%m TU Clausthal

Harald Klein

Collaborative Processes of
Enterprises

Supporting Global Development

SSE-Dissertation 6

Software
Systems Institut fur Informatik

E\/ Engineering Lehrstuhl von Prof. Dr. Andreas Rausch

Collaborative Processes of Enterprises:
Supporting Global Development

Doctoral Thesis
(Dissertation)

To be awarded the degree

Doctor rerum naturalium (Dr. rer. nat)

submitted by

Harald Klein

from Neumarkt / OPf.

Approved by the Faculty of Informatics
Clausthal University of Technology,

Date of oral examination

Chairperson of the Board of Examiners
Prof. Dr. ...

Chief Reviewer

Prof. Dr. Andreas Rausch

Reviewer
Prof. Dr. Jirgen Minch

Collaborative Processes of Enterprises:

Supporting Global Development

Harald Klein

Abstract

Globalization has been one of the big trends faaryen development. Due to diverse
countries and cultures, it is still challenging sveamline all collaborating parties and to
consolidate the existing expert knowledge in a W&y “going global” brings value added to
distributed projects. Therefore, global and distiéal collaborations often lack effectiveness
and efficiency, because workflows and processesllysdo not fit together. This, in turn,
leads to miscommunication and consequently to higheunt of rework and significant risk
of failure in distributed development projects.
Original organizational processes of each collainoyaentity should be kept as far as
possible to benefit from each organization’s praity even in a collaborative environment.
For this reason, this dissertation addresses tlmviag research questions:

1. How does a structure of a process framework foballyg defined development

projects look like?
2. What is the added value of such a process framefeonkrocess- responsible persons
in development organizations?

This work offers a structured approach of how oigations are able to collaborate from a
process perspective. For this purpose, severalatdrrollaboration scenarios are created that
help development organizations setting up an iategr process environment. These
integration scenarios armtegration with equivalent processeblorizontal Integration
Additive Vertical Integration Alternative Vertical Integration Merging Integration and
Hierarchical Integration These scenarios are in its majority based ontipedhexperiences
from industry and literature review. The charadtigriof each integration scenario is that it
comes with a connector — a so-calédiator — that can be used for collaborative process
definition. A mediator is a process pattern thatused to connect two or more processes
resulting in a new collaborative process by simmdtausly keeping the original ones as much
as possible. This ensures that organizations fimeimselves in the new collaborative
processes environment which enables and motiviages to contribute to distributed projects
with full capability.
The scenario approach is the preferred solutioa dilee to simplicity and intuitiveness when
used in practice. Thereby, the number and typeefihed scenarios represent most likely
business constellations from practice. For modelhegUnified Modeling Language (UML)
is used due to standardized and popular character.
The original contribution of this thesis encompassg a set of process patterns, b)
comprehensive guideline deploying these pattethsjathematically formalization of these
process patterns graph- based notation for accuraterstanding and automation purposes,
and d) practice- proven benefits documentatiomisfapproach in two case studies.
The major benefits of this process integration appin are a) Velocity of Process Setup
through pre-defined process integration mediatioysConsistency of Process Integration by
having pre-checked and valid process diagrams pacating control- and objects flow c)
Applicability of Approach in every process domadt), Adaptability of Process Integration
Approach to each collaborative scenario if necgsaad e€) Role Concept to clearly define
responsibilities of any defined task.
The approach has been applied in two case studieen the limitations of case studies, the
results indicate that communication effort was otlyce as high as in a comparable co-
located development projects that were not usiegpttocess pattern approach. This is 20%
below the common standard, which says that commatiaitis 2.5 times higher in distributed
than projects running on one site. In turn, the amaf rework (15%) and risk of failure
(progress of burn down chart) turned out to be shikeeor at least comparable to projects
conducted co-locally.

Danksagung des Autors

An dieser Stelle bietet sich die Gelegenheit mieh Allen zu bedanken, die mich bei der
Erstellung dieser Dissertation unterstitzt habeas®Arbeit entstand als externer Doktorand
am Lehrstuhl Prof. Dr. Andreas Rausch an der Tachen Universitat Clausthal.

Zunachst bedanke ich mich bei Prof. Dr. Andreas sBaufiir die Ubernahme der
Doktorvaterschaft wodurch die Promotion tUberhaupst eustande gekommen ist. Seine
tatkraftige Unterstlitzung bei der Meinungsbildungihvend der Konzeptionsphase hat
wesentlich zum Gelingen der wissenschaftlichen Adbeigetragen. Gern erinnere ich mich
zurick an so manch’ sehr frth am Morgen oder spat Abend stattgefundene
Telefonkonferenz, um die Probleme bei weltweitteifien Kollaborationen zu diskutieren.
Prof. Rausch hat es zu jeden Zeitpunkt verstanahéeh) zu den jeweils nachsten Schritten
und schlussendlich zur Einreichung dieser Arbeitzdivieren.

Bei Prof. Dr. Jurgen Munch bedanke ich mich fiurmliempte Bereitschaft, die Erstellung des
Zweigutachtens zu Gbernehmen.

Das Sekretariat — in persona Annett Panterodt it in allen logistischen Belangen stets
freundlich und hilfsbereit unterstitzt. Herzlichrixadafur!

Des Weiteren gilt der Dank meiner Familie, meineratev, meiner Mutter und meiner
Schwester, die ein besonderes Verstandnis und Rttkauf meine Doppelbelastung
genommen haben und sich stets um den Stand deit Adsergt gezeigt haben.

Fur sehr viele wertvolle Review-Kommentare bedaidte mich bei meinem ehemaligen
Kollegen der Siemens Corporate Technology, Dr. &uBHckle. Er hat nicht nur fir den
notigen Feinschliff der Promotion gesorgt, sondstrauch maf3geblich dafir verantwortlich,
dass ein Kontakt mit Prof. Rausch erst Uberhaugtbnde kam.

Des Weiteren gilt mein Dank meinem Kollegen Hilnaais dem Spring von Siemens Energy
fur seinen wertvollen Blick als Aul3enstehenderdie$e Arbeit.

Inhaltlich haben mir in der Anfangsphase Dr. Edwé&idcher und in der Endphase Dr.
Christian Bartelt vom Lehrstuhl Prof. Rausch welleydAnregungen gegeben. Ohne ihre
Hilfe und Unterstitzung ware diese Arbeit bestinmoht das geworden, was sie heute ist.
Fur die liebevolle Aufnahme als ,Externer* an deghtstuhl von Prof. Rausch gebihrt mein
Dank auch allen Lehrstuhl-Mitarbeitern.

Im Besonderen danke ich meiner Lebensgefahrtin dvialeubauer, die besonders wéahrend
der Erstellung der Promotionsschrift so manche @&timgsschwankung mit viel
Entgegenkommen erwidert hat und durch viele flulsdrg Worte einige fir mich
hoffungslose Situationen zum Besseren gewendet hat.

Contents

Contents
CON T ENT S et e e et e ettt e e e et e e e eeme e e e e et e e e eb e e e ann e e e eenns I
1 INTRODUCGCTION. ... e et e e e e e e et e e e e s rmaeeeaneeeanaes 1
1.1 Statement of the Problem ... 2
1.2 Objectives and Research QUESHIONSoo et e et e e e e e e e e 3
1.3 Scope Of the DISSEITAtION........cooi it ceeee ettt e e e e e e e e e e e e e e e e e e e nnnneees 3
1.4 DefiNitioNS ANA TOIMIS. .. ittt ettt ettt e e e e e e e e e e e s e e s s e e e e enbeeeeeeeeaaaaaaaaeaaaesaaaaaaannnnnnes 4
1.5 Structure of thiS DISSEITAtIONcuuveiiimmm ittt e e e s e st e e e s e ebbee e e e e e nnneee 5
3 T =10 Yo g o] 1o g OSSP 6
1.7 Limitations and delimitationsooiiiiiiiiiiiiiii e e e e e 6
O 0t R I o 11 = Vo T PP PTPPPPRR 6
O A B T 110) =1 (o] I PRSP 6
2 RELATED WORK ...ttt e e e e e e e e e e e e enaaeeaneeeans 9
2.1 Organizational BUSINESS PrOCESSES ... iaaaintnniiniieeeeeetaataaaaaaaaaassaaaaressessseeeeaaeaaaaaans 9
2.1.1 Fundamental TermMINOIOQYuuuuuuueeiieiieieeeeeesiicsciirte e e e e e e e ae e e e e e e s eessneenrnereeneeees 9
2.1.2 BUSINESS ProCess ManagEMENT o ssssssnsrnsmmmmmemeeermmeeaeeeeeesnnmmmmnnnmnsnee 11
2.1.3 General Process Problem of Organizations........c.eececeeiiiiiiiiiccciiiiiiiiieeeeeeeeee e 13

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.1.4 Benefits of Business Process ManagemMEeNt ecseerrrrrrmrrerereereeseaeeeeessansannees L4

Product Lifecycle Management (PLIM)c..uuuummererreeeeeeeeeesessesssiietvnrveeeeeeeeeeeeees e s s e s snnnnns 16
A R o IV N 3 T o | o TP 17
2.2.2 BeNEfitS Of PLM....eeiiiiiiiiiiiii ettt 19
Product Development ProCess (PDP) ...t 20
2.3.1 CharacteriStiCS Of PDP ...t ettt a e e e e e e e 21
2.3.2 Challenges OFf PDP ...ttt ettt e e et eeeeeeeas 22
Software Development Models and MOEIING ... ooiiiiiiiiiiiiiieei e 24
2.4.1 Diagrams and CONNECIOIScceiiiiiis i e ceeeeeee e e e e e e e e s s e s essserenb e eeeeereeaaeeeessanaannnnnes 24
2.4.2 Process (Meta-) MOAElNG........ccooiiiiiiii et 25
2.4.3 Software Process Modeling TEChNIQUES ... eeeeeeieiiiiiieiciiierieeeeeeeeeaaeeenen 26
2.4.4 Software Development MOEIS...........oivi i e e e e 29
Global Product Development and ENGINEEIINGccevviiiiiiiiiiiiiiieiieeer e e e e e e e e e e s ssaeeveeeees 34
2.5.1 Companies going abroad...........ccoooiiiiiiciiiie e 35
AT =1 11 411 0o (oo | TP U TR RTRRPTP 38
2.5.3 Global Development PrOoCESSES. i it e e 41
2.5.4 Cooperative Development MOEIS............uiceeaeciiiiiiiiaaa e 46
General EMPIrical STUGIES.oooiiiiiiit ettt e e e e e e e e e e e e eee e 49
CUIUIAT ASPECLS ...ttt ettt eem ettt ettt et e e e e e e e e e e e s e e s e s e babeeeeeeeeaeaaaaaaaaaaaaaasaaaaannnnns 51
Communication iN CollabOratiONS...........ueeiiei et e e eeee e 52

Contents

2.9 Process Models and Globalization — tying it all togther ..o, 53
3 THE APPROACH FROM A BIRD'S EYE VIEW. ..o e 55
3.1 Application of the Process Integration APProach..........ccccccvveeeeeeeeiiiii i 55
3.2 Major Challenges on Process INtegration.cccooeiiiiiiiiiiiiiiiiiiie e 56
3.3 Solution Concept for Process INtegration............oueiiiiiiaaiii it 58
3.3 1 Mediator Patternot ettt e e e e e e e e eeeeaaeas 59
3.3.2 Artifact Synchronization and Handover CONCEPLa . cuiaiieearaeeiai e 60
3.3.3 ROIE MOEL ...ttt e e e e e e e e e e r e e e e e e aaaaaaaaaeas 64
4 SOLUTION SCENARIOS ... e eenennes 69
R €= 10T F= LT TP PR T 69
4.1.1 Integration POSSIDIlIIESccoii e 70
4.1.2 UStrating EXAmMPIE ..ottt e e e e e e e e e e e as 70
4.2 Scenarios for ProCess INtegration.............uooueuiiiiiiiiiiiiia et e e e 72
4.2.1 Semantically EQUIVAIENT PIOCESSESi e eeeeeaeeeeeeee e eeeeeeeaaaa e e e 72
4.2.2 Horizontal INtegrationueuuieiiieiii et a e e e 73
4.2.3 Additive Vertical INtegration.............ui i oot 75
4.2.4 Alternative Vertical INtegration..............uueeeeeieiissrieieriiriineeeeerrereeseeeeessssssnsennnnne 79
4.2.5 Merging INEOratiON.........ueiiiiiiiiiie e ceccec et e e e e e e e e s e s e rreeeaaaaaaaaeas 83
4.2.6 Hierarchical INtegration..........cciiiiei i i e e e e e e e e e e 92
4.2.7 Alternative Approaches for Software Developmentl@mrationsccccvvvvveennnen. 102
4.3 FOMMAIIZALIONeeiiiiiiieiiee et ettt s e e s n e e et e e n e e s e s 104
o 70 R o [N B = {1 1 1T o P EPPRUUPPRRRR 108
4.3.2 Closed Sub-graph Definition...........coooiis oo 109
4.3.3 Hierarchical Graph Definition............couii oo 110
4.3.4 Mapping Methodology Definition................ e 111
4.3.5 Semantically EQUIVAIENT PIrOCESSES e eeeeetieeaaaaeaaae e aaieeeieeeeeeeaaaeas 113
4.3.6 Horizontal INtegrationeeeeeiiiiiieiie e 116
4.3.7 Additive Vertical INtegration...........ccee i ieeece e e e e e e 118
4.3.8 Alternative Vertical INtegration..............ueeeeeereeunmrmmineeererrrereereeeessessssssssnneneneeen 121
4.3.9 Merging INEGratiON........uuiiiiiieie e e e e e e e s e e e e e aaeaaaa s 124
4.3.10 Hierarchical INteQratioN..........ceeeeeii it e e e e e s ennnnes 127
5 (08 ST Y U 5 PN 137
5.1 GENEIAI ASPECLES ...coiiiiiiiiie ettt e e e e e e e oo oottt ettt e e e e e e e e e e e e e e nnean e e beeeeeees 137
5.2 Case Study 1: Scenario from Automobile INAUSEIY ... 138
5.2.1 Case Study QUESTHIONS.........cciieiiieeiteereeeener et tre e e rreeraeaaeeeaee e s e s sesannnrsseeaeeeeeeees 138
LI Y oo o= 1110 g IS o =1 o - 1 (o 1P 139
5.2.3 DeVEIOPMENT SCENAIIO ...eevvviieeeeeeis e s it s e e e et aeaaeeereeeeaaaeeeeeessnaaassnnenennenes 139
5.2.4 Organizational Process DefinitioNScceeeeiririmiiiiiiiiiieee e cceeneeee e 140
5.2.5 Collaborative Process Definition............ccceeeevrreeeiiiiieiiiie e 145
5.2.6 Summary Case Study 1: Scenario from Automobile $tgu..............cccvvvveeeeeeeeeeenn.n. 153
5.3 Case Study 2: Scenario from Agile Developmentuuvuiiiiiiiiiiiiiiieeee e 155
5.3.1 Case StudyY QUESTIONScciiiiiiiiiiiteeeeeeeee bbbttt e e et e e e e e e e e e e e e e e s e s e s snnaesbeeeeeeeeaeas 155
5.3.2 Organization’s Process Definition............ooooeuuiiiiiiiiiiiiiieeeee e 156
5.3.3 Collaborative Process DefinitioN.............ooooo i 158
5.3.4 Assessment Of the Derived PrOCESSeiiirieriiiiiieiiiiitiiieee et 161
5.3.5 Validity Of RESUILS.....iiiiiiiiiieee e e e e e e e e e e e e e e s e e neeeneees 166

Contents

5.3.6 Summary Case Study 2: Scenario from Agile Develaime..........ccccooeeeeeeiiiniiinaannnn, 168
DISCUSSION ... et e e e e e e e e e e e e s n e e e e e nrnnas 169
6.1 Major Issues of Process Integration APProachcee..eeeeeeeiiiiiiiiiicccieeee e e e 169
6.1.1 Accuracy of Mediator Definitionooi oo 169
6.1.2 Interfaces: Different Inputs and OULPULS.....ccecaeiiiiiiiiiiiiiiiiiieeaee e 170
6.1.3 Empirical Validation POSSIDIlItIES............o it 171
6.2 Benefits of the Process Integration Approach ... 171
OVERALL SUMMARY AND FURTHER RESEARCH.........ccoooi i, 173
BIBLIOGRAPHY .o emt ettt e e e e et e e et e e e e nnaa e e e e aa e e e enans 177
LIST OF FIGURES et 187
LIST OF TABLES ... oottt e e e e e e e e e e et e e e ean s 191

Contents

1 Introduction

1 Introduction

Development processes today concern all developdisaplines like software engineering
and hardware engineering, which include mechar@ngineering and electrical engineering
[133]. Explicit definition and installation of sugbrocesses are increasingly important since
the developed productsre also growing with respect to incorporated Uiest and non-
functional requirements, e.g. performance, safyurity, etc., which results in much higher
complexity.

Besides hardware engineering as the major developmemain, software engineering

emerged as an essential discipline within produstetbpment. Therefore, the software
portion of products increased considerably in thet ldecades. Following a statement of
Boehm [22], the ability of any organization to suevthe rough market conditions will

depend more and more on software in the future.

Software Engineering is a very young discipline pared to, e.g., Hardware Engineering.
Since the expression was coined by Fritz Baueneatbnference in Garmisch-Partenkirchen
in the late sixties, Software Engineering emergeednisively regarding importance in the last
forty years. Significant effort and advances hawerb made in Software Engineering
especially regarding better manageability, highedtability, and, in general, the use of
more systematic development approaches. This hais dehieved by the improvement of
software lifecycle models, sophisticated architexty more effective planning and
controlling methods, and better tooling [142].

A significant advantage of software is that it pd®s competitive differentiation and rapid
adaptability to competitive change. This means #duitware facilitates rapid tailoring of

products and services to different market sectatsich makes feature implementation
through software solutions very attractive. Fortanse, the product creation of a mobile
phone can be done by making use of software ptafo©Once such a platform is defined and
implemented, adaptation towards different mobil®n@s is relatively easy. Additionally,

several mobile phone models might also be diffeséed by just deactivating certain

software features.

Another example comes from the automobile industtye installed engines for cars are
usually configured using software and appropridt@réhms, which allow the automobile
manufacturer to simply change the engine charatiesj e.g., towards more power, without
any more development effort. Especially, in thisibass software gains more and more
importance. In 1990, only 16% of an automobiletsltealue accounted to software; in 2001,
this number has grown to 25%; today, we are at 4BBémium class automobile vehicles
contain up to one gigabyte on-board software [73].

Further industries are also concerned by growinijwsoe complexity, e.g., energy (e.qg.
instrumentation and controls (1&C) for power planttomation), or in the healthcare sector
(e.g. computed tomography, magnetic resonance).

However, software engineering is also one of thetraballenging disciplines during product
development. Generally, organizations and theiretigament processes are pressurized to
react in a highly flexible market with innovativeoplucts dynamically and quickly on

1 All statements made in this dissertation are véaidoroducts and systems likewise; for defintidriesms
please refer to chapter 1.4

1.2 Objectives and Research Questions

steadily changing market requirements. Simultangpwevelopment departments have to
meet quality goals, cost restrictions, and theyehtavfulfill country-specific, local standards

[42]. These market challenges are the main calmsgsriake (software) products more and
more complex over time.

Growing complexity and challenges require expedvkedge for respective product features
in certain domains, e.g., database technology¢ckedgorithms, security etc.

Furthermore, highly qualified employees are indisadle for development organizations
today. Especially the concentration on their commpgetencies is necessary to stay
competitive in their respective business. Thisus tb the fact that, on one hand, rivalry in
business capabilities increases steadily. On therdtand, it is too expensive for companies
to build up every required competence in every texgsdevelopment site. Additionally,
development organizations benefit from having locasiness partners in those countries
where they want to sell products.

Since specialized experts are not always availdbally when they are needed,

organizations are forced to expand their staff cogron a worldwide basis. Global sourcing
is easily realizable these days within many engingedisciplines (e.g. software, hardware,
mechanic etc.) due to the fact that developmemagorly conducted computer-based, and
engineers can contribute to products via Interrehfanywhere all over the world. Thereby,
any design software is installed on company inlesevers that are accessible from
wherever it is necessary.

Skilled employees coming from all over the world snibbe given a structured way and
guidance of how product development and businesdorge in a respective company.
Therefore, globally defined processes get incrghginmportant to integrate new or
temporary employees into business environment piop&his approach expands local
development to distributed development that coni@sgawith globalization in order to get
best talents available for specific tasks.

However, the major problem that development congsmhiave is the lack of collaborative
processes for distributed development. This simpBults from the fact that processes in
general are often seen as an unnecessary burdieh, egm easily be avoided by just omitting
it.

A collaborative process connects two or more omgdinn specific and local processes in
order to make use of specific organizational cdpegs for project challenges. Thereby, the
original processes are not changed. A collaborapivecess works as a facilitator for
organizations’ success. This fact is well known aadcepted among development
organization so far, however, there are only a @mNaborative processes or mechanism
defined that describe how to connect different psses globally from various organizations.
Organizations often argue that they never ever m@esled explicitly defined processes for
doing successful business. Furthermore, the orgaois have seldom appropriate structures
and capabilities, i.e. roles, responsibilities, asdecially methods to address this issue. Well-
defined processes for collaborative development significantly reduce friction between
participants, avoid double work, and reduce cotflet the developed constituents and thus
reduce development cost and time.

1.1 Statement of the problem

Global development environments where two or magaste organizational units work
together to develop a product require collaborapvecesses that allow for integration of

1 Introduction

respective organizational processes. Process aitegrneeds to be done in a way that
original processes are kept as defined in the ofispeorganization. This is crucial since
development organizations can deploy specific skifid capabilities best by using a familiar
process environment.

Therefore, collaborating organizations can onleéiiely work together if they are allowed
to follow their specific organizational, institutialized processes. If processes are changed
rapidly and too often companies get inefficienttiveir day-to-day work. This is due to
existing organizational culture, which processes directly connected to. Cultural change
would need time and wide acceptance throughoutrktiee workforce.

For this purpose, organizations must have an apprtbeat connects respective organizational
processes and explicitly indicates process issweg,, process inconsistencies like
missing/wrong artifacts to be handed over etc.

Unfortunately, there are only a few — if any at-alapproaches defined that are capable to
address global and distributed development isstibsw to define and set up processes for
global collaborations. This work focuses on thishghem and comes up with a methodology
to define collaborative processes with two or manganizations that are able to be executed
in a distributed project on a global basis.

1.2 Objectives and Research Questions

This dissertation pursues two goals.

1. The core of this work shall define and describeagss structure that allows two or
more development organizations to collaborate giobally dispersed project. This
resulting structured methodology shall be easys® and is intended to be handled
intuitively.

2. Furthermore, the value add of the process framewdtke proven in an illustrative
case study that is based on consideration of eadldpment projects and experiences.

Therefore, the research questions can be formutatéollows:

1. How does a structure of a process framework fobalg and distributed defined
development projects look like?

2. What is the added value of such a process framefoonixrocess- responsible persons
in development organizations?

1.3 Scope of the Dissertation

Global development is a potentially huge field dffedent activities. Besides processes,
various people and cultures, these activities oelalso collaborative tools that are crucial
for global and distributed development, e.g., agunfation management, design, and
simulation etc. This work focuses primarily on ghefinition of processes that are used in a
global development project environment. Therebynechanism shall be developed that
connects two or more processes in a way that acodaborative process is created. This new
collaborative process is then executed to run bailip defined project.

1.4 Definitions and Terms

In order to illustrate the added value and thedigliof the process framework, a case study
will be conducted and also documented in this work.

In terms of the considered case study, the diggertafocuses mainly on software
development. However, the process framework is Imoited to software development
process, but can also be used to connect proc&ssasy environment, e.g., hardware

development.

1.4

Artifact:

Process Tailoring

Process Owner:

Definitions and Terms

two or more processes resulting in a new
collaborative process (See chapter 3.3.1)

2 refer to [42]
3 refer to [133]

descriptions, plans, code
Collaboration beyond any organizational borders

place, e.g., room, building, or site

“Do things right”, i.e., to achieve a defined goal
by using minimal resources (inputs)

“Do the right things”, i.e., to do those thingath
lead to the desired goal

Performance characteristic or attribute of a
(software) product as a result from development

This term is used in the sense of “global
collaboration”

Making, altering, or adapting a process
description for a particular end.

A role that is fully responsible for a respective
process in terms of execution, result generation,
and maintenance

A role that designs a process according the
constraints and requirements of the process
owner

A “thing produced by labor or effort” or the
“result of an act or a process”

illustrates the use of a mediator by using
exemplary processes

A set of interacting or interdependent
components forming an integrated whole

1 Introduction

- A set of elements (often called ‘components’
instead) and relationships, which are different
from relationships of the set or its elements to
other elements or sets

Truck Factor: Number of people the project could lose before it

gets into serious trouble

P eXtreme Programming: An agile software
development methodology intended to better
react to changing customer requirements by

advocating frequent software releases

1.5 Structure of this Dissertation

The structure of this dissertation is as showniguife 1. Thereby, the left side shows the
chapters on theory; whereas, the right side ilies practical chapters that have been
“derived” from the respective theory. Chapters dagul in the middle are the general ones.

Chapter 1
Introduction
Chapter 2 Chapter 3
Related Work The Ap’proach from
a Bird's Eye view

==

Chapter 4 Chapter 5
Solution Scenarios Case Studies
Chapter 5.1

lllustrative Case Study

!

Chapter 5.2

Exploratory Case Study

—

Chapter 6

Discussion

!

Chapter 7

Summary

Figure 1: Structure of Dissertation

* http://en.wikipedia.org/wiki/System
® http://www.agileadvice.com/archives/2005/05/tructor.html

1.6 Limitations and delimitations

1.6 Assumptions

The solution concept of this dissertation assurhasthose organizations, which participate
in collaborations, have (development) processeadyr in place prior to the definition of any
collaborative process. The respective organizagomomatically follows those defined
processes in their day- to- day work. Processearargherent part of their business. Thereby,
a collection of sub-process descriptions is alsepied as a kind of organizational process.

1.7 Limitations and delimitations

1.7.1 Limitations

Due to the huge field of potential study possiigit this work is limited.

The dissertation will not focus on tools, meanirgjtweare applications or databases to
support a global project set-up. These softwardiGgins usually support the product
lifecycle management or specific sub-processesrék@irement engineering, e.g., ‘Dynamic
Object-Oriented Requirements System’ (DOORS), ‘Rstgi Pro’ or testing, e.g., Test
Director. Tools are supportive key elements forcegsful distributed collaborations, e.g., for
configuration management or requirement engineeaimg should not be neglected during
collaboration set-up.

Mechanisms on how to implement quality assuraneenat considered in this work.

Tools environment are also used in project enviremis called Virtual Reality (VR). These
tool environments support virtual product developtmand reduce the complexity of a
project [42]. Although this is strongly relatedttos dissertation, it will not be considered in
detail.

Applicability of this approach is limited by thefidirent processes used in various process
domains, i.e., it will be difficult for, e.g., a ffware design process to get input from
configuration management process.

Development collaborations typically use a certgpe of development model. Ten years ago,
the ‘Waterfall Model' has been the most commonlylega model. Nowadays, modern
development uses ‘Agile Development’ or at leastaitive development, e.g., using the
Rational Unified Process (RUP). This dissertatioill wot discuss such models. Also
benchmarking models like the Capability Maturity d&b Integration will not be subject of
this work.

Cultural aspects are not considered in this waltkoagh it is common sense that it is very
important to be considered during the set-up obaldalistributed development projects. For a
short abstract of cultural aspects, please refsettion 2.7.

1.7.2 Delimitations

This dissertation mainly considers software develept processes, but is not limited to them.
The used approach is also applicable for any otiees of processes, e.g., hardware
development, marketing, human resources. The nafupeocesses from an atomic point of
view makes that possible, i.e., every process -step matter in which environment defined

1 Introduction

and used — consists of an activity, in-/outputegomethods etc. Since the approach of this
work deals with that level of granularity, it isgglestined to be used in various domains.

This dissertation does provide mechanism to hamd@rsive processes, since not all
processes are created and defined prior to ex@cutio

1.7 Limitations and delimitations

2 Related Work

2 Related Work

The purpose of this chapter is to introduce andagxpelated terminology and work of other
authors related to this dissertation. Additionatlyis section motivates processes, which is
supported by data based examples in terms of rnigcassl benefits. Furthermore, typically
process issues in (globally distributed) developnoeganization are addressed. Additionally,
several statements are proven by data examples.

2.1 Organizational Business Processes

2.1.1 Fundamental Terminology

The term “process” is very manifold, and the megrdepends on the environment used. In a
business environment, several process terms orioatigns of that are established. But what
is a process? Before collaborative processes amusied, this work gives some basic
definitions.

2.1.1.1 Process

Basically, a process is a transformation that ciesif several activities. This transformation
gets a defined input and creates a defined ouiipouit factors could be machinery materials,
equipment, manpower, raw materials, energy, orrin&ion. The generated output of the
process encompasses products and services [122].nTdrnationalStandardOrganization
(ISO) defines “process” as a set of interdependenvities, which converts inputs to results
[40]. A process is determined by various paramegersh as scope, content, or structure.

2.1.1.2 Software Processes

A software (development) process is a structuregrageh to create a software product.
Software is special insofar that it is immaterimdacannot be touched. In contrast to
traditional hardware development, software processe their own proprietary methods and
tools for creating the product. These methodsdt@we incorporated in a structure, which
typically consists of several phases that inclugkeaipe not limited to:

* Requirement Engineering

* Architecture and Design

* Implementation

» Verification and Validation (Test)
* Maintenance

In order to improve software process performancpersonal software process (P%Pin
general has been developed by Humphrey. Havingresgant specification as input
defines several phases, which provide data-oriemtisdiplined methods based on improved
planning, commitment, and quality [66].

2.1 Organizational Business Processes

2.1.1.3 Business Processes

‘Business Process’ is an umbrella term, which aefiall processes that occur in any business
environment, e.g., marketing, sales, controllingaliy assurance, supplier management, as
well as development or human resources.

Using a formal definition, a business process &ia%f a set of activities that are performed
coordinatively in an organizational and technicavibnment. These activities typically
realize the business goal jointly. Each businesgsgss is enacted by a single organization,
but it may also interact with business processe®eed by other organizations [143].

The challenge for any business process is the Watg @efinition in order to generate or
produce valuable output for either internal or exaé recipients/customers. These outputs
might satisfy, for instance, a requirement speaifan from a customer or an internal quality
review checklist from the quality management preces

Figure 2 exemplary illustrates the terms ‘processl ‘business process’. However, this is by
far not a complete (sub-) process definition, laiher a general process activity model that
can be used to define executable processes.

Process

consists of a sequence of steps which create outputs based on inputs

Input — Transformation ——> Output

Business Process

consists of cross organizational and cross functional connection of
activities that create added value towards customer expectations and
contribute to goals derived from strategy.

Requirement Value-adding Benefit
from Customer Activities for Customer

Figure 2: Definition: Process and Business Process

Many definitions of business processes have emeoged time. For better understanding,
some of those, which support this work best, aserileed in the following.

Davenport defines in [40] business processes asuatwed, measured set of activities

designed to produce a specific output for a pderccustomer or market. It implies a strong

emphasis omow work is done within an organization, whereas, gheduct’s focus onvhat

A process is thus a specific ordering of work até@s across time and space, with a

beginning and an end, and clearly defined inputs@utputs: a structure for action. Processes

10

2 Related Work

are the structure by which an organization doestushaecessary to produce value for its
customers.

Hammer and Champy see business processes as ctioollef activities that takes one or
more kinds of input and creates an output that i&lue to the customer [59].

A definition that considers cross functionalityarganizations is given in [114]: “A business

process is a series of steps designed to prodpeedact or service. Most processes (...) are
cross-functional, spanning the ‘white space’ betwde boxes on the organization chart.
Some processes result in a product or serviceishagceived by an organization's external
customer. We call these primary processes. Othecepses produce products that are
invisible to the external customer, but essentahe effective management of the business.
We call these support processes. “

In [137] Scheer and Zimmermann describe a busipessess as an activity, which is
important for the added value of the company froojget kick-off until termination.

For further definitions please consider [100], [IL333], [77].

The value adding activities need to be connectegbrimk functional and organizational
borders. These coordination activities generataifstgnt cost and issues in organizations.
Therefore, the discipline Business Process Manage(B&®M) has been defined to attend to
these issues [122].

2.1.2 Business Process Management

Business Process Management (BPM) has reachedicghiimportance in business and
development organizations in the last years. Refigrto a survey conducted around IT
decision maker 67% of the interviewed organizatiarestronglyor very stronglyengaged in
doing BPM [69]. Most of them — about 95% - consi@&M to beimportantor evenvery
important[49]. This is also reflected in the trend that elepment organizations are strongly
interested to initially define or re-engineer theafined process in order to decrease cost and
reduce the overall lead time. This gets more ingmirtas (software) product and the
appropriate development effort get more and monepdex.

This shows that business and development proceaseskey instruments for the
understanding and the successful execution of méss Consequently, processes visualize
their own business and make it easier to contrdlienprove the business, especially in very
complex environments.

A BPM concept consists of several aspects, whiddne be fulfilled to successfully do
BPM. Figure 3 shows an overview of such a concBEp. major framework of BPM is the (1)
organizational strategy mainly driven by (2) customAll activities are oriented towards
these two aspects.

Figure 4 gives some more explanation and definibiowhat the single duties of BPM are
and what they are responsible for [122].

11

2.1 Organizational Business Processes

Customer / Stakeholder

Business Strategy

<~

S~

Business Process Management

Process
Management

Process Process
Organization Controlling

Business Processes

:

Process Optimization

S~

<>

Information- and Communication Technology

Customer / Stakeholder

Figure 3: Integrated Business Process ManagementJ2]

—
Process
Management
Process Culture
—_—
Behavior
Motivation
Communication
—

Process Organization
= |dentification, structuring, modeling and weighting of
business processes
= Roles and responsibilities
= Incorporation of business process into organizational structure

Process Controlling
= Definition of process targets and measures
= Measurement of control of process performance
= Process reporting
= Conduction of process assessments

Process Optimization

= Continuous process improvement
= Reengineering of business processes (if necessary)

Figure 4: Scope of Duties of integrated Business 8tess Management

12

2 Related Work

2.1.3 General Process Problem of Organizations

Although organizations are aware of many potentiaiilting from process management,
many companies suffer from process deficienciehintetzer [122] describes that major
problems in organizations originate from two aspdetfectivenessandEfficiency.

The term ‘Effectiveness’ can be paraphrased with tide right things” and means, e.g.,
defining the right success factors, develop appatgicore competencies, penetrate the right
markets, and develop the right products for thosekets. However, many organizations
suffer from deficiencies concerning these effectass factors. Examples are:

+ missing persuasive vision

+ unclear strategic goals

+ unclear market goals

+ insufficient knowledge about (potential) successdes
+ inadequate knowledge about customer problems

+ unclear product- and process goals

These deficiencies typically result in unsatisfiethployees and especially unsatisfied
customers, which are even more critical [122].

In contrast to effectiveness, the term ‘Efficiencgn be paraphrased with “do things right”,
which is more economic- oriented than ‘Effectivesiefigure 5 shows some problems that
result from a low efficiency in an organization.

* many claims
» many defects
* many changes
= high product cost
* long cycle times
= time to market

= product ramp-up

= product launch
= insufficient delivery reliability
= lack of ability to deliver

= high inventory

= low flexibility

Figure 5: Problems resulting from non-controlled processes

This lack of efficiency is mainly driven by the jplem that processes are not designed
efficiently and not controlled, although they coblel controllable. In several cases, processes
are executed that generate almost no additionahdss value. Too many interfaces are
defined that need tremendously more coordinaticen tlare actually necessary, which

13

2.1 Organizational Business Processes

increases cost and lowers profitability. Thereforzest, time, and quality are the major
parameters that drive efficiency in an organizafi2?].

The empirical studies mentioned in the previousi@ealso give some evidence for process
deficiencies in organizations. Fink [43] statest theocess-orientation is a major driver to
increase efficiency and effectiveness. Howevery &ti% of the considered organizations
have defined a process-responsible person; 36%thayaocess views with appropriate Key
Process Indicators (KPI) incorporated into the aahing. Only 22% of the interviewed
organizations stated to have transparent procadgil®es and process costs [43].

Referring to [49] only 9% of the interview organip&s have a process- responsible person
with business responsibility (budget) and only 786 a reference model comprehensively.

The deficiencies in BPM should be identified andradsed by the integrated BPM approach
shown in Figure 3 and Figure 4.

2.1.4 Benefits of Business Process Management

The responsibility of BPM is to optimize the orgaational process and, thereby, improve
effectiveness and efficiency of processes thatltr@sisustainable increase of the companies’
value. Organizational processes and process maragaespectively in organizations are
major drivers of business’ success in organizatiamd gain essential benefits. Schmelzer
[122] stated that the most important benefits ocpss management are:

« Higher transparency of the contribution of processlue added to the overall value
added gets better measureable

« Better process efficiency due to reductions of riatees and resulting material and
information flows

Important Topics in Process Management

Modelling and Optimization _ 909
Standardization of Processes :— 84%

Increase of Process Effectiveness :— 80%
Design Organization-External Processes :— 77%

Integration of Applications :” 67%3

Evaluation of Business Processes [59%

o

0% 20% 40% 60% 80% 100%

‘I] % of Nominations in the Poll‘

Figure 6: Important Topics in Process Management [8]
This is the summarized result from several emgirstadies conducted by Fink [43], Bach

and Biemann [7], Gadatsch [49], and IDS [69]. Takek brings up two essential aspects in
terms of process management.

14

2 Related Work

First, organizations recognize that process manageroontains important topics to be
addressed in order to be successful in businegsiré=i6 illustrates that organizations are
aware of the importance of processes and procesagament. In this case, organizations
might tend to spend significant effort for procedsfinition and improvement. They
apparently think that there is much potential foprovement to be realized along the value
chain, especially towards productivity, cost redutt and increase in effectiveness.
Furthermore, organizations want to follow a moregnated process approach, which means
that processes of customers, suppliers, and bussjpasners also need to be included and
integrated into the own process landscape.

Second, organizations realize significant benefitim processes defined and process
management, which is shown in Figure 7. Besides'Faster Processing of Orders” (63%)
cost reduction (61%) and higher product quality’¢2re major benefits from organizations’
perspective.

Benefits of Process Management

Faster processing of orders | ‘—‘ 63%

Cost Reduction | — 61%
Higher Product Quality | — 52%%
Higher Flexibility | I 0% |
Higher Customer Satisfaction | — 44% i
Increased Degree of Innovation | | éB% i
Miscellaneous 7:- 9% i i

‘ ' ' !

0% 20% 40% 60% 80%
‘EI % of Nominations in the Poll‘

Figure 7: Benefits of Process Management [69]

But how does BPM contribute to development?

Successful companies typically measure their psesegperformance with Key Process
Indicators (KPI). Based on these measurements,omepnent potentials are derived and
implemented in appropriated improvement projectg tipically should be conducted with
the same importance like other projects in an aegdion.

Business processes are the foundation for developprecesses, because BPM generates
data and information that are valuable input fowved@oment processes. This is briefly
explained with two examples.

Example Generating Product Requirements

Requirement Engineering is a substantial sub-psowoethin development. In
order to source this process marketing departmeistand evaluates data from
the relevant market in such a way that requiremfemtfuture products can be
derived. This information is taken as input for tevelopment department.

15

2.2 Product Lifecycle Management (PLM)

Example Cost Reduction

Management typically drives development cost radacfFigure 3), i.e., the
decision comes from business strategy. This detisiaa subject for process
optimization and executed by process managementartdlling.

BPM allows for having the right data and informatiavailable when it is needed. If BPM is
oriented towards product development, the conceptlled Product Lifecycle Management
(PLM). Using this approach makes development cdiabl® and manageable [18]. The PLM
concept is discussed in the following section.

2.2 Product Lifecycle Management (PLM)
All processes that are considered for problem swlupurpose are covered by Product

Lifecycle Management (PLM) throughout this entiregis. Therefore, PLM is introduced
and classified within business process environment.

Product Lifecycle Management

i Servicel =
Product 1 Product n :

%

. —> Service 2 =
N

= Service3 =

Material Management

s &

Portal
EAI

Production

uman Resource Management
Workflow Management

Accounting

%

¥

i—» Servicem =

E[ise Resource Management

Ve

Business Process Engine RS ;

Enterp

i— Ext. Service =—

Figure 8: Product Lifecycle Management and BusinesBrocess Platforms

The Product Lifecyclein general spans from the first product idea, tgeent and
production, sales and maintenance, until phaseamdirecycling of the product. This process
model mechanism is illustrated using a matrix d$tmec (Figure 8) involving several
departments, which need different types of inforama{18]. These types are, e.g., Sales,
Production, or Accounting on one hand (horizontadwas); on the other hand, products 1...n
to be developed (vertical arrows) take use of thpyeeess domains. Workflow management,
which coordinates interfaces between products ar@tegs domains, and Enterprise-
Application Integration (EAI) are controlled by tBeisiness Process Engine — as the core of

16

2 Related Work

PLM. Sourcing is done by Human Resources deparimdrith make sure that appropriate
people are available for activities to be done.

PLM is consequently a comprehensive, systematit,cantrolled concept for managing and
developing products and their related informatidntlee whole Product Lifecycle[123].
Following the definition of Saaksvuori the concépikdention is to “control and steer the
process of creating, handling, distributing, antbrding product- relevant information.”[116].
This relevant information is basically a compilatiof business rules, methods, processes,
guidelines, and instructions. The concept providasoverview of all business relevant
processes, their interrelationships, and furtheengres instructions how to comprehensively
fulfill the requirements of the desired product frsuccessful contribution to the desired
market. Although it is a significant success fat¢tothe PLM under IT control, PLM does not
refer to any individual software application or imad, but it is a wide totality [116].

A product lifecycle is highly individualistic ang/gically tailor- made to each organization.
This means that every product lifecycle encompassesar process steps or phases, but the
concrete process instance differs from each orgHoiz The creation and respective
implementation of a PLM framework can falil if infafent structures of the framework are
in place, which makes processes hardly manageablle@ntrollable. The following section
shows the PLM design and argues the benefits aMafRamework [133].

2.2.1 PLM Design

A typical PLM landscape is divided in three diffeteareas that contain different types of
processes. Figure 9 depicts such a framework anceatrates on functions, not on products
as shown in Figure 8. Three main process typedistiaguished:

» Core processes that are directly interrelated pritiducts and its development
* Management processes, which control the core pseses
» Support processes, that assist the core processag dxecution

Assignment of process types depends heavily onevatlded to the entire business. Core
processes encompass value add processes, whictahaared-to-end character. This means
that those processes range from stakeholders, whiehnput for generating the first product
idea, to those customers the final product is smld

Management process control those core processesdswhe defined strategy, e.g., Strategic
Planning, if other markets with other product reguients need to be penetrated.

The third type is support processes, which supphkncere processes during execution.
Human Resources (HR) department, for instance, astgppevelopment departments with
identification of demands and hiring of additioeahployees with special knowledge for the
development of future products [18].

The processes per process type in Figure 9 arenrert appropriate order required by the
product lifecycle. This would not make sense oB tavel, because interaction paths are only
reasonable if they are associated with concreteitaes$ or action and corresponding artifacts
or output respectively. Moreover, a comprehensivendgew of all defined (sub-) processes
should have been given.

17

2.2 Product Lifecycle Management (PLM)

Management Processes

trategic planning Budgeting & Operational R'Sk. e Business Process
. : compliance
& Implementation Controlling Management Management
management

Research & \ \ \ Customer

Development / el / Logistics Service

Marketing & Financial
Procurement)
Sales Services

Support Processes

Human Finance & Communlcqtlon & Facility
Information
Resources Legal Management
Management

Figure 9: Product Lifecycle Management (PLM) Framevork

Saaksvuori and Immonen [116] illustrate their prdifecycle in Figure 10. This graphic
does also not consider any order of processes @ivtias. Moreover, it illustrates the wide
totality of varying functions to support all proseground the product lifecycle. Additionally,
indicated by blues arrows, it is shown that the AkMot a closed and isolated system, but it
interacts with suppliers, service partners, an@esfly with customers.

Project
management

Part
manufacturing

Sub-contracting

Design
After sales and
Senvi engineering
ervice
partners Partners
Sourcing Sal d
and 3 eks ?n
procurement garketing
Suppliers Customers

Manufacturing

Figure 10: Product Lifecycle including interfaces

18

2 Related Work

2.2.2 Benefits of PLM

Such a PLM framework gains many advantages if ddfinn a supportive way for
development organizations.

Generally, managers think that a structured apprasing PLM comes with significant
business benefits, which makes PLM as a key lewemeet strategic goals. Figure 11
illustrates that 71% of the interviewed managelid $a use PLM as a key lever for the
reduction of “Time to Market”, which is prior to daction of development cost (69%), the
increase in product quality (59%), and the improgetof innovation (47%).

[%] of interviewed managers who see PLM as the key lever to
achive the strategic goals

Reduce "Time to Market" : _ 71%
Reduce product development cost | T 9%
Increase product quality | T oY
Improve Innovation [47%
0% 2(;% 4(;% 6(;% 80%

Figure 11: Strategic Goals of Managers interviewed

The dependencies of BPM and PLM get visible by cammg Figure 11 to Figure 7 in terms
of results within the selection of criteria as waslthe voting for each criterion.

However, the quantitative calculation of a PLM ogpicin terms of return of investment
(ROI) is still a challenging topic, which is heagvidiscussed among experts. Actually, there is
no quantified standard answer to this questionabse every PLM is differently defined and
executed in organizations. Following Arnold et [&] a rule of thumb is that by having a
structured PLM in place one (1) Euro effort in bitgng save more than 1.000 EURO in
subsequent development phases. This is only a wewgh estimation from industry
experience that might not always be applicable.e@aly, the benefits of course increase if
more effort is taken in early development phaseswévVer, this is no absolute linear
relationship, which means that effect of benefitslater phases” decreases the more budget
any organization is spending in early developmdmsps. Taking budget constraints into
consideration a development environment has todimdmpromise on how to distribute the
budget between early and late development phagget &n overall benefit.

However, quantified benefits can only be measufetiare is defined quantified baseline
before a process improvement. This makes it mgrebgible to compare process indicators,
e.g., “lead time” before and after improvements.

This means, in turn, that it is rather reasonabl@rbvide some aspects that are typically
nominated when it comes to estimating the ROI diPThese aspects are either estimations
or results from improvement projects conductechose organizations that have PLM already
in place and have optimized their specific PLM. échet al. state that the following success

19

2.3 Product Development Process (PDP)

factors, which influence each other, are improvgdntroducing PLM [5]: Lead time, Cost,
and Quality.

However, the improvement of these success factsalts in several additional business
benefits. Table 1 shows some of these businesariarithat are positively influenced by
improving the ‘influencing factors’ [38]. For instee, if lead time and cost are reduced, the
business benefit “time to market” is also posiyvelfluenced, and, therefore, also reduced.

If processes are able to contribute to influendagjors, the business success factors are also
improved.

Table 1: How Success Factors are influenced

Success Factors
Lead Time Cost Quality
(Time to Market)

Product and process complexity

better controllable M Qr [zr

Higher competitiveness [zr [Z [Z
= Reduction of prototyping cost [zr
c
(‘D . .

Provision of framework for
>
Q. further product and process [Zf [zr [Z
@ optimization
- - .
o Speed of information exchange [z
g
o Reduction of wastages Qr

Savings through re-use of

original data [z @

Complete integration of

engineering workflows [zr [Z

2.3 Product Development Process (PDP)

A major goal of PLM is to support consistently tReoduct Development Proce$BDP)
using methods, models, and tools [123]. The resyithallenges and benefits are described
in the subsequent sections.

. Product Process . . .

Production
Product Development Development

Product Creation

Product Evolution

Figure 12: Relation between 'Product Development*Product Creation’, ‘Production development’ [42]

20

2 Related Work

The PDP is a part of the PLM und encompasses tisaties and processes that are directly
connected with development and product creations Tifected processes span from
requirements until process planning for productibmturn this means that processes like
‘Production’, ‘Commissioning and Operations’, anBhase out’ / ‘Recycling’ are not
considered. This is also depicted in Figure 12.

PDP results in a product, which consists of alldpion- and product documentation,

feasibility studies, product specifications, anddels and draft documentation needed to
specify production means [42], [76].

Figure 13 shows a concrete product developmenegcychich describes a manufacturing-
oriented PDP, since process planning is includedge B its nature, a purely software-

oriented PDP would exclude process planning, whicin this context, typically needed for

manufacturing. Software development does not irmare a classical production process like
an assembly line. However, if, in turn, organizasiconsider institutionalizing processes for
after- sales support to delivery software upgragagdie packages, planning and definition of
a respective distribution process are essential.

N\ ’ 3 -

STHL Product Design Product Development b A)

VO P),,———“_
> d !’

Digital Master

ey
P

$

MRO Planning :z’,t’“z;"'&%\ '@
2 ;
;’ } T/z'!\,\‘
Technical Tae® SCM Planning
Documentation Process Planning

Figure 13: Phases of Product Development ProcessiP) [42]

2.3.1 Characteristics of PDP

Due to its nature, PDPs have some special chaistaterthat make them somewhat different
to other organizational processes such as Salesourement process [76].

Non- deterministic approach

Development processes are, due to their naturegdetetministic, i.e., product development
always comes along with a specific portion of inmiian and creativity that might change the
original planned direction to be taken. The reason this phenomenon is that at the
beginning of product development, the specific kisolge for the final product is not yet

available. This makes reliable planning of whatfthal result will look like very challenging,

21

2.3 Product Development Process (PDP)

which means, that a typical development project, @eeds some more project plan updates
during its lifetime than other project plans, eigstallation projects.

Iterative development

Iterations and “jumping back” to former developmseteps are also unique characteristics of
a development process. This is often necessargubecadequate quality requirements are
not fulfilled after the first iteration.

Significant creative portion

Development processes deal with the fact that dungethas to be created. This makes a
significant portion of creativity during processeextion necessary in order to meet any
innovative requirement. Realization of attractived ainnovative products is crucial for
organizations to stay competitive in their businesdditionally, creativity depends on the
capabilities and knowledge of individuals that utides the non- deterministic approach.

Standardization

Highly innovative products require adequate proegsbhat give developers the freedom to
drive product development creatively, e.g., sofavar hardware products. This, in turn,
makes a general standardization almost impossibis. means that development processes
cannot be standardized and, therefore, need afisagrii portion or customizing and
adaptation to a specific organization. Best exanplthe Rational Unified Process (RUP)
from IBM. This iterative development process modeitually comes with all aspects
necessary for development. Nevertheless, the pooesdel needs to be customized
(“Tailoring” - See chapter 1.4) to be usable for a concrete @ajson.

Distribution of processes

The increasing dispersion is also a typical charatic of development processes. Other
processes like accounting are, in the meantime,salbject to outsourcing and dispersion, but
not to that degree development processes are.elsen for this trend towards distribution is
manifold, e.g., increasing cost pressure, spedéeelopment knowledge, enforcement to
penetrate additional market etc. This special tapdiscussed later in detail in chapter 2.5.

2.3.2 Challenges of PDP

PDP faced enormous challenges during the last dedaniong others, several reasons are
responsible for this trend [116]:

» Growing competition and tighter budgets

* Globalization of business

» Shortening of delivery times

» Shortening of product development cycles

» Tightening of quality requirements / legislation

On one hand, product lifecycle gets shorter; onotiwer hand, product complexity increases
exponentially. Figure 14 illustrates this phenomensing the trend from the automobile
industry. The number of vehicle derivates sold €ases at an increasing variety of derivates
produced. One reason for this trend is that autdenolanufacturers address country-specific
and culture-specific features and customer preém®nHandling of higher product variety
results in a much higher (internal) process comiplex

22

2 Related Work

I
Complexity of Processes

???
iR aEEREramaay LLET T 98
LT

".......

Alternative Drive

Numbers of vatiante Hybrid Vehicled|
manufactured i L Pickup 4
é’ﬁ'Rp.ad Off-Roady
SUV e, | Suv 2
Roadster "'~..Roadﬁer
MPV v
Convertable Convertable L Convéftq?le
Hatchback Hatchback «|" Hatchback,
Estate Car Estate Car Esteﬁezeﬁ Estate Car
Compact Vehicle| Compact Vehicle| Conbact Vehicle| Compact Vehicle
Coupe Coupe Coups = 7 Coupe Coupe
Sports Car Sports Car_ - - Sﬁegd Car Sports Car Sports Car
LIMousing, | = =MmOUShe Limousine Limousine Limousine
- 60-69 70-79 80-89 90-99 > 2000

Figure 14: Trends of product strategic in the autorobile industry [42]

Furthermore, global business environment makenciteasingly difficult to survive in the
development business. In order to address the roes® need with increasing accuracy,
organizations are enforced to provide the markeh \wmore product variants. This causes
additional pressure on processes, especially t@vardcess platforms and product line
management [106]. The defined processes are faocbd optimized in order to work more
efficiently.

Moreover, organizations have to handle the fadt itideed products get continuously more
complex, but customers have been also given modenaore opportunities to influence
products’ features and configuration, which is ssegey to be still attractive for customers.

Organizations are challenged by strategic adapimtihat are necessary to successfully
compete in a local, national, and even an intesnati market. A survey conducted by

Accenture [36] in 2008 asked renowned European rfjamizations about their upcoming

changes and challenges within in the next five yed@he result is depicted in Figure 15.

Amazingly, about 90% of the interviewed organizasicmeed to align their R&D strategy

globally. 85% want to improve their innovation chpigies, and 72% are challenged by

establishing engineering collaborations. This #fiex clear trend towards globalizations and
collaborations.

23

2.4 Software Development Models and Modeling

Challenges of european IT organizaitons within the next 5 years
(conducted in 2008)

Establish Global R&D Strategy

Engineering Collaboration

Reduction of Product(data) Complexity

Challenges

Miscellaneous
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Answers (%)

Figure 15: Challenges of European IT organizationsvithin the next five years

2.4 Software Development Models and Modeling

2.4.1 Diagrams and Connectors

Software Models are often illustrated by using daags. In general, a diagram is a two/three
dimensional representation that shows informatioa geometric way. There is an enormous
amount of different diagram types available. Badimgram types encompass graph-based
diagrams (e.g. tree diagram, network diagram, \Veiagram, or flow chart), chart diagrams
(e.g. histogram, bar chart), and others (e.g. tdieensional diagram). For an overview of
diagram types please refer to [146].

State diagram is often used in conjunction withwflcharts (graph-based diagrams). Figure 16
gives a differentiation of these terms. Whereasstiaége machine is the performed respond
action to an explicit event, the flow chart does meed explicit events, but rather transitions
from one node to the subsequent node [117].

(a)

------------- E1 / action1(); @B

Figure 16: Comparison Sate Diagram (a) and Flow Cha(b)

24

2 Related Work

State diagrams in UML are the basis for UML acyidtagrams, which are primarily used for
this dissertation.

Connectors are a basic element for modeling ofrdiag or charts. Referring to Figure 16,
the connectors are ‘edges’ between various stat®sof nodes (=b). In computer science, a
connector is the connection, i.e., pointer or & liretween any data structure. Referring to
Figure 21, the connector is represented by thetidearc of a petri net.

In informatics, especially processor programmirg dlefinition of connector is a so-called
(bit-wise) composition operatorThe major operators that are relevant for théselitation are
the bitwise operators XOR, OR, and AND, which amlwnown as primitive actions that
can be directly used by a computer processor [Il& work takes advantage from these
operators by accurately assigning responsibiliteespecific tasks within the role model
provided. The basic definitions encompass [17]:

+ XOR - takes two bit patterns of equal length and perfothe logical XOR operation
on each pair of corresponding bits. The resultacheposition is 1 if the two bits are
different, and 0 if they are the same.

+ OR - takes two bit patterns of equal length, and poed another one of the same
length by matching up corresponding bits and perfieg the logical inclusive OR
operation on each pair of corresponding bits.

- AND - takes two binary representations of equal leagith performs the logical AND
operation on each pair of corresponding bits. kthgaair, the result is 1 if the first bit
is 1 AND the second bit is 1. Otherwise, the reisult.

2.4.2 Process (Meta-) Modeling

Process modeling within development organizatioalso(known as Business Process
Modeling) is the activity of illustrating and regenting processes of an organization. This
visualization follows the purpose to get bettergess support in terms of definition, control,

and adherence by users. Additionally, processesaitee right “shape” to be analyzed and

improved, due to process structure already giveocd3s modeling is mainly challenged by

connecting several processes of the same natuethrgio one abstract process, which can
be applied in as many cases as possible in re@higreby, a process Meta model may consist
of several abstraction levels like illustrated igu¥e 17 [32], [100].

Process Meta-Meta Models (MO-level)

The Object Management Group (OMG) has defined altorer modeling architecture called
Meta Object Facility (MOB"), which originated from UML [24]. The MO¥ provides a
Meta-Meta model on the top level, also called Melan Figure 17. From this level Meta
models are derived [100].

Process Meta Models (M1-level)

Process Meta modeling is one type of Meta-Meta niaglewhich is especially used in
software and system engineering. There are sewee#ltknown Process Meta models
assigned to M1-level in Figure 17. OMG has defittedlUML Meta model.

Furthermore, the OMG has also defined the SoftwRrecess Engineering Metamodel
(SPEM). SPEM defines and models software developprecesses and its components [79].

25

2.4 Software Development Models and Modeling

The basis of SPEM is a subset of UML Meta modallteg) in a process description that was
provided especially to software development inqustr

Another Meta model that has been derived from UMetdMmodel is British Ministry of

Defense Architecture Framework (MODAF). The MODAFetd Model extended the UML
Meta model 2.1 by creating a UML profile resultimyan architecture framework, which
defines a standardized way of conducting Entergkisaitecture, originally developed by the
UK Ministry of Defence [96].

Class

N
P 7 K N
«instanceOf» «inSta\]CSOf» > _ «instanceOf»
s \ S

7 \ =~ -
7 \ ~
Attributes Class_ Instance
77

/
Ly P 7 / 7
«instanceof»\ N «instanceOf» ~ «instanceof»/ 7 «instanceof»/ /

s

o 7
X = P 7
/
7/
/ Video

\
28
Video \ «snapshot»
+title = "Casablanca"(String9), +title = "Casablanca’(String)
N
\ «instanceOf»

Figure 17: Four Layer Architecture of the Meta-Object Facility (MOF)

Process Models (M2-level)

Process models in (software) engineering are aarkéd sequence of activities that express
an organizational development strategy and alloemtho conduct evolution [133]. These
models are derived from Meta models, which would/delevel in Figure 17 referring to the
MOF framework.

Process Instances (M3-level)
The M3-level, which is the lowest level in OMG's NE&' provides all data and objects of
reality for the layers above.

2.4.3 Software Process Modeling Techniques
Techniques to model business process such asothecfiart, functional flow block diagram,
control flow diagram, Gantt chart, or PERT diagraave emerged since the beginning of the

20th century. The most often used business modetiethods are Event-driven Process
Chains (EPC) and Business Process Modeling Not@8&hMN). Software engineering takes

26

2 Related Work

advantages from Unified Modeling Language (UML).thdlugh there are many other
modeling techniques, e.g., Cognition enhanced IMhtlanguage Information Analysis
Method (CogNIAM), Extended Business Modeling LangeigxBML), ICAM DEFinition
(IDEFO) [140], these are commonly used standardsnwih comes to process or software
modeling. The three methods are shortly introducete following.

BPMN’s objective is to support business process atiing resulting in a business process
diagram that is intuitive to users even in a comlecess environment. Figure 18 depicts an
example of a chart using BPMN.

;/,__\ Check status of o s Send current
working group b VI Yes issue list
Working

Working group
92‘;“9 still alctive?
active

Mo H

Issue list

Figure 18: Example of a Business Process Modelingpbhtion chart

UML is a general-purpose modeling language andhis pre-dominant language for

visualization (object-oriented) software enginegrand modeling. This technique supports
specification, construction, and documentation speeially software intensive systems.
However, the variety of graphic notation techniquaso allows for software process
modeling (e.g. by using UML activity diagrams), hase it combines techniques of data
modeling (e.g. entity relationship diagrams), bass modeling (work flows), object

modeling, and component modeling. The variety oflUdfagram is illustrated in a collage in

Figure 19 [100].

These are divided in

e Structured Diagrams, e.g. class diagrams, compahagtams
* Behavior Diagrams, e.g. activity diagram, use chagram, UML state machine
* Interaction Diagrams, e.g. sequence diagram, tirdiagram

27

2.4 Software Development Models and Modeling

- e —

Figure 19: A collage of UML diagrams

C =

Adjuster
—

Organized View
Data View Control View Functional View
Subscriber Cut Check
——r
—
\
Claim
—
—

Figure 20: The four views of an Event-driven ProcesChain (EPC)

Event-driven Process Chain (EPC) is a widely usgx tof flowchart used for business
process modeling and process improvement. It isiléipte-view approach that is able to link
the control view to roles and to entities in thepoyate data view and functional view, which

28

2 Related Work

is depicted in Figure 20. EPCs are the preferredetitng technique in SAP/RZind ARIS
[133], [58].

Petri Nets are a mathematical modeling languagedecribing distributed systems that were
invented in August 1939 by Carl Adam for the pusogdescribing chemical processes [53].
A petri net also offers a graphical notation, whmnsists ofplaces (state elements or p-
elements)fransitions (transition elements, t-elements) aticected arcs The arcs connect
places and transitions in a way that they run fplates to transitions and vice versa. Places
may contain a natural number of tokens, which @#ilduted over all places of the net. This
so-calledmarking enables the transitions to fire or transform aflut tokens (from input
places) to the output places through the directesl &igure 21 shows a petri net with basic t-
and p-elements, directed arcs, and tokens [40].

P2

T1 T2
P1 P4

O—1K e O,

Figure 21: Example of a Petri Net

The principle of directed arcs or directed graphapplied for the classic form of a state
diagram, which is a finite state machine. A stasgiam is the graphical representation of a
finite state machine. This tool is used especiallycomputer science to describe system
behaviors. Thereby, the system needs to be setitapawinite number of states. There are
numerous types of state machines, e.g., determsirfisite state machine (DFA), non-
deterministic finite state machine (NFA), genemiznon- deterministic finite state machine
(GNFA), or Moore machine. For more information date machines, please refer to [148].
Alternatively, state machines can be representestate Transition Tables [117].

2.4.4 Software Development Models

Each process model consists of several basic etenibat are necessary to be able to
describe any desired process. These core elenrents a

» Activities, sub-processes, and activity chains
e Input and Output parameter

e Actors for activities

« Objects (data, artifacts)

e Events and messages

e Branching and merging

® System Analysis and Program Development (SAP)Idpireg an Entrprise Resource Planning System

29

2.4 Software Development Models and Modeling

» Checks and decisions
» Interfaces to other/external processes

Activities are connected via relationships to ativag structure or flow. These activities are
performed by roles and responsibilities, meanirggeimployees of an organization. They are
supported by additional resources like machinescamputers (IT-infrastructure). Each
activity is executed by applying a defined methetich takes information or knowledge and
precedes it respectively (artifacts). Branching ematging are methods for parallelization in
terms of activity execution [76].

One of the first process models used for softwareebpment was the Waterfall model

(Figure 22). This sequential design process waginaily a process model for hardware

development and has been adapted for software esrgng due to the lack of model at the

beginning of software engineering. The model cdaase& numerous development steps
starting from requirement engineering down to openaand maintenance phase, respectively
[112].

System
Requirements

: Software

Requirements V\
: Analysis \
: Program

T \

Operations

Figure 22: Waterfall process model (incl. fallbackoop)

A further development of the Waterfall model is ¥anodel [21]. A major characteristic is
that each development step on the left arm of ¥ecomes along with an appropriate
counterpart test activity on the right arm. The onajifference to the waterfall model is that
test phases are defined as succession of develo@etenties on the right V-arm (Figure 23).

The V-model XT® - as the latest revision - is omaraple of a comprehensive process model
providing as hands-on support for product develagmd&he V-model XT® is the
international acknowledged standard developmenteiném conducting IT projects [79].
This model is actually a so-called procedural mpsieice it provides very supportive hands-
on descriptions on how to run a software projectoider to define those non-mandatory
process model elements necessary for a concregecprdailoring € See chapter 1.4) is
applied.

30

2 Related Work

Time

System Requirement
Analysis

AN

System Architecture

AN

System Design

N

Software Architecture

Detailing

Acceptance and
Utilization

/

System Integration

/

Integration Test

/

Unit Test

\/

Software Design

Figure 23: V-Model

The V-model has been also the basis for the W-maslal further extension [134]. Compared
to the V-model, W-model defines the test activiteseady in parallel to development

activities Figure 24.

. Start Testing Acceptance Debugging &
Requirements activities Test Changing
S Planning System © Debugging &
el System Test Test Changing
Architectural Planning Integration Debugging &
Design Integr. Test Test Changing
Detailed Planning L Unit Debugging &
Design Unit Test Test Changing
Code

Figure 24: W-model

31

2.4 Software Development Models and Modeling

A further type of process model is the Spiral moddle Spiral model combines the idea of
iterative development (prototyping) with the sys&tity controlled aspects of the Waterfall
model. The Spiral model also explicitly includeskrimanagement within development. As
depicted in Figure 25 the product to be develogag@fined every iteration of the spiral. This
allows for incremental releases of the product @acé around the spiral [20].

4 Cumulative cost

9 Determine /——‘» Progress 9 Identify and

objectives resolve risks

Operational
prototype

Review

Requirements
plan Prototype 1 Prototype 2

Concept of | Concept of Requirements
operation | requirements

Development | Verification &
plan | validation

Draft

Detailed
design

Code

Verification &
validation

Test plan Integration

Implementation

@ Plan the next

Development
iteration Release ©

and test

Figure 25: Spiral model

The Rational Unified Process (RUP) is another iiteea and incremental software
development process model [53]. RUP is a speaifiglementation of the Unified Process
that uses the UML as description language (Fig6je 2

Inception Elaboration Construction Transition

11 El E2 C1 c2 C3 C4 Tl T2

Business
modeling

Requirements

[[
Analysis & | | |
Design

Implementation

s ——_
et | et | i |

Deployment

Time >

Figure 26: Rational Unified Process (RUP)

32

2 Related Work

Specific characteristic encompasses not a singterete prescriptive process, but rather an
adaptable process framework, also intended to bered (> See chapter 1.4) by the
development organizations and software project seaBusiness value is delivered
incrementally in time-boxed cross-discipline itevas [79]. Figure 26 gives a short sketch on
efforts that typically occur in various iteratiohgses.

Agile Software Development basically consists ofcauple of software development
methodologies origin form iterative and incremesiaftware development. It is based on the
Agile Manifestd in which this term was first introduced in 2005]1

Daily Scrum
meeting

24 hours

Product backlog

Potentially
shippable
product

Sprint f
increment

backlog

=

Figure 27: Overview of SCRUM in agile development

Software development methods encompass besidesso8wum [125], Crystal Clear,
Extreme Programming, Adaptive Software DevelopmErgture Driven Development, and
Dynamic Systems Development Method. Thereby, SCRUM the central project
management method used in Agile Development (Figjd)e

The Capability Maturity Model Integration (CMMI®)Iso counts to process models as a
guasi-standard [133]. CMMI is a collection of bgstactices that has been derived from
industry, government, and scientists. Currentlydlage three constellations available:

1. Product and service development — CMMI for Develept(CMMI-DEV),

2. Service establishment, management, and delivery MMCfor Services (CMMI-
SVvC), and

3. Product and service acquisition — CMMI for Acquit (CMMI-ACQ).

CMMI may guide development organization on one hdmdugh process development and
improvement. On the other hand, it supports orgdimas appraising its processes and
developing process maturity. This is done by medmsaturity levels (Figure 28).

" http://agilemanifesto.org/

33

2.5 Global Product Development and Engineering

Characteristics of the Maturity Levels

Focus on quantitative process
improvement

Level 5
Optimizing

Level 4 Process measured and
Quantitatively controlled
Managed

Process characterized for organization

and is proactive
(Projects tailor their process for organization's standard)

Level 3
Defined

Process characterized for projects and

Level 2 is oft i
|-> Managed is often reactive

Level 1 Process unpredictable & amorphous,
Initial poorly controlled and reactive

Figure 28: Maturity levels of CMMI

Based on defined process models, concrete instarfcpocesses are derived that can be
executed during project run. This level of a prece®del is defined in the M2 layer in the

MOF framework as introduced in Figure 17. The ceteiprocess instantiation on this level

is the consolidated description of actions andvais that result in artifacts created by using
defined methods (Objects of Reality, M3 layer iglfe 17).

Further process improvement modes are describeddefaed in standards 1ISO 9000 [72]
and ISO/IEC 15504 Software Process Improvement @ktyeDetermination (SPICE) [71].

2.5 Global Product Development and Engineering

The phenomenon of globalization goes back to theerdeenth century when so-called
“multi-national companies” appeared, which operaitednultiple countries. These global
acting organizations play an important role in teraf trading, like the first multinational
organization "The Dutch East Indies Company”, faethth 1602.

A major trend towards globalization started witfirst wave in the nineteenth century. In this
time, laissez-faire economic theory occurred arfdreed nations to reduce or remove tariffs
that limited the movement of goods. Additionallgetacceptance of the gold standard in the
second half of the nineteenth century led to méwbaj- oriented activities.

The second wave of globalization began near the adnthe Second World War with a
meeting in New Hampshire in 1944 that led to thenftation of The World Bank, The
International Monetary Fund.

The computer industry became also an essential gbamultinational business, since the
computer itself attracted many industry organizajonot only from business machines,
electronics, defense industry, but also includegartant entrepreneurial start-ups. These
were among others: General Electric (formed in 1888 entered the computer industry in
the 1950s), IBM (consolidated in the tabulatingibess in 1911), Hewlett Packard (formed

34

2 Related Work

in 1939 as an instrument maker and entered the wmgpindustry in the 1960s), EDS
(formed in 1962 to serve large users of computdvisdrosoft (formed in 1975 to provide
products in the microcomputer software industry)d @ell (formed in 1984 to provide
microcomputer hardware).

The Offshoring business model had been startedhen 1960s in the semiconductor
manufacturing. U.S. companies, also begun in th&049 began to move to move

manufacturing activities such as labor-intensivig @ssembly to low-wage countries in East
Asia, including Singapore or Hong Kong. Europeampganies followed later. Amazingly, by

end of the 1980s, East Asia had the capacity twigeocircuit boards and electronics

products to the entire world. Software and IT sssisector started the Offshoring wave in
the early 1980s.

In the 1990s India, which was among the early etdran the Offshoring business, began
with so-call “body-shopping”. This was the proce$sending trained programmers to work
for a few months in another country on the clianhs premises. This was followed by a
blended strategy in which some of the work was domehe client’s site and some at the
vendor’s site in India.

In the last five to ten years, facilities even bed¢a carry out IT-enabled business processes
such as accounting. More recently, Indian firmsenbggun to move up the value chain to do
IT-enabled knowledge processing such as readingyX;rconducting patient analyses, and
carrying out IT research and advanced developni®atrces: [1], [6], [141]).

Although it is been thirty years that companiestayimg to take development advantages for
this “networking trend”. This means that developmeindesired (sub-) products takes place
in those sites that fit best into overall organadl strategy, e.g., low- cost countries.
Therefore, it does not matter where people witpaesve key knowledge come from as long
as they are able to get “online”. Serious develanpeocess activities on a global basis,
however, started within the last decade. For gémspects and research, please consider [63],
[86], [94], [29].

These days Research and Development (R&D) expesead¢remendous trend to distributed
and global development. Going “global” is a populasiness model and still accelerates in
many development organizations around the globezzBaiords like ‘Globalization’ or
‘Internationalization’ are often used by top marragéo emphasize current and future
business trends and strategy.

But why are globalization and cooperation with fgre organizations so interesting for
development organizations?

In the subsequent section, globalization is disedi$®m various points of views.

2.5.1 Companies going abroad

As already highlighted in the previous section, bglzations of especially software
development started in the 1980s. This new trend @vearacterized by prior technology-
oriented companies that tried to boost their intigeacapabilities by setting up globally
dispersed team and building globally R&D networkbe wave of globalization lasts until
today.

35

2.5 Global Product Development and Engineering

Company Trends: International Activities
(Changes between 1990 and 2002 in %)
Source: Handbook Global Production

1990 2002

59,9
Portion of
employees
abroad

Portion of
assets
abroad

Portion of
Revenue

generated
abroad

Figure 29: International Activities of Companies [136]

This means that companies located, e.g., in Germawe their business activities more and
more abroad or at least include foreign workfortge itheir specific business processes. This
is shown in Figure 29, which compares number ofleyges, assets, and foreign revenue in
1990 and 2002. As illustrated, the workforce arsktssabroad grew by 20%. The portion of
revenue organizations achieved abroad increase8l3%. These numbers make clear that
international business is apparently importancfimpanies in Germany.

Internationalization concerns especially outsogdcattivities of several business domains.
Figure 30 shows offshore penetration of five défersectors, namely R&D, Engineering, IT,
Finance, and Human resources. As one can see, 4Tbhafar the highest off-shoring
penetration. However, the major source of IT, whishR&D and Engineering have the
steepest growth rate of 38% and 50%. Thereforestdeedily remaining assumption that only
IT service and help desks are subject to off-sigocannot be confirmed anymore.

36

2 Related Work

Offshore penetration

80+

70 (Growth rate
2006: 38% ||

601 O Auto, Industry, Manufacturing

50+ O Financial Senices
O Consumer, Media
mICT

W Health, Pharma, Bio

g 40fl |

04

204

10+ \

R&D Engineering IT Finance HR

Figure 30: Offshoring and globalization across indstries

Using a concrete example from a company, the tterglobalization is once again depicted
in Figure 31, which describes the job shifting franSiemens perspective[128], [129], [130],
[131], [153]. Siemens is a German technology comhat experiences a shift of employees
working in Germany towards abroad. In 1993, abd@%*§238.000) of the overall 391.000

employees were working in Germany. Ten years |§&803), about 60% (247.000) of the
workforce is employed abroad. Today in 2011, omg third (127.000) Siemens employees
work in Germany alone. This trend signals a movanwnSiemens activities to other

countries than Germany.

Globalization is furthermore indicated by turningand the point of view, i.e., looking at
globalization from a low-cost country's positiong.e India. This country has generated a
significant increase in revenues within softwargjieeering exports in the last ten years.
Figure 32 demonstrates that India’s exports in hd @&oftware engineering have been
increased almost exponentially since 1998. Chisa plays a considerable role in terms of
software and IT services exports. Its Software l@n8ervice exports have not been boosted
like those of India, but China’s revenue increasalso remarkable. This means, in turn, that
organizations in high-cost countries are headingliidia to get software implemented at
lower cost rates.

37

2.5 Global Product Development and Engineering

Job Shifting at Siemens

500.000
450.000 +--------- -
400.000 -~ - P - - o _ o
350.000 + - - - |-- ~ - _ __
300.000 + - |- - |-- L _ __
250.000 + - |-~ - |-- I _ __
200.000 + - |- - |-- I _ __
150.000 + - - - - -] |-- _ __
100.000 + - |- - |-- . _ __

50.000 + - - -B-- ~ - _ _
0 -

o Abroad
@ Germany

Number of Employees

1993 2003 2005 2006 2007 2008 2009 2010 2011

Year

Figure 31: Job Shifting at Siemens AG

Software and IT Services Export (in Billion US$)

O India
@ China

Billion US$

1998 2000 2002 2004 2006 2008 2010

Year

Figure 32: Software Engineering export revenues fnm India and China [79]

2.5.2 Terminology

The term “Global (Product) Development” is usedtebm members from different and
multiple geographic locations participating in athevelopment project 0[118]. Those team
members could be within one country, but they m@kb be dispersed all over the globe.
Thereby, collaborations lead to a valuable netwofkcooperation between customers,
suppliers, and partners [18]. This section firsbvilles some different terminology and
definition on Global Development.

38

2 Related Work

In general there are some major terms relatedftshafring, which are depicted in Figure 33
[98]. The explanation of this terminology requirasdefined perspective. For definition
purposes, it is assumed that the following definisi are seen and shortly explained from a
German company’s perspective, which is “Onshorbfuose” [79], [92].

* Onsite/In-house
Processes and development of products are not givee to any other organizations
(in Germany and abroad). Therefore, they stay onge” or “Onsite” respectively.

* Onshore
Processes or development of products are givendimngestic supplier. If the master
company is German, the onshore supplier is alseren@n organization.

* Nearshore
Processes or development of products are givensigpplier on the same continent.
From the German perspective “Nearshore” would conaeg., Poland.

» Offshore
Processes or development of products are giverstiplier, which is not on the same
continent. From the German perspective “Offshorella concern, e.g., India.

Europe Asia

/ e.g. Germany \/ e.g. Poland \ / e.g. India \

Master Company
; Area

Onshore Nearshore

: (also:
s B coneaic
Home-shore)

/ Own resources / Resources of a collaborative
service partner & its name
| Continent |

Figure 33: Terms and relations concerning off- anan-shoring

The term ‘Offshore’ is the one most often used wkalking about business movements
abroad. Typically, all three defined process typagerational processes, support/service
processes, and core processes according FigufdP@M processes are potentially subject to
off-shoring.

Interestingly, management processes, e.g., ‘Siat®tpnning & Implementation’, are
normally not off-shored. The point is, that by gigithese processes away would mean that
any organization gives the whole business awayghwisi typically not intended.

However, the ‘Off-shore’- models are rather usédulbusiness improvement in terms of cost
reduction etc. The (software) development disceiiiself is rather less positively affected.

39

2.5 Global Product Development and Engineering

This was also stated by Dieter Rombach during heyni$te Speech at the International
Conference on Global Software Engineering (ICGSE)Limerick July, 2009: “A software
development project with two teams in one locai®hard enough to conduct successfully.
Why does anyone think it will be easier by puttt @00 miles in-between?”

This means that geographical dispersed developmpegjéects face enormous challenges
concerning set-up, management, and controllingréfbee, the cost reduction effect has to
over-compensate the additional coordination andneonication effort that a project takes on
by going off-shore.

Furthermore, several authors defined terms to desccross-border development and
engineering activities.

Eigner and Stelzer [42] have defined Cross EnteepEingineering (CEE) that expresses the
collaboration beyond any organizational borderse Triginal term comes from James
Champy, who describes the term X-Engineering (“€46agineering”) as the following:

“The walls between a company, its customers, amdsitppliers — even
between competitors — are coming down. In a worfd free-flowing

information and Products, X-ENGINEERING the coopera reveals a
radical new vision of the Cooperation.” [31]

Champy talks about a multi-dimensional coopera#iod collaboration by either organization
internally or between customers and suppliers [Bhgreby, organizational borders are not
relevant anymore and all disciplines, e.g., sofewaror hardware development, etc. are
supported throughout the whole product developmamicess (PDP). This innovative

engineering approach is depicted in Figure 34.

Accepted by users

Disciplines

multi-
disciplinary

<

...... o
integrated

Figure 34: Multi-dimensional collaboration based onCross Enterprise Engineering

8 International Conference on Global Software Engjiime

40

2 Related Work

Scheer et al. [18] define the term “Collaborativegibeering” and emphasize the importance
of collaboration during development phase. Follaytheir statements this approach gets
more and more necessary, since suppliers are hotelivering single spare parts any longer,
but rather entire system components to the Origiglipment Manufacturer (OEM). But
development of whole system components requirgsalese cooperation with the customer,
which is the OEM. This, in turn, makes adequatecgsees along the value chain
indispensable. Figure 35 illustrates the genera iof collaborative engineering.

Customer Prc_)c_iuct_ Project Status Final Review
Specification
Design draft Deye_lop_ment
finishing

Figure 35: Collaborative Engineering and Project Management

Development Partner

2.5.3 Global Development Processes

Global development is not an approach that happemecthight. This trend emerged in the
course of time with the necessity to reduce codtdavelopment time. The basis for changes
of the PDP depicted in Figure 36 is the PDP in FadLp.

Product Development

Serial
Engineering
(1985 — 1995)

Production

Time to production

Product Development

Production Development

Simultaneous 3

Engineering
(1995 — 2005)

Production Development

L

Time to production

Production

A 4

Cross Enterprise
Engineering
(> 2005)

Time to production Production |

v

PE: Product Development
PP: Product Production

Figure 36: Changes in Product Development Processpg?]

Following the original Serial Engineering approd&DP and process planning for production
is executed sequentially. In order to resist thesgure to reduce ‘time-to-market’, the ‘time-

41

2.5 Global Product Development and Engineering

to-production’ has been shortened over the lasadks: Simultaneous Engineering had a
little overlap of PDP with production planning; tke-called Cross Enterprise Engineering
approach of [42] muddles the two phases almost tmielp and leads to parallelism of
engineering. The parallelism decreases lead timeéhi® price of more complexity, which
additionally comes along with globalism.

2.5.3.1 Motivation for Global Development

Although it is very challenging to setup and lealdbgl development projects, many
development organizations following this path todgaglobal developments (See Chapter
2.5.1). One major reason for expanding developrbestness globally is cost. Wages and
salaries are typically way lower in low-cost coiggr e.g., India or China compared to the
United States of America or Europe. An empiricaldgtof Lamersdorf et al. [86] shows that
cost and access to people are prioritized criterigo global before other factors (See Table
2). For this survey, twelve practitioners from e&ewompanies with essential experiences in
distributed software development in middle or sem@anagement positions have been
interviewed. Participating companies came from mdifferent domains, such as satellite
development, educational software, and softwanaces. All of them were medium-sized or
large with the smallest company having about 90(leyees. Eight out of ten were
headquartered in the U.S., one was based in Euaopegne is located in India.

Table 2: Reasons for Initiating Distributed Developnent

Criterion Prioritizing Weight
Cost 9
Access to people 9
Knowledge of Markets 1
Required by Customer 1
Risk Reduction 1
Mergers and Acquisition 1

Furthermore, the access to a large pool of trapeaple motivates especially development
organizations to setting up distributed projectise Buccess of a research and development
department (R&D) is mainly driven by the innovatipetential of the personnel. However,
the desired competency is usually not always awiailan this country, where it is needed,
which makes it beneficial to set-up distributedjgcts for collaboration [45].

Further motivating factors for conducting projeicislistributed environments are [94], [63].

* Increased productivity: This is possible by doirgyelopment “following the sun” or
to take advantage from hiring highly-educated aamh¢d personnel

* Market proximity: Organizations are able to ‘expldhe proximity to the potential
customer, e.g., more accurate derivation of prodegirements. The look and feel of
a future product is also better adapted and hamadrwith local markets.

42

2 Related Work

» Governmental policies and incentives: some goventsngive incentive to foreign
investors if investments are made in their counthygse countries are even more
attractive for foreign investors.

* Shorter Time-to-market: In some cases Time-to-ntaakel delivery time is shorter
since products are not needed to be transportiu toountry where they are sold.

2.5.3.2 Critical Success Factors of global development pregts

Each development projects’ success depends owmatritactors that are discussed in the
following section. Due to its special characteg tiecessity of fulfilling these success factors
is much higher in distributed and global projecteant in a collocated development
environment. This should not be confused with sseckctors of PLM that have been
discussed in chapter 2.2.2.

Reduce Ambiguity

Ambiguity is still a big issue during developmembjects in conjunction with partners that
are not collocated. Requirement and design spatiics are just put over like “over the
fence” wondering that some parts have been misstatet or misinterpreted by other parties.
Consequently, developers came up with a runninglymio that typically meets the full
requirements, but does not necessarily follow #y@rit” of the specification. This is mainly
due to the fact that organizational processes, g@anant and engineering practices and
methods, different level of experience and know-hawd in general, the culture differs
significantly within the development partner. Inojacts that are set-up in a distributed
environment, it is hardly possible to clarify thesabiguities by just talking to a colleague at
the next door. The partners are very often timéeshiby eight or more hours, which means
that clarifications of problems and questions ardy opossible by indirect ways of
communication, such as e-mail. Direct ways of comications, such as video or telephone
conference, are only feasible, if at all, by excegdhe working limit of one partner. For
example, for conducting a video conference meetith colleagues from Beijing, China
(time shift to Germany + 8:00 hours), either therrGans need to rise very early or the
Chinese need to stay longer in the office.

Maximize Stability

Stabilization in engineering projects is a big sslue to frequent alterations. Requirement
often change during project run, project rolesetehanged, and in the worst case even the
processes are modified. To address these problegtisods like “Agile Development” are
introduced to organizations, which work very wéllthe teams are collocated. Therefore,
stabilization is an essential factor within an eegring project that is set-up globally with
dispersed teams.

Understand Dependencies of Complexity

The increasing complexity of products results ighler complexity and volume of project
tasks. This fact correlates with the dependendi¢isese project tasks. It is very important to
determine the sequence of project tasks and thieirdependencies before project starts. This
reduces potentially idle time of development teamnd increases the chance to develop the
right product the first time. Therefore, the comneation and information sharing need to be
established very accurately and carefully. Theefarmeeting structure must be defined in a
way that all developers get the necessary infoonaby attending only those meetings,
which are relevant for their work items assigned.

43

2.5 Global Product Development and Engineering

Facilitate Coordination

Globally distributed projects need facilitation @fordination to a much higher degree than
projects conducted in one location. Communicatsoweiry often associated with coordination,
but there are many more possibilities to coordinatproject. These are besides others
processes, management practices or product lilétestures. The problem to be solved is to
find a balance between overhead and risk. This m#&t an enormous process framework
reduces risk, but increases the overhead tremelyd@ssilting in high internal process costs.

On the other hand, fully orienting the coordinatiam management practices like

management by objectives makes the overhead cds¢ @iroject going down, but the risk of

failure goes up since the project structure loss=eability, controllability, and repeatability.

Balance Flexibility and Rigidity

Finding an adequate balance between flexibility agidity is a major challenge for globally
distributed development projects. Flexibility of phrticipating teams is necessary, because
each team has different processes, culture, orgoacid with special domain knowledge and
organizational practices. Therefore, the proceamémork should be set-up in a way that
allows for smooth adaptation of all these diffeenm-between the development teams. It is
also advantageous if the processes in a globalpseacompass a little of the “agile spirit”
instead of insisting on absolutely adherence tocgsses. However, projects should not
follow processes that are ad hoc defined and th#iiment is hardly controlled. Since we
have those differences, in cultures and backgroarmhnsequently defined structure is very
important for a successful development project,ciwimeans on one hand that the customer
gets what he really needs. On the other hand,rtjeqd should not run out of cost, but rather
achieve economic success.

Having the characteristics of a PDP and the ctisoacess factors of projects defined (Table
3) a comparison of these categories bears an aoemftict.

Table 3: Conflict Areas between PDP Characteristic& Projects’ Critical Success Factors

Critical Success Factors of global

- Characteristics of PDP
development projects

= Reduce Ambiguity = Non deterministic approach

= Maximize Stability = |terative development

= Understand dependencies of = Significant creativity included
complexity = Standardization

= Facilitate Coordination = Distribution of processes

= Balance flexibility and rigidity

This means, e.g., “Maximize Stability” is in cordretion to “Non-deterministic approach”.
Considering the benefits of PLM in chapter 2.2t2urns out that an effective solution to
overcome this conflict is the definition of orgaaimnal processes and the introduction of
PLM. For instance, if PLM reduces Time-to-market,s implied that that development
procedures and process need to have a certainokisthbility, which is, in turn, critical
success factors of development projects.

44

2 Related Work

2.5.3.3 Challenges to Global Development Processes

Global oriented projects either exceed challengeéand suffer from additional or other
challenges. Studies have shown that a global grepteup takes about 2.5 times longer to
coordinate than a local one. The major reasonthartllowing ones [76], [18], [106], [41]:

Complexity of Project

Due to its nature, globally defined projects arerencomplex than local ones. Since those
projects have many different organizations withioias participants that might never may

have met before. Therefore, the number of intedfaespecially the first-time relationships of

project members increases exponentially. This makesmart and structured approach

absolutely necessary to be able to coordinate ssa@manizational teaming set-up, manage
evolution, and monitor the progress of development.

Different Cultures

Different countries have different cultures, whieiso leads to problems in global
development projects. For instance, in specificntoeis team members are not used to take
part in telephone conferences and rather prefeemail the questions and issues. In case
organizations are not aware of that problem, thisctce waste much time until every
participant has exchanged this information the tvays used to communicating.

Another example concerns the small talk at thervegg of a call. Some cultures find it rude
directly coming to the point without having a Kttalk about something complete different,
e.g., some ‘private’ topics. In turn, it might karfy annoying or even frustrating for the other
party, if their counterparts never come to the pdirectly.

Different development process

Globally dispersed teams that have been just “dsleethfrom different organizations have
typically a different culture in place of how theogduct develops. Each of them has
internalized a certain type of process that is comior them. A global project set-up has to
handle that issue by incorporating all those d#ifertypes of processes and approaches
towards an integrated PDP. This integrated PDR¢essary to have all resources working in
the same directions with on major goal, e.g., commnederstanding of product requirements,
usage of methods that are compatible to each otlenmitment to time schedules of the
project.

Furthermore, as shown in section 2.1 ‘Organizati@wsiness Processes’, an organization
can realize cost reductions by process optimizatiavhich, in turn, increase efficiency

significantly. If organizations move to low-costurtries for further cost reductions, it is
crucial to also optimize the global processes. Thisvents the risk that efficiency

enhancements through, e.g., lower salaries are nendy just using inefficient global

processes.

Varying Knowledge and Infrastructure

One reason why global development projects aresés-the lack of knowledge needed for
development of future products. However, this atkge grows to a tremendous problem
when organizations try to plug in special knowledgem specialized resources from
anywhere in the world into their own organizatiofise reason for this issue is that other
project members also get in touch with the new Kadge and vice versa, which leads to
integration issues immediately. Furthermore, ottesources of different experience and
knowledge in terms of, e.g., methods, tool, or nldehich also coin developed products.

45

2.5 Global Product Development and Engineering

This might influence final integration of sub-pratist The alignment of knowledge means to
spend big effort on training, delegations, or tteaed travelling to bring the experts together.

Logistic Problems

Daily project communication is mainly dependent infrastructure with dispersed teams.
This means that network resources and infrastregtaeds to be planned and set up. If this is
not done very thoroughly, the daily work in glolpabjects runs inefficiently. This is caused
by a very slow network connectivity, which is cogsently overloaded and breaks down
after a while, which automatically leads to unpledirdowntime of the whole project. This
might also concern telephones since telephone reysaalso works with a data line over the
internet (“Voice over IP”).

Communication Issues

It is also quite obvious that in a globally disptsproject set up, communication from
management to the workforce is anticipated to dgberaslowly and with a high portion of
fuzziness. If one imagines that the manager isténtc&.000 miles away from him, a sound
communication strategy is crucial in order to reaslery employee and team member, no
matter where in the world he is actually workingnl this approach guarantees high
transparency in decision-making processes, whidrim makes management again reliable
and accepted in the whole project and company.

2.5.4 Cooperative Development Models

The core of this dissertation is based on the studf Xitong Li et al. [86] who developed
patterns to document and protocol web service caitipn. This work basically deals with
the management and control of messages that argfdreed between entities (i.e. ‘sender’
and ‘receiver’) to realize protocol mediation iretlfield of Service-oriented Architecture
(SoA). The idea of mediator patterns has been neadifor this work insofar that the
mediator realizes the connection points of divessganizational processes. More about
process frameworks and patterns can be found irefa¥ [144].

Meyer B. defined a development model that diffegnificantly from conventional models
[93]. This model creates coarse software architectd the entire software system which is
then divided in sub-projects representing companefta system. These components are
developed by small development teams. Figure 3#&shihat Meyer also aims for a
sequential development process, however, not tomtole system, but only for sub-systems
or components as mentioned before. Those projembtmun simultaneous, i.e., various
project goals are achieved at various points oésini\fter development of a component (sub-
project) a review takes place that identifies thogmponents that are potentially subject to
re-use. These components are provided to the dwdaelopment process. The approach
generates a parallel process or at least one it dverlaps, which, in turn, requires an
intensive amount of coordination and communication.

46

2 Related Work

Feasibility study

Architecture

(draft))
Break down into
Sub-projects
(Cluster) Cluster 1
\
Specification ‘\
\ Cluster n
\
Design \
. 2 Y
Specification
Implementation
N) '
D
o L L esign y
kS Verification and
E Validation Implementation
()
.§. N |
a Generalization Verification and
Validation

Generalization

Figure 37: Cluster model of Meyer B. [93]

Cooperative development in software engineerindh vaitmajor focus on processes is an
essential topic of Altmann and Pomberger [1]. leithvork, they emphasize the importance
of processes and challenges of global project getwith dispersed team. Those challenges

of software projects encompass:

* Increasing complexity

* Non- formalized processes that cannot be automated
* High risk potential

* High documentation effort

* High communication necessity

Due to the importance of processes, they have desdla model for cooperative software
development processes. This model, which is agt@aMeta model, consists of two parts:
the product view and the predominant process viggufe 38). The definition of these views
is based on the studies of Floyd/Zillighoven whsoatlistinguish product and process-

related activities [44].

47

2.5 Global Product Development and Engineering

Process History

Message

Comment

Description_2

Working Plan

Action Item Working Step

Working Area Working Context

Process Model

Configuration
Project Plan

| Document I | Executables I | Prototype I | Library I

Figure 38: Model for cooperative software developnm@ processes

Product-related activitiesfocus on requirement engineering and system dpredat
resulting in the final software product. This sait@ product consists of prototypes,
executable code, and documentation. In their agprdhe product development process can
be divided in different phases that require prersef work results or artifacts respectively.

Process-related activitiesoncern coordination and cooperation of the prodevelopment
process and encompass product administration, tguedsurance, and project coordination,
which is basically project management. For the psepof product administration baselines
for all artifacts are defined. These baselinegef@ences for product status in a collaborative
project. The status are synchronized and usedhénéxt development iteration.

V-Model XT® is another development model a&he standard model of the Federal Republic
of Germany and guideline for planning and conductid development projects [85]. It is
related to this work insofar that it brings in d<arder relationship as a special characteristic
[79]. This relationship enables every customer @amnproject to conclude one or more sub-
contracts with any contractor necessary. This aléov more flexibility of the customer to
get special features that require special knowlaagéemented even on short notice.

48

2 Related Work

Komponentenbasierte Systementwicklung © Entwic klung s strateie Unterauttrag . Unterauftrag

Systern spezifiziert
(komp. Entwicklung)
EAOIE

System entwoarfen
{karnp. Entwic klung)

Ligferung durchgefiihir
(komp. Entwicklung) —APrujektausgeschriebenH Frojekt heauftraot \
LT

Systern integriert
(kornp. Entwic klung)

\ lteration geplant Abnahme erfolgt \?
Frojekirorsc hritt
dberprift ’

Feinentaurf Systemelemerte
abpeschiossen realisiert

Figure 39: lllustration of a sub-order relationship (“Unterauftrag”) in V-Model XT

Furthermore, model aspects in global developmenjepts has been intensively discussed
and evaluated by Prikladnicki. He has defined aabdgpy model in a global collaborative
context. This model captures patterns of evoluiiorthe practice of distributed software
development in internal offshoring projects [106].

In [106] Prikladnicki and Audy have defined a sdt aviteria to define geographically
distributed environments or scenarios, respectivBlgsed on these scenarios, a general
model is defined, which includes several contrimutievel of an organization in a distributed
software environment.

Furthermore, Prikladnicki comes up with a referenemlel for global software engineering
with a detail discussion about factors that enabldtinationals corporations to operate
successfully across geographic and cultural bouesl§t06].

In [86] a multi-criteria based Development Disttilom Model for making decision on global

development projects is illustrated. This modelsdoet only consider cost as a decision
criteria for setting up global projects but takegoi account parameter like workforce
capabilities, innovation potential of different regs, or cultural factors.

Sooraj and Pratap consider coordination aspectpantdem in [133]. They use an inter-sited
coordination index for overcoming coordination amcdmmunication problems using
simulation.

2.6 General Empirical Studies

A major empirical study has been conducted in fieisl of research by A. Avritzer et al. in
the Global Studio Project (GSP) at Siemens CorpoRasearch [7]. This experimental
research project has been set up at six universititn about 30 developers in five countries
and four continents. The core consists of one akteam responsible for important upfront
work, e.g., architecture definition and several ogarteams that were filling in the gaps. The
GSP encompass the following principles:

» Hybrid centralized/distributed management, i.efedént places for execution of
various development domain, e.g., software prosease developed by the central
team; testing is done by a remote team (comparne&i4P)

» lterative development using a two week iteratiodey

49

2.6 General Empirical Studies

* Minimization of cross team communication; this waanaged by the central team

* Formalism of documentation: The project followee tbrinciple that the higher the
distance of sites the more formalism is necessargxecute process domains. For
instance, the Requirement Specification has beee dath less formalism due to the
availability of domain experts in the central tearhis minimizes communication for
requirement clarification. The Test Specificatiblwever, was created by a remote
team and, therefore, needed more abundant docutioenta

Project Management Central Team Development Team(s) Testing Team
t Define Elaborate
Identi .
BEiEss fé/ase Architecture Interfaces and
and Goals and Identify Detailed
\l/ Components Requirements
Identify Domain /
Experts
\lf Implement Define
Form Architecture Components Integration Test
and Requirement
Team
Define High Unit and
Level Component
/ Requirements Test
Form /
Development
and Testing
Teams Execute

Intetgration
Tests

&

Figure 40: GSP Version 3.0 Process

Wichmann describes his personal experience abdshare collaboration in [145]. This

report is from the mechanical engineering indusing related to software engineering. He
provides an activity diagram using the UML that whathe responsibilities of the project
partners at the local site and the offshore siigufeé 41). Wichmann does not describe
typical challenges of a dispersed development projmoreover, he defines criteria that
product sub-products have to meet to be selecteddeelopment offshore. Those criteria
encompass, e.g., low communication effort with etgpedefined requirements of the
component, a very sound cost-benefit-relationshgifshore development of those
components without core competencies requiremeats e

For more experience, reports and in- depth infolonaplease consider [62], [94], [62], [19].

50

2 Related Work

Customer (oca) Pariner (ofishore) Discipline Local Team Offshore Team

Requirements local
Create

specification
and ‘eslcases Offshore specification local
M%i‘r/ke Analysis and Design local

assignment
- Accept Implementation & Test local

oK ——> work
assignment - core modules

assignment
- related modules

Implementation .
&test Implementation & Test offshore

l - based on related

Support

modules
Deliver

PEET < product
of product System test offshore

Accept

delivery Deployment local

Plan Configuration- and change local offshore
re-work management

Environment local

Figure 41: Offshore activities (coarse-grained)

2.7 Cultural Aspects

Collaboration in international context is not omyiven by technical and process aspects.
Often, the culture plays an essential role andd#scivhether or not a project is successful.
Therefore, culture is an essential challenge inbalodevelopment projects, which is
absolutely necessary to be considered. The culfureganizations encompasses the way they
act and behave in daily life and how they reactcertain stimulus from outside.
Organizational leaders are typically not comprehatg aware of the power of any culture
around the world. Culture can be responsible focess or failure of a business.

In order to analyze this phenomenon in the conta@xtusiness negotiation, Hofstede
evaluated 116.000 questionnaires from a multinatidata base at IBM. The data covered 64
countries and up to 53 different cultures worldwithofstede defined five dimensions of
culture and categorized the 53 cultures into tliesensions for validation purposes [62].

Another cultural model with even seven dimensioas weveloped by Trompenaar as a result
of an empirical study. For more details on Trompeisavork please refer to [139].

These cultural evaluations of Hofstede and Trompendescribe tendencies and not
characteristics or even categorizations of indiglduConsequently, a country's scores should
not be interpreted as deterministic.

However, it is very interesting to know upfronbifganizations are willing to collaborate with
other organization from other countries. The leaderd decision makers should be aware of
what dimensions of culture exist and what the taengeor collaborations of any country
prefers. Referring to ‘Power Distance’9 it is, fmistance, crucial to know, whether an

° Power distance is the extent to which the lessgpfuvmembers of organizations and institutionise(lihe
family) accept and expect that power is distributedqually [62]

51

2.8 Communication in Collaborations

individual should talk to a superior or to an indival in order to effectuate anything. For
further in-depth discussions on cultural behavpbease refer to [106], [62], [139].

Culture in the context of global engineering hagmfbeen analyzed by several and various
authors. A great many case studies have been cadincthis field of research.

Boden et al. analyze culture and knowledge managem® illustrate by means of some
realistic cases that knowledge management is arortant bridge between people and
cultures [19].

Casey explores the difference of cultures in a imatibnal organization within a three year
case study where people from Ireland and Malaysieewaking part in projects. He shows
that “improvement of cultures” could have the opfmseffect if done too rapidly [28].

Al-Ani and Redmiles were talking about trust inpssed development team. They come to
the conclusion that trust is rather an issue igdaand diverse development teams. In such
team constellations, trust is higher among authtivé team member, e.g., team leader [12].

Further detailed studies are documented in [586]1]40], [59], [94], [40], [67].

2.8 Communication in Collaborations

Communication is seen as one of the most impoasypects in collaborations with worldwide
distributed teams. This is documented in work fraothors all over the world. The
dependencies of communication and distance have ihtensively discussed by Herbsleb in
[62], [30]. He argues that communication of modifion requests take about 2.5 times longer
in a cross site environment than in a common looafThere is also evidence that colleagues
that are not located same-site feel less ‘teamrikas’ others. This makes it very difficult to
help and assist in times of high workload.

Prikladnicki’s work [106] also considers the ‘teagsr’ factor by exploring the phenomenon
of perceived proximity of team members in collabee projects. This means that even if
teams are physically very close to each other, thght be very far from an individual’s
perception point of view. Therefore, therceived proximityfFigure 42) of team members is
crucial [148]. Quadrants 1 and 4 define a high @esxl proximity. However, the perceived
proximity can also be low, although collaboratiegms are co-located (Number 3).

Serce F.C et al. provide an empirical study witl2 Harticipating students from Panama,
Turkey, United States (U.S.), and United KingdonK}jlbn communication behavior in a
globally-conducted software development project 3]13For this purpose, types of
communication behaviors that occur when studenmgeare engaged in a software
development project are defined and evaluated. Sihdy concludes with the result that
communication correlates with task type, cultured &GPA'°. Those teams with above
average communication behavior were outperformitigero teams. More aspect about
communication in global collaborations can be foun{8].

In the last decade "Chat* or “Instant Messaging”aapreferred communication medium
became more and more important in development aatons. Following [62] each

developer spends at least 75 minutes for commuaic#trough this “modern” media. This
aspect is also discussed in [62].

9 Grade Point Average (GPA)

52

2 Related Work

Further experience on instant messaging in glolodiware development projects are
discussed in [99].

High perceived 4 1
proximity “Far-but-Close”

Low perceived 3 2
proximity “Close-but-Far”

Low physical proximity High physical proximity
(global dispersion) (co-location)

Figure 42: The paradox of perceived proximity

2.9 Process Models and Globalization — tying it all togther

As stated in the previous sections, organizati@we process models and approaches defined
that support development departments during pra&etution. Processes are a necessary
and helpful mean, especially for projects with hagimplexity, i.e., a high number of parties
involved, variety of domains contributing to a @cj, or high number of software lines of
code to be developed for the final product. Typycalthese processes are defined locally
including, at most, all domestic partners.

The trend towards globally distributed developmatges with a couple of additional issues
that organizations have to handle: teams that @persed all over the world hamper
communication in projects and, moreover, miscomigcation and misunderstandings due to
differences in language and culture occur. Adddllyn every organization has its specific
defined processes in place, which are more ordesgrehensively defined. This definition
follows the culture of the respective organizatishjch also depends on the resident country
of a collaborating organization. The more sub-psses of a project are distributed all over
the world, the more communications difficulties.

Changing the process of organizations in orderetbeb fit into a distributed collaborative
project would require the respective organizatiandiure of the supplier to change. However,
this, in turn, negatively influences organizatiopalformance during the project, if resources
have to follow an unaccustomed way of working.

In order to resolve this dilemma, processes nedxb tcapable for global collaborations. This
means that they require well defined and integraextess descriptions from each of the
participating parties. These aspects contributeifse@ntly to the problem definition and to
the solution of this dissertation’s approach.

53

2.9 Process Models and Globalization — tyingdl itcaether

54

3 The Approach from a Bird’s eye view

3 The Approach from a Bird’s eye view

This section provides an overview of the actuabfems and issues that make the subsequent
solution necessary. In addition, the basic solutimmcept is introduced.

As stated before, new trends and desires from ows® enforce organizations to drive
innovation tremendously towards attractive produtlss requires special knowledge, which
is sometimes not available in development deparsnevhich compels those organizations
to investigate the world-wide resources know-howt@nd hire those competencies desired
for the next development project. This opennesadlude employees or even organizations
from all over the world into development projectgaeces organizations to set up global and
distributed processes, since not every needed nasads willing to move. This makes
collaborative and distributed development projespecial in a way that the personnel
working on a distributed project cannot meet easilperson as it is possible in projects that
are run in one location. For this reason, speciatgss set-ups that adequately support such a
distributed environment need to be defined.

3.1 Application of the Process Integration Approach

It is assumed that two or more distributed orgaiona want to run a project together. For the
purpose of better illustration, we consider thregaaizations. These organizations have
organizational processes in place as depictedgar&i43. Thereby, Organizations A and B
have processes defined on “System DevelopmentVel;l@vhereas, Organization C has its
processes defined on “Software Development” — level

Organization A (Master) Organization B (Supplier) Organization C (Supplier)
System Control System Control Software
Requirement Flow Requirement Flow Requirement Control
Specification Specification Specification Flow
\L v \]/ \ 4 \L v
System Design System Design Software Design
\]/ Control \]/ Control \J/

System Design Flow System Design Flow Software Design Control
Specification Specification Specification Flow
\J/ v \J/ A 4 \J/ v

System System Software
Implementation Implementation Implementation
\]/ Control \]/ Control \J/
Implemented Flow Implemented Flow Implemented Control
System System Software Flow
\J/ 4 \J/ A 4 \]/ v
System Test System Test Software Test
System Test System Test Software Test Control
Record Record Record Flow
Control Control
Flow Flow

Figure 43: Initial Processes of Organizations A, Band C

55

3.2 Major Challenges on Process Integration

For the purpose of collaboration, respective precegers and responsible process engineers
(See Chapter 1.4) have firstly to clarify who wile the lead organization of the entire
collaborative project. This is necessary since ldsl organization’s process (in this case
Organization A (Master) in Figure 43) is the onattimtegrates sub-processes or activities of
other organizations. The depicted processes haédltel on the very top of the activity.

3.2 Major Challenges on Process Integration

If there will be a collaboration project betweerotar more parties, the master organization —
as the driver of the project — typically wants tategrate some activities from other

organizations into its own process; thereby, somtévines are done exclusively by one

organization, others in parallel or conjointly. Hower, the integration or the change of
processes always occurs with issues outlined ifolleving.

Proneness to processes

Development organizations typically want to keegirtown processes as far as possible since
the established processes are kind of customiz#tetorganization. Ad hoc process changes,
which might be unavoidable in process-based cotitlmms, would rather evoke uncertainty
and confusedness within the workforce of any ommtion. This reduces the acceptance of
the process and therefore the productivity of tbeetbpment department. The role of the
Master is detailly described in chapter 3.3.3.1.

()

Organization A (Master) Organization B (Supplier)

System Control Control
Requirement Flow Flow
Specification

(System Design vj

\l/ Control

System Design Flow
Specification

System]
Implementation

Control
Flow

\l/ Control Control
Implemented Flow Flow
System

y
(System Test V)
J

System Test
Record

Control Control
Flow Flow

AN 4 AN 4

Figure 44: Integration challenge of semantically dferent processes

56

3 The Approach from a Bird’s eye view

Semantic difference of processes

Each organization has usually their proprietarycpsses defined containing own process
descriptions, artifacts, roles etc. Even if acikdt have the same label, e.@ystem
Implementationas shown in Figure 44 of both Organization A andth®y are typically
semantically different. This means ti&gstem Implementaticsf Organization A is not the
same as the one of Organization B differing, fatance, in artifacts, methods, or roles used
during execution of this activity.

Role concept

Project constellations with more than one projectner often lack of clear definition of roles
and responsibilities. This results in work delayss action items are rather pushed away in
order to minimize the individual workload.

Organization A (Master) Organization C (Supplier)

System Control Sof_tware
Requirement Flow Requirement Control
Specification Specification Flow
\l/ v \l/ v
System Design Software Design

\l/ Control \l/
System Design Flow Software Design Control
Specification Specification Flow
J v y v

System [] Softwarg
Implementation Implementation
\l/ Control \l/
Implemented Flow Implemented Control
System Software Flow
y v J
System Test Software Test
System Test Software Test Control
Record Record Flow
Control
Flow

Figure 45: Integration challenge of processes grafarity levels

Granularity of processes

Further problems originate from the granularitypodcesses defined by each organization. As
depicted in Figure 44, Organization A and B havecpsses defined on a system

implementation level, which might be adequate ftempiroduct development and business. In
contrast to Organization A, Organization C has dtdysoftware development process in

place (Figure 45). Compared to Organization A andhB process of Organization C (for a

collaboration scenario) is documented on a fineingd level (software level vs. system

level).

57

3.3 Solution Concept for Process Integration

In order to solve all these issues, the challenme process management group is the
clarification of what exactly happens during intgwn of other organization’s activities or
processes. This problem is symbolized with a qaestiark in Figure 44 and Figure 45.

3.3 Solution Concept for Process Integration

The following chapter briefly sketches the solutidea of the process integration approach.
This is necessary since a global development grejgmunters many challenges that need to
be handled, e.g. project complexity, communicatissues, logistic problems, different
cultures etc. (See chapter 2.5.3.3).

a) Organization A (Master) Organization B (Supplier)
b System System
) Requirement Requirement
Specification Specification
J/ v \J/ A 4
System Design System Design
J Mediator
System Design & Syglem Design
Specification - Nagi
J ¥
System System
Cl) Implementation Implementation CZ)
! 00| s Y
Implemented Implemented
System System
d) v v v
System Test m Test
I Mediator
S
System Test O System Test
Record Record

Figure 46: Mediator Introduction for Process Integration

First, all collaborating parties have to identifijose sub-processes are relevant for
collaboration, which is important to avoid doubleeven redundant work. Figure 46 marks
those sub-processes (red rectangles) that willnbegiated into the resulting collaborative
process. Organization A (Master) decides to integ&ystem Implementation (=c2) and the
resulting artifact of Organization B (Supplier)idtalso crucial to define clear responsibilities
prior to process and/or project execution to dels@ecified artifacts, e.g., in Figure 46 the
Implemented Syem is provided by Organization B. However, is Orgatiazn B also
exclusively responsible for that artifact withiretlzollaborative process? Therefore, a role
concept to be defined needs to clarify such questio

Second, the identified sub-processes and activitee=d to be connected. The connecting
arrows are depicted in Figure 46. The process ftothis case would then be: “a — b — c2 —
d”. As already mentioned, processes are typicaffgre@nt from a semantics perspective, this
meansSystem Implementatiaf Organization A (=c1) and B (=c2) have the sdatel, but

the meaning is different in terms of used methogie®, resulting artifacts, etc. This means

58

3 The Approach from a Bird’s eye view

that processes cannot be just connected. Thereforéinterface” is necessary that handles
semantic differences between processes by expligittlicating interface issues and
inconsistencies and, thereby, providing a resolgiigtion.

In order to handle this issue a connector is intoed, which is calledViediator. Generally,
a mediator is an interface to connect cross-orgdioizal processes. In Figure 46,
Organization A wants to outsour8gstem Implementatigrcl) to Organization B (=c2).

Towards a common understanding, the tekhesliator andScenarioare defined in chapter
1.4 (Definitions and Terms).

3.3.1 Mediator Pattern

As described, a “mediator” is actually a “mediapmttern” in terms of an interface that
consists of several different actions. An exempladiator pattern is shown in Figure 51,
which illustrates the auxiliary function showing vihoto bring together two or more
semantically different processes.

Organization A (Master) (Organization A (Master) Organization B (Supplier)
AND
Organization B (Supplier))

<Action X> Control Flow
Artifactl L1 > Handover L1 > Artifact 2

Control F|OW\

Artifact 4 « 1 | Handover k| Artifact 3

\l/ Control Flo
<Action Y> @J

Figure 47: Exemplary mediator pattern for process mtegration

<Action Z>

The mediator’s purpose is to guide the procedut®onf to connect processes and workflows
before collaboration starts. Due to the help ofséhauxiliary functions it is possible to

exchange either single actions/activities or evdmwles action chains from any process.
Therefore, the mediators look differently, depegdim the scenario applied.

These mediators are modeled with UML activity daagrterminology (swim lane diagram),

but do not necessarily follow the exact UML modgliconventions [100], since they have
only an auxiliary character (e.g. missing start and nodes). A mediator typically consists of
at least three swim lanes, one for each Organizadicand B and another swim lane for
interfacing organizations. Furthermore, it containe notation for control flow and object

flow. Mediators with only one swim lane will be damed as special case in chapter 4.2.5.

59

3.3 Solution Concept for Process Integration

As shown in Figure 47, additional actiongiéndovel) are necessary to get two or more
processes connected. THandoverbasically deals with the issue how to convert Argfact

1 (in Figure 47) as output of <Action X> intartifact 2, which is input for <Action Z>.
Therefore, these activities are the crucial intfaf Master and Supplier(s) to discuss and
consecutively define details about the handoveartfacts from Master to Supplier(s) and
backwards.

This addresses especially:

Documents:

There is clarification necessary whether or notMtaesster provides all relevant documents the
Supplier needs to successfully conduct its relevdenelopment portion. Furthermore,

resulting documents/artifacts shall be handed awea defined format, e.g. source code,
specification etc. (The artifact handling will besgribed in detail in chapter 3.3.2).

Development method:

It needs to be clarified whether or not the Suppbeable to follow a desired development
model (e.g. iterative or agile development). Thigghth be necessary to fulfill quality
restriction to get an admission or license for weski market, e.g., FDA' conform
development of product like a computer tomograpnttie U.S. market.

Knowledge:
The Supplier has to state whether or not enoughaaleduate know-how is available in his
organization to accomplish desired tasks succégsful

3.3.2 Artifact Synchronization and Handover Concept

During synchronization or hand-over activities argation has to compare and agree upon
desired artifacts that need to be delivered frora thaster organization to supplier
organization and vice versa. This is typically ajyeomplex procedure organizations have to
walk through, since considered processes are smantnot equivalent, which also
concerns the corresponding artifacts. Moreoves, ighithe “crux of the matter” that decides
on the successfulness of any collaboration. Thesefbis necessary to give both process and
project manager hand-on support on what artifactstypically exchanged during handover
or synchronization activities. However, this worklwot provide a set of artifacts that must
be provided at any process step during development.

3.3.2.1 Number and Types of Artifacts

In order to show the methodology and functionabifythe handover process, Figure 48
provides a more detailed view into the handovewigt As depicted in the mediator pattern
in Figure 47, one single artifact was given as “tlmput for the Handover This artifact
represents a potential variety of artifacts, whichanded over in a software development
process. Within the handover activity, respectivatips decide on what artifacts are
necessary for the next upcoming process step; thigjet be not only one single artifact, but
a potential variety of outputs needed to proceethéu development steps. This means, in
turn, that the handover activity needs to checktiadreor not content of existing artifacts
from the prior organization (“Organization A”) doemeet the minimum needs of the

Y EDA = Food and Drug Administration of the Uniteth®s of America

60

3 The Approach from a Bird’s eye view

following organization (“Organization B”), which kas those artifacts as input. This
resolution of differences between input and ougpstifacts is furthermore an essential part of
the collaboration. The following section illustrat¢he handover scenarios by using one
representative document for all potential artifacts

1. Organization A provides exactly the input Orgation B needs

As depicted in Figure 48, input and output artéeante the same, which is symbolized by both
the identical number of sections that are incorqgaranto the artifact and the identical color
code that symbolizes identical content. In thisecteere is no interface problem since the
inputs correspond with the outputs.

Artifact 1 Artifact 2
Organization A Organization B
Section 1 —_— Handover Section 1
—_—

no artifact changes

Section 2 Section 2

Section 3 Section 3

Organization A (Master) (Organization A (Master) Organization B (Supplier)
AND
Organization B (Supplier))

\ <Action X> Control Flow
—— /
Artifactl k1> Handover > Artifact 2

<Action Z>

o]

Artifact 4 1 Handover k| | Afifact3

\l/ Control F|OJ
<Action Y> €

Figure 48: Artifact Handover in Detail: corresponding input and output artifacts

2. Organization A provides less content than Orztion B needs

In this case the process to be integrated reqantdgional and different content (“sections”)
than the input artifacts are able to provide. Asstrated in Figure 49, Organizations B needs
an additional “Section 4” in the artifact handeceouf these issues already pop up during
process definition, process manager shall drive pitueess definition towards a solution.
These insufficiencies are identified latest duiing handover/ synchronization meeting when
all relevant parties conduct the respective handsyechronization activity.

In any case, it has to be decided whether
a. Organization A have to provide the missing con{ém¢ gap between output from A
and necessary input for B)

61

3.3 Solution Concept for Process Integration

This situation obviously occurs when Organizationfér instance, just misses any
artifacts to create during development

b. Organization B has to provide the missing contéme gQap between output from A
and necessary input for B)

This often occurs if Organization B follows a highprocess capability than
Organization A. This means that Organization B nesy e.g., lots of statistics for
statistical process control in order to address fvcess needs. If Organization A
does not use any statistical process control fonagimg projects, it is by nature
unable to provide any of these statistics and aatsf to adequately support the
software provider’'s process requirements.

c. The parties accept the deficiency between out-iapdt and continue executing the
collaborative process. In this case, no furtheloactvould be necessary. This means
that Organization B omits its own process requinetihién terms of statistical process

control etc.
Arti_fact_ 1 Handover o Art?fac? 2 .
Organization A ganization
Section 1 N € Section 4 I Section 1
Section 2 Section 2
Section 3 Section 3

Section 4

Figure 49: Missing Artifact during Handover

3. Organization A provides more content than Orgation B needs

If too many artifacts are created by Organizatiothat exceed the needs of Organization B
(Figure 50), there is no bottleneck or any oth@soa that would prevent the process from
further being executed. Moreover, Organization Abably will think about optimizing its
process for this specific collaboration by just timg the creation of artifact’'s “Section 3”.
Exceeding process needs just for sake of the owoeps takes too much effort and time
required in this case.

Artifact 1 Hand Artifact 2
Organization A LA Organization B

Section 1 e Section 3 —————— > Section 1

Section 2 Section 2

Section 3

Figure 50: More Artifacts provided than necessary

As mentioned before, proper artifact exchange isessential lever, which decides how
successful software development collaborations Fewe this reason, there is a list of artifact
types with corresponding examples that might beciatufor collaborations. This list is

62

3 The Approach from a Bird’s eye view

derived by comparing and consolidating model owguim e.g. CMMI® [133], V-model
XT® [79], and IEEE 12207 [73].

Table 4: Crucial Artifact Types for Software Develgpment Collaborations

Artifact Type Corresponding Example
Plans
Specifications = Requirement
= Design
= Architecture
Descriptions = Manual
= Analysis
= Strategy

= Dependencies
= Constraints
= Guidelines

Code
Reports
Audits
Records = Checklists
= List of decision criteria
= List of interfaces
= Actions
= Agreement
= Recommendation
Concepts/Proposals
Baselines

Change requests

3.3.2.2 Quality of Artifacts

As stated before, the number and types of artifdwds are transferred to the counterpart
organization needs to be defined prior to procesxwgion. Besides that, the quality of
transferred artifacts is in many businesses veauyial (e.g. Healthcare business observed by
FDA, security rules in nuclear power plant etc.yl dherefore shall be defined. This means
that certain mechanisms have to be institutiondlirecollaborative business setup ups that
allow for getting a consistent product quality tigbout the entire collaboration.

Quality is inspected by mapping the existing outgug)., source code or specification, to a
defined set of criteria any artifact has to fulfilihis is typically done in milestone/quality
gate review meetings in which all relevant pargiadicipate, i.e., the suppliers and receivers.

Quality is jeopardized whenever artifacts’ respbitisy changes, i.e., if they are interchanged
through interfaces between parties. Especially Balworative process needs to address
potential quality issues before they even occurestablishing quality review respectively.
However, quality mechanisms are not particularlysidered in this work.

63

3.3 Solution Concept for Process Integration

3.3.3 Role Model

A role model becomes necessary within collaboratiohtwo or more organizations. The
purpose is to get responsibilities of specific @tsi and activities clarified prior to
collaboration start. This reduces confusion dupngject run especially in global distributed

projects.

This thesis provides a role model for accuratesygmsng responsibilities to appropriate tasks.
Generally, different responsibility levels can bistidguished, whereupon three different

levels of responsibilities are shown in Table 5 arglained in the following.

Although this work will not focus on on task respdnlity level all three levels of
responsibility (according to Table 5) are discusseget a comprehensive feeling of potential

responsibility domains.

Table 5: Role Model Definition Level

Project Responsibility

Supplier

Master

Project

Activity Responsibility

Master Master Supplier
AND
Supplier
:

Project

64

3 The Approach from a Bird’s eye view

Project

Master Master Supplier
AND
Supplier

<activity> —
Requ. Engineer <activity>
Mediator SW Engineer
<activity>
SW Architect <activity>
— <activity> SW Tester
<activity> Quality Mgr
Test Manager

Task Responsibility

3.3.3.1 Project Responsibility

If two or more organizations are working togethar|eadership organization, a so-call

“Master”-organization shall be defined. Consequerdll other collaborating organizations

are Suppliers. This differentiation results fronsetvations from practice, where in most of
the cases, one organization takes on the Master Tois is similar to a consortium where a
so-called “Sole mandated lead arranger” is defittet manages all consortium internal

affairs [74]. Consortium is a Latin word, meanipgrtnership, association or society' and is
derived from consors 'partner’, itself from cowgéther' and sors 'fate’, meaning owner of
means or comrade.

The role of the Master organization depends onsthength of collaboration. In Figure 51,
three different types of collaboration strengths mwodeled. The master organization is only
explicitly existent in case of weak and mediumrsgta collaboration, whereas it is implicitly
modeled in strong or tight collaborations (higreststh). The definition of ‘strength’ follows
the number of communication or synchronizationl@eeldiamond) points (white arrow).

Start <>: Milestones, Synchronization I]:> = Communication End

¢ = 6= ¢ 9 Strong

Master

| ﬂ L | ﬂ [ﬂ
Blackbox Blackbox Blackbox Blackbox Med.
M
| Rlaclkkhnv J
Weak
— Blackbox —»‘
® PN PN

T e

Figure 51: Project Responsibility: Strength of colhboration

65

3.3 Solution Concept for Process Integration

In the ‘weak’ case, only a few synchronization peiare taking place; in the ‘strong’ case,
synchronization and communication are done througlloe entire process. This is also
illustrated by having the Master directly includatb the process.

Examples for the ‘weak’ case are processes thatvalleestablished and optimized, such as
delivery of spare parts. In this case, less cliigsues are to be discussed, e.g. the number of
spare parts to be delivered.

The ‘medium’ case concerns, e.g., development ditiadal features based on an existing
platform in software or hardware development.

The strong case typically takes place if new intieeafeatures are developed, especially if
more domains need to be included, e.g., “Globalit®aing System (GPSY” or the
European pendant “Galileb”navigation system. This requires both software aadiware
development in conjunction with satellite and netwoonnections. The “Toll Collet!”
system in Germany is an example where several mag#ons are linked together by setting
up a consortium. In this case, the Master orgaioizatvould be the consortium leader
responsible for project’s success and failure.

3.3.3.2 Activity Responsibility

In order to exactly define which organization icluded and responsible for executing
various activities and actions, three role connschmve been defined. Table 6 summarizes
those connectors that are available on organizaltiemel for collaborations.

Remarks: the term “Role” is seen here on orgarmnatilevel.

Table 6: Definition of Role Connectors

<no connector> Exclusively one organization is exi@g an action

0O (*AND”) Both organizations are executing an action

0 ("OR”) Either Organization A or B or both executing anact

0 ("XOR") Either A or B, but exactly one organization is ex@tg an action

The role concept is illustratively applied in theesario in Figure 52 (Remark: It is assumed
that Organization A (“Master”) and Organization‘Bpplier’) have semantically equivalent
processes defined). The swim lane diagram defiagls tesponsibilities in the headline of
each swim lane (marked with a green box in Fig@)e Bherefore, thdlasteris in charge of
System Desighy his own.System Implementatios done by botiMasterandSupplieras the
“AND” connection according to Table 6 in the headb shows. Finally, the Supplier is
solely responsible for Syem TestThe termination node goes back to Master since this
organization initiates the entire collaboration.

12 http://en.wikipedia.org/wiki/Global_Positioning_S&gm; 2010, Nov-25
13 http://en.wikipedia.org/wiki/Galileo_%28satelliteavigation%29; 2010, Nov-25
% http://www.toll-collect.de/

66

3 The Approach from a Bird’s eye view

Organization A (Master) (Organization A (Master) Organization B (Supplier)
AND
Organization B (Supplier))

Control

Flow
; Control Flow
System Design 1
System Control Flow

Implementation 1

System Test

Control
@k Flow J

Figure 52: Activity Responsibility: Organizational Role Definition

3.3.3.3 Task Responsibility

Based on the activity assignment of relevant datisdactions content- specific roles have to
be defined and assigned to those activities. Tlyerebntent- specific and collaboration

specific roles are differentiated. Table 7 depéctet of potential roles, which is not limited to
those. All described roles might be defined, howgtleese are not mandatory.

Content- specific roles are typically defined anywa organizations that contributed with
specific artifacts, e.g., Requirement Specificatmorganizational processes.

In contrast, the roléMediator is typically defined in collaboration. This roleowld be
responsible for early recognition and mediation cobss organizational conflicts and/or
appropriate escalation to senior management.

Furthermore, there are also roles that can bea#dcin both categories. Besides the Project
Manager as a core role, Tool Administrator, QuaMgnager, or Configuration Manager
might be crucial for projects' success in a gl@al distributed development environment.

Table 7: Task Responsibility: Specific Roles

Content specific Collaboration specific
Requirement Engineer Mediator
System/Software Architect
Software Engineer
Hardware Designer
Hardware Engineer

Test Manager

Project Manager
Tool Administrator
Quality Manager
Configuration Manager

67

3.3 Solution Concept for Process Integration

68

4 Solution Scenarios

4 Solution Scenarios

“Deal with the difficult

while it is still easy.
Solve large problems

when they are still small.
Preventing large problems

by taking small steps

is easier than solving them.

By small actions

great things are accomplished.”

- Lao Tzu (604-531 BC)

As illustrated in previous sections global develepinproject are enormously stipulated by
development challenges. The following section piesi a solution for these challenges
containing a process- based methodology how twmane organizations can work together
in a globally distributed development environmértie result is a new collaborative process,
which contains the original sub-processes of tHialsorating organizations.

These collaborative processes are described byt afsgandard collaboration scenarios,
which have been derived from industry experiencd bierature review. The scenarios
incorporate the introducecdhediator that helps development organizations setting up an
integrated process environment.

4.1 Preliminaries
The following processes and all subsequent defswharios are modeled using activity
diagrams according to UML [24], [114], [75]. All ntrol flows in the diagrams are bold.

For better readability, the following action coloodes (Table 8) are used throughout all
activity diagrams.

Table 8: Legend and Color Codes for Activity Diagrans Usage

<Organization A> . . .
Actions executed by Organization A

— (including alternative color, exclusively used)
<Organization A>

<Organization B> Actions executed by Organization B

69

4.1 Preliminaries

<Organization C> Actions executed by Organization C
<Organization D> Actions executed by Organization D (Case Study 1)
<Organization E> Actions executed by Organization E (Case Study 1)

Actions that are newly defined to connect origipcesses

<New action> R .
for setting up a collaborative process

Actions, that are newlglefined or derived based on the input
<Evolutionary action> of existing actions from collaborative organizagon
(“evolutionary”)

shierarenical Hierarchical Action (=trident) of any organizatiozspectively

action>
rh Remarks: color code might vary due to respectiwzae

4.1.1 Integration Possibilities

Integration of activities into other activities asbasis for collaboration in general. Process
integration enables companies to master the cluydleh having people located around the
world, working for one project. These processes banimplemented in different ways,
depending on the strategy a development organizasowilling to pursue. Three basic
integration strategies are explained in the folluyvi

1. First, the Master can enforce the supplier to cetaby accept and follow his (the
master’s) processes. In this case, there is nbduinhtegration approach necessary
since the processes to be used are somewhat dibtathe master.

2. Second, the master might include some selecteditaagi from the supplier’s
processes. In this case, there is a need to dafimg@proach on how to comprise other
organizations' processes.

3. Last, the process is set up on a global basis @igpersed teams. This means that
organizational processes are set up in a joint yallaving several organizations or
companies working together as equivalent partnétsawdefined lead.

This work focuses on the second and third integmagossibilities, since the first approach
does not leave any remaining unclear process issué® clarified due to clear process
guidelines provided by the Master organization.

4.1.2 lllustrating Example

In order to illustrate the concept ideas, this isecprovides a small concurrent example

(Figure 53), which applies the explained theory.

Remarks: Due to the fact that the collaborationupst are different depending on the
scenario shown, the root process of some scenshimsn later on will slightly differ from

70

4 Solution Scenarios

the initial root process in Figure 53. This is resay to illustrate clearly the functionality of
the appropriate functionality of the overall apprio@nd the resulting collaborative process in
each case.

Nevertheless, the basic root scenario consistsvofdrganizations: Organization A, which
functions as the ‘Master’ and Organization B/Clres‘Supplier’.

From an industry point of view, the Master is tleagjanization, which initiates the entire
collaboration and makes itself responsible for ngamg and controlling it [62]. This
encompasses, e.g., the definition of desired (syhbeducts and work packages, the
identification of additional, special competence ifmplementation, hardware development,
or testing to optimize overall collaborative effgehess and efficiency. The ‘Master’
organization is typically the one that receivesvatirk products, so-called artifacts that are
produced or developed during project run. In tivgster’ does not mean that the complete
workflow of the Master’s organization is mandatéwy all organizations to follow.

The other collaborating organizations are ‘SupplieThe suppliers provide special
competences that make them attractive for the Masbethat the Master is coerced from an
economical/technological point of view to collaberawith the supplier(s). A special
competence of the supplier is, e.g., special kndgdein any technical domain. Strategic
advantages of a supplier from a Master’s view arg,, the supplier’s location to penetrate
new markets or a low- cost development site.

As already implicitly mentioned, complex developmprojects might include more than one
supplier. Nevertheless, the process integratiomcag of this work is scalable in a way that
it fully supports participation of more than ongplier.

Organization A (Master) Organization B (Supplier) Organization C (Supplier)
System System Software
Requirement Control Requirement Control Requirement Control
Specification Elow Specification Flow Specification Flow
l/ v \J/ A 4 l/ A 4
System Design System Design Software Design
System Design Control System Design Control Software Design Control
Specification Flow Specification Flow Specification Flow
J v v v VR
System System Software
Implementation Implementation Implementation
Implemented Control Implemented Control Implemented Control
System Flow System Flow Software Flow
! v J v J v
System Test System Test Software Test
System Test System Test Software Test Control
Record Control Record Control Record Elow
Flow Flow

Figure 53: Root processes of Organization A, B an@

Based on the root processes of Organizations And @ in Figure 53, different types of
collaborations and are explained in the followihgis work does not define one single model,

71

4.2 Scenarios for Process Integration

which is useable for all types of collaborationattmight occur anytime. Moreover, a few
typical collaboration scenarios from practice aemeyalized so that they can be applied to
any defined process [83], [82].

The Master and each Supplier know their own spedévelopment process and approach
only from their point of view. As depicted in Figub3, the process of Organization A and B
consists of three actionSystem DesignSystem Implementatipnand System Test
Organization C defines its processes on a finengdalevel, i.e Software DesignSoftware
Implementation and Software TestOf course, this does not represent an entire yatod
lifecycle; however, it is a sufficient part foruBtrating this basic concept. As labeled in the
diagrams (Figure 53) they contain both control flpmbold) and object flow, which means
that appropriate artifacts are also modeled asctibjaodes, e.g.System Specification
Implemented Softwarén order to correctly follow process semantie® factivity parameter
nodes are added, that ggstem/Softwar®equirement Specificatioas input for System
Design andsoftware/Systeffiest Recorés output oSoftware/System Test

4.2 Scenarios for Process Integration

4.2.1 Semantically Equivalent Processes

The first scenario defines the collaboration preced Organization A and B using
semantically equivalent processes. This signifiasgumption exists only in this scenario,
which means for the two root processes in FiguréndBnot only the action names are equal;
moreover, they mean exactly the same. This concr@sdescription of activities, e.g.,
identical steps, actions, used templates, progragmmanguages etc., as well as the
interpretation of the appropriate partner procé&dsyénization B), which is identical to its
own process. This means, in turn, that the Masdegdnization A) expects any action or
activity from the potential Supplier (OrganizatiBjh to be exactly the same as in his own
organization. Therefore, the Master can replacecdiys process steps by process steps from
the supplier, without expecting any compatibilityimterface issues.

If this scenario is applied to the concurrent exlmp Figure 53 (root processes), it is
assumed that the Master wants to outsourcé&ystem Tedb the selected Supplier, e.g., in
order to reduce cost or to get more independeniltse®ut of the System Test. The
collaborative process is depicted using swim lamésin UML activity diagrams. Due to the
fact of having equivalent processes defined, thestdtacan just transfeBystem Testo
Organization B, as illustrated in Figure S58ystem Tesis conducted by Organization B
without any further interface in-between. Aftgystem Teghe control flow points back to the
Master, since — as stated before — this is thentrghon that controls and manages the
collaboration.

72

4 Solution Scenarios

Organization A (Organization A (Master)
XOR
Organization B (Supplier))

Requirement
Specification

!

System

Design
System Design

l

System
Implementation

! !

Implemented System Test

system
/ Test
Record
5 J

Figure 54: Collaboration with equivalent processes

Application to practice

Referring to practical experience, this developnsa@nario is very rare in industry. Every
company develops their specific products and hasetbre specifically defined development
processes for both software and hardware that afftirsupport the business. The probability
that two development processes of two independwgainizations are equivalent is very low.
However, experimental public R&D environments likaiversities might have identical
processes for conducting internships or even dewedmt projects [96].

4.2.2 Horizontal Integration

The scenario ‘Horizontal Integration’ is similarttee previous. However, this scenario gives
up the assumption that processes of the organmzatice semantically equivalent. This is due
to the fact that in practice those processes t@dmmected are typically semantically not
equivalent.

The root processes in Figure 53 are still the sdmethey do not mean the same anymore.
For instance System Implementatioof the Master is now differently done compared to
System Implementationf the Supplier, e.g. Organization A uses meth&idsn agile
development, whereas Organization B follows theidRat Unified Process (RUP).
Consequently, actions or activities cannot be gqsdt exchanged anymore, becaGsstem
Implementationof the Supplier (Figure 53) may need other inptifazts than the Master
creates as output froBystem Design

73

4.2 Scenarios for Process Integration

In order to solve this issue the process integnatipproach provides a mediator (Figure 55)
that has been introduced and described in chaet.3

Organization A (Master) (Organization A (Master) Organization B (Supplier)
AND
Organization B (Supplier))

<Action X> Control Flow
Artifact 1 I EEN Handover L1 5 Artifact 2
Control Flow\
<Action Z>
Artifact 4 1 | Handover k| Artifact 3

\L Control Flo
<Action Y> o _J

Figure 55: Mediator pattern for ,Horizontal Integra tion’

Referring to the concurrent example, it is assuied the Master wants to outsource the
System Implementatioince the processes are not semantically equiviie usage of the
mediator pattern is necessary to create a colliberprocess as illustrated in Figure 56. The
scenario is called ‘Horizontal Integration’, becaubte action to be outsourced is pushed
horizontally into the root process.

System Desigof Organization A is the connection point previdasthe Handoveraction,
which needs to be newly included by following thefinition of the mediator in Figure 47.
System Design Specificatiaf the Master is a central input for thiandoveraction, since
this is the basis for further development actigiti€he execution of thdandoveralso results
in a System Design Specificatiowhich is illustrated in Figure 56. The functioibalof the
Handoveraction in this case is the conversion of 8ystem Design Specificati@s output
from Master'sSystem Desigiio a System Design Specificati@s input for the Supplier.
Based on theéSystem Design Specificatiari the Supplier, theSystem Implementatiois
executed by the Supplier resulting in tingplemented Systerfihe corresponding action on
the Master’s site is not necessary anymore; thexefbis deleted. The artifatthplemented
Systemrmeeds to becbnverted backwards to the Master’s format as input 8ystem Test
(Master). For this purpose, anothgandoveraction is included, according to the mediator
definition in Figure 55, which exactly creates tbatput in the desired format for the Master.
By having the secontiandoveradded to the collaborative process, it is dematedr that
both parties (Master and Supplier(s)) have to condad mutually agree upon this artifact.
Consequently, this is the basis for 8ystem Testone by Organization A.

74

4 Solution Scenarios

Organization A (Master) (Organization A (Master) Organization B (Supplier)
AND

Organization B (Supplier))

System
Requirement C'SIerI
Specification ow

System Design Control FIOW}
System Design > Handover)—
Specification /k \
Control Flow
Control Flow
Implemented Handover
System Q

Control Flow
(System Test % _)

System Test

Record Control
Flow

Figure 56: Collaborative Process for 'Horizontal Irtegration’

This scenario seems like a typically sub-orderti@hghip as defined in V-Model XT® [79],
as a standard development model of the Federal dRepof Germany and guideline for
planning and conducting development projects [8&wever, this approach even extends
such a sub-order relationship due to the fact thdeed the process models are not
semantically equivalent, and process integratiam losa conducted at whatever point it is
intended; in turn, the decision of task allocai®not modeled in this process as it is with the
V-Model XT®.

Application to practice

The scenario very often applied in development imssies with short development cycles,
e.g., in mobile phone software development. F@& fhirpose, component specifications are
handed over to a specific development site, faaimse, India.

4.2.3 Additive Vertical Integration
Using the scenario ‘Additive Vertical Integratioptovides the possibility to include whole

action chains into a process. This is relevant rjaaizations want to outsource entire
development domains like software, hardware, orlraeical engineering.

75

4.2 Scenarios for Process Integration

In order to illustrate this scenario, the initiabt process from Figure 53 has to be slightly
modified as depicted in Figure 57. Organization éesl now have a concrete software
development process portion defined contairBoffware Requirement Engineering, Software
Design Software ImplementatiorandSoftware TestThe Supplier develops Hardware using
a process that consiststéardware DesignHardware ImplementatigrandHardware Test

- ")
Organization A (Master) (" Organization B (Supplier)

Control
Flow

System
Requirement
Specification

v v

(System Design)

{

System Design Control
Specification Flow

y v

SW Requirement
Engineering

J

Software Control
Requirement Flow
Specification

y v

(Software Design)

y

Software Design Control
Specification Flow

Software
Implementation
| N J

Implemented Control
Software Flow

v v

(Software Test)

¥

Software Test Control
Record Flow

J v

System Test
Design

Control
Flow

Control
Flow

Control
Flow

Control
Flow

System Test Control
Specification Flow

\ v

(System Test)

y

System Test Control
Record Flow
N V.

Figure 57: Root process 'Additive Vertical Integraion’

76

4 Solution Scenarios

The appropriate mediator for this scenario is itlted in Figure 58. The Master is again the
initiator of the collaborative process ardction X> is the connector from the Master’s
development process, which is followed Bgcomposition This Decompositionis a newly
defined action that is necessary to allocate feattw the software or hardware development
processDecompositions followed by two artifacts 2 and 5, which areated and defined in

a way that they are usable input fmub-workflow A>(white) and<sub-workflow B>(red).
The output artifacts 3 and 6 of these sub-workflanesin the same type than the inputs. After
the development paitintegration of software and hardware products takes placectwhi
essentially combines several features or sub-feattitat have been developed in different
domains towards one system or sub-system. As rditest, thelntegration is also newly
created and included as connection point. Aftéegrationprocess flows back to the Master,
which is symbolized witkeAction Y>,

The unique characteristic of this ‘Additive Vertidategration’ scenario is parallelization of
actions and activities during product development.

Depending on the process granularity, there mast esd@veral points of synchronization in-
between. From a practical point of view, the numifemewly defined synchronization points
due to collaborative processes is limited, sinae\ware development does usually have other
milestones defined anyway. Those milestones diften those of software development, e.g.,
hardware prototype manufacturing, non-destructestinig.

Organization A (Master) (Organization A (Master) Organization B (Supplier)
AND
Organization B (Supplier))

<Action X> Control Flow

I D

Artifact 1 —— 1>/ Decomposition

Artifact 2 Artifact 5
\l/ Control Flow \l/
<Sub Workflow A> € <Sub Workflow B>
\l/ Control Flo Control Flow \l/
Artifact 3 Artifact 6

|
\\ |

Artifact 4 S Integration

\I/ Control Flow
<Action Y> (—J

Figure 58: Mediator for ‘Additive Vertical Integrat ion’

Going back to the concurrent example, it is nowuasxl that the Master develops a system
containing software and hardware. For this purghseMaster wants to outsource hardware
development. Concretely, an entire action chae, the hardware development process of

77

4.2 Scenarios for Process Integration

the Supplier, needs to be included to generatellabooative process, which is shown in
Figure 59.

Organization A (Master) (Organization A (Master) Organization B (Supplier)
AND
Organization B (Supplier))

System Control
Requirement Flow
Specification

Control Flow
(System Design)_

System Design < Decomposition
Specification "R %)
Software
Requirement
Smmetesilon / Control Flow Control Flow
(Software Design)
Control
Software Design Flow
Specification
v
Software
Implementation
Control
Implemented Flow
Software
\ 4
(Software Test)
\ Control Flow Control Flow
Software Test
Record

System Test h —_— Integration
Specification)

(System Test Control Flo

System Test
Record

Control
Flow

Figure 59: Collaborative Process ‘Additive Verticallntegration’

78

4 Solution Scenarios

System Desigrof Organization A is decomposed into Requirement Specificatiofor
hardware and software. The decomposition is — aslanzontal Integration’ — not only an
allocation of features, but also a mutual agreenwntll parties participating in the
collaboration.

This encompasses:

e Allocation of features (as mentioned before)

e Type of templates to be used

» Clarification how configuration management is done

» Definition of synchronization points or milestonesspectively within development
phase, incl. reports etc.

After development phase of software and hardwaaé ¢éhds withSoftwareand Hardware
Test a furtherntegrationneeds to take place. Within this action the imgetad hardware is
brought together with the developed software. Thidudes on the one hand the mutual
agreement of Master and Supplier that hardwaredeasloped the way the Master wanted to
have it. On the other hand software is technictidlghed onto hardware. This includes also
integration testing, which is not modeled in Fig&® to keep the scenario clear and less
confusing.

Application to practice

This scenario basically demonstrates ‘process lpéraltion’, which is nowadays applied in
almost every development organization. Referringrigure 59, this collaborative process
could be used in any healthcare development depatt(a.g. computer tomograph, magnetic
resonance tomograph) where one business unit gevdlardware components; whereas,
another business unit is responsible for softwareebpment.

Furthermore, mobile phone development does alsdydjop this scenario, e.g., if one
organization develops the hard case, chipset apbnelers like Bluetooth, Infrared, or Wi-Fi,
and another organization implements adequate sadtvegstems that supports all the
hardware functionality for the phone.

4.2.4 Alternative Vertical Integration

Following ‘Additive Vertical Integration’ the scena ‘Alternative Vertical Integration’ is
derived. From a modeling perspective this scenariery similar to the ‘Additive Vertical
Integration’ with one essential difference: proesssare not executed in parallel, but
alternatively. The mediator for the scenario isidigl in Figure 60. It shows that only one
sub-workflow is executed at each process run, eitbeb-workflow A& or <sub-workflow B.
The decision which process path is taken is decidethe Rational Analysisthat is an
additional, newly defined action in that scenaAdter development run aAcceptanceof
resulting work products or artifacts needs to beedd his is followed by a connection point
towards the Master &ction Y5).

79

4.2 Scenarios for Process Integration

Organization A (Master)

(Organization A (Master)
AND

Organization B (Supplier))

Organization B (Supplier)

<Action X>

|

Artifact 1

/

Control Flow

)

—>{ Rational Analysis

-

T

Artifact 2 Artifact 5
\l/ &"| Control Flow Control Flow == l/
<Sub Workflow A> <Sub Workflow B>
l \:ontrol Flow Control Flow / l

Artifact 3 Artfact 6

N e

=

Artifact 4 S—

Acceptance
- \L Control Flowy
<Action Y> —

Figure 60: Mediator for 'Alternative Vertical Integ ration’

For illustration purposes, the current root prodesBigure 57 is again slightly modified as
depicted in Figure 61. The Supplier does not delnsedware components, but safety-critical
software, due to its specialization and resultipgcgal knowledge in this domain. The
collaborative process in the concurrent examplbuistrated in Figure 62. After the Master’s
System Desiga Rational Analysisstarts to clarify which Organization implementslidated
components. If any component contains safety-atifparts to be implemented, the Supplier
will be in charge of this component, otherwise tfaster is responsible. AftdRational
Analysis,the Master or Supplier develops the desired componf the Supplier has been in
charge of a safety critical component Master andp&er conduct theAcceptancemeeting,
where the appropriate components are checked ditthtesl whether they comply with the
definitions in the specification. After that, theoskflow goes back to the Master’s initial
workflow (<Action ¥&).

Application to practice

The scenario is mostly relevant in a longer lastinuginess relationship of two or more
partners, since the character of the scenaridheraterative’. This gets explicit by using the
Rational Analysigo evaluate, e.g., the safety criticality of a gmment. Typically, this does

make sense in case components need to be develppetiically, instead of continuously in
a project.

This scenario could also be a sub-process of thieeawllaborative process landscape where
iterative loops are defined and executed if necgssa

80

4 Solution Scenarios

Safety-critical software concerns software thatlgh@tects human’s life and should not be
mixed up with security software, e.g. a “digitalodman” before entering a website. Safety-
critical software is relevant, e.g., in trains tt@eie used for public transportation, like the
German “Intercity Express (ICE)”. This software hasfollow standard, e.g., CENELCin
which a software development organization mighsjpecialized. This organization can offer
its know-how of CENELC conform programming to FeaddRailway Authority or to another
supplying third party.

Organization A (Master) Organization B (Supplier)

Control
Flow

Control
Flow

System
Requirement
Specification

System Design

e}

Control

System Design Control i

Specification Flow

SW Requirement
Engineering
Software Control
Requirement Flow Control
Specification Flow

Software Design

I

Software Design Control
Specification Flow

Software
Implementation Control

Flow

I

Implemented Control
Software Flow

Software Test

s

Software Test Control
Record Flow
A v
System Test
Design
System Test Control
Specification Flow

System Test

{t

System Test Control
Record Flow

C

v

Figure 61: Root process 'Alternative Vertical Integation’

15 Comité Européen de Normalisation Electrotechni@®ENLEC)

81

4.2 Scenarios for Process Integration

Organization A (Master)

(Organization A (Master)
AND

Organization B (Supplier))

Organization B (Supplier)

System
Requirement C'ggt\,rvo'
Specification

System Design

Control Flow

System Design
Specification

Software
Requirement
Specification

/

(

Software Design)

Control
Software Design Flow
Specification
v
(Software Implementation)
Control
Implemented Flow
Software
\ 4
(Software Test {
Software Test
Record

System Test
Specification

%

System Test

)(_

System Test
Record

Control Flow

{ Rational Analysis)

Control Flow Control Flow

Control Flow Control Flow

\
—(Acceptance

L
)

Control Flow

Figure 62: Collaborative Process: 'Alternative Vertcal Integration’

82

4 Solution Scenarios

4.2.5 Merging Integration

The scenario ‘Merging Integration’ brings in a sfgrant difference compared to all previous
scenarios. As the naming already shows this saeicames up with the possibility to have
newly defined activities. This means that actigtae, e.g., enriched by merging them with
other activities from other organizations, resgtim new, evolutionary activities. The
mediator for this scenario has several characdiesjsiepending on how many organizations
are participating on the merge. This means, in, tilnait a merge can also be conducted within
one single organization. These two different casesxplained in the following.

4.2.5.1 Integration with more than one organization
This scenario shows that some actions are execobegbintly, i.e., all participating

organizations are doing actions or activities tbget The mediator for this scenario is
depicted in Figure 63.

Organization A (Master) (Organization A (Master) Organization B (Supplier)
AND / OR / XOR
Organization B (Supplier))
<Action X> Control Flow 1
Artifact 1 ——1 >/ Synchronization
; Control
Artifact 2 - new Flow
<Evolutionary
Actions> - new
: Control
Artifact 3 - new Flow
A 4
Artifact4 &—1—1 Handover
\L Control Flow
<Action Y> <z J

Figure 63: Mediator for ‘Merging Integration’

<Action X> of the Master symbolizes again the connectingpim the Master’'s processes.
Remark that no connecting action from OrganizaBois defined. The role model defines a
Synchronizatioraction between Organization A and B with the “ANDOR”, or “XOR”
connector, which gives the Supplier the chanceheresthe Master’s intention what work
should be done jointly. This is the preparationpstewards the jointly executed actions
containing mutually agreed artifacts. The resultargifact ‘Artifact 2 — new documents

83

4.2 Scenarios for Process Integration

Synchronizatiorand functions as input fokEvolutionary Actions> - net After finishing

the conjoint part, an additionelandoveraction needs to be added, which converts the butpu
‘Artifact 3 — newto ‘Artifact 4. This conversion seems somewhat redundant; hawéve
makes sure that Organization A gets exactly thatrigput artifacts for further process
execution. Havindjrtifact 2 as input<Action Y>is again the connector back to the Master’s
organization.

The root processes for this scenario are illusdrateFigure 64, which is identical to Figure
53.

Organization A (Master) h (Organization B (Supplier)
System
Requirement Control Control
Specification Flow Flow
(System Design vj
System Design Control Control
Specification Flow Flow
System
Implementation
Implemented Control Control
System Flow Flow

y
(System Test VU
J

System Test
Record

e

AN 4 AN 4

Control
Flow

Control
Flow

Figure 64: Root process 'Merging Integration’

The scenario assumes that the Master organizatiends to conduct system implementation
of a product with the supplier jointly. The Suppl{®©rganization B) is typically not familiar
with the Master’'s product requirements. Therefards crucial for the Master to have a
Synchronizatioraction for both participating organizations impknted to make the Supplier
familiar with those product aspects necessary figolémentation. In Figure 65 turns the
Synchronizationturns the System Specificatiorfrom Organization A into aSystem
Specification(green colored) usable for Organization B, whishcommonly agreed upon
both organizations (Figure 65). The green coloas are those which have to be added to
the initial process of Organization A and B. Aftenjoint implementation, anothelandover

IS necessary to give the product back to the Mdste3ystem Test

Remarks: The collaborating parties are still distteéd, although this scenario might suggest
that the participating organizations are in onafme.

84

4 Solution Scenarios

Application to practice

This scenario is useful in companies that devedgpling edge products with an appropriate
technology. These organizations typically have edn® hire or acquire the best and special
individual resources or even small companies thavige the required know- how for new
technologies. These specialized resources neeel $orultaneously included into the process,
which is possible using the ‘Merging Integratiomenario. The advantage is that new and
innovative ideas can be discussed and tested vigign they arise. For leading edge
innovations for the future, this is more effectid@n having synchronizations points from
time to time.

For instance, in the United States, a car is oeliasle if it features a cup holder; this is
essentially due to the culture of the American peegho very often have breakfast on the
way to work [88]. This enforces development orgahans to establish specialists who
define requirements that are a “must have” for@lpct to be sold successfully in a special
country.

Organization A (Master) (Organization A (Master) Organization B (Supplier)
AND
Organization B (Supplier))
Sy_stem Control
Requirement Fl
e ow
Specification
System Design Control Flow 1
SystemDesign .15/ gynchronization
Specification
\L Control
System Design Flow
Specification
| 4
System
Implementation
\l/ Control
Implemented Flow
System
/"
Implemented c | HEmalevEs
System
l/ Control Flow)
System Test <2
System Test
Record Control
Flow

Figure 65: Collaborative Scenario: ‘Merging Integration’

85

4.2 Scenarios for Process Integration

4.2.5.2 Integration with one organization

A ‘Merging Integration’ scenario is not restricteala minimum of at least two participating
organizations. The respective mediator for thegraon type within one single organization
is depicted in Figure 66.

Organization A (Master)

<Action X>

Control
Flow

Artifact 1

|y

<Evolutionary
Actions> - new

l/ Control

Artifact 3 - new Flow

|

<Action Y>

< Artifact 2 - new

Figure 66: Mediator “Evolutionary Integration” (sin gle organization)

It seems peculiar that this mediator only needs swan lane, which is the one of
Organization A (Master). An explicit connection pbifor any intermediate actions like
Handoveror Decompositioris not needed here. This makes this kind of medsbtmewhat
“artificial”. Organization A decides to include aher input artifact for a respective action
which will be executed during project run. Since tbriginal activity will be changed by
including additional inputs the new action is alsamed <Evolutionary Actions-new>
Actually, this is also a kind of merged action. Hower, due to the artificial character, this
mediator is rather used as an auxiliary functionstpport other integration operations,
especially Cross Level Integration in chapter 42.5

The evolutionary scenario for this integration @ben is illustrated in Figure 67. It defines
that Software Specificationvill function as input forSystem Implementatiprmvhich will
consequently change the activity itself. The résglbutput artifacimplemented Systeas
such will not change since additional input feystem Implementatiocame from a finer-
grained artifact $oftware Design Specificatipnit is assumed that this will, on one hand,
refine Implemented Systeran the other hand, the output from a system lewsl stays the
same.

86

4 Solution Scenarios

Organization A (Master)

- Control
Requirement Flow

Specification

!

System Design

|

System Design
Specification

l/ \ 4

System Software Design
Implementation* < Specification

!

Implemented Control
System Flow

|

System Test

!

System Test
R Control

Flow

Figure 67: Evolutionary Scenario: ‘Merging Integration’ (single organization)

Control
Flow

4.2.5.3 Cross Level Integration

Having the ‘Merging Integration’ mediator for siegbrganization defined the following
chapter will show how this “supplementary” mediatofigure 66 (one single organization)
is applied to practice.

For cross-level integration, several integratioensgios are possible. Based on the previously
described initial processes, the integration fumglity within three different integration
variants will be shortly discussed in the followinbhe respective scenarios are kept very
simple in order to illustrate the mediator’s fuociality. Every cross- level integration is
actually a combination of two integration steps:

1. Evolutionary Integration (i.e. ‘Merging Integratiowith one single organization).
This is a pre-integration step that follows the ratat in Figure 66.

2. A standard integration scenario, e.g. ‘Horizontategration’ (for handing over a
specific artifact). This is the core integrationasfy other organization’s sub-process
into the master process as described in chapter 4.2

According to Figure 53 the relevant root procedseshis scenario are now those of the
Master Organization A and Organization C as theplpg organization. These root

processes are again illustrated in Figure 68, smpwWirganization A has its process defined
on a coarser-grained level, i.e., system leveh tBaganization C. The process definition of

87

4.2 Scenarios for Process Integration

Organization C is on software implementation levied., finer- grained compared to
Organization A.

Organization A decides to take advantage from natégg Software Design Specificaticof
Organization C. ThisSoftware Design Specificatiams such is not defined in the Master’s
process. The respective integration of the spetibo takes place in two steps.

Organization A (Master) Organization C (Supplier)
Requirement Requirement Control
Specification Control Specification Elow

\L J Flow \l, Y

System Design Software Design

7 J

System Design Control Software Design Control
Specification Flow Specification Flow
! \’ J v

System Software
Implementation Implementation
Implemented Control Implemented Control
System Flow Software Flow
J Y’ J v
System Test Software Test
System Test Software Test
Record Record
Control Control
Flow Flow

Figure 68: Root process ‘Merging Integration’ (cros level integration)

Variant 1. Sourcing pre-processing action

Variant 1 of cross- level integration is relevahsome actions/results from a supplier are
necessary before any other actions at the Mastéescan start. Therefore, it is called the
sourcing of pre-processing actions. Prior to exeoutof a Master's core activity, all
necessary inputs for a core activity are colleéitestt The core activity in Figure 69 Bystem
ImplementationNecessary inputs for this core activity &gstem Design Specificatiamd
Software Design Specificatioit is intended that the Master wants to integth&eSoftware
DesignProcess of Organization C.

The evolutionary integration mediator in Figure @®nnects Software Requirement
Specificationfrom System Desigthat is, therefore, transformed $ystem Desigrsince the
original System Desig(Master in Figure 68) is not done by the Mastenalanymore.

Furthermore, th&oftware Design Specificatiadso requires an evolutionary integration to
get connected toSystem Implementatipnwhich is, therefore, converted t8ystem
Implementation

88

4 Solution Scenarios

The second part encompasses ‘Horizontal Integratbrine Software Desigmrocess of
Organization C as depicted in Figure 68. The irgtegn method takeSoftware Desigr as
the process to be integrated — and “flanges” ldth Software Requirement Specificatian

its beginning andoftware Design Specificati@n its end.

Organization A (Master)

(Organization A (Master)
AND

Organization B (Supplier))

Organization C (Supplier)

System Requirement
Specification

\ 4

System Design

L

D —

Software
Requirement
Specification

Control Flow

|

Handover

Control
Flow

System Design
Specification

\ 4

Control Flow

>)|

Control
Flow

Control
Flow

Handover

{

Sourcing
Pre-processing action

(System Implementation

~

%

Software Design
Specification

[

Software
Requirement
Specification

Software Design

Software Design

-

Implemented
System

Control
Flow

System Test

C

System Test
Record

Control

IS

Flow

Specification

Figure 69: Cross Level Integration: Pre-processingctivities

The newly derivedSoftware Requirement Specificatiors necessary to sourcgoftware
Designof Organization C. Th&equirement Specificatiamansferred through thdandover

89

4.2 Scenarios for Process Integration

activity of Organization A and C. AfteBoftware Designs conductedSoftware Design
Specificationtself is again converted from the supplier’s fatr{Figure 68) into the Master’s
format, which has been already created by the &wolary integration step above.

In parallel, the Master creates his partSystem Design Specificatias a result oBystem
Design Due to different granularity levels, the usage tbé already defined scenario
‘Additive Vertical Integration’ is not possible. €hefore, the type of parallelism in Figure 69
is crucial sincesystem Implementatioreeds input from two different artifacts. Integratof
Software Design Specificati@ndSystem Design Specificatiendone withinSystem Design

After Handover ofSoftware Design Specificatioimplementation of the system is started.
The Implemented Systeis system- tested vi@ystem Tegsiesulting inSystem Test Record
This terminates the process.

Variant 2: Sourcing core-processing action

The following variant for cross- level integratigrigure 70) deals with the fact that the
Master wants to have any additional functionalitgegrated during the run ddystem
ImplementationThis approach is basically the same as withinavar.

The evolutionary integration allows for connecti®pftware Requirement Specification
(output) and the placeholdeckany output> as input to the core activitySystem
Implementation

The second step connects via ‘Horizontal Integratiloe required input from Organization C
to the collaborative workflow.

Integration of the input coming from the suppliglagain done withigystem Implementation
Again, process parallelism (‘Additive Vertical Igmtion’) cannot be applied since
distinguished process level granularities.

90

4 Solution Scenarios

Organization A (Master) (Organization A (Master) Organization C (Supplier)
AND

Organization B (Supplier))

System
Control Requirement
Flow Specification
v v

(System Design)

System Design
Specification

Control
Flow

Control Flow

D)

Handover

Control Flow

Sourcing
Core-processing action

Flow Control

(Handover ;

_J

Control Flow

Control
Implemented Elow
System

(System Test)

System Test
Record

Control
Flow

Figure 70: Cross Level Integration: Core-processin@ctivities

Variant 3: Sourcing Post-Processing Action

Figure 71 shows Variant 3 of cross- level integmatif the Master organization requires
additional inputs towards the end of core actigitgxecution $ystem ImplementatipnAll
required inputs are now collected ystem TestHowever, the basic principle is the same as
explained above in detail in Variant 1 and Variant

91

4.2 Scenarios for Process Integration

Organization A (Master) (Organization A (Master) Organization C (Supplier)
AND
Organization B (Supplier))

System .

Requirement
Specification

Control
Flow

\ 4
(System Design)

!

System Design
Specification

Control
Flow

Control Flow

Sourcing
Post-processing action

(Handover

%

Flow

Control
Flow

Control Flow

k Handover

]

System Test
Record Control

Flow

Figure 71: Cross Level Integration: Post-processingctivities

4.2.6 Hierarchical Integration
‘Hierarchical Decomposition’ is an essential stanat mean in process modeling activities.

This technique primarily promotes complexity handli of organizational processes
tremendously and leads towards a better usabihityday-to-day work. Furthermore,

92

4 Solution Scenarios

hierarchical decomposition improves reusability anaintainability. Consequently, process
hierarchies are typically used in complex processetbpment environments, including
sophisticated software and/or hardware developrpemtess. This also contributes to the
supportive character of development processes.

The basic methodology and constraints of this diggen are now crucial for the way of
solving the issue of hierarchical process integratAmong others, these constraints are:

* Integration of activities or actions results in &N collaborative process (Refer to
section 1.3 Scope of the Dissertation)

* Processes to be integrated are recursively defined

» Existing initial processes should not be changed

The following section gives a short definition tietproblem to be solved if organizations
want to integrate hierarchical processes.

4.2.6.1 Initial Scenario

Organization A (Master) has the hierarchical pre@Gsftware Implementatiotefined, which

is depicted on the left side in Figure 72. Addiably, Organization B (Supplier) has also a
hierarchical procesSystem Implementatioim place. These hierarchical processes can be
identified by recognizing the hierarchical actionthwthe trident including theSoftware
Implementationprocess (Master) anflystem ImplementatiofSupplier). It is assumed that
the Master intends to take advantage of buyingReguirement SpecificatiprSoftware
Design Specificatiomnd Software Implementatioskills into its own system implementation
process. This would replace the Master’s requirérspacification and software realization
process. The&software Desigrprocess is part of a hierarchical process in Qrgéion B
(Supplier). The challenge is to include the enenigbart of the Supplier’s process (in Figure
72) into the placeholder indicated in Organiza#os process.

Remembering that hierarchical decomposition in @sscenvironments is a mean for a more
efficient way to handle process complexity and tpport reusability, processes of
Organization A and B can also be visualized infeedint way by having a different view on
it. The derivation of this view is exemplary for ganization B modeled in Figure 73. All
three parts are briefly explained in the following.

93

4.2 Scenarios for Process Integration

Organization A (Master) Organization B (Supplier)
Market Market
Evaluation Evaluation System Implementation
\L Gl Software Implementation \L
Market Flow Market Colntrol
. i Flow
Information Information SefinEE
| | Design
-
Requirement Software Reqqirem_ent
Engineering Realization Engineering Software Design ontrol
Specification Flow
Control Corfrol \l/
Requirement Flow Realized Flgw Requirememt Control
Specification Software Specification Flow Software
Implementation
\l/ \ 4 \l, v \l/ v
Software Software Hierarchical Action :
I[nplemgntatioq : Module Test System Implementation Implemented Cpntrol
Hierarchical Action I‘|"| \l/ th Software low
1
. Soft Modul ¥
v Control OTg;r;ec(c))rg e Control Implemented Control Software Test
Implemented Flow Flow System Flow
Software \l/
\l/ Software Test
v System Test Record Soquct

Flow

System Test \l/
\L System Test Control

System Record Flow
Test Record Control

Flow

Figure 72: Initial Processes for ‘Hierarchical Integration’

b) Without Hierarchy

In this case (Figure 73 b) the hierarchical aci®wlissolved (“flattened”) and control and
object flow are defined according UML [100]. Foaugithe relevant hierarchical interface
portions control flow goes fronRequirement Engineeringp Software Designand from
Software Test Recortb System Test-urthermore, data flow is defined froRequirement
Specificatiorto Software Desigand fromSoftware Test Recotd System Test.

a) With hierarchy

This case leaves out the entire detai3dtem Implementatiosub-process and shows the
hierarchical action only. Specifically, the illustion in Figure 73 a) shows the control flow
defined fromRequirement Engineering the hierarchical actioBystem Implementatiand
additionally from hierarchical actidBystem Implementatida System Test.

Object Flow definition follows the UML specificatig 100] respectively; this means that the
artifactRequirement Specificatigerves as input f@ystem Implementation, whigknerates
the Implemented System

94

4 Solution Scenarios

a) b)

Organization B (Supplier) Organization B (Supplier) h
Organization B (Supplier)
Control Control
Flow Flow
Control
Flow
Control
Fl
ow Control
Flow
v
Hierarchical Control
Action : System Flow
Implementation
P th Software
Control DI
Flow
Hierafchical Actign : Control
System [mplementation Software Elow
|‘|'| Design
Specification
Software
Design
\I/ Software
Control Implementation
Software Elow
Design Control
Specification Implemented Flow
Software
Software
Implementation Software Test
Control
Implemented Flow Software Test
Software Record
Control
Software Test Flow
\l/ Control
Implemented Flow
System Software Test Control
Record Flow
Control
Flow
Control
Flow
Control
Flow
Control S
Flow
Figure 73: a) Hierarchical Process;

b) Dissolved hierarchical process;
c¢) Dissolved hierarchical process (“Hybrid view”)

95

4.2 Scenarios for Process Integration

c) With and without hierarchy (“Hybrid View")

Figure 73 c) now depicts a combination of both @cpss with and without hierarchy, a so-
called “hybrid view”. This “hybrid view” is necessa because the definition of
organizational hierarchical processes follow a aertpurpose. The process integration
approach of this work wants to keep original preessas far as possible, which means that
hierarchy should not be given up for setting upladmrative processes. This increases
recognition of processes and therefore acceptaitbhewollaborative process users.

For better optical orientation, the control flowmsoavs are also illustrated in bold. From a
control flow perspective the original hierarchydissolved, i.e., lower hierarchical levels are
brought up to the first process level. However, liherarchical action still existsSystem
Implementation

Remarks: The modeling of the hierarchical actioesdoot follow actually the official UML
modeling rules of a call behavior action.

The basic modeling concept of the “hybrid-view”Rkigure 73 c¢) has to bring together also
the two process variants, with and without hiergrchhis always means that two control
flows going into the hierarchical action, i.e., ligure 73 c)Requirement Engineering
connected with the hierarchical actiBgstem Implementatiaand withSoftware Desigrias
the inner part of hierarchical action). Only onejegb flow connectsRequirement
Specificationwith Software DesignA further object flow betweeRequirement Engineering
and System Implementatiois not necessary, since the hierarchical act®ystem
Implementation symbolizes just a pointer to the hierarchical pulicess and has
consequently no content.

Furthermore, two control flows and one object asming from the hierarchical action, i.e.,
System Implementaticio System Tesand Software Desigriio System TesfThe outgoing
object flow is defined fronsoftware Test Recotd System Test

4.2.6.2 Integration Procedure

The hybrid view in Figure 73 c) essential suppontegration of actions and activities,
because one can use already- defined integratiachanesm and scenarios of this work
respectively. The hierarchical integration itsedf done in several steps, which will be
explained in the following.

Dissolution of Hierarchy
The defined hierarchy is first of all dissolved.idmeans that especially the process parts to
be integrated are modeled sequentially. This isctleghin Figure 74.

96

4 Solution Scenarios

(Organization A (Master)) Organization B (Supplier)
Market
Evaluation
Control
Market Flow
Information

Requirement
Engineering
Requirement
Specification
Control
Flow
Software
Design
v
Software Software Control
L 8 Flow
Realization Design
Specification
Control
Realized Flow
Software Software
Implementation
v Control
Software Module Implemented Flow
Test Software
P
Software Test
Software Module Control
Test Record Flow
Control
Software Test Flow
Record

(System Test]

System
Test Record Control

Flow

Control

Flow

Figure 74: Dissolution of Hierarchies of Organizatbn A (left) and B (right)

The usage of the mediator for ‘Horizontal Integyatiis in this case appropriate (please refer
to Figure 55). The collaborative process is illattd in Figure 75 without having hierarchy

incorporated. Different hierarchical levels fronrieas organizations are still depicted with

the original color code.

97

4.2 Scenarios for Process Integration

Organization A (Master) (Organization A Organization B (Supplier)

AND

Organization B)

Market w Control Flow
Evaluation
Market Handover
Information
Control Flow
Software
Design
Software
Design
Specification
Control Flow] Software
Implementation
Realized Handover Implemented
Software Software
Software Module Control Flow

Test

Control
Software Module Flow
Test Record

(System Test v)

l

System
Test Record
Control

Flow

Figure 75: Process Integration by Means of defineediators

Based on Figure 75, the new hierarchy shall benddfiwhich should be in accordance with
former hierarchy definitions to get the best padssibcognition from process users. In

Figure 76, all Software Design, Implementation, des$t actions are assigned to Software
Implementatioras a hierarchical action. This is advantageoubdtin organizations A and B,

98

4 Solution Scenarios

since all those actions have been also hierardhickdfined prior to integration, which
increase recognition and acceptance cross-orgamadly.

Organization A (Master)

(Organization A
AND
Organization B)

Organization B (Supplier)

?

(

System Test

Market Control Flow
Evaluation
Market Handover
Information
Control Flow
Control Flow
Control
6 Software Implementation rh)
Software
Design
Control
Software Elow
Design
Specification
Control Flow Software
Implementation
Realized Handover Implemented
Software Software
Software Module Control Flow
Test
Software Module
Test Record Control
Flow
\ .
\ 4

Control Flow

)

!

System
Test Record

Control
Flow

Figure 76: Re-definition of Hierarchy

99

4.2 Scenarios for Process Integration

4.2.6.3 Further Hierarchical Mediator Definitions — Special Cases

This section briefly depicts special mediators floose cases integrating only hierarchical
processes partly or entirely from one organizaligracess exclusively. In this case, the

patterns discussed in chapter 4.2 are slightly fiembby having those actions to be integrated
in hybrid-view.

The mediator for hierarchical integration based‘ldarizontal Integration’ is illustrated in
Figure 77 and is identical to the standard mediatishown in Figure 47. However, the
action to be integrated from Organization B (<Hiehacal Actions>) comes originally from a
hierarchical sub-process. This is the reason whgelactions are depicted in hybrid-mode in
the mediator for building up a collaborative pracbased on ‘Horizontal Integration’ (Figure
77).

Organization A (Master) (Organization A (Master) Organization B (Supplier)
AND
Organization B (Supplier))

<Action X>

Control Flow
Artifact 1 S Handover S Artifact 2

Control
Flow Hierarchical Action
—> th

Control Flow

—— <Hierarchical

Actions>

|

Artifact 3

Control Flow J

Artifact 4 <«—1 [Handover D J

Control Flow
Control Flo
€

<Action Y>

]

Artifact 5

Figure 77: Mediator for 'Hierarchical Integration’ based on ‘Horizontal Integration’

Figure 78 depicts the hierarchical mediator for dkve Vertical Integration’. Remark that
Artifact 3 is not defined within thélierarchical Action The mediator defines two control
flows starting from the Fork Node, one towards Hherarchical Actionand another one
towards the first action ofSub Workflow B, which is sourced bjrtifact 3. In turn, there
are also two control flows defined into the Joinddcstarting fronHierarchical Actionand
from the last action of theSub Workflow B.

Integration of hierarchical action using ‘Alternagi Vertical Integration’ as shown in the
mediator pattern in Figure 79 follows the same m@tthogy as the one for ‘Additive Vertical
Integration’.

100

4 Solution Scenarios

Organization A (Master)

(Organization A (Master)
AND
Organization B (Supplier))

Organization B (Supplier)

Artifact 1

Artifact 2

s
<Sub Workflow A> IS

Artifact 4

Artifact 6

Control Flow

Control Flo

()

Hierarchical Action

th

Control Floy Control Flow

\ 4

;K <Sub Workflow B>

Control Flow

Control Flo

Integration

Artfact 5

S

Figure 78: Mediator for ,Hierarchical Integration’ based on ‘Additive Vertical Integration’

Organization A (Master)

(Organization A (Master)
AND
Organization B (Supplier))

Organization B (Supplier)

Artifact 1

Artifact 3 /<

<Sub Workflow A>

Artifact 4

Control Flow

Rational Analysis

Control Floy

Control Flow

k Control Flow

Hierarchical Action p

th

>
@ <Sub Workflow B>

Control Flow
ontrol Flow

Control Flow

<Action Y>

101

Artfact 5

S

Figure 79: Mediator for ‘Hierarchical Integration’ based on ‘Alternative Vertical Integration’

4.2 Scenarios for Process Integration

Organization A (Master) (Organization A (Master) Organization B (Supplier)
AND
Organization B (Supplier))

: Control Flow
<Action X>

])

Artifact 1 —1> Synchronization
7 \I/ Control
Artifact 2 - new Flow
Herar({ca Actign
<Evolutionary
Actions> - new
Artifact 3 - new Control
Flow
Artifact 4 <« 1 | Handover

<Action Y> — Control FIOMJ

Figure 80: Mediator for ‘Hierarchical Integration’ based on ‘Merging Integration’

In case of having hierarchical actions to be irdatggt where the pattern from scenario

‘Merging Integration’ should be used, it is alss@wed that — as in the scenarios before —
Organization B has hierarchical processes defiidgse actions/activities Organization A

(Master) want to have integrated and executedlyoa® depicted in Figure 80. The remaining

methodology of the approach is analog to the othediator pattern for hierarchical process

integration.

General remarks: All scenarios within the introdispecial cases could also be defined vice
versa, if Organization A had a hierarchical (subrdcess defined. For this scenario, the
Hierarchical Activityin the mediator (Figure 79) would have shiftedh® Master.

4.2.7 Alternative Approaches for Software Development Cdaborations

Besides the mediator pattern approach for procgegration, there are some other ways and
methodologies to collaborate. In the following, dbeossibilities are briefly introduced and
discussed.

Artifact-centric approach

An artifact based (“artifact-centric”) process apgeh is a methodology, which is also often
used in practice to set-up collaborations and c@tjp® between various parties. The core
idea addresses the fact that several artifacteesressary for any collaboration/cooperation to
develop a product. These artifacts are driven yr@ss data or business entities. In contrast
to a process-or activity centric approach, thisrapph describes how these data are updated

102

4 Solution Scenarios

or changed by typically using a status model. Feg8t shows that several domains are
interested in artifacts and contribute to them talsdinalization [152].

Customer Retailer Supplier Shipper
(Sales Dept. Purchasing Dept.
Customer Artifact
Product Artifact
[45 1
Shipping Artifact
| ﬁ\ccounting Depﬂ I

Order Artifact
| I [| [1

Invoice Artifact

- AN J

Figure 81: Business artifacts in collaborative busiess processes

Dependencies regarding process control flow betwamdlaborating organizations are not
obviously defined, since there is no process lamukscinstitutionalized. Processes are
amorphous from an activity perspective, i.e., thaye not explicitly described and

documented. This fact makes it very difficult tofide proper process integration points to
make sure that artifacts are available at crifpoaihts (activities) in a workflow.

@ &
b) \ \:‘\D\:\\\\:’ \

\\\ 3
5

k+ f»‘ , : Dﬁ}‘
~ F e

Figure 82: Artifact oriented development approach

—>

Compared to structured collaborative process iategr (e.g. pattern-based like in this
dissertation) no defined connection points araipethen following this approach. One could

103

4.3 Formalization

argue that an activity diagram as used in thisaboltative process integration approach is
also able to model artifacts by the means of aratlfjow. However, one process step might
create more than one artifact. This makes it vagllenging to define collaboration processes
that illustrate all dependencies and simultaneossfporting all organizations by a clearly
represented process. Additionally, the artifactiwempproach does not use the advantage of
a Master organization, which is a coordinatinganse. Figure 82 depicts that approach and
illustrates that no coordinating instance is define

Ad hoc drawing approach

This approach uses trivial means for defining arghting collaborative processes, i.e., any
drawing tool, which might also produce the goabefng able to create proper process for
development collaborations. However, this kind w$tant or ad hoc approach does not
provide benefits (e.g. quick and structured procestsup through pattern availability) of

structured pre-defined interfaces an organizatiam i@ly on during process definition and
execution. Especially, if processes and interfasdsirther projects are defined once again,
they will slightly differ from the one in a previswproject. This negatively affects the process
consistency and stability of organizational worldftg especially if projects turn more

complex and complicated.

4.3 Formalization

Collaborative scenarios and patterns are usefuhséa get a process set up for globally-
defined project, especially with dispersed develepinteams. These scenarios visualize
processes executed during development run.

A major challenge of process handling is the daéiniphase. In order to provide hands-on
support for collaborative process definition, thetire procedure shall be subject to
automation. For automation purposes, it is crucialefine exactly how integration approach
works. Therefore, the activity diagram- based regnéations need to be formalized. In order
to adequately address this issue, a graph- bapeesentation has been chosen, which is the
most intuitive and obvious way to formalize UML iadly diagrams.

Generally, an activity diagram consists of nodes etiges. An edge is described as a pair of
nodes. A node is either a 3-tupel consisting ofd@mtifier (i), a type (t), and a role (r). 4-
tuple nodes additionally encompass or point toergéinchical) activity diagrarad.

A node NDJAD is defined in Definition 1. AD is defined accand Definition 1.

Definition 1.

ND :DEF (NDid x ND,

type\{yha}>< < R0|e>)D (NDid ><{yha}>< < R0|e> XAD)

where
* NDy is the infinite set of all node identifiers
« the set oROLEdefined in chapter 4.3.1
* NDype =per { Yaction Yha Yartitacs Ystars Yend Yiorks Yioin, Ybranch Ymerge} IS the finite set of all
node types (for visualization please also reférable 9)
* ADis the infinite set of activity diagrams defineddefinition 2

104

4 Solution Scenarios

A node ND is defined either as 3-tupel or 4-tupelending on whether a concrete node
is a hierarchical node. Consequently, the crossymtd‘NDy X {yng X ROLE x AD*, is a 4-
tupel, because the considered node AD referenagbhemn(sub-) activity diagram. Thereby,
Ndype is automatically defined as {y according to Definition 1.

For better illustration, the finite set of all pa®e node types Nfp.is listed in Table 9:

Table 9: Finite Set of Possible Node Types and RdRelationships

<action>

Yaction <action> Yrork /L\

<action> <action>

<action> <action>

Yartifact <artifact> Yioin V

<action>

<action>

<hierarchical
Yha s |+| ybranch

<action> <action>

<action> <action>

ystart @ ym erge %/

<action>

Yend .

The intersection set operation is defined as:

Definition 2.
N=per ADXAD - AD

The concrete application of this operation enstlrasad and ad have no node in common:

Definition 3.
N(ad, =(Nd, Ed,),ad, =(Nd,, Ed,)) =(Nd, n Nd,, Ed, n Ed,)

AD is defined as the infinite set of all possiblésting activity diagramsAD™7 is the set of all
non-hierarchical activity diagrams.

105

4.3 Formalization

Definition 4.
(Nd O ND, Ed 0 Nd x Nd) |

ADPAT = D(i,tl, I’l),(i ., rz)D Nd : (tl = tz) E|(I’1 = |’2) Ut, # Yuas
Nd finite

ad|ad0AD™T

ad = create_hierarchy(ad',ad',,,id,r,Ed s 15_as: Eds_rrom-as)
Oad'0 AD
O Oad',, isaclosedsub— graphof ad'relatedbyED , 1, acs EAs_rrom-as
0id is anidentifier unusedin ad'
Ur O< ROLE>

AD =per

By having processes from two or more different aigations defined, it is important that the
used actions are uniquely used throughout the agsnizational set of activity diagrams
Ad. However, the repetitive use of any node is albbviey calling an activity diagramaD
recursively independently from depth of interlaciAglditionally, it is allowed that nodes used in
lower level of interlacing, i.e. sub-graphs likg are part of the set upper levels (&)gAs/7A.

Definition 5 uses the functiooreate hierarchy, which is generally defined as:

Definition 5.
create_hierarchy: ADx ADx NDisx < ROLE>x[](NDx ND)xJ(NDxND) - AD {1}

The symbol f1” defines a non-valid return value. A valid hietaoal process definition is ensured
if
« ADis valid and
» the functioncreate hierarchy creates again a valid activity diagr&D after
hierarchy re-definition

A more detailed definition ofreate hierarchy is given in the following.

create_hierarchy:=(ad, = (Nd,, Ed,),ad,, = (Nd,., Ed,,),id,role,Ed , ;5_ac» EAp_rrom-as) =
Nd, O {ndHA = (id,tpye=y,,, role, adAS)} ,
Ed, O (nd., Ndka) O (nd,,,, ndrrom)

ndro.ndTo JEd A-TO-As ndFROM NdFROM JJEdA-FROM-As
* ad, isclosedsub- graph ofad, relatedoy Ed, 1. A< \Ed s rromas
* idisanunuseddentifierin ad,

partial _graph(ad A,mm, successorn
. ndTO JEdA-TO-
if (ndTo ndT0 JEd A-TO-As =N dAs

partial _ graphad,, nd,,, predecessg ;

(ndFrROM NdFROM TEdA-FROM-As

O otherwise

106

4 Solution Scenarios

where

« ad, represents the entire activity diagram prior &r&ichy re-definition
* ad, represents an activity diagram referenced by #ve merarchical action nd

» idis the node ID of the hierarchical action (HA) aftgerarchy re-definition
* roleis the role of the new hierarchical action

* Ed, ;o xlS the set of edges to identify the entry nodehefhiierarchical graph agl
* Ed,_roru-aslS the set of edges to identify the exit node eftiferarchical graph agl

For better illustration of the meaning of each paeter withincreate hierarchy all function
arguments are graphically depicted in Figure 83.

?

Market
Evaluation

[

Market
Information

\L v

Requirement
Engineering

!

Requirement
Specification

are
Implementation :
Hierarchical Action

v
Software
Realization

l

Realized
Software

Software Module
Test

& Software Module
Test Record

System Test

!

System
Test Record

Organization A (Master)
f <\
‘o
0
s
3

create_hierarchy:=

©) ©) ® O 6 ©®©

(ad, = (Nd,, Ed,), ad,5 = (Nd,,, ED,,), id, role, Ed, 1o as: Eda rromas

) @Role = Organization A (Master)

o

Figure 83: Parameter explanation ofcreate _hierarchy function

That part of the hierarchical graptas, which will be integrated, shall beckbosed_sub_graph
of adas with Eda-to-as and Eda-rrom-as@s the respective set of edges going into and rapmi

from adas

In order to get validity ofidas approved, the auxiliary functiopartial _graph is used. This

function creates the concrete hierarchical gragfi by collecting the set of successor and
predecessor of one node.

107

4.3 Formalization

In Definition 6, partial _graph is recursively defined and maps to the partitioflset ND.

Definition 6.
partial _graph: ADx ND x{ predessesgsuccesay — [1(ND)

partial_graph(ad = (Nd, Ed),nd, f) =
{nd} , if f(ad,nd)=0
{ndd 0 partial_graph(ad,nd, f), otherwise

‘ndd f(ad,nd)

The functionf takes as input the concrete activity diagram (Inedviaal graph)ad and any
nodend [0 ad. The set of Roles does not need to be explicitgntioned in the set of

parameters withipartial _graph, since it is implicitly defined through the setrmddes ND
in Definition 1.

The function successormaps the corresponding nodes to the partitiod sd#t ND and
collects all nodes in the set unipjnd.

Definition 7.
successorADx ND - [J(ND)

successgad = (Nd, Ed),nd)= | Jnd

(nd,nd)JEd

The function predesseso maps the corresponding nodes to the partition] s€tND and
collects all nodes in the set uniprjnd.

Definition 8.
predecessu ADx ND - [1(ND)

predecessad = (Nd, Ed),nd) = | Jnd

(nd,nd)JEd
4.3.1 Role Definition

The syntax to define a role descriptor is as foow

Definition 9.
< ROLE>:=(< ROLE>< OpID >< ROLE>) |k SINGLE_ROLE>
where

+ <OpID> := AND || OR || XOR

« <SINGLE_ROLE=>= ({A-Z1], {‘a-Z}, [0-9N)*

<SINGLE_ROLE> accepts values that follow the Exeeh&ackus-Naur-Form (EBNF) notation
[73]. The formalization mechanism has to use phesais as a mean for role groupings. For

108

4 Solution Scenarios

instanceOrga AND (Orgg OR Orgc) is not equal tgOrga AND Orgg) OR Orgc. The finite set
of all possible role types is listed in Table 10:

Table 10: Finite Set of Possible Role Connectors

Organization A | (Organization A | Organization B Organization A (Organization A Organization B
AND OR
AN D Organization B) O R Organization B)
(relationship) (relationship)
Organization A (Organization A Organization B
XO R Organization B)
(relationship)

4.3.2 Closed Sub-graph Definition

Differentiation between processes and sub-processerucial for formalizing integration
operations used in this dissertation. In generaloaed sub-graph defines those nodes and
edges that are to be integrated in another process.

The notion of a so- calledlosed sub-graphs defined in Definition 10:

Definition 10.
As ADis_closed_sub_ graph_of AODAD - Nd,, [0 Nd, OEd,, OEd,

Figure 84 illustrates this formalism in general aakhtes Graph (A) to Sub-graph (As) in an
activity diagram. In this cas@sis exactly the set of those nodes that will begnated into
another organization’s process.

Figure 84: Abstract differentiation of Graph and Sub graph

In addition to nodes, edges between the nodes toabe defined. Basically, four different
types of edges are defined, which are also label&tjure 84:

» edges lying outside of As (OUT), e.g. &fk-as
* edges leading into As (TO), e.g. £@-as

* edges lying inside of As (IN), e.g. Ef-as, and
» edges moving out of As (FROM), Eekom-as

109

4.3 Formalization

A sub-graph restricts its edges to stay within gtdph’s nodes — that's why it is closed. The
formalization of edges is defined as the following:

o EdA—OUT—As :DEF{ (S,t)DEdA | ﬂEdAS O tDEdAS }

o EdA—TO—As :DEF{ (S,t)DEdA I ﬂEdAS DtDEdAS }

N EdA—IN-AS :DEF{ (S,t)DEdA I ﬂEdAS O tDEdAS }

* Edarrom-as =per{ (S,1)UEdA | SIEdas [tHEdAs }.

4.3.3 Hierarchical Graph Definition

As described in chapter 4.2.6, formalization ofettdrchical Integration’ is special insofar that the
hierarchical action points to the sub-process totegrated.

e

Organization B (Supplier)

Control
Flow

Control|
Flow

(" Hierafchical Actid

h:
System [mplementation I‘h
oftware

Design

~N

Software Control
Design Flow
Specification

Software
Implementation

)

Implemented Control
Software Flow
\ 4
Software Test)
Software Test
Record Control
Flow
\. .
Control
Flow
v
Control
Flow
- V.

Figure 85: “Hybrid-View” of Hierarchical Processes

110

4 Solution Scenarios

This sub-process is actually an entire processctvitg diagram System Implementatipn
Formalization of hierarchical processes takes figagsing the “hybrid-view” as basis (Figure 85).
The abstract view of the Hybrid View is depictedFigure 86. The hierarchical acti®ystem
Implementation isrepresented by the HA action node (dotted lindje Tontent ofSystem
Implementation- which is basically th&oftware Designimplementationand Test— is defined
with the sub-graph ad

EdA-OUT As
EdA-TO HA Graph
Ed
A-TO-adAs Hierarchical Action
(HA)
EdA-IN As

Subgraph

Figure 86: Abstract view of “Hybrid View”

The “hybrid view” incorporates two new edgesal8liaand Ed rromna. The formalization
of edges is defined as the following:

e Edatora =per{ (S,)UEs | S1Eds Ot yna} }
* Edarrom-+a =per{ (S,)UEM | SH{ YHa} OtOEgHA}

Furthermore, all nodes froats//A. The graptadas differs from sub-grapAsthatAs /7adhs.

4.3.4 Mapping Methodology Definition

Furthermore, mappings are necessary to descrilmlygxahich node of the Master’s process
to connect with a node of the Supplier’'s procesb\wace versa. In order to include a sub-graph
into a Master process, it is sufficient to justect the sub-graph’s border nodes. To be more
precisely, these are the nodes that are connedtie@d W O’ or ‘FROM’-edge.

The set of all possible mappings for a given famndBs of sub-graphs is defined as follows:

Definition 11.
MAPF, g U Nd, x Ndg |

MAPAS—BS :DEF D(S’ n)D EdA—TO—As = [(n’ nl)D MAPAS—BS’
D(S’ n) D EdA—FROM—AS = [(n’ nl) D MAPAS—BS

The formula says that for all edges Ed going fraapg A into a sub-grapAs (=Edh-to-as) @
corresponding node must be existent within graphts is the corresponding node, which is
connected with an edge to be defined in an apm@tpscenario. The mapping works also the
other way back to graph A (=kérowm-as). Figure 87 visualizes the mapping, showing orange
arcs that symbolize those nodes to be mapped tevatefration.

111

4.3 Formalization

Remarks:

This mapping considers a pairraddes the orange arcs amot edgesthat connect any pair of
nodes.

/ B \
Edsourasfrng o Graph /.
Ed,ropsdfld AN T Subgraph J
()
EdA—lN As ‘I \A
,A/.
EdA—FROM—AS""

—

Figure 87: Abstract illustration of mapping functionality

Having the edges and ‘mapping’ methodology as t&sh it is now possible to create an
integration operation, which takes two graphs, tegpective sub-graphs, and one mapping as
arguments and produces an integration operationdier to generate a combined process:

Definition 12.
integrate_grapr(A, As, B, Bs, MAPAS_BS) =oer AB,
where

e Ndag = ((Nch O Ndg)\ Ndpe) O Ndagg

¢ Eds =((Eh0 Eds) \ Echbe) [Edagg

. = /to be defined by concrete integration operation

e Ndagg = /to be defined by concrete integration operation

e Ethy = /o be defined by concrete integration operation

e Edag = /to be defined by concrete integration operation
Thereby,

* Ndas / Edss is the set of nodes / edges from the original lggsajp and B

. | Edbelis set of nodes /edges to be deleted

e Ndage/ Edhggis set of nodes /edges to be added

This integration function is the basis for everypseguent integration function defined for
each collaborative scenario. Considering the caim# of the functiomtegrate_grap(), the
set of nodes and edges need to be appropriatéhcted to the amount that are crucial for
the collaborative graph (or process respectively).

The abstract diagrams created to illustrate théalootative process incorporate a defined
color code:

Red: delete edge from root process
delete node from root process
Green: added node and edge for collaborative process

The following legend explains how formalizationdpplied within the process integration
scenarios.

112

4 Solution Scenarios

3-Tupel node:

Organization A (Master) (Organization A (Master) Organization B (Supplier)
—-— o - D
I \ / Organization B (Supplier))
System
I Requirement C;mro
Specification ow
3 .
1 2
l l System Design Control Flow
* System Design N Handover U System Design
S R S O Specification \ Specification
(y q p ’aMfaCt’ gb\) Control Flow \ \L
System
Implementation

Ndp Ndype ROLE

4-Tupel node:

e ——

(Organization A (Master) Organization B (Supplier)
o AND) — e - - T E—— E—— E—— E—— S S S S . .
Organization B (Supplier)) -I

Y

nirol Flow
Handover Requirement

|

|

[

|

N ; ; I

(Hiefarchical \ |
‘ Action : System

Control Flo Implementation th |

|

1

|

RULTTTLTTTTETN
Control Flow| Software

|\ Design

l

Software Design
Specification

|

Software
Implementation

Y

Implemented
. Software

CesnnnNEEnEEnnn®

-
.t

(o]
ennnn

=g
~—
<—
-
B .

(Sys.Impl., ¥, Org, Sys. Impl.)

Control Flow

Canmmnnmnnnnnng

-

Nd|D Nd[ype ROLE ad—|A

Handover Pa—

Figure 88: Explanation of Node Parameters

4.3.5 Semantically Equivalent Processes

In the following chapter, all scenarios are formadl using the concurrent examples initially
introduced in chapter 4.1.2.

The collaborative scenario with semantically eqgl@mtiprocesses does not need any mediator,
because actions and activities are not only nanwechlly, they mean exactly the same.
Consequently, desired actions can just be inclintedhe Master’s workflow.

The initial root process is depicted in Figure Battmodels control- and data flow. The
formalization of thecontrol flow for Organization A with respect to Definition 1dsfined as
follows:

113

4.3 Formalization

Definition 13.
A=({
(Start, ¥ Orgn), (End, ¥ng Orgn), (SysDes, ion Orgn), (Sysimpl, Ycion Orgh),
(SysTest, iion Orgn)

oA

((Start,Yiarn Orgh),(SysDes, yion Org)),

((SysDes ttion Orgh),(SysImpl, Ycion Orgn)),

((SysImpl,Ycion Orgh),(SysTest ¥ion Orgn)),
})((SysTest,yction Oran),(End,\eng Orgn))

Please note that the first curly bracket in Deifimt13 contains the set of all nodes needed for
setting up the control flow graph A. A is meanbthe activity diagram of Organization A,
which is the master. The second curly bracket costall edges needed for the graph set-up.
For better readability, each line always containe edge including the starting and ending
node of the edge.

Generally, the control flow in Definition 13 is naufficient for a comprehensive
understanding of a collaborative process, sincectipe shows that many development
processes are defined and executadifact-oriented, i.e., process follows the required
artifacts, which, in turn, requires data flow folirations as an essential aspect. In the
following data flow and root process for OrganiaatiA (Master) and B (Supplier) are
defined:

Definition 14.
A=({
(Start, Y Orgn), (End,¥ns Orgn),
(SysDesign, ation Orgs), (SysImpl, Yeion Orgh), (SysTest, sion Orgn),
(SysRequSpecCaptacy Orgn), (SysDesignSpecatac, Orgn), (IMpISyS, Yritacs Orgh),
(SysTestRec,atacs Orgh)

}oA

/[[Controlflow]

((Start, Yan Orgy), (SysDesign, gtion Orgh)),
((SysDesign, yion Orgn), (SysImpl, ¥eion Orgn)),
((SysImpl, Yiction Orgn), (SysTest, yion Orgh)),
((SysTest, Mion Orgn), (End, ¥ng Orgn))

/[[[Dataflow]

((SysRequSpecapfiacy Orgh), (SysDesign, aion Orgn)),
((SysDesign, ion Orgh), (SysDesignSpecaptacs Orgh)),
((SysDesignSpecCatacs Orgn), (SysImpl, Ycion Org)),
((SysImpl, ¥ciion Orgh), (IMPISYS, Yritacs Orgh)),
((ImplSys, Vitacs Orgn), (SysTest, dion Orgh)),
((SysTest, yion Orgh), (SysTestRec atacs Orgn)),
((SysTestRec, aftacs Orgh), (End, ¥ng Orgn))

H-

114

4 Solution Scenarios

Definition 15.

B=({
(Start, Yan Orgs), (End, ¥na Orgg),
(SysDesignadion Orgs), (SysImpl, Yeion Orgs), (SysTest, yion Orgs),
(SysRequSpegije; Orgs), (SysDesignSpecattacs Orgs), (IMpISys, Yritacs Orgs),
(SysTestRec,afitacy Orgs)

}oA

/[[Controlflow]
((Start, yan Orgg), (SysDesign, ation Orgs)),
((SysDesign, éétion Orgg), (SySImpl’){ction Org?»)),
((SysImpl, ¥iction Orgs), (SysTest, 3ion Orgs)),
((SysTest, ¥ion Orgs), (End, ¥ng Orgs))

/[[Dataflow]
((SysRequSpecaptacy Orgs), (SysDesign, ation Orgs)),
((SysDesign, aion Orgs), (SysDesignSpecadtacs Org)),
((SysDesignSpeCaacy Orgs), (Sysimpl, Yeton Orgs)),
((SysImpl, Ycion Orgs), (IMpISYS, Yritacs Orgk)),
((ImplSys, Vritacs Orgs), (SysTest, 3ion Orgs)),
((SysTest, sion Orgs), (SysTestRecC)acy Orgs)),
((SysTestRec, aftacs Orgs), (End, ¥ng Orgs))

1

It is now necessary to define an abstract operdhahintegrates one action or activity into
another. Based on the functioriegrate_grapl) defined in Definition 12, the integration of
semantically equivalent processes follows the fionan Definition 16:

Definition 16.
integrate_SemEg@xtendsntegrate_graph()
where
. = Ndas O (Nds\ Ndsy)
Ndagg =0
Edbe = Eth-1o-as J Edarrom-as) Edain-as [EGs-ro-85) Eds-rrom-ssl] EGB-ouT-Bs
Edadd = Ethddazs [Edadasoa
Edagaazs={ (s,t)UED |0(s,tYJEda-10-as, (1,1) IMapas.as
Edagas2a= { (s',t)JED |0 (s,tYJEdA-FrOM-As (S,S T IMapas-a4

Figure 89 shows the integration of semanticallyieaant processes. Remark, that there are
only two edges to be added, the one that pointset@ub-graph to be included (&gh-s) and

the one that leads back to the Mastera(E#},). Furthermore, a mapping needs to be done
including the nodes (t, t'). In this case, it workghout any complications, since the action
delivers exactly those artifacts needed by t ¢gegmantic equivalence!).

As the color code shows, the arrows in red and siaddight blue are erased; whereas, the

green edges are added, if a semantically equivalgidn from organization B is integrated
into Organization’s A process.

115

4.3 Formalization

/
\ 3 +Ed pgaacs

'Ed Del _EdDeI

t .<"7 +Ed pgap2a

Figure 89: Abstract modeling for Integration of senantically equivalent processes

4.3.6 Horizontal Integration

Due to the fact that processes in the ‘Horizontéédration’ scenario are not semantically
equivalent, the Mediator concept needs to be uBed.this purpose, another function is
defined, which considers the inclusion of appraprilandover action to be included
(compare Figure 56).

The abstract syntax for ‘Horizontal Integrationhfion is defined as follows:

Definition 17.
integrate_horiz(extendsntegrate_graph()
where
. = Ndas U (N0 \ Ndks)
* Ndagg = HandovBed] HandovEnd
» HandovBeg = {hoR [INDig*{Y aciog*<ROLE>| (S,t]JEds-10-As }
» HandovEnd = {hogy INDigx{y acliog*<ROLE>| (S,t}JEda.rrOM-as }
* Etbe = Eth1o-as U Edarrom-as EQain-as
0 EdstossH Eth-rrom-ast] Etk.outes
* Edadd = Ethddazsync! Edaddsyncosl] Edaddsosyndd Edaddsyncoa
* Edagd azno= { (S, holys o) IED | holg 5[] HandovBeg }
* Edada_nonze= { (hobys ') UED | holg sl IHandovBeg, (t,t))Mapas-a¢
* Edadd gonoe { (8',hogsy) UED | hog [IHandovENd, (s,S)Mapas-ss
* Edadd noe2= { (hogs, t)UED | hog [JTHandovEnd }

+EdAdd_A2hob +EdAdd_h0bZB

G .\A S) +Nd g4

hob

As It

'Ed Del _EdDeI

+Nd g

/.
NS

5 IS
\ t 04-// hoe

+EdAdd7hoe2A +EdAdd_BZhoe
Figure 90: Abstract modeling of ‘Horizontal Integration’

116

4 Solution Scenarios

HandovBeg and HandovEnd are a set of nodes withieddator necessary to connect semantically
non- equivalent processes. Thereby, responsiligllocated by having an “AND” connection
defined.

Figure 90 shows the abstract modeling of ‘Horizbmtéegration’ including the concrete
nodes of “HandovBeg” (= hob) and “HandovEnd” (= hoe

Applying the abstract syntax to the concurrent gdamesults in the following Definition 18
(control and data flow) according to Figure 56.

Definition 18.
integrate_horiz(extendsntegrate_graph()
where
. = (SysImpl, Ycion Orga), (IMpISYS, Writacs Orga), (Start, War Orgs), (End, ¥ng Orgs),
(SysDes, yion Orgs), (SysTest, ation Orgs), (SysTestReC apfract Orgs),
(SysRequSpec afacs Orge)

e Ndagg = (HandovBeg, yion (Orga AND Orgg)),
(HandovEnd, ¥on (Orgn AND Orgs))

® Ed:)el =
/[[Controlflow]
((SysDes, yion Orga), (SysImpl, Yetion Orga)),
((SysImpl, Ycion Orga), (SysTest, yion Orga)),
((Start, ¥ary Orgs), (SysDes, yiion Orgs)),
((SysDes, ¥ction Orggs), (SysImpl, ¥ction Orgg)),
((SysImpl, ¥ction Orgs), (SysTest, diion Orgs)),
((SysTest, Yeion Orgs), (End, ¥ng Orgs))

/[[Dataflow]

((SysDesignSpecayfacs Orga), (Sysimpl, Ycion Orga)),
((SysImpl, ¥ction Orga), (IMPISYS, Yirtitacs Orga)),
((SysRequSpec ayact Orgs), (SysDes, tiion Orgs)),
((SysDes, yttion Orgs), (SysDesignSpecapracy Orgs)),
((IMpISys, Vriitacy Orgs), (SysTest, ytion Orgs)),
((SysTest, Yiion Orgs), (SysTestRec,afitacs Orgs)),
((SysTestRec, afitacy Orgs), (End, ¥na Orgs))

* Edad=
/[[Controlflow]
((SysDes, yiion Orgn), (HandovBeg, 3ion (Orga AND Orgg))),
((HandovBeg, ion (Orga AND Orgg)), (SysImpl, ¥cion Orgs)),
((SysImpl, ¥cion Orgs), (HandovEnd, sion (Orga AND Orgg))),
((HandovENnd, ¥ion (Orga AND Orgg)), (SysTest, 3iion Orga))

/[[Dataflow]

((SysDesignSpecajfiacs Orga), (HandovBeq, 3ion (Orga AND Orgg))),
((HandovBeg, ¥iion (Orga AND Orgg)), (SysDesignSpecCaitac Orgs)),
((IMpISys, Writacs Orgs), (HandovEnd, yion (Orga AND Orgg))),
((HandovEnd, ¥ttion (Orga AND Orgg)), (ImpISys, Writacs Orga))

117

4.3 Formalization

4.3.7 Additive Vertical Integration

Figure 91 shows the abstract modeling of ‘AdditiVertical Integration’, which makes
additional Fork and Join nodes necessary due tpridygerty of parallelism.

+Nd g4

+Ed Add_A2Decomp

+Ed Add_Decomp2As

decomp
—

@ +EdAdd_DecompZB

Fork (s

-Ed Del -Ed Del

Join 4
—>- -

_’/0 +Ed Add_B2Integ

integ

+Ed Add_Integ2As
+Ed Add_As2Integ

+Nd pgq
Figure 91: Abstract modeling of ‘Additive Vertical Integration’

The abstract syntax for ‘Additive Vertical Integoat’ is defined using the subsequent
function.

Definition 19.
integrate_additive_vertical@xtendsntegrate _graph()
where

. =(Nds\ Ndsy)
e Ndagg = Decomp Integl] Join[] Fork

» Decomp = {decompyINDig*{y ton}*<ROLE>| (St JEda-T0-As }
¢ Integ = {integs s INDig*{y join}*<ROLE>| (S,t] JEdr FrOM-As }

* Fork = {forks s INDigX{y ton}*<ROLE>| (S,t}JEda-10-as }

» Join = {joins syl INDig*{Y join}*<ROLE>| (S,t)JEda-rrROM-As }

* Edbe= Eth1o.as U Edhrrom-as EdstosJ EGB.From-sL] EGk-out-8s
® EdAdd: EdﬁddAZDecompD EdAddDecompZBD Edﬁ\ddDecompZA@ EdAddBZIntegD EdAddlntegZA
U EdAddAsZInteg

* Edadd pecompzroie { (decompy, fork)ED | forks y[IFork, decomg JIDecomp}
* Edadd soinzinteg { (OiN(s, integlJED | joinsy1Join, integ yJinteg}

* Edadd a2pecomg= { (S, decompy)ED | decompyJDecomp}

* Edadd pecompzs= { (decomp»,t') DED | decomgIDecomp, (t,t)}JMapas-ss
* Edadd pecompzas { (decomps,t)JED | decomgyJDecomp}

* Edadd B2ine™ { (S',integs) JED | integsInteg, (S,sVMapaseg

* Edadd as2inteq { (S, inte@s) IED | integs o JInteg}

* Edadd intega= { (integsy, YUED | integ linteg}

118

4 Solution Scenarios

The initial root processes have been modified fmwang the functionality of this scenario.
Therefore, the definition of node and edges of wizgion’s A and B original processes in
Figure 57 are formalized as the following:

Definition 20.
A=({

(Start, Ve Orgn), (End, ¥na Orgn),
(SysDesign, ytion Orgh), (SWReqUENG, gion Orgn), (SWDesign, ion Orgh),
(SWIMp, Yaction Orgn), (SWTest, Yeion Orgn), (SysTestDesign ayion Orga),
(SysTest, yion Orgh), (SysRequSpecaptacy Orgn), (SysDesignSpecadtac, Orgy),
(SWRequSpec a)ftacs Orgh), (SWDesignSpecayiacs Orgh), (IMpISW, Wriitac, Orga),
(SWTestRec, ¥itac, Orgn), (SysTestSpecayacs Orgn), (SysTestRecC a)facy Oran),

FoA

//[Controlflow]

((Start, Y Orgn), (SysDesign, gion Orgn)),
((SysDesign, ation Orgn), (SWRequENg, gion Orgn)),
((SWRequENg, ation Orgh), (SWDesign, yion Org)),
((SWDesign, Yetion Orgn), (SWIMpI, Vction Orgh)),
((SWImpl, Yaciion Orgh), (SWTest, Yeion Orgn)),
((SWTest, Yetion Orgn), (SysTestDesign aion Orgn)),
((SWTestDesign, ation Orgh), (SysTest, yion Orgh)),
((SysTest, dion Orgn), (End, ¥ng Orgn))

/[[Dataflow]

((SysRequSpecaptacy Orgh), (SysDesign, gkion Orgn)),
((SysDesign, ion Org), (SysDesignSpecaytacs Orgh)),
((SysDesignSpecafiacs Orgh), (SWRequENg, afion Orgn)),
((SWRequENg, gtion Orgh), (SWRequSpecaifrac, Orgh)),
((SWRequSpec ajffacs Orgh), (SWDesign, yion Org)),
((SWDesign, ¥etion Orgn), (SWDesignSpecayiacs Orgh)),
((SWDesignSpecajfacs Orga), (SWIMp, Wcion Orgy)),
((SWImpl, yaction Orgn), (IMpISW, Vartitacs Oran)),
((IMPISW, Vartitacs Orgh), (SWTest, Yeion Orgn)),
((SWTest, Yeion Orgh), (SWTestRec, aitacs Orgh)),
((SWTestRec, itacs Oran), (SysTestDesignayion Orag)),
((SysTestDesign apion Orgh), (SysTestSpecayacs Orch)),
((SysTestSpecayacs Orgn), (SysTest, yion Orgh)),
((SysTest, dion Orgn), (SysTestRec,atacy Org)),
((SysTestRecC, aftacs Orgh), (End, ¥ng Orgn))

})
Definition 21.
B=({

(Start, Yan Orgs), (End, yng Orgy),

(HWDesign, Ycion Orgs), (HWIMpl, Vacion Orgs), (HWTest, Yeion Orgs),
(HWRequSpec, yfitacy Orgs), (HWDesignSpec,)iacs Orgs),
(HWImpISys, Viritacs Orgs), (HWTestRec, yitacs Orgs)

119

4.3 Formalization

A

/l[[Controlflow]

((Start, Yas Orgs), (HWDesign, Yeion Orgg)),
((HWDesign, Yction Orgs), (HWIMpI, Yacion Orgs)),
((HWImpl, Yacion Orgs), (HWTest, Yeion Orgs)),
((HWTest, Yction Orgs), (End, ¥ng Orgs))

/[[Dataflow]

((HWRequSpec, itacs Orgs), (HWDesign, Yeion Orgs)),
((HWDesign, ¥cion Orgs), (HWDesignSpec,ajtacs Orgs)),
((HWDesignSpec, aitacs Orgs), (HWIMpl, yacion Orgs)),
((HWImpl, Yaction Orgs), (HWIMPISYS, Writacs Orgs)),
((HWIMPpISys, Writacs Orgs), (HWTest, Ycion Orgs)),
((HWTest, Vcion Orgs), (HWTestRec, yitacs Orgs)),
((HWTestRec, Mitacs Orgs), (End, ¥ng Org))

1

Based on the concrete formalized definition ofrita processes, the function in Definition 19 is
applied in Definition 22 (according to Figure 59):

Definition 22.
integrate_additive_vertical@xtendsntegrate _graph()
where
. = (Start, ¥ Orgs), (End, ¥ng Orgs),
(SWRequENg, ytion Orga), (SysTestDes apion Orga)

* Ndaga = (Decomp, ¥eiion (Orga AND Orgg)), (Integ, ¥cion (Orga AND Orgg))
(Fork, York, (Orga AND Orgg)), (Join, Yin, (Orga AND Orgg))

* Ede=
//[Controlflow]
((SysDes, ¥iion Orga), (SWRequUENG, gion Orga)),
((SWRequENQ, aiion Orgh), (SWDesign, jion Orga))
((SWTest, Yction Orgn), (SysTestDesignafion Orga)),
((SysTestDesign,apion Orga), (SysTest, yion Orgn)),
((Start, Yian Orgg), (HWDesign, Yeion Orgs)),
((HWTest, ction Orgs), (End, ¥ng Orgs))

/[[Dataflow]

((SysDesignSpecayfacs Orga), (SWReqUENG, dion Orga)),
((SWRequENQ, gion Orga), (SWRequSpecayiac, Orga)),
((SWTestRec, yitacs Orga), (SysTestDesign a¥ion Orga)),
((SysTestDesign,aiion Orga), (SysTestSpecayfacs Orga)),
((HWTestRec, Mitacs Orgs), (End, ¥ng Orgs))

* Ela=
//[Controlflow]
((SysDesign, stion Orga), (Decomp, Yeiion (Orga AND Orgg))),
((Decomp, Yciion (Orga AND Orgg)), (Fork, Yor, (Orga AND Orgg))),

120

4 Solution Scenarios

((Fork, Yor, (Orga AND Orgg), (SWDesign, yiion Orga)),
((Fork, York, (Orga AND Orgg), (HWDesign, Yciion Orgs)),
((HWTest, Ycion Orgs), (Join, Yoin, (Orga AND Orgg))),
((SWTest, ¥ciion Orga), (Join, Yoin, (Orga AND Orgg))),

((Join, Yoin, (Orga AND Orgg)), (Integ, ¥cion (Orga AND Orgg))),
((Integ, Ycton (Orga AND Orgg)), (SysTest, yion Orga))

/[[Dataflow]

((SysDesignSpecapfiacs Orga), (Decomp, Yeion (Orgs AND Orgg))),
((Decomp, Ycion (Orga AND Orgg)), (SWRequSpec aiac Orga)),
((Decomp, Ycion (Orgn AND Orgg)), (HWRequSpec,afitacs Orgs)),
((SWTestRec, aitacs Orga), (Integ, ¥cion (Orga AND Orgg))),
((HWTestRec, ¥ifacs Orgg), (Integ, ¥cion (Orga AND Orgg))),
((Integ, Yciion (Orgn AND Orgg)), (SysTestSpecCapkac Orga))

4.3.8 Alternative Vertical Integration

The abstract syntax for ‘Additive Vertical Integaat' is defined using the following function.

Definition 23.
integrate_alternative_vertical@xtendsntegrate graph()
where

. = (Nds\ Ndsy)

* Ndagg = Ratiol] Accept] Branchl Merge

RatioAlys = {ratioalyg s INDig*{y brancy *<ROLE>| (S,t]JEda-T0-As}
Accept = {accedyl INDig*{y mergd *<ROLE>| (S,t]JECarrOM-as }
Branch = {brancR sl INDig*{y prancd*<ROLE>| (S,tJEda.-T0-As }
Merge = {merge y-INDigX{y mergd X<ROLE>| (s,tl JEdr FrOM-As }

* Edadd Ratioayszeranc { (ratioalyssyy, branch)JED | ratioalyss s IRatioAlys, brancly
[OBranch}
* Edadd merge2accep { (Merges,), accpt)llED | merge s IMerge, acceptyJAccept}

* Etbe = Edv1o.as U Edhrrom-as Eds-to8sJ EB.From-esL] ECk-ouT-Bs
® EdAdd = Ed&ddAzDecomH] EdAddDecompZBD EdAddDecompZAsD EdAddBZIntegD EdAddIntegZA
0 EdAddAsZInteg

Edadd a2raioalys= { (S, ratioalyss) IED | ratioalysgs] RatioAlys}

Edadd_Rratioalys 26= { (ratioalyst") JED | ratioalyss] RatioAlys, (t,t' Y IMapas-ss
Edadd_Rratioalys 2as= { (ratioalysst)LJED | ratioalyss | RatioAlys}

Edadd_poaccept= { (S’ accepis) UED | accept o] Accept, (s,sTMapas-ed

Edaad asoaccep™ { (S, accep) IED | accept] Accept}

Edadd accepi2a= { (Accepisy t)YJED | accept] Accept}

As mentioned before, this scenario is very simitarAdditive Vertical Integration’. The
difference is thé-ork andJoin functionality, which is replaced BranchandMerge

121

4.3

Formalization

_EdDeI

+Nd 4

+Ed Add_A2RatioAlys

+Ed Add_RatioAlys2As

ratioalys
T A
+EdAdd RatioAlys2B

Branch
-Ed Del
Merge

+Ed Add_B2RatioAlys
accept

+Ed Add_Accept2As

+EdAdd7A52Accept
+Nd 5y
Figure 92: Abstract modeling of ‘Alternative Vertical Integration’

In order to apply this scenario, the root processesagain concretely defined following the
modeling in Figure 61.

Definition 24.

A=({

(Start, Yan Orgh), (End, ¥ng Orgn),

(SySDeSign1 3ttion Ol’gg), (SWReqUEngyal‘tion OrgA), (SWDeSign! Metion Org“):
(SWIMpl, Yaciion Orgn), (SWTest, yeion Orgh), (SysTestDesignayion Orga),
(SysTest, yion Orgh), (SysRequSpecaptacy Orgn), (SysDesignSpecaitacs Orgn),
(SWRequSpec,a)facs Orgn), (SWDesignSpecapacy Orgh), (IMpISW, Writac, Orgh),
(SWTestRec, itacs Orgh), (SysTestSpecCadacs Orgn), (SysTestRecC a)acs Oran),

}oA

/[[Controlflow]

((Start, Y Orgn), (SysDesign, aion Orgn)),
((SysDesign, ation Orgn), (SWReqUENG, afion Orgh)),
((SWReqUENQ, gion Orgh), (SWDesign, yion Orgh)),
((SWDesign, Yetion Orgn), (SWIMpl, Vction Orgh)),
((SWImpl, Yaciion Orgh), (SWTest, Yeion Orgn)),
((SWTest, Ycion Orgn), (SysTestDesignayion Orgn)),
((SWTestDesign, fion Orgn), (SysTest, yion Orgn)),
((SySTeSt1 %tiOI’)i (End,)énc))

/[[Dataflow]

((SysRequSpecatacs Org), (SysDesign, akion Orgn)),
((SysDesign, ation Orgn), (SysDesignSpecaac, Org)),
((SysDesignSpecafiacs Orgh), (SWRequENg, dfion Orgh)),
((SWRequENg, gion Orah), (SWRequSpecayfiacs Orgh)),
((SWRequSpec,a)ftacs Orgh), (SWDesign, ytion Org)),
((SWDesign, Ycion Orgh), (SWDesIgNnSpecCayacs Orgh)),
((SWDesignSpecajftacs Orga), (SWIMpI, ction Org)),
((SWImpl, Yaciion Orgh), (IMPISW, Vritacs Orgh)),
((ImpISW, Vartitacs Orgh), (SWTest, Yetion Orgn)),

122

4 Solution Scenarios

((SWTest, Yeion Orgh), (SWTestRec, aitacs Orgh)),
((SWTestRec, Mitacs Oran), (SysTestDesignayion Ora)),
((SysTestDesign apion Orgn), (SysTestSpecayacs Orch)),
((SysTestSpecapacy Orgn), (SysTest, yion Orgh)),
((SysTest, sion Orgn), (SysTestRec,atacy Org)),
((SysTestRecC, aftacs Orgh), (End, ¥ng Orgn))

})
Definition 25.
B=({

(Start, Yan Orgs), (End, ¥na Orgg),

(SafCrDesign, 3ion Orgs), (SafCrimpl, Yeion Orgs), (SafCrTest, yion Orgy),
(SafCrRequSpecaytacs Orgs), (SafCrDesignSpecaitacs Orgs),
(SafCrimplSys, Mitacs Orgs), (SafCrTestRec a)acs Orgs)

oA

/[[Controlflow]

((Start, Yan Orgs), (SafCrDesign, ation Orgs)),
((SafCrDesign, ytion Orgs), (SafCrimpl, Ycion Orgs)),
((SafCrImpI, Yiction Org3)| (SafcheSt: 3ttion Org?»)),
((SafCrTest, yion Orgs), (End, ¥ng Orgs)),

/[[Dataflow]

((SafCrRequSpecadtacy Orgs), (SafCrDesign, yion Orgs)),
((SafCrDesign, yion Orgs), (SafCrDesignSpecCatacs Orgs)),
((SafCrDesignSpecatacs Orgs), (SafCrimpl, Yetion Orgs)),
((SafCrimpl, Ycion Orgs), (SafCrimplSys, yitacs Orgs)),
((SafCrimplSys, Miacs Orgs), (SafCrTest, yion Orgs)),
((SafCrTest, Mion Orgs), (SafCrTestRec a)tacs Orgs)),
((SafCrTestRec,qftacs Ores), (End, ¥ng Orgs))

H-

Using Definition 23 the concrete integration opemrafor ‘Alternative Vertical Integration’ is
defined (according to Figure 62) Definition 26:

Definition 26.
integrate_alternative_vertical@xtendsntegrate _graph()
where

* = (Starg, Ystas Orek), (Ena, Yens Orge),
(SWReqUENG, aion Orgn), (SysTestDes,aion Orga)

* Ndags = (RatioAlys, Ycion (Orga AND Orgg)), (Accept, Ycion (Orga AND Orgg)),
(Branch, Yranch (Orga AND Orgg)), (Merge, Yherge (Orgh AND Orgg))

° Ed:)el =
//[Controlflow]
((SysDes, Yiion Orgn), (SWRequENQ, dkion Orgn)),
((SWRequENQ, ion Orgn), (SWDesign, Yeion Orga))
((SWTest, Ycion Orga), (SysTestDesignayfion Orga)),
((SysTestDesign,apion Orga), (SysTest, dion Orgn)),
((Start, Yian Orgg), (SafCrDesign, yion Orge)),

123

4.3 Formalization

((SafCrTest, Mion Orgs), (End, ¥ng Orgs))

//[Dataflow]

((SysDesignSpecafacs Orga), (SWRequENg, afion Orga)),
((SWRequENg, akion Orga), (SWRequSpec ayfracs Orgn)),
((SWTestRec, yfitacs Orgn), (SysTestDesign a¥ion Orga)),
((SysTestDesign,aion Orga), (SysTestSpecaytacs Orga)),
((SafCrTestRec,a)ftacs Orgs), (Enk, Yend Orgs))

* Edawa=
//[Controlflow]
((SysDes, ion Orgn), (RatioAlys, ¥cion (Orga AND Orgg))),
((RatioAlys, Yaciion (Orga AND Orgg)), (Branch, Yranch (Orgs AND Orgg))),
((BranCh, Yranch (OrgA AND OrgB)), (SWDesign, Metion Orgﬁ));
((BranCh, Yranch (Orgﬁ AND Ofgs)), (SafCrDesign, dtion Org3)),
((SafCrTest, Yeion Orgs), (Merge, Yherge (Orga AND Orgg)),
((SWTest, Yction Orgn), (Merge, Yherge (Orga AND Orgg)),
((Merge, Ynerge (Orga AND Orgg), (Accept, Ycion (Orga AND Orgg))),
((Accept, ¥cion (Orga AND Orgg)), (SysTest, 3ion Orgn))

//[Dataflow]

((SysDesignSpecatacs Orga), (RatioAlys, ¥cion (Orga AND Orgg))),
((RatioAlys, Ycion (Orgn AND Orgg)), (SWRequSpecaacs Orga)),
((RatioAlys, Viction (Orga AND Orgg)), (SafCrRequSpecCaitacs Orgs)),
((SWTestRec, yitacs Orga), (Accept, Yetion (Orgh AND Orgg))),
((SafCrTestRec, afitacs Orgs), (Accept, Yeion (Orga AND Orgg))),
((Accept, Yetion (Orgs AND Orgg)), (SysTestSpecatacs Orga))

4.3.9 Merging Integration

The abstract syntax for ‘Merging Integration’ ifided using the following function.

Definition 27.
integrate_merging(@xtendsntegrate_graph()
where
. = Ndas O Ndg
e Ndagg = SyncBed] Handovi] Ndcs
» SyncBeg = {sky[INDigX{y aciog*<ROLE>| (S,t}JEda-10-As }
* Handov = {h@ sl INDigX{y actiod *<ROLE>| (S, JEda.FroM-As}

* Edbe = Edatoas U Edarrom-as] Edacin-as [EGs-o-8s) Eb-rrom-8sL] Es-ouT-8s
0 Edsn-as
* Edadd = Ethdd_a2synceed] EOadd_syncegoch) Edadd_c-in-cs [EChdd_csoré] EQadd Hooa

EdAddeZSyncBeg: { (5, Sbs,t))DED | Sl@s,t)DSyncBeg }

Edada_synceegacs { (Shsgy JUED | sty ISyncBeg, (tjIMapas.cs, (t.j)IMapss.cs}
Edadd cves={ (,J) OED | j0 Ndcs}

Edadd cson= { (', hos)UED | hgsyIHandov, (s,))IMapascs, (S',)') IMapss.cs}
Edadd Ho2a= { (O,)UED | se [1Handov }

124

4 Solution Scenarios

Cs is the sub-graph of those sets of nodes thateafermed conjointly by Organization A
and B.

+Nd pyq

+EdAdd7A2$yncBeg +EdAddeZSyncBeg

+Ed Add_SyncBeg2Cs

Sb(s,t)

—

| ji Csl

| b H
j“o

kﬁ_)

. ————@
ho (s

'Ed Del _EdDeI

+Ed
pdriozn +Ed Add_Cs2Ho

+Nd 4
Figure 93: Abstract modeling for ‘Merging Integrati on’

Figure 64 is referred in order to illustrate theo®te formalization. The root process of
‘Merging Integration’ is defined as the following:

Definition 28.
A=({
(Start, Yan Orgh), (End, ¥na Orgn),
(SysDesign, 3ttion Orgﬁ\), (SySImpL Yction Orgﬁ\), (SySTeSt, 3ttion Ol'ga),
(SysRequSpecaytacs Orgn), (SysDesignSpecadtacy Orgh), (IMplSys, Yritacs Orh),
(SysTestRec,afitacs Orgh)

Fod

/[[Controlflow]

((Start, Yan Orgn), (SysDesign, aion Orgh)),
((SysDesign, 3ion Orgn), (Sysimpl, Yeion Orgn)),
((SysImpl, ¥cion Orgn), (SysTest, yion Orgh)),
((SysTest, Mion Orgn), (End, ¥ng Orgn))

//[Dataflow]

((SysRequSpecapfacs Org), (SysDesign, akion Orgn)),
((SysDesign, ion Org), (SysDesignSpecadtacs Orgh)),
((SysDesignSpecatacs Orgn), (Sysimpl, Yction Orgn)),
((SysImpl, ¥Ycion Orgn), (IMpISys, Writacs Orgh)),
((IMpISys, Writacs Orgh), (SysTest, 3ion Org)),
((SysTest, yion Orgn), (SysTestReCajffacs Orgh)),
((SysTestRecC, aftacs Orgh), (End, ¥ng Orgn))

1

Definition 29.

125

4.3 Formalization

B

(Start, an Orgs), (End, ¥na Orgg),

(SySDeSign1 3ttion Org3)| (Sy5|mp|’ Yction Orgg), (SySTeSt, 3ttion Org?»),
(SysRequSpecapfiacs Orgs), (SysDesignSpecatacs Orgs), (IMplSys, Writacy Orgs),
(SysTestRec,afitacs Orgs)

A

/l[[Controlflow]

((Start, Man Orgs), (SysDesign, aion Orgs)),
((SysDesign, dttion OrgS), (Sy5|mp|1 Yction OrgS)),
((SysImpl, ¥cion Orgs), (SysTest, sion Orgs)),
((SysTest, yion Orgs), (End, ¥ng Orgs))

/[[Dataflow]

((SysRequSpecaptacs Orgs), (SysDesign, gion Orgs)),
((SysDesign, aion Orgs), (SysDesignSpecatac; Org)),
((SysDesignSpecayfacs Orgs), (Sysimpl, Yeion Orgs)),
((SysImpl, ¥cion Orgs), (IMpISYs, Yritacs Orgs)),
((ImpISys, Writacs Orgs), (SysTest, sion Orgs)),
((SysTest, yion Orgs), (SysTestRec,atacy Orgs)),
((SysTestRec, aftacs Orgs), (End, ¥ng Orgs))

1.

Using Definition 27, the concrete integration operafor ‘Merging Integration’ is defined
based on Figure 65 in Definition 30:

Definition 30.
integrate_merging(@xtendsntegrate_graph()

where

= (Start, Y Orgs), (End, ¥na Orgp),
(SysDesignadon Orgs), (SysImpl, Yeion Orgs), (SysTest, yion Orgs),
(RequSpec, dtitacs Orgs), (SysDesignSpecarfacs Orgs), (IMPISYS, Yriitacs Orep),
(TestRec, Mifacs Orgs), (Sysimpl, Ycion Orgh),

Ndada = (SynchBeg, 34ion (Orga AND Orgg)), (Handov, Ycion (Orga AND Orgg)),

(SysDesignSpec ayitacs (Orga AND Orgg)), (SysImpl, Yiction (Orga AND Orgg)),
(IMpISys, Writacs (Orca AND Orgg)),

Edpe =

/[[Control flow]

((SysDesign, éétion Org“)) (SySImpl’)‘ction Or%)),
((SysImpl, ¥ction Orgn), (SysTest, yion Orgn))
((Start, Yan Orgs), (SysDesignyaciion Orgs)),
((SysDesign, %tion: Org3)| (SySImpL yction Org3)),
((SysImpl, Wction, Orge), (SysTest, Mion, Orgs)),
((SysTest, Xetion, Orgs), (End, ¥ng Orgg)),

//[Data flow]
((SysDesignSpecajacs Orgn), (Sysimpl, Yction Orgn)),
((SysImpl, ¥cion Orgn), (IMPISys, Yritac Orgn)),

126

4 Solution Scenarios

((SysRequSpecaptacs Orgs), (SysDesign, yion Orgs)),
((SysDesign, ytion Orgs), (SysDesignSpecaptacs Orgs)),
((SysDesignSpecafacs Orgs), (SysImpl, Ycion Orgs)),
((SysImpl, Ycion Orgs), (IMpISys, Yritacs Orgs)),
((ImpISys, Writacs Orgs), (SysTest, sion Orgs)),
((SysTest, yion Org), (SysTestRecC aracs Orgs)),
((SysTestRec,¥fitacs Orgs), (End, ¥ng Orgs))

* Edag=
/l[Control flow]
((SysDesign, stion Orgn), (SynchBeg, yion (Orga AND Orgg))),
((SynchBeg, ion (Orga AND Orgg)), (SysImpl, Ycion (Orga AND Orgg))),
((SysImpl, ¥icion (Orga AND Orgg)), (Handov, Ycion (Orga AND Orgg))),
((Handov, Ycion (Orgs AND Orgg)), (SysTest, 3ion Orgn)),

/[[Data flow]

((SysDesignSpecayfacs Orgh), (SynchBeg, 3ion (Orgs AND Orgg))),
((SynchBeg,¥ton (Orga AND Orgg)), (SysDesignSpecaitacs (Orga AND Orgg))),
((SysDesignSpecayfacs (Orga AND Orgg)), (Sysimpl, Yeion (Orgs AND Orgg))),

((SysImpl, ¥cion (Orga AND Orgg)), (IMpISys, Ycion (Orga AND Orgg))),
((ImpISys, Yiciion (Orga AND Orgg)), (Handov, Yeion (Orga AND Orgg))),

((Handov, Ycion (Orga AND Orgg)), (ImplSys, ¥ritac, Orga))

4.3.10 Hierarchical Integration

Hierarchical process integration consists of sdvergegration steps and makes use of
already- existing integration methods and tools kizeve been previously defined. The major
idea is that the hierarchy is dissolved (“flattef)ednd consequently integration is done

without having hierarchical process. After integrat a new hierarchy is defined. These steps
are step- by- step illustrated in the following.

Step 1: Basic processes for hierarchical integratio

Figure 94 depicts the root processes for hieraathigegration. It is assumed that both
organizations have hierarchical actions (HA-noddéh wotted line) in place. Within ngd
nodes, the appropriate adraphs are defined.

N S D

Figure 94: Root Processes for Hierarchical Integrabn

127

4.3 Formalization

Step 2: Deletion of hierarchical elements

In order to prepare processes for integration anatry is dissolved (= ‘temporarily deleted’).
This is illustrated in Figure 95.

N N D

'\ /‘N\
\""'\«’o

_ / \

Figure 95: Dissolution of Hierarchical Processes

)

The respective functiodelete hierarchy is defined as follows:

Definition 31.

delete_hierarchy: ADx AD — AD {1}

(ND\{nd b Ed\ U{(nd,ndHA),(nd,,, ,nd)}J
ndJNd
delete_hierarchyad, :(Nd,Ed),ndHA)=DEF * nd,, isahierarchi@alactionnode
N otherwise

Step 3: Integration of action/activities

) SR

+EdAdd7 2hob +NdAdd +EdA d_hob2B \
> @—
hob
5) As © “Ed
-EdDeI J Del

°)

\‘o

/ +Nd 4

\ ' B

hoe

+Ed agq_noeza +Ed agq_B2noe
Figure 96: Abstract modeling of ‘Horizontal Integration’

128

4 Solution Scenarios

Next, integration is done according to familiar heats and tools. The sub-graphs As and Bs
need to be defined first, which symbolize the pssceodes to be replaced (As) and to be
integrated (Bs). Figure 96 shows the respectivegnattion procedure using the mediator for
‘Horizontal Integration’.

Definition 32.

integrate_horiz(extendsntegrate_graph()
where
. = Ndas U (Ndg\ Ndks)
* Ndags = HandovBed! HandovEnd
» HandovBeg = {hoR /[INDig*{y aciog*<ROLE>| (S,t]JEda-10-As }
» HandovEnd = {hogy[INDigX{y aciiog*<ROLE>| (S,t}JECa-rrOM-as }
* Ebe = Eth1o-As O Edarrom-asl] Edain-as
0 Eds.toss0 Etk-rromas] Etk.out-es
* Edadd = Edhddazsync] Edaddsyncos] Edadasosyncdd Edaddsyncoa
* Edaga_aznoo= { (S, holy) IED | holg o1 HandovBeg }
* Edadd nobee= { (hobsy, t') DED | holy (1 HandovBeg, (t,tlMapas-s¢
* Edadd Bonoe { (8',hogs) IED | hog [JHandovENd, (s,s)Mapas-s¢
* Edadd noe2s= { (hogs,)ED | hog y[THandovEnd }

Step 4: Re-definition of Hierarchy

The last step includes re-definition of hierarckig(ire 97). Thereby, the original hierarchies
are used as orientation for new the hierarchy aifide incorporated as far as it makes sense
and it is possible. This decision is not automalbed will be taken by a process engineer.

(el)

/. \ ndHA I'T'I\\\
! / \ o adAs\ E
14 hob !
|] T
| o, |
! \. hoe J E
\\/ ™)

Figure 97: Re-defined Hierarchy

The creation of hierarchy follows the functiameate hierarchy, which is defined in
Definition 5.

Having the abstract definition in Figure 94 untigjére 97 depicted the concrete integration
steps 1 — 4 are accordingly described in the falgw

129

4.3 Formalization

Step 1:
The basic processes for hierarchical integrati@oi@tng to Figure 72 are described below.

Definition 33.

A=({
(Start!)étarb' (End1 ¥nc),
(RequENg, yion Orgs), (SWImpl, yia, Orga, SWImpha), (SysTest, sion Orgn),
(RequSpec, dfitacs Orgn), (IMPISW, Viritac, Orgh), (SysTestReC aftacs Orgh),
(MarketEval, Ycion Orgh), (MarketInfo, Writacs Orgh)

oA

SWImpha = {(Start, Was Orgn), (End, ¥ng Orgn), (SWReal, Yaction Orgh),
(RealSW, Yiitacs Orgn), (SWModTest, yion Orgh),
(SWTestRec, yitacs Orgh)

}

/l[Control flow]

SWImphia= {
((Start, Yars Orgn), (SWReal, Yetion Orgn)),
((SWReal, Ycion Orgh), (SWModTest, yion Org)),
((SWModTest, yeion Orgh), (End, ¥ng Orgn)),

}

((Start, Yan Org), (MarketEval, Yeion Orgh)),
((MarketEval, Ycion Orgs), (ReqUENG, 3ion Orga)),
((ReqUEng1 él:tior)a (SWImp|1 Yo Org3u SWImphA)),
((SWImpl, yha Orga, SWImMpla), (SysTest, skion Orgn)),
((SysTest, yion Orgn), (End, ¥ng Orgn))

/[[Data flow]

SWImphia = {
((SWReal, Ycion Orgn), (RealSW, ¥itacs Oragn)),
((RealSW, Yiitacs Orgn), (SWModTest, Mion Orgn)),
((SWModTest, yeion Orgh), (SWTestRec, afitacy Orgh)),
((SWTestRec, yitacs Orgn), (ENd, ¥ng Orgn))

}

((MarketEval, Ycion Org), (MarketInfo, Yiitacs Ordh)),
((MarketInfo, Wartitact Orgn), (ReqUEN, 3tion Orgh)),
((RequENG, ¥ion Orgh), (ReqUSPEC,afitacs Orgn)),
((RequSpec, afitacs Orgh), (SWImMpl, ¥ Orga, SWImphia)),
((SWImpl, yha Orga, SWImpha), (IMpISW, Vatitac, Oran)),
((ImpISW, Vartitacs Oran), (SysTest, dion Orgh)),
((SysTest, yion Orgh), (SysTestRec atacs Orgn)),
((SysTestRec, aftacs Orgh), (End, ¥ng Orgn))

H-

B=({
(Start, Y Orgs), (End, ¥ng Orgs), (MarketEval, Ycion Orgs),
(MarketInfo, Vritacy Orgs), (Sysimpl, yia Orgs, Sysimplha),

130

4 Solution Scenarios

(RequENQ, ¥ion Orgs), (SysTest, yion Orgs), (RequSpec,¥fiacs Orgs),
(IMpISys, Writacs Orgs), (SysTestREC atacs Orgs)

SysImpha = {

(Stark, Ystan Orgs), (End, Yend Orgs), (SWDesig8, Yaction Ore),

(SWImpl, Yacion Orgs), (SWTest, Yeion Orgs),
(SWDesignSpec,ajfacs Orgs), (IMpISW, Vritacs Orgs),
(SWTestRec, itacs Orgs)

}

oA

/[Control flow]

Sysimpha = {
((Start, Vian Orgs), (SWDesign, sion Orgs)),
((SWDeSign, dttion OrgS), (SWImpI, Yaction Org?»)),
((SWImpl, Vcion Orgs), (SWTest, Yeion Orgs)),
%(SWTest, Yeion Orgs), (End, ¥ng Orgs))

((Start, Y Orgs), (MarketEval, Ycion Orgs)),
((MarketEvaI, Yction Orgg), (RequEng, 3ttion Org3)),
((RequENg, ¥iion Orgs), (Sysimpl, ¥ Orgs, Sysimpha)),
((SysImpl, ¥ia Orgs, Sysimpha), (SysTest, 3ion Orgs)),
((SysTest, yion Orgs), (End, ¥ng Orgs))

//[Data flow]

Sysimpha = {
((SWDesign, ytion Orgs), (SWDesIgNSpecayiacs Orgs)),
((SWDesignSpecayacs Orgs), (SWIMpl, Wcion Orgs)),
((SWImpl, Vction Orgs), (IMpISW, Vritacy Orgs)),
((IMpISW, Virtitacs Orgs), (SWTest, Yetion Orgs)),
((SWTest, Mion Orgs), (SWTestRec, afitacs Org)),
((SWTestRec, afftacs Orgs), (End, ¥ng Orgs))

}

((MarketEval, ¥cion Orgs), (Marketinfo, Wiritac, Orgs)),
((MarketInfo, Vritacy Orgs), (REqUENG, 3ion Orgs)),
((RequENg, ¥ion Orgs), (ReqUSPEC,aitacs Oreg)),
((RequSpec, afitacy Orgs), (Sysimpl, yia Orgs, Sysimpha)),
((Syslmpl, yi5 Orgs, Sysimpha), (IMpISys, Yritacs Orgs)),
((ImplSys, Vritacs Orgs), (SysTest, 3ion Orgs)),
((SysTest, yion Orgs), (SysTestRec a¥facy Org)),
((SysTestRec, ftac, Ores), (End, ¥ng Orgs))

.

Step 2:

The root processes in Figure 72 need to be pregaradtegration, which shall be done by
leaving out hierarchical elements. This is donengsthe functiondelete_hierarchy

131

4.3 Formalization

Definition 31).Definition 34 As illustrated in Fige 74, Definition 34 showns the formal
definition accordingly.

Definition 34.

A=({
(Start, Yan Orgn), (ENd, Ying Org),
(MarketEval, Yion Orgn), (ReqUENG, yion Orgh), (SysTest, dion Orgu),
(MarketInfo, Vitacs Orgh), (RequSpec,ajtacy Ordn), (SysTestRec a)ac, Ordn),
(SWReal, Yacion Orgn), (RealSW, yritacs Orgy), (SWModTest, yion Orgh),
(SWTestRec, yfitacs Orgn)

oA

/l[Control flow]

((Start, Yean Orgn), (MarketEval, Yeion Orgn)),
((MarketEval, Ycion Orgs), (REqUENG, 3ion Orgh)),
((RequENg, }ion Orgn), (SWReal, Yton Orgh)),
((SWReal, Ycion Orgn), (SWModTest, yion Orgh)),
((SWMOdTeSt, Yction OrgL\), (SysTest, 3ttion Or%)),
((SysTest, yion Orgh), (End, ¥ng Orgn))

/[[Data flow]

((MarketEval, Ycion Orgn), (Marketinfo, itacs Orgn)),
((Marketinfo, Vrtitac, Orgh), (REqUENG, ion Orgn)),
((RequENg, yion Orgn), (ReqUSPEC,afitacy Orch)),
((RequSpec, afitacy Orgn), (SWReal, Yeion Orgn),
((SWReal, Yciion Orgn), (RealSW, ¥itacs Oran)),
((RealSW, Yiitacs Orgn), (SWModTest, yion Orgh)),
((SWModTest, Yion Orgn), (SWTestRec, gfitacs Orgn)),
((SWTestRec, sitacs Orgh), (SysTest, 3ion Orgh)),
((SysTest, yion Orgh), (SysTestRec atacs Orgn)),
((SysTestRec, aftacs Orgh), (End, ¥ng Orgn))

H-

B=({
(Start, Yan Orgs), (End, ¥ng Orgs), (MarketEval, Yeion Orgs), (ReqUENG, akion Orgs),
(SySTeSt1 Metion Orgg), (Marketlnfo, Wirtifact OrgS), (RGQUSpeC,a)ﬁfact, Org?»),
(SysTestRec,fitacy Orgs), (SWDesig8, Yaction Orgs), (SWIMpl, cion Orgs),
(SWTest, Yion Orgs), (SWDesignSpeca¥acs Orgs), (IMpISW, Vritacs Orgs),
(SWTestRec, Mifacs Orgs)

FoA

/l[Control flow]

((Start, Yan Orgs), (MarketEval, ycion Orgs)),
((MarketEval, Ycion Orgs), (ReqUENG, 3tion Orgs)),
((RequEng, tion Org3)| (SWDeSign' dtion Org?»)),
((SWDesign, Yetion Orgs), (SWIMpl, Yiction Orgs)),
((SWImpl, Yaction Orgg), (SWTest, Yeion Orgg)),
((SWTest, Ycion Orgs), (SysTest, 3ion Orgs)),
((SysTest, yion Orgs), (End, ¥ng Orgs))

132

4 Solution Scenarios

//[Data flow]

((MarketEval, ¥ciion Orgs), (Marketinfo, Wiritac, Orgs)),
((Marketlnfo, Vrtifact Orgg), (RequEng, 3ttion Org3)),
((RequEng, yion Orgs), (REqUSPEC,afitacy Orgs)),
((RequSpec, fitacy Orgs), (SWDesign, yion Orgs)),
((SWDesign, ¥etion Orgs), (SWDesignSpec apacs Orgs)),
((SWDesignSpec.ajtacs Orgs), (SWIMpl, Weion Orgs)),
((SWImpl, Vaction Orgs), (IMpISW, Vritacs Orgs)),
((IMPISW, Vriitacy Orgs), (SWTest, Yeion Orgs)),
((SWTest, Yeion Orgs), (SWTestRec, yfitacs Orgs)),
((SWTestRec, yitacs Orgg), (SysTest, sion Orgs)),
((SysTest, sion Orgs), (SysTestRecC)ac, Orgs)),
((SysTestRec, aftacs Orgs), (End, ¥ng Orgs))

1

Step 3:

As defined in Figure 74, hierarchical processedrasgrated by dissolving the hierarchy first.
Then, processes are integrated by using existindiatoes. According to Figure 96, the
mediator forHorizontal Integration(chapter 4.3.6) is used.

Definition 35.

integrate_horiz(extendsntegrate_graph()
where
/[[Organization A]
(RequENg, ¥tion Orgn), (RequSpec,afitacs Orgn), (SWReal, Yetion Orgs)

/[[OrganizationB]

(Start, s Orgs), (MarketEval, Ycion Orgs), (MarketInfo, Yitacy Orgs),
(SWTest, Ycion Orgs), (SWTestRec, ditacs Orgs), (SysTest, dion Orgs),
(SysTestRec,a)tacs Orgs), (End, ¥ng Orgs)

* Ndags = (HandovBeg, yion (Orga AND Orgs)), (HandovEnd, 3ion (Orgs AND Orgs)),

* Etbe =
/l[Control flow]
/[[Organization A]
((MarketEval, Ycion Orgs), (REqUENG, 3tion Orgh)),
((RequENg, yion Orgy), (SWReal, Yeion Org)),
((SWReal, Yciion Orgn), (SWModTest, yion Orgn)),

/[[Organization B]

((Start, Yan Orgs), (MarketEval, ycion Orgg)),
((MarketEval, Ycion Orgs), (ReqUENG, 3ion Orgs)),
((SWImpl, Yaciion), (SWTeSt, Yetion),

((SWTest, Ycion, (SysTest, 3ion Orgs)),
((SysTest, yion Orgs), (End, ¥ng Orgs))

133

4.3 Formalization

//[Data flow]

/[[Organization A]

((Marketlnfo, Vrtifact Or%)l (RequEng, 3ttion Org“)),
((RequEng, yion Orgn), (RequSpec,afitacs Orgh)),
((RequSpec, iitacs Orgn), (SWReal, Yetion Orgh),
((SWReaL Yaction OrgA), (RealSW’ Mrtifact OrgQ),

/[[Organization B]

((MarketEval, Ycion Orgs), (Marketinfo, Writacy Orgs)),
((IMpISW, Vurtitacs Orgs), (SWTest, Yeion Orgs)),
((SWTest, Yetion Orgs), (SWTeStReC, itacs Orgs)),
((SWTestRec, yitacs Orgg), (SysTest, sion Orgs)),
((SysTest, yion Org), (SysTestRec apfracy Orgs)),
((SysTestRec, a¥ftacs Orgs), (End, ¥na Orgs))

* Edawa=
/[[Control flow]
((MarketEval, Ycion Org), (HandovBeg, yion (Orgy AND Orgg))),
((HandovBeg, 3ion (Orga AND Orgg)), RequENg, 3ion Orgs)),
((SWImpl, Yacion Orgs), (HandovEnd, aion (Orga AND Orgg))),
((HandovEnd, ¥tion (Orga AND Orgg)), (SWModTest, Yetion Orga))

//[Data flow]

((Marketinfo, Viritac, Orga), (HandovBeg, Mion (Orga AND Orgg))),
((HandovBeg, yion (Orgs AND Orgg)), (MarketInfo, Wiritacs Orgs)),
((IMpISW, Varitacs Orgs), (HandovENd, sion (Orgs AND Orgg))),
((HandovEnd, ¥iion (Orgs AND Orgg)), (RealSW, yiacs Orgh))

Step 4:
After integration of processes, hierarchical eleteare re-defined again. Formally, this is

generated by using the functi@meate hierarchy (Definition 5) according to Figure 97.
This re-definition should be based on former higharal definitions and appropriate actions
as depicted in

Figure 76. The formal description of the collabm@thierarchical process (Chp) is decribed
below:

Chp = ({
(Start, Yan Orgn), (End, ¥ng Orgn),
(MarketEval, Ycion Orgh), (MarketInfo, Vitacs Orgh), (Marketinfo, Writacs Orgs),
(HandovBedg, yion (Orgs AND Orgg)), (ReqUENG, sion Orgs),
(RequSpec, iitacs Orgs), (SysTest, ation Orgh), (SysTestReC afacs Orgn),
(SWImpl, Vs (Orga, (Orga AND Orgg), Orgs), SWImplya)

oA

SWImphia = {
(SWDesign, Yction Orgs), (SWDesignSpec ayfacs Orgs),
(SWImpl, Yaction Orgs), (IMpISW, Writacy Orgs),
(HandovEnd, Mion (Orga AND Orgg)), (RealSW, Mitacs Orgn),

134

4 Solution Scenarios

(SWModTest, Yetion Orgn), (SWTestRec, yfitacs Orgh)
}

//[Control flow]

SWImphia = {
((SWDesign, ¥cion Orgs), (SWIMpl, Ycion Orgs)),
((SWImpl, Yaciion Orgg), (HandovEnd, sion (Orga AND Orgg)),
((HandovEnd, ¥on (Orga AND Orgg)), (SWModTest, yion Orgn)),

}

((Start, Yian Orgn), (MarketEval, Ycion Orgn)),

((MarketEval, Ycion Org), (HandovBeg, yion (Orgy AND Orgg))),
((HandovBeg, sion (Orgs AND Orgg)), (RequENg, sion Orgs)),
((RequEng, yion Orgs), (SWDesign, yion Orgs)),

/I additional control flows begin

((RequENG, ¥iion Orgs), (SWIMPI, ¥ (Orga, (Orgy AND Orgg), Orgs), SWImpkia)),
((SWImpl, ya (Orgs, (Orgy AND Orgg), Orgs), SWImpkha), (SysTest, yion Orgh)),
/I additional control flows: end

((SWModTest, Yion Orgn), (SysTest, 3iion Orgn)),
((SysTest, Mion Orgn), (End, ¥ng Orgn))

//[Data flow]

SWImphia = {
((SWDesign, ¥etion Orgs), (SWDesignSpec apacs Orgs)),
((SWDesignSpec.ajtacs Orgs), (SWIMpl, Weion Orgs)),
((SWImpl, Vaction Orgs), (IMpISW, Vritacs Orgs)),
((IMpISW, Yariitacs Orgg), (HandovEnd, ation (Orga AND Orgg))),
((HandOVEnd' Metion (OrgA AND Org3))’ (ReaISW' Mrifact Org“)),
((IMpISW, Vurtitacs Orgh), (SWModTest, Mion Orgn)),
((SWModTest, ¥eiion Orgn), (SWTestRec, yfitacs Orgn))

}

((MarketEval, ¥cion Orgn), (MarketInfo, Writacs Orch)),

((MarketInfo, Vritacs Orgn), (HandovBeg, aion (Orga AND Orgg))),

((HandovBeg, Miion (Orgas AND Orgg)), (MarketInfo, Writacs Orgs)),

((Marketlnfo, Vrtifact Orgg), (RequEng, 3ttion Org3)),

((RequEng, yion Orgs), (REqUSPEC,afitacy Orgs)),

((RequSpec, afitacy Orgs), (SWDesign, ¥ion Orgs)),
((SWDesign, Yeion Orgs), SWDesignSpec ayiacy Orgs)), Ilhierarchical process
((SWDesignSpec a¥acs Orgs), (SWIMpl, Vcion Orgs)), /Ihierarchical process
((SWImpl, Vaction Orgs), (IMpISW, Vritacs Orgs)), ...
((IMpISW, Variitacs Orgs), (HandovEnd, yion (Orga AND Orgg))), ...
((HandovENnd, Mion (Orgs AND Orgg)), (RealSW, Yitacy Orgn)), ...

((RealSW, Yiitacs Orgn), (SWModTest, Mion Orgn)), Il...
((SWModTest, Yion Orgn), (SWTestRec, dfitacs Orgn)), /...
((SWTestRec, ¥itacs Orgn), (SysTest, yion Orgn)), /Ihierarchical process

((SysTest, Mion Orgn), (SysTestRecC ajfacs Orgn)),
((SysTestRec,¥fitacs Orgh), (ENd, ¥ng Orgn))

.

135

4.3 Formalization

136

5 Case Study

5 Case Study

5.1 General Aspects

A case study is a research methodology commonadialsscience. It is based on an in-depth
investigation of a single individual, group, or atelt provides a systematic way of looking

at events, collecting data, analyzing informatiand reporting the results. As a result, the
case study conductor may gain a sharpened undeirsgiaof why any instance happens as it
does, and what might become important to examine mxtensively in future research.

There are several types of case studies definedhviticlude the following [26]:

lllustrative Case Studies

These are mostly descriptive studies taking onwvorinstances of an event to show what a
situation is like. lllustrative case studies sepvenarily to make the unfamiliar familiar and
to give readers a common language about the tomjaeéstion.

Exploratory (or pilot) Case Studies

These are condensed case studies performed befplementing a large scale investigation.

Their basic purpose is to help identify questiond aelect types of measurement prior to the
main investigation. The primary pitfall of this gmwf study is that initial findings may seem

convincing enough to be released prematurely aslasions.

Cumulative Case Studies

These serve to aggregate information from sevées sollected at different times. The idea
behind these studies is the collection of pastistudvill allow for greater generalization
without additional cost or time expenditures on npassibly repetitive studies.

Critical Instance Case Studies

These examine one or more sites for either thegsarpf examining a situation of unique
interest with little to no interest in generalizjray to call into question or challenge a highly
generalized or universal assertion. This methodsisful for answering cause and effect
guestions.

Many case study supporters indicate that case estudenerate much more detailed
information than what is available through a stamiad analysis. However, Flvybjerg [45]
identifies and discusses five misunderstandingsiiatase study research:

1. General, theoretical knowledge is more valuable ttancrete, practical knowledge.

2. One cannot generalize on the basis of an individasé and, therefore, the case study
cannot contribute to scientific development.

3. The case study is most useful for generating hygsats; whereas, other methods are
more suitable for hypotheses testing and theorlglimgj.

4. The case study contains a bias toward verificati@n, a tendency to confirm the
researcher’s preconceived notions.

5. It is often difficult to summarize and develop gexigropositions and theories on the
basis of specific case studies.

The set-up of an adequate case study design fartidem to be solved is very challenging.
On one hand, there is no doubt that one singlendsédone) case study will not deliver
sufficient evidence so that any theory is empilycptoved (See misunderstanding #2 above

137

5.2 Case Study 1: Scenario from Automobile Ingust

[45]). On the other hand, the set-up of an indakttbllaborative scenario is very time-

consuming and expects solid efforts from all pgtitng parties in the early and start-up
phase as well as during conduction. One reasdratdrt a global project, setting up the team
is dispersed all over the world. This makes, ottiean project communication, e.g., for
additional case study related- discussion very dexapTherefore, the first case study
(Chapter 5.2) follows the “lllustrative Case Studgesign mainly focusing on the

understanding of the problem and to get a feelimg the collaborative approach for process
integration of this work is applied.

5.2 Case Study 1: Scenario from Automobile Industry

This case study is basically defined as Hnstrative Case Study’ and follows the purpose
becoming familiar with typical issues to be solwveith the above- defined process integration
method.

The illustrative case study takes advantage fromeseery well- known scientific approaches.
This means that the set- up makes use of “Direse®ation”, which is a source of evidence
in [150]. These observations have been done priantd during definition of the solution in
this dissertation. Therefore, this process intégmagpproach structurally documents those
activities that companies might have done anywasotoe extent for collaborative projects.

In conjunction with direct observation, the pattematching-strategy is used. This approach
has also been applied to define those patternsbtiltt the basic pillars of the integration
approach. Actually, this strategy is used for dataluation purposes in computer science and
tries to map real data pattern with theoreticaflypposed result patterns [66]. However, the
defined patterns of this work are not derived oregresentative set of data; moreover, the
patterns have been defined based on direct obsmsrsdtom running collaborative projects
in industry. Thereby, several process patterns hean identified that allow for modeling
each and every scenario, which occurs in globahsoé development organizations [4].

The case study starts with an application scenidmd illustrates which functionality of
software or system will be needed by a potentiatamuer. Next, a development scenario is
shown that depicts the major development partiels(anb-) systems to be developed. These
systems and (sub-) systems are marked in boldapteh5.2.2.

5.2.1 Case Study Questions

This case study deals with the issue of two or nu@eelopment organizations' abilities to
collaborate on a processes basis. As already statattion 1.2, this generates the following
research questions:

1. How does a (new) collaborative process (contrakfltook like that incorporates two
or more different processes from cooperating ogdiauns?

2. How do artifacts (data flow) look like? How canifatts be handled if they are
defined in different formats?

Additionally, the case study tries to open up adddl questions for further research,
especially concerning interface definition andfacti handling.

138

5 Case Study

5.2.2 Application Scenario

A car goes along on a long journey. At any pointtiofe an installedRoad Condition
Analysis system (road side) identifies that due to rain heavily dropping temperatures 30
km ahead, the probability of slippery roads dublézk ice increases sharply.

This is possible, because tReadside Information Systemsanforms every car at a distance
of less than 50 km. Additionally, theriver Supporting System of the car receives that
information and immediately checks the cars’ fumwality. Thereby, breaking system,
injection control system, security system, and amwhtrol system are controlled towards
functional capability and the quality of the upcoagniweather and road conditions. In case of
any problem, th&elf Repair Systentakes care of it.

The Roadside Information Systemalso provides the density of vehicles on the reddch

is used to calculate the probability of traffic g@nd accidents in the area. If this calculated
probability is significantly high, th®river Supporting System checks the availability of an
auto rail station in a reachable proximity andats for car transportation are still available.

If the Self Repair Systemcould not fix any potential problem, the directywa the next car
service point is identified. The availability of cessary spare parts is also requested. This
information is communicated to the driver, who ckatide whether to go to the car service
point, to use the auto rail station for the remagnjourney, or to just continue with the car on
the road.

The Navigation Systemshows the driver the selected option and calcdilbigpasses in case
of traffic jams. If no bypasses are available, Dvever Supporting System calculates the
approximated waiting time and suggests hotels doommodation. If desired by the driver, a
hotel room is booked automatically.

5.2.3 Development Scenario

As the scenario above shows, there are severamsysto be developed for realizing this
application case:

a. Roadside Information System, including Road Condithnalysis
b. Driver Supporting System, including the Self Rej&stem
c. Navigation System

That means the adaption of the car control systsmmipustion, breaks, safety systems -
airbags etc.) and the new development of the Rdadsnformation System and the
connection to Road Condition Analysis, Driver Supipg System, and Self Repair System.

This scenario contains the following organizatiasgarticipating partners:

* Organization A is an automobile supplier deliverihg entire protection and safety
systems.

* Organization B is specialized on Driver Support8ygtems

e Organization C develops software systems

* Organization D is a small cap specialized on safvelevelopment for data transfers

* Organization E is a hardware manufacturer and supplith a partially defined
hardware process

139

5.2 Case Study 1: Scenario from Automobile Ingust

The development relationship of organizations aystesns is depicted in Figure 98. It is
assumed that organization A provides the basisvaodt functionality (“platform”) upon,
which all other suppliers’ software contributions dased.

Organization B
Organization A Hierarchical
Iterative Process Standard Process

RIS

Organization E
Partially Defined
Hardware Process

o
@ s

Organization D
Organization C No Process

Iterative Process

Figure 98: Organizational Relationship of Developmet Scenario

The Driver Supporting Systemis conjointly developed by Organization A and Bjieh is
specialized on such systems.

The Roadside Information Systemis created by Organization A, C, and E. In thisegaA
delivers all the sensors and controls, C producitls the software for data analysis and
transition. Organization D is responsible for seegi such as contacting the auto rail station or
hotels.

5.2.4 Organizational Process Definitions

Organization A (Master)

As the Master of the collaborative development agenOrganization A uses for its platform
development a comprehensive iterative processge sphatform development is usually a
longer lasting process. This platform functions kmssis and needs more sophisticated
mechanisms (change request / claim managementgatsanple application development. In
order to keep the scenario as simple as possilibeprocesses like change/claim management
are omitted, since they have only a supportiveattier.

The process is illustrated in Figure 99 and staith Requirement Engineeringvhich is
sourced byMarket Information Based on thdRequirement Specificatiothe organization
conductsSystem Architecture & Desigmwhich is the basis for all further development

140

5 Case Study

contributions and is documented 8ystem Architecture & Design Specificatidn the
following Module Designaddresses only those functionalities that are Idped by the
Master itself. The design results Module Specificationthat is the basis foModule
Implementation After Module Test,which is documented iModule Test Recordthe
iteration loop checks whether there is still remmagnfunctionality to be designed and
implemented. If so, the control flow jumps kodule DesignIn case all desired modules
have been implemente8ystem Tess conducted, which ends up wllystem Test Record

Organization A (Master)

Market
Information Control

\L Flow

Requirement

Engineering
Requirement Control
Specification Flow

l

System Architecture
& Design

v

System Architecture
& Design
Specification

—7 |

Module Design

l

Module Control
Specification Flow

I v

Module
Implementation

l

Implemented Control
Module Flow

VR

Module Test

l

Module Test
Record

Control
Flow

Control
Flow

All modules
No implemented?

Yes
v
System Test

l

System Test
Record Control

Flow

Figure 99: Iterative Process of Organization A

141

5.2 Case Study 1: Scenario from Automobile Ingust

Organization B (Supplier)

Organization B follows a kind of “standard” procesghich is hierarchically defined for
better complexity handling (Figure 100). HavilRgquirement Specificatioas input, the
process starts witBystem Desigmn explicit requirement engineering action is defined.

After Design Reviewof the Design Specification SysterSystem Implementation as a

hierarchical action — is conductedystem Implementationwhich is basically the
development of software, is sourced ®ystem Design Specificatidrom which Software

Design and a respectiveDesign Reviewis derived. The resultingSoftware Design
Specificationis input for Software ImplementatiorThe Software Tesbf the implemented
software is recorded in ti&oftware Test Record

Remarks:

For integration purposes the “hybrid view” has belsfined in chapter 4.2.6, Figure 73.
However, this view is not shown initially since nageability of the process suffers from it.

Organization B

Control
Flow

(System Implementation

Control
Flow Control

Flow
C Software Design
Control Slgftvx{are Control
| esign Flow
Flow Specification

v

System
Implementation Software
|'|1 Implementation

Control Implemented Control
Flow Software Flow

(Software Test v)

Software Test
Control
Control Record

Flow Flow

5o

AN 4 AN 4

Figure 100: Hierarchical Standard Process of Orgarzation B

142

5 Case Study

Organization C (Supplier)

As illustrated in Figure 101, Organization C hapaatially-defined process in place. This
means that not the entire development processasndented, but only a small portion of it.
In this case, it is the software development part,Design ReviewSoftware Implementation
and Software Testwith corresponding artifacts. This often occurs redative immature
companies, which focus their process definitiorcore competencies.

Organization C (Supplier)

Software Design Control
Specification Flow

R’

Design
Review

|

Design Review Control
Record Flow

/A’

Software
Implementation

!

Implemented Control
Software Flow

Vv

Software Test

!

Software Test
Record Control

Flow

Figure 101: Partially Defined Process of Organizatin C

Organization D (Supplier)

Organization D

Software
Design
Software Test
Software Requirement
Implementation Engineering

Code Review

Figure 102: Amorphous Process of Organization D

143

5.2 Case Study 1: Scenario from Automobile Ingust

Organization D has no structured process establighe shown in Figure 102, the process is
amorphous, which means that there are some ae8iyitivhich are conducted during
development; however, these activities do not deépegically on each other. Dependencies
of in- and outputs are not clearly defined. Rolesaso not explicitly documented.

Organization E (Supplier)

Organization E is the major hardware supplier fogadization A (Master), especially for the
Driver Supporting System The hardware process is straightforward and sstaith
Hardware Requirement Specificatiaassuming that hardware requirement engineering is
already previously done. This is basis for tHardware Design In contrast to software
design, this process step has to create/condgct, e.

- design/engineering drawings

- reviews using Failure Mode Effect Analysis (FMEA)
- design patterns for development

- bill of material (BOM)

- electric circuit plan

- concept for assembly

- release of assembly parts

These results are input felardware Implementatiobasically consisting of manufacturing of
the desired hardware lot sizétardware Testhecks the proper functionality of the hardware,
which is documented iiHardware Test RecordThis is an essential input for integration
activities and system test.

Organization E (Supplier)

Hardware
Requirement Control
Specification Flow

L

Hardware Design

|

Hardware Design Control
Specification Flow

L

Hardware
Implementation

|

Implemented Control
Hardware Flow

L v

HardwareTest

|

HardwareTest
Record Control

Flow

Figure 103: Hardware Process of Organization E

144

5 Case Study

5.2.5 Collaborative Process Definition

As stated above, several different systems have tdeveloped to realize the scenario from
the automobile industry. Since different collabmatpartners are necessary for different
products, it is also crucial to have different gubeess definitions combined for
collaboration. For this reason, the following sewtidescribes the derivation of the
collaborative process and the collaboration scerits&lf based on (sub-) systems or products
respectively to be developed.

5.2.5.1 Driver Supporting System

The Driver Supporting System functions as a kindaiftroller of a car's system conducting
system checks and reporting the results - in thestwoase errors - to the driver. Since
Organization B has special knowledge on such systénis supposed that Organization A
(Master) wants to collaborate more closely withstikompany than with the others for
developing that system. Given the initial processesigure 99 and Figure 100, several
mediators are used to set up the collaborationgsscThe entire scenario is depicted Iin
Figure 104 and consists of several collaborativdspthat are in detail described in the
following.

Remarks:

Synchronization and handover points are numbeneallgdor better ability to reference. The
additional swim lane diagrams on the right sidecath collaborative scenario (black box)
show which mediator has been used for processet u

Starting with requirement engineering, the Mastet @rganization B decide to conduct this
sub-process conjointly since this is an essentdl ip early development phases. Following
the integration approach in chapter 4.2.5, the atedifor ‘Merging Integration’ needs to be
applied, because this pattern addresses conjeagration best. This mediator is again shown
in Figure 105. This means for the collaborativecpss that afteMarket Informationas the
identified starting point for integratio®ynchronization-has to take place, which creates the
same understanding of the available informatiomftbe market for both organizations. This
information is the basis for the conjointly condeccRequirement Engineeringgsulting in
Requirement Specificaticas the corresponding artifact. Furthermatandover-1turns this
Requirement Specificatiomto a format the Master can use f8ystem Architecture and
Design This activity ends up with th®ystem Architecture & Design Specification

The Master decides to have this specification meeteby Organization B, which is done by
using ‘Horizontal Integration’ scenario (Figure }0&his makes sense since, on one hand,
Organization A gets a second view and opinion pwontthe other hand, Organization B is
obliged anyway to implement thriver Supporting Systemtogether with Organization A.
Additionally, Organization B has Resign ReviewFigure 100) defined in its process, from
which Organization A can take advantage. The rewasures that the Master’s development
partner gets in touch very closely with the contenbe developed. Referring to Figure 104,
Handover-2 converts System Architecture and Desiga Organization B’s format. After
review, Handover-3 turns the finalized Design ReviRecord back to the Master.

145

5.2 Case Study 1: Scenario from Automobile Ingust

Organization A (Master)

(Organization A (Master)
AND

Organization B (Supplier))

Organization B (Supplier)

Control Flow

Requriement
Specification

System Architecture
& Design

System Architecture
& Design

Synchronization - 1

Control
Market Flow
Information
v
Requirement
Engineering
Control

Flow

Requirement
Specification

Handover - 1

Control
Flow

Control
Flow

Handover - 2

Specification

Module Design

Module
Specification

Implemented
Module

Module Test

Control
Flow

Module Test
Record

All modules
implemented?

System Test

System Test
Record

Design Review
Record

 om—

Flow

Control
Flow

Control
Flow

Control
Flow

Synchronization - 2

Module Control Flow

Specification

tatior

System

Module
Implementation

Control

Implemented Flow

Module

l Control Flow

Handover - 4

Control
Flow

[<Acionx>) Conirol Flow

—

Organization A (Master) Organization A (Master) i
AND / OR / XOR ~Merging
Organization B (Supplier) Integration“
(ﬂT\’/L}_ Control Flow
‘ Artifact 1 9(Synchronization
<Evolutionary
Actions> - new
‘ Artifact 4 ’(f—i Handover
. Control Flow J
(" <Action Y>
Organization A (Master) Organization A (Master) -
,Horizontal
Organization B (Supplier) Integration

‘ Artitact 4 }(i

)e

‘ Artfact 1 %ﬁ(Handover)7‘# Artfact 2 ‘
Control Flo
(" <Actonz>)
J
Control Floy
Handover

Artfact 3 ‘

/4.‘]; Control Fl%J
<Action Y>
‘\ &

Organization A (Master)

(Organization A (Master)
D

+Hierarchical
Integration*

Organization B (Supplier))
(" <hction x> Control Flow
‘ Artifact 1 F > synchronization)
. Control
Artifact 2 - new Flow
Hierarchical Actign |h
<Evolutionary
Actions> - new
Control
Flow
‘ Artifact 4)(7 ¢ Handover)
(<Action Y> : Control FIUJ

Figure 104: Collaborative Process for DevelopmentfdDriver Supporting System”

146

5 Case Study

Organization A (Master) (Organization A (Master) Organization B (Supplier)
AND / OR / XOR
Organization B (Supplier))
<Action X> Control Flow 1
Artifact 1 1 s/ Synchronization
Artifact 2 - new Cltz)lr;tvrvol
<Evolutionary
Actions> - new
Artifact 3 - new Clg)lr;tvrvol
v
Artifact 4 S Handover
\L Control Flow
<Action Y> € J

Figure 105: Mediator for ‘Merging Integration’

The review record is in conjunction wigystem Architecture & Designput for the module
implementation loop. The implementation loop stavith the Master that designs a module
(Module Desigh As already mentioned, Organization A decided do module
implementation together with Organization B. SinGgganization B has its software
implementation processes hierarchically definedjsitnecessary to use a mediator that
supports ‘Hierarchical Integration’ in a mergingesario. This mediator is depicted in Figure
107. Therefore, &ynchronization-2ieeds to be added to achieve a common understpoidin
Module Specificationby both Organizations A and B. Figure 104 shoiedule
Implementationin “hybrid-view”. The Module Implementationtself is not the one from
Organization A as the labeling might suggest. Riefgrto the color codeModule
Implementatiorand the resultingmplemented Moduleare newly defined process elements
(“evolutionary” activity and artifact) based dfodule Implementatiofrom Organization A
(Figure 99) an&oftware Implementatidinom Organization B (Figure 100).

After implementation of the moduleiHandover-4 turns the results into the artifact
Implemented Modulen the Master's side. This is necessary to havadequate input for the
Module Test available; however, the adaptation(dison will not be very comprehensive, if
there is any at all, since implementation has ls@re by both organizations anyway. This
means that especially Organization A will have thatems be developed iModule
Implementationwhich are necessary félodule TestModule Testresults inModule Test
Record If there is still functionality to be implementethe module implementation loop
restarts. If the desired or sufficient functionalis created System Tesis conducted by
Organization A. AfterSystem Testnd the resultingSystem Test Recordhe process
terminates.

147

5.2 Case Study 1: Scenario from Automobile Ingust

Organization B (Supplier)

Artifact 2

Organization A (Master) (Organization A (Master)
AND
Organization B (Supplier))
<Action X> Control Flow
Artifact 1 S Handover h
" J
Control Flow
Control Flow
Artifact 4 k Handover
: Control Flo
e

<Action Z> |

Artifact 3

Figure 106: Mediator for ‘Horizontal Integration’

Organization A (Master)

(Organization A (Master)
AND
Organization B (Supplier))

Organization B (Supplier)

<Action X>

Artifact 4 F
‘ <Action Y> K_

Control Flow
9(Synchronization)
7 Control
| Artifact 2 - new | Flow
- : : N
Hierarchical Act11 |‘|1

<Evolutionary
Actions> - new

Artifact 3 - new

)

Control
Flow

Handover

I
—()

Control Flo

Figure 107: ‘Hierarchical Integration’: Mediator fo r ‘Merging Integration’

148

5 Case Study

5.2.5.2 Navigation System

The functionality of the Navigation System is rateaightforward; however, the system is a
highly proprietary system, which needs to be mdrantothers adapted to the system’s
interfaces in the automobile and its environmeu, ®oadside Information System.

In this case, it is assumed that Organization Atwvda outsource the design review and
system development (Figure 108). For this purpos¢é,merely one single organization is
considered for outsourcing of a sub-product’'s dgwelent, but two organizations, i.e.,
Organization C and Organization D.

Referring to the entire collaboration scenario (ifgg108)Requirement Engineeringith the
appropriate artifactRequirement Specificatipnas well asSystem Architecture and Design
and System Architecture and Design Specificatimmain at the Master's company’s
responsibility. For review, thBystem Architecture and Design Specificaihanded over
(Handover-7 to the collaboration partners Organization C &ndTrhis makes sense, since
these partners are foreseen to implement the syistéhe following. Process integration is
done via the Mediator ‘Horizontal Integration’ dsistrated in Figure 106. Thdandover-7-
conducted by all three organizations A, B, and tDras theSystem Architecture and Design
Specificationinto that format Organization C and D can handl¢heDesign ReviewBased
on Design Reviewf Organization C (Figure 101), this activity iswly defined, since the
two Organizations C and D are conducting this mewenjointly. TheDesign Review Record
is converted back to the Master’s format by ti@ndover-8action. The reviewedystem
Architecture and Design Specificaticmnow basis foModule Designwhich results again in
the Module Specification Development of Module Specifications will be dorwy
Organizations C and D. Organizations D, which hasaemorphous process in place, is
coerced to follow the development process of Omgimin C. This is done by using the
Mediator for ‘Merging Integration’ from Figure 10%\ Module Specifications converted
with Handover-9into aSoftware Design Specificatio@onsecutively, Organization C and D
startSoftware Implementatioof appropriate software modules. Tingplemented Softwaiie
tested Hoftware Tejtand theSoftware Test Record converted back to the format of the
Module Test Recordf Organization A. This is done by using the att#tandover-10 Since
this is an iterative process, it runs as long asetlare still modules to be implemented. If all
modules are implemente8ystem Tedstarts, which is documented in t8gstem Test Record
This terminates the process.

149

5.2 Case Study 1: Scenario from Automobile Ingust

Organization A (Master)

((Organization A (Master)
AND

Organization C (Supplier)
AND

Organization D (Supplier))

(Organization C (Supplier)
AND

Organization D (Supplier))

Control
Market Flow
Information
v
Requirement
Engineering
Control
Requirement Flow
Specification
\ 4

System Architecture
& Design

System Architecture

Control
Flow

: Handover - 7

& Design
Specification

Organization A (Master)

Organization A (Master)
AND

Organization B (Supplier)

Control Flow

o e

,Horizontal
Integration*”

‘ Artifact 1 F%(

Handover

ﬂ Artifact 2 ‘

)
N

Control Floy

Control Floy

<Action Z>

‘ Artifact 4)(ig{

Handover

|
je

Artifact 3

Control™

Module

System Architecture
& Design
Specification

Design Review

Design

Flow
Control
Flow
System Architecture (—(
& Design Handover - 8
Specification
Control
Flow
Module Design
Control
Flow

Review Record

Software

Handover - 9

Specification

Module Test

Control Flow

Design
Specification

Control Flow

S Software
'k Implementation

Control
Flow

Implemented
Software

[Software Test

Software Test

(Handover - 10)

Record

All modules
implemented?

No

om Test

Control Flow

System Test

N

System Test
Record

Record

Organization A (Master)

Organization A (Master)
Al

ND
Organization B (Supplier)

.Horizontal
Integration”

Control Flow

‘ Artifact 1 Fﬁ(

Handover

ﬁ Artifact 2 ‘

}
N

Control Floy

Control Floy

‘ Artifact 4)(74(

Handover

/
je

Artifact 3 ‘

<Action Y>

}

Control F|0J

Figure 108: Collaborative Process for Developiiieriuuinavigauuorn Systeitl

150

5 Case Study

5.2.5.3 Roadside Information System

The Roadside Information Systemthat also includes software for running tRead
Condition Analysis is constantly installed at the roadside and inetusensors for measuring
weather and analyzing derived road conditions. this reason, the development of an
appropriate product requires not only software llgo hardware that needs to be
manufactured and programmed with parameters to d@mpatible with the Driver
Supporting System

The collaboration scenario for developing the Ra$nformation System is depicted in
Figure 109.

Organization E (Supplier) (Organization A (Master) Organization A (Master) (Organization A (Master) Organization C (Supplier)
AND
Organization E (Supplier)) Organization C (Supplier))
. Organization A (Master) (Organlzallzr’:‘g ~esf Add. Vertical
Contro 2 2Ewl Integration”

Market Flow oo Control Flow
Information —T) 1

v [~ Decomposion |

i
Requirement
Engineering
a =)
Control El
Flow T — o v, " <Sub Workfow B>

Requirement
Specification) Control i Control Flow
Aritact 3 Aritact 6
) ;

A
a g s

Control
Flow

System Architecture
& Design

‘ Artifact 4 ’(—4‘ Integration |
b

Control Flow J

:

System Architecture (* <Action Y>
& Design
Specification

(T)

Hardware Control Flow System Architecture

Requirement & Design
Specification Specification
Control Flow
(Hardware Design
v

Hardware Design Module Design
Control Flow
Module Software Design
Hardware
Implementation Control ~>
Flow

Software
Implementation
Implemented
Software
Software Test

Implemented
Hardware

(" HardwareTest

Control Flow

Control

Flow
Module Test Software Test
Handover - 6
Ha“:?"‘éif;ges‘ Record ~— Record

Al modules
implemented?

Control Flow
p—

Organization A (Master) (organ.zamX.N,lx) (Master] _Horizontal
Organization B (Supplier] Integration“

[<Aconx>) Control Flow

‘ Artifact 1 }79‘ Handover }7# Artifact 2

Control Flo

System Test

Specification

Integration

Control Flo

System Test

System Test
Record

[<Acionz>)

Control Flo

‘ Artifact 4 F“ Handover K*—{ Artifact 3 ‘
(erionv e CuntrulFIuJ

Figure 109: Collaborative Process for Developmentfdroad Information System

151

5.2 Case Study 1: Scenario from Automobile Ingust

For this product, Organization A decides to do“daly phase” of development by itself, i.e.,
Market Information Requirement EngineeringndRequirement Specificatioas well as the
System Architectureand the corresponding specification is all done thg Master
organization.

The System Architecture Specificatinaeds to be decompostedidentify those product parts
that need to be allocated to hardware implememtatnal software implementation. Therefore,
Decompositionshall produce eHardware Requirement Specificatiaand an appropriate
System Architecture Specificatitimat highlights those product parts to be implet@erby
the software process (Figure 109). For the hardwarg it is assumed that Organization E, as
a hardware specialist, is nominated to delivetrelsensors and controllers for fReadside
Information System. This organization runs its process as descriieea at Figure 103.
For this parallelizing process operation, the miedigddditive Vertical Integration’ as shown
in Figure 110 is used.

Organization A (Master) (Organization A (Master) Organization B (Supplier)
AND
Organization B (Supplier))

<Action X> Control Flow

I p)

Artifact 1 —— 1>/ Decomposition

/

T~

Artifact 2 Artifact 5
\]/ Control Flow \J/
<Sub Workflow A> € <Sub Workflow B>
\l/ Control Flo Control Flow \L
Artifact 3 Artifact 6

|
\\ |

Artifact 4 1 Integration

\L Control Flow
<Action Y> hJ

Figure 110: Mediator Pattern for ‘Additive Vertical Integration’

As also stated before the entire module developnoénDrganization A consists of an
iterative process. As in the other scenarios, tlast®t keeps thielodule DesigrandModule
Specification in its own responsibility (Figure 109). For deydlny the Roadside
Information System, Organization A takes advantage of another softwapplier, which is
Organization C. This concerns especially the softwevelopment. For process integration
of the organization, the Mediator ‘Horizontal Intagion’ (Figure 106) is used. This means
that Handover-5turns theModule Specificatiorof Organization A into the format (for
Software Specificatigrrequired by Organization C. After implementing tthesired software
module theSoftware Test Recorfdtom Software TesfOrganization C) is handed back to the
Master Handover-§, which is converted again to Module Test Recordlf all desired
modules have been implemented, an integration fofvace and hardware has to take place.

152

5 Case Study

This is done duringntegration which results in &ystem Test Specificatiohhese process
steps contain, e.g., creation and release of aderfspecifications, release of technical
documentation, definition of packaging (if neceggacreation of a hardware prototype, set
up of basic data for assembly part dispositiomé@tessary) etc. Afteédystem Testvhich is
documented ilsystem Test Recortthe process terminates.

5.2.6 Summary Case Study 1: Scenario from Automobile Indstry

This scenario from automobile industry illustratesw the process integration approach
works in general and how mediator patterns canpipdieal in order to set up a collaborative
process environment for distributed developmentilitadefined an initial situation, it has

been shown that the process integration approaablésto be used even in more complex
scenarios like in Figure 109. Thereby, the set igqegdure follows the content that needs to
be developed by other organizations from the mastgnization’s point of view. Whenever

these contents are defined, the connection poant¢the mediators are identified and (sub-)
processes are connected which each other. Thimeoist done sequentially and, therefore,
points out the convenience of the approach’s agiplity even in complex scenarios, i.e.,

more than two involved organizations and more tbae mediator usage for collaboration
process set up.

Two case study questions that have been raiseédtios 5.1 are answered and reflected
here:

1. How does a (new) collaborative process (contrakflmok like that incorporates two
or more different processes from cooperating ogdiauns?

This case study gives an impression that the psaoésgration approach works within an
application case. It has been shown that procesggd be dependent from product to be
developed since

a) the content and requirements are different foryependuct and
b) the participating organizations are also not theeséor each product.

Furthermore, it is illustrated how to integrate amgational processes that are not fully
defined keeping in mind that at least some profraggnents need to be available to make
the process integration approach work.

Last, the mediator functionality is shown by uss®yeral mediators in a row for each
collaboration scenario provided (Figure 104, Figur@8, Figure 109). For better
illustration, these UML activity diagrams depict istn mediator has been used for setting
up the collaborative scenario.

2. How do artifacts (data flow) look like? How canifatts be handled if they are
defined in different formats?

Data flow is also depicted in the provided collaive scenarios and goes very often
hand in hand with control flow. If the mediatorgeoperly defined, it is also very easy to
use the mediator in whatsoever complex scenaris. Strould not simplify the problem of
collaborative development processes, but underlihes ease of use of the process
integration approach in general.

The problem of having several and different artifacmats in each organization defined
is handled by each mediator used and has not bgxéinity addressed in this illustrative

153

5.2 Case Study 2: Scenario from Agile Development

case study. The possible handling of this problehescribed in the artifact and handover
concept in Chapter 3.3.2.

154

5 Case Study

5.3 Case Study 2: Scenario from Agile Development

This case study is basically defined as an “ExpioyaCase Study” that addresses and
measures the performance of the process integrapproach. Results shown in the
following have been published in [16].

The scenario investigates distributed agile sowadevelopment [14] in a students' project,
which was held as a joint course by the Techniddheersitat Clausthal (TUC) and the
Leibniz Universitat Hannover (LUH). A similar, nahstributed course was held at LUH
many times before. One of the main goals in the-distributed agile course was to teach
eXtreme Programming (XP) in a realistic environméltie students should learn how the
agile practices affect software development. Tloeegfall twelve practices proposed by Beck
[14] were tried to be fully implemented. An essahpart of the course is a one- week block,
encompassing most of the software developmentitesivThus, it is possible to implement
practices like Onsite-Customer, 40h - week, and-Paigramming. For teaching purposes,
iterations were kept very short, i.e., two-dayatems worked best [135].

5.3.1 Case Study Questions

This case study targets the performance assessrhardistributed process in comparison to
a process conducted in one location. This distedbuprocess has been set up with the
approach of this thesis.

The assessment is based on the “Goal-Questiondi¢@QM) paradigm, which helps to
assess process improvements or at least changedafined and systematic way [10]. This
approach deals with a specific type of improvement:

a) the improved process shall be applicable inidigied projects and
b) the improved process shall still incorporate shene advantages and properties of the
original process.

In such comparable co-located projects, some adgaatof the corresponding co-located XP
process have been observed, which are also wodhyet included in a distributed
development process. Therefore, @@al of this case study is to evaluate within a distieol
development project:

1. high developer commitment because of shared redpliys
2. low risk of failure and low amount of rework becaud good customer interaction.

Depending on the abstractness of the defined GQ& gaefinement into sub goals might be
required. Based on experience, goals should hasiaghe quality goal and a single well-
defined perspective for best results.

It needs to be investigated to what extent the aidgges from co-located development could
be retained. Such a comparison is specific for\eergiproject situation and the type of
processes involved, since we want to assess whetcific advantage exists in the derived
process.

The following research questions have been systeafigtderived, which will be evaluated
in Chapter 5.3.4:

155

5.3 Case Study 2: Scenario from Agile Development

Question 1:
Does the derived distributed process explicitlpedte responsibilities in a way that leads to
comparable commitment of developers as in the catéml case?

Question 2:
Does the continuous integration and the handoveewf functionality to the rest of the team
work as well in reducing the risk of failure ashe co-located process?

Question 3:
Does the distributed process support the developrokra shared understanding of the
design?

Question 4
Despite the additional communication effort of thstributed process: is it still profitable to
execute projects with this process?

5.3.2 Organization’s Process Definition

Figure 111 describes the development process lnaated XP classes, illustrating the initial
process of LUH. This process is basically an ggiteess incorporating the major concept of
story cards. These handwritten slips of paper ¢o@tahort description of how a future user
will use the system that is still under developm&iten, narratives (i.e., usage stories) are
used. Onsite customers write these stories togethierthe agile team. New story cards can
always be created and added to the Product PlanPidduct Plan contains all story cards the
team and customer are aware. Referring to expe&rjemost stories are created at the
beginning or end of iterations.

Each iteration starts with a Planning Game. If¢dhstomer comes up with new stories, these
are considered first. After that, each story cardstimated by the developers for its forecast
effort. Then, the customer prioritizes the storydsaby sorting them. The most important
story card lies on top of the stack. Based on egpee from past iterations, customer and
team select as many story cards from this staaknasteration allows to implement, which
defines the iteration plan.

After the Planning Game, which is conducted in gognfion with the customer story cards
from the iteration plan are implemented via PamgPamming. Any pair of two developers
takes the topmost story cardsg€lect Story CarQl and implements it by applying the test-first
practice. The developers start with writing an awdtic unit test (vrite unit test), then add
just enough code to make the test ruwrite codé), before writing the next test. This is
depicted in the activityPair Programming: Implementation and Integratiors illustrated
with turning arrows, improvement loops are included

At any time, the developer pair thinks that a stoayd is implemented, they go to the onsite
customer and present their results. If these mesale acceptable for the customer
(“acceptance te§t the developer pair integrates them into theesys and the story card is
finished (‘integrate story). The pair takes the next story from the iteratjglan and starts
again. This iterative process loop ends if allysiards of iteration plan are processed and/or
acceptance from the customer is gained.

156

5 Case Study

Organization [Agile]

Agile team (Agile team AND
Customer)
. Control Flow
«datastore»
Product Plan : Set of Story cards Planning
7 game
«datastore»
Iteration Plan : {subset of Product Plan}
All Story Cards Control Flow)
of Iteration Plan
Processed
T Control Flow
Select Story
Card J‘
Control Flow N
«datastore»
Actual Story
Card : {element of
Iteration Plan}
Sigy Cae Pair Programming: Implementation N

and Integration : GloSE

Programmer Pair A

Programmer Pair B

XOR

(Programmer Pair A
XOR
Programmer Pair B)
AND Customer

Progream and
Test Code

«datastore»

Program and
Test Code

Program and
Test Code

write unit test

[not a

[not complete]

[complete

write code

cepted]

acceptance test

[accepted]

integrate story

®

Control Flow

Figure 111: Co-located Agile Development Process

Prior to participation of the joint course, TUC Imled a traditional waterfall development
process depicted in Figure 112. This process whaalrle any more to address the up-to-date
development issues, e.g., fast changing requireanesdrly releases for customers etc.
Therefore, an agile approach like at LUH was ingshdor use in development projects.

However, this approach did not consider an exptiesign, which has been seen as very

157

5.3 Case Study 2: Scenario from Agile Development

valuable at TUC, especially for distributed devetgmt projects. This made TUC consider an
integration of the old waterfall design into a néewelopment approach.

Organization [Waterfall]

?

Software
Analysis

)

Analysis Control
Documentation Flow
VN
Software
Design

l

SW Design Control
Specification Flow

A

Software
Implementation

l

Implemented Control
Software Flow

|

Software
Test

!

Software
Test Record Control
Flow

Figure 112: Initial Waterfall Process

5.3.3 Collaborative Process Definition

Referring to the collaboration scenarios definedGhapter 4.2, the scenario ‘Additive
Vertical Integration’ is taken into consideratiom ¢connect processes from LUH and TUC,
based on agile development practices. The apptepnmeediator for this scenario is again
depicted in Figure 113.

In the following, it is illustrated how to applydiprocess integration approach to a students’
project having 11 participants at LUH and 4 papieits at TUC. First, two teams are formed:
a local team with 7 students from LUH who followt® original co-located process and a
distributed team with 4 students from each site (programmer-pairs per site) who followed
the derived process for distributed XP. There wadarrier due to languages, time zones,
and resulting communication problems, because LbiHTUC are both German universities.
The project conducts 14 development runs with damatf 4 hours each. Thereby, five days
included two development runs each and four dayk wne development run. The entire
development project was based on XP. Although tlogept lasted only a little over two

158

5 Case Study

weeks (14 working days), all XP practices were igople.g., Planning Game, Refactoring,
Pair Programming, Onsite Customer, Continuous hatemn etc.

Organization A (Master) (Organization A (Master) Organization B (Supplier)
AND
Organization B (Supplier))

Control Flow

<Action X> — ﬁ

Artifact 1 ———>{ Decomposition

/ \

T

Artifact 2 Artifact 5

\l/ Control Flow \l/
<Sub Workflow A> € <Sub Workflow B>
\l/ Control Flo Control Flow \l/
Artifact 3 Artifact 6

P
~_ .

/

Artifact 4 D S— Integration

\l’ Control Flow
<Action Y> hg

Figure 113: Mediator Pattern for ‘Additive Vertical Integration’

Besides the XP practices discussed in Kircher.474], special attention needs to be paid on
the design activity, which has been done implicitlythe co-located agile scenario (Figure
111). This implicit approach is acceptable, sinoenmunication paths are very short and
decisions can be taken informally without havinglaody of the agile team ignored. In a

distributed development environment, design disoussare even more important due to the
distributed project character - even a simple deg$igl] needs to be known at all sites.

Consequently, the main intention of TUC was to kaeg conduct explicit design activities,

even though an agile approach is followed. As dedign Figure 111 programmer pairs

continuously take story cards to implement. Desigtussions and definitions have to be
now explicitly defined and conducted in parallethe implementation of story cards. This is
necessary, because various features of story caigig affect the system design. The design
adoptions in a distributed project environment niefbllow a traceable approach in order to
get commitment from the entire team.

Due to the fact that development activities havdeoexplicitly conducted in parallel, the
‘Additive Vertical Integration’ scenario is predesd to be applied. Figure 114 illustrates the
collaborative scenario. Following this mediatorteat as illustrated in Figure 113, we have
to identify the respective <Action X> first, that the connection point for processes to be
integrated.

Having chosen the actid®elect Story Cardh newly- defined actioBDecompositiorhas to be
added right after a story card is selected. In #wton, the agile teams decide on the
dedicated developer pairs, which start discussiwosit design. A pair itself is not distributed
over two locations, since this would make the XBcfices even harder to fulfill by having
too much communication effort. For this reason, @RXrole model definition is applied in
the Pair Programmingactivity, which minimizes communication overhe&bing further in

159

5.3 Case Study 2: Scenario from Agile Development

Figure 114, the fork node starts parallelizingphecess. The left path covers the design work,
which typically leads to a design sketch on a wdlotsed and documents the most important
design decisions for the current iteration. Thagiesketch will be removed, if it is no longer
useful.

Agile team (Agile team AND
Customer)

. Control Flow

«datastore»
Product Plan : Set of Story cards Planning

game

«datastore»
Iteration Plan : {subset of Product Plan}

Al Story Cards Control Flow
of Iteration Plan)
Processed
Organization A (Master) (Organization A .
Organization B (S "Add' Vertlcal
.
’ ; Integration
== 1> Decompostion |
Control Flow
(w2 e
Decomposition Control Flow (* seject Story oo Comaron
Avitact3 Ariacts
- Card) e |
-Amlana t— imegmton
«datastore» [VI T
Actual Story _ -

Card : {element of

Design Necessary for Iteration?
Iteration Plan}

Story Card —\
Pair Programming: Implementation 4

do design and Integration : GloSE

Programmer Pair A (Programmer Pair A
XOR

Programmer Pair B Programmer Pair B)

«d.atastore» % Design Sketch AND Customer
Design Sketch
Control Progream and
Flow Test Code

«datastore»

Program and
Test Code

[not agcepted]

write unit test acceptance test

[not complete] [accepted]

Program and
Test Code

[complete)

write code integrate story

Integration

Figure 114: Distributed Collaborative Process

160

5 Case Study

The right path leads directly to activi®air Programming: Implementation and Integration
As depicted in Figure 114, a useful design skefahput for this activity, which describes the
implementation process itself. After implementatibe story card’s code is integrated into
the existing software product. Following the scemar Figure 114, the join node terminates
the parallelism. At this point another overall ont&tion needs to take place, which also
includes the integration of various design appreadreated on the whiteboard. This is
represented by an additionategrationaction at the end.

5.3.4 Assessment of the Derived Process

After having a process derived for distributed depment, this section assesses whether it
works as intended.

The GQM paradigm demands for a systematic apprimactvaluation, i.e., the investigation
goal has to be defined. Basili suggests a spetgfigplate to document such goals and to
refine them to testable sub goals [10]:

Analyze:
A precise definition of the object under investigatshould be given. In this case, it is the
(formerly co-located) process that should be apphedistributed software development.

Purpose:

Basili presents a set of three pre-defined GQM @sep: understanding, improving, and
controlling. Here, the purpose is to improve thecgess at hand in order to apply it in
distributed software development.

Quality Focus:

High level description of the quality goals shodie given. These goals are the basis for
measurement. In this approach, these quality goalshe specific advantages and properties
associated with a given co-located process.

Perspective:

Basili emphasizes the importance of the perspeétora which a process is observed. In this
case, it makes a difference, if a quality goallisesved from the perspective of a developer, a
project manager, a customer, etc.

Context:

Basili's template asks for the context, where tinestigation shall take place. In this case
study, it is the (first) application of the derivptbcess in a distributed project. Results of the
evaluation are compared to experiences with corbp@a-located projects (the baseline).

Following the GQM paradignQuestionsneed to be derived froBoals defined in chapter
5.3.1. In GQM, this is typically done with Abstramt Sheets (Table 11), which is introduced
in the following.

The Quality Focus from the goal is refined to Quality Aspects. Tlugse focuses on
Communication EffortDeveloper CommitmenRisk of Failure and Amount of Rework
These are the most important properties of theocateéd process, which need to be
investigate to what extent they are incorporateithéndistributed process.

Next, theBaseline Hypothesegor each Quality Aspect need to be defined. Tlasebased
on experiences from a co-located environment. Bseraption shows, which property of the
collocated process is responsible for a respecueality aspect. These properties are
documented agariation Factors.

161

5.3 Case Study 2: Scenario from Agile Development

The main difference of this approach to the stashaeay of using Abstraction Sheets is the
specification of important aspects this distribugdcess should have due to the Variation
Factors. This is done in the lower right field atble 11.

Table 11: Abstraction Sheet

Quality Focus

= Commitment of developers
= Risk of failure

= Amount of Rework

= High Truck Factor

= Communication effort

Variation Factors

Shared responsibilities (e.g. Collective
Codeownership)

Integration and Handover after finishing Story
Cards

Synchronization of Design Sketches and
Rationales

Jointly Execution of Planning Game and Pair
Programming

All Variation Factors significantly add to the
communication effort in distributed development

Baseline Hypothesis
(co-located)

= Commitment of developers: high because of
shared responsibilities

» Risk of failure: low (ca. 25%) because of
continuous integration

» Amount of Rework is low because of daily
synchronization

Impact of variation factors
(on distributed process)

Explicit allocation and sharing of responsibilities
allows comparable commitment of developers in
distributed projects

A strategy for integrating and handing over new
functionality to the rest of the team leads to
comparable low risk of failure and low amount of

rework in distributed projects

= Synchronization of Design Sketches and
Rationales from all sites decreases Rework

= Jointly execution of (distributed) Planning Game
Activity increases the Commitment of
Developers.

= The advantages of being able to execute the
process in distributed projects justify 10
percentage points more communication effort

= xy% of work time is communication effort

The Abstraction Sheet allows deriving questions dgaluation systematically. For each

desired property of the distributed process we needevaluate, whether the derived

distributed process satisfactorily fulfills the asmted quality aspects. As proposed by GQM,
one hypothesis is given for each question, whitdwel evaluating whether a Quality Aspect

Is satisfactorily met.

5.3.4.1 Question 1: Commitment of Developers

Question 1:
Does the derived distributed process explicitlpedte responsibilities in a way that leads to
comparable commitment of developers as in the catéml case?

Metrics:

The metric measures the additional time studemssininto the course (M1: overtime [h]) as
an indicator they are highly motivated by the pecbjéor the same reason, it is counted how
often students are late (M2: occurrences of beite).|

Hypothesis 1:

162

5 Case Study

There is no difference in metrics M1- M2 betweerazated and distributed teams.

Measurement:

During the project, tutors and observers loggedoatiuliarities, especially if (M1) students
stayed for longer discussions or did some work (egding tutorials) at home and (M2) if a
student was late during the block course.

Findings:

Students from the global team were very interestgutocess issues. On three occasions, they
stayed more than half an hour longer, discussingcatftepts and general software design.
Such occasions were not observed with students ftemlocal team, but slightly more
volunteers were found from the local team when ntelars were needed to create a market-
ready version of the software after class. Theefbtl can be rated to be indifferent or even
in favor of the global team. On the first few dagstributed stand-up meetings were delayed,
because some developers were late (5-15 minutag)ctirality improved during the
distributed project. In the co-located project, soai the developers were regularly late, so
the co-local team performed worse with respect & Bimilar projects in past terms show
that the distributed project is more typical thhe to-local here.

5.3.4.2 Question 2: Risk of Failure

Question 2:
Does the continuous integration and the handoveewf functionality to the rest of the team
work as well in reducing the risk of failure aglire co-located process?

Metrics:

New functionality should be added at a stable p@bes reduces the risk of not finishing in
time with the most important requirements impleredntA stable pace is only possible, if
new functionality can be integrated without majoolgems and reuses functionalities of
existing increments. Therefore, variation of thelementation progress has been measured
(M3: variation of velocity).

Hypothesis 2:
There is no difference in the variation of the ierpkentation progress (M3).

Findings:
Figure 115 shows the implementation progress (g:a@velopment runs (4h length), y-axis:

estimated effort) of the distributed team in congaar to two co-local XP projects (Figure
116 and Figure 117).

163

5.3 Case Study 2: Scenario from Agile Development

60
50 n
40
30 \-s.‘\
20 2
10
o —i \ ‘ ‘ ‘ ‘ ‘
1 2 3 4 5 6 7 8
—&— Burndown —i—Velocity

Figure 115: Velocity and Burn-down in the distributed XP project

The velocity shows how much of the estimated eff@as implemented for each development
run. The burn-down depicts how much of the iniialount of estimated work was left each
day. This amount is reduced by the estimated efiiba story card, whenever it is integrated
after acceptance. The burn-down should fall cowtisly, whereas, the velocity should
ideally be constant.

120

100

60 |

20

‘ —&— Burndown —i—Velocity ‘

Figure 116: Velocity and Burn-down from a well condicted co-local XP project

If a project progresses well, the velocity is canstor even growing (Figure 117). If
problems occur, the velocity drops (Figure 116)mPared with these two co-local projects,
our distributed project seems to be fine (Figurg)11

Remarks:

For Figure 116 and Figure 117 only limited data basn available, which makes statistical
comparisons difficult. Nevertheless, the major drefi Burn-down and velocity is made clear.

164

5 Case Study

100
90 7
80
70 7

60

50 - ‘\\

40

30 - \0

20
10 7

‘ —&— Burndown —#—Velocity ‘

Figure 117: Velocity and Burn-down from a bad co-laal XP project (x-axis: 8h day)

5.3.4.3 Question 3: Amount of Rework

Question 3:
Does the distributed process support the developrokra shared understanding of the
design?

Metrics:

The amount of rework was measured in two ways.tlfirthe number of story cards with
bugs (“bug cards”) in relation to all story caréi#4). Secondly, the time spent on these bugs
(M5).

Hypothesis 3:
Basili and Boehm stated in [23] that the typicaloamt of rework is about 40-50% of the
overall project effort. Our projects should be éethan that.

Findings:

Number of bug cards shows a relative high valueMdrof about 37% bugs. However, none
of these bugs took a long time to correct (M5, Fegiil9): the amount of rework in terms of
time [minutes] is determined at about 15%. Agalrese values are comparable to the co-
located projects.

37%
B Number of Bug Cards

O Number of Story Cards
63%

Figure 118: Number bug cards in relation to story ards

165

5.3 Case Study 2: Scenario from Agile Development

15%

B Bugfixing time [min]

0 Other tasks [min]
85%

Figure 119: Relation of bug fixing time to other taks

5.3.4.4 Question 4. Communication Effort

Question 4
Despite the additional communication effort of thistributed process: is it still profitable to
execute projects with this process?

Metrics:
Working time spent in regular communication (i.darfding Game, Stand-Up Meeting,
Design Synchronization / Handover) by

a. the local team (M6)
b. the global team (M7).

Hypothesis 4:
Communication effort is expected to be higher ia dstributed project, but it should not be
more than twice as high: 1.5 * M6 < M7 < 2 * M6.

Findings:

The communication effort of this project has bearestigated in detail in [96]. Accordingly,
the communication effort for the daily stand-up tmeewas 28:32 minutes on average per
meeting for the distributed team. Additionally,dbrplanning games were conducted lasting
1:36 hours on average (M7). In comparable co-latptejects, the stand-up meetings lasted
15 minutes on average. The planning games werdlyisharter, too.

The communication effort is about twice as highirago-located projects. The problem is
even more severe, if additionally set-up costs @esidered [96]. As discussed in [9],
strategic considerations can make this additioffakteacceptable. In this case, it is more
effective to stay more agile, and therefore to bke do react faster, and still distributing
development between two sites. This way, both &g to work with each other by forcing
knowledge sharing simultaneously.

5.3.5 Validity of Results

The investigation in this case study is subjecteddrtain threats to validity. Wohlin et al.
introduced a well- accepted classification of tgbithreats [149]. Based on the case study 2,
the validity in general is shown in the following.

Basically, two different topics are discussed:
1. First, the selected type of the case studies igselftheir representativeness.

166

5 Case Study

2. Second, how results of the case study supportribeeps integration approach of this
work.

Following Wholin’s classification of threats, fotypes of validity are differentiated.

5.3.5.1 Internal Validity

In this project students were very motivated in Xt laboratory, because the course is
voluntary and very well accepted among studentasTresults concerning the motivation of
the students might be independent from dispersagnéthe project. This threat is somewhat
leveraged by the relative comparison of two prgjeat the same laboratory. In addition,
students might be especially motivated to partieipa a distributed software engineering
class. For this reason, the two teams have beesepohecandomly. It is possible that
supervisors tried to mitigate discouraging effertsthe global team to avoid annoying
students.

The constant velocity and the low amount of rewsekobserve in our data could result from

a) a good global team or
b) a very simple task with only a few requiremehanges instead from the good
derived process.

The randomly selected teams are very likely to hsivalar strengths. However, it is very
difficult to evaluate team strengths in a similasignment, since objective criteria that
document the successfulness are very challengidgfioe.

5.3.5.2 External Validity

Threats to external validity affect the generaliligbof the results.

The evaluation scenario is a student's project, it. @emains an open question, whether the
assessment results would hold for industrial ptsjeiwo. Although this was not the goal of
our evaluation, it is very certain that the prodessgration approach will be also feasible and
successful in the industrial context: The compierit the investigated process is comparable
to industrial processes, and most of the metricagsessment will be measured as part of the
normal management of industrial projects. Howewerjndustrial case study remains future
work.

5.3.5.3 Construct Validity

In applied research, construct validity (the th&oak constructs and their representation in
the experiment) is less important than internal extérnal validity.

The applied metrics foRisk of Failureand Amount of Reworlare not fully covering these

constructs. Nevertheless, it is important to géeding for the performance of the derived
process in these fields. For evaluation of thisreagh, the construct validity is more
important. For this reason, it has been focuse@ students' project, in which the realistic
mapping of the important agile practices has bémeady proven [135].

167

5.3 Case Study 2: Scenario from Agile Development

5.3.5.4 Conclusion Validity

Conclusion validity deals with the question, whetherepetition of the study will lead to
similar results.

For this investigation, this is the least importaalidity class. Understanding the implications
of executing a given process in a distributed gtlis more important than statistical

significant results. In practice, the assessmemtlshyield good results before a large number
of projects has been assessed - especially ifrteeps does not perform as well as expected.

5.3.6 Summary Case Study 2: Scenario from Agile Developmeé

The case study 2 applied the collaboration scenAdditive Vertical Integrationto derive a
process for distributed development in a studexi’project conducted between LUH and
TUC. This development project was basically setrugn agile basis with all typically used
agile methods. Agile projects are usually less @sseoriented; nevertheless, it is crucial,
especially for small projects, to make use of thiityg to systematically derive a process for
distributed development from a well understood axal development process. The reason
for this is due to the fact that more and morevgarfe is developed in distributed teams.

The performance of the process integration approactcomplemented by empirical
techniques to derive the benefits and drawbacksceged with the original co-local process.
This is a prerequisite for assessment, whetheethesperties are represented in the derived
distributed approach.

This example focuses on the propertiks/eloper commitmentisk of failureg amount of
rework and communication effortBasically, the derived process performs as welthe
original co-located process at the cost of twicéigh communication costs. The reasons for
that are manifold; however, the use of an exptlegign activity might essentially contribute
to a project's success, since design activitiestygieally the foundation of any software
product.

The results provided give process managers onemgavhthe potential successfulness of a
collaborative scenario supporting the understandindependencies. Others may find these
metrics and data points useful, when evaluatingidiged projects.

Since this case study provides only one quantéemmple (data point) concerning the effects
of the use of the ‘Additive Vertical Integrationt,cannot be concluded that each and every
software development project using ‘Additive Veatitntegration’ is equally successful.

However, currently, project managers are limiteddehoc adjustments for making a process
fit for distributed development. Even if the comress of this data point will not be
confirmed by another example case, this data gmiovides “First Aid” towards getting a
feeling of parameter sensitivity and having mofeaive distributed processes in place.

168

6 Discussion

6 Discussion

After demonstration of the process integration apph on a concrete scenario in Chapter 5.3,
the applicability of the approach is reviewed arstuassed here.

6.1 Major Issues of Process Integration Approach

6.1.1 Accuracy of Mediator Definition

A basic concept of the introduced process integmatipproach is the usage of mediators.
These mediators connect the collaborating parfeectesses together and create a new
executable process as final result. Figure 120stities as a reminder the scenario
‘Horizontal Integration’, which encompasses th@ndovermediators for transferrin§ystem
Design SpecificatiomndImplemented Syster®n this level of granularity regarding process
definition, it is obvious that ‘'something’ must hpgm within the mediator. As already stated,
a mediator in general represents any kind of mggeéither in person (face-to-face) or virtual,
in which appropriate parties get together clarifyprocess interfaces, which is basically a
mapping of artifacts. In Figure 120, this is thedddé swim lane which describes “WHAT”
needs to be done towards a working collaboratit@igeThe remaining issue is on this level
of granularity; it is very challenging to define cdamddress “HOW” the work within a
mediator needs to be done. This means for the deaffiigure 120) that it cannot be
generally defined what (e.g. UML diagrams, pre-aedi variables etc.) needs to be changed
in System Design Specificatioof Organization A to end up with &ystem Design
Specificatiorthat Organization B can handle and use for its pratcesses.

Organization A (Master) (Organization A (Master) Organization B (Supplier)
AND
Organization B (Supplier))

System

Requirement Contro

Flow

Specification
System Design Control Flow
System Design > Handover |~ System Design
Specification Specification

Controlh\ \l/

System
Implementation

s g

Implemented . | | Implemented
System Handover ~ System

\l’ Control Flow J
System Test [

System Test

Record Control
Flow

Figure 120: Reminder: Collaborative Process for 'Hazontal Integration’

169

6.1 Major Issues of Process Integration Approach

In order to support the problem, two possibilites provided in this work:

» Table 4 contains crucial artifacts for software elepment. It gives guidance of what
concrete artifacts might be transferred by usingediator.

* Chapter 3.3.2 provides an “Artifact Synchronizatiand Handover Concept” that
deals with differences of provided and neededaatsf during hand over. This might
have its origin in different methods used to geteetifferent output-formats. These
output formats need to be converted so that it bansmoothly used by the
collaborative organization(s) or partners.

However, there is still a portion of the problenattllepends on the concrete project set-up
and the content of the initial processes for caltabon. This is not solved by the Process
Integration Approach, but must be solved by thecoste collaboration project.

6.1.2 Interfaces: Different Inputs and Outputs

The examples that illustrate the functionality efided integration scenarios are consistently
defined based on practical experience. The purpbsiee scenarios is to illustrate the basic
idea of how processes for collaborations can beected. Nevertheless, these scenarios have
character of models, which itself are only simplifiillustrations of reality. This means that
that cases might occur, which cannot be obviouslyesl using the Process Integration
Approach. As substantiation, please refer to Figxe that illustrates the initial processes for
‘Merging Integration’ scenario.

Organization A (Master) Organization C (Supplier)
Requirement Requirement Control
Specification Control Specification o

Flow
| {—
System Design Software Design
System Design Control Software Design Control
Specification Flow Specification Flow
\l/ \ 4 ‘l/ v
System Software
Implementation Implementation
Implemented Control Implemented Control
System Flow Software Flow
! v J v
System Test Software Test
System Test Software Test
Record Record
Control Control
Flow Flow

Figure 121: Processes defined on different granuldy levels (system vs. software)

If Organization A wants to outsource i&/stem Implementatioamccording to ‘Horizontal
Integration’ scenario in Figure 120, it has to &fan its System Design Specificatido
Organization C. However, Organization C (Figure)1B4s no action/activity defined in its
own processes to be able to handle and procedsatisferredSystem Design Specification
The problem here is the different definition lewdl processes (system level vs. software

170

6 Discussion

level). This example describes an application casewhich straightforward process
integration, according to defined mediators of thisrk, cannot easily be applied. The
solution of these types of problems is done by ligheg a sequence of combined scenarios,
which has been conducted in chapter 4.2.5 (‘Mergibggration with on single organization’
& ‘Horizontal Integration’).

6.1.3 Empirical Validation Possibilities

A further issue concerning process integratiomésdonduction of an empirical validation on
the level of detail used in the dissertation. Sdrasic evaluations on the functionality and
benefits of the process integration approach has ladready shown in [16] in conjunction
with agile development.

This integration approach has been defined on asugtanularity level, that one has to deal
with artifacts or artifact types. Referring to tik@ur Layer Architecture of the Meta-Object
Facility’ in Figure 17, this would be allocated action level M2 or M3.

Evaluating the capability of the process integratpproach requires the availability of two,
almost identical projects to receive data thatvallimr comparison on the quantitative

performance of this approach. In order to get starthparative results the first project needs
to run (almost) without any process definition, teecond by following the process

integration approach. The availability of havingotwdentical projects is very rare in an

industrial environment.

In comparison, other evaluation approaches ded mibre general topics, likeulture and
communicationand draw valid conclusions, that distributed depeient projects are more
complicated and, therefore, take more time thaergthojects conducted in one location [62],
[55], [62], [30]. These evaluations would be allmthon a Meta level (MO or M1 in Figure
17), which makes it more feasible to compare twceewen more projects based on these
criteria.

6.2 Benefits of the Process Integration Approach

Beside the challenges described in the previouptehahe process integration approach also
comes up with some major advantages that are esdan the following.

Velocity of Process Set-up

The illustrated approach is set up in a way whitdwe process engineers for a quick process
set-up at the beginning of any collaboration projébis is due to the fact that the mediators
are already pre-defined and guide the respectiles thirough the set-up by showing what
connections in terms of control- and object flows aecessary to define a valid diagram for
all participating organizations.

Consistency of Process Integration

The pre-defined mediators support process engineerseate valid process diagrams or
workflows. Besides control flows, the approach gisavides object flows for each mediator,

which shows and gives at least valuable hints fbatwartifacts need to be included. The
object flow is also consistently defined and avoaitifacts that run into dead- ends or

missing inputs for defined activities. This meanattthere are reliable interfaces throughout
all participating organizations in any collaboratiovhich is crucial for its serviceability.

171

6.2 Benefits of the Process Integration Approach

Applicability of Approach

The process integrative approach is not only deelicand limited to software development
process but can also be used for hardware, i.ehanezal or electrical engineering, although
it originates in the software domain. Every devaitept discipline is dependent on
collaboration with other parties. Therefore, thip@ach supports every type of development
domain and every type of process, no matter whetheran iterative or waterfall approach.
Even the agile methodology is applicable [16].

Adaptability of Process Integration Approach

This approach covers all potential development ages that occur and provides appropriate
mediators for it. However, if any project has theed to define another mediator necessary,
this approach is also open for further mediator andnario definition. Although much
investigation through “direct observations” havesteconducted, this could be required in
scenarios that combine one or more developmenstype

Second, each defined scenario needs to be slighdigpted to every collaborative
development case, since every project encompaga®at numerous parties and, therefore,
requires different artifacts.

Role Concept

During set-up of collaborative processes by usimg &pproach, every activity and process
step has a responsible, organizational role assgighileis contributes to effectiveness of the
collaborative process during execution, since eymsticipating organization is aware of
what needs to be done.

172

7 Overall Summary and Further Research

7 Overall Summary and Further Research

Development organizations have had to face a trdmenchallenge in the last years: moving
from a co-local towards a distributed developmentimnment. This trend is still ongoing
and coerces companies to decrease cost while eagenmts on innovations are constantly
growing, and competition increases. In order ty stampetitive, development organizations
take a chance and “going global” regardless offtue that challenges are undiminishedly
high.

The reasons for that are manifold. Required exgeeis typically not readily available from
the local market when needed at a certain siteteftuee, development organizations have to
expand their search on a global basis to get thjlet people hired from the job market
worldwide. In addition to that, outsourcing of uess resources or infrastructure in low cost
countries often forces organizations into globaiora Furthermore, globalization may allow
organizations to penetrate desired markets to geirket share and organizational growth.
This applies especially for emerging countries, iehexpected growth rates are significantly
higher than in already saturated markets.

Additional external business sites around the wonged to be included into the
organizational core business. This is crucial tbciehtly control and make use of any
satellite businesses. The inclusion of additiotaksswvorks best by having them coordinated
via organizational processes. However, these digbdefined processes need to fulfill
certain requirements to be capable for distributedelopment collaborations. On one hand,
processes have to stay organization- specific, @viercluded in a broader net of globally-
defined processes. This is important since orgéoizal culture is strongly interrelated to
processes. If processes are changed ad hoc culiibitern organization’s work inefficient.
On the other hand, processes have to be easydblisstand intuitively to use, which is a
necessary aspect to get acceptance from the woekfam processes, especially if they are
newly defined.

Therefore, globally distributed process set upsdnaestructured concept that allow for
connecting two or more semantically equal or ddfgrprocesses, while keeping the initial
process. Semantically equivalent processes camm@ected straightforwardly. Linking two
or more processes together that are semanticallgquovalent requires at least an interface.
Such an interface is callédediatorin this work and takes the task to establish aneotion
that meets all necessary process and culturalresgents mentioned above.

This dissertation defines seveMeédiatorsthat can be used for several collaborative process
scenarios:

1. Process Integration with semantically equivalentpsses
2. Process Integration without semantically equivafgntesses

Horizontal Integration
Additive Vertical Integration
Alternative Vertical Integration
Merging Integration
Hierarchical Integration

P20 T ®

These defined scenarios cover all potential coliabee process constellations within
distributed development environments. For visuéibra UML activity diagrams are used a
basis.

173

7 Overall Summary and Further Research

Especially in distributed business environmentsaidy defined responsibilities are essential
to avoid double work and to make sure that no etuesk has been forgotten. Therefore, this
process integration approach provides a role cdnbaped on activity/action level. That
enables an organization’s process managers toedaffinesponsible persons in charge for any
task prior to process execution. Within UML actvidiagrams, these responsibilities are
defined using the operators “AND”, “OR”, and “XOR".

Process definition and modeling work need to beedwery efficiently, especially in a
distributed development context. Increased prodifigtcan be gained by having appropriate
tool support available. Chapter 4.3 provides matiteral formalization of processes, which
is defined on a graph- based notation. The forraatma provides an ideal basis for
implementation of a process integration toolingymarting any process integrator during set
up of collaborative and distributed processes. Aaldally, formalization helps to understand
accurately and communicate the functionality ofcess integration.

Performance of the process integration approachhéas assessed in two case studies:

First, an illustrative case study has been intreduto get familiar with this process
integration approach, to get a feeling how the refi approach works in practice, and to
identify further questions. The case study makesafiseveral defined mediators: ‘Horizontal
Integration’, ‘Additive Vertical Integration’, and/lerging Integration’.

Second, the explorative case study addresses penfice measurement of this approach. By
use of the ‘Additive Vertical Integration’ mediatdhis case brings together one co-located
agile development project approach and a watedallelopment process in a scientific
environment. Based on GQM methodology, four hypstise(quality factors) have been
evaluated that encompass:

« Commitment of Developer
« Risk of Failure

« Amount of Rework

« Communication Effort

Results show that based on the quality factorstilouted development project can perform
as well as a comparable project in one locationvéi@r, the statistical significance of the
result can be challenged since this has been ardtsgbroject only.

The communication effort was measured twice as hggim a comparable co-located project.
This comes along with Herbsleb’s studies that shimat communication effort in globally
distributed projects might take 2.5 times longeantitomparable projects conducted in one
location. However, this weakness is no reason td pmcess management in general. As
Figure 7 depicts, process management comes withy naalvantages for development
organizations and the corresponding business, fagter processing of orders or cost
reduction. These advantages are able to compemsateased communication effort if
defined and set up precisely and with care. Theeefbis better to have any process in place
than no process at all. This fact counts espediaflgollaborative development, which might
be distributed all over the world.

Further Research

This dissertation provides the basic structurectdlaborative processes. Based on this work,
further research may be done in several fieldscamderning the following aspects.

174

7 Overall Summary and Further Research

Process definition and documentation are very toresuming if done manually. This means
that the procedure of process creation and docwatientshould be optimized by having
tooling in place. The provided formalization is &leal basis for implementing a tooling
prototype for process integration. This supporteess set up significantly.

Having one case study in this work as basis, tloegss integration approach needs to be
further approved towards reliability based on emplirdata. In order to achieve this target
more empirical projects in both scientific and isttial environments need to be conducted
that provide a basis to measure the performanteioBpproach. Performance measurement
needs to be done on both hard and soft factorsfastd. Hard facts include results from
appropriately defined metrics applied, e.g., effortcommunication, lead time etc.

Criteria like convenience of handling, visualizatioetc., are counted among the soft
performance factors, which need to be provided foggss definition group. This personal
feedback gives a feeling how the entire approadctksvim practice.

The provided approach for process integration aelp development organizations to handle
the complexity of globally distributed developmegmtojects. The approach makes them
analyze interfaces and identify potential roadbépgkior to process execution, which, in turn,
improves the project efficiency regarding time,tcasd quality.

175

7 Overall Summary and Further Research

176

Bibliography

Bibliography

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

Aggarwal, A., Aspray* W., Berry* O., Lenway S.A.aylor V.: “Offshoring: The Big
Picture”, World Investment Report 2004, p. 148,
http://www.scribd.com/doc/19464482/internationaibess

Altmann, J., Pomberger G.: “Kooperative Softwarescklung: Konzepte, Modell
und Werkzeuge”, 4. Internationale Tagung Wirtsaiaformatik 1999, Hrsg.:
August-Wilhelm Scheer; Markus Nuttgens. — Heidedb&hysica-Verlag, 1999
Al-Ani B., Edwards H. K.: “A Comparative Empiric&tudy of Communication in
Distributed and Collocated Development Teams” mtéional Conference on Global
Software Engineering (ICGSE) 2008, p. 35-44, ISB18-9-7695-3280-6

Ambler, S. W.: " Process patterns: building largats systems using object
technology”, Cambridge University Press/SIGS Bodksy 1998, ISBN: 0-521-
64568-9

Arnold V., Dettmering H., Engel T., Karcher A.: gttuct Lifecycle Management
beherrschen®, Springer Verlag 2005, ISBN-13 97848-32997-1

Association for Computing Machinery (ACM): “Globzéition and Offshoring of
Software - A Report of the ACM Job Migration Tasikrée”, 2006,
http://www.acm.org/globalizationreport/pdf/fullfihpdf, October-09, 2010

Avritzer, Hasling, Paulish: “Process Investigatfon Global Studio Project Version
3.0”, Second IEEE International Conference on Al@mdtware Engineering, 2007, p.
247-251, ISBN 0-7695-2920-8

Bach N., Biemann T.: “Geschéftsprozessmanagemddeutschland — Ergebnisse
einer Befragung”; in: Ellringmann, H., SchmelzerJH
,Geschaftsprozessmanagement inside”, Hanser Vavidgchen 2004, ISBN 978-
3446229921

Bartelt, Ch. et al.: “Orchestration of Global Sadin® Engineering Projects (Position
Paper)”, Proceedings of the Third International ¥¢bop on Tool Support
Development and Management in Distributed Softwagects, collocated with the
Fourth IEEE International Conference on Global 8afe Engineering ICGSE 2009,
July 13-16 2009, Limerick, Ireland.

Basili, V. R.; Caldiera, G. & Rombach, H. D.: “Tkeoal Question Metric Approach -
Encyclopedia of Software Engineering”, Wiley, 19846-661

Bass, M., Paulish, D.: “Global Software Developm@ricess Research at Siemens”
Third International Workshop on Global Software B®pment, International
Conference on Software Engineering (ICSE) 2004

Ban Al-Ani B., Redmiles D.: “In Strangers We Trugtiidings of an Empirical Study
of Distributed Teams”, IEEE International Conferemmn Global Software
Engineering (ICGSE), 2009, pp. 121 - 130, ISBN 978695-3710-8

Bauer, B., Muller, J. P., Roser, S.: “Adaptive desof cross- organizational business
processes using a model-driven architecture” pI2B3-In: Ferstl O. K. et al.:
“Wirtschaftsinformatik 2005: Eeconomy, Egovernmdgpciety”, Physica Verlag
2005, ISBN 3-7908-1574-8

Beck, K.: “Extreme Programming Explained”, Addisdresley, 2000

Beck, K. et al.: "Manifesto for Agile Software Ddégpment". Agile Alliance, 2001,
Retrieved 2010-06-14.

Biffl, S., Winkler, D., and Bergsmann, J. (Eds.WQD 2012, LNBIP 94, Klein H.,
Knauss E., Rausch A.: “Scaling Software DevelopniMethods from Co-located to
Distributed”, pp. 71-83, 2012, Springer-Verlag BeHieidelberg 2012

177

Bibliography

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Explained.At: The Information and Knowledge Port8litwise operation explained”,
http://everything.explained.at/bitwise_operatidddwnload November 2011
Boczanski M., Muth M., Scheer A.-W., Segelbacher3¢hmitz W.-G.:
.Prozessorientiertes Product Lifecycle Managemestinger Verlag 2006,

ISBN 3-540-28402-8

Boden A., Avram G., Bannon L., Wulf V.: “Knowled@éanagement in Distributed
Software Development Teams — Does Culture MattéEEE International
Conference on Global Software Engineering (ICG2B09, pp.18-27, ISBN 978-0-
7695-3710-8

Boehm, B.: "A Spiral Model of Software Developmantd Enhancement”, ACM
SIGSOFT Software Engineering Notes", pp. 14-24,/s1d.986, DOI:
10.1145/12944.12948

Boehm, B.: “Guidelines for Verifying and Validatir®pftware Requirements and
Design Specifications”, Technical Report 1979, mitdd in Journal IEEE Software
Volume 1 Issue 1, January 1984, IEEE Computer 8pBiress Los Alamitos, CA,
USA

Boehm B.: ,Some Future Trends and Implicationsyst&m and Software
Engineering Processes®, Wiley InterScience 2006

Boehm B, Basili V. R.: “Industrial Metrics Top 10st”, IEEE Software, Sept.1987,
pp. 84-85

Booch Grady, Rumbaugh James, Jacobson Ivar: “TlifgedmModeling Language
User Guide”, Addison-Wesley Longman, Amsterdamy 119198,

ISBN 978-0201571684

Bronstein, Von I. N., Semendjajew K. A., Musiol Gluehlig H.: ,Taschenbuch der
Mathematik®, Verlag Harri Deutsch 2008, ISBN 978&B72-2007-9

Bronwyn Becker, Patrick Dawson, Karen Devine, Caidamnum, Steve Hill, Jon
Leydens, Debbie Matuskevich, Carol Traver, and Milsdmquist. (2005)Case
StudiesWriting@CSU. Colorado State University DepartmehEnglish. Retrieved
[2011-08-02] from http://writing.colostate.edu/gesdresearch/casestudy/.

Carey J., Brent C.: “Framework Process Patterngssans Learned Developing
Application Frameworks”; Addison Wesley, April 2Q03BN 0-201-73132-0
Casey V.: “Leveraging or Exploiting Cultural Difamce?”, IEEE International
Conference on Global Software Engineering (ICG2B)9, pp. 8 - 17, ISBN 978-0-
7695-3710-8

Cataldo, M.: “Dependencies in Geographically Disited Software Development:
Overcoming the Limits of Modularity,” PhD Thesi€)@, School of Computer
Science, Carnegie Mellon University: Pittsburgh, PA

Cataldo, M. & Herbsleb, J.D.: “Communication netk®m geographically
distributed software development” Proceedings, ACthference on Computer-
Supported Cooperative Work, San Diego, CA, Nov 2@@8 579-588

Champy, J.: “X-Engineering the Corporation”, Newrk:oWarner Books 2002,
ISBN 978-0446528009

Colette R.: “Modeling the Requirements Engineefngcess”, 3rd European-
Japanese Seminar on Information Modelling and Kedgt Bases. Budapest,
Hungary, June 1993

Damian, D., Izquierdo, L., Singer, J. and Kwan;Awareness in the wild: why
communication breakdowns occur”, IEEE Internaticdbahference on Global
Software Engineering (ICGSE), 2007, pp. 81-90, GerynISBN 978-0-7695-2920-2

178

Bibliography

[34]

[35]
[36]
[37]
[38]
[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Damian, D., Marczak, S., Kwan, I.: “Collaboratioatierns and the Impact of
Distance on Awareness in Requirements-Centred Sdetaorks.” International
Requirements Engineering Conference 2007, New Digltlia, Oct 2007.

Damian, D., Moitra, D.: “Global Software DevelopmeHow Far Have We Come?”
IEEE Software, Vol. 23, No. 5, 2006

Dasberg, J.: ,Product Lifecycle Management: Innmratimsetzen®, 2008, Accenture
Broschure

Davenport T.: “Process Innovation: Reengineeringkwtbrough information
technology”, 1992, Harvard Business School Preesid, ISBN 978-0875843667
Day, M.: ,\What is PLM*, April-15, 2002,
http://www.caddigest.com/subjects/PLM/select/dagn.ptm; Download September
2010

Deutsches Institute fir Normierung (e.V.), ISO 92000 Kapitel 3.4.1

Diaz, M.: “Petri nets: fundamental models, verifioa and applications”, Wiley 2009,
ISBN 978-1-84821-079-0

Ebert Christof, Bvs Krishna Murthy, Namo Narayaa:JManaging Risks in Global
Software Engineering: Principles and Practices’1pp-140, IEEE International
Conference on Global Software Engineering (ICGSE&2 ISBN 978-0-7695-3280-
6

Eigner M., Stelzer R.: ,Produktdatenmanagemente®yst Ein Leitfaden fur Product
Development und Lifecycle Management*, 2nd Editi8pringer Verlag 2009,
ISBN-13 978-3-540-68401-5

Fink C.A.: ,Prozessorientierte Unternehmensplandulyse, Konzepte und
Praxisbeispiele®, Wiesbaden 2003

Floyd, C., Zillighoven, H.: ,Softwaretechnik”, IRechenberg/Pomberger (Hrsg.)
Informatik-Handbuch, Hanser Verlag, Minchen, Wign641-667, 1997

Flvybjerg, B.: “Five Misunderstandings about Cased$ Research”, Sage
Publications, Qualitative Inquiry Vol. 12, NumberAril 2006, pp. 219-245
Forbath T., Brooks P., Dass A.: “Beyond Cost ReiductJsing Collaboration to
Increase Innovation in Global Software Developninojects”, IEEE International
Conference on Global Software Engineering (ICG2808, pp.205-209, Bangalore,
India, 2008, ISBN 978-0-7695-3280-6

Gadatsch A.: ,Grundkurs Geschaftsprozess-Manageriathoden und Werkzeuge
fur die IT-Praxis: Eine Einfihrung fir Studenterdu?raktiker®, Vieweg+Teubner
2007, ISBN 978-3834803634

Gadatsch, Andreas: “Grundkurs Geschaftsprozess-giéanent. Methoden und
Werkzeuge fur die IT-Praxis”, Vieweg+Teubner, 20BBN 978-3834807625
Gadatsch A., Knuppertz T., Schnégelberger S.: ,Ga#ftsprozessmanagement - Eine
Umfrage zur aktuellen Situation in Deutschland‘hi$itreihe des Fachhandels
Wirtschaft der Fachhochschule Bonn-Rhein-Sieg.B8t. Augustin 2004,
http://www.ifs.tuwien.ac.at/gpm-studie/2003/GPM-@&+2003_Ergebnisse-
Deutschland.pdf, 2010-08-28

Girault,C., Valk, R.: “Petri nets for systems eregnng: a guide to modeling,
verification, and Applications”, Springer-Verlag ilie Heidelberg New York, 2003,
ISBN 3-540-41217-4

Gotel O., Kulkarni V., Say M., Scharffl C., SuneiteT.: “Quality Indicators on
Global Software Development Projects: Does “Gettomgnow You” Really
Matter?”, IEEE International Conference on Globaft®are Engineering (ICGSE),
2009, pp. 3-7, ISBN 978-0-7695-3710-8

179

Bibliography

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]

[67]

[68]

[69]
[70]

Grady B., Rumbaugh J., Jacobson I.: “The Unifiedd®long Language User Guide”
Second Edition, Addision-Wesley 2005, ISBN 0-32726-4

Grady B., Rumbaugh J., Jacobson I.: “The Unifiettiv&re Development Process,
Addison-Wesley, 1999, ISBN 978-0-2015-7169-1

Hack, S.: “Collaborative Business Scenarios —Cngatfalue in the Internet
Economy”
http://www.worldinternetcenter.com/Think_Tanks/TThort_List/Stefan_Hack e _d
oc.pdf, download September-16, 2010

Handel, M., Herbsleb, J.D.: “What is Chat doinghe workplace?”, Proceedings of
ACM Conference on Computer-Supported Cooperativek@@SCW), New Orleans,
LA, 2002, pp. 1-10

Hammer M., Champy, J.: “Business Reengineeringd31€ampus, ISBN 978-
3593350172

Haskell 98 Language and Libraries The Revised Refieattern Matching”,
December 2002, chapter 3.17, http://haskell.orgienéport/index.html, July-05,
2011

Havey, M.: “Essential business process modelingRedlly 2005, ISBN 978-0-596-
00843-7

Herbsleb, J.D.: “Global software engineering: Tatiife of sociotechnical
coordination.” International Conference on Softwargineering, Fundamental
Approaches to Software Engineering, MinneapolisAUZE07.

Herbsleb, J.D., Atkins, D.L., Boyer, D.G., Handdl, & Finholt, T.A.: “Introducing
Instant Messaging and Chat into the workplace” @edings of ACM Conference on
Computer-Human Interaction, Minneapolis, MN, 200@, 171-178

Herbsleb, J.D., Mockus, A.: “An Empirical Study$peed and Communication in
Globally Distributed Software Development”, IEEEafsactions on Software
Engineering, 29, 6, June 2003, pp. 1-14

Herbsleb, J.D., Mockus, A., Roberts, J.A.: “Colledd®mn in Software Engineering
Projects: A Theory of Coordination”, 2006, Intelioatl Conference on Information
Systems, Milwaukee, WI

Herbsleb, J.D, Moitra, D.: “Global Software Devetognt”, IEEE Software,
March/April (2001), pp. 16-20.

Herbsleb, J. D., Paulish, D. J., Bass, M.: “Gldbaftware Development in Practice:
Experience from Nine Projects”, 2005, 27th Inteioredl Conference on Software
Engineering, St. Louis, USA, pp. 524-533.

Hofstede G.: “Culture's consequences: comparingegalbehaviors, institutions, and
organizations across nations”, Sage Publicatiod@12ISBN 0-8039-7323-3
Humphrey, Watts S.: “Introduction To the Persorat@are Process”, Addison
Wesley Pub Co Inc., December 1996, ISBN-13: 978628099

Hung, C., Dennis, A., Robert, L.: “Trust in Virtukams: Towards an Integrative
Model of Trust Formation. Hawaii International Cerdnce on System Sciences
(HICSS), Track 1, Volume 1 Jan. 5 - 8, 2004.

IBM news releases: “The Growing Ecosystem of théo/otive Industry”, June-07,
2010, http://www-03.ibm.com/press/us/en/pressrel@d826.wss, Download: Dec-11,
2011

IDS Scheer: Business Process Report 2005, Saadr@€05

IEEE Computer Society: “12207.0-1996 - IEEE Staddar Information Technology
- Software Life Cycle Processes”, http://standaeés.org/findstds/standard/12207.0-
1996.html

180

Bibliography

[71]
[72]

[73]

[74]
[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

International Standardization Organization (IS@OIIEC 15504 Information
Technology, http://www.iso.org/iso/iso_catalogumhbDownload 2012-04-12
International Standardization Organization (IS@©I19000 Quality Management,
http://www.iso.org/iso/iso_9000_selection_and_use,bownload 2012-04-12
International Standard ISO/IEC 14977, 1996(E): imfation technology — Syntactic
metalanguage - Extended BNF, http://standardsngftiflicence.html. Download:
Jan-14, 2012.

Jacob, A., Brauns, C.: ,Der Industrieanlagen-Kotiatwertrag“ Carl Heymanns
Verlag, 2006, ISBN 978-3452257147

Jacobson Ivar, Booch Grady, Rumbaugh James: “TligedrSoftware Development
Process”, Addison-Wesley Longman 1999, ISBN 9781620691

Jochem, R., Mertins K., Knothe T.: “Prozessmanagemeétrategie, Methoden,
Umsetzung” 1. Auflage, Symposium Publishing Gmbldsgeldorf 2010, ISBN 978-
3-939707-56-1

Johansson H., Johansson H. J., Pendlebury A. dsifiBss Process Reengineering:
Breakpoint Strategies for Market Dominance”, JohiteW& Sons 1993, ISBN 978-
0471938835

Key Highlights of the IT-BPO sector performancd=iyi 2007/2008 (of India),
NAXXCOM report, www.nasscom.org, download: Septmp@y 2010

Kircher, M., Jain, P., Corsaro, A., Levine, D.: 4Dbuted eXtreme Programming”,
Second international conference on eXtreme Progiaghand Agile Processes in
Software Engineering”. (2001) 66—71

Klein, H.: ,Collaborative Processes of Enterprisé&oceedings 36. Jahrestagung der
Gesellschaft fur Informatik, 2006 Dresden, pp.683,dSBN 978-3-88579-187-4
Klein H., Rausch A., Kiinzle M., Fischer E.: ,Apm@iton of Collaborative Scenarios
in a Process-Based Industrial Environment®, 36tIREIMICRO Conference on
Software Engineering and Advanced Applicationdgl.iFrance, pp.327-330, 01-03
Sept 2010, ISBN 978-0-7695-4170-9

Klein Harald, Rausch A., Fischer E.: “CollaboratiarGlobal Software Engineering
Based on Process Description Integration, Lectwte®Nin Computer Science:
Cooperative Design, Visualization, and Engineerppm,1-8, 2009

Klein Harald, Rausch A., Fischer E.: "Towards PeseBased Collaboration in Global
Software Engineering,” SEAA, 2009 35th Euromicran@oence on Software
Engineering and Advanced Applications, 2009, pp-268

Kruchten, P.: “The Rational Unified Process - Atrdduction”, Addison Wesley
1999, ISBN 0-321-19770-4

Kuhrmann, Niebuhr, Rausch: “Application of the VMIdXT — Report from a Pilot
Project”, Springer Berlin / Heidelberg, 2006, ISBX3-3-540-31112-6;
http://www.bit.ound.de/nn_388050/BIT/DE/Standardgethoden/V-
Modell_20XT/node.html?__nnn=true

Lamersdorf A., Minch J., Rombach D.: “A Survey ba State of the Practice in
Distributed Software Development: Criteria for Tadlocation” IEEE International
Conference on Global Software Engineering (ICG2B)9, pp. 41-50, ISBN 978-0-
7695-3710-8

Lamersdorf A., Minch J., Rombach D.: “Towards a fiActliteria Development
Distribution Model: An Analysis of Existing Task Sribution Approaches”,
International Conference on Global Software Enginge(ICGSE) 2008, p. 109 —
118, ISBN: 978-0-7695-3280-6

Lehner F., Scholz M., Wildner S.: ,Wissensmanagdam@rundlagen, Methoden und
technische Unterstlitzung, Hanser 2008, ISBN 97&%3149335,

181

Bibliography

[89]

[90]

[91]

[92]

[93]
[94]
[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

http://www.amazon.de/Wissensmanagement-Grundlagetfrdden-technische-
Unterst%C3%BCtzung/dp/3446219331

Li Xitong et.al.: “A Pattern-based Approach to Pl Mediation for Web Services
Composition”, Proceedings of the Seventh WorkingEAFIP Conference on
Software Architecture (WICSA 2008) - Volume 00, 371146, IEEE Computer
Society 2008

Mayer S., Knauss E., Schneider K.: “Distributinggan organization: Maintaining
communication while staying agile”, Internationalr@erence on Lean Enterprise
Software and Systems (LESS), Springer, pp. 99-1B3S 2010, Helsinki, DOI:
10.1007/978-3-642-16416-3_14

Marczak, S., Kwan, I., Damian, D.: “Social Networkghe Study of Collaboration in
Global Software Teams”, IEEE International Confeenn Global Software
Engineering (ICGSE), 2009, Munich, Germany, 2007.

Messmer, W.: “Working with India: The Softer Aspeaf a Successful Collaboration
with the Indian IT & BPO Industry”, Springer Berliteidelberg, 1. Auflage, Nov
2008, ISBN-13: 978-3540890775

Meyer B.: “Object-oriented software constructioRtentice Hall PTR, 1997,

ISBN 978-0-136-29155-8

Mistrik 1., Grundy J., v. d. Hoek, A. Whitehead ,Collaborative Software
Engineering®, Springer Verlag 2010, ISBN 978-3642986

Mockus, A., Weiss, D.M., Bell Labs.: “Globalizatiday chunking: a quantitative
approach”, IEEE Software 2001, pp. 30-37, ISSN 674959

MODAF Meta Model (M3), Version 1.2.004, March 2010,
http://mww.mod.uk/Defencelnternet/AboutDefence/GuwgiePublications/Informatio
nManagement/MODAF/ModafMetaModel.htm, download 20B125.

Muhammad Ali Babar M., Niazi M.: “Implementing Safire Process Improvement
Initiatives: An Analysis of Viethamese Practitioseviews”, International
Conference on Global Software Engineering (ICG2B)8, ISBN 978-0-7695-3280-
6

Nicklisch G. et al.: “IT-Near- und Offshoring in dBraxis”, dpunkt Verlag, 2008
1.Auflage ISBN 978-3-89864-553-1

Niiniméki T., Lassenius C.: “Experiences of Instddssaging in Global Software
Development Projects: A Multiple Case Study”, Intional Conference on Global
Software Engineering (ICGSE), 2008, ISBN 978-05+3280-6

Object Management Group: ,Meta Object Facility (M@oreSpecification®,
Version 2.4 (Beta), August 2010, http://www.omg/epgec/MOF/2.4/Beta2/PDF/,
2011-08-25

Object Management Group (OMG): “Unified Modelingriguiagé" (OMG UML),
Superstructure”, Version 2.3, May-05,2010,
http://www.omg.org/spec/UML/2.3/Superstructure/Pdéwnload October-10, 2010
Osterloh M., Frost J.,: ,Prozessmanagement alskéenpetenz: Wie Sie Business
Reengineering strategisch nutzen kénnen®, Gableé 2EBN 978-3834902320
Pervez N. Ghauri, P. N., Usunier, J.-C.: ,Interoa#il Business Negotiations
(International Business and Management Series)r&ch&roup Publications”, 2003,
ISBN 978-0080442921

Piri A., Niinimaki T., Lassenius C.: “Descriptivenalysis of Fear and Distrust in
Early Phases of GSD Projects”, IEEE Internationahi@rence on Global Software
Engineering (ICGSE), 2009, pp.105-114, ISBN 978605-3710-8

Pohl K., Bockle G., van der Linden, F.: ,Softwameguct line engineering:
foundations, principles, and techniques”, Sprir@g05, ISBN 978-3-540-24372-4

182

Bibliography

[106] Prikladnicki et al.: “Distributed Software Developnt: Practices and Challenges in
Different Business Strategies of Offshoring and l@msg”, Second IEEE
International Conference on Global Software Engiingg(ICGSE) 2007, p.262 - 271,
ISBN 0-7695-2920-8

[107] Prikladnicki R.: “Exploring Propinquity in Globald®ware Engineering”, IEEE
International Conference on Global Software Enginge(ICGSE), 2009, pp. 133-
142, ISBN 978-0-7695-3710-8

[108] Prikladnicki, R., Audy, J. L. N., Evaristo, R.: “Reference Model for Global
Software Development: Findings from a Case Stug@(6, 1st International
Conference on Global Software Engineering (ICG$)ianopolis, Brazil, pp. 18-
25.

[109] Prikladnicki, R., Audy, J. And Evaristo, J.R.: “Dibuted Software Development:
Toward an Understanding of the Relationship betwerefect Team, Users and
Customers, Proceedings of the 5th Internationaf&ence on Enterprise Information
Systems (ICEIS’03), 2003

[110] Prikladnicki R., Damian D., Audy J. L. N.: “Patterof Evolution in the Practice of
Distributed Software Development in Wholly OwnedSidiaries: A Preliminary
Capability Model”, International Conference on GdbBoftware Engineering
(ICGSE) 2008, p. 99 — 108, ISBN: 978-0-7695-3280-6

[111] Ravichandran, Von D.: ,Programming with C++“, 2rditeon, Tata McGrawhil 2003,
ISBN 0-07-049488-6

[112] Royce, W.W.: “Managing the Development of Larget®afe Systems”, Proceedings
of IEEE WESCON 26, August 1970, pp. 1-9.

[113] Rumbaugh J., Jacobson I., Booch G.: “The Unifiedi®lmg Language Reference
Manual”, Addison-Wesley 1999, ISBN 978-0201309980

[114] Rummler, G. A., Brache A. P.: ,Improving Performan&iow to manage the white
space on the organizational chart”, John Wiley &$995, ISBN 978-0787900908

[115] Rupp C., Queins S., Zengler B.: UML 2 Glasklar d®&waissen fur die UML
Modellierung, 3.Auflage; Carl Hanser Verlag 2008BN 978-3-446-41118-0

[116] Saaksvuori A., Immonen A.: “Product Lifecycle Maeagent”, 3 Edition, Springer
Verlag 2008, ISBN-13 978-3-540-78172-1

[117] Samek M.: ,Practical UML statecharts in C/C++: eveénven programming for
embedded systems*, Elsevier 2009, ISBN 978-0-750B%

[118] Sangwan R., Bass M., Mullick N., Paulish D.J., Kaemn J.: “Global
Development Handbook”, Auerbach Publications, Te§dd-rances Group, 2007,
ISBN 0-8493-9384-1

[119] Scacchi, W.: ,Process Models in Software Enginegrin J.J. Marciniak (ed.),
Encyclopedia of Software Engineering, Second Edition, John Wiley and Sons, Inc,
New York, December 2001

[120] Schaling, B.: ,Der moderne Softwareentwicklungspsszmit UML", Kapitel 3: Das
Aktivitatsdiagramm, http://www.highscore.de/umHétgeite.html, 2010-08-28

[121] Scheer A.-W.: "ARIS - vom Geschéftsprozess zum Amlumgssystem”, Springer
2002, 4. durchgesehene Auflage, ISBN 3-540-65823-8

[122] Schmelzer, H.J., Sesselmann W.: ,Geschéaftsprozessgaaent in der Praxis®, 6.
bearb. Auflage, Carl Hanser Verlag Minchen, 2008

[123] Schuh, G.: “Enzyklopadie der Wirtschaftsinformatikefinition Product Lifecycle
Management (PLM), September-08, 2010, http://wwayklopaedie-der-
wirtschaftsinformatik.de/wi-
enzyklopaedie/lexikon/informationssysteme/Sektarsizehe-

183

Bibliography

[124]
[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

Anwendungssysteme/Produktionsplanungs--und--stagesystem/Product-Life-
Cycle-Management

Schulte-Zurhausen M.: “Organisation”, Vahlen 20l BBN 978-3800637362
Schwaber, Ken: “Agile Project Management with Sciusticrosoft Press 3 Edition,
March 2010, ISBN 978-0735619937

Sendler U.: ,Das PLM-Kompendium: Referenzbuch desl&ktlebenszyklus
Managements®, Springer 2009, ISBN 978-3540878971

Serce F.C., Alpaslan F.-N., Swigger K., Brazile Rafoulas G., Lopez V.,
Schumacker R.: “Exploring Collaboration Pattern®oagGlobal Software
Development Teams” International Conference on @l&oftware Engineering
(ICGSE), 2009, pp. 61-70, ISBN 978-0-7695-3710-8

Siemens AG Quarterly Business RepoftQuarter 2008,
http://www.siemens.com/press/pool/de/events/2008a§B-g4-eckdaten-d.pdf
Download: September-29, 2010

Siemens AG, Business Report, Fiscal Year 2009,
http://www.siemens.de/ueberuns/Documents/d09_0@@hpdf, Download:
September-29, 2010

Siemens AG — Das Unternehmen 2010, as of May-110,20
http://www.siemens.de/ueberuns/Documents/das_wtieran_2010.pdf, Download:
September-29, 2010

Siemens AG — Annual Report 2011, 2012, Jan-24,
http://www.siemens.com/annual/11/_pdf/Siemens_GRBR136df, Download, 2012-
04-26

Software Engineering Institute (SEI), CMMI Proddeam: “CMMI® for
Development, Version 1.3”, TECHNICAL REPORT, CMU/SE10-TR-033,
November 2010, http://www.sei.cmu.edu/downloads/oiBir033.docx, 31.05.2011
Sooraj P, Pratap K.J. Mohapatra: “Developing derisite Coordination Index for
Global Software Development”, International Confere on Global Software
Engineering (ICGSE) 2008, p. 119-128, ISBN 978-05-8280-6

Spillner A.: ,\W-model — test process parallel te trevelopment process”,
Proceedings of Jornada sobre Testeo de Softwage2004), ITI Instituto
Tecnoldgico de Infomética, Universidad PolitécrdeaValencia, Spain, March 25-
26th 2004

Stapel, K.; Lubke, D. & Knauss, E.: “Best PractiogesXtreme Programming Course
Design”, Proceedings of the 30th International @oerice on Software Engineering
(ICSE 2008), ACM Press, 2008, 769-776

Steingart, G.: ,Der Erfolgsfilm lauft rickwarts*5109.2006,
http://www.spiegel.de/wirtschaft/0,1518,436480,d@h download September-09,
2010

Topfer A.: “Geschéftsprozesse analysiert & optitijeruchterhand 2006, ISBN 978-
3472027539

Trikkula, V.: ,Globalization of R&D and Product Delopment Set to Grow" June-10,
2010, http://www.globalservicesmedia.com/IT-Outsoy/Product-
Development/Globalization-of-RandD-and-Product-Depment-Set-to-
Grow/22/4/9710/GS100610968441, download Sep-100 201

Trompenaars A., Hampden-Turner C.: “Riding the vgawkculture: understanding
cultural diversity in global business”, B&T, 1998BN 978-0786311255

Tyler C. G., Baker S. R.:” Business genetics: usi@erding 21st century corporations
using xBML”, Wiley 2007, ISBN 978-0-470-06654-6

184

Bibliography

[141]

[142]

[143]

[144]

[145]

[146]
[147]

[148]

[149]

[150]

[151]

[152]

[153]

United States Government Accountability Office: Bego Congressional
Committees, OFFSHORING U.S. Semiconductor and Soévindustries
Increasingly Produce in China and India, Septer2bé6, GAO-06-423,
http://www.gao.gov/new.items/d06423.pdf, downloactdder-09, 2010

Wang Yingxu, King Graham: ,Software Engineering é&sses: Principles and
Applications”,Crc Pr Inc, 2000, ISBN 978-0849323669
(http://www.amazon.de/Software-Engineering-Procesaenciples-
Applications/dp/0849323665/ref=sr_1 1?ie=UTF8&satmmtl-
de&qid=1283362352&sr=1-1#reader_0849323665)

Weske, M.: ,Business Process Management: Condemtgiuages, Architectures®,
Springer Verlag, Berlin;*LEdition 2007, ISBN-13: 978-3540735212

White S. A.: ,Process Modeling Notations and WaolflPatterns®, March 2004,
Future Strategies Inc., Pages: 1-25, Mendeley -fien and Information Science,
ISBN 0-970-35096-1

Wichmann Klaus-Peter: “Offshore Zusammenarbeitlgréich etabliert: Ein
Praxisbericht Gber ein Migrationsprojekt im Mas@nbau”, SIGS DATACOM
Gmbh, ObjektSpektrum Mai/Juni 2008 Nr.3, p.50-55

Wikipedia — The Free Encyclopedia: “Diagram”,
http://en.wikipedia.org/wiki/Diagram, 2011-06-24

Wikipedia — The Free Encyclopedia: “State Diagram”,
http://en.wikipedia.org/wiki/State_diagram, 2011-D6

Wilson, J. M., O’Leary, M. B., Metiu, A., Jett, R.: “Perceived Proximity in Virtual
Work: Explaining the Paradox of Far-but-Close”, 800rganization Studies, 29(07),
pp. 979-1001.

Wohlin, C.; Runeson, P.; Host, M.; Ohlsson, M. Regnell, B. & Wesslén, A.:
~-EXperimentation In Software Engineering: An Intuation.”, Kluwer Academic
Publishers, 2000

Yin, Robert K.: “Case study research: design anthods Band 5 von Applied social
research methods series”, Sage Publications, 2889 9781412960991

Yin, Robert K.: “CASE STUDY METHODS”, COSMOS Corgiion, REVISED
DRAFT, January 20, 2004, download June 10, 2011,
http://www.cosmoscorp.com/Docs/AERAdraft.pdf

Yongchareon S., Liu C.: “A Process View FramewarkArtifact-Centric Business
Processes”, Springer-Verlag Berlin Heidelberg 2R.0vieersman et al. (Eds.): OTM
2010, Part I, LNCS 6426, pp. 26-43, 2010

Zimmermann, E.: ,Siemens nutzt EU-Osterweiterung\&rlagerung von
Arbeitsplatzen und zum Lohnabbau®,
http://www.trend.infopartisan.net/trd0504/t1405amh 06.September 2010, mirrored
from http://www.wsws.org/de/2004/apr2004/siem-a28.fml (release 23.April
2004)

185

Bibliography

186

List of Figures

List of Figures

Figure 1: Structure of DIiSSEratioN...........ccoeeviiiiiiiiiiiiiiie e e e e 5
Figure 2: Definition: Process and BUSINESS PrOCESS..........uuvuviiiiiiiiiieieeeeeeeeeeeeeeeee e 10
Figure 3: Integrated Business Process Managefh2Ry............ccccceeeevviiieieeiiiieieieviceen, 12
Figure 4: Scope of Duties of integrated Busines&£&3s Management..............cceeevveevennnnnns 12
Figure 5: Problems resulting from non-controlledq@ssescccovvvvvvvveveeivviiiiiiseeeeen 13
Figure 6: Important Topics in Process Managen@it..............oooevvivieiiiiiiiinnneeeeee e, 14
Figure 7: Benefits of Process ManagenB................oovvuviiiiiiiiiiie s 15
Figure 8: Product Lifecycle Management and Busifssess Platforms...............cccceeeee 16
Figure 9: Product Lifecycle Management (PLM) Framew................ccceeeevevvveeieiiinnnnnnns 18
Figure 10: Product Lifecycle including interfaces..........ccoeeeiiiiiiiiiiiiiiii e 18
Figure 11: Strategic Goals of Managers interviewed..............ooeeeevveeveeeeiviiiiieeens 19
Figure 12: Relation between 'Product Developménthduct Creation’, ‘Production

(0 L=3Y 71 (o] o 0= o 11 72 22 PSPPSR 20
Figure 13: Phases of Product Development Proc&B)([B2]..........coovvveivimmiiiiiniieeeeeeeeeeee, 21
Figure 14: Trends of product strategic in the awtbihe industryf42]..........coovvvvvvvvieeciennnnn. 23
Figure 15: Challenges of European IT organizatigitisin the next five years..................... 24
Figure 16: Comparison Sate Diagram (a) and FIowtGba...............ccccceeeeiiiiiiiiieniniicee. 24
Figure 17: Four Layer Architecture of the Meta-Q@bjEacility (MOF)couvvviiiiiiiinnnnnn. 26
Figure 18: Example of a Business Process Modelioigfion chart............ccccoeeeveeeeeennn. 27.
Figure 19: A collage of UML diagrams.........ccccaeuueuiiiiiinieeeeeeeeeeeeeeiiiiii s 28
Figure 20: The four views of an Event-driven Prac€hain (EPC)...........cccevvvvrviiinnnnnnd 28.
Figure 21: Example of @ Petri Net ... 29
Figure 22: Waterfall process model (incl. fallbd@&p)cccceeeeiiiiiiiiiiiiiiiiieeiiiis 30
FIQUIE 23: VMO .. e e e e e e e e e e e e eeaanees 31
FIQUIE 24: W-MOAEIeeiiiiii e sttt s s e e e e eeee e e e e e e e e e e eaaaeeeesennnnes 31
Figure 25: Spiral MOdel ..o 32
Figure 26: Rational Unified Process (RUP)... . eeeereeurriimiiiiiiiiieeeeeeeeeeeeveeieesneeeeesnnnnns 32
Figure 27: Overview of SCRUM in agile development..............cceeiiiiiiieiiiiiiiiiieiiiieees 33
Figure 28: Maturity levels Of CMMIcooiiiiiiii s ee e e eee e 34
Figure 29: International Activities of Compani@S6].............cceiiiiiiiiiiiiiiiiiiiiieeeee e 36
Figure 30: Offshoring and globalization across BtdBSccccceeeeeeeievieeeeeeeees o 37
Figure 31: Job Shifting at SIEMENS AGocemeemmiiieeee e 38
Figure 32: Software Engineering export revenuesifiodia and Chind79]............ccccce...... 38
Figure 33: Terms and relations concerning off- @aneéhoringccccceeeiiiiii i 39
Figure 34: Multi-dimensional collaboration based@noss Enterprise Engineering............. 40
Figure 35: Collaborative Engineering and Projech®ement..............oveiiiiininnneenienes 41
Figure 36: Changes in Product Development ProC@42s.............cceeeevevvevveevivninnnnnnen 41
Figure 37: Cluster model of Meyer B3] ...ccooi oo 47
Figure 38: Model for cooperative software developtEFOCESSESvvveiiiieireeeeeeennn. 48..
Figure 39: lllustration of a sub-order relationsfiignterauftrag”) in V-Model XT 49
Figure 40: GSP Version 3.0 PrOCESS.........cccceeeeeeeeiiiiiiiiiisaaseeeeaeeeaeeesseesseeenneeeeesnsnnnnnn 50
Figure 41: Offshore activities (COarse-graiNed)uuuuiiiiiineeeeeeeeeeeeeeeeieeeeeeeeeeeeeens 51
Figure 42: The paradox of perceived ProXimityueeiiiiniiieeeeeeeeeeeereeeeeeeeeeneeeeenns 53
Figure 43: Initial Processes of Organizations AaBgd C..........coovvviiiiiiiiiiiieeeeee e, 55
Figure 44: Integration challenge of semanticalljetlent processesccccccvvvvvvvnnnnen. 56
Figure 45: Integration challenge of processes daaiyilevels...............cooovvviiiiiiiiiiiceeenns 57
Figure 46: Mediator Introduction for Process INBmIMcccoeveeeeeeeiiiiiieeeiiiiiiemceee 58

187

List of Figures

Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:

Figure 80:
Figure 81:
Figure 82:

Figure 83:

Figure 84:
Figure 85:
Figure 86:
Figure 87:
Figure 88:
Figure 89:
Figure 90:
Figure 91:
Figure 92:
Figure 93:
Figure 94:

Exemplary mediator pattern for proc@ssgrationccoevvveeeeeierennnns s 59
Artifact Handover in Detail: correspamglinput and output artifacts................... 61
Missing Artifact during HandOVercccoooiiiiiiiiiiiieee e 62
More Artifacts provided than NECESSALY...........covviiiiiiiiiiiiiiee e 62
Project Responsibility: Strength of abbbration...............cooevviviiiiiiins s e 65
Activity Responsibility: Organizatiorfable Definition ... v 67
Root processes of Organization A, B@Nd..........ccceeeeeeeeiiiiiiiiiieiiieeeee 71
Collaboration with equivalent ProCeSSESuuuiiiiiiiiie e 73
Mediator pattern for ,Horizontal INtefoa’..............ccoeeeviieiiiieeiiiii v 74
Collaborative Process for 'Horizontdegration'..............ccooovvviiiiiiiiiiiiinennnnn. 75
Root process 'Additive Vertical InteguBt...............ooevvviiiiiiiiieeeee e 76
Mediator for ‘Additive Vertical Integian’.............oooviiiiiiiiiiiiiii e 77
Collaborative Process ‘Additive Vertitatiegration’cccceeeeevviviievsce 78
Mediator for 'Alternative Vertical INt&@ioNn’..............ueiiiiiiniiiieeiieiieeeee e 80
Root process 'Alternative Vertical IMBENovvvvviiiiiiieeeeeee e e s e 81
Collaborative Process: 'Alternative Yadtintegration’.................ovvvvveinnns s 82
Mediator for ‘Merging INtegration’cccoovveieeeieeiieeeee e 83
Root process 'Merging INtegration’ooooeiiiiiiiiiiiiiiii e 84
Collaborative Scenario: ‘Merging INtE@IA’coevvvviiiiiiiiieee e 85
Mediator “Evolutionary Integration” (gile organization)ccccceeeeeeiieenn 86
Evolutionary Scenario: ‘Merging Integoat (single organization)..................... 87
Root process ‘Merging Integration’ (@dsvel integration)...........cccccceeeeeineee 88
Cross Level Integration: Pre-proCesaitti/itiescceeeeeevvveeeeeviviiniiieeneenn. 89
Cross Level Integration: Core-proCeSSICVItIESvverveeeeeeeeiiieeieeiiiiiann 91
Cross Level Integration: Post-procesatyyities...........cccevvvvveveeeeviiiniiieenennn. 92
Initial Processes for ‘Hierarchical ration’................ccoviiiiiiiiiiiiciicmmee 94
a) Hierarchical PrOCESS;........ceeeee e e e e e e e e e e 95
Dissolution of Hierarchies of OrganimatiA (left) and B (right) 7.9
Process Integration by Means of defidediatorscccovveveeeiiiiiinnen v 98
Re-definition of HIerarChy ... 99
Mediator for 'Hierarchical Integratidrased on ‘Horizontal Integration’.......... 100

Mediator for ,Hierarchical Integratiobased on ‘Additive Vertical Integration’

.. 101
Mediator for ‘Hierarchical Integratiobased on ‘Alternative Vertical Integration’
.. 101
Mediator for ‘Hierarchical Integratiobdsed on ‘Merging Integration'............. 102
Business artifacts in collaborative hass processescccccccceviiiniienld 103
Artifact oriented development approach...........cccueeeeeiieiiiiiiiiieieee e 103
Parameter explanationopéate hierarchy function................ccccooiin. 107
Abstract differentiation of Graph and3paphcccoovveiiiiiiiii e 109
“Hybrid-View” of Hierarchical ProCesSes...........ccuuvvvuiiiiiiiieiiieeeeeeeseieeeeenn, 110
Abstract view Of “HYDId VIEWceeeiiiiiieeeeeeeeeeeeeeeeei s 111
Abstract illustration of mapping funetadity............cccceeeevieeeeiiiiiiiiiieceeeeens 112
Explanation of NOde PArameters ... cceeeeeeeiieiiiiiiiiiiiinaae e e eeeeaaeeeeeeeas 113
Abstract modeling for Integration of sartically equivalent processes............. 116
Abstract modeling of ‘Horizontal Intefiog’eiiiiiiiiiieeiiie i 116
Abstract modeling of ‘Additive Vertickitegration’.............ccovvvvviiiviiinnninen 118
Abstract modeling of ‘Alternative Vedidntegration’..............ccoovvvvviiiiiinnnns 122
Abstract modeling for ‘Merging Integiatloovvviiiiiiiiiieie e 125
Root Processes for Hierarchical Intégnat.................ccoooevveviiiiiiiiiiiiiinnnnnn. 127

188

List of Figures

Figure 95: Dissolution of Hierarchical ProCeSSES........ccccevivviiiiieiiiiiiiiiee e eeeeeen e 128
Figure 96: Abstract modeling of ‘Horizontal INntefog’................ccceeiiiieiiiieiiiieieee e 128
Figure 97: Re-defined HIerarChyoocceeeeei i err e e e 129
Figure 98: Organizational Relationship of Developir8cenariocooevvvvvvvnnnnnnnnnn 401
Figure 99: Iterative Process of OrganiZation Acccoeveeeeeeiiiiiiiiiiiieeeeeeeeeennaaaaaeeeens 141
Figure 100: Hierarchical Standard Process of Omgdiain B................cooovriiiiiiiiiiiiinnees 142
Figure 101: Partially Defined Process of Organ@atlccceevvevvvvvnnnnninneeee s e 143
Figure 102: Amorphous Process of Organization .Du..........eeiiiiiiiiiiiiiiiiiiieeeiiieeeeee. 143
Figure 103: Hardware Process of Organization E.................oovvvviiiiiiiiiiiieie e eeeeeenn, 144
Figure 104: Collaborative Process for DevelopmériDaver Supporting System”.......... 146
Figure 105: Mediator for ‘Merging INtegration’..cc.....ccooeeeeeeeeiiiieeeee e 147
Figure 106: Mediator for ‘Horizontal Integration’...............ccoeeeiieeeieeiiiiiiieieiiiieeeeeeeens 148
Figure 107: ‘Hierarchical Integration’: Mediatorrfd/erging Integration’......................... 148
Figure 108: Collaborative Process for DevelopmériNavigation System® 150
Figure 109: Collaborative Process for Developmémaad Information System.............. 151
Figure 110: Mediator Pattern for ‘Additive Vertidakegration’cccceeeeiiiieeeeeneaee. 152
Figure 111: Co-located Agile Development ProCESS...........uvveiiiiieieeeeeeeeeeeeeeeevieeeene. 157
Figure 112: Initial Waterfall PrOCESScoumm i 158
Figure 113: Mediator Pattern for ‘Additive Vertidakegration’..............cccceeeeeeeieeeeeeeaee 159
Figure 114: Distributed Collaborative ProCess...........coooiiiiiiiiiiiiiiiiiii e 160
Figure 115: Velocity and Burn-down in the distri@dtXP project............ccccvvvvviienennn. 164
Figure 116: Velocity and Burn-down from a well costed co-local XP project............... 164
Figure 117: Velocity and Burn-down from a bad coaloXP project (x-axis: 8h day) 165
Figure 118: Number bug cards in relation to St@RAS..............ceeiiiiiiiiiiiiiiii e 165
Figure 119: Relation of bug fixing time to othesKka................cccoo v e 166
Figure 120: Reminder: Collaborative Process forittmtal Integration’............ccccceeeeennn.. 169
Figure 121: Processes defined on different graityli@vels (system vs. software)............ 170

189

List of Figures

190

List of Tables

List of Tables

Table 1: How Success Factors are influeNCed .ooeeeee.evvvvvviiiiiiii e 20
Table 2: Reasons for Initiating Distributed Devetemtoouvvieiiiiiiiieee e 42
Table 3: Conflict Areas between PDP Characteristi€sojects’ Critical Success Factors.. 44
Table 4: Crucial Artifact Types for Software Devahoent Collaborations...............cccveee.... 63
Table 5: Role Model Definition LEVEL..........ceueeeiiieiiii e eeeee e e 64
Table 6: Definition of ROIE CONNECIOIS.......couaamiiiiiiieeeeeiiieee e 66
Table 7: Task Responsibility: SPeCific ROIES .ccceeeeiiieeiiiiiiieie e 67
Table 8: Legend and Color Codes for Activity Diageausageccoovvveveeeivvrnnnnnnnnnm 69.
Table 9: Finite Set of Possible Node Types and Rel@tionships.........ccccoeeeeeeieeeeennnn. 105
Table 10: Finite Set of Possible Role CONNECLALS.............covvviiiiiiiiiiiieee e, 109
Table 11: ADSIraction SHEEL.........ccoii et e e e e e eeaes 162

191

List of Tables

192

193

	titleA4
	06_Harald Klein_Dissertation

