrating this basic concept. As labeled in the
diagrams (Figure 53) they contain both control flow (in bold) and object flow, which means
that appropriate artifacts are also modeled as objects nodes, e.g., System Specification,
Implemented Software. In order to correctly follow process semantics, two activity parameter
nodes are added, that are System/Software Requirement Specification as input for System
Design and Software/System Test Record as output of Software/System Test.

4.2 Scenarios for Process Integration

4.2.1 Semantically Equivalent Processes

The first scenario defines the collaboration process of Organization A and B using
semantically equivalent processes. This significant assumption exists only in this scenario,
which means for the two root processes in Figure 53 that not only the action names are equal;
moreover, they mean exactly the same. This concerns the description of activities, e.g.,
identical steps, actions, used templates, programming languages etc., as well as the
interpretation of the appropriate partner process (Organization B), which is identical to its
own process. This means, in turn, that the Master (Organization A) expects any action or
activity from the potential Supplier (Organization B) to be exactly the same as in his own
organization. Therefore, the Master can replace any of his process steps by process steps from
the supplier, without expecting any compatibility or interface issues.

If this scenario is applied to the concurrent example in Figure 53 (root processes), it is
assumed that the Master wants to outsource the System Test to the selected Supplier, e.g., in
order to reduce cost or to get more independent results out of the System Test. The
collaborative process is depicted using swim lanes within UML activity diagrams. Due to the
fact of having equivalent processes defined, the Master can just transfer System Test to
Organization B, as illustrated in Figure 54. System Test is conducted by Organization B
without any further interface in-between. After System Test the control flow points back to the
Master, since – as stated before – this is the organization that controls and manages the
collaboration.

4 Solution Scenarios

 73

System
Design

System
Implementation

Organization A (Organization A (Master)
XOR

Organization B (Supplier))

System Design

Implemented
system

Requirement
Specification

System Test

Test
Record

Figure 54: Collaboration with equivalent processes

Application to practice

Referring to practical experience, this development scenario is very rare in industry. Every
company develops their specific products and has therefore specifically defined development
processes for both software and hardware that optimally support the business. The probability
that two development processes of two independent organizations are equivalent is very low.
However, experimental public R&D environments like universities might have identical
processes for conducting internships or even development projects [96].

4.2.2 Horizontal Integration

The scenario ‘Horizontal Integration’ is similar to the previous. However, this scenario gives
up the assumption that processes of the organizations are semantically equivalent. This is due
to the fact that in practice those processes to be connected are typically semantically not
equivalent.

The root processes in Figure 53 are still the same, but they do not mean the same anymore.
For instance, System Implementation of the Master is now differently done compared to
System Implementation of the Supplier, e.g. Organization A uses methods from agile
development, whereas Organization B follows the Rational Unified Process (RUP).
Consequently, actions or activities cannot be easily just exchanged anymore, because System
Implementation of the Supplier (Figure 53) may need other input artifacts than the Master
creates as output from System Design.

4.2 Scenarios for Process Integration

 74

In order to solve this issue the process integration approach provides a mediator (Figure 55)
that has been introduced and described in chapter 3.3.1.

<Action Y>

<Action X>

Handover

Handover

<Action Z>

(Organization A (Master)
AND

Organization B (Supplier))

Organization B (Supplier)Organization A (Master)

Artifact 4

Artifact 1 Artifact 2

Artifact 3

Control Flow

Control Flow

Control Flow

Control Flow

Figure 55: Mediator pattern for ‚Horizontal Integra tion’

Referring to the concurrent example, it is assumed that the Master wants to outsource the
System Implementation. Since the processes are not semantically equivalent the usage of the
mediator pattern is necessary to create a collaborative process as illustrated in Figure 56. The
scenario is called ‘Horizontal Integration’, because the action to be outsourced is pushed
horizontally into the root process.

System Design of Organization A is the connection point previous to the Handover action,
which needs to be newly included by following the definition of the mediator in Figure 47.
System Design Specification of the Master is a central input for the Handover action, since
this is the basis for further development activities. The execution of the Handover also results
in a System Design Specification, which is illustrated in Figure 56. The functionality of the
Handover action in this case is the conversion of the System Design Specification as output
from Master’s System Design to a System Design Specification as input for the Supplier.
Based on the System Design Specification of the Supplier, the System Implementation is
executed by the Supplier resulting in the Implemented System. The corresponding action on
the Master’s site is not necessary anymore; therefore, it is deleted. The artifact Implemented
System needs to be “converted” backwards to the Master’s format as input for System Test
(Master). For this purpose, another Handover action is included, according to the mediator
definition in Figure 55, which exactly creates that output in the desired format for the Master.
By having the second Handover added to the collaborative process, it is demonstrated that
both parties (Master and Supplier(s)) have to conduct and mutually agree upon this artifact.
Consequently, this is the basis for the System Test done by Organization A.

4 Solution Scenarios

 75

Handover

Handover

System Test

System Design

System
Implementation

(Organization A (Master)
AND

Organization B (Supplier))

Organization A (Master) Organization B (Supplier)

System Design
Specification

System Design
Specification

System
Requirement
Specification

Implemented
System

Implemented
System

System Test
Record

Control Flow

Control Flow

Control Flow

Control
Flow

Control
Flow

Control Flow

Figure 56: Collaborative Process for 'Horizontal Integration’

This scenario seems like a typically sub-order relationship as defined in V-Model XT® [79],
as a standard development model of the Federal Republic of Germany and guideline for
planning and conducting development projects [85]. However, this approach even extends
such a sub-order relationship due to the fact that indeed the process models are not
semantically equivalent, and process integration can be conducted at whatever point it is
intended; in turn, the decision of task allocation is not modeled in this process as it is with the
V-Model XT®.

Application to practice
The scenario very often applied in development businesses with short development cycles,
e.g., in mobile phone software development. For this purpose, component specifications are
handed over to a specific development site, for instance, India.

4.2.3 Additive Vertical Integration

Using the scenario ‘Additive Vertical Integration’ provides the possibility to include whole
action chains into a process. This is relevant if organizations want to outsource entire
development domains like software, hardware, or mechanical engineering.

4.2 Scenarios for Process Integration

 76

In order to illustrate this scenario, the initial root process from Figure 53 has to be slightly
modified as depicted in Figure 57. Organization A does now have a concrete software
development process portion defined containing Software Requirement Engineering, Software
Design, Software Implementation, and Software Test. The Supplier develops Hardware using
a process that consists of Hardware Design, Hardware Implementation, and Hardware Test.

Organization A (Master) Organization B (Supplier)

System Test
Design

System Test

Software Test

SW Requirement
Engineering

Hardware Design

Software
Implementation

HardwareTestSoftware Design

System Design

Hardware
Implementation

Hardware Design
Specification

Software Design
Specification

System
Requirement
Specification

Hardware
Requirement
Specification

System Design
Specification

HardwareTest
Record

Implemented
Hardware

Software
Requirement
Specification

Software Test
Record

System Test
Specification

Implemented
Software

System Test
Record

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Figure 57: Root process 'Additive Vertical Integration’

4 Solution Scenarios

 77

The appropriate mediator for this scenario is illustrated in Figure 58. The Master is again the
initiator of the collaborative process and <Action X> is the connector from the Master’s
development process, which is followed by Decomposition. This Decomposition is a newly
defined action that is necessary to allocate features to the software or hardware development
process. Decomposition is followed by two artifacts 2 and 5, which are created and defined in
a way that they are usable input for <sub-workflow A> (white) and <sub-workflow B> (red).
The output artifacts 3 and 6 of these sub-workflows are in the same type than the inputs. After
the development part Integration of software and hardware products takes place, which
essentially combines several features or sub-features that have been developed in different
domains towards one system or sub-system. As illustrated, the Integration is also newly
created and included as connection point. After Integration process flows back to the Master,
which is symbolized with <Action Y>.

The unique characteristic of this ‘Additive Vertical Integration’ scenario is parallelization of
actions and activities during product development.

Depending on the process granularity, there may exist several points of synchronization in-
between. From a practical point of view, the number of newly defined synchronization points
due to collaborative processes is limited, since hardware development does usually have other
milestones defined anyway. Those milestones differ from those of software development, e.g.,
hardware prototype manufacturing, non-destructive testing.

(Organization A (Master)
AND

Organization B (Supplier))

Organization B (Supplier)Organization A (Master)

<Sub Workflow B><Sub Workflow A>

Integration

Decomposition

<Action X>

<Action Y>

Artifact 4

Artifact 5

Artifact 6

Artifact 2

Artifact 3

Artifact 1

Control Flow

Control Flow

Control Flow

Control FlowControl Flow

Control Flow

Figure 58: Mediator for ‘Additive Vertical Integrat ion’

Going back to the concurrent example, it is now assumed that the Master develops a system
containing software and hardware. For this purpose the Master wants to outsource hardware
development. Concretely, an entire action chain, i.e., the hardware development process of

4.2 Scenarios for Process Integration

 78

the Supplier, needs to be included to generate a collaborative process, which is shown in
Figure 59.

Decomposition

Integration

Software
Implementation

System Design

Software Design

Software Test

System Test

Hardware Design

Hardware
Implementation

Hardware Test

Organization B (Supplier)Organization A (Master) (Organization A (Master)
AND

Organization B (Supplier))

Hardware Design
Specification

System Test
Specification

Software Design
Specification

System Test
Record

Software Test
Record

Implemented
Software

Software
Requirement
Specification

Hardware Test
Record

System Design
Specification

Hardware
Requirement
Specification

Implemented
Hardware

System
Requirement
Specification

Control Flow

Control Flow

Control Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control Flow

Control
Flow

Control
Flow

Control FlowControl Flow

Figure 59: Collaborative Process ‘Additive Vertical Integration’

4 Solution Scenarios

 79

System Design of Organization A is decomposed into a Requirement Specification for
hardware and software. The decomposition is – as in ‘Horizontal Integration’ – not only an
allocation of features, but also a mutual agreement of all parties participating in the
collaboration.

This encompasses:

• Allocation of features (as mentioned before)
• Type of templates to be used
• Clarification how configuration management is done
• Definition of synchronization points or milestones respectively within development

phase, incl. reports etc.

After development phase of software and hardware that ends with Software and Hardware
Test, a further Integration needs to take place. Within this action the implemented hardware is
brought together with the developed software. This includes on the one hand the mutual
agreement of Master and Supplier that hardware was developed the way the Master wanted to
have it. On the other hand software is technically flashed onto hardware. This includes also
integration testing, which is not modeled in Figure 59 to keep the scenario clear and less
confusing.

Application to practice

This scenario basically demonstrates ‘process parallelization’, which is nowadays applied in
almost every development organization. Referring to Figure 59, this collaborative process
could be used in any healthcare development department (e.g. computer tomograph, magnetic
resonance tomograph) where one business unit develops hardware components; whereas,
another business unit is responsible for software development.

Furthermore, mobile phone development does also apply for this scenario, e.g., if one
organization develops the hard case, chipset and responders like Bluetooth, Infrared, or Wi-Fi,
and another organization implements adequate software systems that supports all the
hardware functionality for the phone.

4.2.4 Alternative Vertical Integration

Following ‘Additive Vertical Integration’ the scenario ‘Alternative Vertical Integration’ is
derived. From a modeling perspective this scenario is very similar to the ‘Additive Vertical
Integration’ with one essential difference: processes are not executed in parallel, but
alternatively. The mediator for the scenario is depicted in Figure 60. It shows that only one
sub-workflow is executed at each process run, either <sub-workflow A> or <sub-workflow B>.
The decision which process path is taken is decided in the Rational Analysis that is an
additional, newly defined action in that scenario. After development run an Acceptance of
resulting work products or artifacts needs to be done. This is followed by a connection point
towards the Master (<Action Y>).

4.2 Scenarios for Process Integration

 80

<Sub Workflow A>

<Action Y>

<Action X>

Rational Analysis

Acceptance

<Sub Workflow B>

Organization A (Master) (Organization A (Master)
AND

Organization B (Supplier))

Organization B (Supplier)

Artfact 6

Artifact 1

Artifact 3

Artifact 4

Artifact 5Artifact 2

Control Flow

Control Flow

Control Flow

Control Flow Control Flow

Control Flow

Figure 60: Mediator for 'Alternative Vertical Integ ration’

For illustration purposes, the current root process in Figure 57 is again slightly modified as
depicted in Figure 61. The Supplier does not deliver hardware components, but safety-critical
software, due to its specialization and resulting special knowledge in this domain. The
collaborative process in the concurrent example is illustrated in Figure 62. After the Master’s
System Design a Rational Analysis starts to clarify which Organization implements dedicated
components. If any component contains safety-critical parts to be implemented, the Supplier
will be in charge of this component, otherwise the Master is responsible. After Rational
Analysis, the Master or Supplier develops the desired component. If the Supplier has been in
charge of a safety critical component Master and Supplier conduct the Acceptance meeting,
where the appropriate components are checked and validated whether they comply with the
definitions in the specification. After that, the workflow goes back to the Master’s initial
workflow (<Action Y>).

Application to practice

The scenario is mostly relevant in a longer lasting business relationship of two or more
partners, since the character of the scenario is rather ‘iterative’. This gets explicit by using the
Rational Analysis to evaluate, e.g., the safety criticality of a component. Typically, this does
make sense in case components need to be developed sporadically, instead of continuously in
a project.

This scenario could also be a sub-process of the entire collaborative process landscape where
iterative loops are defined and executed if necessary.

4 Solution Scenarios

 81

Safety-critical software concerns software that shall protects human’s life and should not be
mixed up with security software, e.g. a “digital doorman” before entering a website. Safety-
critical software is relevant, e.g., in trains that are used for public transportation, like the
German “Intercity Express (ICE)”. This software has to follow standard, e.g., CENELC15 in
which a software development organization might be specialized. This organization can offer
its know-how of CENELC conform programming to Federal Railway Authority or to another
supplying third party.

Organization A (Master) Organization B (Supplier)

System Test
Design

Software Test

System Test

Safety-Critical
Software Design

SW Requirement
Engineering

Safety-Critical
SoftwareTest

Safety-Critical
Software

Implementation

Software
Implementation

System Design

Software Design

Safety-Critical
Software Design

Specification

Software Design
Specification

Safety-Critical
Requirement
Specification

System
Requirement
Specification

Safety-Critical
SoftwareTest

Record

Software
Requirement
Specification

System Design
Specification

Safety-Critical
Implemented

Software

Software Test
Record

System Test
Specification

Implemented
Software

System Test
Record

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Figure 61: Root process 'Alternative Vertical Integration’

15 Comité Européen de Normalisation Électrotechnique (CENLEC)

4.2 Scenarios for Process Integration

 82

Acceptance

Rational Analysis

Safety-Critical
Software Design

Safety-Critical
Software Implementation

Safety-Critical
Software Test

System Design

System Test

Software Design

Software Implementation

Software Test

Organization B (Supplier)Organization A (Master) (Organization A (Master)
AND

Organization B (Supplier))

Safety-Critical
Software Requirement

Specification

System Design
Specification

System
Requirement
Specification

Software Test
Record

System Test
Record

System Test
Specification

Software
Requirement
Specification

Software Design
Specification

Implemented
Software

Safety-Critical
Software Design

Specification

Safety-Critical
Implemented

Software

Safety-Critical
Software Test

Record

Control Flow Control Flow

Control Flow

Control
Flow

Control
Flow

Control Flow

Control
Flow

Control Flow

Control Flow

Control Flow

Control
Flow

Control
Flow

Control
Flow

Figure 62: Collaborative Process: 'Alternative Vertical Integration’

4 Solution Scenarios

 83

4.2.5 Merging Integration

The scenario ‘Merging Integration’ brings in a significant difference compared to all previous
scenarios. As the naming already shows this scenario comes up with the possibility to have
newly defined activities. This means that activities are, e.g., enriched by merging them with
other activities from other organizations, resulting in new, evolutionary activities. The
mediator for this scenario has several characteristics, depending on how many organizations
are participating on the merge. This means, in turn, that a merge can also be conducted within
one single organization. These two different cases are explained in the following.

4.2.5.1 Integration with more than one organization

This scenario shows that some actions are executed conjointly, i.e., all participating
organizations are doing actions or activities together. The mediator for this scenario is
depicted in Figure 63.

<Action X>

<Action Y>

Handover

Synchronization

<Evolutionary
Actions> - new

(Organization A (Master)
AND / OR / XOR

Organization B (Supplier))

Organization B (Supplier)Organization A (Master)

Artifact 3 - new

Artifact 2 - new

Artifact 4

Artifact 1

Control Flow

Control Flow

Control
Flow

Control
Flow

Figure 63: Mediator for ‘Merging Integration’

<Action X> of the Master symbolizes again the connecting point to the Master’s processes.
Remark that no connecting action from Organization B is defined. The role model defines a
Synchronization action between Organization A and B with the “AND”, “OR”, or “XOR”
connector, which gives the Supplier the chance to share the Master’s intention what work
should be done jointly. This is the preparation step towards the jointly executed actions
containing mutually agreed artifacts. The resulting artifact ‘Artifact 2 – new’ documents

4.2 Scenarios for Process Integration

 84

Synchronization and functions as input for ‘<Evolutionary Actions> - new’. After finishing
the conjoint part, an additional Handover action needs to be added, which converts the output
‘Artifact 3 – new’ to ‘Artifact 4’. This conversion seems somewhat redundant; however, it
makes sure that Organization A gets exactly the right input artifacts for further process
execution. Having Artifact 2 as input, <Action Y> is again the connector back to the Master’s
organization.

The root processes for this scenario are illustrated in Figure 64, which is identical to Figure
53.

Organization A (Master) Organization B (Supplier)

System TestSystem Test

System Design

System
Implementation

System
Implementation

System Design

System
Requirement
Specification

System
Requirement
Specification

Implemented
System

System Design
Specification

System Test
Record

System Design
Specification

Implemented
System

System Test
RecordControl

Flow
Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Figure 64: Root process 'Merging Integration’

The scenario assumes that the Master organization intends to conduct system implementation
of a product with the supplier jointly. The Supplier (Organization B) is typically not familiar
with the Master’s product requirements. Therefore, it is crucial for the Master to have a
Synchronization action for both participating organizations implemented to make the Supplier
familiar with those product aspects necessary for implementation. In Figure 65 turns the
Synchronization turns the System Specification from Organization A into a System
Specification (green colored) usable for Organization B, which is commonly agreed upon
both organizations (Figure 65). The green colored actions are those which have to be added to
the initial process of Organization A and B. After conjoint implementation, another Handover
is necessary to give the product back to the Master for System Test.

Remarks: The collaborating parties are still distributed, although this scenario might suggest
that the participating organizations are in one location.

4 Solution Scenarios

 85

Application to practice

This scenario is useful in companies that develop leading edge products with an appropriate
technology. These organizations typically have a need to hire or acquire the best and special
individual resources or even small companies that provide the required know- how for new
technologies. These specialized resources need to be simultaneously included into the process,
which is possible using the ‘Merging Integration’ scenario. The advantage is that new and
innovative ideas can be discussed and tested right when they arise. For leading edge
innovations for the future, this is more effective than having synchronizations points from
time to time.

For instance, in the United States, a car is only sellable if it features a cup holder; this is
essentially due to the culture of the American people who very often have breakfast on the
way to work [88]. This enforces development organizations to establish specialists who
define requirements that are a “must have” for a product to be sold successfully in a special
country.

System Test

System Design

System
Implementation

Handover

Synchronization

(Organization A (Master)
AND

Organization B (Supplier))

Organization A (Master) Organization B (Supplier)

System Design
Specification

System Design
Specification

Implemented
System

Implemented
System

System
Requirement
Specification

System Test
Record

Control Flow

Control
Flow

Control
Flow

Control Flow

Control
Flow

Control
Flow

Figure 65: Collaborative Scenario: ‘Merging Integration’

4.2 Scenarios for Process Integration

 86

4.2.5.2 Integration with one organization

A ‘Merging Integration’ scenario is not restricted to a minimum of at least two participating
organizations. The respective mediator for the integration type within one single organization
is depicted in Figure 66.

Organization A (Master)

<Action Y>

<Action X>

<Evolutionary
Actions> - new

Artifact 3 - new

Artifact 2 - new

Artifact 1

Control
Flow

Control
Flow

Figure 66: Mediator “Evolutionary Integration” (sin gle organization)

It seems peculiar that this mediator only needs one swim lane, which is the one of
Organization A (Master). An explicit connection point for any intermediate actions like
Handover or Decomposition is not needed here. This makes this kind of mediator somewhat
“artificial”. Organization A decides to include another input artifact for a respective action
which will be executed during project run. Since the original activity will be changed by
including additional inputs the new action is also named <Evolutionary Actions-new>.
Actually, this is also a kind of merged action. However, due to the artificial character, this
mediator is rather used as an auxiliary function to support other integration operations,
especially Cross Level Integration in chapter 4.2.5.3.

The evolutionary scenario for this integration operation is illustrated in Figure 67. It defines
that Software Specification will function as input for System Implementation, which will
consequently change the activity itself. The resulting output artifact Implemented System as
such will not change since additional input for System Implementation came from a finer-
grained artifact (Software Design Specification). It is assumed that this will, on one hand,
refine Implemented System; on the other hand, the output from a system level view stays the
same.

4 Solution Scenarios

 87

Organization A (Master)

Requirement
Specification

System
Implementation*

System Test

System Design

Software Design
Specification

System Test
Record

System Design
Specification

Implemented
System

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Figure 67: Evolutionary Scenario: ‘Merging Integration’ (single organization)

4.2.5.3 Cross Level Integration

Having the ‘Merging Integration’ mediator for single organization defined the following
chapter will show how this “supplementary” mediator in Figure 66 (one single organization)
is applied to practice.

For cross-level integration, several integration scenarios are possible. Based on the previously
described initial processes, the integration functionality within three different integration
variants will be shortly discussed in the following. The respective scenarios are kept very
simple in order to illustrate the mediator’s functionality. Every cross- level integration is
actually a combination of two integration steps:

1. Evolutionary Integration (i.e. ‘Merging Integration’ with one single organization).
This is a pre-integration step that follows the mediator in Figure 66.

2. A standard integration scenario, e.g. ‘Horizontal Integration’ (for handing over a
specific artifact). This is the core integration of any other organization’s sub-process
into the master process as described in chapter 4.2

According to Figure 53 the relevant root processes for this scenario are now those of the
Master Organization A and Organization C as the supplying organization. These root
processes are again illustrated in Figure 68, showing Organization A has its process defined
on a coarser-grained level, i.e., system level, than Organization C. The process definition of

4.2 Scenarios for Process Integration

 88

Organization C is on software implementation level, i.e., finer- grained compared to
Organization A.

Organization A decides to take advantage from integrating Software Design Specification of
Organization C. This Software Design Specification as such is not defined in the Master’s
process. The respective integration of the specification takes place in two steps.

Organization A (Master) Organization C (Supplier)

System Test

System Design

System
Implementation

Software
Implementation

Software Test

Software Design

Software Design
Specification

Software Test
Record

Requirement
Specification

Implemented
Software

Requirement
Specification

System Design
Specification

System Test
Record

Implemented
System

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Figure 68: Root process ‘Merging Integration’ (cross level integration)

Variant 1: Sourcing pre-processing action

Variant 1 of cross- level integration is relevant if some actions/results from a supplier are
necessary before any other actions at the Master’s site can start. Therefore, it is called the
sourcing of pre-processing actions. Prior to execution of a Master’s core activity, all
necessary inputs for a core activity are collected first. The core activity in Figure 69 is System
Implementation. Necessary inputs for this core activity are System Design Specification and
Software Design Specification. It is intended that the Master wants to integrate the Software
Design Process of Organization C.

The evolutionary integration mediator in Figure 66 connects Software Requirement
Specification from System Design that is, therefore, transformed to System Design, since the
original System Design (Master in Figure 68) is not done by the Master alone anymore.

Furthermore, the Software Design Specification also requires an evolutionary integration to
get connected to System Implementation, which is, therefore, converted to System
Implementation.

4 Solution Scenarios

 89

The second part encompasses ‘Horizontal Integration’ of the Software Design process of
Organization C as depicted in Figure 68. The integration method takes Software Design – as
the process to be integrated – and “flanges” it to both Software Requirement Specification at
its beginning and Software Design Specification at its end.

System Implementation

Sourcing
Pre-processing action

System Design

Handover

Handover

Software Design

Organization A (Master) (Organization A (Master)
AND

Organization B (Supplier))

Organization C (Supplier)

System Requirement
Specification

Software Design
Specification

Software Design
Specification

Software
Requirement
Specification

System Design
Specification

System Test

Software
Requirement
Specification

Implemented
System

System Test
Record

Control
Flow

Control Flow

Control
Flow

Control Flow

Control
Flow

Control
Flow

Control
Flow

Figure 69: Cross Level Integration: Pre-processing activities

The newly derived Software Requirement Specification is necessary to source Software
Design of Organization C. The Requirement Specification transferred through the Handover

4.2 Scenarios for Process Integration

 90

activity of Organization A and C. After Software Design is conducted, Software Design
Specification itself is again converted from the supplier’s format (Figure 68) into the Master’s
format, which has been already created by the evolutionary integration step above.

In parallel, the Master creates his part of System Design Specification as a result of System
Design. Due to different granularity levels, the usage of the already defined scenario
‘Additive Vertical Integration’ is not possible. Therefore, the type of parallelism in Figure 69
is crucial since System Implementation needs input from two different artifacts. Integration of
Software Design Specification and System Design Specification is done within System Design.

After Handover of Software Design Specification, implementation of the system is started.
The Implemented System is system- tested via System Test resulting in System Test Record.
This terminates the process.

Variant 2: Sourcing core-processing action

The following variant for cross- level integration (Figure 70) deals with the fact that the
Master wants to have any additional functionality integrated during the run of System
Implementation. This approach is basically the same as within Variant 1.

The evolutionary integration allows for connecting Software Requirement Specification
(output) and the placeholder <any output> as input to the core activity System
Implementation.

The second step connects via ‘Horizontal Integration’ the required input from Organization C
to the collaborative workflow.

Integration of the input coming from the supplier is again done within System Implementation.
Again, process parallelism (‘Additive Vertical Integration’) cannot be applied since
distinguished process level granularities.

4 Solution Scenarios

 91

Handover

Handover

System Implementation

Sourcing
Core-processing action

System Design

<any action>

Organization A (Master) (Organization A (Master)
AND

Organization B (Supplier))

Organization C (Supplier)

Software
Requirement
Specification

<any output><any input>

Software
Requirement
Specification

System
Requirement
Specification

System Design
Specification

System Test

System Test
Record

Implemented
System

Control Flow

Control Flow

Control Flow

Control
Flow

Control
Flow

Control
Flow

Flow Control

Control
Flow

Figure 70: Cross Level Integration: Core-processing activities

Variant 3: Sourcing Post-Processing Action

Figure 71 shows Variant 3 of cross- level integration if the Master organization requires
additional inputs towards the end of core activity’s execution (System Implementation). All
required inputs are now collected by System Test. However, the basic principle is the same as
explained above in detail in Variant 1 and Variant 2.

4.2 Scenarios for Process Integration

 92

System
Implementation

Sourcing
Post-processing action

System Design

System Test

Handover

Handover

<any action>

Organization A (Master) (Organization A (Master)
AND

Organization B (Supplier))

Organization C (Supplier)

<any output>

Software
Requirement
Specification

Software
Requirement
Specification

System
Requirement
Specification

System Design
Specification

Implemented
System

<any input>

System Test
Record

Control Flow

Control
Flow

Control
Flow

Control
Flow

Control Flow

Control
Flow

Control
Flow

Figure 71: Cross Level Integration: Post-processing activities

4.2.6 Hierarchical Integration

‘Hierarchical Decomposition’ is an essential structural mean in process modeling activities.
This technique primarily promotes complexity handling of organizational processes
tremendously and leads towards a better usability in day-to-day work. Furthermore,

4 Solution Scenarios

 93

hierarchical decomposition improves reusability and maintainability. Consequently, process
hierarchies are typically used in complex process development environments, including
sophisticated software and/or hardware development process. This also contributes to the
supportive character of development processes.

The basic methodology and constraints of this dissertation are now crucial for the way of
solving the issue of hierarchical process integration. Among others, these constraints are:

• Integration of activities or actions results in a NEW collaborative process (Refer to
section 1.3 Scope of the Dissertation)

• Processes to be integrated are recursively defined
• Existing initial processes should not be changed

The following section gives a short definition of the problem to be solved if organizations
want to integrate hierarchical processes.

4.2.6.1 Initial Scenario

Organization A (Master) has the hierarchical process Software Implementation defined, which
is depicted on the left side in Figure 72. Additionally, Organization B (Supplier) has also a
hierarchical process System Implementation in place. These hierarchical processes can be
identified by recognizing the hierarchical action with the trident including the Software
Implementation process (Master) and System Implementation (Supplier). It is assumed that
the Master intends to take advantage of buying in Requirement Specification, Software
Design Specification and Software Implementation skills into its own system implementation
process. This would replace the Master’s requirement specification and software realization
process. The Software Design process is part of a hierarchical process in Organization B
(Supplier). The challenge is to include the encircled part of the Supplier’s process (in Figure
72) into the placeholder indicated in Organization A’s process.

Remembering that hierarchical decomposition in process environments is a mean for a more
efficient way to handle process complexity and to support reusability, processes of
Organization A and B can also be visualized in a different way by having a different view on
it. The derivation of this view is exemplary for Organization B modeled in Figure 73. All
three parts are briefly explained in the following.

4.2 Scenarios for Process Integration

 94

Organization A (Master)

Software Implementation

Software
Implementation :

Hierarchical Action

System Test

Requirement
Engineering

Market
Evaluation

Software Module
Test Record

Realized
Software

Software
Realization

Software
Module Test

Requirement
Specification

Market
Information

Implemented
Software

System
Test Record

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Organization B (Supplier)

System Implementation

Hierarchical Action :
System Implementation

Market
Evaluation

System Test

Requirement
Engineering

Implemented
Software

Software Test
Record

Software Design
Specification

Software Test

Requirememt
Specification Software

Implementation

Software
Design

System Test
Record

Implemented
System

Market
Information

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Figure 72: Initial Processes for ‘Hierarchical Integration’

b) Without Hierarchy

In this case (Figure 73 b) the hierarchical action is dissolved (“flattened”) and control and
object flow are defined according UML [100]. Focusing the relevant hierarchical interface
portions control flow goes from Requirement Engineering to Software Design and from
Software Test Record to System Test. Furthermore, data flow is defined from Requirement
Specification to Software Design and from Software Test Record to System Test.

a) With hierarchy

This case leaves out the entire detailed System Implementation sub-process and shows the
hierarchical action only. Specifically, the illustration in Figure 73 a) shows the control flow
defined from Requirement Engineering to the hierarchical action System Implementation and
additionally from hierarchical action System Implementation to System Test.

Object Flow definition follows the UML specification [100] respectively; this means that the
artifact Requirement Specification serves as input for System Implementation, which generates
the Implemented System.

4 Solution Scenarios

 95

 a)

c)

b)
Organization B (Supplier)

Hierarchical
Action : System
Implementation

Market
Evaluation

Requirement
Engineering

System Test

System Test
Record

Requirement
Specification

Implemented
System

Market
Information

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Organization B (Supplier)

Requirement
Engineering

Market
Evaluation

System Test

Software
Implementation

Software
Design

Software Test

System Test
Record

Requirement
Specification

Software
Design

Specification

Software Test
Record

Market
Information

Implemented
Software

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Organization B (Supplier)

Hierarchical Action :
System Implementation

Requirement
Engineering

System Test

Market
Evaluation

Software
Implementation

Requirement
Specification

Software Test

System Test
Record

Software
Design

Software
Design

Specification

Software Test
Record

Market
Information

Implemented
Software

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Figure 73: a) Hierarchical Process;

b) Dissolved hierarchical process;
c) Dissolved hierarchical process (“Hybrid view”)

4.2 Scenarios for Process Integration

 96

c) With and without hierarchy (“Hybrid View”)

Figure 73 c) now depicts a combination of both a process with and without hierarchy, a so-
called “hybrid view”. This “hybrid view” is necessary, because the definition of
organizational hierarchical processes follow a certain purpose. The process integration
approach of this work wants to keep original processes as far as possible, which means that
hierarchy should not be given up for setting up collaborative processes. This increases
recognition of processes and therefore acceptance within collaborative process users.

For better optical orientation, the control flows arrows are also illustrated in bold. From a
control flow perspective the original hierarchy is dissolved, i.e., lower hierarchical levels are
brought up to the first process level. However, the hierarchical action still exists (System
Implementation).

Remarks: The modeling of the hierarchical action does not follow actually the official UML
modeling rules of a call behavior action.

The basic modeling concept of the “hybrid-view” in Figure 73 c) has to bring together also
the two process variants, with and without hierarchy. This always means that two control
flows going into the hierarchical action, i.e., in Figure 73 c) Requirement Engineering is
connected with the hierarchical action System Implementation and with Software Design (as
the inner part of hierarchical action). Only one object flow connects Requirement
Specification with Software Design. A further object flow between Requirement Engineering
and System Implementation is not necessary, since the hierarchical action System
Implementation symbolizes just a pointer to the hierarchical sub-process and has
consequently no content.

Furthermore, two control flows and one object are coming from the hierarchical action, i.e.,
System Implementation to System Test and Software Design to System Test. The outgoing
object flow is defined from Software Test Record to System Test.

4.2.6.2 Integration Procedure

The hybrid view in Figure 73 c) essential supports integration of actions and activities,
because one can use already- defined integration mechanism and scenarios of this work
respectively. The hierarchical integration itself is done in several steps, which will be
explained in the following.

Dissolution of Hierarchy
The defined hierarchy is first of all dissolved. This means that especially the process parts to
be integrated are modeled sequentially. This is depicted in Figure 74.

4 Solution Scenarios

 97

Organization A (Master)

System Test

Requirement
Engineering

Market
Evaluation

Software Module
Test

Software
Realization

Software Module
Test Record

Realized
Software

Requirement
Specification

System
Test Record

Market
Information

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Organization B (Supplier)

Requirement
Engineering

Market
Evaluation

System Test

Software
Implementation

Software Test

Requirement
Specification

System Test
Record

Software
Design

Software
Design

Specification

Software Test
Record

Market
Information

Implemented
Software

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Figure 74: Dissolution of Hierarchies of Organization A (left) and B (right)

The usage of the mediator for ‘Horizontal Integration’ is in this case appropriate (please refer
to Figure 55). The collaborative process is illustrated in Figure 75 without having hierarchy
incorporated. Different hierarchical levels from various organizations are still depicted with
the original color code.

4.2 Scenarios for Process Integration

 98

Market
Evaluation

Handover

Handover

Requirement
Engineering

Organization B (Supplier)(Organization A
AND

Organization B)

Organization A (Master)

Requirement
Specification

Market
Information

Market
Information

Realized
Software

System Test

Software Module
Test

Software Module
Test Record

Software
Implementation

Software
Design

Software
Design

Specification

Implemented
Software

System
Test Record

Control Flow

Control Flow

Control Flow

Control
Flow

Control Flow

Control
Flow

Control
Flow

Control
Flow

Figure 75: Process Integration by Means of defined Mediators

Based on Figure 75, the new hierarchy shall be defined, which should be in accordance with
former hierarchy definitions to get the best possible recognition from process users. In
Figure 76, all Software Design, Implementation, and Test actions are assigned to Software
Implementation as a hierarchical action. This is advantageous for both organizations A and B,

4 Solution Scenarios

 99

since all those actions have been also hierarchically defined prior to integration, which
increase recognition and acceptance cross-organizationally.

Organization B (Supplier)(Organization A
AND

Organization B)

Organization A (Master)

Software Implementation

System Test

Market
Evaluation

Software Module
Test

Software Module
Test Record

Handover

Handover

Software
Implementation

Software
Design

Requirement
Engineering

Requirement
Specification

Software
Design

Specification

Market
Information

Market
Information

Implemented
Software

Realized
Software

System
Test Record

Control Flow

Control Flow

Control Flow

Control Flow

Control Flow

Control
Flow

Control Flow

Control
Flow

Control
Flow

Control
Flow

Figure 76: Re-definition of Hierarchy

4.2 Scenarios for Process Integration

 100

4.2.6.3 Further Hierarchical Mediator Definitions – Special Cases

This section briefly depicts special mediators for those cases integrating only hierarchical
processes partly or entirely from one organizational process exclusively. In this case, the
patterns discussed in chapter 4.2 are slightly modified by having those actions to be integrated
in hybrid-view.

The mediator for hierarchical integration based on ‘Horizontal Integration’ is illustrated in
Figure 77 and is identical to the standard mediator as shown in Figure 47. However, the
action to be integrated from Organization B (<Hierarchical Actions>) comes originally from a
hierarchical sub-process. This is the reason why those actions are depicted in hybrid-mode in
the mediator for building up a collaborative process based on ‘Horizontal Integration’ (Figure
77).

Handover

Handover

<Action X>

<Action Y>

Organization B (Supplier)(Organization A (Master)
AND

Organization B (Supplier))

Organization A (Master)

Artifact 5

Artifact 1 Artifact 2

Artifact 4

Hierarchical Action

<Hierarchical
Actions>

Artifact 3

Control Flow

Control Flow

Control
Flow

Control Flow

Control Flow

Control Flow

Figure 77: Mediator for 'Hierarchical Integration’ based on ‘Horizontal Integration’

Figure 78 depicts the hierarchical mediator for ‘Additive Vertical Integration’. Remark that
Artifact 3 is not defined within the Hierarchical Action. The mediator defines two control
flows starting from the Fork Node, one towards the Hierarchical Action and another one
towards the first action of <Sub Workflow B>, which is sourced by Artifact 3. In turn, there
are also two control flows defined into the Join Node starting from Hierarchical Action and
from the last action of the <Sub Workflow B>.

Integration of hierarchical action using ‘Alternative Vertical Integration’ as shown in the
mediator pattern in Figure 79 follows the same methodology as the one for ‘Additive Vertical
Integration’.

4 Solution Scenarios

 101

<Action Y>

Organization B (Supplier)(Organization A (Master)
AND

Organization B (Supplier))

Organization A (Master)

Hierarchical Action

<Sub Workflow B><Sub Workflow A>

Integration

Decomposition

<Action X>

Artifact 2

Artfact 5

Artifact 3

Artifact 6

Artifact 4

Artifact 1

Control Flow

Control Flow

Control Flow

Control Flow

Control Flow

Control Flow

Control Flow

Control Flow

Figure 78: Mediator for ‚Hierarchical Integration’ based on ‘Additive Vertical Integration’

<Action Y>

Acceptance

(Organization A (Master)
AND

Organization B (Supplier))

Organization B (Supplier)Organization A (Master)

Hierarchical Action

<Sub Workflow B><Sub Workflow A>

Rational Analysis

<Action X>

Artfact 5

Artifact 3

Artifact 2

Artifact 6

Artifact 4

Artifact 1

Control Flow

Control Flow

Control Flow

Control Flow

Control Flow

Control Flow

Control Flow

Control Flow

Figure 79: Mediator for ‘Hierarchical Integration’ based on ‘Alternative Vertical Integration’

4.2 Scenarios for Process Integration

 102

Hierarchical Action

Handover

Synchronization

<Evolutionary
Actions> - new

<Action X>

<Action Y>

(Organization A (Master)
AND

Organization B (Supplier))

Organization B (Supplier)Organization A (Master)

Artifact 3 - new

Artifact 2 - new

Artifact 4

Artifact 1

Control
Flow

Control Flow

Control
Flow

Control Flow

Figure 80: Mediator for ‘Hierarchical Integration’ based on ‘Merging Integration’

In case of having hierarchical actions to be integrated where the pattern from scenario
‘Merging Integration’ should be used, it is also assumed that – as in the scenarios before –
Organization B has hierarchical processes defined. These actions/activities Organization A
(Master) want to have integrated and executed jointly as depicted in Figure 80. The remaining
methodology of the approach is analog to the other mediator pattern for hierarchical process
integration.

General remarks: All scenarios within the introduced special cases could also be defined vice
versa, if Organization A had a hierarchical (sub-) process defined. For this scenario, the
Hierarchical Activity in the mediator (Figure 79) would have shifted to the Master.

4.2.7 Alternative Approaches for Software Development Collaborations

Besides the mediator pattern approach for process integration, there are some other ways and
methodologies to collaborate. In the following, these possibilities are briefly introduced and
discussed.

Artifact-centric approach
An artifact based (“artifact-centric”) process approach is a methodology, which is also often
used in practice to set-up collaborations and cooperation between various parties. The core
idea addresses the fact that several artifacts are necessary for any collaboration/cooperation to
develop a product. These artifacts are driven by business data or business entities. In contrast
to a process-or activity centric approach, this approach describes how these data are updated

4 Solution Scenarios

 103

or changed by typically using a status model. Figure 81 shows that several domains are
interested in artifacts and contribute to them towards finalization [152].

CustomerCustomer RetailerRetailer SupplierSupplier ShipperShipper

Sales Dept. Purchasing Dept.

Accounting Dept.

Customer Artifact

Product Artifact

Order Artifact

Shipping Artifact

Invoice Artifact

Figure 81: Business artifacts in collaborative business processes

Dependencies regarding process control flow between collaborating organizations are not
obviously defined, since there is no process landscape institutionalized. Processes are
amorphous from an activity perspective, i.e., they are not explicitly described and
documented. This fact makes it very difficult to define proper process integration points to
make sure that artifacts are available at critical points (activities) in a workflow.

Figure 82: Artifact oriented development approach

Compared to structured collaborative process integration (e.g. pattern-based like in this
dissertation) no defined connection points are set up when following this approach. One could

4.3 Formalization

 104

argue that an activity diagram as used in this collaborative process integration approach is
also able to model artifacts by the means of an object flow. However, one process step might
create more than one artifact. This makes it very challenging to define collaboration processes
that illustrate all dependencies and simultaneously supporting all organizations by a clearly
represented process. Additionally, the artifact centric approach does not use the advantage of
a Master organization, which is a coordinating instance. Figure 82 depicts that approach and
illustrates that no coordinating instance is defined.

Ad hoc drawing approach
This approach uses trivial means for defining and creating collaborative processes, i.e., any
drawing tool, which might also produce the goal of being able to create proper process for
development collaborations. However, this kind of instant or ad hoc approach does not
provide benefits (e.g. quick and structured process set-up through pattern availability) of
structured pre-defined interfaces an organization can rely on during process definition and
execution. Especially, if processes and interfaces in further projects are defined once again,
they will slightly differ from the one in a previous project. This negatively affects the process
consistency and stability of organizational workflows, especially if projects turn more
complex and complicated.

4.3 Formalization

Collaborative scenarios and patterns are useful means to get a process set up for globally-
defined project, especially with dispersed development teams. These scenarios visualize
processes executed during development run.

A major challenge of process handling is the definition phase. In order to provide hands-on
support for collaborative process definition, the entire procedure shall be subject to
automation. For automation purposes, it is crucial to define exactly how integration approach
works. Therefore, the activity diagram- based representations need to be formalized. In order
to adequately address this issue, a graph- based representation has been chosen, which is the
most intuitive and obvious way to formalize UML activity diagrams.

Generally, an activity diagram consists of nodes and edges. An edge is described as a pair of
nodes. A node is either a 3-tupel consisting of an identifier (i), a type (t), and a role (r). 4-
tuple nodes additionally encompass or point to a (hierarchical) activity diagram ad.

A node ND∈AD is defined in Definition 1. AD is defined according Definition 1.

Definition 1.

({ }) { }()ADRoleyNDRoleNDNDND haidtypeidDEF ×><××∪><××= hay\

where

• NDid is the infinite set of all node identifiers
• the set of ROLE defined in chapter 4.3.1
• NDtype =DEF { yaction, yha, yartifact, ystart, yend, yfork, yjoin, ybranch, ymerge } is the finite set of all

node types (for visualization please also refer to Table 9)
• AD is the infinite set of activity diagrams defined in Definition 2

4 Solution Scenarios

 105

A node ND is defined either as 3-tupel or 4-tupel, depending on whether a concrete node nd
is a hierarchical node. Consequently, the cross product “NDid x {yha} x ROLE x AD“, is a 4-
tupel, because the considered node AD references another (sub-) activity diagram. Thereby,
Ndtype is automatically defined as {yha} according to Definition 1.
For better illustration, the finite set of all possible node types NDtype is listed in Table 9:

Table 9: Finite Set of Possible Node Types and Role Relationships

yaction <action>

yfork

<action>

<action><action>

yartifact <artifact>

yjoin

<action>

<action><action>

yha
<hierarchical

action>

ybranch

<action>

<action> <action>

ystart

ymerge

<action>

<action><action>

yend

The intersection set operation is defined as:

Definition 2.

ADADADDEF →×=I

The concrete application of this operation ensures that ad1 and ad2 have no node in common:

Definition 3.

),()),(),,((2121222111 EdEdNdNdEdNdadEdNdad ∩∩===I

AD is defined as the infinite set of all possible existing activity diagrams. ADFLAT is the set of all
non-hierarchical activity diagrams.

4.3 Formalization

 106

Definition 4.
()

() () () ()

≠∧=∧=∈∀
×⊆⊆

=
finiteNd

ytrrttNdrtirti

NdNdEdNDNd

AD HADEF
FLAT ,:,,,,,

|,

121212211

><∈∧
∧

−∧
∈∧

=

∨

∈

=
−−−−

−−−−

ROLEr

adinunusedidentifieranisid

EdEDbyrelatedadofgraphsubclosedaisad

ADad

EdEdridadadhierarchycreatead

ADadad

AD
AsFROMAAsToAsub

ASFROMAASTOAsub

FLAT

DEF

'

,''

'

),,,,','(_

|

By having processes from two or more different organizations defined, it is important that the
used actions are uniquely used throughout the cross organizational set of activity diagrams
Ad. However, the repetitive use of any node is allowed by calling an activity diagrams AD
recursively independently from depth of interlacing. Additionally, it is allowed that nodes used in
lower level of interlacing, i.e. sub-graphs like As, are part of the set upper levels (e.g. A): As ⊆ A.

Definition 5 uses the function hierarchycreate_ , which is generally defined as:

Definition 5.

}{)()(:_ ⊗∪→×℘×××℘><××× ADNDNDNDNDROLENDADADhierarchycreate id

The symbol “⊗” defines a non-valid return value. A valid hierarchical process definition is ensured
if

• AD is valid and

• the function hierarchycreate_ creates again a valid activity diagram AD after
hierarchy re-definition

A more detailed definition of hierarchycreate_ is given in the following.

{ }

() ()

()

()

⊗

=

 ∩

•
•

∪∪

==∪

====

−−∈

−−∈

−−∈−−∈

−−−−

otherwise

Nd
rpredecessondadgraphpartial

successorndadgraphpartial

if

ndndndndEd

adroleytpyeidndNd

EdEdroleidEdNdadEdNdadhierarchycreate

As

AsFROMAEdFROMndFROMnd
TOA

AsTOAEdTOndTOnd

TOA

AsFROMAEdFROMndFROMnd

FROMHA

AsTOAEdTOndTOnd

HATOA

AsHAHAA

AsFROMAAsTOAAsAsAsAAA

U

U

UU

,

,

A

As-FROM-AAs-To-AAAs

,,

),,(_

),,(_

adin identifier unusedan is id

Ed ,Edby related ad ofgraph -sub closed is ad

),(),(

,),,,(

),,,),,(),,((:_

4 Solution Scenarios

 107

where
• Aad represents the entire activity diagram prior to hierarchy re-definition

• Asad represents an activity diagram referenced by the new hierarchical action ndHA

• id is the node ID of the hierarchical action (HA) after hierarchy re-definition
• role is the role of the new hierarchical action
• AsTOAEd −− is the set of edges to identify the entry node of the hierarchical graph adAs

• AsFORMAEd −− is the set of edges to identify the exit node of the hierarchical graph adAs

For better illustration of the meaning of each parameter within hierarchycreate_ all function
arguments are graphically depicted in Figure 83.

Organization A (Master)

Software
Implementation :

Hierarchical Action

System Test

Requirement
Engineering

Market
Evaluation

Software Module
Test

Software
Realization

Software Module
Test Record

Realized
Software

Market
Information

Requirement
Specification

System
Test Record

create_hierarchy:=

(adA = (NdA, EdA), adAS = (NdAs, EDAs), id, role, EdA-TO-As, EdA-FROM-As

adA

adAs

Id = Software Implementation

Role = Organization A (Master)

EdA-TO-As

EdA-FROM-As

1 2 3 4 5 6

1

2

3

4

5

6

Figure 83: Parameter explanation of hierarchycreate_ function

That part of the hierarchical graph adAs, which will be integrated, shall be a closed_sub_graph
of adAs with EdA-TO-As and EdA-FROM-As as the respective set of edges going into and coming
from adAs.

In order to get validity of adAs approved, the auxiliary function graphpartial _ is used. This
function creates the concrete hierarchical graph adAs by collecting the set of successor and
predecessor of one node.

4.3 Formalization

 108

In Definition 6, graphpartial _ is recursively defined and maps to the partition set℘of ND.

Definition 6.

)(},{:_ NDsuccesorrpredessesoNDADgraphpartial ℘→××

∪

∅=

==

∈
U

),(

),,,(_}{

),(,}{

),),,((_

ndadfnd

otherwisefndadgraphpartialnd

ndadfifnd

fndEdNdadgraphpartial

The functionf takes as input the concrete activity diagram (hierarchical graph) ad and any

node nd ∈ ad. The set of Roles does not need to be explicitly mentioned in the set of

parameters within graphpartial _ , since it is implicitly defined through the set of nodes ND
in Definition 1.

The function successor maps the corresponding nodes to the partition set℘ of ND and

collects all nodes in the set union Und .

Definition 7.

)(: NDNDADsuccessor ℘→×

U
Edndnd

ndndEdNdadsuccessor
∈

==
),(

)),,((

The function rpredesseso maps the corresponding nodes to the partition set℘of ND and

collects all nodes in the set union Und .

Definition 8.

)(: NDNDADrpredecesso ℘→×

U
Edndnd

ndndEdNdadrpredecesso
∈

==
),(

)),,((

4.3.1 Role Definition

The syntax to define a role descriptor is as follows:

Definition 9.

() ><>><<><=>< ROLESINGLEROLEOpIDROLEROLE _||:
where

• <OpID> := AND || OR || XOR
• <SINGLE_ROLE> := ([{‘A’-‘Z’}], [{‘a’-‘z’}], [{‘0’-‘9’}])*

<SINGLE_ROLE> accepts values that follow the Extended Backus-Naur-Form (EBNF) notation
[73]. The formalization mechanism has to use parentheses as a mean for role groupings. For

4 Solution Scenarios

 109

instance, OrgA AND (OrgB OR OrgC) is not equal to (OrgA AND OrgB) OR OrgC. The finite set
of all possible role types is listed in Table 10:

Table 10: Finite Set of Possible Role Connectors

AND
(relationship)

(Organization A
AND

Organization B)

Organization A Organization B

OR
(relationship)

Organization A Organization B(Organization A
OR

Organization B)

XOR
(relationship)

Organization A Organization B(Organization A
XOR

Organization B)

4.3.2 Closed Sub-graph Definition

Differentiation between processes and sub-processes is crucial for formalizing integration
operations used in this dissertation. In general, a closed sub-graph defines those nodes and
edges that are to be integrated in another process.
The notion of a so- called ‘closed sub-graph’ is defined in Definition 10:

Definition 10.

AAsAAs EdEdNdNdADAofgraphsubclosedisADAs ⊆∧⊆⇔∈∈ ____

Figure 84 illustrates this formalism in general and relates Graph (A) to Sub-graph (As) in an
activity diagram. In this case As is exactly the set of those nodes that will be integrated into
another organization’s process.

A

As
Subgraph
Graph

EdA-OUT-As

EdA-TO-As

EdA-IN-As

EdA-FROM-As

Figure 84: Abstract differentiation of Graph and Sub graph

In addition to nodes, edges between the nodes have to be defined. Basically, four different
types of edges are defined, which are also labeled in Figure 84:

• edges lying outside of As (OUT), e.g. EdA-out-As
• edges leading into As (TO), e.g. EdA-TO-As
• edges lying inside of As (IN), e.g. EdA-IN-As, and
• edges moving out of As (FROM), EdA-FROM-As

4.3 Formalization

 110

A sub-graph restricts its edges to stay within sub-graph’s nodes – that’s why it is closed. The
formalization of edges is defined as the following:

• EdA-OUT-As =DEF { (s,t)∈EdA | s∉EdAs ∧ t∉EdAs }.
• EdA-TO-As =DEF { (s,t)∈EdA | s∉EdAs ∧ t∈EdAs }.
• EdA-IN-As =DEF { (s,t)∈EdA | s∈EdAs ∧ t∈EdAs }.
• EdA-FROM-As =DEF { (s,t)∈EdA | s∈EdAs ∧ t∉EdAs }.

4.3.3 Hierarchical Graph Definition

As described in chapter 4.2.6, formalization of ‘Hierarchical Integration’ is special insofar that the
hierarchical action points to the sub-process to be integrated.

Organization B (Supplier)

Hierarchical Action :
System Implementation

System Test

Requirement
Engineering

Market
Evaluation

Software
Implementation

Requirement
Specification

Software
Design

System Test
Record

Software Test

Software
Design

Specification

Software Test
Record

Market
Information

Implemented
Software

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Figure 85: “Hybrid-View” of Hierarchical Processes

4 Solution Scenarios

 111

This sub-process is actually an entire process or activity diagram (System Implementation).
Formalization of hierarchical processes takes place by using the “hybrid-view” as basis (Figure 85).
The abstract view of the Hybrid View is depicted in Figure 86. The hierarchical action System
Implementation is represented by the HA action node (dotted line). The content of System
Implementation – which is basically the Software Design, -Implementation, and -Test – is defined
with the sub-graph adAs.

A

adAs

Subgraph

Graph

EdA-OUT-As

EdA-TO-adAs

EdA-IN-As

EdA-FROM-adAs

Hierarchical Action
(HA)

EdA-TO-HA

EdA-FROM-HA

ndHA

Figure 86: Abstract view of “Hybrid View”

The “hybrid view” incorporates two new edges, EdA-TO-HA and EdA-FROM-HA. The formalization
of edges is defined as the following:

• EdA-TO-HA =DEF { (s,t)∈EdA | s∈EdA ∧ t∈{yHA} }
• EdA-FROM-HA =DEF { (s,t)∈EdA | s∈{yHA} ∧ t∉EdadHA }

Furthermore, all nodes from adAs

 ⊆ A. The graph adAs differs from sub-graph As that As ⊆ adAs
 .

4.3.4 Mapping Methodology Definition

Furthermore, mappings are necessary to describe exactly, which node of the Master’s process
to connect with a node of the Supplier’s process and vice versa. In order to include a sub-graph
into a Master process, it is sufficient to just connect the sub-graph’s border nodes. To be more
precisely, these are the nodes that are connected with a ‘TO’ or ‘FROM’-edge.

The set of all possible mappings for a given pair As and Bs of sub-graphs is defined as follows:

Definition 11.

() ()
() ()

∈∃⇒∈∀
∈∃⇒∈∀

×⊆
=

−−−

−−−

−

−

BsAsAsFROMA

BsAsAsTOA

BsAsBsAs

DEFBsAs

MAPnnEdns

MAPnnEdns

NdNdMAP

MAP

',,

,',,

|

The formula says that for all edges Ed going from graph A into a sub-graph As (=EdA-TO-As) a
corresponding node must be existent within graph B. This is the corresponding node, which is
connected with an edge to be defined in an appropriate scenario. The mapping works also the
other way back to graph A (=EdA-FROM-As). Figure 87 visualizes the mapping, showing orange
arcs that symbolize those nodes to be mapped towards integration.

4.3 Formalization

 112

Remarks:

This mapping considers a pair of nodes; the orange arcs are not edges that connect any pair of
nodes.

A

As Subgraph

B

Bs

n n‘MapAs-Bs

GraphEdA-OUT-As

EdA-TO-As

EdA-IN-As

EdA-FROM-As

A

As Subgraph

B

Bs

n n‘MapAs-Bs

GraphEdA-OUT-As

EdA-TO-As

EdA-IN-As

EdA-FROM-As

Figure 87: Abstract illustration of mapping functionality

Having the edges and ‘mapping’ methodology as the basis, it is now possible to create an
integration operation, which takes two graphs, two respective sub-graphs, and one mapping as
arguments and produces an integration operation in order to generate a combined process:

Definition 12.

() ,,,,,graph_integrate ABMAPBsBAsA DEFBsAs =−
where

• NdAB = ((NdA ∪ NdB) \ NdDel) ∪ NdAdd
• EdAB = ((EdA∪ EdB) \ EdDel) ∪ EdAdd
• NdDel = //to be defined by concrete integration operation
• NdAdd = //to be defined by concrete integration operation
• EdDel = //to be defined by concrete integration operation
• EdAdd = //to be defined by concrete integration operation

Thereby,

• NdAB / EdAB is the set of nodes / edges from the original graphs A and B
• NdDel / EdDel is set of nodes /edges to be deleted
• NdAdd / EdAdd is set of nodes /edges to be added

This integration function is the basis for every subsequent integration function defined for
each collaborative scenario. Considering the constraints of the function integrate_graph(), the
set of nodes and edges need to be appropriately restricted to the amount that are crucial for
the collaborative graph (or process respectively).

The abstract diagrams created to illustrate the collaborative process incorporate a defined
color code:

Red: delete edge from root process
Light Blue: delete node from root process
Green: added node and edge for collaborative process

The following legend explains how formalization is applied within the process integration
scenarios.

4 Solution Scenarios

 113

Handover

Handover

Hierarchical
Action : System
Implementation

Software
Implementation

Software
Design

Organization B (Supplier)(Organization A (Master)
AND

Organization B (Supplier))

Software Design
Specification

Requirement
Specification

Implemented
Software

Control Flow

Control Flow

Control Flow

Control Flow

Control
Flow

Control Flow

System Design

Handover

System
Implementation

(Organization A (Master)
AND

Organization B (Supplier))

Organization A (Master) Organization B (Supplier)

System Design
Specification

System Design
Specification

System
Requirement
Specification

Control Flow

Control
Flow

Control Flow

(SysRequSpec, yartifact, OrgA)

NdID Ndtype ROLE

(Sys.Impl., yha, OrgB, Sys. Impl.)

NdID Ndtype ROLE adHA

3-Tupel node:

4-Tupel node:

Figure 88: Explanation of Node Parameters

4.3.5 Semantically Equivalent Processes

In the following chapter, all scenarios are formalized using the concurrent examples initially
introduced in chapter 4.1.2.

The collaborative scenario with semantically equivalent processes does not need any mediator,
because actions and activities are not only named equally, they mean exactly the same.
Consequently, desired actions can just be included into the Master’s workflow.

The initial root process is depicted in Figure 53 that models control- and data flow. The
formalization of the control flow for Organization A with respect to Definition 1 is defined as
follows:

4.3 Formalization

 114

Definition 13.
A = ({

(Start, ystart, OrgA), (End, yend, OrgA), (SysDes, yaction, OrgA), (SysImpl, yaction, OrgA),
(SysTest, yaction, OrgA)

} , {

((Start,ystart, OrgA),(SysDes, yaction, OrgA)),
((SysDes,yaction, OrgA),(SysImpl,yaction, OrgA)),
((SysImpl,yaction, OrgA),(SysTest,yaction, OrgA)),
((SysTest,yaction, OrgA),(End,yend, OrgA))

 })

Please note that the first curly bracket in Definition 13 contains the set of all nodes needed for
setting up the control flow graph A. A is meant to be the activity diagram of Organization A,
which is the master. The second curly bracket contains all edges needed for the graph set-up.
For better readability, each line always contains one edge including the starting and ending
node of the edge.

Generally, the control flow in Definition 13 is not sufficient for a comprehensive
understanding of a collaborative process, since practice shows that many development
processes are defined and executed ‘artifact-oriented’, i.e., process follows the required
artifacts, which, in turn, requires data flow formalizations as an essential aspect. In the
following data flow and root process for Organization A (Master) and B (Supplier) are
defined:

Definition 14.

A = ({
(Start,ystart, OrgA), (End,yend, OrgA),
(SysDesign, yaction, OrgA), (SysImpl, yaction, OrgA), (SysTest, yaction, OrgA),
(SysRequSpec, yartifact, OrgA), (SysDesignSpec, yartifact, OrgA), (ImplSys,yartifact, OrgA),

 (SysTestRec, yartifact, OrgA)

} , {

//[Controlflow]
((Start, ystart, OrgA), (SysDesign, yaction, OrgA)),
((SysDesign, yaction, OrgA), (SysImpl, yaction, OrgA)),
((SysImpl, yaction, OrgA), (SysTest, yaction, OrgA)),
((SysTest, yaction, OrgA), (End, yend, OrgA))

//[Dataflow]
((SysRequSpec, yartifact, OrgA), (SysDesign, yaction, OrgA)),

 ((SysDesign, yaction, OrgA), (SysDesignSpec, yartifact, OrgA)),
 ((SysDesignSpec, yartifact, OrgA), (SysImpl, yaction, OrgA)),
 ((SysImpl, yaction, OrgA), (ImplSys, yartifact, OrgA)),

((ImplSys, yartifact, OrgA), (SysTest, yaction, OrgA)),
((SysTest, yaction, OrgA), (SysTestRec, yartifact, OrgA)),
((SysTestRec, yartifact, OrgA), (End, yend, OrgA))

}).

4 Solution Scenarios

 115

Definition 15.

B = ({

(Start, ystart, OrgB), (End, yend, OrgB),
 (SysDesign, yaction, OrgB), (SysImpl, yaction, OrgB), (SysTest, yaction, OrgB),
 (SysRequSpec, yartifact, OrgB), (SysDesignSpec, yartifact, OrgB), (ImplSys, yartifact, OrgB),

(SysTestRec, yartifact, OrgB)

} , {

//[Controlflow]
 ((Start, ystart, OrgB), (SysDesign, yaction, OrgB)),

((SysDesign, yaction, OrgB), (SysImpl, yaction, OrgB)),
((SysImpl, yaction, OrgB), (SysTest, yaction, OrgB)),
((SysTest, yaction, OrgB), (End, yend, OrgB))

//[Dataflow]
((SysRequSpec, yartifact, OrgB), (SysDesign, yaction, OrgB)),

 ((SysDesign, yaction, OrgB), (SysDesignSpec, yartifact, OrgB)),
 ((SysDesignSpec, yartifact, OrgB), (SysImpl, yaction, OrgB)),
 ((SysImpl, yaction, OrgB), (ImplSys, yartifact, OrgB)),

((ImplSys, yartifact, OrgB), (SysTest, yaction, OrgB)),
((SysTest, yaction, OrgB), (SysTestRec, yartifact, OrgB)),
((SysTestRec, yartifact, OrgB), (End, yend, OrgB))

}).

It is now necessary to define an abstract operation that integrates one action or activity into
another. Based on the function integrate_graph() defined in Definition 12, the integration of
semantically equivalent processes follows the function in Definition 16:

Definition 16.
integrate_SemEq() extends integrate_graph()
where

• NdDel = NdAs ∪ (NdB \ NdBs)
• NdAdd = ∅
• EdDel = EdA-TO-As ∪ EdA-FROM-As ∪ EdA-IN-As ∪ EdB-TO-Bs ∪ EdB-FROM-Bs ∪ EdB-OUT-Bs
• EdAdd = EdAddA2B ∪ EdAddB2A
• EdAddA2B = { (s,t’)∈ED | ∃ (s,t)∈EdA-TO-As, (t,t’)∈MapAs-Bs}
• EdAddB2A = { (s’,t)∈ED | ∃ (s,t)∈EdA-FROM-As, (s,s’)∈MapAs-Bs}

Figure 89 shows the integration of semantically equivalent processes. Remark, that there are
only two edges to be added, the one that points to the sub-graph to be included (EdAddA2B) and
the one that leads back to the Master (EdAddB2A). Furthermore, a mapping needs to be done
including the nodes (t, t’). In this case, it works without any complications, since the action
delivers exactly those artifacts needed by t or t’ (semantic equivalence!).

As the color code shows, the arrows in red and nodes in light blue are erased; whereas, the
green edges are added, if a semantically equivalent action from organization B is integrated
into Organization’s A process.

4.3 Formalization

 116

A

As

B

Bs

-EdDel

-NdDel

-EdDel

-NdDel

+EdAddA2B

+EdAddB2A

s

t t‘

s‘

t

s

Figure 89: Abstract modeling for Integration of semantically equivalent processes

4.3.6 Horizontal Integration

Due to the fact that processes in the ‘Horizontal Integration’ scenario are not semantically
equivalent, the Mediator concept needs to be used. For this purpose, another function is
defined, which considers the inclusion of appropriate Handover action to be included
(compare Figure 56).

The abstract syntax for ‘Horizontal Integration’ function is defined as follows:

Definition 17.
integrate_horiz() extends integrate_graph(),
where

• NdDel = NdAs ∪ (NdB \ NdBs)
• NdAdd = HandovBeg ∪ HandovEnd
• HandovBeg = {hob(s,t)∈NDid×{yaction}×<ROLE>| (s,t)∈EdA-TO-As }
• HandovEnd = {hoe(s,t)∈NDid×{yaction}×<ROLE>| (s,t)∈EdA-FROM-As }
• EdDel = EdA-TO-As ∪ EdA-FROM-As ∪ EdA-IN-As

∪ EdB-TO-Bs ∪ EdB-FROM-Bs ∪ EdB-OUT-Bs
• EdAdd = EdAddA2Sync ∪ EdAddSync2B ∪ EdAddB2Sync ∪ EdAddSync2A
• EdAdd_A2hob = { (s, hob(s,t))∈ED | hob(s,t)∈ HandovBeg }
• EdAdd_hob2B = { (hob(s,t),t’)∈ED | hob(s,t)∈HandovBeg, (t,t’)∈MapAs-Bs}
• EdAdd_B2hoe = { (s’,hoe(s,t))∈ED | hoe(s,t)∈HandovEnd, (s,s’)∈MapAs-Bs}
• EdAdd_hoe2A = { (hoe(s,t), t)∈ED | hoe(s,t)∈HandovEnd }

A

As

B

Bs

-EdDel

-NdDel

-EdDel

-NdDel

+EdAdd_A2hob

s

t t‘

+EdAdd_hob2B

hob (s,t)

hoe (s,t)

+NdAdd

+NdAdd

+EdAdd_hoe2A +EdAdd_B2hoe

s‘s

t

Figure 90: Abstract modeling of ‘Horizontal Integration’

4 Solution Scenarios

 117

HandovBeg and HandovEnd are a set of nodes within a Mediator necessary to connect semantically
non- equivalent processes. Thereby, responsibility is allocated by having an “AND” connection
defined.
Figure 90 shows the abstract modeling of ‘Horizontal Integration’ including the concrete
nodes of “HandovBeg” (= hob) and “HandovEnd” (= hoe).

Applying the abstract syntax to the concurrent example results in the following Definition 18
(control and data flow) according to Figure 56.

Definition 18.
integrate_horiz() extends integrate_graph(),
where

• NdDel = (SysImpl, yaction, OrgA), (ImplSys, yartifact, OrgA), (Start, ystart, OrgB), (End, yend, OrgB),
(SysDes, yaction, OrgB), (SysTest, yaction, OrgB), (SysTestRec, yartifact, OrgB),
(SysRequSpec, yartifact, OrgB)

• NdAdd = (HandovBeg, yaction, (OrgA AND OrgB)),

(HandovEnd, yaction, (OrgA AND OrgB))

• EdDel =

//[Controlflow]
((SysDes, yaction, OrgA), (SysImpl, yaction, OrgA)),
((SysImpl, yaction, OrgA), (SysTest, yaction, OrgA)),
((Start, ystart, OrgB), (SysDes, yaction, OrgB)),
((SysDes, yaction, OrgB), (SysImpl, yaction, OrgB)),
((SysImpl, yaction, OrgB), (SysTest, yaction, OrgB)),
((SysTest, yaction, OrgB), (End, yend, OrgB))

//[Dataflow]
((SysDesignSpec, yartifact, OrgA), (SysImpl, yaction, OrgA)),
((SysImpl, yaction, OrgA), (ImplSys, yartifact, OrgA)),
((SysRequSpec, yartifact, OrgB), (SysDes, yaction, OrgB)),
((SysDes, yaction, OrgB), (SysDesignSpec, yartifact, OrgB)),
((ImplSys, yartifact, OrgB), (SysTest, yaction, OrgB)),
((SysTest, yaction, OrgB), (SysTestRec, yartifact, OrgB)),
((SysTestRec, yartifact, OrgB), (End, yend, OrgB))

• EdAdd =

//[Controlflow]
((SysDes, yaction, OrgA), (HandovBeg, yaction, (OrgA AND OrgB))),
((HandovBeg, yaction, (OrgA AND OrgB)), (SysImpl, yaction, OrgB)),
((SysImpl, yaction, OrgB), (HandovEnd, yaction, (OrgA AND OrgB))),
((HandovEnd, yaction, (OrgA AND OrgB)), (SysTest, yaction, OrgA))

//[Dataflow]
((SysDesignSpec, yartifact, OrgA), (HandovBeg, yaction, (OrgA AND OrgB))),
((HandovBeg, yaction, (OrgA AND OrgB)), (SysDesignSpec, yartifact, OrgB)),
((ImplSys, yartifact, OrgB), (HandovEnd, yaction, (OrgA AND OrgB))),
((HandovEnd, yaction, (OrgA AND OrgB)), (ImplSys, yartifact, OrgA))

4.3 Formalization

 118

4.3.7 Additive Vertical Integration

Figure 91 shows the abstract modeling of ‘Additive Vertical Integration’, which makes
additional Fork and Join nodes necessary due to the property of parallelism.

A

As

B

Bs

-EdDel

-NdDel

-EdDel

-NdDel

+EdAdd_A2Decomp

s

t t‘
+EdAdd_Decomp2B

decomp (s,t)

integ (s,t)

+NdAdd

+NdAdd

+EdAdd_Integ2As

+EdAdd_B2Integ

Join (s,t)

Fork (s,t)

+EdAdd_Decomp2As

+EdAdd_As2Integ

s s‘

t

Figure 91: Abstract modeling of ‘Additive Vertical Integration’

The abstract syntax for ‘Additive Vertical Integration’ is defined using the subsequent
function.

Definition 19.
integrate_additive_vertical() extends integrate_graph(),
where

• NdDel = (NdB \ NdBs)
• NdAdd = Decomp ∪ Integ ∪ Join ∪ Fork

• Decomp = {decomp(s,t)∈NDid×{y fork}×<ROLE>| (s,t)∈EdA-TO-As }
• Integ = {integ(s,t)∈NDid×{y join}×<ROLE>| (s,t)∈EdA-FROM-As }
• Fork = {fork(s,t)∈NDid×{y fork}×<ROLE>| (s,t)∈EdA-TO-As }
• Join = {join(s,t)∈NDid×{y join}×<ROLE>| (s,t)∈EdA-FROM-As }

• EdDel = EdA-TO-As ∪ EdA-FROM-As ∪ EdB-TO-Bs ∪ EdB-FROM-Bs ∪ EdB-OUT-Bs
• EdAdd = EdAddA2Decomp ∪ EdAddDecomp2B ∪ EdAddDecomp2As ∪ EdAddB2Integ ∪ EdAddInteg2A

∪ EdAddAs2Integ

• EdAdd_Decomp2Fork = { (decomp(s,t), fork)∈ED | fork(s,t)∈Fork, decomp(s,t)∈Decomp}
• EdAdd_Join2Integ = { (join(s,t), integ)∈ED | join(s,t)∈Join, integ(s,t)∈Integ}

• EdAdd_A2Decomp = { (s, decomp(s,t))∈ED | decomp(s,t)∈Decomp}
• EdAdd_Decomp2B = { (decomp(s,t),t’)∈ED | decomp(s,t)∈Decomp, (t,t’)∈MapAs-Bs}
• EdAdd_Decomp2As = { (decomp(s,t),t)∈ED | decomp(s,t)∈Decomp}
• EdAdd_B2Integ = { (s’,integ(s,t))∈ED | integ(s,t)∈Integ, (s,s’)∈MapAs-Bs}
• EdAdd_As2Integ = { (s, integ(s,t))∈ED | integ(s,t)∈Integ}
• EdAdd_Integ2A = { (integ(s,t), t)∈ED | integ(s,t)∈Integ}

4 Solution Scenarios

 119

The initial root processes have been modified for showing the functionality of this scenario.
Therefore, the definition of node and edges of organization’s A and B original processes in
Figure 57 are formalized as the following:

Definition 20.

A = ({
(Start, ystart, OrgA), (End, yend, OrgA),
(SysDesign, yaction, OrgA), (SWRequEng, yaction, OrgA), (SWDesign, yaction, OrgA),
(SWImpl, yaction, OrgA), (SWTest, yaction, OrgA), (SysTestDesign, yaction, OrgA),
(SysTest, yaction, OrgA), (SysRequSpec, yartifact, OrgA), (SysDesignSpec, yartifact, OrgA),
(SWRequSpec, yartifact, OrgA), (SWDesignSpec, yartifact, OrgA), (ImplSW, yartifact, OrgA),
(SWTestRec, yartifact, OrgA), (SysTestSpec, yartifact, OrgA), (SysTestRec, yartifact, OrgA),

} , {

//[Controlflow]
((Start, ystart, OrgA), (SysDesign, yaction, OrgA)),
((SysDesign, yaction, OrgA), (SWRequEng, yaction, OrgA)),
((SWRequEng, yaction, OrgA), (SWDesign, yaction, OrgA)),
((SWDesign, yaction, OrgA), (SWImpl, yaction, OrgA)),
((SWImpl, yaction, OrgA), (SWTest, yaction, OrgA)),
((SWTest, yaction, OrgA), (SysTestDesign, yaction, OrgA)),
((SWTestDesign, yaction, OrgA), (SysTest, yaction, OrgA)),
((SysTest, yaction, OrgA), (End, yend, OrgA))

//[Dataflow]
((SysRequSpec, yartifact, OrgA), (SysDesign, yaction, OrgA)),
((SysDesign, yaction, OrgA), (SysDesignSpec, yartifact, OrgA)),
((SysDesignSpec, yartifact, OrgA), (SWRequEng, yaction, OrgA)),
((SWRequEng, yaction, OrgA), (SWRequSpec, yartifact, OrgA)),
((SWRequSpec, yartifact, OrgA), (SWDesign, yaction, OrgA)),
((SWDesign, yaction, OrgA), (SWDesignSpec, yartifact, OrgA)),
((SWDesignSpec, yartifact, OrgA), (SWImpl, yaction, OrgA)),
((SWImpl, yaction, OrgA), (ImplSW, yartifact, OrgA)),
((ImplSW, yartifact, OrgA), (SWTest, yaction, OrgA)),
((SWTest, yaction, OrgA), (SWTestRec, yartifact, OrgA)),
((SWTestRec, yartifact, OrgA), (SysTestDesign, yaction, OrgA)),
((SysTestDesign, yaction, OrgA), (SysTestSpec, yartifact, OrgA)),
((SysTestSpec, yartifact, OrgA), (SysTest, yaction, OrgA)),
((SysTest, yaction, OrgA), (SysTestRec, yartifact, OrgA)),
((SysTestRec, yartifact, OrgA), (End, yend, OrgA))

}).

Definition 21.
B = ({

(Start, ystart, OrgB), (End, yend, OrgB),
(HWDesign, yaction, OrgB), (HWImpl, yaction, OrgB), (HWTest, yaction, OrgB),
(HWRequSpec, yartifact, OrgB), (HWDesignSpec, yartifact, OrgB),
(HWImplSys, yartifact, OrgB), (HWTestRec, yartifact, OrgB)

4.3 Formalization

 120

} , {

//[Controlflow]
((Start, ystart, OrgB), (HWDesign, yaction, OrgB)),
((HWDesign, yaction, OrgB), (HWImpl, yaction, OrgB)),
((HWImpl, yaction, OrgB), (HWTest, yaction, OrgB)),
((HWTest, yaction, OrgB), (End, yend, OrgB))

//[Dataflow]
((HWRequSpec, yartifact, OrgB), (HWDesign, yaction, OrgB)),
((HWDesign, yaction, OrgB), (HWDesignSpec, yartifact, OrgB)),
((HWDesignSpec, yartifact, OrgB), (HWImpl, yaction, OrgB)),
((HWImpl, yaction, OrgB), (HWImplSys, yartifact, OrgB)),
((HWImplSys, yartifact, OrgB), (HWTest, yaction, OrgB)),
((HWTest, yaction, OrgB), (HWTestRec, yartifact, OrgB)),
((HWTestRec, yartifact, OrgB), (End, yend, OrgB))

}).

Based on the concrete formalized definition of the root processes, the function in Definition 19 is
applied in Definition 22 (according to Figure 59):

Definition 22.
integrate_additive_vertical() extends integrate_graph(),
where

• NdDel = (Start, ystart, OrgB), (End, yend, OrgB),
(SWRequEng, yaction, OrgA), (SysTestDes, yaction, OrgA)

• NdAdd = (Decomp, yaction, (OrgA AND OrgB)), (Integ, yaction, (OrgA AND OrgB))

(Fork, yfork, (OrgA AND OrgB)), (Join, yjoin, (OrgA AND OrgB))

• EdDel =
//[Controlflow]
((SysDes, yaction, OrgA), (SWRequEng, yaction, OrgA)),
((SWRequEng, yaction, OrgA), (SWDesign, yaction, OrgA))
((SWTest, yaction, OrgA), (SysTestDesign, yaction, OrgA)),
((SysTestDesign, yaction, OrgA), (SysTest, yaction, OrgA)),
((Start, ystart, OrgB), (HWDesign, yaction, OrgB)),
((HWTest, yaction, OrgB), (End, yend, OrgB))

//[Dataflow]
((SysDesignSpec, yartifact, OrgA), (SWRequEng, yaction, OrgA)),
((SWRequEng, yaction, OrgA), (SWRequSpec, yartifact, OrgA)),
((SWTestRec, yartifact, OrgA), (SysTestDesign, yaction, OrgA)),
((SysTestDesign, yaction, OrgA), (SysTestSpec, yartifact, OrgA)),
((HWTestRec, yartifact, OrgB), (End, yend, OrgB))

• EdAdd =

//[Controlflow]
((SysDesign, yaction, OrgA), (Decomp, yaction, (OrgA AND OrgB))),
((Decomp, yaction, (OrgA AND OrgB)), (Fork, yfork, (OrgA AND OrgB))),

4 Solution Scenarios

 121

((Fork, yfork, (OrgA AND OrgB), (SWDesign, yaction, OrgA)),
((Fork, yfork, (OrgA AND OrgB), (HWDesign, yaction, OrgB)),
((HWTest, yaction, OrgB), (Join, yjoin, (OrgA AND OrgB))),
((SWTest, yaction, OrgA), (Join, yjoin, (OrgA AND OrgB))),
((Join, yjoin, (OrgA AND OrgB)), (Integ, yaction, (OrgA AND OrgB))),
((Integ, yaction, (OrgA AND OrgB)), (SysTest, yaction, OrgA))

//[Dataflow]
((SysDesignSpec, yartifact, OrgA), (Decomp, yaction, (OrgA AND OrgB))),
((Decomp, yaction, (OrgA AND OrgB)), (SWRequSpec, yartifact, OrgA)),
((Decomp, yaction, (OrgA AND OrgB)), (HWRequSpec, yartifact, OrgB)),
((SWTestRec, yartifact, OrgA), (Integ, yaction, (OrgA AND OrgB))),
((HWTestRec, yartifact, OrgB), (Integ, yaction, (OrgA AND OrgB))),
((Integ, yaction, (OrgA AND OrgB)), (SysTestSpec, yartifact, OrgA))

4.3.8 Alternative Vertical Integration

The abstract syntax for ‘Additive Vertical Integration’ is defined using the following function.

Definition 23.
integrate_alternative_vertical() extends integrate_graph(),
where

• NdDel = (NdB \ NdBs)
• NdAdd = Ratio ∪ Accept ∪ Branch ∪ Merge

• RatioAlys = {ratioalys(s,t)∈NDid×{ybranch}×<ROLE>| (s,t)∈EdA-TO-As }
• Accept = {accept(s,t)∈NDid×{ymerge}×<ROLE>| (s,t)∈EdA-FROM-As }
• Branch = {branch(s,t)∈NDid×{ybranch}×<ROLE>| (s,t)∈EdA-TO-As }
• Merge = {merge(s,t)∈NDid×{ymerge}×<ROLE>| (s,t)∈EdA-FROM-As }

• EdAdd_RatioAlys2Branch = { (ratioalys(s,t), branch)∈ED | ratioalys (s,t)∈RatioAlys, branch (s,t)

∈Branch}
• EdAdd_Merge2Accep = { (merge(s,t), accpt)∈ED | merge(s,t)∈Merge, accept(s,t)∈Accept}

• EdDel = EdA-TO-As ∪ EdA-FROM-As ∪ EdB-TO-Bs ∪ EdB-FROM-Bs ∪ EdB-OUT-Bs
• EdAdd = EdAddA2Decomp ∪ EdAddDecomp2B ∪ EdAddDecomp2As ∪ EdAddB2Integ ∪ EdAddInteg2A

 ∪ EdAddAs2Integ

• EdAdd_A2RatioAlys = { (s, ratioalys (s,t))∈ED | ratioalys (s,t)∈ RatioAlys}
• EdAdd_RatioAlys 2B = { (ratioalys (s,t),t’)∈ED | ratioalys (s,t)∈ RatioAlys, (t,t’)∈MapAs-Bs}
• EdAdd_RatioAlys 2As = { (ratioalys (s,t),t)∈ED | ratioalys (s,t)∈ RatioAlys}
• EdAdd_B2Accept = { (s’, accept (s,t))∈ED | accept (s,t)∈ Accept, (s,s’)∈MapAs-Bs}
• EdAdd_As2Accept = { (s, accept (s,t))∈ED | accept (s,t)∈ Accept}
• EdAdd_Accept2A = { (accept (s,t), t)∈ED | accept (s,t)∈ Accept}

As mentioned before, this scenario is very similar to ‘Additive Vertical Integration’. The
difference is the Fork and Join functionality, which is replaced by Branch and Merge.

4.3 Formalization

 122

A

As

B

Bs

-EdDel

-NdDel

-EdDel

-NdDel

+EdAdd_A2RatioAlys

s

t t‘+EdAdd_RatioAlys2B

ratioalys (s,t)

accept (s,t)

+NdAdd

+NdAdd

+EdAdd_Accept2As

+EdAdd_B2RatioAlys

Merge (s,t)

Branch (s,t)

+EdAdd_RatioAlys2As

+EdAdd_As2Accept

s s‘

t

Figure 92: Abstract modeling of ‘Alternative Vertical Integration’

In order to apply this scenario, the root processes are again concretely defined following the
modeling in Figure 61.

Definition 24.

A = ({
(Start, ystart, OrgA), (End, yend, OrgA),
(SysDesign, yaction, OrgA), (SWRequEng, yaction, OrgA), (SWDesign, yaction, OrgA),
(SWImpl, yaction, OrgA), (SWTest, yaction, OrgA), (SysTestDesign, yaction, OrgA),
(SysTest, yaction, OrgA), (SysRequSpec, yartifact, OrgA), (SysDesignSpec, yartifact, OrgA),
(SWRequSpec, yartifact, OrgA), (SWDesignSpec, yartifact, OrgA), (ImplSW, yartifact, OrgA),
(SWTestRec, yartifact, OrgA), (SysTestSpec, yartifact, OrgA), (SysTestRec, yartifact, OrgA),

} , {

//[Controlflow]
((Start, ystart, OrgA), (SysDesign, yaction, OrgA)),
((SysDesign, yaction, OrgA), (SWRequEng, yaction, OrgA)),
((SWRequEng, yaction, OrgA), (SWDesign, yaction, OrgA)),
((SWDesign, yaction, OrgA), (SWImpl, yaction, OrgA)),
((SWImpl, yaction, OrgA), (SWTest, yaction, OrgA)),
((SWTest, yaction, OrgA), (SysTestDesign, yaction, OrgA)),
((SWTestDesign, yaction, OrgA), (SysTest, yaction, OrgA)),
((SysTest, yaction), (End, yend))

//[Dataflow]
((SysRequSpec, yartifact, OrgA), (SysDesign, yaction, OrgA)),
((SysDesign, yaction, OrgA), (SysDesignSpec, yartifact, OrgA)),
((SysDesignSpec, yartifact, OrgA), (SWRequEng, yaction, OrgA)),
((SWRequEng, yaction, OrgA), (SWRequSpec, yartifact, OrgA)),
((SWRequSpec, yartifact, OrgA), (SWDesign, yaction, OrgA)),
((SWDesign, yaction, OrgA), (SWDesignSpec, yartifact, OrgA)),
((SWDesignSpec, yartifact, OrgA), (SWImpl, yaction, OrgA)),
((SWImpl, yaction, OrgA), (ImplSW, yartifact, OrgA)),
((ImplSW, yartifact, OrgA), (SWTest, yaction, OrgA)),

4 Solution Scenarios

 123

((SWTest, yaction, OrgA), (SWTestRec, yartifact, OrgA)),
((SWTestRec, yartifact, OrgA), (SysTestDesign, yaction, OrgA)),
((SysTestDesign, yaction, OrgA), (SysTestSpec, yartifact, OrgA)),
((SysTestSpec, yartifact, OrgA), (SysTest, yaction, OrgA)),
((SysTest, yaction, OrgA), (SysTestRec, yartifact, OrgA)),
((SysTestRec, yartifact, OrgA), (End, yend, OrgA))

}).

Definition 25.

B = ({
(Start, ystart, OrgB), (End, yend, OrgB),
(SafCrDesign, yaction, OrgB), (SafCrImpl, yaction, OrgB), (SafCrTest, yaction, OrgB),
(SafCrRequSpec, yartifact, OrgB), (SafCrDesignSpec, yartifact, OrgB),
(SafCrImplSys, yartifact, OrgB), (SafCrTestRec, yartifact, OrgB)

} , {

//[Controlflow]
((Start, ystart, OrgB), (SafCrDesign, yaction, OrgB)),
((SafCrDesign, yaction, OrgB), (SafCrImpl, yaction, OrgB)),
((SafCrImpl, yaction, OrgB), (SafCrTest, yaction, OrgB)),
((SafCrTest, yaction, OrgB), (End, yend, OrgB)),

//[Dataflow]
((SafCrRequSpec, yartifact, OrgB), (SafCrDesign, yaction, OrgB)),
((SafCrDesign, yaction, OrgB), (SafCrDesignSpec, yartifact, OrgB)),
((SafCrDesignSpec, yartifact, OrgB), (SafCrImpl, yaction, OrgB)),
((SafCrImpl, yaction, OrgB), (SafCrImplSys, yartifact, OrgB)),
((SafCrImplSys, yartifact, OrgB), (SafCrTest, yaction, OrgB)),
((SafCrTest, yaction, OrgB), (SafCrTestRec, yartifact, OrgB)),
((SafCrTestRec, yartifact, OrgB), (End, yend, OrgB))

}).

Using Definition 23 the concrete integration operation for ‘Alternative Vertical Integration’ is
defined (according to Figure 62) Definition 26:

Definition 26.
integrate_alternative_vertical() extends integrate_graph(),
where

• NdDel = (StartB, ystart, OrgB), (EndB, yend, OrgB),
(SWRequEng, yaction, OrgA), (SysTestDes, yaction, OrgA)

• NdAdd = (RatioAlys, yaction, (OrgA AND OrgB)), (Accept, yaction, (OrgA AND OrgB)),

(Branch, ybranch, (OrgA AND OrgB)), (Merge, ymerge, (OrgA AND OrgB))

• EdDel =
//[Controlflow]
((SysDes, yaction, OrgA), (SWRequEng, yaction, OrgA)),
((SWRequEng, yaction, OrgA), (SWDesign, yaction, OrgA))
((SWTest, yaction, OrgA), (SysTestDesign, yaction, OrgA)),
((SysTestDesign, yaction, OrgA), (SysTest, yaction, OrgA)),
((Start, ystart, OrgB), (SafCrDesign, yaction, OrgB)),

4.3 Formalization

 124

((SafCrTest, yaction, OrgB), (End, yend, OrgB))

//[Dataflow]
((SysDesignSpec, yartifact, OrgA), (SWRequEng, yaction, OrgA)),
((SWRequEng, yaction, OrgA), (SWRequSpec, yartifact, OrgA)),
((SWTestRec, yartifact, OrgA), (SysTestDesign, yaction, OrgA)),
((SysTestDesign, yaction, OrgA), (SysTestSpec, yartifact, OrgA)),
((SafCrTestRec, yartifact, OrgB), (EndB, yend, OrgB))

• EdAdd =

//[Controlflow]
((SysDes, yaction, OrgA), (RatioAlys, yaction, (OrgA AND OrgB))),
((RatioAlys, yaction, (OrgA AND OrgB)), (Branch, ybranch, (OrgA AND OrgB))),
((Branch, ybranch, (OrgA AND OrgB)), (SWDesign, yaction, OrgA)),
((Branch, ybranch, (OrgA AND OrgB)), (SafCrDesign, yaction, OrgB)),
((SafCrTest, yaction, OrgB), (Merge, ymerge, (OrgA AND OrgB)),
((SWTest, yaction, OrgA), (Merge, ymerge, (OrgA AND OrgB)),
((Merge, ymerge, (OrgA AND OrgB), (Accept, yaction, (OrgA AND OrgB))),
((Accept, yaction, (OrgA AND OrgB)), (SysTest, yaction, OrgA))

//[Dataflow]
((SysDesignSpec, yartifact, OrgA), (RatioAlys, yaction, (OrgA AND OrgB))),
((RatioAlys, yaction, (OrgA AND OrgB)), (SWRequSpec, yartifact, OrgA)),
((RatioAlys, yaction, (OrgA AND OrgB)), (SafCrRequSpec, yartifact, OrgB)),
((SWTestRec, yartifact, OrgA), (Accept, yaction, (OrgA AND OrgB))),
((SafCrTestRec, yartifact, OrgB), (Accept, yaction, (OrgA AND OrgB))),
((Accept, yaction, (OrgA AND OrgB)), (SysTestSpec, yartifact, OrgA))

4.3.9 Merging Integration

The abstract syntax for ‘Merging Integration’ is defined using the following function.

Definition 27.
integrate_merging() extends integrate_graph(),
where

• NdDel = NdAs ∪ NdB
• NdAdd = SyncBeg ∪ Handov ∪ NdCs
• SyncBeg = {sb(s,t)∈NDid×{yaction}×<ROLE>| (s,t)∈EdA-TO-As }
• Handov = {ho(s,t)∈NDid×{yaction}×<ROLE>| (s,t)∈EdA-FROM-As }

• EdDel = EdA-TO-As ∪ EdA-FROM-As ∪ EdA-IN-As ∪ EdB-TO-Bs ∪ EdB-FROM-Bs ∪ EdB-OUT-Bs

∪ EdB-IN-Bs
• EdAdd = EdAdd_A2SyncBeg ∪ EdAdd_SyncBeg2Cs ∪ EdAdd_C-IN-Cs ∪ EdAdd_Cs2Ho∪ EdAdd_Ho2A

• EdAdd_A2SyncBeg = { (s, sb(s,t))∈ED | sb(s,t)∈SyncBeg }
• EdAdd_SyncBeg2Cs = { (sb(s,t), j)∈ED | sb(s,t)∈SyncBeg, (t,j)∈MapAs-Cs , (t,j)∈MapBs-Cs }
• EdAdd_C-IN-Cs = { (j, j’) ∈ED | j ∈ NdCs }
• EdAdd_Cs2Ho = { (j’, ho(s,t))∈ED | ho(s,t)∈Handov, (s,j’)∈MapAs-Cs , (s’,j’)∈MapBs-Cs }
• EdAdd_Ho2A = { (ho(s,t), t)∈ED | se(s,t)∈Handov }

4 Solution Scenarios

 125

Cs is the sub-graph of those sets of nodes that are performed conjointly by Organization A
and B.

A

As

B

Bs

-EdDel

-NdDel

-EdDel

-NdDel

+EdAdd_SyncBeg2Cs

s

t t‘

sb (s,t)

ho (s,t)

+NdAdd

+NdAdd

s s‘

Cs

+EdAdd_A2SyncBeg +EdAdd_B2SyncBeg

+EdAdd_Ho2A +EdAdd_Cs2Ho

j

j‘

t

s‘

Figure 93: Abstract modeling for ‘Merging Integrati on’

Figure 64 is referred in order to illustrate the concrete formalization. The root process of
‘Merging Integration’ is defined as the following:

Definition 28.

A = ({
(Start, ystart, OrgA), (End, yend, OrgA),
(SysDesign, yaction, OrgA), (SysImpl, yaction, OrgA), (SysTest, yaction, OrgA),
(SysRequSpec, yartifact, OrgA), (SysDesignSpec, yartifact, OrgA), (ImplSys, yartifact, OrgA),
(SysTestRec, yartifact, OrgA)

} , {

//[Controlflow]
((Start, ystart, OrgA), (SysDesign, yaction, OrgA)),
((SysDesign, yaction, OrgA), (SysImpl, yaction, OrgA)),
((SysImpl, yaction, OrgA), (SysTest, yaction, OrgA)),
((SysTest, yaction, OrgA), (End, yend, OrgA))

//[Dataflow]
((SysRequSpec, yartifact, OrgA), (SysDesign, yaction, OrgA)),
((SysDesign, yaction, OrgA), (SysDesignSpec, yartifact, OrgA)),
((SysDesignSpec, yartifact, OrgA), (SysImpl, yaction, OrgA)),
((SysImpl, yaction, OrgA), (ImplSys, yartifact, OrgA)),
((ImplSys, yartifact, OrgA), (SysTest, yaction, OrgA)),
((SysTest, yaction, OrgA), (SysTestRec, yartifact, OrgA)),
((SysTestRec, yartifact, OrgA), (End, yend, OrgA))

}).

Definition 29.

4.3 Formalization

 126

B = ({
(Start, ystart, OrgB), (End, yend, OrgB),
(SysDesign, yaction, OrgB), (SysImpl, yaction, OrgB), (SysTest, yaction, OrgB),
(SysRequSpec, yartifact, OrgB), (SysDesignSpec, yartifact, OrgB), (ImplSys, yartifact, OrgB),
(SysTestRec, yartifact, OrgB)

} , {

//[Controlflow]
 ((Start, ystart, OrgB), (SysDesign, yaction, OrgB)),

((SysDesign, yaction, OrgB), (SysImpl, yaction, OrgB)),
((SysImpl, yaction, OrgB), (SysTest, yaction, OrgB)),
((SysTest, yaction, OrgB), (End, yend, OrgB))

//[Dataflow]
((SysRequSpec, yartifact, OrgB), (SysDesign, yaction, OrgB)),

 ((SysDesign, yaction, OrgB), (SysDesignSpec, yartifact, OrgB)),
((SysDesignSpec, yartifact, OrgB), (SysImpl, yaction, OrgB)),
((SysImpl, yaction, OrgB), (ImplSys, yartifact, OrgB)),
((ImplSys, yartifact, OrgB), (SysTest, yaction, OrgB)),
((SysTest, yaction, OrgB), (SysTestRec, yartifact, OrgB)),
((SysTestRec, yartifact, OrgB), (End, yend, OrgB))

}).

Using Definition 27, the concrete integration operation for ‘Merging Integration’ is defined
based on Figure 65 in Definition 30:

Definition 30.
integrate_merging() extends integrate_graph(),

where

• NdDel = (Start, ystart, OrgB), (End, yend, OrgB),
 (SysDesign, yaction, OrgB), (SysImpl, yaction, OrgB), (SysTest, yaction, OrgB),

(RequSpec, yartifact, OrgB), (SysDesignSpec, yartifact, OrgB), (ImplSys, yartifact, OrgB),
(TestRec, yartifact, OrgB), (SysImpl, yaction, OrgA),

• NdAdd = (SynchBeg, yaction, (OrgA AND OrgB)), (Handov, yaction, (OrgA AND OrgB)),

(SysDesignSpec, yartifact, (OrgA AND OrgB)), (SysImpl, yaction, (OrgA AND OrgB)),
(ImplSys, yartifact, (OrgA AND OrgB)),

• EdDel =

//[Control flow]
((SysDesign, yaction, OrgA), (SysImpl, yaction, OrgA)),
((SysImpl, yaction, OrgA), (SysTest, yaction, OrgA))
((Start, ystart, OrgB), (SysDesign, yaction, OrgB)),
((SysDesign, yAction, OrgB), (SysImpl, yaction, OrgB)),
((SysImpl, yAction, OrgB), (SysTest, yAction, OrgB)),
((SysTest, yAction, OrgB), (End, yend, OrgB)),

//[Data flow]
((SysDesignSpec, yartifact, OrgA), (SysImpl, yaction, OrgA)),
((SysImpl, yaction, OrgA), (ImplSys, yartifact, OrgA)),

4 Solution Scenarios

 127

((SysRequSpec, yartifact, OrgB), (SysDesign, yaction, OrgB)),
((SysDesign, yaction, OrgB), (SysDesignSpec, yartifact, OrgB)),
((SysDesignSpec, yartifact, OrgB), (SysImpl, yaction, OrgB)),
((SysImpl, yaction, OrgB), (ImplSys, yartifact, OrgB)),
((ImplSys, yartifact, OrgB), (SysTest, yaction, OrgB)),
((SysTest, yaction, OrgB), (SysTestRec, yartifact, OrgB)),
((SysTestRec, yartifact, OrgB), (End, yend, OrgB))

• EdAdd =

//[Control flow]
((SysDesign, yaction, OrgA), (SynchBeg, yaction, (OrgA AND OrgB))),
((SynchBeg, yaction, (OrgA AND OrgB)), (SysImpl, yaction, (OrgA AND OrgB))),
((SysImpl, yaction, (OrgA AND OrgB)), (Handov, yaction, (OrgA AND OrgB))),
((Handov, yaction, (OrgA AND OrgB)), (SysTest, yaction, OrgA)),

//[Data flow]
((SysDesignSpec, yartifact, OrgA), (SynchBeg, yaction, (OrgA AND OrgB))),
((SynchBeg,yaction,(OrgA AND OrgB)), (SysDesignSpec, yartifact, (OrgA AND OrgB))),
((SysDesignSpec, yartifact, (OrgA AND OrgB)), (SysImpl, yaction, (OrgA AND OrgB))),
((SysImpl, yaction, (OrgA AND OrgB)), (ImplSys, yaction, (OrgA AND OrgB))),
((ImplSys, yaction, (OrgA AND OrgB)), (Handov, yaction, (OrgA AND OrgB))),
((Handov, yaction, (OrgA AND OrgB)), (ImplSys, yartifact, OrgA))

4.3.10 Hierarchical Integration

Hierarchical process integration consists of several integration steps and makes use of
already- existing integration methods and tools that have been previously defined. The major
idea is that the hierarchy is dissolved (“flattened”) and consequently integration is done
without having hierarchical process. After integration, a new hierarchy is defined. These steps
are step- by- step illustrated in the following.

Step 1: Basic processes for hierarchical integration

Figure 94 depicts the root processes for hierarchical integration. It is assumed that both
organizations have hierarchical actions (HA-nodes with dotted line) in place. Within ndHA
nodes, the appropriate adAs graphs are defined.

A

adAs

nd HA

B

adAs

nd HA

Figure 94: Root Processes for Hierarchical Integration

4.3 Formalization

 128

Step 2: Deletion of hierarchical elements

In order to prepare processes for integration, hierarchy is dissolved (= ‘temporarily deleted’).
This is illustrated in Figure 95.

A B

Figure 95: Dissolution of Hierarchical Processes

The respective function hierarchydelete_ is defined as follows:

Definition 31.

}{:_ ⊗∪→× ADADADhierarchydelete

()
{ }

⊗

•

==
∈

otherwise

EdND

ndEdNdadhierarchydelete
Ndnd

DEFHAA nodeaction alhierarchic a is nd

nd),(nd),nd (nd,\,}{nd\

),,(_
HA

HAHAHA U

Step 3: Integration of action/activities

A B

-EdDel

-NdDel

-EdDel

-NdDel Bs
hob (s,t)

+NdAdd

+NdAdd

hoe (s,t) +EdAdd_B2hoe+EdAdd_hoe2A

+EdAdd_hob2B+EdAdd_A2hob

As

Figure 96: Abstract modeling of ‘Horizontal Integration’

4 Solution Scenarios

 129

Next, integration is done according to familiar methods and tools. The sub-graphs As and Bs
need to be defined first, which symbolize the process nodes to be replaced (As) and to be
integrated (Bs). Figure 96 shows the respective integration procedure using the mediator for
‘Horizontal Integration’.

Definition 32.

integrate_horiz() extends integrate_graph(),
where

• NdDel = NdAs ∪ (NdB \ NdBs)
• NdAdd = HandovBeg ∪ HandovEnd
• HandovBeg = {hob(s,t)∈NDid×{yaction}×<ROLE>| (s,t)∈EdA-TO-As }
• HandovEnd = {hoe(s,t)∈NDid×{yaction}×<ROLE>| (s,t)∈EdA-FROM-As }
• EdDel = EdA-TO-As ∪ EdA-FROM-As ∪ EdA-IN-As

∪ EdB-TO-Bs ∪ EdB-FROM-Bs ∪ EdB-OUT-Bs
• EdAdd = EdAddA2Sync ∪ EdAddSync2B ∪ EdAddB2Sync ∪ EdAddSync2A
• EdAdd_A2hob = { (s, hob(s,t))∈ED | hob(s,t)∈ HandovBeg }
• EdAdd_hob2B = { (hob(s,t),t’)∈ED | hob(s,t)∈HandovBeg, (t,t’)∈MapAs-Bs}
• EdAdd_B2hoe = { (s’,hoe(s,t))∈ED | hoe(s,t)∈HandovEnd, (s,s’)∈MapAs-Bs}
• EdAdd_hoe2A = { (hoe(s,t), t)∈ED | hoe(s,t)∈HandovEnd }

Step 4: Re-definition of Hierarchy

The last step includes re-definition of hierarchy (Figure 97). Thereby, the original hierarchies
are used as orientation for new the hierarchy and will be incorporated as far as it makes sense
and it is possible. This decision is not automated, but will be taken by a process engineer.

A B

hob (s,t)

hoe (s,t)

adAs

nd HA

Figure 97: Re-defined Hierarchy

The creation of hierarchy follows the function hierarchycreate_ , which is defined in
Definition 5.

Having the abstract definition in Figure 94 until Figure 97 depicted the concrete integration
steps 1 – 4 are accordingly described in the following.

4.3 Formalization

 130

Step 1:

The basic processes for hierarchical integration according to Figure 72 are described below.

Definition 33.

A = ({
(Start, ystart), (End, yend),
(RequEng, yaction, OrgA), (SWImpl, yHA, OrgA, SWImplHA), (SysTest, yaction, OrgA),
(RequSpec, yartifact, OrgA), (ImplSW, yartifact, OrgA), (SysTestRec, yartifact, OrgA),
(MarketEval, yaction, OrgA), (MarketInfo, yartifact, OrgA)

} , {

SWImplHA = {(Start, ystart, OrgA), (End, yend, OrgA), (SWRealA, yaction, OrgA),
(RealSW, yartifact, OrgA), (SWModTest, yaction, OrgA),
(SWTestRec, yartifact, OrgA)
}

 //[Control flow]
SWImplHA= {

((Start, ystart, OrgA), (SWReal, yaction, OrgA)),
((SWReal, yaction, OrgA), (SWModTest, yaction, OrgA)),
((SWModTest, yaction, OrgA), (End, yend, OrgA)),
}

((Start, ystart, OrgA), (MarketEval, yaction, OrgA)),
((MarketEval, yaction, OrgA), (RequEng, yaction, OrgA)),
((RequEng, yaction), (SWImpl, yha, OrgA, SWImplHA)),
((SWImpl, yha, OrgA, SWImplHA), (SysTest, yaction, OrgA)),
((SysTest, yaction, OrgA), (End, yend, OrgA))

//[Data flow]
SWImplHA = {

((SWReal, yaction, OrgA), (RealSW, yartifact, OrgA)),
((RealSW, yartifact, OrgA), (SWModTest, yaction, OrgA)),
((SWModTest, yaction, OrgA), (SWTestRec, yartifact, OrgA)),
((SWTestRec, yartifact, OrgA), (End, yend, OrgA))
}

((MarketEval, yaction, OrgA), (MarketInfo, yartifact, OrgA)),
((MarketInfo, yartifact, OrgA), (RequEng, yaction, OrgA)),
((RequEng, yaction, OrgA), (RequSpec, yartifact, OrgA)),
((RequSpec, yartifact, OrgA), (SWImpl, yha, OrgA, SWImplHA)),
((SWImpl, yha, OrgA, SWImplHA), (ImplSW, yartifact, OrgA)),
((ImplSW, yartifact, OrgA), (SysTest, yaction, OrgA)),
((SysTest, yaction, OrgA), (SysTestRec, yartifact, OrgA)),
((SysTestRec, yartifact, OrgA), (End, yend, OrgA))

}).

B = ({
(Start, ystart, OrgB), (End, yend, OrgB), (MarketEval, yaction, OrgB),
(MarketInfo, yartifact, OrgB), (SysImpl, yha, OrgB, SysImplHA),

4 Solution Scenarios

 131

(RequEng, yaction, OrgB), (SysTest, yaction, OrgB), (RequSpec, yartifact, OrgB),
(ImplSys, yartifact, OrgB), (SysTestRec, yartifact, OrgB)

SysImplHA = {

(StartB, ystart, OrgB), (EndB, yend, OrgB), (SWDesignB, yaction, OrgB),
(SWImpl, yaction, OrgB), (SWTest, yaction, OrgB),
(SWDesignSpec, yartifact, OrgB), (ImplSW, yartifact, OrgB),
(SWTestRec, yartifact, OrgB)
}

} , {

//[Control flow]
SysImplHA = {
 ((Start, ystart, OrgB), (SWDesign, yaction, OrgB)),
 ((SWDesign, yaction, OrgB), (SWImpl, yaction, OrgB)),
 ((SWImpl, yaction, OrgB), (SWTest, yaction, OrgB)),
 ((SWTest, yaction, OrgB), (End, yend, OrgB))
 }

((Start, ystart, OrgB), (MarketEval, yaction, OrgB)),
((MarketEval, yaction, OrgB), (RequEng, yaction, OrgB)),
((RequEng, yaction, OrgB), (SysImpl, yha, OrgB, SysImplHA)),
((SysImpl, yha, OrgB, SysImplHA), (SysTest, yaction, OrgB)),
((SysTest, yaction, OrgB), (End, yend, OrgB))

//[Data flow]
SysImplHA = {
 ((SWDesign, yaction, OrgB), (SWDesignSpec, yartifact, OrgB)),
 ((SWDesignSpec, yartifact, OrgB), (SWImpl, yaction, OrgB)),
 ((SWImpl, yaction, OrgB), (ImplSW, yartifact, OrgB)),
 ((ImplSW, yartifact, OrgB), (SWTest, yaction, OrgB)),
 ((SWTest, yaction, OrgB), (SWTestRec, yartifact, OrgB)),
 ((SWTestRec, yartifact, OrgB), (End, yend, OrgB))
 }

((MarketEval, yaction, OrgB), (MarketInfo, yartifact, OrgB)),
((MarketInfo, yartifact, OrgB), (RequEng, yaction, OrgB)),
((RequEng, yaction, OrgB), (RequSpec, yartifact, OrgB)),
((RequSpec, yartifact, OrgB), (SysImpl, yha, OrgB, SysImplHA)),
((SysImpl, yha, OrgB, SysImplHA), (ImplSys, yartifact, OrgB)),
((ImplSys, yartifact, OrgB), (SysTest, yaction, OrgB)),
((SysTest, yaction, OrgB), (SysTestRec, yartifact, OrgB)),
((SysTestRec, yartifact, OrgB), (End, yend, OrgB))

}).

Step 2:

The root processes in Figure 72 need to be prepared for integration, which shall be done by

leaving out hierarchical elements. This is done using the function hierarchydelete_

4.3 Formalization

 132

Definition 31).Definition 34 As illustrated in Figure 74, Definition 34 showns the formal
definition accordingly.

Definition 34.

A = ({
(Start, ystart, OrgA), (End, yend, OrgA),
(MarketEval, yaction, OrgA), (RequEng, yaction, OrgA), (SysTest, yaction, OrgA),
(MarketInfo, yartifact, OrgA), (RequSpec, yartifact, OrgA), (SysTestRec, yartifact, OrgA),
(SWRealA, yaction, OrgA), (RealSW, yartifact, OrgA), (SWModTest, yaction, OrgA),
(SWTestRec, yartifact, OrgA)

} , {

//[Control flow]
((Start, ystart, OrgA), (MarketEval, yaction, OrgA)),
((MarketEval, yaction, OrgA), (RequEng, yaction, OrgA)),
((RequEng, yaction, OrgA), (SWReal, yaction, OrgA)),
((SWReal, yaction, OrgA), (SWModTest, yaction, OrgA)),
((SWModTest, yaction, OrgA), (SysTest, yaction, OrgA)),
((SysTest, yaction, OrgA), (End, yend, OrgA))

//[Data flow]
((MarketEval, yaction, OrgA), (MarketInfo, yartifact, OrgA)),
((MarketInfo, yartifact, OrgA), (RequEng, yaction, OrgA)),
((RequEng, yaction, OrgA), (RequSpec, yartifact, OrgA)),
((RequSpec, yartifact, OrgA), (SWReal, yaction, OrgA),
((SWReal, yaction, OrgA), (RealSW, yartifact, OrgA)),
((RealSW, yartifact, OrgA), (SWModTest, yaction, OrgA)),
((SWModTest, yaction, OrgA), (SWTestRec, yartifact, OrgA)),
((SWTestRec, yartifact, OrgA), (SysTest, yaction, OrgA)),
((SysTest, yaction, OrgA), (SysTestRec, yartifact, OrgA)),
((SysTestRec, yartifact, OrgA), (End, yend, OrgA))

}).

B = ({
(Start, ystart, OrgB), (End, yend, OrgB), (MarketEval, yaction, OrgB), (RequEng, yaction, OrgB),
(SysTest, yaction, OrgB), (MarketInfo, yartifact, OrgB), (RequSpec, yartifact, OrgB),
(SysTestRec, yartifact, OrgB), (SWDesignB, yaction, OrgB), (SWImpl, yaction, OrgB),
(SWTest, yaction, OrgB), (SWDesignSpec, yartifact, OrgB), (ImplSW, yartifact, OrgB),
(SWTestRec, yartifact, OrgB)

} , {

//[Control flow]
((Start, ystart, OrgB), (MarketEval, yaction, OrgB)),
((MarketEval, yaction, OrgB), (RequEng, yaction, OrgB)),
((RequEng, yaction, OrgB), (SWDesign, yaction, OrgB)),
((SWDesign, yaction, OrgB), (SWImpl, yaction, OrgB)),
((SWImpl, yaction, OrgB), (SWTest, yaction, OrgB)),
((SWTest, yaction, OrgB), (SysTest, yaction, OrgB)),
((SysTest, yaction, OrgB), (End, yend, OrgB))

4 Solution Scenarios

 133

//[Data flow]
((MarketEval, yaction, OrgB), (MarketInfo, yartifact, OrgB)),
((MarketInfo, yartifact, OrgB), (RequEng, yaction, OrgB)),
((RequEng, yaction, OrgB), (RequSpec, yartifact, OrgB)),
((RequSpec, yartifact, OrgB), (SWDesign, yaction, OrgB)),
((SWDesign, yaction, OrgB), (SWDesignSpec, yartifact, OrgB)),
((SWDesignSpec, yartifact, OrgB), (SWImpl, yaction, OrgB)),
((SWImpl, yaction, OrgB), (ImplSW, yartifact, OrgB)),
((ImplSW, yartifact, OrgB), (SWTest, yaction, OrgB)),
((SWTest, yaction, OrgB), (SWTestRec, yartifact, OrgB)),
((SWTestRec, yartifact, OrgB), (SysTest, yaction, OrgB)),
((SysTest, yaction, OrgB), (SysTestRec, yartifact, OrgB)),
((SysTestRec, yartifact, OrgB), (End, yend, OrgB))

}).

Step 3:

As defined in Figure 74, hierarchical processes are integrated by dissolving the hierarchy first.
Then, processes are integrated by using existing mediators. According to Figure 96, the
mediator for Horizontal Integration (chapter 4.3.6) is used.

Definition 35.

integrate_horiz() extends integrate_graph(),
where

• NdDel =
//[Organization A]
(RequEng, yaction, OrgA), (RequSpec, yartifact, OrgA), (SWReal, yaction, OrgA)

//[OrganizationB]
(Start, ystart, OrgB), (MarketEval, yaction, OrgB), (MarketInfo, yartifact, OrgB),
(SWTest, yaction, OrgB), (SWTestRec, yartifact, OrgB), (SysTest, yaction, OrgB),
(SysTestRec, yartifact, OrgB), (End, yend, OrgB)

• NdAdd = (HandovBeg, yaction, (OrgA AND OrgB)), (HandovEnd, yaction, (OrgA AND OrgB)),

• EdDel =

//[Control flow]
//[Organization A]
((MarketEval, yaction, OrgA), (RequEng, yaction, OrgA)),
((RequEng, yaction, OrgA), (SWReal, yaction, OrgA)),
((SWReal, yaction, OrgA), (SWModTest, yaction, OrgA)),

//[Organization B]
((Start, ystart, OrgB), (MarketEval, yaction, OrgB)),
((MarketEval, yaction, OrgB), (RequEng, yaction, OrgB)),
((SWImpl, yaction), (SWTest, yaction)),
((SWTest, yaction), (SysTest, yaction, OrgB)),
((SysTest, yaction, OrgB), (End, yend, OrgB))

4.3 Formalization

 134

//[Data flow]
//[Organization A]
((MarketInfo, yartifact, OrgA), (RequEng, yaction, OrgA)),
((RequEng, yaction, OrgA), (RequSpec, yartifact, OrgA)),
((RequSpec, yartifact, OrgA), (SWReal, yaction, OrgA),
((SWRealA, yaction, OrgA), (RealSW, yartifact, OrgA)),

//[Organization B]
((MarketEval, yaction, OrgB), (MarketInfo, yartifact, OrgB)),
((ImplSW, yartifact, OrgB), (SWTest, yaction, OrgB)),
((SWTest, yaction, OrgB), (SWTestRec, yartifact, OrgB)),
((SWTestRec, yartifact, OrgB), (SysTest, yaction, OrgB)),
((SysTest, yaction, OrgB), (SysTestRec, yartifact, OrgB)),
((SysTestRec, yartifact, OrgB), (End, yend, OrgB))

• EdAdd =

//[Control flow]
((MarketEval, yaction, OrgA), (HandovBeg, yaction, (OrgA AND OrgB))),
((HandovBeg, yaction, (OrgA AND OrgB)), RequEng, yaction, OrgB)),
((SWImpl, yaction, OrgB), (HandovEnd, yaction, (OrgA AND OrgB))),
((HandovEnd, yaction, (OrgA AND OrgB)), (SWModTest, yaction, OrgA))

//[Data flow]
((MarketInfo, yartifact, OrgA), (HandovBeg, yaction, (OrgA AND OrgB))),
((HandovBeg, yaction, (OrgA AND OrgB)), (MarketInfo, yartifact, OrgB)),
((ImplSW, yartifact, OrgB), (HandovEnd, yaction, (OrgA AND OrgB))),
((HandovEnd, yaction, (OrgA AND OrgB)), (RealSW, yartifact, OrgA))

Step 4:

After integration of processes, hierarchical elements are re-defined again. Formally, this is

generated by using the function hierarchycreate_ (Definition 5) according to Figure 97.
This re-definition should be based on former hierarchical definitions and appropriate actions
as depicted in
Figure 76. The formal description of the collaborative hierarchical process (Chp) is decribed
below:

Chp = ({

(Start, ystart, OrgA), (End, yend, OrgA),
(MarketEval, yaction, OrgA), (MarketInfo, yartifact, OrgA), (MarketInfo, yartifact, OrgB),
(HandovBeg, yaction, (OrgA AND OrgB)), (RequEng, yaction, OrgB),
(RequSpec, yartifact, OrgB), (SysTest, yaction, OrgA), (SysTestRec, yartifact, OrgA),
(SWImpl, yha, (OrgA, (OrgA AND OrgB), OrgB), SWImplHA)

} , {

SWImplHA = {
(SWDesign, yaction, OrgB), (SWDesignSpec, yartifact, OrgB),
(SWImpl, yaction, OrgB), (ImplSW, yartifact, OrgB),
(HandovEnd, yaction, (OrgA AND OrgB)), (RealSW, yartifact, OrgA),

4 Solution Scenarios

 135

(SWModTest, yaction, OrgA), (SWTestRec, yartifact, OrgA)
}

//[Control flow]
SWImplHA = {

((SWDesign, yaction, OrgB), (SWImpl, yaction, OrgB)),
((SWImpl, yaction, OrgB), (HandovEnd, yaction, (OrgA AND OrgB)),
((HandovEnd, yaction, (OrgA AND OrgB)), (SWModTest, yaction, OrgA)),
}

((Start, ystart, OrgA), (MarketEval, yaction, OrgA)),
((MarketEval, yaction, OrgA), (HandovBeg, yaction, (OrgA AND OrgB))),
((HandovBeg, yaction, (OrgA AND OrgB)), (RequEng, yaction, OrgB)),
((RequEng, yaction, OrgB), (SWDesign, yaction, OrgB)),

// additional control flows begin
((RequEng, yaction, OrgB), (SWImpl, yha, (OrgA, (OrgA AND OrgB), OrgB), SWImplHA)),
((SWImpl, yha, (OrgA, (OrgA AND OrgB), OrgB), SWImplHA), (SysTest, yaction, OrgA)),
// additional control flows: end

((SWModTest, yaction, OrgA), (SysTest, yaction, OrgA)),
((SysTest, yaction, OrgA), (End, yend, OrgA))

//[Data flow]
SWImplHA = {

((SWDesign, yaction, OrgB), (SWDesignSpec, yartifact, OrgB)),
((SWDesignSpec, yartifact, OrgB), (SWImpl, yaction, OrgB)),
((SWImpl, yaction, OrgB), (ImplSW, yartifact, OrgB)),
((ImplSW, yartifact, OrgB), (HandovEnd, yaction, (OrgA AND OrgB))),
((HandovEnd, yaction, (OrgA AND OrgB)), (RealSW, yartifact, OrgA)),
((ImplSW, yartifact, OrgA), (SWModTest, yaction, OrgA)),
((SWModTest, yaction, OrgA), (SWTestRec, yartifact, OrgA))

}

((MarketEval, yaction, OrgA), (MarketInfo, yartifact, OrgA)),
((MarketInfo, yartifact, OrgA), (HandovBeg, yaction, (OrgA AND OrgB))),
((HandovBeg, yaction, (OrgA AND OrgB)), (MarketInfo, yartifact, OrgB)),
((MarketInfo, yartifact, OrgB), (RequEng, yaction, OrgB)),
((RequEng, yaction, OrgB), (RequSpec, yartifact, OrgB)),
((RequSpec, yartifact, OrgB), (SWDesign, yaction, OrgB)),

((SWDesign, yaction, OrgB), SWDesignSpec, yartifact, OrgB)), //hierarchical process
((SWDesignSpec, yartifact, OrgB), (SWImpl, yaction, OrgB)), //hierarchical process
((SWImpl, yaction, OrgB), (ImplSW, yartifact, OrgB)), //…
((ImplSW, yartifact, OrgB), (HandovEnd, yaction, (OrgA AND OrgB))), //…
((HandovEnd, yaction, (OrgA AND OrgB)), (RealSW, yartifact, OrgA)), //…
((RealSW, yartifact, OrgA), (SWModTest, yaction, OrgA)), //…
((SWModTest, yaction, OrgA), (SWTestRec, yartifact, OrgA)), //…
((SWTestRec, yartifact, OrgA), (SysTest, yaction, OrgA)), //hierarchical process

((SysTest, yaction, OrgA), (SysTestRec, yartifact, OrgA)),
((SysTestRec, yartifact, OrgA), (End, yend, OrgA))

}).

4.3 Formalization

 136

5 Case Study

 137

5 Case Study

5.1 General Aspects

A case study is a research methodology common in social science. It is based on an in-depth
investigation of a single individual, group, or event. It provides a systematic way of looking
at events, collecting data, analyzing information, and reporting the results. As a result, the
case study conductor may gain a sharpened understanding of why any instance happens as it
does, and what might become important to examine more extensively in future research.

There are several types of case studies defined, which include the following [26]:

Illustrative Case Studies
These are mostly descriptive studies taking one or two instances of an event to show what a
situation is like. Illustrative case studies serve primarily to make the unfamiliar familiar and
to give readers a common language about the topic in question.

Exploratory (or pilot) Case Studies
These are condensed case studies performed before implementing a large scale investigation.
Their basic purpose is to help identify questions and select types of measurement prior to the
main investigation. The primary pitfall of this type of study is that initial findings may seem
convincing enough to be released prematurely as conclusions.

Cumulative Case Studies
These serve to aggregate information from several sites collected at different times. The idea
behind these studies is the collection of past studies will allow for greater generalization
without additional cost or time expenditures on new, possibly repetitive studies.

Critical Instance Case Studies
These examine one or more sites for either the purpose of examining a situation of unique
interest with little to no interest in generalizing, or to call into question or challenge a highly
generalized or universal assertion. This method is useful for answering cause and effect
questions.

Many case study supporters indicate that case studies generate much more detailed
information than what is available through a statistical analysis. However, Flvybjerg [45]
identifies and discusses five misunderstandings about case study research:

1. General, theoretical knowledge is more valuable than concrete, practical knowledge.
2. One cannot generalize on the basis of an individual case and, therefore, the case study

cannot contribute to scientific development.
3. The case study is most useful for generating hypotheses; whereas, other methods are

more suitable for hypotheses testing and theory building.
4. The case study contains a bias toward verification, i.e., a tendency to confirm the

researcher’s preconceived notions.
5. It is often difficult to summarize and develop general propositions and theories on the

basis of specific case studies.

The set-up of an adequate case study design for the problem to be solved is very challenging.
On one hand, there is no doubt that one single (stand-alone) case study will not deliver
sufficient evidence so that any theory is empirically proved (See misunderstanding #2 above

5.2 Case Study 1: Scenario from Automobile Industry

 138

[45]). On the other hand, the set-up of an industrial collaborative scenario is very time-
consuming and expects solid efforts from all participating parties in the early and start-up
phase as well as during conduction. One reason is that in a global project, setting up the team
is dispersed all over the world. This makes, other than project communication, e.g., for
additional case study related- discussion very complex. Therefore, the first case study
(Chapter 5.2) follows the “Illustrative Case Study” design mainly focusing on the
understanding of the problem and to get a feeling how the collaborative approach for process
integration of this work is applied.

5.2 Case Study 1: Scenario from Automobile Industry

This case study is basically defined as an “Illustrative Case Study” and follows the purpose
becoming familiar with typical issues to be solved with the above- defined process integration
method.

The illustrative case study takes advantage from some very well- known scientific approaches.
This means that the set- up makes use of “Direct Observation”, which is a source of evidence
in [150]. These observations have been done prior to and during definition of the solution in
this dissertation. Therefore, this process integration approach structurally documents those
activities that companies might have done anyway to some extent for collaborative projects.

In conjunction with direct observation, the pattern-matching-strategy is used. This approach
has also been applied to define those patterns that build the basic pillars of the integration
approach. Actually, this strategy is used for data evaluation purposes in computer science and
tries to map real data pattern with theoretically- supposed result patterns [66]. However, the
defined patterns of this work are not derived on a representative set of data; moreover, the
patterns have been defined based on direct observations from running collaborative projects
in industry. Thereby, several process patterns have been identified that allow for modeling
each and every scenario, which occurs in global software development organizations [4].

The case study starts with an application scenario that illustrates which functionality of
software or system will be needed by a potential customer. Next, a development scenario is
shown that depicts the major development parties and (sub-) systems to be developed. These
systems and (sub-) systems are marked in bold in chapter 5.2.2.

5.2.1 Case Study Questions

This case study deals with the issue of two or more development organizations' abilities to
collaborate on a processes basis. As already stated in section 1.2, this generates the following
research questions:

1. How does a (new) collaborative process (control flow) look like that incorporates two
or more different processes from cooperating organizations?

2. How do artifacts (data flow) look like? How can artifacts be handled if they are
defined in different formats?

Additionally, the case study tries to open up additional questions for further research,
especially concerning interface definition and artifact handling.

5 Case Study

 139

5.2.2 Application Scenario

A car goes along on a long journey. At any point of time an installed Road Condition
Analysis system (road side) identifies that due to rain and heavily dropping temperatures 30
km ahead, the probability of slippery roads due to black ice increases sharply.

This is possible, because the Roadside Information Systems informs every car at a distance
of less than 50 km. Additionally, the Driver Supporting System of the car receives that
information and immediately checks the cars’ functionality. Thereby, breaking system,
injection control system, security system, and oil control system are controlled towards
functional capability and the quality of the upcoming weather and road conditions. In case of
any problem, the Self Repair System takes care of it.

The Roadside Information System also provides the density of vehicles on the road, which
is used to calculate the probability of traffic jams and accidents in the area. If this calculated
probability is significantly high, the Driver Supporting System checks the availability of an
auto rail station in a reachable proximity and if slots for car transportation are still available.

If the Self Repair System could not fix any potential problem, the direct way to the next car
service point is identified. The availability of necessary spare parts is also requested. This
information is communicated to the driver, who can decide whether to go to the car service
point, to use the auto rail station for the remaining journey, or to just continue with the car on
the road.

The Navigation System shows the driver the selected option and calculated bypasses in case
of traffic jams. If no bypasses are available, the Driver Supporting System calculates the
approximated waiting time and suggests hotels for accommodation. If desired by the driver, a
hotel room is booked automatically.

5.2.3 Development Scenario

As the scenario above shows, there are several systems to be developed for realizing this
application case:

a. Roadside Information System, including Road Condition Analysis
b. Driver Supporting System, including the Self Repair System
c. Navigation System

That means the adaption of the car control system (combustion, breaks, safety systems -
airbags etc.) and the new development of the Roadside Information System and the
connection to Road Condition Analysis, Driver Supporting System, and Self Repair System.

This scenario contains the following organizations as participating partners:

• Organization A is an automobile supplier delivering the entire protection and safety
systems.

• Organization B is specialized on Driver Supporting Systems
• Organization C develops software systems
• Organization D is a small cap specialized on software development for data transfers
• Organization E is a hardware manufacturer and supplier with a partially defined

hardware process

5.2 Case Study 1: Scenario from Automobile Industry

 140

The development relationship of organizations and systems is depicted in Figure 98. It is
assumed that organization A provides the basis software functionality (“platform”) upon,
which all other suppliers’ software contributions are based.

Organization A
Iterative Process

Organization B
Hierarchical

Standard Process

Organization C
Iterative Process

Organization D
No Process

Organization E
Partially Defined

Hardware Process

Driver Supporting System

Roadside Information System (RIS)

R
IS

Navigation System (Nav. System)

Navigation System (Nav. System)

N
av

. S
ys

te
m

Figure 98: Organizational Relationship of Development Scenario

The Driver Supporting System is conjointly developed by Organization A and B, which is
specialized on such systems.

The Roadside Information System is created by Organization A, C, and E. In this case, A
delivers all the sensors and controls, C produces with the software for data analysis and
transition. Organization D is responsible for services such as contacting the auto rail station or
hotels.

5.2.4 Organizational Process Definitions

Organization A (Master)
As the Master of the collaborative development scenario, Organization A uses for its platform
development a comprehensive iterative process, since platform development is usually a
longer lasting process. This platform functions as basis and needs more sophisticated
mechanisms (change request / claim management) than a simple application development. In
order to keep the scenario as simple as possible, sub-processes like change/claim management
are omitted, since they have only a supportive character.

The process is illustrated in Figure 99 and starts with Requirement Engineering, which is
sourced by Market Information. Based on the Requirement Specification the organization
conducts System Architecture & Design, which is the basis for all further development

5 Case Study

 141

contributions and is documented in System Architecture & Design Specification. In the
following Module Design addresses only those functionalities that are developed by the
Master itself. The design results in Module Specification that is the basis for Module
Implementation. After Module Test, which is documented in Module Test Record, the
iteration loop checks whether there is still remaining functionality to be designed and
implemented. If so, the control flow jumps to Module Design. In case all desired modules
have been implemented, System Test is conducted, which ends up with System Test Record.

Organization A (Master)

System Test

Module Test

Module Design

System Architecture
& Design

Specification

Module
Implementation

Requirement
Engineering

System Architecture
 & Design

Market
Information

Requirement
Specification

System Test
Record

Implemented
Module

Module
Specification

Module Test
Record

All modules
implemented?No

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Yes

Figure 99: Iterative Process of Organization A

5.2 Case Study 1: Scenario from Automobile Industry

 142

Organization B (Supplier)
Organization B follows a kind of “standard” process, which is hierarchically defined for
better complexity handling (Figure 100). Having Requirement Specification as input, the
process starts with System Design. An explicit requirement engineering action is not defined.
After Design Review of the Design Specification System, System Implementation – as a
hierarchical action – is conducted. System Implementation, which is basically the
development of software, is sourced by System Design Specification from which Software
Design and a respective Design Review is derived. The resulting Software Design
Specification is input for Software Implementation. The Software Test of the implemented
software is recorded in the Software Test Record.

Remarks:

For integration purposes the “hybrid view” has been defined in chapter 4.2.6, Figure 73.
However, this view is not shown initially since manageability of the process suffers from it.

Organization B

System Test

Design Review

System Design

System
Implementation

Requirement
Specification

Design
Review Record

System Test
Record

System Design
Specification

Implemented
System

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

System Implementation

Software Design

Software Test

Software
Implementation

Software
Design

Specification

Software Test
Record

Implemented
Software

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Figure 100: Hierarchical Standard Process of Organization B

5 Case Study

 143

Organization C (Supplier)
As illustrated in Figure 101, Organization C has a partially-defined process in place. This
means that not the entire development process is documented, but only a small portion of it.
In this case, it is the software development part, i.e., Design Review, Software Implementation
and Software Test with corresponding artifacts. This often occurs in relative immature
companies, which focus their process definition on core competencies.

Organization C (Supplier)

Software Test

Design
Review

Software
Implementation

Software Design
Specification

Design Review
Record

Implemented
Software

Software Test
Record

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Figure 101: Partially Defined Process of Organization C

Organization D (Supplier)

Organization D

Requirement
Engineering

Software Test

Software
Design

Software
Implementation

Code Review

Figure 102: Amorphous Process of Organization D

5.2 Case Study 1: Scenario from Automobile Industry

 144

Organization D has no structured process established. As shown in Figure 102, the process is
amorphous, which means that there are some activities, which are conducted during
development; however, these activities do not depend logically on each other. Dependencies
of in- and outputs are not clearly defined. Roles are also not explicitly documented.

Organization E (Supplier)
Organization E is the major hardware supplier for Organization A (Master), especially for the
Driver Supporting System. The hardware process is straightforward and starts with
Hardware Requirement Specification assuming that hardware requirement engineering is
already previously done. This is basis for the Hardware Design. In contrast to software
design, this process step has to create/conduct, e.g.,:

- design/engineering drawings
- reviews using Failure Mode Effect Analysis (FMEA)
- design patterns for development
- bill of material (BOM)
- electric circuit plan
- concept for assembly
- release of assembly parts

These results are input for Hardware Implementation basically consisting of manufacturing of
the desired hardware lot sizes. Hardware Test checks the proper functionality of the hardware,
which is documented in Hardware Test Record. This is an essential input for integration
activities and system test.

Organization E (Supplier)

HardwareTest

Hardware Design

Hardware
Implementation

Hardware Design
Specification

Hardware
Requirement
Specification

Implemented
Hardware

HardwareTest
Record Control

Flow

Control
Flow

Control
Flow

Control
Flow

Figure 103: Hardware Process of Organization E

5 Case Study

 145

5.2.5 Collaborative Process Definition

As stated above, several different systems have to be developed to realize the scenario from
the automobile industry. Since different collaborative partners are necessary for different
products, it is also crucial to have different sub-process definitions combined for
collaboration. For this reason, the following section describes the derivation of the
collaborative process and the collaboration scenario itself based on (sub-) systems or products
respectively to be developed.

5.2.5.1 Driver Supporting System

The Driver Supporting System functions as a kind of controller of a car’s system conducting
system checks and reporting the results - in the worst case errors - to the driver. Since
Organization B has special knowledge on such systems, it is supposed that Organization A
(Master) wants to collaborate more closely with this company than with the others for
developing that system. Given the initial processes in Figure 99 and Figure 100, several
mediators are used to set up the collaboration process. The entire scenario is depicted in
Figure 104 and consists of several collaborative parts that are in detail described in the
following.

Remarks:

Synchronization and handover points are numbered serially for better ability to reference. The
additional swim lane diagrams on the right side of each collaborative scenario (black box)
show which mediator has been used for process set up.

Starting with requirement engineering, the Master and Organization B decide to conduct this
sub-process conjointly since this is an essential part in early development phases. Following
the integration approach in chapter 4.2.5, the mediator for ‘Merging Integration’ needs to be
applied, because this pattern addresses conjoint integration best. This mediator is again shown
in Figure 105. This means for the collaborative process that after Market Information as the
identified starting point for integration, Synchronization-1 has to take place, which creates the
same understanding of the available information from the market for both organizations. This
information is the basis for the conjointly conducted Requirement Engineering resulting in
Requirement Specification as the corresponding artifact. Furthermore, Handover-1 turns this
Requirement Specification into a format the Master can use for System Architecture and
Design. This activity ends up with the System Architecture & Design Specification.

The Master decides to have this specification reviewed by Organization B, which is done by
using ‘Horizontal Integration’ scenario (Figure 106). This makes sense since, on one hand,
Organization A gets a second view and opinion on it; on the other hand, Organization B is
obliged anyway to implement the Driver Supporting System together with Organization A.
Additionally, Organization B has a Design Review (Figure 100) defined in its process, from
which Organization A can take advantage. The review ensures that the Master’s development
partner gets in touch very closely with the content to be developed. Referring to Figure 104,
Handover-2 converts System Architecture and Design to Organization B’s format. After
review, Handover-3 turns the finalized Design Review Record back to the Master.

5.2 Case Study 1: Scenario from Automobile Industry

 146

System Implementation

Synchronization - 2

Handover - 4

Synchronization - 1

Handover - 2

Handover - 1

Handover - 3

Requirement
Engineering

Module
Implementation

Module Design

System Architecture
 & Design

All modules
implemented?

Design Review

(Organization A (Master)
AND

Organization B (Supplier))

Organization A (Master) Organization B (Supplier)

System Architecture
& Design

Specification

System Architecture
& Design

Specification

Implemented
Module

Market
Information

Market
Information

Requirement
Specification

Design
Review Record

Module
Specification

Requriement
Specification

System Test
Record

Design Review
Record

Module
Specification

Implemented
Module

Module Test
Record

System Test

Module Test

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control Flow

Control Flow

No

Control Flow

Control
Flow

Control
Flow

Yes

Control
Flow

Control
Flow

Figure 104: Collaborative Process for Development of “Driver Supporting System”

<Action X>

<Action Y>

Handover

Synchronization

<Evolutionary
Actions> - new

Organization A (Master)
AND / OR / XOR

Organization B (Supplier)

Organization B (Supplier)Organization A (Master)

Artifact 3 - new

Artifact 2 - new

Artifact 4

Artifact 1

Control Flow

Control Flow

<Action X>

<Action Y>

Handover

Synchronization

<Evolutionary
Actions> - new

Organization A (Master)
AND / OR / XOR

Organization B (Supplier)

Organization B (Supplier)Organization A (Master)

Artifact 3 - new

Artifact 2 - new

Artifact 4

Artifact 1

Control Flow

Control Flow

<Action Y>

<Action X>

Handover

Handover

<Action Z>

Organization A (Master)
AND

Organization B (Supplier)

Organization B (Supplier)Organization A (Master)

Artifact 4

Artifact 1 Artifact 2

Artifact 3

Control Flow

Control Flow

Control Flow

Control Flow

<Action Y>

<Action X>

Handover

Handover

<Action Z>

Organization A (Master)
AND

Organization B (Supplier)

Organization B (Supplier)Organization A (Master)

Artifact 4

Artifact 1 Artifact 2

Artifact 3

Control Flow

Control Flow

Control Flow

Control Flow

„Merging
Integration“

„Horizontal
Integration

“

Hierarchical Action

Handover

Synchronization

<Evolutionary
Actions> - new

<Action X>

<Action Y>

(Organization A (Master)
AND

Organization B (Supplier))

Organization B (Supplier)Organization A (Master)

Artifact 3 - new

Artifact 2 - new

Artifact 4

Artifact 1

Control
Flow

Control Flow

Control
Flow

Control Flow

„Hierarchical
Integration“

5 Case Study

 147

<Action X>

<Action Y>

Handover

Synchronization

<Evolutionary
Actions> - new

(Organization A (Master)
AND / OR / XOR

Organization B (Supplier))

Organization B (Supplier)Organization A (Master)

Artifact 3 - new

Artifact 2 - new

Artifact 4

Artifact 1

Control Flow

Control Flow

Control
Flow

Control
Flow

Figure 105: Mediator for ‘Merging Integration’

The review record is in conjunction with System Architecture & Design input for the module
implementation loop. The implementation loop starts with the Master that designs a module
(Module Design). As already mentioned, Organization A decided to do module
implementation together with Organization B. Since Organization B has its software
implementation processes hierarchically defined, it is necessary to use a mediator that
supports ‘Hierarchical Integration’ in a merging scenario. This mediator is depicted in Figure
107. Therefore, a Synchronization-2 needs to be added to achieve a common understanding of
Module Specification by both Organizations A and B. Figure 104 shows Module
Implementation in “hybrid-view”. The Module Implementation itself is not the one from
Organization A as the labeling might suggest. Referring to the color code Module
Implementation and the resulting Implemented Modules are newly defined process elements
(“evolutionary” activity and artifact) based on Module Implementation from Organization A
(Figure 99) and Software Implementation from Organization B (Figure 100).

After implementation of the module, Handover-4 turns the results into the artifact
Implemented Module on the Master's side. This is necessary to have the adequate input for the
Module Test available; however, the adaptation/discussion will not be very comprehensive, if
there is any at all, since implementation has been done by both organizations anyway. This
means that especially Organization A will have those items be developed in Module
Implementation, which are necessary for Module Test. Module Test results in Module Test
Record. If there is still functionality to be implemented, the module implementation loop
restarts. If the desired or sufficient functionality is created, System Test is conducted by
Organization A. After System Test and the resulting System Test Record, the process
terminates.

5.2 Case Study 1: Scenario from Automobile Industry

 148

<Action Y>

<Action X>

Handover

Handover

<Action Z>

(Organization A (Master)
AND

Organization B (Supplier))

Organization B (Supplier)Organization A (Master)

Artifact 4

Artifact 1 Artifact 2

Artifact 3

Control Flow

Control Flow

Control Flow

Control Flow

Figure 106: Mediator for ‘Horizontal Integration’

Hierarchical Action

Handover

Synchronization

<Evolutionary
Actions> - new

<Action X>

<Action Y>

(Organization A (Master)
AND

Organization B (Supplier))

Organization B (Supplier)Organization A (Master)

Artifact 3 - new

Artifact 2 - new

Artifact 4

Artifact 1

Control
Flow

Control Flow

Control
Flow

Control Flow

Figure 107: ‘Hierarchical Integration’: Mediator fo r ‘Merging Integration’

5 Case Study

 149

5.2.5.2 Navigation System

The functionality of the Navigation System is rather straightforward; however, the system is a
highly proprietary system, which needs to be more than others adapted to the system’s
interfaces in the automobile and its environment, e.g., Roadside Information System.

In this case, it is assumed that Organization A wants to outsource the design review and
system development (Figure 108). For this purpose, not merely one single organization is
considered for outsourcing of a sub-product’s development, but two organizations, i.e.,
Organization C and Organization D.

Referring to the entire collaboration scenario (Figure 108) Requirement Engineering with the
appropriate artifact (Requirement Specification), as well as System Architecture and Design
and System Architecture and Design Specification remain at the Master’s company’s
responsibility. For review, the System Architecture and Design Specification is handed over
(Handover-7) to the collaboration partners Organization C and D. This makes sense, since
these partners are foreseen to implement the system in the following. Process integration is
done via the Mediator ‘Horizontal Integration’ as illustrated in Figure 106. The Handover-7 -
conducted by all three organizations A, B, and D - turns the System Architecture and Design
Specification into that format Organization C and D can handle in the Design Review. Based
on Design Review of Organization C (Figure 101), this activity is newly defined, since the
two Organizations C and D are conducting this review conjointly. The Design Review Record
is converted back to the Master’s format by the Handover-8 action. The reviewed System
Architecture and Design Specification is now basis for Module Design, which results again in
the Module Specification. Development of Module Specifications will be done by
Organizations C and D. Organizations D, which has an amorphous process in place, is
coerced to follow the development process of Organization C. This is done by using the
Mediator for ‘Merging Integration’ from Figure 105. A Module Specification is converted
with Handover-9 into a Software Design Specification. Consecutively, Organization C and D
start Software Implementation of appropriate software modules. The Implemented Software is
tested (Software Test) and the Software Test Record is converted back to the format of the
Module Test Record of Organization A. This is done by using the action Handover-10. Since
this is an iterative process, it runs as long as there are still modules to be implemented. If all
modules are implemented, System Test starts, which is documented in the System Test Record.
This terminates the process.

5.2 Case Study 1: Scenario from Automobile Industry

 150

Module Design

System Test

Requirement
Engineering

System Architecture
 & Design

All modules
implemented?

Handover - 7

Handover - 8

Handover - 9

Handover - 10

Design Review

Software Test

Software
Implementation

(Organization C (Supplier)
AND

Organization D (Supplier))

Organization A (Master) ((Organization A (Master)
AND

Organization C (Supplier)
AND

Organization D (Supplier))

System Architecture
& Design

Specification

System Architecture
& Design

Specification

System Architecture
& Design

Specification

Market
Information

Requirement
Specification

Design
Review Record

System Test
Record

Software
Design

Specification

Implemented
Software

Software Test
Record

Module
Specification

Module Test
Record

No

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Yes

Control
Flow

Control Flow

Control
Flow

Control Flow

Control Flow

Control
Flow

Control
Flow

Figure 108: Collaborative Process for Development of "Navigation System“

<Action Y>

<Action X>

Handover

Handover

<Action Z>

Organization A (Master)
AND

Organization B (Supplier)

Organization B (Supplier)Organization A (Master)

Artifact 4

Artifact 1 Artifact 2

Artifact 3

Control Flow

Control Flow

Control Flow

Control Flow

<Action Y>

<Action X>

Handover

Handover

<Action Z>

Organization A (Master)
AND

Organization B (Supplier)

Organization B (Supplier)Organization A (Master)

Artifact 4

Artifact 1 Artifact 2

Artifact 3

Control Flow

Control Flow

Control Flow

Control Flow

„Horizontal
Integration“

<Action Y>

<Action X>

Handover

Handover

<Action Z>

Organization A (Master)
AND

Organization B (Supplier)

Organization B (Supplier)Organization A (Master)

Artifact 4

Artifact 1 Artifact 2

Artifact 3

Control Flow

Control Flow

Control Flow

Control Flow

<Action Y>

<Action X>

Handover

Handover

<Action Z>

Organization A (Master)
AND

Organization B (Supplier)

Organization B (Supplier)Organization A (Master)

Artifact 4

Artifact 1 Artifact 2

Artifact 3

Control Flow

Control Flow

Control Flow

Control Flow

„Horizontal
Integration“

5 Case Study

 151

5.2.5.3 Roadside Information System

The Roadside Information System that also includes software for running the Road
Condition Analysis is constantly installed at the roadside and includes sensors for measuring
weather and analyzing derived road conditions. For this reason, the development of an
appropriate product requires not only software but also hardware that needs to be
manufactured and programmed with parameters to be compatible with the Driver
Supporting System.

The collaboration scenario for developing the Roadside Information System is depicted in
Figure 109.

Module Design

System Test

Requirement
Engineering

System Architecture
 & Design

All modules
implemented?

Handover - 5

Handover - 6

Software Test

Decomposition

Integration

Organization E (Supplier) (Organization A (Master)
AND

Organization E (Supplier))

Organization A (Master) (Organization A (Master)
AND

Organization C (Supplier))

Organization C (Supplier)

System Architecture
& Design

Specification

System Architecture
& Design

Specification

Hardware
Requirement
Specification

Software Design
Specification

Market
Information

Requirement
Specification

System Test
Record

Implemented
Software

Software Test
RecordHardwareTest

Record

Module
Specification

Module Test
Record

System Test
Specification

Hardware Design

Software
Implementation

HardwareTest

Hardware
Implementation

Hardware Design
Specification

Implemented
Hardware

No
Yes

Control
Flow

Control Flow

Control
Flow

Control
Flow

Control Flow

Control
Flow

Control
Flow

Control Flow

Control Flow

Control Flow

Control Flow

Figure 109: Collaborative Process for Development of Road Information System

(Organization A (Master)
AND

Organization B (Supplier))

Organization B (Supplier)Organization A (Master)

<Sub Workflow B><Sub Workflow A>

Integration

Decomposition

<Action Y>

<Action X>

Artifact 6

Artifact 5

Artifact 1

Artifact 4

Artifact 3

Artifact 2

Control Flow

Control Flow

Control Flow

Control Flow Control Flow

Control Flow

„Add. Vertical
Integration“

<Action Y>

<Action X>

Handover

Handover

<Action Z>

(Organization A (Master)
AND

Organization B (Supplier))

Organization B (Supplier)Organization A (Master)

Artifact 4

Artifact 1 Artifact 2

Artifact 3

Control Flow

Control Flow

Control Flow

Control Flow

„Horizontal
Integration“

5.2 Case Study 1: Scenario from Automobile Industry

 152

For this product, Organization A decides to do the “early phase” of development by itself, i.e.,
Market Information, Requirement Engineering and Requirement Specification, as well as the
System Architecture and the corresponding specification is all done by the Master
organization.

The System Architecture Specification needs to be decomposed to identify those product parts
that need to be allocated to hardware implementation and software implementation. Therefore,
Decomposition shall produce a Hardware Requirement Specification and an appropriate
System Architecture Specification that highlights those product parts to be implemented by
the software process (Figure 109). For the hardware part, it is assumed that Organization E, as
a hardware specialist, is nominated to deliver all the sensors and controllers for the Roadside
Information System. This organization runs its process as described above at Figure 103.
For this parallelizing process operation, the mediator ‘Additive Vertical Integration’ as shown
in Figure 110 is used.

(Organization A (Master)
AND

Organization B (Supplier))

Organization B (Supplier)Organization A (Master)

<Sub Workflow B><Sub Workflow A>

Decomposition

Integration

<Action Y>

<Action X>

Artifact 6Artifact 3

Artifact 5Artifact 2

Artifact 4

Artifact 1

Control Flow

Control Flow

Control Flow

Control FlowControl Flow

Control Flow

Figure 110: Mediator Pattern for ‘Additive Vertical Integration’

As also stated before the entire module development of Organization A consists of an
iterative process. As in the other scenarios, the Master keeps the Module Design and Module
Specification in its own responsibility (Figure 109). For developing the Roadside
Information System, Organization A takes advantage of another software supplier, which is
Organization C. This concerns especially the software development. For process integration
of the organization, the Mediator ‘Horizontal Integration’ (Figure 106) is used. This means
that Handover-5 turns the Module Specification of Organization A into the format (for
Software Specification) required by Organization C. After implementing the desired software
module the Software Test Record from Software Test (Organization C) is handed back to the
Master (Handover-6), which is converted again to a Module Test Record. If all desired
modules have been implemented, an integration of software and hardware has to take place.

5 Case Study

 153

This is done during Integration, which results in a System Test Specification. These process
steps contain, e.g., creation and release of interface specifications, release of technical
documentation, definition of packaging (if necessary), creation of a hardware prototype, set
up of basic data for assembly part disposition (if necessary) etc. After System Test, which is
documented in System Test Record, the process terminates.

5.2.6 Summary Case Study 1: Scenario from Automobile Industry

This scenario from automobile industry illustrates how the process integration approach
works in general and how mediator patterns can be applied in order to set up a collaborative
process environment for distributed development. Having defined an initial situation, it has
been shown that the process integration approach is able to be used even in more complex
scenarios like in Figure 109. Thereby, the set up procedure follows the content that needs to
be developed by other organizations from the master organization’s point of view. Whenever
these contents are defined, the connection points for the mediators are identified and (sub-)
processes are connected which each other. This routine is done sequentially and, therefore,
points out the convenience of the approach’s applicability even in complex scenarios, i.e.,
more than two involved organizations and more than one mediator usage for collaboration
process set up.

Two case study questions that have been raised in section 5.1 are answered and reflected
here:

1. How does a (new) collaborative process (control flow) look like that incorporates two
or more different processes from cooperating organizations?

This case study gives an impression that the process integration approach works within an
application case. It has been shown that processes might be dependent from product to be
developed since

a) the content and requirements are different for every product and
b) the participating organizations are also not the same for each product.

Furthermore, it is illustrated how to integrate organizational processes that are not fully
defined keeping in mind that at least some process fragments need to be available to make
the process integration approach work.

Last, the mediator functionality is shown by using several mediators in a row for each
collaboration scenario provided (Figure 104, Figure 108, Figure 109). For better
illustration, these UML activity diagrams depict which mediator has been used for setting
up the collaborative scenario.

2. How do artifacts (data flow) look like? How can artifacts be handled if they are
defined in different formats?

Data flow is also depicted in the provided collaborative scenarios and goes very often
hand in hand with control flow. If the mediator is properly defined, it is also very easy to
use the mediator in whatsoever complex scenario. This should not simplify the problem of
collaborative development processes, but underlines the ease of use of the process
integration approach in general.

The problem of having several and different artifact formats in each organization defined
is handled by each mediator used and has not been explicitly addressed in this illustrative

5.2 Case Study 2: Scenario from Agile Development

 154

case study. The possible handling of this problem is described in the artifact and handover
concept in Chapter 3.3.2.

5 Case Study

 155

5.3 Case Study 2: Scenario from Agile Development

This case study is basically defined as an “Exploratory Case Study” that addresses and
measures the performance of the process integration approach. Results shown in the
following have been published in [16].

The scenario investigates distributed agile software development [14] in a students' project,
which was held as a joint course by the Technische Universität Clausthal (TUC) and the
Leibniz Universität Hannover (LUH). A similar, non-distributed course was held at LUH
many times before. One of the main goals in the non-distributed agile course was to teach
eXtreme Programming (XP) in a realistic environment. The students should learn how the
agile practices affect software development. Therefore, all twelve practices proposed by Beck
[14] were tried to be fully implemented. An essential part of the course is a one- week block,
encompassing most of the software development activities. Thus, it is possible to implement
practices like Onsite-Customer, 40h - week, and Pair-Programming. For teaching purposes,
iterations were kept very short, i.e., two-day iterations worked best [135].

5.3.1 Case Study Questions

This case study targets the performance assessment of a distributed process in comparison to
a process conducted in one location. This distributed process has been set up with the
approach of this thesis.

The assessment is based on the “Goal-Question-Metric” (GQM) paradigm, which helps to
assess process improvements or at least changes in a defined and systematic way [10]. This
approach deals with a specific type of improvement:

a) the improved process shall be applicable in distributed projects and
b) the improved process shall still incorporate the same advantages and properties of the
original process.

In such comparable co-located projects, some advantages of the corresponding co-located XP
process have been observed, which are also worthy to be included in a distributed
development process. Therefore, the Goal of this case study is to evaluate within a distributed
development project:

1. high developer commitment because of shared responsibility.
2. low risk of failure and low amount of rework because of good customer interaction.

Depending on the abstractness of the defined GQM goal, a refinement into sub goals might be
required. Based on experience, goals should have a single quality goal and a single well-
defined perspective for best results.

It needs to be investigated to what extent the advantages from co-located development could
be retained. Such a comparison is specific for a given project situation and the type of
processes involved, since we want to assess whether a specific advantage exists in the derived
process.

The following research questions have been systematically derived, which will be evaluated
in Chapter 5.3.4:

5.3 Case Study 2: Scenario from Agile Development

 156

Question 1:
Does the derived distributed process explicitly allocate responsibilities in a way that leads to
comparable commitment of developers as in the co-located case?

Question 2:
Does the continuous integration and the handover of new functionality to the rest of the team
work as well in reducing the risk of failure as in the co-located process?

Question 3:
Does the distributed process support the development of a shared understanding of the
design?

Question 4:
Despite the additional communication effort of the distributed process: is it still profitable to
execute projects with this process?

5.3.2 Organization’s Process Definition

Figure 111 describes the development process in co-located XP classes, illustrating the initial
process of LUH. This process is basically an agile process incorporating the major concept of
story cards. These handwritten slips of paper contain a short description of how a future user
will use the system that is still under development. Often, narratives (i.e., usage stories) are
used. Onsite customers write these stories together with the agile team. New story cards can
always be created and added to the Product Plan. The Product Plan contains all story cards the
team and customer are aware. Referring to experience, most stories are created at the
beginning or end of iterations.

Each iteration starts with a Planning Game. If the customer comes up with new stories, these
are considered first. After that, each story card is estimated by the developers for its forecast
effort. Then, the customer prioritizes the story cards by sorting them. The most important
story card lies on top of the stack. Based on experience from past iterations, customer and
team select as many story cards from this stack as one iteration allows to implement, which
defines the iteration plan.

After the Planning Game, which is conducted in conjunction with the customer story cards
from the iteration plan are implemented via Pair Programming. Any pair of two developers
takes the topmost story card (“Select Story Card”) and implements it by applying the test-first
practice. The developers start with writing an automatic unit test (“write unit test”), then add
just enough code to make the test run (“write code”), before writing the next test. This is
depicted in the activity “Pair Programming: Implementation and Integration”. As illustrated
with turning arrows, improvement loops are included.

At any time, the developer pair thinks that a story card is implemented, they go to the onsite
customer and present their results. If these results are acceptable for the customer
(“acceptance test”), the developer pair integrates them into the system, and the story card is
finished (“integrate story”). The pair takes the next story from the iteration plan and starts
again. This iterative process loop ends if all story cards of iteration plan are processed and/or
acceptance from the customer is gained.

5 Case Study

 157

Select Story
Card

Planning
game

Agile team

«datastore»
Iteration Plan : {subset of Product Plan}

«datastore»
Product Plan : Set of Story cards

(Agile team AND
Customer)

«datastore»
Actual Story

Card : {element of
Iteration Plan}

Pair Programming: Implementation
and Integration : GloSE

(Programmer Pair A
XOR

Programmer Pair B)
AND Customer

Programmer Pair A
XOR

Programmer Pair B

Organization [Agile]

write unit test

write code

acceptance test

integrate story

Progream and
Test Code

«datastore»
Program and

Test Code

Story Card

Program and
Test Code

All Story Cards
of Iteration Plan
Processed

Control Flow

Control Flow

Control Flow

Control Flow

 [complete]

 [not accepted]

 [not complete] [accepted]

 [Yes]

Control
Flow

Control Flow

 [No]

Figure 111: Co-located Agile Development Process

Prior to participation of the joint course, TUC followed a traditional waterfall development
process depicted in Figure 112. This process was not able any more to address the up-to-date
development issues, e.g., fast changing requirements, early releases for customers etc.
Therefore, an agile approach like at LUH was intended for use in development projects.
However, this approach did not consider an explicit design, which has been seen as very

5.3 Case Study 2: Scenario from Agile Development

 158

valuable at TUC, especially for distributed development projects. This made TUC consider an
integration of the old waterfall design into a new development approach.

Organization [Waterfall]

Software
Test

Software
Implementation

Software
Analysis

Software
Design

Analysis
Documentation

Implemented
Software

SW Design
Specification

Software
Test Record Control

Flow

Control
Flow

Control
Flow

Control
Flow

Figure 112: Initial Waterfall Process

5.3.3 Collaborative Process Definition

Referring to the collaboration scenarios defined in Chapter 4.2, the scenario ‘Additive
Vertical Integration’ is taken into consideration to connect processes from LUH and TUC,
based on agile development practices. The appropriate mediator for this scenario is again
depicted in Figure 113.

In the following, it is illustrated how to apply the process integration approach to a students’
project having 11 participants at LUH and 4 participants at TUC. First, two teams are formed:
a local team with 7 students from LUH who followed the original co-located process and a
distributed team with 4 students from each site (two programmer-pairs per site) who followed
the derived process for distributed XP. There was no barrier due to languages, time zones,
and resulting communication problems, because LUH and TUC are both German universities.
The project conducts 14 development runs with duration of 4 hours each. Thereby, five days
included two development runs each and four days with one development run. The entire
development project was based on XP. Although the project lasted only a little over two

5 Case Study

 159

weeks (14 working days), all XP practices were applied, e.g., Planning Game, Refactoring,
Pair Programming, Onsite Customer, Continuous Integration etc.

(Organization A (Master)
AND

Organization B (Supplier))

Organization B (Supplier)Organization A (Master)

<Sub Workflow B><Sub Workflow A>

Integration

Decomposition

<Action X>

<Action Y>

Artifact 4

Artifact 6Artifact 3

Artifact 5

Artifact 1

Artifact 2

Control Flow

Control Flow

Control Flow

Control Flow

Control Flow

Control Flow

Figure 113: Mediator Pattern for ‘Additive Vertical Integration’

Besides the XP practices discussed in Kircher et al. [79], special attention needs to be paid on
the design activity, which has been done implicitly in the co-located agile scenario (Figure
111). This implicit approach is acceptable, since communication paths are very short and
decisions can be taken informally without having anybody of the agile team ignored. In a
distributed development environment, design discussions are even more important due to the
distributed project character - even a simple design [14] needs to be known at all sites.
Consequently, the main intention of TUC was to keep and conduct explicit design activities,
even though an agile approach is followed. As depicted in Figure 111 programmer pairs
continuously take story cards to implement. Design discussions and definitions have to be
now explicitly defined and conducted in parallel to the implementation of story cards. This is
necessary, because various features of story cards might affect the system design. The design
adoptions in a distributed project environment need to follow a traceable approach in order to
get commitment from the entire team.

Due to the fact that development activities have to be explicitly conducted in parallel, the
‘Additive Vertical Integration’ scenario is predestined to be applied. Figure 114 illustrates the
collaborative scenario. Following this mediator pattern as illustrated in Figure 113, we have
to identify the respective <Action X> first, that is the connection point for processes to be
integrated.

Having chosen the action Select Story Card, a newly- defined action Decomposition has to be
added right after a story card is selected. In this action, the agile teams decide on the
dedicated developer pairs, which start discussions about design. A pair itself is not distributed
over two locations, since this would make the XP practices even harder to fulfill by having
too much communication effort. For this reason, a XOR role model definition is applied in
the Pair Programming activity, which minimizes communication overhead. Going further in

5.3 Case Study 2: Scenario from Agile Development

 160

Figure 114, the fork node starts parallelizing the process. The left path covers the design work,
which typically leads to a design sketch on a whiteboard and documents the most important
design decisions for the current iteration. The design sketch will be removed, if it is no longer
useful.

Pair Programming: Implementation
and Integration : GloSE

Decomposition

Integration

Select Story
Card

do design

Design Necessary for Iteration?

All Story Cards
of Iteration Plan
Processed

Planning
game

Agile team

«datastore»
Iteration Plan : {subset of Product Plan}

«datastore»
Product Plan : Set of Story cards

(Agile team AND
Customer)

«datastore»
Actual Story

Card : {element of
Iteration Plan}

«datastore»
Design Sketch

Design Sketch

Progream and
Test Code

«datastore»
Program and

Test Code

Story Card

Program and
Test Code

write unit test

write code

acceptance test

integrate story

Programmer Pair A
XOR

Programmer Pair B

(Programmer Pair A
XOR

Programmer Pair B)
AND Customer

Control Flow

Control
Flow

Control Flow

 [Yes]

 [Yes]

 [No]

 [No]

Control Flow

Control
Flow

Control Flow

 [complete]

 [not complete]

 [not accepted]

 [accepted]

Figure 114: Distributed Collaborative Process

(Organization A (Master)
AND

Organization B (Supplier))

Organization B (Supplier)Organization A (Master)

<Sub Workflow B><Sub Workflow A>

Integration

Decomposition

<Action X>

<Action Y>

Artifact 4

Artifact 6Artifact 3

Artifact 5

Artifact 1

Artifact 2

Control Flow

Control Flow

Control Flow

Control Flow

Control Flow

Control Flow

„Add. Vertical
Integration“

5 Case Study

 161

The right path leads directly to activity Pair Programming: Implementation and Integration.
As depicted in Figure 114, a useful design sketch is input for this activity, which describes the
implementation process itself. After implementation the story card’s code is integrated into
the existing software product. Following the scenario in Figure 114, the join node terminates
the parallelism. At this point another overall integration needs to take place, which also
includes the integration of various design approaches created on the whiteboard. This is
represented by an additional Integration action at the end.

5.3.4 Assessment of the Derived Process

After having a process derived for distributed development, this section assesses whether it
works as intended.

The GQM paradigm demands for a systematic approach for evaluation, i.e., the investigation
goal has to be defined. Basili suggests a specific template to document such goals and to
refine them to testable sub goals [10]:

Analyze:
A precise definition of the object under investigation should be given. In this case, it is the
(formerly co-located) process that should be applied in distributed software development.

Purpose:
Basili presents a set of three pre-defined GQM purposes: understanding, improving, and
controlling. Here, the purpose is to improve the process at hand in order to apply it in
distributed software development.

Quality Focus:
High level description of the quality goals should be given. These goals are the basis for
measurement. In this approach, these quality goals are the specific advantages and properties
associated with a given co-located process.

Perspective:
Basili emphasizes the importance of the perspective from which a process is observed. In this
case, it makes a difference, if a quality goal is observed from the perspective of a developer, a
project manager, a customer, etc.

Context:
Basili’s template asks for the context, where the investigation shall take place. In this case
study, it is the (first) application of the derived process in a distributed project. Results of the
evaluation are compared to experiences with comparable co-located projects (the baseline).

Following the GQM paradigm, Questions need to be derived from Goals defined in chapter
5.3.1. In GQM, this is typically done with Abstraction Sheets (Table 11), which is introduced
in the following.

The Quality Focus from the goal is refined to Quality Aspects. This case focuses on
Communication Effort, Developer Commitment, Risk of Failure, and Amount of Rework.
These are the most important properties of the co-located process, which need to be
investigate to what extent they are incorporated in the distributed process.

Next, the Baseline Hypotheses for each Quality Aspect need to be defined. These are based
on experiences from a co-located environment. The assumption shows, which property of the
collocated process is responsible for a respective quality aspect. These properties are
documented as Variation Factors.

5.3 Case Study 2: Scenario from Agile Development

 162

The main difference of this approach to the standard way of using Abstraction Sheets is the
specification of important aspects this distributed process should have due to the Variation
Factors. This is done in the lower right field of Table 11.

Table 11: Abstraction Sheet

Quality FocusQuality Focus

� Commitment of developers
� Risk of failure
� Amount of Rework
� High Truck Factor
� Communication effort

� Commitment of developers
� Risk of failure
� Amount of Rework
� High Truck Factor
� Communication effort

Variation FactorsVariation Factors

� Shared responsibilities (e.g. Collective
Codeownership)

� Integration and Handover after finishing Story
Cards

� Synchronization of Design Sketches and
Rationales

� Jointly Execution of Planning Game and Pair
Programming

� All Variation Factors significantly add to the
communication effort in distributed development

� Shared responsibilities (e.g. Collective
Codeownership)

� Integration and Handover after finishing Story
Cards

� Synchronization of Design Sketches and
Rationales

� Jointly Execution of Planning Game and Pair
Programming

� All Variation Factors significantly add to the
communication effort in distributed development

Impact of variation factors
(on distributed process)

Impact of variation factors
(on distributed process)

� Explicit allocation and sharing of responsibilities
allows comparable commitment of developers in
distributed projects

� A strategy for integrating and handing over new
functionality to the rest of the team leads to
comparable low risk of failure and low amount of
rework in distributed projects

� Synchronization of Design Sketches and
Rationales from all sites decreases Rework

� Jointly execution of (distributed) Planning Game
Activity increases the Commitment of
Developers.

� The advantages of being able to execute the
process in distributed projects justify 10
percentage points more communication effort

� Explicit allocation and sharing of responsibilities
allows comparable commitment of developers in
distributed projects

� A strategy for integrating and handing over new
functionality to the rest of the team leads to
comparable low risk of failure and low amount of
rework in distributed projects

� Synchronization of Design Sketches and
Rationales from all sites decreases Rework

� Jointly execution of (distributed) Planning Game
Activity increases the Commitment of
Developers.

� The advantages of being able to execute the
process in distributed projects justify 10
percentage points more communication effort

Baseline Hypothesis
(co-located)

Baseline Hypothesis
(co-located)

� Commitment of developers: high because of
shared responsibilities

� Risk of failure: low (ca. 25%) because of
continuous integration

� Amount of Rework is low because of daily
synchronization

� xy% of work time is communication effort

� Commitment of developers: high because of
shared responsibilities

� Risk of failure: low (ca. 25%) because of
continuous integration

� Amount of Rework is low because of daily
synchronization

� xy% of work time is communication effort

The Abstraction Sheet allows deriving questions for evaluation systematically. For each
desired property of the distributed process we need to evaluate, whether the derived
distributed process satisfactorily fulfills the associated quality aspects. As proposed by GQM,
one hypothesis is given for each question, which allows evaluating whether a Quality Aspect
is satisfactorily met.

5.3.4.1 Question 1: Commitment of Developers

Question 1:
Does the derived distributed process explicitly allocate responsibilities in a way that leads to
comparable commitment of developers as in the co-located case?

Metrics:
The metric measures the additional time students invest into the course (M1: overtime [h]) as
an indicator they are highly motivated by the project. For the same reason, it is counted how
often students are late (M2: occurrences of being late).

Hypothesis 1:

5 Case Study

 163

There is no difference in metrics M1- M2 between co-located and distributed teams.

Measurement:
During the project, tutors and observers logged all peculiarities, especially if (M1) students
stayed for longer discussions or did some work (e.g. reading tutorials) at home and (M2) if a
student was late during the block course.

Findings:
Students from the global team were very interested in process issues. On three occasions, they
stayed more than half an hour longer, discussing XP concepts and general software design.
Such occasions were not observed with students from the local team, but slightly more
volunteers were found from the local team when volunteers were needed to create a market-
ready version of the software after class. Therefore, M1 can be rated to be indifferent or even
in favor of the global team. On the first few days, distributed stand-up meetings were delayed,
because some developers were late (5-15 minutes). Punctuality improved during the
distributed project. In the co-located project, some of the developers were regularly late, so
the co-local team performed worse with respect to M2. Similar projects in past terms show
that the distributed project is more typical than the co-local here.

5.3.4.2 Question 2: Risk of Failure

Question 2:
Does the continuous integration and the handover of new functionality to the rest of the team
work as well in reducing the risk of failure as in the co-located process?

Metrics:
New functionality should be added at a stable pace. This reduces the risk of not finishing in
time with the most important requirements implemented. A stable pace is only possible, if
new functionality can be integrated without major problems and reuses functionalities of
existing increments. Therefore, variation of the implementation progress has been measured
(M3: variation of velocity).

Hypothesis 2:
There is no difference in the variation of the implementation progress (M3).

Findings:
Figure 115 shows the implementation progress (x-axis: development runs (4h length), y-axis:
estimated effort) of the distributed team in comparison to two co-local XP projects (Figure
116 and Figure 117).

5.3 Case Study 2: Scenario from Agile Development

 164

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

Burndown Velocity

Figure 115: Velocity and Burn-down in the distributed XP project

The velocity shows how much of the estimated effort was implemented for each development
run. The burn-down depicts how much of the initial amount of estimated work was left each
day. This amount is reduced by the estimated effort of a story card, whenever it is integrated
after acceptance. The burn-down should fall continuously, whereas, the velocity should
ideally be constant.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8

Burndown Velocity

Figure 116: Velocity and Burn-down from a well conducted co-local XP project

If a project progresses well, the velocity is constant or even growing (Figure 117). If
problems occur, the velocity drops (Figure 116). Compared with these two co-local projects,
our distributed project seems to be fine (Figure 115).

Remarks:

For Figure 116 and Figure 117 only limited data has been available, which makes statistical
comparisons difficult. Nevertheless, the major trend of Burn-down and velocity is made clear.

5 Case Study

 165

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8

Burndown Velocity

Figure 117: Velocity and Burn-down from a bad co-local XP project (x-axis: 8h day)

5.3.4.3 Question 3: Amount of Rework

Question 3:
Does the distributed process support the development of a shared understanding of the
design?

Metrics:
The amount of rework was measured in two ways. Firstly, the number of story cards with
bugs (“bug cards”) in relation to all story cards (M4). Secondly, the time spent on these bugs
(M5).

Hypothesis 3:
Basili and Boehm stated in [23] that the typical amount of rework is about 40-50% of the
overall project effort. Our projects should be better than that.

Findings:
Number of bug cards shows a relative high value for M4 of about 37% bugs. However, none
of these bugs took a long time to correct (M5, Figure 119): the amount of rework in terms of
time [minutes] is determined at about 15%. Again, these values are comparable to the co-
located projects.

37%

63%

Number of Bug Cards

Number of Story Cards

Figure 118: Number bug cards in relation to story cards

5.3 Case Study 2: Scenario from Agile Development

 166

15%

85%

Bugfixing time [min]

Other tasks [min]

Figure 119: Relation of bug fixing time to other tasks

5.3.4.4 Question 4: Communication Effort

Question 4:
Despite the additional communication effort of the distributed process: is it still profitable to
execute projects with this process?

Metrics:
Working time spent in regular communication (i.e. Planning Game, Stand-Up Meeting,
Design Synchronization / Handover) by

a. the local team (M6)
b. the global team (M7).

Hypothesis 4:
Communication effort is expected to be higher in the distributed project, but it should not be
more than twice as high: 1.5 * M6 < M7 < 2 * M6.

Findings:
The communication effort of this project has been investigated in detail in [96]. Accordingly,
the communication effort for the daily stand-up meeting was 28:32 minutes on average per
meeting for the distributed team. Additionally, three planning games were conducted lasting
1:36 hours on average (M7). In comparable co-located projects, the stand-up meetings lasted
15 minutes on average. The planning games were usually shorter, too.

The communication effort is about twice as high as in co-located projects. The problem is
even more severe, if additionally set-up costs are considered [96]. As discussed in [9],
strategic considerations can make this additional effort acceptable. In this case, it is more
effective to stay more agile, and therefore to be able to react faster, and still distributing
development between two sites. This way, both sites learn to work with each other by forcing
knowledge sharing simultaneously.

5.3.5 Validity of Results

The investigation in this case study is subjected to certain threats to validity. Wohlin et al.
introduced a well- accepted classification of typical threats [149]. Based on the case study 2,
the validity in general is shown in the following.

Basically, two different topics are discussed:

1. First, the selected type of the case studies itself and their representativeness.

5 Case Study

 167

2. Second, how results of the case study support the process integration approach of this
work.

Following Wholin’s classification of threats, four types of validity are differentiated.

5.3.5.1 Internal Validity

In this project students were very motivated in the XP laboratory, because the course is
voluntary and very well accepted among students. Thus, results concerning the motivation of
the students might be independent from dispersiveness of the project. This threat is somewhat
leveraged by the relative comparison of two projects in the same laboratory. In addition,
students might be especially motivated to participate in a distributed software engineering
class. For this reason, the two teams have been chosen randomly. It is possible that
supervisors tried to mitigate discouraging effects in the global team to avoid annoying
students.

The constant velocity and the low amount of rework we observe in our data could result from

 a) a good global team or
 b) a very simple task with only a few requirement changes instead from the good
 derived process.

The randomly selected teams are very likely to have similar strengths. However, it is very
difficult to evaluate team strengths in a similar assignment, since objective criteria that
document the successfulness are very challenging to define.

5.3.5.2 External Validity

Threats to external validity affect the generalizability of the results.

The evaluation scenario is a student's project, i.e., it remains an open question, whether the
assessment results would hold for industrial projects, too. Although this was not the goal of
our evaluation, it is very certain that the process integration approach will be also feasible and
successful in the industrial context: The complexity of the investigated process is comparable
to industrial processes, and most of the metrics for assessment will be measured as part of the
normal management of industrial projects. However, an industrial case study remains future
work.

5.3.5.3 Construct Validity

In applied research, construct validity (the theoretical constructs and their representation in
the experiment) is less important than internal and external validity.

The applied metrics for Risk of Failure and Amount of Rework are not fully covering these
constructs. Nevertheless, it is important to get a feeling for the performance of the derived
process in these fields. For evaluation of this approach, the construct validity is more
important. For this reason, it has been focused on a students' project, in which the realistic
mapping of the important agile practices has been already proven [135].

5.3 Case Study 2: Scenario from Agile Development

 168

5.3.5.4 Conclusion Validity

Conclusion validity deals with the question, whether a repetition of the study will lead to
similar results.

For this investigation, this is the least important validity class. Understanding the implications
of executing a given process in a distributed setting is more important than statistical
significant results. In practice, the assessment should yield good results before a large number
of projects has been assessed - especially if the process does not perform as well as expected.

5.3.6 Summary Case Study 2: Scenario from Agile Development

The case study 2 applied the collaboration scenario ‘Additive Vertical Integration’ to derive a
process for distributed development in a students’ XP project conducted between LUH and
TUC. This development project was basically set upon an agile basis with all typically used
agile methods. Agile projects are usually less process-oriented; nevertheless, it is crucial,
especially for small projects, to make use of the ability to systematically derive a process for
distributed development from a well understood co-local development process. The reason
for this is due to the fact that more and more software is developed in distributed teams.

The performance of the process integration approach is complemented by empirical
techniques to derive the benefits and drawbacks associated with the original co-local process.
This is a prerequisite for assessment, whether these properties are represented in the derived
distributed approach.

This example focuses on the properties developer commitment, risk of failure, amount of
rework, and communication effort. Basically, the derived process performs as well as the
original co-located process at the cost of twice as high communication costs. The reasons for
that are manifold; however, the use of an explicit design activity might essentially contribute
to a project's success, since design activities are typically the foundation of any software
product.

The results provided give process managers one example of the potential successfulness of a
collaborative scenario supporting the understanding of dependencies. Others may find these
metrics and data points useful, when evaluating distributed projects.

Since this case study provides only one quantified example (data point) concerning the effects
of the use of the ‘Additive Vertical Integration’, it cannot be concluded that each and every
software development project using ‘Additive Vertical Integration’ is equally successful.

However, currently, project managers are limited to ad-hoc adjustments for making a process
fit for distributed development. Even if the correctness of this data point will not be
confirmed by another example case, this data point provides “First Aid” towards getting a
feeling of parameter sensitivity and having more effective distributed processes in place.

6 Discussion

 169

6 Discussion
After demonstration of the process integration approach on a concrete scenario in Chapter 5.3,
the applicability of the approach is reviewed and discussed here.

6.1 Major Issues of Process Integration Approach

6.1.1 Accuracy of Mediator Definition

A basic concept of the introduced process integration approach is the usage of mediators.
These mediators connect the collaborating parties’ processes together and create a new
executable process as final result. Figure 120 illustrates as a reminder the scenario
‘Horizontal Integration’, which encompasses the Handover mediators for transferring System
Design Specification and Implemented System. On this level of granularity regarding process
definition, it is obvious that ‘something’ must happen within the mediator. As already stated,
a mediator in general represents any kind of meeting, either in person (face-to-face) or virtual,
in which appropriate parties get together clarifying process interfaces, which is basically a
mapping of artifacts. In Figure 120, this is the middle swim lane which describes “WHAT”
needs to be done towards a working collaborative set-up. The remaining issue is on this level
of granularity; it is very challenging to define and address “HOW” the work within a
mediator needs to be done. This means for the example (Figure 120) that it cannot be
generally defined what (e.g. UML diagrams, pre-defined variables etc.) needs to be changed
in System Design Specification of Organization A to end up with a System Design
Specification that Organization B can handle and use for its own processes.

System Test

System Design

Handover

Handover

System
Implementation

(Organization A (Master)
AND

Organization B (Supplier))

Organization A (Master) Organization B (Supplier)

System Design
Specification

System Design
Specification

System
Requirement
Specification

Implemented
System

Implemented
System

System Test
Record

Control Flow

Control
Flow

Control
Flow

Control Flow

Control Flow

Control Flow

Figure 120: Reminder: Collaborative Process for 'Horizontal Integration’

6.1 Major Issues of Process Integration Approach

 170

In order to support the problem, two possibilities are provided in this work:

• Table 4 contains crucial artifacts for software development. It gives guidance of what
concrete artifacts might be transferred by using a mediator.

• Chapter 3.3.2 provides an “Artifact Synchronization and Handover Concept” that
deals with differences of provided and needed artifacts during hand over. This might
have its origin in different methods used to generate different output-formats. These
output formats need to be converted so that it can be smoothly used by the
collaborative organization(s) or partners.

However, there is still a portion of the problem that depends on the concrete project set-up
and the content of the initial processes for collaboration. This is not solved by the Process
Integration Approach, but must be solved by the concrete collaboration project.

6.1.2 Interfaces: Different Inputs and Outputs

The examples that illustrate the functionality of defined integration scenarios are consistently
defined based on practical experience. The purpose of the scenarios is to illustrate the basic
idea of how processes for collaborations can be connected. Nevertheless, these scenarios have
character of models, which itself are only simplified illustrations of reality. This means that
that cases might occur, which cannot be obviously solved using the Process Integration
Approach. As substantiation, please refer to Figure 121 that illustrates the initial processes for
‘Merging Integration’ scenario.

Organization A (Master) Organization C (Supplier)

System Test

System
Implementation

System Design Software Design

Software Test

Software
Implementation

Implemented
Software

Requirement
Specification

Software Test
Record

Software Design
Specification

Requirement
Specification

Implemented
System

System Test
Record

System Design
Specification

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Control
Flow

Figure 121: Processes defined on different granularity levels (system vs. software)

If Organization A wants to outsource its System Implementation according to ‘Horizontal
Integration’ scenario in Figure 120, it has to transfer its System Design Specification to
Organization C. However, Organization C (Figure 121) has no action/activity defined in its
own processes to be able to handle and process the transferred System Design Specification.
The problem here is the different definition level of processes (system level vs. software

6 Discussion

 171

level). This example describes an application case in which straightforward process
integration, according to defined mediators of this work, cannot easily be applied. The
solution of these types of problems is done by developing a sequence of combined scenarios,
which has been conducted in chapter 4.2.5 (‘Merging Integration with on single organization’
& ‘Horizontal Integration’).

6.1.3 Empirical Validation Possibilities

A further issue concerning process integration is the conduction of an empirical validation on
the level of detail used in the dissertation. Some basic evaluations on the functionality and
benefits of the process integration approach has been already shown in [16] in conjunction
with agile development.

This integration approach has been defined on such a granularity level, that one has to deal
with artifacts or artifact types. Referring to the ‘Four Layer Architecture of the Meta-Object
Facility’ in Figure 17, this would be allocated on action level M2 or M3.

Evaluating the capability of the process integration approach requires the availability of two,
almost identical projects to receive data that allow for comparison on the quantitative
performance of this approach. In order to get such comparative results the first project needs
to run (almost) without any process definition, the second by following the process
integration approach. The availability of having two identical projects is very rare in an
industrial environment.

In comparison, other evaluation approaches deal with more general topics, like culture and
communication and draw valid conclusions, that distributed development projects are more
complicated and, therefore, take more time than other projects conducted in one location [62],
[55], [62], [30]. These evaluations would be allocated on a Meta level (M0 or M1 in Figure
17), which makes it more feasible to compare two or even more projects based on these
criteria.

6.2 Benefits of the Process Integration Approach

Beside the challenges described in the previous chapter, the process integration approach also
comes up with some major advantages that are described in the following.

Velocity of Process Set-up
The illustrated approach is set up in a way which allows process engineers for a quick process
set-up at the beginning of any collaboration project. This is due to the fact that the mediators
are already pre-defined and guide the respective roles through the set-up by showing what
connections in terms of control- and object flows are necessary to define a valid diagram for
all participating organizations.

Consistency of Process Integration
The pre-defined mediators support process engineers to create valid process diagrams or
workflows. Besides control flows, the approach also provides object flows for each mediator,
which shows and gives at least valuable hints for what artifacts need to be included. The
object flow is also consistently defined and avoids artifacts that run into dead- ends or
missing inputs for defined activities. This means that there are reliable interfaces throughout
all participating organizations in any collaboration, which is crucial for its serviceability.

6.2 Benefits of the Process Integration Approach

 172

Applicability of Approach
The process integrative approach is not only dedicated and limited to software development
process but can also be used for hardware, i.e. mechanical or electrical engineering, although
it originates in the software domain. Every development discipline is dependent on
collaboration with other parties. Therefore, this approach supports every type of development
domain and every type of process, no matter whether it is an iterative or waterfall approach.
Even the agile methodology is applicable [16].

Adaptability of Process Integration Approach
This approach covers all potential development scenarios that occur and provides appropriate
mediators for it. However, if any project has the need to define another mediator necessary,
this approach is also open for further mediator and scenario definition. Although much
investigation through “direct observations” have been conducted, this could be required in
scenarios that combine one or more development types.

Second, each defined scenario needs to be slightly adapted to every collaborative
development case, since every project encompasses different numerous parties and, therefore,
requires different artifacts.

Role Concept
During set-up of collaborative processes by using this approach, every activity and process
step has a responsible, organizational role assigned. This contributes to effectiveness of the
collaborative process during execution, since every participating organization is aware of
what needs to be done.

7 Overall Summary and Further Research

 173

7 Overall Summary and Further Research
Development organizations have had to face a tremendous challenge in the last years: moving
from a co-local towards a distributed development environment. This trend is still ongoing
and coerces companies to decrease cost while requirements on innovations are constantly
growing, and competition increases. In order to stay competitive, development organizations
take a chance and “going global” regardless of the fact that challenges are undiminishedly
high.

The reasons for that are manifold. Required expertise is typically not readily available from
the local market when needed at a certain site. Therefore, development organizations have to
expand their search on a global basis to get the right people hired from the job market
worldwide. In addition to that, outsourcing of business resources or infrastructure in low cost
countries often forces organizations into globalization. Furthermore, globalization may allow
organizations to penetrate desired markets to gain market share and organizational growth.
This applies especially for emerging countries, where expected growth rates are significantly
higher than in already saturated markets.

Additional external business sites around the world need to be included into the
organizational core business. This is crucial to efficiently control and make use of any
satellite businesses. The inclusion of additional sites works best by having them coordinated
via organizational processes. However, these globally- defined processes need to fulfill
certain requirements to be capable for distributed development collaborations. On one hand,
processes have to stay organization- specific, even if included in a broader net of globally-
defined processes. This is important since organizational culture is strongly interrelated to
processes. If processes are changed ad hoc culture will turn organization’s work inefficient.
On the other hand, processes have to be easy to establish and intuitively to use, which is a
necessary aspect to get acceptance from the workforce on processes, especially if they are
newly defined.

Therefore, globally distributed process set ups need a structured concept that allow for
connecting two or more semantically equal or different processes, while keeping the initial
process. Semantically equivalent processes can be connected straightforwardly. Linking two
or more processes together that are semantically not equivalent requires at least an interface.
Such an interface is called Mediator in this work and takes the task to establish a connection
that meets all necessary process and cultural requirements mentioned above.

This dissertation defines several Mediators that can be used for several collaborative process
scenarios:

1. Process Integration with semantically equivalent processes
2. Process Integration without semantically equivalent processes

a. Horizontal Integration
b. Additive Vertical Integration
c. Alternative Vertical Integration
d. Merging Integration
e. Hierarchical Integration

These defined scenarios cover all potential collaborative process constellations within
distributed development environments. For visualization, UML activity diagrams are used a
basis.

7 Overall Summary and Further Research

 174

Especially in distributed business environments, clearly defined responsibilities are essential
to avoid double work and to make sure that no crucial task has been forgotten. Therefore, this
process integration approach provides a role concept based on activity/action level. That
enables an organization’s process managers to define all responsible persons in charge for any
task prior to process execution. Within UML activity diagrams, these responsibilities are
defined using the operators “AND”, “OR”, and “XOR”.

Process definition and modeling work need to be done very efficiently, especially in a
distributed development context. Increased productivity can be gained by having appropriate
tool support available. Chapter 4.3 provides mathematical formalization of processes, which
is defined on a graph- based notation. The formalization provides an ideal basis for
implementation of a process integration tooling, supporting any process integrator during set
up of collaborative and distributed processes. Additionally, formalization helps to understand
accurately and communicate the functionality of process integration.

Performance of the process integration approach has been assessed in two case studies:

First, an illustrative case study has been introduced to get familiar with this process
integration approach, to get a feeling how the defined approach works in practice, and to
identify further questions. The case study makes use of several defined mediators: ‘Horizontal
Integration’, ‘Additive Vertical Integration’, and ‘Merging Integration’.

Second, the explorative case study addresses performance measurement of this approach. By
use of the ‘Additive Vertical Integration’ mediator, this case brings together one co-located
agile development project approach and a waterfall development process in a scientific
environment. Based on GQM methodology, four hypotheses (quality factors) have been
evaluated that encompass:

• Commitment of Developer
• Risk of Failure
• Amount of Rework
• Communication Effort

Results show that based on the quality factors a distributed development project can perform
as well as a comparable project in one location. However, the statistical significance of the
result can be challenged since this has been a student's project only.

The communication effort was measured twice as high as in a comparable co-located project.
This comes along with Herbsleb’s studies that show that communication effort in globally
distributed projects might take 2.5 times longer than comparable projects conducted in one
location. However, this weakness is no reason to omit process management in general. As
Figure 7 depicts, process management comes with many advantages for development
organizations and the corresponding business, e.g., faster processing of orders or cost
reduction. These advantages are able to compensate increased communication effort if
defined and set up precisely and with care. Therefore, it is better to have any process in place
than no process at all. This fact counts especially for collaborative development, which might
be distributed all over the world.

Further Research
This dissertation provides the basic structure for collaborative processes. Based on this work,
further research may be done in several fields and concerning the following aspects.

7 Overall Summary and Further Research

 175

Process definition and documentation are very time-consuming if done manually. This means
that the procedure of process creation and documentation should be optimized by having
tooling in place. The provided formalization is an ideal basis for implementing a tooling
prototype for process integration. This supports process set up significantly.

Having one case study in this work as basis, the process integration approach needs to be
further approved towards reliability based on empirical data. In order to achieve this target
more empirical projects in both scientific and industrial environments need to be conducted
that provide a basis to measure the performance of this approach. Performance measurement
needs to be done on both hard and soft factors and facts. Hard facts include results from
appropriately defined metrics applied, e.g., effort for communication, lead time etc.

Criteria like convenience of handling, visualization, etc., are counted among the soft
performance factors, which need to be provided by process definition group. This personal
feedback gives a feeling how the entire approach works in practice.

The provided approach for process integration will help development organizations to handle
the complexity of globally distributed development projects. The approach makes them
analyze interfaces and identify potential roadblocks, prior to process execution, which, in turn,
improves the project efficiency regarding time, cost, and quality.

7 Overall Summary and Further Research

 176

Bibliography

 177

Bibliography
[1] Aggarwal, A., Aspray* W., Berry* O., Lenway S.A., Taylor V.: “Offshoring: The Big

Picture”, World Investment Report 2004, p. 148,
http://www.scribd.com/doc/19464482/internationalbusiness

[2] Altmann, J., Pomberger G.: “Kooperative Softwareentwicklung: Konzepte, Modell
und Werkzeuge”, 4. Internationale Tagung Wirtschaftsinformatik 1999, Hrsg.:
August-Wilhelm Scheer; Markus Nüttgens. – Heidelberg: Physica-Verlag, 1999

[3] Al-Ani B., Edwards H. K.: “A Comparative Empirical Study of Communication in
Distributed and Collocated Development Teams” International Conference on Global
Software Engineering (ICGSE) 2008, p. 35-44, ISBN 978-0-7695-3280-6

[4] Ambler, S. W.: ” Process patterns: building large-scale systems using object
technology”, Cambridge University Press/SIGS Books, July 1998, ISBN: 0-521-
64568-9

[5] Arnold V., Dettmering H., Engel T., Karcher A.: „Product Lifecycle Management
beherrschen“, Springer Verlag 2005, ISBN-13 978-3-540-22997-1

[6] Association for Computing Machinery (ACM): “Globalization and Offshoring of
Software - A Report of the ACM Job Migration Task Force”, 2006,
http://www.acm.org/globalizationreport/pdf/fullfinal.pdf, October-09, 2010

[7] Avritzer, Hasling, Paulish: “Process Investigation for Global Studio Project Version
3.0”, Second IEEE International Conference on Global Software Engineering, 2007, p.
247-251, ISBN 0-7695-2920-8

[8] Bach N., Biemann T.: “Geschäftsprozessmanagement in Deutschland – Ergebnisse
einer Befragung”; in: Ellringmann, H., Schmelzer, H.J.:
„Geschäftsprozessmanagement inside“, Hanser Verlag, München 2004, ISBN 978-
3446229921

[9] Bartelt, Ch. et al.: “Orchestration of Global Software Engineering Projects (Position
Paper)”, Proceedings of the Third International Workshop on Tool Support
Development and Management in Distributed Software Projects, collocated with the
Fourth IEEE International Conference on Global Software Engineering ICGSE 2009,
July 13-16 2009, Limerick, Ireland.

[10] Basili, V. R.; Caldiera, G. & Rombach, H. D.: “The Goal Question Metric Approach -
Encyclopedia of Software Engineering”, Wiley, 1994, 646-661

[11] Bass, M., Paulish, D.: “Global Software Development Process Research at Siemens”
Third International Workshop on Global Software Development, International
Conference on Software Engineering (ICSE) 2004

[12] Ban Al-Ani B., Redmiles D.: “In Strangers We Trust? Findings of an Empirical Study
of Distributed Teams”, IEEE International Conference on Global Software
Engineering (ICGSE), 2009, pp. 121 - 130, ISBN 978-0-7695-3710-8

[13] Bauer, B., Müller, J. P., Roser, S.: “Adaptive design of cross- organizational business
processes using a model-driven architecture” p.103-121, In: Ferstl O. K. et al.:
“Wirtschaftsinformatik 2005: Eeconomy, Egovernment, Esociety”, Physica Verlag
2005, ISBN 3-7908-1574-8

[14] Beck, K.: “Extreme Programming Explained”, Addison-Wesley, 2000
[15] Beck, K. et al.: "Manifesto for Agile Software Development". Agile Alliance, 2001,

Retrieved 2010-06-14.
[16] Biffl, S., Winkler, D., and Bergsmann, J. (Eds.): SWQD 2012, LNBIP 94, Klein H.,

Knauss E., Rausch A.: “Scaling Software Development Methods from Co-located to
Distributed”, pp. 71–83, 2012, Springer-Verlag Berlin Heidelberg 2012

Bibliography

 178

[17] Explained.At: The Information and Knowledge Portal: “Bitwise operation explained”,
http://everything.explained.at/bitwise_operation/, Download November 2011

[18] Boczanski M., Muth M., Scheer A.-W., Segelbacher U., Schmitz W.-G.:
„Prozessorientiertes Product Lifecycle Management“, Springer Verlag 2006,
ISBN 3-540-28402-8

[19] Boden A., Avram G., Bannon L., Wulf V.: “Knowledge Management in Distributed
Software Development Teams – Does Culture Matter?”, IEEE International
Conference on Global Software Engineering (ICGSE), 2009, pp.18-27, ISBN 978-0-
7695-3710-8

[20] Boehm, B.: "A Spiral Model of Software Development and Enhancement", ACM
SIGSOFT Software Engineering Notes", pp. 14-24, August 1986, DOI:
10.1145/12944.12948

[21] Boehm, B.: “Guidelines for Verifying and Validating Software Requirements and
Design Specifications”, Technical Report 1979, published in Journal IEEE Software
Volume 1 Issue 1, January 1984, IEEE Computer Society Press Los Alamitos, CA,
USA

[22] Boehm B.: „Some Future Trends and Implications of System and Software
Engineering Processes“, Wiley InterScience 2006

[23] Boehm B, Basili V. R.: “Industrial Metrics Top 10 List”, IEEE Software, Sept.1987,
pp. 84-85

[24] Booch Grady, Rumbaugh James, Jacobson Ivar: “The Unified Modeling Language
User Guide”, Addison-Wesley Longman, Amsterdam, July 1998,
ISBN 978-0201571684

[25] Bronstein, Von I. N., Semendjajew K. A., Musiol G., Muehlig H.: „Taschenbuch der
Mathematik“, Verlag Harri Deutsch 2008, ISBN 978-3-8172-2007-9

[26] Bronwyn Becker, Patrick Dawson, Karen Devine, Carla Hannum, Steve Hill, Jon
Leydens, Debbie Matuskevich, Carol Traver, and Mike Palmquist. (2005). Case
Studies. Writing@CSU. Colorado State University Department of English. Retrieved
[2011-08-02] from http://writing.colostate.edu/guides/research/casestudy/.

[27] Carey J., Brent C.: “Framework Process Patterns – Lessons Learned Developing
Application Frameworks”; Addison Wesley, April 2002, ISBN 0-201-73132-0

[28] Casey V.: “Leveraging or Exploiting Cultural Difference?”, IEEE International
Conference on Global Software Engineering (ICGSE), 2009, pp. 8 - 17, ISBN 978-0-
7695-3710-8

[29] Cataldo, M.: “Dependencies in Geographically Distributed Software Development:
Overcoming the Limits of Modularity,” PhD Thesis, 2007, School of Computer
Science, Carnegie Mellon University: Pittsburgh, PA

[30] Cataldo, M. & Herbsleb, J.D.: “Communication networks in geographically
distributed software development” Proceedings, ACM Conference on Computer-
Supported Cooperative Work, San Diego, CA, Nov 2008, pp. 579-588

[31] Champy, J.: “X-Engineering the Corporation”, New York: Warner Books 2002,
ISBN 978-0446528009

[32] Colette R.: “Modeling the Requirements Engineering Process”, 3rd European-
Japanese Seminar on Information Modelling and Knowledge Bases. Budapest,
Hungary, June 1993

[33] Damian, D., Izquierdo, L., Singer, J. and Kwan, I.: “Awareness in the wild: why
communication breakdowns occur”, IEEE International Conference on Global
Software Engineering (ICGSE), 2007, pp. 81-90, Germany, ISBN 978-0-7695-2920-2

Bibliography

 179

[34] Damian, D., Marczak, S., Kwan, I.: “Collaboration Patterns and the Impact of
Distance on Awareness in Requirements-Centred Social Networks.” International
Requirements Engineering Conference 2007, New Delhi, India, Oct 2007.

[35] Damian, D., Moitra, D.: “Global Software Development: How Far Have We Come?”
IEEE Software, Vol. 23, No. 5, 2006

[36] Dasberg, J.: „Product Lifecycle Management: Innovation umsetzen“, 2008, Accenture
Broschure

[37] Davenport T.: “Process Innovation: Reengineering work through information
technology”, 1992, Harvard Business School Press, Boston, ISBN 978-0875843667

[38] Day, M.: „What is PLM“, April-15, 2002,
http://www.caddigest.com/subjects/PLM/select/day_plm.htm; Download September
2010

[39] Deutsches Institute für Normierung (e.V.), ISO 9000:2000 Kapitel 3.4.1
[40] Diaz, M.: “Petri nets: fundamental models, verification and applications”, Wiley 2009,

ISBN 978-1-84821-079-0
[41] Ebert Christof, Bvs Krishna Murthy, Namo Narayan Jha: “Managing Risks in Global

Software Engineering: Principles and Practices”, pp.131-140, IEEE International
Conference on Global Software Engineering (ICGSE) 2008, ISBN 978-0-7695-3280-
6

[42] Eigner M., Stelzer R.: „Produktdatenmanagement-Systeme: Ein Leitfaden für Product
Development und Lifecycle Management“, 2nd Edition, Springer Verlag 2009,
ISBN-13 978-3-540-68401-5

[43] Fink C.A.: „Prozessorientierte Unternehmensplanung. Analyse, Konzepte und
Praxisbeispiele“, Wiesbaden 2003

[44] Floyd, C., Züllighoven, H.: „Softwaretechnik“, In: Rechenberg/Pomberger (Hrsg.)
Informatik-Handbuch, Hanser Verlag, München, Wien, S. 641-667, 1997

[45] Flvybjerg, B.: “Five Misunderstandings about Case-Study Research”, Sage
Publications, Qualitative Inquiry Vol. 12, Number 2, April 2006, pp. 219-245

[46] Forbath T., Brooks P., Dass A.: “Beyond Cost Reduction: Using Collaboration to
Increase Innovation in Global Software Development Projects”, IEEE International
Conference on Global Software Engineering (ICGSE), 2008, pp.205-209, Bangalore,
India, 2008, ISBN 978-0-7695-3280-6

[47] Gadatsch A.: „Grundkurs Geschäftsprozess-Management: Methoden und Werkzeuge
für die IT-Praxis: Eine Einführung für Studenten und Praktiker“, Vieweg+Teubner
2007, ISBN 978-3834803634

[48] Gadatsch, Andreas: “Grundkurs Geschäftsprozess-Management: Methoden und
Werkzeuge für die IT-Praxis”, Vieweg+Teubner, 2009, ISBN 978-3834807625

[49] Gadatsch A., Knuppertz T., Schnägelberger S.: „Geschäftsprozessmanagement - Eine
Umfrage zur aktuellen Situation in Deutschland“, Schriftreihe des Fachhandels
Wirtschaft der Fachhochschule Bonn-Rhein-Sieg. Bd. 9 St. Augustin 2004,
http://www.ifs.tuwien.ac.at/gpm-studie/2003/GPM-Studie-2003_Ergebnisse-
Deutschland.pdf, 2010-08-28

[50] Girault,C., Valk, R.: “Petri nets for systems engineering: a guide to modeling,
verification, and Applications”, Springer-Verlag Berlin Heidelberg New York, 2003,
ISBN 3-540-41217-4

[51] Gotel O., Kulkarni V., Say M., Scharff1 C., Sunetnanta T.: “Quality Indicators on
Global Software Development Projects: Does “Getting to Know You” Really
Matter?”, IEEE International Conference on Global Software Engineering (ICGSE),
2009, pp. 3-7, ISBN 978-0-7695-3710-8

Bibliography

 180

[52] Grady B., Rumbaugh J., Jacobson I.: “The Unified Modeling Language User Guide”
Second Edition, Addision-Wesley 2005, ISBN 0-321-26797-4

[53] Grady B., Rumbaugh J., Jacobson I.: “The Unified Software Development Process,
Addison-Wesley, 1999, ISBN 978-0-2015-7169-1

[54] Hack, S.: “Collaborative Business Scenarios –Creating Value in the Internet
Economy”
http://www.worldinternetcenter.com/Think_Tanks/TTS_Short_List/Stefan_Hack_e_d
oc.pdf, download September-16, 2010

[55] Handel, M., Herbsleb, J.D.: “What is Chat doing in the workplace?”, Proceedings of
ACM Conference on Computer-Supported Cooperative Work (CSCW), New Orleans,
LA, 2002, pp. 1-10

[56] Hammer M., Champy, J.: “Business Reengineering”, 1993, Campus, ISBN 978-
3593350172

[57] Haskell 98 Language and Libraries The Revised Report: “Pattern Matching”,
December 2002, chapter 3.17, http://haskell.org/onlinereport/index.html, July-05,
2011

[58] Havey, M.: “Essential business process modeling”, O’Reilly 2005, ISBN 978-0-596-
00843-7

[59] Herbsleb, J.D.: “Global software engineering: The future of sociotechnical
coordination.” International Conference on Software Engineering, Fundamental
Approaches to Software Engineering, Minneapolis, USA, 2007.

[60] Herbsleb, J.D., Atkins, D.L., Boyer, D.G., Handel, M., & Finholt, T.A.: “Introducing
Instant Messaging and Chat into the workplace” Proceedings of ACM Conference on
Computer-Human Interaction, Minneapolis, MN, 2002, pp. 171-178

[61] Herbsleb, J.D., Mockus, A.: “An Empirical Study of Speed and Communication in
Globally Distributed Software Development”, IEEE Transactions on Software
Engineering, 29, 6, June 2003, pp. 1-14

[62] Herbsleb, J.D., Mockus, A., Roberts, J.A.: “Collaboration in Software Engineering
Projects: A Theory of Coordination”, 2006, International Conference on Information
Systems, Milwaukee, WI

[63] Herbsleb, J.D, Moitra, D.: “Global Software Development”, IEEE Software,
March/April (2001), pp. 16-20.

[64] Herbsleb, J. D., Paulish, D. J., Bass, M.: “Global Software Development in Practice:
Experience from Nine Projects”, 2005, 27th International Conference on Software
Engineering, St. Louis, USA, pp. 524-533.

[65] Hofstede G.: “Culture's consequences: comparing values, behaviors, institutions, and
organizations across nations”, Sage Publications, 2001, ISBN 0-8039-7323-3

[66] Humphrey, Watts S.: “Introduction To the Personal Software Process”, Addison
Wesley Pub Co Inc., December 1996, ISBN-13: 978-0201548099

[67] Hung, C., Dennis, A., Robert, L.: “Trust in Virtual Teams: Towards an Integrative
Model of Trust Formation. Hawaii International Conference on System Sciences
(HICSS), Track 1, Volume 1 Jan. 5 - 8, 2004.

[68] IBM news releases: “The Growing Ecosystem of the Automotive Industry”, June-07,
2010, http://www-03.ibm.com/press/us/en/pressrelease/31826.wss, Download: Dec-11,
2011

[69] IDS Scheer: Business Process Report 2005, Saarbrücken 2005
[70] IEEE Computer Society: “12207.0-1996 - IEEE Standard for Information Technology

- Software Life Cycle Processes”, http://standards.ieee.org/findstds/standard/12207.0-
1996.html

Bibliography

 181

[71] International Standardization Organization (ISO): ISO/IEC 15504 Information
Technology, http://www.iso.org/iso/iso_catalogue.htm, Download 2012-04-12

[72] International Standardization Organization (ISO): ISO 9000 Quality Management,
http://www.iso.org/iso/iso_9000_selection_and_use.htm, Download 2012-04-12

[73] International Standard ISO/IEC 14977, 1996(E): Information technology – Syntactic
metalanguage - Extended BNF, http://standards.iso.org/ittf/licence.html. Download:
Jan-14, 2012.

[74] Jacob, A., Brauns, C.: „Der Industrieanlagen-Konsortialvertrag“ Carl Heymanns
Verlag, 2006, ISBN 978-3452257147

[75] Jacobson Ivar, Booch Grady, Rumbaugh James: “The Unified Software Development
Process”, Addison-Wesley Longman 1999, ISBN 978-0201571691

[76] Jochem, R., Mertins K., Knothe T.: “Prozessmanagement – Strategie, Methoden,
Umsetzung” 1. Auflage, Symposium Publishing GmbH, Düsseldorf 2010, ISBN 978-
3-939707-56-1

[77] Johansson H., Johansson H. J., Pendlebury A. J.: “Business Process Reengineering:
Breakpoint Strategies for Market Dominance”, John Wiley & Sons 1993, ISBN 978-
0471938835

[78] Key Highlights of the IT-BPO sector performance in FY 2007/2008 (of India),
NAXXCOM report, www.nasscom.org, download: Septmber-29, 2010

[79] Kircher, M., Jain, P., Corsaro, A., Levine, D.: “Distributed eXtreme Programming”,
Second international conference on eXtreme Programming and Agile Processes in
Software Engineering”. (2001) 66–71

[80] Klein, H.: „Collaborative Processes of Enterprises“, Proceedings 36. Jahrestagung der
Gesellschaft für Informatik, 2006 Dresden, pp.683-683, ISBN 978-3-88579-187-4

[81] Klein H., Rausch A., Künzle M., Fischer E.: „Application of Collaborative Scenarios
in a Process-Based Industrial Environment“, 36th EUROMICRO Conference on
Software Engineering and Advanced Applications, Lille, France, pp.327-330, 01-03
Sept 2010, ISBN 978-0-7695-4170-9

[82] Klein Harald, Rausch A., Fischer E.: “Collaboration in Global Software Engineering
Based on Process Description Integration, Lecture Notes in Computer Science:
Cooperative Design, Visualization, and Engineering, pp. 1-8, 2009

[83] Klein Harald, Rausch A., Fischer E.: "Towards Process-Based Collaboration in Global
Software Engineering," SEAA, 2009 35th Euromicro Conference on Software
Engineering and Advanced Applications, 2009, pp.263-266

[84] Kruchten, P.: “The Rational Unified Process - An Introduction”, Addison Wesley
1999, ISBN 0-321-19770-4

[85] Kuhrmann, Niebuhr, Rausch: “Application of the VModell XT – Report from a Pilot
Project”, Springer Berlin / Heidelberg, 2006, ISBN 978-3-540-31112-6;
http://www.bit.bund.de/nn_388050/BIT/DE/Standards__Methoden/V-
Modell_20XT/node.html?__nnn=true

[86] Lamersdorf A., Münch J., Rombach D.: “A Survey on the State of the Practice in
Distributed Software Development: Criteria for Task Allocation” IEEE International
Conference on Global Software Engineering (ICGSE), 2009, pp. 41-50, ISBN 978-0-
7695-3710-8

[87] Lamersdorf A., Münch J., Rombach D.: “Towards a Multi-criteria Development
Distribution Model: An Analysis of Existing Task Distribution Approaches”,
International Conference on Global Software Engineering (ICGSE) 2008, p. 109 –
118, ISBN: 978-0-7695-3280-6

[88] Lehner F., Scholz M., Wildner S.: „Wissensmanagement. Grundlagen, Methoden und
technische Unterstützung, Hanser 2008, ISBN 978-3446219335,

Bibliography

 182

http://www.amazon.de/Wissensmanagement-Grundlagen-Methoden-technische-
Unterst%C3%BCtzung/dp/3446219331

[89] Li Xitong et.al.: “A Pattern-based Approach to Protocol Mediation for Web Services
Composition”, Proceedings of the Seventh Working IEEE/IFIP Conference on
Software Architecture (WICSA 2008) - Volume 00, p.137-146, IEEE Computer
Society 2008

[90] Mayer S., Knauss E., Schneider K.: “Distributing a lean organization: Maintaining
communication while staying agile”, International Conference on Lean Enterprise
Software and Systems (LESS), Springer, pp. 99-103, LESS 2010, Helsinki, DOI:
10.1007/978-3-642-16416-3_14

[91] Marczak, S., Kwan, I., Damian, D.: “Social Networks in the Study of Collaboration in
Global Software Teams”, IEEE International Conference on Global Software
Engineering (ICGSE), 2009, Munich, Germany, 2007.

[92] Messmer, W.: “Working with India: The Softer Aspects of a Successful Collaboration
with the Indian IT & BPO Industry”, Springer Berlin Heidelberg, 1. Auflage, Nov
2008, ISBN-13: 978-3540890775

[93] Meyer B.: “Object-oriented software construction”, Prentice Hall PTR, 1997,
ISBN 978-0-136-29155-8

[94] Mistrík I., Grundy J., v. d. Hoek, A. Whitehead J.: „Collaborative Software
Engineering“, Springer Verlag 2010, ISBN 978-3642102936

[95] Mockus, A., Weiss, D.M., Bell Labs.: “Globalization by chunking: a quantitative
approach”, IEEE Software 2001, pp. 30-37, ISSN 0740-7459

[96] MODAF Meta Model (M3), Version 1.2.004, March 2010,
http://www.mod.uk/DefenceInternet/AboutDefence/CorporatePublications/Informatio
nManagement/MODAF/ModafMetaModel.htm, download 2011-08-25.

[97] Muhammad Ali Babar M., Niazi M.: “Implementing Software Process Improvement
Initiatives: An Analysis of Vietnamese Practitioners' Views”, International
Conference on Global Software Engineering (ICGSE), 2008, ISBN 978-0-7695-3280-
6

[98] Nicklisch G. et al.: “IT-Near- und Offshoring in der Praxis”, dpunkt Verlag, 2008
1.Auflage ISBN 978-3-89864-553-1

[99] Niinimäki T., Lassenius C.: “Experiences of Instant Messaging in Global Software
Development Projects: A Multiple Case Study”, International Conference on Global
Software Engineering (ICGSE), 2008, ISBN 978-0-7695-3280-6

[100] Object Management Group: „Meta Object Facility (MOF) CoreSpecification“,
Version 2.4 (Beta), August 2010, http://www.omg.org/spec/MOF/2.4/Beta2/PDF/,
2011-08-25

[101] Object Management Group (OMG): “Unified Modeling LanguageTM (OMG UML),
Superstructure”, Version 2.3, May-05,2010,
http://www.omg.org/spec/UML/2.3/Superstructure/PDF, download October-10, 2010

[102] Osterloh M., Frost J.,: „Prozessmanagement als Kernkompetenz: Wie Sie Business
Reengineering strategisch nutzen können“, Gabler 2006, ISBN 978-3834902320

[103] Pervez N. Ghauri, P. N., Usunier, J.-C.: „International Business Negotiations
(International Business and Management Series), Emerald Group Publications”, 2003,
ISBN 978-0080442921

[104] Piri A., Niinimäki T., Lassenius C.: “Descriptive Analysis of Fear and Distrust in
Early Phases of GSD Projects”, IEEE International Conference on Global Software
Engineering (ICGSE), 2009, pp.105-114, ISBN 978-0-7695-3710-8

[105] Pohl K., Böckle G., van der Linden, F.: „Software product line engineering:
foundations, principles, and techniques“, Springer 2005, ISBN 978-3-540-24372-4

Bibliography

 183

[106] Prikladnicki et al.: “Distributed Software Development: Practices and Challenges in
Different Business Strategies of Offshoring and Onshoring”, Second IEEE
International Conference on Global Software Engineering (ICGSE) 2007, p.262 - 271,
ISBN 0-7695-2920-8

[107] Prikladnicki R.: “Exploring Propinquity in Global Software Engineering”, IEEE
International Conference on Global Software Engineering (ICGSE), 2009, pp. 133-
142, ISBN 978-0-7695-3710-8

[108] Prikladnicki, R., Audy, J. L. N., Evaristo, R.: “A Reference Model for Global
Software Development: Findings from a Case Study,” 2006, 1st International
Conference on Global Software Engineering (ICGSE), Florianopolis, Brazil, pp. 18-
25.

[109] Prikladnicki, R., Audy, J. And Evaristo, J.R.: “Distributed Software Development:
Toward an Understanding of the Relationship between Project Team, Users and
Customers, Proceedings of the 5th International Conference on Enterprise Information
Systems (ICEIS’03), 2003

[110] Prikladnicki R., Damian D., Audy J. L. N.: “Patterns of Evolution in the Practice of
Distributed Software Development in Wholly Owned Subsidiaries: A Preliminary
Capability Model”, International Conference on Global Software Engineering
(ICGSE) 2008, p. 99 – 108, ISBN: 978-0-7695-3280-6

[111] Ravichandran, Von D.: „Programming with C++“, 2nd edition, Tata McGrawhil 2003,
ISBN 0-07-049488-6

[112] Royce, W.W.: “Managing the Development of Large Software Systems”, Proceedings
of IEEE WESCON 26, August 1970, pp. 1-9.

[113] Rumbaugh J., Jacobson I., Booch G.: “The Unified Modeling Language Reference
Manual”, Addison-Wesley 1999, ISBN 978-0201309980

[114] Rummler, G. A., Brache A. P.: „Improving Performance: How to manage the white
space on the organizational chart”, John Wiley & Sons 1995, ISBN 978-0787900908

[115] Rupp C., Queins S., Zengler B.: UML 2 Glasklar, Praxiswissen für die UML
Modellierung, 3.Auflage; Carl Hanser Verlag 2007, ISBN 978-3-446-41118-0

[116] Sääksvuori A., Immonen A.: “Product Lifecycle Management”, 3rd Edition, Springer
Verlag 2008, ISBN-13 978-3-540-78172-1

[117] Samek M.: „Practical UML statecharts in C/C++: event-driven programming for
embedded systems“, Elsevier 2009, ISBN 978-0-7506-8706-5

[118] Sangwan R., Bass M., Mullick N., Paulish D.J., Kazmeier J.: “Global
Development Handbook”, Auerbach Publications, Taylor & Frances Group, 2007,
ISBN 0-8493-9384-1

[119] Scacchi, W.: „Process Models in Software Engineering“ in J.J. Marciniak (ed.),
Encyclopedia of Software Engineering, Second Edition, John Wiley and Sons, Inc,
New York, December 2001

[120] Schäling, B.: „Der moderne Softwareentwicklungsprozess mit UML“, Kapitel 3: Das
Aktivitätsdiagramm, http://www.highscore.de/uml/titelseite.html, 2010-08-28

[121] Scheer A.-W.: ”ARIS - vom Geschäftsprozess zum Anwendungssystem”, Springer
2002, 4. durchgesehene Auflage, ISBN 3-540-65823-8

[122] Schmelzer, H.J., Sesselmann W.: „Geschäftsprozessmanagement in der Praxis“, 6.
bearb. Auflage, Carl Hanser Verlag München, 2008

[123] Schuh, G.: “Enzyklopädie der Wirtschaftsinformatik”, Definition Product Lifecycle
Management (PLM), September-08, 2010, http://www.enzyklopaedie-der-
wirtschaftsinformatik.de/wi-
enzyklopaedie/lexikon/informationssysteme/Sektorspezifische-

Bibliography

 184

Anwendungssysteme/Produktionsplanungs--und--steuerungssystem/Product-Life-
Cycle-Management

[124] Schulte-Zurhausen M.: “Organisation”, Vahlen 2010, ISBN 978-3800637362
[125] Schwaber, Ken: “Agile Project Management with Scrum”, Microsoft Press 1st Edition,

March 2010, ISBN 978-0735619937
[126] Sendler U.: „Das PLM-Kompendium: Referenzbuch des Produktlebenszyklus

Managements“, Springer 2009, ISBN 978-3540878971
[127] Serce F.C., Alpaslan F.-N., Swigger K., Brazile R., Dafoulas G., Lopez V.,

Schumacker R.: “Exploring Collaboration Patterns among Global Software
Development Teams” International Conference on Global Software Engineering
(ICGSE), 2009, pp. 61-70, ISBN 978-0-7695-3710-8

[128] Siemens AG Quarterly Business Report, 4th Quarter 2008,
http://www.siemens.com/press/pool/de/events/2008-q4/2008-q4-eckdaten-d.pdf
Download: September-29, 2010

[129] Siemens AG, Business Report, Fiscal Year 2009,
http://www.siemens.de/ueberuns/Documents/d09_00_gb2009.pdf, Download:
September-29, 2010

[130] Siemens AG – Das Unternehmen 2010, as of May-10, 2010,
http://www.siemens.de/ueberuns/Documents/das_unternehmen_2010.pdf, Download:
September-29, 2010

[131] Siemens AG – Annual Report 2011, 2012, Jan-24,
http://www.siemens.com/annual/11/_pdf/Siemens_GB_2011.pdf, Download, 2012-
04-26

[132] Software Engineering Institute (SEI), CMMI Product Team: “CMMI® for
Development, Version 1.3”, TECHNICAL REPORT, CMU/SEI-2010-TR-033,
November 2010, http://www.sei.cmu.edu/downloads/cmmi/10tr033.docx, 31.05.2011

[133] Sooraj P, Pratap K.J. Mohapatra: “Developing an Inter-site Coordination Index for
Global Software Development”, International Conference on Global Software
Engineering (ICGSE) 2008, p. 119-128, ISBN 978-0-7695-3280-6

[134] Spillner A.: „W-model – test process parallel to the development process”,
Proceedings of Jornada sobre Testeo de Software (JTS 2004), ITI Instituto
Tecnológico de Infomática, Universidad Politécnica de Valencia, Spain, March 25-
26th 2004

[135] Stapel, K.; Lübke, D. & Knauss, E.: “Best Practices in eXtreme Programming Course
Design”, Proceedings of the 30th International Conference on Software Engineering
(ICSE 2008), ACM Press, 2008, 769-776

[136] Steingart, G.: „Der Erfolgsfilm läuft rückwärts“, 15.09.2006,
http://www.spiegel.de/wirtschaft/0,1518,436480,00.html, download September-09,
2010

[137] Töpfer A.: “Geschäftsprozesse analysiert & optimiert”, Luchterhand 2006, ISBN 978-
3472027539

[138] Trikkula, V.: „Globalization of R&D and Product Development Set to Grow“ June-10,
2010, http://www.globalservicesmedia.com/IT-Outsourcing/Product-
Development/Globalization-of-RandD-and-Product-Development-Set-to-
Grow/22/4/9710/GS100610968441, download Sep-10, 2010

[139] Trompenaars A., Hampden-Turner C.: “Riding the waves of culture: understanding
cultural diversity in global business”, B&T, 1998, ISBN 978-0786311255

[140] Tyler C. G., Baker S. R.:” Business genetics: understanding 21st century corporations
using xBML”, Wiley 2007, ISBN 978-0-470-06654-6

Bibliography

 185

[141] United States Government Accountability Office: Report to Congressional
Committees, OFFSHORING U.S. Semiconductor and Software Industries
Increasingly Produce in China and India, September 2006, GAO-06-423,
http://www.gao.gov/new.items/d06423.pdf, download October-09, 2010

[142] Wang Yingxu, King Graham: „Software Engineering Processes: Principles and
Applications“,Crc Pr Inc, 2000, ISBN 978-0849323669
(http://www.amazon.de/Software-Engineering-Processes-Principles-
Applications/dp/0849323665/ref=sr_1_1?ie=UTF8&s=books-intl-
de&qid=1283362352&sr=1-1#reader_0849323665)

[143] Weske, M.: „Business Process Management: Concepts, Languages, Architectures“,
Springer Verlag, Berlin; 1st Edition 2007, ISBN-13: 978-3540735212

[144] White S. A.: „Process Modeling Notations and Workflow Patterns“, March 2004,
Future Strategies Inc., Pages: 1-25, Mendeley - Computer and Information Science,
ISBN 0-970-35096-1

[145] Wichmann Klaus-Peter: “Offshore Zusammenarbeit erfolgreich etabliert: Ein
Praxisbericht über ein Migrationsprojekt im Maschinenbau”, SIGS DATACOM
Gmbh, ObjektSpektrum Mai/Juni 2008 Nr.3, p.50-55

[146] Wikipedia – The Free Encyclopedia: “Diagram”,
http://en.wikipedia.org/wiki/Diagram, 2011-06-24

[147] Wikipedia – The Free Encyclopedia: “State Diagram”,
http://en.wikipedia.org/wiki/State_diagram, 2011-06-24

[148] Wilson, J. M., O’Leary, M. B., Metiu, A., Jett, Q. R.: “Perceived Proximity in Virtual
Work: Explaining the Paradox of Far-but-Close”, 2008, Organization Studies, 29(07),
pp. 979-1001.

[149] Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M. C.; Regnell, B. & Wesslén, A.:
„Experimentation In Software Engineering: An Introduction.”, Kluwer Academic
Publishers, 2000

[150] Yin, Robert K.: “Case study research: design and methods Band 5 von Applied social
research methods series”, Sage Publications, 2009, ISBN 9781412960991

[151] Yin, Robert K.: “CASE STUDY METHODS”, COSMOS Corporation, REVISED
DRAFT, January 20, 2004, download June 10, 2011,
http://www.cosmoscorp.com/Docs/AERAdraft.pdf

[152] Yongchareon S., Liu C.: “A Process View Framework for Artifact-Centric Business
Processes”, Springer-Verlag Berlin Heidelberg 2010, R. Meersman et al. (Eds.): OTM
2010, Part I, LNCS 6426, pp. 26–43, 2010

[153] Zimmermann, E.: „Siemens nutzt EU-Osterweiterung zur Verlagerung von
Arbeitsplätzen und zum Lohnabbau“,
http://www.trend.infopartisan.net/trd0504/t140504.html, 06.September 2010, mirrored
from http://www.wsws.org/de/2004/apr2004/siem-a23_prn.html (release 23.April
2004)

Bibliography

 186

List of Figures

 187

List of Figures
Figure 1: Structure of Dissertation... 5
Figure 2: Definition: Process and Business Process.. 10
Figure 3: Integrated Business Process Management [122].. 12
Figure 4: Scope of Duties of integrated Business Process Management................................. 12
Figure 5: Problems resulting from non-controlled processes .. 13
Figure 6: Important Topics in Process Management [69] ... 14
Figure 7: Benefits of Process Management [69].. 15
Figure 8: Product Lifecycle Management and Business Process Platforms............................ 16
Figure 9: Product Lifecycle Management (PLM) Framework ..18
Figure 10: Product Lifecycle including interfaces... 18
Figure 11: Strategic Goals of Managers interviewed .. 19
Figure 12: Relation between 'Product Development’, ‘Product Creation’, ‘Production
development’ [42].. 20
Figure 13: Phases of Product Development Process (PDP) [42]... 21
Figure 14: Trends of product strategic in the automobile industry [42] 23
Figure 15: Challenges of European IT organizations within the next five years..................... 24
Figure 16: Comparison Sate Diagram (a) and Flow Chart (b)... 24
Figure 17: Four Layer Architecture of the Meta-Object Facility (MOF) 26
Figure 18: Example of a Business Process Modeling Notation chart......................................27
Figure 19: A collage of UML diagrams... 28
Figure 20: The four views of an Event-driven Process Chain (EPC)28
Figure 21: Example of a Petri Net ... 29
Figure 22: Waterfall process model (incl. fallback loop) .. 30
Figure 23: V-Model ... 31
Figure 24: W-model... 31
Figure 25: Spiral model ... 32
Figure 26: Rational Unified Process (RUP)... 32
Figure 27: Overview of SCRUM in agile development .. 33
Figure 28: Maturity levels of CMMI ... 34
Figure 29: International Activities of Companies [136] .. 36
Figure 30: Offshoring and globalization across industries .. 37
Figure 31: Job Shifting at Siemens AG ... 38
Figure 32: Software Engineering export revenues from India and China [79]........................ 38
Figure 33: Terms and relations concerning off- and on-shoring ... 39
Figure 34: Multi-dimensional collaboration based on Cross Enterprise Engineering............. 40
Figure 35: Collaborative Engineering and Project Management... 41
Figure 36: Changes in Product Development Processes [42].. 41
Figure 37: Cluster model of Meyer B. [93] ... 47
Figure 38: Model for cooperative software development processes48
Figure 39: Illustration of a sub-order relationship (“Unterauftrag”) in V-Model XT 49
Figure 40: GSP Version 3.0 Process.. 50
Figure 41: Offshore activities (coarse-grained) ... 51
Figure 42: The paradox of perceived proximity .. 53
Figure 43: Initial Processes of Organizations A, B, and C .. 55
Figure 44: Integration challenge of semantically different processes 56
Figure 45: Integration challenge of processes granularity levels... 57
Figure 46: Mediator Introduction for Process Integration ... 58

List of Figures

 188

Figure 47: Exemplary mediator pattern for process integration ..59
Figure 48: Artifact Handover in Detail: corresponding input and output artifacts61
Figure 49: Missing Artifact during Handover..62
Figure 50: More Artifacts provided than necessary ...62
Figure 51: Project Responsibility: Strength of collaboration...65
Figure 52: Activity Responsibility: Organizational Role Definition67
Figure 53: Root processes of Organization A, B and C...71
Figure 54: Collaboration with equivalent processes ..73
Figure 55: Mediator pattern for ‚Horizontal Integration’...74
Figure 56: Collaborative Process for 'Horizontal Integration’ ...75
Figure 57: Root process 'Additive Vertical Integration’ ..76
Figure 58: Mediator for ‘Additive Vertical Integration’ ..77
Figure 59: Collaborative Process ‘Additive Vertical Integration’ ...78
Figure 60: Mediator for 'Alternative Vertical Integration’...80
Figure 61: Root process 'Alternative Vertical Integration’ ..81
Figure 62: Collaborative Process: 'Alternative Vertical Integration’.......................................82
Figure 63: Mediator for ‘Merging Integration’ ..83
Figure 64: Root process 'Merging Integration’ ..84
Figure 65: Collaborative Scenario: ‘Merging Integration’ ..85
Figure 66: Mediator “Evolutionary Integration” (single organization)86
Figure 67: Evolutionary Scenario: ‘Merging Integration’ (single organization)87
Figure 68: Root process ‘Merging Integration’ (cross level integration).................................88
Figure 69: Cross Level Integration: Pre-processing activities ...89
Figure 70: Cross Level Integration: Core-processing activities...91
Figure 71: Cross Level Integration: Post-processing activities..92
Figure 72: Initial Processes for ‘Hierarchical Integration’...94
Figure 73: a) Hierarchical Process;..95
Figure 74: Dissolution of Hierarchies of Organization A (left) and B (right)97
Figure 75: Process Integration by Means of defined Mediators ..98
Figure 76: Re-definition of Hierarchy..99
Figure 77: Mediator for 'Hierarchical Integration’ based on ‘Horizontal Integration’100
Figure 78: Mediator for ‚Hierarchical Integration’ based on ‘Additive Vertical Integration’
..101
Figure 79: Mediator for ‘Hierarchical Integration’ based on ‘Alternative Vertical Integration’
..101
Figure 80: Mediator for ‘Hierarchical Integration’ based on ‘Merging Integration’102
Figure 81: Business artifacts in collaborative business processes ...103
Figure 82: Artifact oriented development approach ..103
Figure 83: Parameter explanation of hierarchycreate_ function ...107
Figure 84: Abstract differentiation of Graph and Sub graph ...109
Figure 85: “Hybrid-View” of Hierarchical Processes..110
Figure 86: Abstract view of “Hybrid View” ..111
Figure 87: Abstract illustration of mapping functionality..112
Figure 88: Explanation of Node Parameters ..113
Figure 89: Abstract modeling for Integration of semantically equivalent processes.............116
Figure 90: Abstract modeling of ‘Horizontal Integration’ ...116
Figure 91: Abstract modeling of ‘Additive Vertical Integration’ ..118
Figure 92: Abstract modeling of ‘Alternative Vertical Integration’122
Figure 93: Abstract modeling for ‘Merging Integration’ ...125
Figure 94: Root Processes for Hierarchical Integration ...127

List of Figures

 189

Figure 95: Dissolution of Hierarchical Processes.. 128
Figure 96: Abstract modeling of ‘Horizontal Integration’... 128
Figure 97: Re-defined Hierarchy ... 129
Figure 98: Organizational Relationship of Development Scenario 140
Figure 99: Iterative Process of Organization A ... 141
Figure 100: Hierarchical Standard Process of Organization B.. 142
Figure 101: Partially Defined Process of Organization C ... 143
Figure 102: Amorphous Process of Organization D.. 143
Figure 103: Hardware Process of Organization E ... 144
Figure 104: Collaborative Process for Development of “Driver Supporting System”.......... 146
Figure 105: Mediator for ‘Merging Integration’.. 147
Figure 106: Mediator for ‘Horizontal Integration’ .. 148
Figure 107: ‘Hierarchical Integration’: Mediator for ‘Merging Integration’......................... 148
Figure 108: Collaborative Process for Development of "Navigation System“ 150
Figure 109: Collaborative Process for Development of Road Information System 151
Figure 110: Mediator Pattern for ‘Additive Vertical Integration’ ... 152
Figure 111: Co-located Agile Development Process... 157
Figure 112: Initial Waterfall Process ... 158
Figure 113: Mediator Pattern for ‘Additive Vertical Integration’ ... 159
Figure 114: Distributed Collaborative Process .. 160
Figure 115: Velocity and Burn-down in the distributed XP project......................................164
Figure 116: Velocity and Burn-down from a well conducted co-local XP project 164
Figure 117: Velocity and Burn-down from a bad co-local XP project (x-axis: 8h day) 165
Figure 118: Number bug cards in relation to story cards... 165
Figure 119: Relation of bug fixing time to other tasks .. 166
Figure 120: Reminder: Collaborative Process for 'Horizontal Integration’........................... 169
Figure 121: Processes defined on different granularity levels (system vs. software)............ 170

List of Figures

 190

List of Tables

 191

List of Tables
Table 1: How Success Factors are influenced ... 20
Table 2: Reasons for Initiating Distributed Development ... 42
Table 3: Conflict Areas between PDP Characteristics & Projects’ Critical Success Factors.. 44
Table 4: Crucial Artifact Types for Software Development Collaborations 63
Table 5: Role Model Definition Level... 64
Table 6: Definition of Role Connectors... 66
Table 7: Task Responsibility: Specific Roles .. 67
Table 8: Legend and Color Codes for Activity Diagrams Usage .. 69
Table 9: Finite Set of Possible Node Types and Role Relationships.....................................105
Table 10: Finite Set of Possible Role Connectors ... 109
Table 11: Abstraction Sheet... 162

List of Tables

 192

 193

	titleA4
	06_Harald Klein_Dissertation

