
Marc Schaaf

Situation-Aware Adaptive Event

Stream Processing

A Processing Model and Scenario Definition

Language

SSE-Dissertation 15

Software
Systems
Engineering

Institut für Informatik
Lehrstuhl von Prof. Dr. Andreas Rausch

M
a
r
c
S
c
h
a
a
f

S
itu

a
tio

n
-A
w
a
re

A
d
a
p
tive

E
ve
n
t
S
tre

a
m

P
ro
ce
ssin

g
V
o
l.
1
5

2
0
1
7

T
his work defines a situation-aware adaptive event stream processing model and
scenario specification language. The processing model and language allow the

specification of stream processing tasks, which support an automatic scenario spe-
cific adaptation of their processing logic based on detected situations and interim
processing results.
The motivation for this work lies in the missing support of current state of the art
Event Stream Processing (ESP) systems for such a �situation-aware adaptive Event
Stream Processing� which leads to the problem that for each scenario that requires
this kind of processing, a new processing system needs to be designed, implemented
and maintained. It is therefore the aim of this work to ease the development of such
situation aware adaptive processing systems.
An example for such a scenario is the detection and tracing of solar energy producti-
on drops caused by clouds shading solar panels as they pass. The scenario requires a
processing system to handle large amounts of streaming data to detect a cloud (pos-
sible situation). The later verification of the cloud as well as its tracking however only
requires a small situation specific subset of the overall streaming data, e.g. the mea-
surements from solar panels of the affected area and its surroundings. This subset
changes its characteristics (location, shape, etc) dynamically as the cloud traverses
the region. The scenario thus requires a situation aware adaptation of its processing
setup in order to focus on a detected cloud and to track it.
This work approaches the problem by defining a situation aware adaptive stream
processing model and a matching scenario definition language to allow the definition
of such processing scenarios for a scenario independent processing system. The requi-
rements for the definition of the model and language are the result of an analysis of
three distinct scenarios from two application domains. The designedmodel defines
situation aware adaptive processing in three main phases:

Phase 1: In the Possible Situation Indication phase, possible situations are detected
in a large set of streaming data.

Phase 2: The Focused Situation Processing Initialization phase determines whether
an indicated possible situation needs to be investigated or if it can be ignored,
for example because the situation was already under investigation. If a potential
situation needs to be investigated, a new situation specific focused processing
is started.

Phase 3: In the Focused Situation Processing phase, possible situations are verified
and an in depth investigation of the situation including the adaptation of the
processing setup based on interim results is possible.

Situation-Aware Adaptive Event Stream Processing
A Processing Model and Scenario Definition Language

Doctoral Thesis
(Dissertation)

to be awarded the degree
Doctor of Engineering (Dr.-Ing.)

submitted by

Marc Schaaf
from Herford

approved by the Faculty of
Mathematics/Computer Science and Mechanical Engineering,

Clausthal University of Technology,

Date of oral examination
09.06.2017

Dean:

Prof. Dr. rer. nat. Jürgen Dix

Chairperson of the Board of Examiners:

Prof. Dr.-Ing. Michael Prilla

1st Supervisor & Reviewer:

Prof. Dr. rer. nat. Andreas Rausch
Institut für Informatik
Technische Universität Clausthal
Arnold-Sommerfeld-Str. 1
38678 Clausthal-Zellerfeld
Germany

2nd Supervisor & Reviewer:

Prof. Dr.-Ing. Arne Koschel
Fakultät IV - Wirtschaft und Informatik
Hochschule Hannover
Ricklinger Stadtweg 120
30459 Hannover
Germany

3rd Reviewer:

Prof. Dr. rer. nat. Klaus Schmid
Institut für Informatik
Universität Hildesheim
Universitaetsplatz 1
31141 Hildesheim
Germany

ii

Abstract

This work defines a situation aware adaptive event stream processing model and scenario
specification language. The processing model and language allow the specification of stream
processing tasks, which support an automatic scenario specific adaptation of their process-
ing logic based on detected situations and interim processing results.
The motivation for this work lies in the missing support of current state of the art

Event Stream Processing (ESP) systems for such a „situation-aware adaptive Event Stream
Processing” which leads to the problem that for each scenario that requires this kind of
processing, a new processing system needs to be designed, implemented and maintained. It
is therefore the aim of this work to ease the development of such situation aware adaptive
processing systems.
An example for such a scenario is the detection and tracing of solar energy production

drops caused by clouds shading solar panels as they pass. The scenario requires a processing
system to handle large amounts of streaming data to detect a cloud (possible situation).
The later verification of the cloud as well as its tracking however only requires a small
situation specific subset of the overall streaming data, e.g. the measurements from solar
panels of the affected area and its surroundings. This subset changes its characteristics
(location, shape, etc) dynamically as the cloud traverses the region. The scenario thus
requires a situation-aware adaptation of its processing setup in order to focus on a detected
cloud and to track it.
This work approaches the problem by defining a situation-aware adaptive stream pro-

cessing model and a matching scenario definition language to allow the definition of such
processing scenarios for a scenario independent processing system. The requirements for
the definition of the model and language are the result of an analysis of three distinct
scenarios from two application domains. The designed model defines situation aware
adaptive processing in three main phases:

Phase 1: In the Possible Situation Indication phase, possible situations are detected in a
large set of streaming data.

Phase 2: The Focused Situation Processing Initialization phase determines whether an in-
dicated possible situation needs to be investigated or if it can be ignored, for example
because the situation was already under investigation. If a potential situation needs
to be investigated, a new situation specific focused processing is started.

Phase 3: In the Focused Situation Processing phase, possible situations are verified and

iii

an in depth investigation of the situation including the adaptation of the processing
setup based on interim results is possible.

The evaluation demonstrates that the language and processing model fulfill the defined
requirements by providing an application domain and scenario independent mechanism
to define and execute situation aware adaptive processing tasks. For the evaluation, a
processing system prototype was created and two scenarios from two different domains
realized. The first scenario is the Cloud Tracking scenario introduced above. The second
scenario is the detection and tracing of Denial of Service Attacks. Several tests where
performed to verify that the scenario definition provides the required information for the
processing system and to verify that the designed processing model allows the required
situation-aware adaptive processing on a scenario independent processing system.

iv

Acknowledgements

I would like to thank my supervisors Prof. Dr. Rausch and Prof. Dr. Koschel for
their support and constructive feedback throughout the numerous meetings and discussions
regarding this work. Further I would like to thank Arne Koschel for his continuous support
of my studies and especially with regards to this project. Moreover, I would like to thank
Prof. Dr. Schmid for his feedback for the final version of this work.
Furthermore I would like to thank the members of the KPE for the interesting workshops

which offered me the platform to present my work and the possibility to get in touch with
other Ph.D. students.
I would also like to thank the University of Applied Sciences and Arts Northwestern

Switzerland for the scholarship which allowed me to develop my thesis in parallel to my
normal work obligations.
Moreover I like to thank the whole project team of the Eurostars Project DYNE and in

particular Erik Bunn and Topi Mikkola for the various discussions and the chance for such
an interesting research project which laid the foundations for this thesis.
Last, but not least, I would like to thank my family and Gwen for their patience and

support during this endeavor and in particular Gwen for her reviews and constructive
feedback.

Thanks!

v

Contents

1. Introduction 1
1.1. Motivating Scenario . 2
1.2. Scenario Characteristics . 3
1.3. Resulting Problem . 4

1.3.1. Research Question . 5
1.4. Approach . 5

1.4.1. Processing Model . 6
1.4.2. Contributions . 7

1.5. Positioning of the Work . 8
1.6. Research Design . 9

1.6.1. Design of an Artifact . 9
1.6.2. Evaluation of the Designed Artifacts 10

1.7. Dissertation Organization . 11

2. Scenario Requirement Analysis 13
2.1. Detailed Description of the Scenarios . 13

2.1.1. Application Area Smart Grid . 13
2.1.2. Application Area Large Scale Telecommunications Network Monitoring 16

2.1.2.1. Scenario 2 - Monitoring and tracing of DoS Attacks 16
2.1.2.2. Scenario 3 - Monitoring of Link Failures 17

2.2. Definition of the General Type of Processing 19
2.2.1. Characteristics Derived from Scenarios 19

2.2.1.1. Possible Situation Indication Requirements 19
2.2.1.2. Situation-Specific Analysis Requirements 20

2.2.2. Formal Definition . 21
2.3. Requirements Towards an Event Stream Processing System 26

3. State of the Art 29
3.1. Overview Event Processing . 29

3.1.1. Active Database Systems: ECA-Rules 30
3.1.2. Event Driven Architectures . 31
3.1.3. Complex Event Processing . 31
3.1.4. Event Stream Processing . 32
3.1.5. Pipes and Filters . 34

3.2. Classes of Event Stream Processing Systems 34
3.2.1. Event Notification Middlewares . 35
3.2.2. Event Stream Processing Middlewares 36
3.2.3. Centralized Data Stream Management Systems 37
3.2.4. Distributed Data Stream Management Systems 40

3.3. Event Processing Languages . 41

vii

Contents

3.4. Approaches and Systems related to Situation-Aware Adaptive Processing . . 44
3.4.1. Adaptive DSMS Optimization Mechanisms 44
3.4.2. Process-oriented Event Model . 46
3.4.3. Hybrid Static and Dynamic Optimization 47
3.4.4. Data Stream Processing for Moving Range Queries 47

3.5. Situation-Aware Processing Outside of the Event Processing Scope 48
3.6. Summary and Conclusions . 49

4. Processing Model 51
4.1. Overview of the Processing Model . 51
4.2. General Elements of the Processing Model 53

4.2.1. Scenario Processing Template . 53
4.2.2. Background Knowledge . 54

4.2.2.1. Example: Smart Grid Background Knowledge 55
4.2.2.2. Example: Telecommunications Network Background Knowl-

edge . 55
4.2.3. Focus Area and Locked Area . 55

4.2.3.1. Area Registration . 60
4.2.4. Stream Processing Topology . 62

4.3. Phase 1: Possible Situation Indication Processing 63
4.3.1. General Design Considerations for Phase 1 63
4.3.2. Definition of the Situation Indication Stream Processing 64

4.3.2.1. Stream Duplication and Merging 66
4.3.3. Result of the Situation Indication Phase 66

4.4. Phase 0: Possible Situation Indication Processing Initialization 68
4.5. Phase 2: Focused Processing Initialization 70

4.5.1. Indication Pre-Classification . 72
4.5.2. Potential Locked and Focus Area and Time Frame Determination . . 73
4.5.3. Collision Detection . 74
4.5.4. Collision Action Assignment . 76
4.5.5. New Focused Situation Processing Instance 79
4.5.6. Assignment to Active Focused Situation Processing Instances 80
4.5.7. Drop Possible Situation Indication 80
4.5.8. Resulting Focused Processing Initialization Algorithm 80
4.5.9. Phase 2 Indication Classification Example 80
4.5.10. Synchronization Considerations . 84

4.5.10.1. Synchronized Collision Detection and Action Execution for
parallel Indications . 84

4.5.10.2. Synchronization of Collision detection with Focused Pro-
cessing Instances . 84

4.6. Phase 3: Focused Situation Processing . 86
4.6.1. Adaptive Processing . 87
4.6.2. Focused Situation Iteration Processing 88

4.6.2.1. Focused Situation Processing Iteration and its Environment 91
4.6.2.2. Focused Situation Processing Iteration Context Use and

Initialization . 91
4.6.2.3. Focused Situation Processing Initialization 92
4.6.2.4. Iteration Pre-Processing . 94

viii

Contents

4.6.2.5. Iteration Stream Processing Topology 94
4.6.2.6. Post Iteration processing 97
4.6.2.7. Interim Focused Situation Processing Results 98
4.6.2.8. Next Iteration Time Frame and Locked and Focus Area

Determination . 98
4.6.2.9. Iteration Focus Area and Locked Area Aquisition 99
4.6.2.10. Focused Processing Merge Required 100
4.6.2.11. Termination of Focused Processing and Focus Area and

Locked Area Release . 100
4.6.3. Handling of Additional Situation Indications During an Ongoing Pro-

cessing . 103
4.6.4. Focused Processing Instance Collision-Handling 103

4.6.4.1. Focused Situation Processing Collision-Handling Process . . 104
4.6.5. Resulting Definition of the Focused Situation Processing Algorithm . 105
4.6.6. Synchronization Considerations . 105

4.7. Conclusion . 105

5. Language Definition 109
5.1. Overview . 109

5.1.1. Scenario Processing Template Structure 109
5.1.1.1. Embedded Languages . 111

5.1.2. Template Interpretation . 111
5.2. General Elements of the Template Language 112

5.2.1. Variables . 112
5.2.2. Embedded Language: SPARQL . 112
5.2.3. Embedded Language: MVEL . 112

5.2.3.1. Access to the Knowledge Base from MVEL 113
5.2.3.2. Domain Specific Functions 113

5.2.4. Embedded Language: DROOLS . 114
5.3. Scenario Processing Template Preamble . 114
5.4. Possible Situation Indication Processing Specification 114
5.5. Focused Situation Processing Initialization 116

5.5.1. Indication Pre-Classification Function 117
5.5.2. Potential Locked, Focus Area and initial Time Frame Query Function117

5.5.2.1. Potential Locked Area and Focus Area Query 117
5.5.2.2. Timing Specification . 118

5.5.3. Collision Action Assignment . 119
5.5.3.1. Option 1: MVEL based collision Function definition 120
5.5.3.2. Option 2: Collision Action Rules 121

5.6. Focused Situation Processing . 123
5.6.1. Focused Situation Processing Context 123
5.6.2. Focused Situation Processing Initialization Function 124
5.6.3. Pre-Iteration Processing Function . 125
5.6.4. Iteration Stream Processing Builder 125
5.6.5. Post-Iteration Processing Function 125
5.6.6. Interim Result Event Generation Function 125
5.6.7. Focused Situation Processing Termination 126

ix

Contents

5.6.8. Iteration Locked Area, Focus Area and Time Frame Query Function 126
5.6.8.1. Iteration Locked Area and Focus Area Determination . . . 127
5.6.8.2. Timing Specification . 127

5.6.9. Focused Situation Processing Collision-Handling Function 127
5.7. Stream Processing Builder Function Definition 128

5.7.1. Stream Processing Builder Context 130
5.7.2. Background Knowledge Queries . 130
5.7.3. Control Structures: Loops . 130
5.7.4. Event Stream Processing Statements 132

5.7.4.1. Situation Indication Stream Processing Rule 133
5.7.4.2. Interim Result Event Stream Generating Rule 134
5.7.4.3. Context Access and Context Manipulating Stream Process-

ing Rule . 134
5.7.4.4. Variable Placeholders . 134
5.7.4.5. Inbound Event Stream Assignment 135

5.7.5. Set Operations . 136
5.7.6. Conditional Statement . 136
5.7.7. Stream Processing Builder Example 137

5.8. Summary . 138

6. Prototype 139
6.1. Goal of the Prototype . 139
6.2. Component View . 140

6.2.1. Core Components . 140
6.2.1.1. Area Registration Manager 140
6.2.1.2. Processing Manager . 140
6.2.1.3. Possible Situation Indication Processing Manager 142
6.2.1.4. Focused Situation Processing Manager 142

6.2.2. Supporting Components . 144
6.2.2.1. Scenario Processing Template Repository Manager 144
6.2.2.2. Event Stream Processing 144
6.2.2.3. Event Stream Manager . 144
6.2.2.4. Background Knowledge Base Manager 145
6.2.2.5. Result Receiver . 145
6.2.2.6. Scenario Specific Extensions 145

6.3. Run-Time View . 145
6.3.1. Phase 0: Possible Situation Indication Processing Initialization . . . 146
6.3.2. Phase 1: Possible Situation Indication Processing 147
6.3.3. Phase 2: Focused Situation Processing Initialization 147
6.3.4. Phase 3: Focused Situation Processing 149
6.3.5. Area Registration Manager . 151

6.3.5.1. Synchronization between Phase 2 and Phase 3 151
6.3.5.2. Merge Processing Coordination 152

6.4. Deployment . 152
6.4.1. Prototype Configuration and Input Data 154
6.4.2. Prototype Processing Output . 154

6.5. Conclusion . 154

x

Contents

7. Evaluation 157
7.1. Mapping of the Evaluation to the Defined Research Questions 158
7.2. Evaluation Plan . 161

7.2.1. Evaluation Part 1: Cloud Tracking Scenario 161
7.2.2. Evaluation Part 2: Telco Denial of Service Detection and Tracing . . 163

7.3. Cloud Tracking Scenario Realization . 163
7.3.1. Scenario Realization . 163

7.3.1.1. Phase 0&1: Possible Situation Indication 164
7.3.1.2. Phase 2: Focused Situation Processing Initialization 165
7.3.1.3. Phase 3: Focused Situation Processing 167

7.3.2. Test Data Simulation . 174
7.4. Case 1: Single Situation Detection and Tracking 174

7.4.1. Phase 0: Possible Situation Indication Processing Initialization . . . 175
7.4.2. Phase 1: Possible Situation Indication Processing 176
7.4.3. Phase 2: Focused Situation Processing Initialization 176
7.4.4. Phase 3: Focused Situation Processing 180

7.4.4.1. Context Initialization . 180
7.4.4.2. Iteration 1 . 181
7.4.4.3. Iteration 2 . 182
7.4.4.4. Iterations 3 to 9 . 184
7.4.4.5. Iteration 10 . 184
7.4.4.6. Iteration 11 . 185

7.4.5. Conclusions from the Test Results 186
7.5. Telecommunications Network Monitoring: Denial of Service Tracing 187

7.5.1. Scenario Realization . 187
7.5.1.1. Possible Situation Indication 188
7.5.1.2. Focused Situation Processing Initialization 188
7.5.1.3. Focused Situation Processing 189

7.5.2. DoS Test Data Simulation . 196
7.6. Case 5: DoS Tracing . 196

7.6.1. Phase 0: Possible Situation Indication Processing Initialization . . . 197
7.6.2. Phase 1: Possible Situation Indication Processing 197
7.6.3. Phase 2: Focused Situation Processing Initialization 197
7.6.4. Phase 3: Focused Situation Processing 197
7.6.5. Conclusions from Case 5 . 200

7.7. Synchronization Required by the Processing Model 200
7.8. Limitations of the Processing Model and Language 200
7.9. Preconditions for the Application of the Processing Model 202
7.10. Conclusions . 203

8. Conclusions and Outlook 205
8.1. Summary and Resulting Conclusions . 205

8.1.1. Gap in the State of the Art . 206
8.1.2. Problem Statement . 206
8.1.3. Contribution . 206
8.1.4. Evaluation . 207

8.2. Outlook . 208

xi

Contents

A. Scenario Processing Template Language 211
A.1. EBNF Representation . 211
A.2. Java Interfaces Available from MVEL . 214

A.2.1. CollisionTuple . 214
A.2.1.1. Enum CollisionAction . 214

A.2.2. AreaRegistration . 214
A.2.3. TimeFrame . 215
A.2.4. Area . 215
A.2.5. Event . 215

B. Implemented Processing Specifications 217
B.1. Cloud Tracking Scenario . 217

B.1.1. Domain Specific Function . 219
B.2. Telecommunication Scenario . 223

C. Further Tests 227
C.1. Case 2: False Situations . 227

C.1.1. Phase 0: Possible Situation Indication Processing Initialization . . . 227
C.1.2. Phase 1: Possible Situation Indication Processing 227
C.1.3. Phase 2: Focused Situation Processing Initialization 228
C.1.4. Phase 3: Focused Situation Processing 228
C.1.5. Conclusions from the Test Results 231

C.2. Case 3: Multiple Focused Situation Processing Instances for One Cloud . . 231
C.2.1. Phase 0: Possible Situation Indication Processing Initialization . . . 231
C.2.2. Phase 1: Possible Situation Indication Processing 231
C.2.3. Phase 2: Focused Situation Processing Initialization 231
C.2.4. Phase 3: Focused Situation Processing 232

C.2.4.1. Iteration 1 of Instance #1 233
C.2.4.2. Iteration 1 of Instance #2 233
C.2.4.3. Iteration 2 of Instance #1 233
C.2.4.4. Iteration 3 of Instance #1 234

C.2.5. Conclusions . 235
C.3. Case 4: Temporary Situation Collision . 235

C.3.1. Part 1: Two Separate Situations . 235
C.3.1.1. Phase 0 . 236
C.3.1.2. Phase 1 & 2 . 236
C.3.1.3. Phase 3 . 236

C.3.2. Part 2: Temporary Overlap of Two Situations 238
C.3.2.1. Collision Detection and Handling 239
C.3.2.2. Situation Split . 240

C.3.3. Case 4 Conclusions . 240

Bibliography 243

List of Figures 253

List of Tables 255

List of Definitions 257

xii

1. Introduction

Contents

1.1. Motivating Scenario . 2

1.2. Scenario Characteristics . 3

1.3. Resulting Problem . 4

1.4. Approach . 5

1.5. Positioning of the Work . 8

1.6. Research Design . 9

1.7. Dissertation Organization . 11

Event Stream Processing (ESP) applications play an important role in modern infor-
mation systems due to their capability to rapidly analyze large amounts of information
and to quickly react based on it. They follow the approach to produce notifications based
on state changes (e.g. stock value changes) represented by events, which actively trigger
further processing tasks. They contrast to the typical store and process approaches where
data is gathered and processed later in a batch processing fashion which involves a higher
latency. Event Stream Processing applications achieve scalability even for large amounts of
streaming event data by partitioning incoming data streams and assigning them to multiple
machines allowing for parallel processing.

Due to those properties, Event Stream Processing based analytical systems are likely
to have a further increasing relevance in future IT systems „as society demands smarter
ways for managing electric power, water, health, retail and distribution, traffic, and safety
– smarter meaning responding better and faster to changing conditions” [CEvA11, p. 6].
Furthermore, it is very likely that future Event Stream Processing applications will have
to handle even larger amounts of data while taking up increasingly complex processing
tasks to allow for near real-time analytics to take place. In addition, these new tasks
require the Event Stream Processing systems to become more flexible with regard to their
data processing capabilities, while retaining their scalability and near real-time processing
capabilities.

1

1. Introduction

This work defines a processing model and scenario description language for situation-
aware adaptive event stream processing, specifically suitable for scenarios which require the
detection and analysis of situations in large sets of event streams where once a situation was
detected, the dynamic situation-specific analysis can take place on a small situation-specific
subset of the overall set of event streams.

1.1. Motivating Scenario

This work is motivated by several scenarios arising from two application domains, telecom-
munications (Telco) network and Smart Grid monitoring (Section 2). For the discussions
in this work, the focus lies on the Smart Grid cloud tracking scenario (Section 2.1.1) as
this scenario resembles the central challenges that can be found in a similar fashion in all
the other use cases. The discussion which lead to this conclusion is given in Chapter 2.

The tracking of cloud movements based on the monitoring of solar panel installations
for their present energy production [WSB+14] is one example of a scenario that requires
a situation-aware adaptive processing. The gained information can be used for short term
forecasting of the cloud movements and with it the production of the solar panel installa-
tions. Such forecasts are required as solar power production tends to fluctuate within a few
minutes from a high energy production to nearly no energy production and back due to
a passing cloud which momentarily shades the solar panels. While such small production
anomalies are not relevant for the stability of the overall energy distribution grid, they are
causing local voltage fluctuations in the neighboring energy consumers (e.g. households)1.
A prediction of such production changes can be used to reduce this effect by introducing
compensatory actions like disabling some energy consumers or changing the setting of the
feeding transformer.

A prognosis can be generated by tracking individual clouds based on the caused energy
production drops as they move across the country, temporarily shading various solar panel
installations. The detection of a cloud is based on a sudden and significant drop in the
energy production of one of several solar panel installations while the surrounding installa-
tions produce energy as expected (Figure 1.1.1). Based on this information the rough size
and shape of the cloud can be estimated. Over time, the regain of the energy production
of previously shaded installations together with the production drop of previously normal
behaving installations can be used to estimate the cloud’s movement direction and velocity.

1Here neighboring is defined via the energy distribution grids topology, as households that are connected
to the same feeding transformer.

2

1.2. Scenario Characteristics

Direction of Cloud Movement

pypx

For px

For py

p

p

t

t
Δt

Previous and current shaded area
Solar Panel

Figure 1.1.1.: A cloud moving across several solar panel installations resulting in an area
of reduced energy production.

1.2. Scenario Characteristics with Regard to Event Stream Processing

From the perspective of a stream processing system that implements such a cloud tracking,
the scenario has a set of characteristic properties which can also be found in scenarios
arising from other domains like for example in the area of telecommunications network
monitoring. The following overview of these characteristics is based on the scenario analysis
in Chapter 2 (Section 2.2):

SC1: Possible Situations need to be identified in a large amount of streaming data, poten-
tially in all available data streams.

SC2: The Possible Situation Indication needs to be rapid also for large amounts of streaming
data (near real-time).

SC3: Found Possible Situations require their verification and an in-depth situation-specific
analysis based on streaming data and static background knowledge.

SC4: The situation-specific analysis only requires access to a small subset of the overall
set of event streams.

SC5: The part of the stream data and background knowledge needed for the situation-
specific analysis can not be determined before the situation has been detected.

SC6: The part of the stream and background knowledge needed during the analysis changes
based on interim analysis results.

Based on the scenarios and the above properties, a formal specification of the type of data
processing needed is developed in Subsection 2.2.2. The formal specification shows that due
to the last two properties (SC5 & SC6), a situation-specific analysis of a possible situation
i has to be seen as a set of situation-specific analysis functions Fi := {sai,1, ..., sai,ni}
(Formula 2.3 on page 24) rather than a single situation independent analysis function.
Here all functions sai,k in the set Fi depend on the interim situation analysis result from

the previous function sai,k−1, while the very first function sai,1 depends on the detected

3

1. Introduction

possible situation i ∈ I itself. Furthermore, not only is the function call dependent on the
(possible) situation but also the definition of the function itself (Formula 2.4 on page 25)
as each of the functions is focused on a specific (possible) situation, which may change over
time.
Due to this dependence on interim results, the use of a statically set up processing

system (thus with static processing functions) for the situation-specific analysis can not be
used without sacrificing the benefit of a tailored situation-specific analysis functions (SC4)
which only looks at the required subset of the available event streams.

1.3. Resulting Problem

Due to the need for situation-specific processing functions which need to be created and
adapted during run-time, the actual processing that is executed by an ESP system changes
over time:

1. When a possible situation is detected by the processing system, a situation-specific
processing function, a ”focused processing function”, needs to be generated and exe-
cuted.

2. Once the situation-specific processing is running, it needs to be adapted as the anal-
ysis detects new information for the investigated situation.

Therefore, in order to support this kind of processing an ESP system has to support the
adaptation of the processing function. As discussed in Chapter 3, current ESP systems
have some general support for the adaptation of processing functions during run-time
(e.g. [AAB+05, YKPS07, HSS+14]). Such adaptations can be triggered by an external
system or by internal optimizations of the ESP system. Optimization mechanisms typically
supported however only adapt the processing within the ESP to increase response time or
resource usage. Examples of such optimizations are operator reordering, operator fission /
stream partitioning and operator placement on different hosts and cores [HSS+14]. Such
optimizations make no adaptations to the stream processing function itself as this requires
additional knowledge about the domain specific high level scenario that resulted in the
stream processing function to be executed by the ESP.
With regard to the scenarios discussed here, the ESP would need to be able to make deci-

sions when and how to adapt the deployed stream processing function based on a processing
model that provides the required situation based information and defines a suitable pro-
cessing semantic. Current ESP systems do not support such a situation-aware processing
model that allows to deduce the required processing function adaptations automatically.
As a result, in current ESP systems, scenarios that require situation-aware stream pro-
cessing can only be realized by providing custom implementations on top of the stream
processing system that realize the required adaptations for the scenario. Typically, such

4

1.4. Approach

specialized solutions require much work for each scenario and are hard to maintain and
change as not only domain experts are needed but also experts in event stream processing
and the used frameworks in order to make changes to these specialized systems.
Problem Statement
In summary, this work addresses the problem that current ESP systems have no support

for a situation-aware adaptive stream processing and thus the realization of situation-aware
processing tasks requires the design, implementation and maintenance of a custom solution
for each distinct application scenario.

1.3.1. Research Question

Based on the discussed problem, the following research question arises:

RQ1: How to allow situation-aware adaptive processing without the need to implement a
specialized solution for each scenario that requires a situation-aware adaptive pro-
cessing?

This general question can be subdivided into the following sub-questions:

RQ1.1: How can a generalized solution provide a processing system suitable to handle large
amounts of streaming data for a situation-aware adaptive processing?

RQ1.2: How can a generalized solution define the adaptation steps in a flexible and domain
independent way?

RQ1.3: How can a generalized solution define a suitable semantic definition that specifies
the behavior during the whole situation-aware adaptive processing, in particular the
behavior of automatic adaptations?

RQ1.4: How can situation-aware adaptive processing tasks be specified for a generalized
processing system?

1.4. Approach

It is the aim of this work to overcome the discussed problem by defining a situation-
aware adaptive processing model suitable for the general scenario type defined in Section
1.2. Based on the model a suitable language can be defined which allows the definition of
situation-aware adaptive processing tasks. Based on this a run-time system can be designed
which implements the designed model and allows the execution of situation-aware adaptive
processing tasks.

5

1. Introduction

Focused Situation
Processing

Initialization

Focused
Situation
Processing

Possible
Situation
Indication

Figure 1.4.1.: High level view of the situation-aware adaptive processing model with the
three main processing phases.

1.4.1. Processing Model

The model defines the situation-aware adaptive processing in three main phases, the Pos-
sible Situation Indication, the Focused Situation Processing Initialization and the Focused
Situation Processing (Figure 1.4.1):

Phase 1: Possible Situation Indication
The Possible Situation Indication phase handles the initial detection of possible situations
of interest that may require special attention by a focused situation processing. Such
a situation is for example the energy production drop of a monitored solar panel. It is
important to note that it is not the aim of this phase to verify if a possible situation
concerns an actual situation. Rather, the indication is aimed at a very rapid processing of
the incoming data while accepting the generation of false positives.

Phase 2: Focused Situation Processing Initialization
Once a possible situation has been indicated, a Focused Situation Processing may need to
be started for its analysis. Here the initialization phase has the responsibility to trigger
the set up of such a new processing task but also to decide if a new task should be created
or if the indicated possible situation is or was already handled. For this decision it uses
scenario-specific rules in combination with defined processing states provided by all Focused
Situation Processing instances that are already started (see Phase 3).

Phase 3: Focused Situation Processing
The actual situation-specific processing happens in this third phase and can, in contrast
to the first processing phase, be much more time consuming per processed event as the
amount of events that need to be processed should already have been reduced dramatically.
As a first step, the Phase 3 processing verifies whether the indicated possible situation is
a valid situation or whether it is a false indication. Once this verification is complete, the
processing can continue with an in-depth analysis of the situation. An important aspect of
this analysis process is the possibility to adapt itself based on the current situation’s state
in order to account for new information on the situation or the change of the situation
itself. For example for the cloud tracking scenario, the situation-specific processing has to
follow the cloud as it changes its position or size over time. In order to manage the current
focus of an ongoing focused situation processing, the processing model defines a focus area
and a locked area which mark the set of data streams currently relevant for the analysis
process.

6

1.5. Positioning of the Work

Figure 1.5.1.: Event Processing Reference Architecture [PVAM12]

During the ongoing situation-specific processing, the processing system can produce
preliminary processing results in order to inform foreign systems about the current state of
the investigated situation like for the cloud tracking scenario, the current position, speed
and trajectory of the cloud.

1.4.2. Contributions

Processing Model
A processing model that defines all necessary steps for an adaptive situation-aware
processing. The general approach followed by the model is to separate the processing
into three major processing phases: Possible Situation Indication, Focused Situation
Processing Initialization and Focused Situation Processing. Based on these phases,
the model defines the structure for a situation-aware adaptive processing as well as
the semantics and the execution process including the adaptation steps needed during
processing.

Specification Language
The defined language (Scenario Processing Template Language, SPTL) allows the
specification of situation-aware adaptive processing tasks following the defined pro-
cessing model in order to be executable by a processing system that interprets the
processing specifications based on the defined processing model.

7

1. Introduction

1.5. Positioning of the Work

The presented work takes place in the scope of Event Processing with its focus on stream
data analytics where the analytical process requires situation-specific adaptations of the
deployed processing tasks. With regard to the Event Processing Reference Architecture
(Figure 1.5.1) [PVAM12, PVM+12] developed by the Event Processing Technical Society
(EPTS), this work can be positioned as follows:

Design time
From the design perspective, the defined model and specification language extends
the typical processing descriptions by adding the capability to specify situation-aware
adaptive processing tasks. It also introduces a system for the automatic generation of
concrete processing tasks based on the specification of processing templates which are
evaluated based on separately provided background knowledge as well as run-time
information.

Run-time Event Reaction: From the run-time perspective the designed model extends the
Event Reaction with the introduced automatic adaptations of the stream pro-
cessing statements as a reaction to interim results from the stream processing
system.

Event Analysis and Complex Event Detection: The designed model also extends the
event tracking as part of the Event Analysis by introducing the capability to
classify and track events based on situations and the Complex Event Detection
by allowing for situation-specific complex events.

State Management: In order to be able to analyze and track situations, the model ex-
tends the State Management by introducing situation-specific states like general
situation focused processing or per adaptation step states.

Administration Process Update: As the model and language allows adaptive situation-
aware processing tasks to be defined without the need to implement a custom
solution for each scenario, the update of processing tasks changes from the adap-
tation of a specialized implementation to the mere update of the processing task
specification.

Resource Utilization: As a side effect, the defined situation-aware adaptive processing
model also impacts the resource utilization as the stream processing can in part
take place in a dynamically focused manner, thus requiring the availability of
flexible processing resources to cope with increasing and decreasing amounts of
analyzed and traced situations.

8

1.6. Research Design

Figure 1.6.1.: Overview of the design and evaluation process of this work.

1.6. Research Design

The overall aim of this work is to design a situation-aware adaptive processing model to
overcome current limitations of Event Stream Processing mechanisms with regard to their
support for the definition of processing tasks with dynamic situation-specific foci (Section
1.3). The solution is motivated through scenarios from the application areas Smart Grid
monitoring and telecommunications network monitoring but is not limited to these areas
(Figure 1.6.1).
The research follows the design research methodology. Hevner et al. defines design re-

search as “a problem-solving paradigm which seeks to create innovations that defines ideas,
practices, technical capabilities, and products through which the analysis, design, imple-
mentation, management and use of information systems can be effectively and efficiently
accomplished” [HMPR04]. Thus the design research approach suites the overall goal of this
work to design a solution for the outlined problems based on an initial assumption. The
designed artifact will in turn allow the evaluation of the suitability of the initial approach
and the resulting concept to solve the given problems. To allow this evaluation, a proto-
type is created to test the capability of the approach for a given problem from each of the
application domains, Smart Grid monitoring and telecommunications network monitoring.
Based the guidelines defined by Hevner et al. [HMPR04], the following aspects of the

application of the design science methodology to this work shall be mentioned:

1.6.1. Design of an Artifact

The central artifact that is designed within this work is a processing model for adaptive
situation-aware event stream processing. The design is based on the generalized require-
ments from three scenarios from two application areas. Therefore, it is the aim of this work
to produce a generalized solution that is not only applicable to one given scenario from
one application domain. Instead, the artifact will be usable with scenarios that follow the
characteristics extracted from the analyzed scenarios.
The design is conducted based on the following steps where the design for each step is con-

9

1. Introduction

ducted based on the defined requirements with a detailed discussion of the design decisions
and their alternatives:

D1: Generalized Requirements: Perform a classification of the available scenarios to
identify the shared characteristic requirements regarding the definition of the pro-
cessing model (Chapter 2).

D2: Processing Model: Definition of the processing model that defines the structure
and the overall processing flow as a three phased process (Chapter 4).

D3: Domain Specific Language: Based on the processing model, the Domain Specific
Language, the ”Scenario Processing Template Language” (SPTL), is defined to allow
the specification of processing instructions for different scenarios (Chapter 5).

1.6.2. Evaluation of the Designed Artifacts

The suitability of the designed processing model and specification language is evaluated
based on a prototypical realization of two scenarios and several test cases based on these
scenarios. The evaluation follows the following steps:

E1: Design and Implementation of a Prototype: In order to allow the evaluation
of the model and language a prototype is created which implements the processing
model and supports the execution of situation-aware adaptive processing tasks based
on the defined specification language SPTL. (Chapter 6).

E2: Realization of two Application Scenarios: Based on the specification language
SPTL two different scenarios are defined that require a situation-aware adaptive pro-
cessing from two separate application domains (Smart Grid Monitoring and telecom-
munications network monitoring) to verify the general applicability of the specifica-
tion language.

a) Cloud tracking scenario: The realization of the investigated Smart Grid
scenario by its specification in SPTL for defining a suitable focused processing
task (Section 7.3).

b) Telecommunications Network Monitoring Scenario: The realization of
a scenario from a different application domain than the Smart Grid domain
to demonstrate the generalization of the designed model and language (Section
7.5).

E3: Test Cases: Based on the two realized scenarios and the designed prototype, five
test cases where evaluated to show that the model and language can be used to
define and execute situation-aware adaptive processing tasks (Sections 7.4 and 7.6
and Appendix C).

10

1.7. Dissertation Organization

1.7. Dissertation Organization

This work is structured as follows:

Chapter 2 Scenario Requirement Analysis
Three scenarios from two separate application domains are presented. Based on these
scenarios, the characteristic properties of a situation-aware adaptive processing are
defined which are the foundation for the formal definition of the processing type.

Chapter 3 State of the Art
Based on the generalized processing model from Chapter 2, this chapter discusses
the current state of the art with regard to event stream processing systems towards
their suitability for a situation-aware adaptive event stream processing.

Chapter 4 Processing Model
Based on the requirements from Chapter 2 and the approach followed by this work
(Section 1.4), this chapter defines the situation-aware adaptive processing model
based on which situation-aware adaptive processing tasks can be executed.

Chapter 5 Language Definition
Based on the processing model, this chapter defines the Scenario Processing Template
Language (SPTL), which can be used to express the scenario-specific aspects of a
situation processing task based on the defined processing model.

Chapter 6 Prototype
In order to allow the validation of the processing model and description language,
a prototype was created which is discussed in this chapter. The chapter specifically
discusses the architecture of the prototype and illustrates how the processing model
can be mapped to separate components which can be seen as the starting point
for creating a distributed and scalable processing system adhering to the processing
model.

Chapter 7 Evaluation
In order to validate the processing model and description language, this chapter
discusses the realization of two scenarios from two separate domains as scenario
template based on the SPTL. Based on the defined templates several tests where
conducted to verify that the processing model provides the required functionality
and in turn the SPTL provides the means to express all scenario-specific properties
for its processing. Additional test cases are discussed on Appendix C.

Chapter 8 Conclusions and Future Work
Summarizes the work and points out limitations and open questions as a starting
point for future work.

11

1. Introduction

Appendix
Provides a complete definition of the SPTL grammar and the complete templates, de-
fined to realize the two scenarios used for the evaluation. Furthermore, it documents
three additional test cases as part of the evaluation from Chapter 7.

12

2. Scenario Requirement Analysis

Contents

2.1. Detailed Description of the Scenarios . 13

2.2. Definition of the General Type of Processing . 19

2.3. Requirements Towards an Event Stream Processing System 26

This section describes scenarios from each application domain relevant to this work to
point out the demand for a situation-aware adaptive processing mechanism. To allow the
design of a generalized processing model suitable for all the given scenarios, a comparison
is made to extract the characteristics to identify the problem class that needs to be solved
by the processing model.

2.1. Detailed Description of the Scenarios

This section discusses three application scenarios that motivate this work to lay the foun-
dation for the discussion of their requirements.

2.1.1. Application Area Smart Grid

One of the central aspects of Smart Grids is the integration of information technology
with the power-delivery infrastructure. Further the grid will change from unidirectional
energy flow (from centralized power plants to the distributed consumers) to a grid that has
to support bidirectional energy flows thus allowing distributed energy production like for
example from household solar panel installations. As a result, additional information tech-
nology will be needed to guarantee for the energy grids stability. The increased information
availability will also allow the creation of various sorts of services alongside the physical
energy distribution infrastructure to handle the energy production and consumption in a
more flexible manner [nis12].
One of the major challenges around the intensified use of information technology within

Smart Grids lies in the handling of the data amounts and the rapid analytical processing

13

2. Scenario Requirement Analysis

p1 p2 p...

c1

Figure 2.1.1.: A cloud moving across several solar panel installations

of gathered measurement data to identify relevant situations within the power grid and
its surroundings. One such scenario lies in the handling of fluctuations of distributed
energy production. This can for example be caused by solar panel installations in customer
households. The following scenario discusses such a scenario.

Scenario 1 - Cloud Movement Tracking for Dynamic Load Management in Smart Grids
In this scenario, energy production „holes” should be detected and tracked as they are
caused by clouds that shade solar panel installations of customer households. A cloud
may affect closely related solar panels that have a reduced energy production due to the
shading whereas the solar panels outside of the cloud’s shadow will still produce their
normal amount of energy. This localized drop in the energy production results in the
fluctuation of the voltage provided to the households in proximity1 (Figure 2.1.1). To cope
with those fluctuations, switching transformers could installed in the distribution grid. The
transformers are able to regulate their output voltage allowing to compensate the effects of
fluctuating energy production. To ensure a long lifetime of those transformers, the number
of switching operations however should be minimized. Thus, if an IT system would be
able to identify and track cloud shadings, this information could be used to optimize the
number of switching operations. For example a switching operation could be prevented by
reducing the energy consumption of the affected households by temporarily switching of
devices while the cloud passes by.

To realize this scenario, a processing system needs to be able to monitor the solar panels
to detect such situations. It further needs to be able to deduce all relevant aspects like the
position, size and trajectory of the cloud. Further it is important that the information is
provided in near real-time so the information can be used to invoke adequate actions.

The scenario requires the detection and tracking of cloud shadings of solar panel instal-
lations. The task can be separated into two parts:

1In detail it has an impact on the consumers connected to the same transformer as one or more of the
impacted solar panels.

14

2.1. Detailed Description of the Scenarios

Direction of Cloud Movement

pypx

For px

For py

p

p

t

t
Δt

Previous and current shaded area
Solar Panel

Figure 2.1.2.: Changing energy production over time due to a cloud moving over the pan-
els

Part 1: The detection of a cloud which is shading several solar panels causing a drop in
their energy production and

Part 2: the tracking of the cloud’s movement based on the changing energy production
patterns from several solar panel installations.

For the detection (Part 1), the scenario relies on the analysis of the energy production of
solar panel installations. For this it needs to identify sudden drops in the energy production
of solar panel installations. If such a drop occurs, a cloud might be the cause. To verify
this assumption a comparison with other solar panel installations in close geographical
proximity needs to be made. If the production drop is evident in a large enough geograph-
ical area of solar panel installations without any installations still producing energy, it can
be assumed that the production drop is caused by a cloud. If however only a single solar
panel reports a reduced production, the incident should not be considered as being caused
by a cloud and should thus not be tracked.
For the tracking of the detected cloud (Part 2) the existence, position and size of the

cloud was already determined in the first step. Based on this information, changes in the
cloud position and size shall be tracked. As for the detection, the processing is again based
on the energy production of the solar panel installations. The tracking of cloud movement
is based on the detection of a sudden increase of the energy production by a previously
shaded panel in the border area of the shaded area. This event would then be followed
by the sudden drop of energy production of a previously unshaded panel adjacent to the
previous border of the tracked cloud (Figure 2.1.2):

• With πposition(p) as the projection to the vector describing the position of the solar
panel p and

• ~centerc,t =
∑

p∈Pc,t
πposition(p) with centerc,t as the approximate center of the cloud c

at time t based on the set Pc,t as the set of solar panel installations shaded by the
cloud c at time t.

15

2. Scenario Requirement Analysis

• Based on this, the movement of the cloud c between two points in time tx and ty can
be approximated as ~movementc,∆tx,y = ~centerc,ty − ~centerc,tx .

The tracking of size changes can be done in a similar way. For a shrinking cloud, shaded
solar panels adjacent to the border of the cloud will become unshaded causing them to
produce more energy. For a cloud growing in size, unshaded solar panels adjacent to the
previous cloud border will stop to produce energy.

2.1.2. Application Area Large Scale Telecommunications Network Monitoring

Large scale country wide telecommunications networks as they are maintained by telecom-
munications companies have to handle the traffic from hundreds of thousands or sometimes
even millions of customer Internet connections. Such networks consist of a huge number of
routers interconnected by various connections with greatly varying bandwidth and reliabil-
ity. The maintenance of networks of such sizes is a challenging task as simple failures like a
single broken connection or router can spread out and cause much larger problems within
the overall network due to the automatic traffic re-routing that is done to compensate for
one outage of an important connection or router.
The currently available monitoring systems for such systems are well able to provide

a near time status information of all the routers and connections in combination with
the automatic generation of alerts if failures or drastic changes in the line quality or the
utilization occur. These monitoring systems are already heavily used by network opera-
tors to oversee the network and to implement manual counter measures if the traffic flow
throughout the network is not optimal.
However, these systems currently have the downside that they are raising alerts based on

simple local utilization deviation or failures without being able to group together multiple
incidents to a larger problem with the actual root cause of the problem. This currently
results in a large flood of alerts if a critical connection fails. In such a case, other unre-
lated problems may not be directly visible to the network operators anymore as it is not
easily possible to separate them from the flood of events caused by major failure. This
is caused by the lack of current network monitoring systems to dynamically detect prob-
lematic situations and track related side effects. Based on this shortcoming, two scenarios
are discussed in the following sub-sections which both can benefit from a situation-aware
adaptive processing as developed in this work.

2.1.2.1. Scenario 2: Telecommunications Network Monitoring for Denial of Service Attacks in
Large Scale Telecommunication Networks

The goal of this scenario is to detect and trace a DoS attack through the telecommunication
providers network back to its entry point into the network in order to allow the provider
to block the traffic from entering its network and to determine whether it has its source

16

2.1. Detailed Description of the Scenarios

within its own network2 or is incoming from an upstream provider. Similar to the Cloud
Tracking scenario, the task can be divided into two Parts:

Part 1: The detection of a DoS attack at the routers connecting a DoS monitored data
center to the providers network and

Part 2: the tracing of the DoS attack back to is origin relative to the provider network.

For the detection (Part 1) of a DoS attack, the monitoring of the routers connecting the
data center is required. As a DoS attack against servers in the monitored data center
typically results in a significant increase of the packet count and a reduction of the average
packet size measured on these routers, based on this change an attack can be detected.
For the tracing (Part 2) of the attack back to the point where it enters the providers

network, the correlation of changes from the typical traffic patterns of adjacent routers is
required in an incremental way:

1. In the initial step of the tracing of an attack a that was detected at time ta, the
amount of the packet count change ∆pca,0 and average packet size change ∆psa,0

can be determined for the border routers that indicated the attack Ra,0 like for
example Ra,0 = {R1, R13} (Figure 2.1.3). The deltas can be deduced by subtraction
of the previous measurement values (e.g. from 10 minutes in the past) from the
current values

2. In step two, the routers Ra,1 which are topological adjacent to the routers where the
attack was detected are determined. For example Ra,1 = {R2, R5}. For each of these
adjacent routers, changes in their average packet count and average package size are
calculated and compared to the deltas from the indicating routers Ra,0. If similar
changes are detected within the same time ta on one or a group of the adjacent
routers, these routers are assumed to be the origin of the DoS traffic and are thus
the basis for the next step of the trace.

3. The process from Step 2 is repeated for each element of Ra,1 until (a) the trace
reaches the border of the providers network or (b) the deltas of the packet count and
package size are not distinguishable from normal fluctuations anymore.

2.1.2.2. Scenario 3: Telecommunications Network Monitoring for Link Failures and
Correlation of Resulting Link Overloads

The failure of a major communication link in a telecommunication providers network typi-
cally causes an automatic re-routing of traffic within the network to compensate for the lost
link. The failure of such a link is easily detectable and visualized by common monitoring
systems.

2A customers network connection could be used by an attacker.

17

2. Scenario Requirement Analysis

R13

R1

R5

R2

R6

R12

R7

R16

R17

R9

R14

R4

R8

R3 R10

R11

R15

Data
Center

Monitored
Network

Foreign Network(s)

Figure 2.1.3.: Exemplary network structure consisting of several routers of the monitored
network, data center routers (R1, R13) and edge routers (R10, R11, R15) connecting foreign
networks.

Considering a nationwide telecommunications network (Figure 2.1.4) with several high
capacity outbound and inbound links (erx). A failure of one of those links would cause
various automatic re-routing actions within the monitored network. The re-routing results
in a different utilization of the other outbound/inbound links to other networks as well
as of the links within the monitored network. Those utilization changes result in various
alerts and warnings that can flood the monitoring system making it hard for the network
operations personal to identify other, non related problems which require their attention.
If the related alerts and warnings would automatically be linked to their root cause, the
flooding due to a major link failure could be prevented.
It is the aim of this scenario to detect such major link failures and to determine the

relation of other failures and warnings to any detected major link failure in order to allow
for the mentioned grouping.
The scenario shares the same general two step processing as the other scenarios, in

this case by first detecting a major link failure as indicator for the situation and then to
correlate other incidents with the failure:

1. Detect major link failures by specifically monitoring links with high transfer capacity
(e.g. er1 and er2 in Figure 2.1.4). Based on a detected failure of a major link f , e.g.
f = er1, determine if the traffic was re-routed to other high capacity connections
by determining if there is a matching traffic increase shortly after the link failed.
When such a traffic increase was found, on one or more major links, consider them
as probable rerouting destinations RD, e.g. RD = {er2}.

2. Once the failing link f and the new destinations for the traffic RD have been deter-
mined, trace the traffic changes from both, f and RD back through the network in
a similar way as described for the DoS traffic tracing from Scenario 2. For example
from the failing link f = er1, the path could be Pf = r23 → r15 → r14 → r11 were

18

2.2. Definition of the General Type of Processing

er2 r2

er1r23r9

r4

r1

r8

r11

r15

r5

r10

r18

r19

r20

r17
r13

r21 r26

r22 r25

r24r16

r12r7

r3

r6

r14

Foreign
Network

Foreign
Network

Monitored Network

Figure 2.1.4.: Exemplary network structure consisting of several routers (rx) forming the
monitored network together with two interconnects to foreign networks through two edge
routers (erx).

it might get too dispersed to be distinguishable from normal traffic fluctuations.
Similarly for the rerouting destination RD = {er2}, the path might be traced as
PRDer2 = r2 → r5 → r8 until it gets too dispersed. Based on the traced paths Pf
and PRDer2 , the zones which are likely to be affected by the rerouting are known. This
allows to link other alerts and warnings regarding traffic changes with a machining
amount of change, to the failing alert for the link f .

2.2. Definition of the General Type of Processing Shared by the Scenarios

Based on the discussed scenarios and the outlined analytical processing required by them,
a generalized description of the type of processing that is done for the given cases can be
derived. Based on this generalized description, the processing type is defined in a formal
way as the foundation for the later design of a suitable processing model.

2.2.1. Characteristics Derived from Scenarios

Based on the scenario descriptions, several characteristics of the general scenario type can
be derived.

2.2.1.1. Possible Situation Indication Requirements

For the cloud detection discussed in Scenario 1, Part 1, the monitoring for drops in the
energy production needs to take place for all monitored solar panel installations in parallel
and thus parallel access to potentially all measurement event streams has to be possible
with the used processing system. For Scenario 3 from the telecommunications area, the
possible situation detection also requires several links to be monitored in order to detect a
possible failure. Depending on the network size there can be various links that have to be
monitored in parallel resulting also in a possibly large number of event streams required for

19

2. Scenario Requirement Analysis

the Possible Situation Indication. However, the required streams will normally not account
for all available streams. Similarly, for Scenario 2, not all links need to be monitored for
a DoS attack. However, for a larger network the number of links to continuously monitor
can become fairly large. Based on this, the following two general characteristics can be
defined:

SC1: Possible Situations need to be identified in a huge amount of streaming data, poten-
tially in all available data streams.

SC2: The Possible Situation Indication needs to be rapid also for large amounts of stream-
ing data (near real-time).

2.2.1.2. Situation-Specific Analysis Requirements

Based on the available event streams, the situation-specific analysis for Scenario 1 needs
to correlate energy production information from solar panels in geographical proximity to
each other to verify that a cloud was detected and to determine its border. Therefore, the
detection requires flexible access to multiple event streams specific to the current possible
cloud to verify that a cloud was actually detected. Further the processing needs information
on the geographical location of the monitored solar panels to select other solar panels that
should have been affected to analyze their data streams. Therefore, meta information like
the geographical location of a data streams source is required.
For the verification of a DoS attack and to begin the tracing back to its entry point

into the network, the processing requires access to a set of streams specific to the indicated
possible DoS attack. However, the set of needed streams is for the verification of the attack
and the first tracing step limited to event streams from routers neighboring the routers
which detected the possible attack. In order to select the required routers and their event
streams, access to background knowledge on the topology of the monitored network is
needed. In a similar way, the verification of a traffic shifting due to a major link failure
in Scenario 3 only requires access to a limited set of alternative transit links to which the
traffic could have switched in order to verify that a switch occurred. In order to determine
this set, access to topological information on the monitored network is needed.
Based on the discussions, the following three general characteristics for the situation-

specific analysis can be defined:

SC3: Found Possible Situations require their verification and an in-depth situation-specific
analysis based on streaming data and static background knowledge.

SC4: The situation-specific analysis only requires access to a subset of the overall set of
event streams.

SC5: The part of the stream data and background knowledge needed for the situation-
specific analysis can not be determined before the situation has been detected.

20

2.2. Definition of the General Type of Processing

Aside from the so far discussed verification of a possible situation by the situation-specific
analysis, all given scenarios also require some in-depth analysis of a situation in order to
determine further properties of the now verified situation.
For the tracking of a detected cloud in Scenario 1, Part 2, the following requirements

can be derived:

• The monitoring of a cloud’s movement or size change is based on the monitoring of
the geographically surrounding solar panel installations as well as of the panels that
are currently shaded. Thus, again data streams are needed, based on the geographical
location of the corresponding solar panels.

• The tracking requires access to the data streams from the panels in the geographical
vicinity of the shaded area. However, due to the cloud’s movement, the area from
which the data streams are needed is not limited to a „small” geographical area.
Instead, the set data streams required for the tracking changes over time and can
over time include a large part of the available data streams but consisted at any
given point in time of a much smaller subset required for the current position of the
tracked cloud.

In a similar way the traffic tracing of the discussed Scenarios 2 and 3 requires access to
a subset of the available event streams which changes over time, as the analysis process
traces the traffic in a step by step manner through the network.
Based on the discussions, the following characteristics can be defined in addition for the

situation-specific analysis:

SC6: The part of the stream and background knowledge needed during the analysis changes
based on interim analysis results.

2.2.2. Formal Definition

Based on the derived characteristics, the required type of processing is formally specified
in this section as the foundation for the later processing model design and to clearly point
out the challenges addressed by this work.

The following formalization defines the processing of a situation as set of stream pro-
cessing functions sa... which are generated during runtime based on an indication event for
a possible situation (i) or based on interim results from an investigated situation (ir...). To
allow the generation of these processing functions, a builder function (Builder) is declared
that is used to define the actual stream processing functions during runtime. Furthermore,
in order to detect possible situations, a possible situation indication function (SI) is de-
clared, which generates indication events when it detects potential situations. An overview
of the formalization is given in Figure 2.2.1.

21

2. Scenario Requirement Analysis

The discussed scenarios require the processing of measurement events e which consist of
the actual event content, e.g. a measurement value, the time of the event’s occurrence as
well as the source of the event.

Definition 2.1 (Events and Event Streams). An event can be defined as follows:

e := (t, s, c) with

t time

s source

c content

As the events need to be processed as an ordered continuous unbounded stream φs for
example originating from an event source s, this stream can be defined as3:

φs := (e1, e2, ...) with ∀i ∈ N : πtime(ei) ≤ πtime(ei+1) (2.1)

Definition 2.2 (The set of all available Event Streams). Further the set of all available
event streams Φ can be defined as:

Φ := {φsx , ...}x∈N (2.2)

The definition of the processing given here is focused on its usage of streaming data as this
poses the central challenges. Aside from the access to streaming data, the processing also
needs access to semi static background knowledge where its variability and exact type is not
considered in this definition to reduce the complexity. As such, the available background
knowledge is referenced as an element of the set of all possible sets of background knowledge
K but is only later defined by Definition 4.1.

K := Set of all available background knowledge sets

Based on these basic definitions, the processing type can be defined based on the scenario
characteristics SC1 to SC6 as follows (Figure 2.2.1):

Following SC1, possible situations need to be identified by a possible situation indication
function SI within possibly all available event streams Φ which can be defined as follows:

For SC1:
The event stream of all possible situation indications: I := (i1, i2, ...)

The Possible Situation Indication Function: SI : P(Φ)→ I

For example for the cloud tracking scenario, the possible situation indication function SI
would monitor the measurement data streams of all relevant solar panels. Whenever a
solar panel would significantly reduce its power production, the indication function would

3With πx as the projection to x.

22

2.2. Definition of the General Type of Processing

SI for each i ∈ IΦ

FalseSituationIndicationri ∈ R

sai,l+1 := Builder(iri,l, ...)

iri,l+1 = sai,l+1(iri,l, ...)

sai,1 := Builder(i, ...)

Terminate?

iri,1 = sai,1(i, ...)
SA

Yes

No

Figure 2.2.1.: Overview over the formalized processing type.

produce an indication event i. Over time this results in the stream of possible situation
indications I.

For SC2: The possible situation indication function SI needs to be able to cope with huge
amounts of streaming data in order to find possible situation candidates. As such,
the function needs to feature the rapid processing of the measurement data in order
to provide scalability with regard to growing numbers of event streams |Φ| that need
to be monitored.

Based on a produced possible situation indication i ∈ I, an in-depth situation analysis has
to take place by a situation analysis function SA. As the analysis is done for each raised
indication i ∈ I separately, the following processing definitions take place once for each
i ∈ I:

The situation analysis determines if the indicated possible situation i is a valid situation
or a false situation. If it is a valid situation, an in-depth analysis is done resulting in a
situation analysis result ri. Further the situation analysis is allowed to produce intermittent
results IRi which are discussed later. In summary SA can be declared as follows:

For SC3:

All possible results of the situation analysis: Ri := IRi ∪ {ri, FalseSituation}
The situation analysis function: SA : (I ∪Ri)× P(Φ)×K → Ri

In contrast to the possible situation indication function SI, the situation analysis function
SA implements an in-depth analysis process, which will, in most cases, take more resources
per processed event then the situation indication processing. However, as the situation
analysis is focused on a single possible situation i, it only requires access to event data
streams which are required for the analysis of this possible situation. For example for an

23

2. Scenario Requirement Analysis

indicated possible cloud, the situation analysis will only look at a number of data streams
originating from the solar panels within a certain geographical proximity to the indicated
possible situation.

For SC4:

This subset of the available event streams is provided by a selection function which de-
termines the subset of all the available event streams Φ based on the currently analyzed
possible situation i ∈ I with the information available in the background knowledge ∈ K.
This reduction of the event stream count allows to lower the requirements for scalability

of the analysis function that needed to hold for the possible situation indication function
SI.
Similar to the event streams, the situation analysis function needs a subset of the avail-

able background knowledge on the monitored system which can also be selected by a
selection function based on the analyzed possible situation indication i ∈ I or interim re-
sults IRi. As however the formal definition of the problem is focused on the data stream
processing, the selection functions are not defined here but are considered a part of the
situation analysis functions discussed in the following paragraphs.

As the situation analysis is an ongoing process which needs to account for changes in
the analyzed possible situation, the situation analysis itself can not be considered as one
static function but as a set of ni situation analysis iteration functions {sai,1, ..., sai,ni}
specific to the possible situation i which are used to analyze it. With each iteration step,
the processing can result in one of the following:

• a false situation: FalseSituation

• interim results, one per iteration except for the final iteration: IRi = {iri,1, ..., iri,ni−1}

• or the final situation analysis result: ri

Thus, the initially defined set of possible results Ri of each of the iterations may also
contain interim results:

Ri := IRi ∪ {ri, FalseSituation}

Furthermore, the set of possible inputs to each iteration can be defined as the set I∪IRi
as a FalseSituation result or the final result ri terminate the situation processing while
the initial iteration has to handle the possible situation indication i as its input. Based on
this, the iteration processing functions can be declared as a set of functions Fi:

Fi := {sai,1, ..., sai,ni}l=2...ni where

sai,1 : I × P(Φ)×K → Ri

sai,l : IRi × P(Φ)×K → Ri
(2.3)

24

2.2. Definition of the General Type of Processing

Each of the iteration processing functions can generate an interim result or one of the
two terminal results (ri or FalseSituation). If for example the first analysis function sai,1
provides the interim result iri,1. This interim result is then used as input for the consequent
analysis function sai,2 which could then provide the next interim result iri,2 or one of the
terminal results. This process continues until a terminal result was produced.

As each iteration processing function needs to be derived from the initial possible sit-
uation indication i ∈ I or previous processing results iri,l ∈ IRi in combination with the
background knowledge, a function Builder needs to be declared, which defines each of the
functions in the set Fi based on the indication event or the previous processing results:

Builder : (I ∪ IRi)×K → Fi (2.4)

(i ∈ I, �) 7−→ sai,1

(iri,l ∈ IRi, �) 7−→ sai,l+1

The overall situation analysis function can now be defined as a recursive function that
uses the Builder to define the current iteration specific function sai,l which is then used
in the iteration l to do the actual analysis. The recursive processing ends when the result
of an iteration is either a FalseSituation or the final analysis result ri. In summary this
results in the following definition of the situation analysis function SA :

For SC5: and SC6:

SA(x, p, k) =

SA(sai,1(x, p, k) , p, k) if x ∈ I ∧ x = i where sai,1 = Builder(x, k)

SA(sai,l+1(x, p, k) , p, k) if x ∈ IRi ∧ x = iri,l where sai,l+1 = Builder(x, k)

ri if x = ri

FalseSituation if x = FalseSituiation

Example Situation Analysis

For the example of the cloud tracking scenario, the first iteration function sai,1 would
be defined by the Builder so that it compares the energy production by solar panels in the
geographical neighborhood to the indication i in order to verify that the indication really
concerned a cloud. If a real cloud is detected, this cloud will change its position over time
requiring the adaptation of the first processing function sai,1 and thus the definition of a
new iteration function sai,2 by the Builder based on the interim results iri,1 produced by
sai,1. The new function sai,2 would then be aimed at the processing of the data streams
from the new location of the cloud. After possibly many iterations, the cloud will leave the

25

2. Scenario Requirement Analysis

monitored area. The last iteration will thus result in a final processing result ri describing
this fact and end the processing.

As shown by the formal definition of the situation-aware adaptive processing, a process-
ing system supporting such a processing mode has to provide mechanisms to initiate a
processing focused on an indicated possible situation during run-time. Further it needs to
provide the means to derive the iteration specific processing functions from previous results
in order to adapt the processing according to the needs of the investigated situation.

2.3. Requirements Towards an Event Stream Processing System

In order to evaluate the suitability of event stream processing systems towards the motivat-
ing scenarios for this work, this section defines three high level requirements towards event
stream processing systems based on the scenario requirements and their formalization. The
three requirements are as follows:

RQ1: Support to set up a situation indication processing that can handle large amounts of
streaming data.
A processing system needs to be capable of deducing stream processing statements
based on a provided processing description in combination with system specific back-
ground information in such a way that situations can be detected in a possibly huge
set of event streams.

RQ2: Support to deduce and initiate an analysis processing for a detected situation, where
the analysis processing is specific for the detected situation.
A processing system needs to be able to deduce and deploy situation-specific pro-
cessing statements during run-time from a provided processing description in com-
bination with the

a) current processing state, especially the detected situation

b) a situation-aware high level processing model

c) background information on the monitored system.

RQ3: Support to handle changes of a currently investigated situation that require the adap-
tation of the processing of an ongoing situation-specific analysis based on interim
results.
A processing system needs to be capable of deducing the need to adapt a situation-
specific processing during run-time based on the same information as RQ2. It further
needs the capability to deduce the required changes and the capability to apply the
changes to the running processing system.

26

2.3. Requirements Towards an Event Stream Processing System

Based on the requirements defined in this chapter, the next chapter gives an overview
of the current state of the art in the area of this work and discusses the shortcomings of
current approaches and systems regarding the requirements defined here.

27

3. State of the Art

Contents

3.1. Overview Event Processing . 29

3.2. Classes of Event Stream Processing Systems . 34

3.3. Event Processing Languages . 41

3.4. Approaches and Systems related to Situation-Aware Adaptive Processing 44

3.5. Situation-Aware Processing Outside of the Event Processing Scope 48

3.6. Summary and Conclusions . 49

In order to point out the gap within the current state of the art of event processing
systems, this section first gives an overview over Event Processing and its origins and then
continues with a discussion of general classes of event stream processing systems. Then,
further approaches which are directly related to the problem considered here, are discussed
and rated with regards to the requirements. The section concludes with a summary of the
discussed suitability of the discussed classes and systems to point out the gap in the current
state of the art.

3.1. Overview Event Processing

Event processing consists of methods and tools to filter, transform, and detect patterns
in events, in order to react to changing conditions, typically under some time constraints
[CEvA11]. In event processing, an Event is defined as “Anything that happens, or is
contemplated as happening” [DL11, p.5]. As events occur over time, they form a linearly
ordered unbound sequence which is called an Event Stream [DL11] (Definition 2.1 on
page 22). The processing of such streams is called Event Stream Processing (ESP).

From a conceptual point of view, event processing applications are formed by one or
more Event Processing Agents (EPA) sometimes also called event processing components.
EPAs are entities that process event objects. As such they act as event consumers and
event producers. Several EPAs are typically interlinked by communication channels to form

29

3. State of the Art

Sample EPN

EPA1

EPA2

EPA3

EPA5

EventConsumer

EPA4

EventProducer

Figure 3.1.1.: Sample Event Processing Network

an Event Processing Network (EPN) [DL11, Luc01] (Figure 3.1.1). The communication
between the EPAs is provided by an Event Notification Service.
As discussed by Mühl et al. [MFP06], event-based computing follows a contrasting

approach to the conventional request/reply mode of interaction and inherently decouples
the components from each other. In event based systems, the components communicate
by generating or receiving event notifications. An interested component subscribes to
the event notifications that it is interested in. In turn, components that generate event
notifications publish them so that they can be received by the subscribers. The Event
Notification Service is used to mediate the communication among the components (Section
3.2.1).

Event processing applications can be found in various areas such as in monitoring sys-
tems, ranging from network monitoring [CJ09] to business activity monitoring [Luc01], in
the processing of sensor network information like for example in RFID based logistics ap-
plications [WS09a] or traffic management systems like outlined in [Dun09]. Furthermore,
event processing systems are used in Enterprise Application Integration for a flexible and
scalable integration of the various enterprise systems [BD10]. Moreover, event processing
is used for various analytical applications such as the classical stock trading use case or for
the detection of customer behavior in web shops as shown in [WSGL11].

The following sections introduce some general concepts in the area of event processing as
the foundation for the later discussions of system classes. Further discussions regarding the
history and the different variations of event processing can be found in [Luc07b, MFP06].

3.1.1. Active Database Systems: ECA-Rules

One of the origins of event processing lies in the development of Active Database Manage-
ment Systems (ADBMS) in the early 1990’s, which extend the classical database manage-
ment systems with the capability to allow the active reaction to certain changes within the
database. As such, ADBMS systems introduced the support for triggers which allow the
definition of such reactions. The definition is based on Event Condition Action (ECA)
Rules, which are triggered based on the occurrence of the specified event and execute the
specified action if the specified condition is fulfilled [Con96].
To overcome the limitation of using ECA rules only in connection with a particular

30

3.1. Overview Event Processing

database management system the paradigm of event processing has been proposed in the
late 1990’s to separate the rule processing from the database system in order to allow the
usage of ECA-Rules across several databases as well as other kinds of information sources
[GKBF98]. One of the first systems following this unbundling approach was C2offein
[KL98, Kos99, KK98], which provided ECA-Rule Processing in a separated Activity Service
using CORBA as communication layer.

3.1.2. Event Driven Architectures (EDA)

Event Driven Architectures (EDA) have been proposed in the last years as an architectural
paradigm for event-based applications [BD10, Luc01]. In an EDA the central control flow
is realized based on event based communication between components. Thus, the processing
of events is the central architectural concept. As a result, a very flexible control flow is
possible. Furthermore, the application’s components are loosely coupled with each other,
easing the extension of the application and the reuse of existing components.
A special form of an EDA is the Staged Event Driven Architecture (SEDA) as „an

architecture for handling the massive concurrency and load conditioning demands of busy
Internet services” [Wel02, p. 1]. SEDA was developed by Matt Welsh from Harvard
University in 2002 [Wel02], and since its publication it received a great deal of attention. It
has been adopted by several well established server applications like Apache Camel [Apad],
Apache ActiveMQ [Apab], Mule ESB [Mul14] or Apache Service Mix [Apag]. The central
idea behind SEDA lies in the combination of event based programming combined with
thread handling to construct applications in multiple stages. The stages are interconnected
by event queues and each stage fulfills a distinct task in the processing of a request of the
service. The explicit interconnection between the layers via queues allows for a flexible
load management by thresholding or filtering of the event queues (cp. [Wel02] p.4), thus
allowing the construction of scalable server systems that need to handle huge amounts of
client connections in parallel.
Furthermore, the combination of Service Oriented Architectures (SOA) with event pro-

cessing to create an Event Driven SOA (ED-SOA), sometimes called SOA 2.0, gained some
attention [Luc, Mar06, LC08]. The aim to extend the concepts of a SOA with the capabil-
ity to react dynamically to occurring events is expected to open a new set of application
areas like, for example, the realization of dynamic business processes.

3.1.3. Complex Event Processing

Complex Event Processing (CEP) was introduced by David Luckham in his book The
Power of Events [Luc01]. Luckham considers “CEP as the logical and obvious next step in
the development of event processing“ [Luc07a]. CEP has its origin in the Discrete Event
Simulation and is focused on the event processing itself in order to generate new higher
level events. CEP therefore allows for a step wise abstraction and reduction of the event

31

3. State of the Art

(Persistent)
Storage

Query
Processor

Query Query results
(once per query)

Data

data retrieval
for query

store
data

Data Query
Processor

Query

Query results
 (continuous)

DBMS DSMS

Figure 3.1.2.: Information Processing in a Database Management System and a Data
Stream Management System

load. The central idea behind CEP is to provide the means to handle the increasing flood
of events that modern information systems are faced with.

The CEP concept builds on the aggregation and abstraction of numerous low level events
into a new high level event based on their temporal, spatial or causal relation, thus provid-
ing an abstraction from the underlying events. For example, several credit card transac-
tions, having their origin in different countries, could be correlated to a new complex event
that represents a possible credit card fraught. In a CEP system such abstraction can take
place in many stages further reducing the event amounts after each step while increasing
the level of abstraction with each step. As such, the abstraction from the low level events
does not only allow the reduction of the event counts, it also allows the event processing on
a higher level than the incoming event stream has. Aside from the step wise abstraction,
the capability to handle vast quantities of events in a timely fashion can be considered as
an essential aspect of CEP (cp. [CEvA11, CM12, EN11]).

Based on this, CEP shares several properties with Event Stream Processing. In fact,
the Event Processing Technical Society considers CEP and ESP only as conceptual classi-
fications which “can be useful in delineating philosophies of event processing and intended
applications, but do not specify precisely the underlying capabilities of event processing
engines.” [DL11, p.14].

3.1.4. Event Stream Processing

Based on the need to handle continuous streams of event data, the concepts of ADBMS
where extended towards better handling of streaming data. These efforts resulted in the
first Data Stream Management Systems (DSMS), like for example Aurora and Borealis
[ACC+03b, AAB+05], STREAM [ABB+04] or TelegraphCQ [CCD+03b].

In a DSMS, the data processing is built for the handling of continuous unbounded streams

32

3.1. Overview Event Processing

Figure 3.1.3.: Pipes and Filters Architecture example (Source: [HW12, p. 71]).

of data. A DSMS typically processes incoming data in its main memory as the data arrives,
without storing it to some persistent second level storage (Figure 3.1.2). For this kind of
processing, it continuously evaluates the incoming data against the specified continuous
queries. This stands in contrast to the processing concept known from a typical DBMS
where the data is stored on a persistent second level storage when it arrives. If a client
enters a query into the DBMS, the required data for the query is retrieved from the second
level storage in order to evaluate the query. Once the evaluation of the retrieved data
snapshot is done, the results are returned to the query issuer and no further processing of
the query is done, even if additional data, relevant for the query arrives at the DSMS.

Due to the different information processing approach of a DSMS, such systems only have
a limited view on the available event data, as they at best only have access to the parts
of the event stream that was already received. As such, new mechanisms to query such
data streams needed to be derived. Several methods to deal with the limited view on the
data have been developed in the form of window based queries. Here a sliding window
of the event stream, based on event counts or time frames, is taken into account for the
processing, including statements on the non-existence of certain events within the current
time window. These efforts resulted in several new query languages which are discussed in
Section 3.2.3 and 3.3.

Even though not directly related to the Event Stream Processing discussed here, it should
be noted, that approaches exist to adapt the general MapReduce processing concept to
support stream data processing. Map Reduce is a common mechanism for processing
big amounts of data introduced by Google in 2004 [DG04]. However, it is focused on a
batch operating mode, splitting a huge amount of stored data into chunks suitable for
processing in parallel by a number of machines, and gathering the results from each of the
processing nodes to provide the aggregated overall result. Due to this store and process
approach it is not particularly suited for stream data processing. However, first approaches
to combine the split and merge processing semantic to data stream processing exist like
for example [ABM10, LY08]. The approaches are very similar to the Distributed Event
Stream Processing Middlewares discussed in Section 3.2.2 and thus suffer from the same
limitations.

33

3. State of the Art

(1)
Distributed Processing

(2)
Rich Query Processnig

Rich Query Processnig + Distributed Processing
(3)

Event Notification Middleware

Event Stream Processing Middlewares

Distributed Datastream Management Systems

Active Databases Management Systems

Centralized Datastream Management Systems

Figure 3.2.1.: Hierarchy of the discussed Event Stream Processing classes.

3.1.5. Pipes and Filters

Another related architectural concept is the Pipes and Filters architectural pattern. The
pattern “provides a structure for systems that process a stream of data” [BMR+96, p. 53
]. It defines the data processing steps as filters which are interconnected by pipes which
transport the data stream from one filter to the next (Figure 3.1.3). It thereby divides
“larger processing tasks into a sequence of smaller independent processing steps” [HW12,
p. 71] .
This structure is also referred to as a processing pipeline and can be found in various

application areas ranging from video or image processing for computer vision applications
to the Unix pipeline mechanism as well as enterprise integration tasks. In the context of
enterprise application integration, systems like for example Apache Camel [Apac] support
the definition of such processing pipelines where the pipes can be provided by messaging
systems like Apache ActiveMQ [Apaa]. For Unix/Linux systems, the Pipes and Filters
principle is also a very common processing mechanism. Here multiple programs (filters)
can be connected via pipes, based on their input and output streams to form a processing
pipeline. This functionality can also be combined with shell scripts thus allowing for
example for the automation of system administration tasks.

3.2. Classes of Event Stream Processing Systems

The following sub-sections give a brief overview over different classes of Event Stream
Processing systems and discuss their suitability with regard to the requirements defined
in the previous section. Further some systems and their capabilities, as relevant for this
work are presented for each class. The discussion follows the structure shown in Figure
3.2.1, starting from the distributed processing perspective (1), it discusses Event Notifica-
tion Middlewares as the underlying communication mechanism and continues with Event
Stream Processing Middlewares which introduce distributed basic event stream processing.

34

3.2. Classes of Event Stream Processing Systems

Notification Service Notification Service

Communication Middleware for Event transportation

Event Driven
Interaction

Ereignis
Produzenten

Ereignis
Produzenten

Event
Producer

Ereignis
Konsumenten

Ereignis
Konsumenten

Event
Consumer

Ereignis
Produzenten

Ereignis
Produzenten

Event
Producer

Ereignis
Konsumenten

Ereignis
Konsumenten

Event
Consumer

Figure 3.2.2.: Event Notification Service (based on [MFP06, Fig. 2.1])

The discussion then moves on to the other perspective, systems that provide rich query
processing (2) in the form of centralized DSMS but do not consider distributed processing.
The discussion then concludes in the combination of both perspectives (3) by looking at
distributed DSMS that feature-rich query processing together with distributed processing.

3.2.1. Event Notification Middlewares

Distributed Event Processing requires a suitable communication middleware in order to
convey events among processing nodes and external event sources and sinks. Within the
scope of event processing systems such a middleware is typically called Notification Service
[MFP06] (Figure 3.2.2). A Notification Service realizes a publish/subscribe-pattern thus
providing the facilities to subscribe to relevant events, to consume events based on such
a subscription and to publish new events. It is further responsible for the transfer of the
events among distributed system components. Depending on the concrete incarnation the
Notification Service also may take care of some form of Quality of Service guarantees like
guaranteed delivery [EFGK03].

There are various communication Middlewares available for building distributed event
processing systems which range from standards-based systems like the CORBA Event and
Notification service or the Java Messaging Service API (JMS) over commercial and non-
commercial Message Oriented Middlewares like for example TIBCO Rendezvous, IBM
WebSpereMQ or Apache ActiveMQ to a variety of research prototypes like Gryphon
[SBC+98], SIENA [CRW01], JEDI [CDNF01], REBECA [PGS+10], the event routing sys-
tem proposed by Wishnie et. al. [WS09b] or the OM4SPACE Activity Service [SAKG14].

Aside from those notification systems and API’s there are several cloud-based commu-
nication services that allow to easily convey messages or events without taking care about
aspects like dynamic scalability of the communication middleware based on current uti-
lization. An example for such services is the Amazon Simple Notification Service[Amab].

Event Notification Middlewares have no own support for the event stream processing.
Therefore, they are on their own not suitable for the problem considered in this work.

35

3. State of the Art

3.2.2. Event Stream Processing Middlewares

Distributed Event Stream Processing Middlewares extend the concept of Event Notifica-
tion Middlewares by adding the capability to handle the scheduling of given event stream
processing tasks in addition to the basic event communication. As such they allow for the
automatic distribution of an event stream processing application if it obeys the program-
ming model defined by the middleware. Typically, Event Stream Processing Middlewares
however do not provide the query or rule processing engines necessary to realize the ac-
tual event processing within each processing task nor do they provide a query language
to specify the required processing. Thus, Event Stream Processing Middlewares leave the
actual stream data processing to the application developer to realize.
Examples of such systems are Apache Storm [sto], Apache S4 [Apaj], Apache Spark

Streaming [Apah], Apache Samza [Apaf], Google MillWeel [ABB+13] or Muppet [LLP+12].

The Apache Storm processing platform [sto] was originally developed by BackType which
was later acquired by Twitter. Storm provides a framework for the creation of distributed
stream processing applications and claims to hide the complexities that come with aspects
like guaranteed message processing, robust process management, fault detection and auto-
matic reassignment, efficient message passing, local mode and distributed mode [Mar]. It
defines a concept of worker nodes and master nodes. Each worker node runs a supervisor
that can start and stop worker processes based on assigned work. The system uses Apache
Zookeeper [Apai] for the coordination among the nodes.
In order to use Storm to create an ESP application, the processing logic needs to be de-

fined as a directed acyclic graph of processing functions which in Storm is called a topology :

1TopologyBuilder builder = new TopologyBuilder ();
2builder.setSpout("measurements", new MeasurementSourceSpout (), 10);
3builder.setBolt("average", new MyBolt (), 3).shuffleGrouping("measurements");

The processing functions, in Storm called Bolts, need to utilize a storm-specific API to
consume streaming data and to produce their processing results as a new stream:

1public class MyBolt extends BaseRichBolt {
2@Override public void prepare(Map conf , TopologyContext context ,

OutputCollectorBase collector) {...}
3

4@Override public void declareOutputFields(OutputFieldsDeclarer declarer) {...}
5

6@Override public void execute(Tuple input) {
7/* manually implement stream processing for the given input tupel */
8}
9}

Storm is then responsible for deploying the functions on multiple worker nodes, possibly as
a parallel processing system and to provide the required communication among the worker
nodes. For this task Storm uses a scheduler to assign the work to the various processing
nodes. Extensions of this mechanism towards a dynamic scheduling in Storm exist like for

36

3.2. Classes of Event Stream Processing Systems

example [ABQ13] but they are focused on a generic assignment of processing loads based
on currently available capacity not on a processing model supporting situation awareness
as required in this work.
Apache S4 [NRNK10, Apaj], initially released by Yahoo in 2010, provides similar func-

tionality as Storm. It also provides a framework for the development of distributed stream
processing applications. S4 defines its processing elements based on an actors model, which
provides the semantic definition of the encapsulation and allows for concurrent deployment
[NRNK10].
Apache Spark is a general processing engine for large-scale data. Spark Streaming ex-

tends this platform to support a streaming mode in order to build stream processing
applications. Similar to the other two platforms, processing tasks need to be implemented
based on a Spark specific API. Both systems share the same limitation as Storm regarding
the requirements of this work.

With regard to a dynamic task assignment and redistribution, some research in the
direction of using cloud resources for the realization of such flexible stream processing
exists, like [GJPPMV10, SAG+09, KKP11]. Also, from the commercial area, approaches
exist like for example Amazon Kinesis [Amaa] which provides a communication middleware
for event streams and a static stream partitioning in order to distribute the processing load
to several parallel processing nodes. Even though these systems feature a dynamic task
assignment and scalability based on current load situations, they are not aimed at the
required situation-aware adaptiveness and have no own support for it.

In summary Distributed Event Stream Processing Middlewares support the automatic
distribution of event processing components but do not support any query or rule languages
for the actual event processing in those components. Instead, the processing components
need to be implemented specifically for the given application based on a programming
interface provided by and specific to the used middleware. In conclusion, systems within
this class are on their own not suitable for a situation-aware adaptive processing as they
only partly fulfill the given requirements discussed in Table 3.2.1.

3.2.3. Centralized Data Stream Management Systems

The system classes discussed in the previous sections focus on the distributed processing
and the required communication and task distribution, they do not provide specification
languages for the actual stream processing logic. This section will thus cover the class
of systems which support such languages. This section will first cover centralized systems
which do not support distributed operation on their own while the next section will ex-
tend this discussion towards systems that support query languages in combination with
distributed operations. Both classes of systems are typically called Data Stream Manage-
ment Systems (DSMS) in relation to the term Database Management System (DBMS),

37

3. State of the Art

RQ1
Support to set up a
situation indication
processing that can
handle large amounts
of streaming data

Partial Support
If a suitable set of processing functions are implemented,
systems of this class can distribute the functions across several
processing nodes in order to handle the load. However, they
do not feature mechanisms to specify the processing task in a
suitable high level rule or query language thus requiring a
manual implementation of the actual stream processing.

RQ2
Support to deduce and
initiate an analysis
processing for a
detected situation,
where the analysis
processing is specific
for the detected
situation

Partial Support
Event Stream Processing Middlewares have no direct support
to initiate situation-specific processing tasks based on
indicated situation candidates. However, they typically have
the capability to deploy new / additional processing tasks if
provided by a third party system which could realize a
situation-aware adaptive processing on top of such a
middleware.

RQ3
Support to handle
changes of a currently
investigated situation
that require the
adaptation of the
processing of an
ongoing
situation-specific
analysis based on
interim results

Partial Support
Event Stream Processing Middlewares have no support to
automatically adapt an ongoing situation-specific processing
based on interim processing results. However, a third party
system could request the necessary adaptations similar to
RQ2.

Table 3.2.1.: Suitability of Event Stream Processing Middlewares towards the defined re-
quirements.

however the term DSMS does not clearly distinguish between centralized and distributed
systems.

The following paragraphs discuss several centralized DSMS without focusing on their
used processing languages. A more detailed discussion on the languages is given sepa-
rately in section 3.3 followed by a more detailed discussion of adaptive DSMS optimization
mechanisms.

The STanford stREam datA Manager (STREAM) [ABB+04] is a centralized DSMS
developed by the Stanford University. STREAM supports a declarative SQL based Con-
tinuous Query Language (CQL) [ABW06] which has a special focus on a clear semantic.
TelegaphCQ [CCD+03b, KCC+03, CCD+03a, Tel] is a prototype from UC Berkeley, based
on PostgreSQL which extends PostgreSQL’s SQL dialect for the handling of data streams.
Furthermore, a well-established system is Esper [Esp, BV07], a centralized open-source
Event Stream Processing Engine. Esper supports the Event Query Language (EQL), an
SQL-like query language to specify continuous Queries. In contrast to the STREAM and
TelegraphCQ, Esper is not based on a DBMS but is instead intended to be directly inte-
grated into Java or .Net applications.
Similar to the static query optimizations known from relational database management

systems, such query optimizations are also possible for stream query languages. However,
for stream query languages with limitations due to the limited information on the data
streams as their properties are, in contrast to typical database relations, not known in

38

3.2. Classes of Event Stream Processing Systems

RQ1
Support to set up a
situation indication
processing that can
handle large amounts
of streaming data

No Support
As centralized Data Stream Management Systems do not
feature any form of distributed parallel processing, they can
on their own not be used to realize a possible situation
indication processing for large amounts of streaming data.

RQ2
Support to deduce and
initiate an analysis
processing for a
detected situation,
where the analysis
processing is specific
for the detected
situation

No Support
Centralized Data Stream Management Systems have no direct
support to initiate situation-specific processing tasks based on
indicated situation candidates as they do not feature a higher
level processing model above the deployed queries or rules.

RQ3
Support to handle
changes of a currently
investigated situation
that require the
adaptation of the
processing of an
ongoing
situation-specific
analysis based on
interim results

Partial Support
Centralized Data Stream Management Systems can support
the adaptation of the deployed rules during run-time.
However, the engines do not support a mechanism to trigger
such changes on their own based on a high level processing
model.

Table 3.2.2.: Suitability of Centralized Data Stream Management Systems towards the
defined requirements.

advance. A discussion of such optimization approaches is given in Section 3.4.1.

Furthermore, rule processing engines have been extended to support streaming data like
for example JBoss Drools Fusion [dro]. Drools Fusion is a centralized DSMS which extends
the JBoss Drools rule engine with functionality specific for streaming time series data like
the support for window-based operations. In contrast to the SQL-like query languages,
Drools Fusion uses an Event Condition Action (ECA) based processing specification as
known from Active Database Systems.

Another approach is used by Aurora. Aurora [ACC+03a, ACC+03b] is a Data Stream
Management System developed by the Brandeis University, Brown University and M.I.T to
overcome the limited applicability of DBMS for monitoring applications. Aurora supports
the specification of continuous queries as loop-free directed data flow graphs of stream
processing operators based on Aurora’s query algebra SQuAl (Stream Query Algebra).

Aurora supports dynamic optimizations of the processing graphs in order to meet de-
finable quality of service requirements. The general optimization operations used are load
shedding and query network optimization which is based on the commutative property of
the operators. Aurora starts with an un-optimized processing network and optimizes it
during run-time based on gathered statistics like the average operation execution cost or
an operation’s selectivity [ACC+03b].

Even though centralized DSMS provide a broad set of functionality for the realization of
a centralized event stream processing system, they are not capable of providing a situation-
aware adaptive processing as required by this work as discussed in Table 3.2.2.

39

3. State of the Art

Stream Query Query Plan

Query Plan
generation Distributed

Query Plan

Query Plan
Distribution Distributed Stream

Processing

Distributed
Deployment

Figure 3.2.3.: Outline of the Stream Query distribution process implemented by a dis-
tributed DSMS.

3.2.4. Distributed Data Stream Management Systems

While the previous section focused on centralized DSMS, this section discusses distributed
DSMS to determine their suitability towards the defined requirements.

There are two general goals in the distribution of event processing applications that can
be distinguished:

1. Distribution as a result of a distributed environment that requires the integration of
distributed and possibly heterogeneous event sources and sinks into an overall event
processing system.

2. Distribution of an event processing system as the enabler to achieve scalability or
reliability through the usage of multiple machines.

The following discussion is focused on the second aim of distributed event processing as
one of the central goals is to achieve the scalability required by the scenarios for situation-
specific adaptive processing tasks.

Distributed DSMS combine Event Stream Processing Middlewares (Section 3.2.2) with
a query language and query processing engine as discussed for centralized DSMS (Section
3.2.3). Thus, distributed stream processing applications can be created by specifying the
relevant queries and the DSMS takes care of deriving a suitable distributed query plan and
setting up the distributed processing system that implements this plan (Figure 3.2.3).
This combination also allows for a query aware optimization of the distributed deploy-

ment which is not possible for normal Event Stream Processing Middlewares due to their
limited knowledge of the actual event processing tasks. In addition to the query opti-
mizations used in centralized DSMS, the distribution decisions can be optimized based on
the expected load of the different processing operators in order to provide a distributed
setup that is capable of handling the required load while minimizing over provisioning of
processing resources. Such mechanisms are discussed in Section 3.4.1.
Furthermore, distributed DSMS typically employ mechanisms to handle load fluctuations

by adapting their resource provisioning or by employing load shedding mechanisms.

Early systems in this area are the extensions of centralized DSMS like Aurora*, an
approach towards the distribution of Aurora. In turn, Borealis [AAB+05, Bor] is based on
Aurora* [XZH05] and Medusa, a federated stream processing system [CBB+03, SZS+03].
Another example is the distribution of the SASE processing system by Wang et al. [WY10]

40

3.3. Event Processing Languages

Streams Relations
Stream to Relation Conversion

Relation to Stream Conversion

Relation to Relation Conversion

Figure 3.3.1.: Stream relation conversions in CQL (based on [ABW06])

or NiagaraCQ [CDTW00]. As a recent development from 2012, StreamCloud is “An Elastic
Parallel-Distributed Stream Processing Engine” [Gul12, GJPPM+12, GJPPMV10] based
on Borealis, which aims to address the limited scalability of state of the art DSMS. The
approach of the system is to split continuous queries into sub-queries which are assigned to
different servers in order to distribute the processing load. It also supports dynamic load
balancing mechanisms to avoid over- and under-provisioning of the available processing
resources while handling fluctuations in the data streams. The dynamic load balancing of
StreamCloud is based on the average CPU utilization of the processing nodes and does not
take into account changes of the continuous query itself.

On the other hand PIPES, the Public Infrastructure for Processing and Exploring
Streams [Krä07, KS04], from the University of Marburg is aimed at providing fundamental
building blocks required to implement a distributed data stream management system but
is on its own not a ready-made system.

There are also several systems which focus on event processing in sensor networks like
for example Cougar [YG02] or HiFi [CEF+04]. As these systems try to solve a separate
class of problems, they are not considered in this section.

In general the systems discussed here are capable of setting up distributed stream pro-
cessing based on given queries and to optimize the system to provide the required pro-
cessing capacity and response times. However, the systems have no mechanisms to adapt
deployed stream queries based on detected situations and situation changes as they have
no knowledge of the overall analytical task that deployed a given stream query. As such
the systems are not capable of realizing a situation-aware adaptive processing as required
for this work. Table 3.2.3 discusses the suitability of the system class with regard to the
defined requirements.

3.3. Event Processing Languages

The two event stream processing classes, Centralized DSMS and Distributed DSMS al-
low the specification of the event stream processing function based on Event (Stream)
Processing Languages. Section 3.2.3 already mentioned several languages while discussing
the class of Centralized DSMS. This section extends this by discussing three language
categories based on the way the processing functions are specified:

41

3. State of the Art

RQ1
Support to set up a
situation indication
processing that can
handle large amounts
of streaming data

Full Support
The properties of Stream Processing Middlewares for RQ1
apply. Further support to specify the processing in a high
level query language and to optimize the processing based on
query graph information provides the capability to set up a
distributed processing system capable of handling large
amount of streaming data on multiple machines.

RQ2
Support to deduce and
initiate an analysis
processing for a
detected situation,
where the analysis
processing is specific
for the detected
situation

No Support
The Properties of Centralized DSMS for RQ2 apply.
Therefore, no support for a situation-aware model or a similar
mechanism is given which allows for the automatic generation
of situation-aware processing statements.

RQ3
Support to handle
changes of a currently
investigated situation
that require the
adaptation of the
processing of an
ongoing
situation-specific
analysis based on
interim results

Partial Support
Systems of this class can support dynamic query plan
optimization but the adaptations are not backed by a high
level situation-aware adaptive processing model, thus also
preventing automatic adaptations of the queries itself. Further
the properties of centralized DSMS for RQ3 apply.

Table 3.2.3.: Suitability of distributed Data Stream Management Systems towards the
defined requirements.

Query Based
In query based languages, the event streams are processed in a similar form as re-
lational data in a relational data based by specifying a for example an SQL like
query. For example the centralized DSMS STREAM supports a declarative SQL
based Continuous Query Language (CQL) [ABW06]. CQL follows the approach to
map windows of streaming data to relations in order to process them together with
other relations and to map the result back to a data stream (Figure 3.3.1). For this
purpose CQL extends SQL with a windowing operator which allows the conversion
of the data stream into a relation. Further it provides operators to convert back from
a relation to a data stream. The following query shows these two operators:

1SELECT ISTREAM(AVG(PackageCount) FROM Traffic [Range 1 Hour])

The windowing is specified at the end of the query as a duration based window of
one hour. Based on this value, the query calculates an average value and provides
the results as a stream by using the ISTREAM operator.

Flow Graph Based
In flow based languages, the stream processing functions are specified as an acyclic
directed graph where the nodes are represented by processing operators and the edges
resemble the flow of events from one operator to the next. The resulting structure
is similar to the processing structure defined by Event Processing Networks (EPN)
(Section 3.1). An example of a system that is based on this approach is the Stream

42

3.3. Event Processing Languages

Figure 3.3.2.: Aurora System Model showing the event stream processing logic as a di-
rected acyclic graph (Source [ACC+03b, Fig. 18])

Query Algebra (SQuAL) defined by the centralized DSMS Aurora (Figure 3.3.2).
Aurora supports operations like for example “Filter”, “Map” or “Join” [CBB+03].
Based on these operators the processing graph is defined and executed by Aurora.

Rule Based
In rule based languages, the processing function is defined by processing rules, which
are triggered by the appearance of certain events where a rule defines a certain
reaction to the event. A typical rule type are Event Condition Action (ECA) rules
as known from Active Database Systems (Section 3.1.1) where the action is to be
executed if the specified event occurred and the given condition holds. An example of
such an ECA-Rule processing language is the rule language of JBoss Drools Fusion.
The following listing gives an example for a rule in the Drools rule language:

1rule "Sample"
2when
3$value : SingleMeasurement($value:doubleValue)
4eval ($value > 10)
5then
6System.out.println("Event detected")
7end

In this example, rule is triggered by a “SingleMeasurement” event where the contained
value needs to be 10 or more. In this case the specified action is executed which prints
the message “Event detected”.

There are also several rule languages for ontologies like for example SWRL [W3C04],

43

3. State of the Art

SPIN Rules [KHI11] or Jena Rules [Apae]. Even though these rule languages are
not designed for usage with streaming data, several approaches exist to allow the
processing of streaming data in formats like RDF with the typical query languages
used for ontologies like SPAQL to combine the stream processing with for example
RDF based background knowledge like [AFRS11, BGJ08, BBC+09, CCG10].

Aside from the examples discussed here, several other languages exist like Stanford Rapide
[Luc96, Luc01], SASE [WDR06], NEEL [LRD+11], IBM’s Stream Processing Language
(SPL) [HAG+09], which is the successor of SPADE [GAW+08] in IBM’s stream processing
systems, Siddhi [SGLN+11] or StreamSQL [Sof].

Even though the presented languages provide a rich set of functionality for the speci-
fication of the event stream processing logic, all these languages lack support for an
automatic domain-specific adaptation of their queries, flow graphs or rules as they
don’t support a higher level processing model such as the adaptive situation-aware pro-
cessing model presented here.

In addition to the discussed languages, approaches for the generation of event processing
functions exist like the generation framework presented by Magrid et al. [MOB+08]. Other
approaches like for example iCEP [MCT14] aim at the generation of event processing
functions based on historic event data. These approaches are, however, aimed at easing
the general process of developing event-processing applications and don’t consider the
situation-aware adaptive behavior needed here.

3.4. Approaches and Systems related to Situation-Aware Adaptive

Processing

Aside from the discussed event stream processing classes, some approaches exist that have
some similarity with or a closer relation to the situation-aware adaptive processing and
its challenges addressed by this work. These approaches are discussed in the following
subsections.

3.4.1. Adaptive DSMS Optimization Mechanisms

As the discussion of DSMS revealed, the central missing capability with regard to the
defined requirements lies in the support of suitable adaptation mechanisms. In order to
shed some more light on this limitation, this section is focused on adaptive optimization
mechanisms for DSMS and the general limitations of these approaches with regard to the
defined requirements.

In a distributed DSMS, the processing functions are distributed across a set of machines
in order to distribute the processing load. To define a suitable distribution, DSMS usually

44

3.4. Approaches and Systems related to Situation-Aware Adaptive Processing

utilize some form of heuristic based on statistical information on the streams. However,
the typically available statistical information on the stream (e.g. number of events or the
selectivity of an operator) is not directly available for data streams as only a possibly
small portion of the data stream is known. To cope with this, approaches, which gather
statistical information over time, exist alongside with systems that allow the specification
of the expected stream behavior in addition to the continuous query itself.
For continuous queries deployed over a long time, the initially specified statistical prop-

erties can also become incorrect over time. As a result, a DSMS needs to provide means
for the adaptation of a deployed distributed query plan in order to handle wrong initial
assumptions or over time changing conditions.
A typical approach to detect the need for an adaptation is to monitor the continuous

query execution in order to gather statistics about its resource usage and processing delays.
Based on the gathered statistics, an adaptation need can be determined and the query plan
and its distribution be adapted. For the adaptation, distributed DSMS implement several
adaptation operations. Among others such operations are the reordering of operators
in the query graph, operator splitting in order to allow for parallel execution (Fission
/ Partitioning), joining of two separate operators (Fusion) to avoid overhead caused by
remote communication or the migration of the operators to other machines [HSS+14].

Examples of systems that employ statistics-based optimizations of their query graphs are
StreaMon [BW04, Bab05], Aurora* and Borealis [AAB+05, XZH05]. Aurora* for example
starts with a very crude data stream partitioning in the beginning and tries to optimize
its processing system over time based on the gathered resource usage statistics [CBB+03].
Furthermore, various approaches have been proposed which employ adaptive optimizations
to handle load fluctuations by utilizing the dynamic resource availability of cloud computing
offerings like [GJPPMV10, SAG+09, KKP11] in order to scale on demand.

Other approaches introduce new operators which allow for an adaptive partitioning or
query plan execution. For example the Flux operator [SHCF03] allows for a dynamic
partitioning of state-full operators during run-time in order to flexibly scale a stream
processing system to handle varying processing loads. An even more flexible version is the
Eddy operator which was proposed by Avnur et al. [AH00]. The Eddy operator allows for
a continuous reordering of the operators in a query plan during run-time. The approach
considers the query plan as a task where tuples need to be routed through the operators.
Within this model, the Eddy operator allows a per-tuple routing decision thus allowing for
a fine-grained control of the actual query graph at run-time. An application of the Eddy
operator to continuous queries exists with the Continuous Adaptive Continuous Queries
over Streams (CACQ) [MSHR02].
Further approaches towards an efficient migration from one query to an new query

exist like the Constraint-exploiting Adaptive Processing Engine (CAPE) [RDS+04] and its
distributed version D-CAPE [SLJR05] or [ZRH04]. An overview of such adaptive query

45

3. State of the Art

RQ1
Support to set up a
situation indication
processing that can
handle large amounts
of streaming data

Full Support
When considering adaptive optimization mechanisms for
distributed DSMS, such mechanisms can be used to correctly
setup and maintain a distributed Possible Situation Indication
processing for large amounts of streaming data.

RQ2
Support to deduce and
initiate an analysis
processing for a
detected situation,
where the analysis
processing is specific
for the detected
situation

No Support
The presented mechanisms for adaptive DSMS query
optimizations have no support for the initiation of
situation-specific processing tasks as part of their adaptation
process.

RQ3
Support to handle
changes of a currently
investigated situation
that require the
adaptation of the
processing of an
ongoing
situation-specific
analysis based on
interim results

Partial Support
As the discussed adaptive optimization mechanisms do not
support a higher level situation-aware adaptive processing
model, they are not able to provide adaptations based on such
a model. However, they provide the means to adapt an
ongoing processing which could be used in combination with
an external system which triggers the situation based
adaptations.

Table 3.4.1.: Suitability of adaptive DSMS optimization mechanisms with regard to the
defined requirements.

processing mechanisms and approaches is given in [HFC+00, BB05].

As discussed, approaches for the adaptive optimization of DSMS follow the general
mechanism to gather statistics of the actual processing load during run-time and allow
shifting load among different operators to correct previous assumptions. As such they can
be used in the context of the Possible Situation Indication. However, the approaches have
no support to adapt a processing system based on a higher level situation-aware model.
Thus, the mechanisms do not support the creation of situation-specific processing tasks as
part of their adaptation process. Therefore such approaches are on their own not suitable
for the given problem (Table 3.4.1).

3.4.2. Process-oriented Event Model

The Process-oriented Event Model (PoEM) [PSPP14] is an approach focused on industry
applications and allows the modeling of possible states of a monitored entity. Based on
the state it further allows the definition of state specific actions. To ensure that a failure
of a triggered action does not go unnoticed it supports a special escalation mechanism as
part of the event reaction work-flow. If an actor was notified based on an event but fails
to respond, the event can be escalated to a higher level system to be handled there.
The PoEM approach supports the specification of a higher level processing work-flow

which also considers the modeling of actions based on the current (monitored entity) state.
However, the approach has no special support for the specification of automatic adaptations
of the processing based on a detected situation in order to provide a targeted processing for
the situation (Table 3.4.2). Further, the approach is not aimed at the detection of possible

46

3.4. Approaches and Systems related to Situation-Aware Adaptive Processing

RQ1
Support to set up a
situation indication
processing that can
handle large amounts
of streaming data

No Support
The approach is not aimed at handling large amounts of
streaming data for a possible situation indication.

RQ2
Support to deduce and
initiate an analysis
processing for a
detected situation,
where the analysis
processing is specific
for the detected
situation

Partial Support
PoEM supports the modeling of system states in order to
define state specific reactions. This mechanism can be
considered as a form of situation-specific processing. However,
no in-depth processing based on a situation is intended.

RQ3
Support to handle
changes of a currently
investigated situation
that require the
adaptation of the
processing of an
ongoing
situation-specific
analysis based on
interim results

No Support
The approach has no support for the adaptation of a running
analysis task based on intermittent results.

Table 3.4.2.: Suitability of the Process-oriented Event Model with regard to the defined
requirements.

situations in huge amounts of streaming data originating from various monitored entities.

3.4.3. Hybrid Static and Dynamic Optimization

Soulé et al. propose a hybrid optimization approach [SGA+13] that combines dynamic
optimization with static optimizations. Their approach assumes that several parts of a
stream processing application can be optimized statically and only few links in between
the static parts can benefit from dynamic optimization as only their output varies. In
order to achieve this, they subdivide a stream application into coarse-grained sub-graphs.
The sub-graphs are interlinked by so called dynamic rate boundaries. Within a sub-graph
the system applies static optimizations.
This approach could in parts be applied to the given problem of a situation-aware adap-

tive processing (Table 3.4.3) by considering the possible situation indication processing as
an initial static sub-graph which is followed by some dynamic processing part. However, in
contrast to the situation-aware adaptive processing approach presented in this work, the
dynamic optimization steps are not capable of acting in a situation-aware fashion.

3.4.4. Data Stream Processing for Moving Range Queries

Specialized approaches for handling time varying queries in event processing systems also
exist for mobile applications under the term Moving Range Queries. One approach from
this area, that is particularly relevant for this work, is the Mobility-Aware Complex Event
Processing (MCEP) [OKR+14a, KORR12, OKR+14b], a CEP system optimized for moving
range queries in mobile application areas.

47

3. State of the Art

RQ1
Support to set up a
situation indication
processing that can
handle large amounts
of streaming data

Supported
Assuming that the mechanism is applied to a distributed
DSMS, the possible situation processing could be separated
into a sub graph which could be optimized separately from the
remaining processing to gain the required scalability.

RQ2
Support to deduce and
initiate an analysis
processing for a
detected situation,
where the analysis
processing is specific
for the detected
situation

No Support
The discussed approach is not aimed at providing mechanisms
to derive a situation-specific processing based on raised
possible situation indications.

RQ3
Support to handle
changes of a currently
investigated situation
that require the
adaptation of the
processing of an
ongoing
situation-specific
analysis based on
interim results

No Support
The discussed approach is not aimed at adapting a continuous
query during run-time or to deduce the need to do so, based
on interim processing results.

Table 3.4.3.: Suitability of the “Hybrid Static & Dynamic Scheduling” approach with re-
gard to the discussed requirements.

MCEP supports the automatic adaptation of the event processing based on the geo-
graphical location of the processing result consumer. The adaptation is based on a special
dynamic interest query which considers a focal point of a consumer and a spatial interest.
To adapt the query, the consumer has to provide discrete location updates. Based on the
updates, old queries are stopped and new queries started based on the change in the spatial
interest of the consumer.
The approach has some similarities (Table 3.4.4) to the situation-aware adaptive pro-

cessing designed here, with regard to the definition of a changeable focal point and a
surrounding area of interest. However, their approach is focused on spatial relationships
only whereas the problem set addressed here requires a more generic support for the def-
inition of the focal area and the related area of interest. Further MCEP has no specific
support for adapting the dynamic interest queries based on previous results of the query.
Instead, external location updates are required by the MCEP process. Furthermore, it
does not have specific support for separating the initial parts of a processing from the
dynamically focused part in order to support the required scalability for the indication.

3.5. Situation-Aware Processing Outside of the Event Processing Scope

The general concept of a situation-aware processing can be found in various areas like for
example in robotics [WG96] or cyber-security [GKS14] where it is approached from the
corresponding problem domain in order to develop solutions specific for the given domain
or detail problem. These approaches may or may not use Event Stream Processing (ESP)
as part of their solution. However, for these approaches ESP is only the means to achieve

48

3.6. Summary and Conclusions

RQ1
Support to set up a
situation indication
processing that can
handle large amounts
of streaming data

No Support
The MCEP system has no support for the detection of
situations in large amounts of streaming data as the trigger for
further situation-specific processing.

RQ2
Support to deduce and
initiate an analysis
processing for a
detected situation,
where the analysis
processing is specific
for the detected
situation

Partial Support
The MCEP system can derive and set up a location specific
moving range queries which could be considered as a very
specialized form of a situation-specific processing. However, it
has no general support to set up a situation-specific processing
based on a possible situation trigger. Further it has no support
for a general situation-aware adaptive processing model but
instead features a specialized model for location based queries.

RQ3
Support to handle
changes of a currently
investigated situation
that require the
adaptation of the
processing of an
ongoing
situation-specific
analysis based on
interim results

Partial Support
MCEP allows for the run-time adaptation of deployed queries
based on a geographic area of interest which is assumed to
change over time. The approach has however no support to
derive adaptations in a generalized form in combination with
background knowledge. Further the limitations from RQ2
regarding the absence of a general situation-aware processing
model apply.

Table 3.4.4.: Suitability of Moving Range Queries with regard to the defined Require-
ments.

their overall goal but they do not aim at extending Event Stream Processing with the
generalized capability of situation-aware adaptive processing. As such the model designed
here can be used to ease the development of such domain specific applications by reducing
the effort of utilizing an ESP system for situation-aware adaptive processing.

3.6. Summary and Conclusions

An overview of the evaluation results of the discussions from Sections 3.2 and 3.4 is given
in Table 3.6.1. The discussions revealed that the existing classes of event-stream process-
ing systems and approaches are not capable of a situation-aware adaptive event stream
processing.
Even though distributed DSMSs provide a lot of the functionality that is needed, they

lack support for the automatic deduction of query adaptations based on a higher level
model as they have no own support for such a model. On the other hand, Moving Range
Query systems like MCEP provide such an adaptation mechanism. However, their focus
lies on the area of geographical information systems making the solutions specific to this
area without support for a more general processing model. Furthermore, they are not
aimed at supporting the detection of possible situations in huge amounts of streaming data.
Approaches that allow for a certain adaptiveness of DSMS are focused on the optimization
of the deployed queries to handle fluctuations in the incoming data stream sizes or incorrect
assumptions during the initial query plan optimization. They, however, also do not feature
a higher level model that allows the adaptation of the queries themselves based on the

49

3. State of the Art

Requirement
RQ1

Requirement
RQ2

Requirement
RQ3

Support to set up a
situation indication
processing that can
handle large amounts
of streaming data

Support to initiate an
analysis process for a
detected situation
where the analysis
processing is specific

for the detected
situation

Support to handle
changes in an

investigated situation
that require the
adaptation of the
processing of an

ongoing
situation-specific
analysis based on
interim results

General Classes of
ESP Systems
Event Stream
Processing Middlewares Partial Support Partial Support Partial Support

Centralized Data
Stream Management
Systems

No Support No Support Partial Support

Distributed Data
Stream Management
Systems

Full Support No Support Partial Support

Comparable
Approaches
Adaptive DSMS
Optimizations Full Support No Support Partial Support

Process-oriented Event
Model No Support Partial Support No Support

Hybrid Optimization Supported No Support No Support
Moving Range Queries No Support Partial Support Partial Support

Table 3.6.1.: Overview of the suitability of the considered event stream processing classes
regarding the requirements from Section 2.3.

detection of a possible situation or a changing situation.

50

4. Processing Model

Contents

4.1. Overview of the Processing Model . 51

4.2. General Elements of the Processing Model . 53

4.3. Phase 1: Possible Situation Indication Processing 63

4.4. Phase 0: Possible Situation Indication Processing Initialization 68

4.5. Phase 2: Focused Processing Initialization . 70

4.6. Phase 3: Focused Situation Processing . 86

4.7. Conclusion . 105

This work follows the approach of separating the detection of a possible situation from
its verification and situation-specific analysis. In order to allow for such a situation-aware
processing, this chapter defines a generalized processing model which consists of several
well defined phases which follow the abstract processing approach proposed by this work
(Section 1.4). This chapter will discuss each processing phase in detail and specify what the
purpose and context of each single processing phase is in order to define it. Furthermore,
the design decisions and the reasoning behind the process will be presented.
As an introduction for these discussions, the following section first gives a quick overview

of the resulting processing model in high level terms before continuing with the design
discussions in Section 4.2 ff.

4.1. Overview of the Processing Model

Following the general approach proposed by this work, the processing model is divided into
three main phases (Figure 4.1.1):

Phase 1: Possible Situation Indication (Defined in Section 4.3)
In this phase, the detection of possible Situations within the possibly big
amounts of streaming data that is received from a monitored system is re-
alized. The focus here lies on the rapid detection of possible situations. To

51

4. Processing Model

Background Knowledge

Scenario Processing Template

Focused Situation
Processing Initialization

Possible Situation
Indication Processing

Meta-Model

Focused
Situation

Processing

Situation
Analysis Results

Status Updates

Scenario Specific Configuration

Monitored System Specific Information

Phase 1: Phase 2:
Phase 3:

Figure 4.1.1.: Simplified view of the processing model.

provide the required scalability in this phase, the processing may produce a
possibly great number of false positives when an additional verification of pos-
sible situations would require additional resources.

Phase 2: Focused Situation Processing Initialization (Defined in Section 4.5)
In this phase, previously indicated possible situations are classified in order
to determine if a specially focused situation processing is required or if the
indicated possible situation is or was already investigated. If the situation
is not yet analyzed, a specialized processing task is initialized. In order to
allow for this classification to take place, the Phase 2 processing uses status
information provided by the Phase 3 processing which allows the correlation of
the received indication with finished and ongoing Focused Situation Processing
instances.

Phase 3: Focused Situation Processing (Defined in Section 4.6)
In the third phase, an indicated possible situation is investigated in further
detail to (a) determine whether the indication regards a real situation or is
a false positive and (b) to investigate the situation in detail as required for
a given application scenario. Therefore, during this phase, several Focused
Situation Processing Instances are started where each instance follows one
(possible) situation. The processing within such an instance results either in
the notification of a false situation or situation-related analyses results which
can be used by third party systems.

The three phases resemble the general processing flow while monitoring a system for pos-
sible situations. Aside from these three phases, an initialization phase is defined:

Phase 0: Possible Situation Indication Processing Initialization (Defined in Sec-
tion 4.4)

52

4.2. General Elements of the Processing Model

The processing initialization phase is required in order to initiate the possi-
ble situation indication processing. This step produces the specific processing
function for the system that is to be monitored. As part of this initialization,
background knowledge is retrieved from a background knowledge repository
and combined with the situation indication processing description from a Sce-
nario Processing Template.

Further the processing model defines the following knowledge sources which exist outside
of the defined phases:

Situation Processing Template (Defined in Section 4.2.1)
A Scenario Processing Template describes the necessary steps to detect, verify
and analyze a situation. The description is given as a template that needs
to be combined with the background knowledge on the actual system that is
being monitored thus allowing to reuse templates for many systems in the same
application domain.

Background Knowledge (Defined in Section 4.2.2)
The background knowledge provides information on the monitored system
which can be used together with the Scenario Processing Templates to initial-
ize and maintain the processing. Further the information is used during the
situation-specific processing in Phase 3 to allow the use of additional knowl-
edge that is not part of the event streams or the general Scenario Processing
Template.

4.2. General Elements of the Processing Model

4.2.1. Scenario Processing Template

The Scenario Processing Template describes a relevant situation for the processing model
by specifying configuration settings that parameterize the processing model for the detec-
tion and analysis of the specified kind of situation. In order to refer to these templates, let
T be the set of all available Scenario Processing Templates and τ ∈ T one such template.
One major part of this specification is the definition of how the actual event stream

processing has to take place. The stream processing is specified in the templates by the
definition of two Stream Processing Builder functions. The builder functions are used
together with additional background knowledge and possibly interim processing results to
define an actual stream processing that shall take place to detect, verify or track a situation
(see Section 4.4 and 4.6.2.5).
Aside from the builder functions, the template also specifies several other scenario-

specific aspects for the processing model like the collision-handling between conflicting
(possible) situations. The various configurations that are part of the template are specified

53

4. Processing Model

Not Part of
Knowledge Base

NodeProperty
Edge+properties

0..* 1
N

NodeWithLinkedEventStream

NΦ
ProvidesEventStream

+source

+destination

1

1

0..*

0..*

Measurement
Event Stream

Π(N Φ
)

1 0..1

Knowledge
Base
K 11

1

0..* 1..* 0..*

value

Figure 4.2.1.: Meta model of the background knowledge defining the basic concepts for
the processing system including special nodes which have associated event streams.

in detail in the remainder of this chapter. The following chapter will then use these defini-
tions in order to create a description language that is used to specify Scenario Processing
Templates.

4.2.2. Background Knowledge

The processing model relies on the availability of suitable background knowledge on the
monitored system which is provided by a background knowledge base. The knowledge base
is defined as a directed graph of nodes and edges where properties can be assigned to a
node as defined by the meta-model (M2) shown in Figure 4.2.1. Further the meta-model
defines a specific type of node which has an event stream associated with it, the event
stream itself is however not part of the knowledge base.

Based on this meta-model, a domain specific model (M1) can be defined for each applica-
tion domain and based on it the concrete application specific instances (M1), as illustrated
by the examples in Sub-Sections 4.2.2.1 and 4.2.2.2.

The background knowledge is considered as mostly static as it remains unchanged for
large periods of time and is then updated in a bulk update outside of the scope of the
model presented here.

For later definitions, the set N is defined as the set of all nodes contained in the current
knowledge base K. Further the set NΦ is defined as a subset of N which contains all nodes
with associated event streams:

54

4.2. General Elements of the Processing Model

Definition 4.1 (Background Knowledge Base).

K as the set of all knowledge bases
N as the set of nodes
NΦ as the subset of nodes (NΦ ⊆ N) with an associated event stream

Furthermore, a function Π needs to be defined, which provides a mapping from any given
subset of nodes from the set NΦ to the corresponding subset of event streams from the
set Φ:

Definition 4.2 (Event Stream Selection Function).

Π : P(NΦ)→ P(Φ)

4.2.2.1. Example: Smart Grid Background Knowledge

Figure 4.2.2 shows an example background knowledge base content from the Smart
Grid domain suitable for the Cloud Tracking scenario. The depicted model contains
instances on level M0 for one solar panel (SG_Holten_1) which provides a single
measurement stream on its power production (holten_1_pv_power). Further the
figure shows the model for the Smart Grid domain (Level M1) which defines elements
like a device, a geographical location as well as a pvPowerProduced node type with
associated event stream.

E
xa

m
pl

e
1

4.2.2.2. Example: Telecommunications Network Background Knowledge

In a similar way as the Smart Grid example, Figure 4.2.3 gives an example from the
telecommunications network monitoring as used by the corresponding scenarios. The
example defines instances for two routers (router1 and router2) each with one network
interface. Both interfaces are interconnected by a communications link. Further, for
each interface two nodes with event streams are defined for inbound and outbound
traffic measurements. As in the previous example, the figure also contains the needed
model on level M1 for the telecommunications domain which defines elements like a
router, interfaces and links.

E
xa

m
pl

e
2

4.2.3. Focus Area and Locked Area

An essential task of the processing model is to manage the occurrence of potential and
verified situations. Part of this process is the correlation of newly detected indications
with already identified situations as well as the correlation of situations that, after some

55

4. Processing Model
M

2

Node Edge+properties
0..* 1

N

NodeWithLinked
EventStream

NΦ

Provides
EventStream

+source

+destination

1

1

0..*

0..*

Knowledge
Base
K 11

1

0..* 1..* 0..*

Property

value

SmartGrid:
Location

SmartGrid:
Device

SmartGrid:
pvPowerProduced

SmartGrid:
hasLat

SmartGrid:
hasLon

SmartGrid:
hasLocation

provider:
Holten

provider:
SG_Holten_1

provider:
holten_1_pv_powerM

0
M

1

TypeOf

6.420

52.282

SubClassOf

Association

Figure 4.2.2.: Example Smart Grid background knowledge base contents.

56

4.2. General Elements of the Processing Model
M

2

Node Edge+properties
0..* 1

N

NodeWithLinked
EventStream

NΦ

Provides
EventStream

+source

+destination

1

1

0..*

0..*

Knowledge
Base
K 11

1

0..* 1..* 0..*

Property

value

telco:
interface

telco:
link

telco:
trafficIn

telco:
router

telco:
hasInterface

provider:
router1

provider:
router1interface1

provider:
link1M

0
M

1

telco:
hasLink

provider:
router2

provider:
router2interface1

provider:
r2if1_trafficIn

TypeOf

SubClassOf

Association

Figure 4.2.3.: Example Telecommunications Network background knowledge base con-
tents.

DC2

DC1

R2

R1

R3

R8

R4

R6

R7

R11

R5

R10

R12

R9 FN3

FN2

FN1

Data
Center

Monitored
Network

Foreign Network(s)

Focus AreaLocked Area

Figure 4.2.4.: Exemplary Locked Area and Focus Area for the DoS tracking scenario.

57

4. Processing Model

n0

n17

n34

n51

n68

n85

n102

n1

n18

n35

n52

n69

n86

n103

n2

n19

n36

n53

n70

n87

n104

n3

n20

n37

n54

n71

n88

n105

n4

n21

n38

n55

n72

n89

n106

n5

n22

n39

n56

n73

n90

n107

n6

n23

n40

n57

n74

n91

n108

n7

n24

n41

n58

n75

n92

n109

n8

n25

n42

n59

n76

n93

n110

n9

n26

n43

n60

n77

n94

n111

n10

n27

n44

n61

n78

n95

n112

n11

n28

n45

n62

n79

n96

n113

n12

n29

n46

n63

n80

n97

n114

n13

n30

n47

n64

n81

n98

n115

n14

n31

n48

n65

n82

n99

n116

n15

n32

n49

n66

n83

n100

n117

n16

n33

n50

n67

n84

n101

n118

Focus Area Cloud 1
Locked Area Cloud 1

Focus Area Cloud 2
Locked Area Cloud 2

Focus Area Cloud 3
Locked Area Cloud 3

Focus Area Overlap

Figure 4.2.5.: Exemplary Locked Areas and Focus Areas for the cloud tracking scenario
based on three clouds were the two clouds on the right hand side share parts of their Focus
Area due to their close proximity.

analysis, turned out to be the same. To allow for this process to happen, the model needs
a mechanism to keep track of the identity and scope of the handled (possible) situations.
The mechanism used by the processing model is based on two different sets of nodes,
the Focus Area and the Locked Area , which are kept per (possible) situation. Both,
the Focus Area and the Locked Area are determined in the beginning of a new Focused
Situation Processing Instance based on a raised possible situation indication as discussed
in Section 4.5.5 and can change over time once the Focused Situation Processing Instance is
active in order to accommodate for changes in the situation as discussed in Section 4.6.2.8.
The following paragraphs define the Locked Area and Focus Areas and explain their use
based on the two example scenarios, cloud tracking and DoS tracing.

Definition 4.3 (Locked Area). The Locked Area is a set of nodes that are uniquely
affected by the investigated situation within a certain time frame and can thus be used
to represent this situation’s identity (Figure 4.2.6). As such any node from the set N can
only be assigned to at most one Locked Area in a certain time frame and thus one Focused
Situation Processing Instance at the time.
Later functions that determine a Locked Area, must thus adhere to the following conditions:

1. The Locked Area has to represent the investigated possible situation in order to
allow the correlation of other possible situation indications originating from the in-
vestigated possible situation.

2. The Locked Area must only contain elements which are known to be part of only
this (possible) situation.

58

4.2. General Elements of the Processing Model

For example for the cloud tracking scenario, the Focused Situation Processing Instance
locks all nodes that are verified to be affected by the tracked cloud (Figure 4.2.5) in a
certain time frame. If any other Focused Situation Processing Instance would require
the acquisition of this area in the same time frame, the second processing task would
be tracing the same cloud and thus the same situation.
For the cloud tracking scenario, the Locked Area will change over time as it has to

follow the tracked cloud. A fixed Locked Area per situation is also possible and is for
example needed for the DoS scenario. Here the situation occurs on a set of routers
which report the DoS attack and thus caused the initial Possible Situation Indication
(Figure 4.2.4). These routers represent the DoS situation and are thus locked by the
responsible Focused Situation Processing Instance.

E
xa

m
pl

e
3

Definition 4.4 (Focus Area). The Focus Area is a set of nodes that is required by a
running Focused Situation Processing Instance within a specific time frame as part of its
current stream processing (Figure 4.2.6). As such the nodes within a Focus Area are not
exclusively related to the corresponding situation and can also be part of other Focus Areas
at the same time. The handling of the possible collisions is specific to the scenario (Section
4.5.4).
Later functions that determine a Focus Area, must adhere to the following conditions:

1. A Focus Area must contain any node that is required for the processing in the
upcoming focused processing iteration.

2. A Focus Area may contain additional nodes which may or may not be relevant in
order to guarantee that Condition 1 is kept.

For example for the cloud tracking scenario, the Focus Area contains the nodes which
are currently shaded by the cloud plus a number of nodes that geographically surround
the affected area to allow the Focused Situation Processing Instance to determine the
clouds borders and over time the movement of the cloud (Figure 4.2.5). As the Focus
Area is not exclusive to one Focused Situation Processing Instance, two Focus Areas
can overlap as shown for Cloud 2 and 3 in Figure 4.2.5.
The Focus Area used by the cloud tracking scenario will move over time from one

set of nodes to another while the number of nodes contained in the Focus Area will
roughly stay the samea. For other scenarios the Focus Area can however also grow
as for example for the DoS tracing scenario. Here the Focus Area starts with the
topologically surrounding nodes of the attacked routers. From there the Focus Area
grows while the Focused Situation Processing Instance follows the path of the traffic

E
xa

m
pl

e
4

59

4. Processing Model

Node

0..*

1

Scenario Processing
Template

Τ

Locked Area

LA

Focus Area

FA

Area Registration

Time Frame

1 1

11

TF

Focused Situation
Processing Instance

FP

valid for

regards

1..* *1..*

1..*

consistsOf

0..*

1..*

N

consistsOf

0..*

1..*

AR

startTime
endTime

regards

+FpInstance

+LockedArea
+FocusArea +timeFrame

+Nodes+Nodes

Focused Situation
Processing Iteration

FPI

partOf

*1

Figure 4.2.6.: An Area Registration, holds a Locked and Focused Area as well as the cor-
responding Focused Situation Processing Instance for a specified Time Frame.

through the network to its origin (Figure 4.2.4).
aAssuming that the cloud is not significantly growing or shrinking over time.

4.2.3.1. Area Registration

In order to keep track of the Locked Area and Focus Area usage, the processing model
defines a set of Area Registrations AR which are generated during run-time for the Focused
Situation Processing. An area registration exists within the scope of one specific Scenario
Processing Template τ ∈ T and is therefore shared among all (possible) situations from
one template:

ARτ := {arτ,l, ...}l=1...n

for n Area Registrations arτ,l where each Area Registration is a tuple of one Focus Situation
Processing Instance, one Locked Area, one Focus Area and one Time Frame for which it
is valid, as defined in Figure 4.2.6.
Following the definitions of Allen [All83], a time frame is defined as a start time and an

end time where they are closed in their lower end (start time) and open on their upper
end (end time) (Figure 4.2.6). Allen defines various relations between two time frames like
before, after, during or overlaps. In order to test for an overlap, the following function is
defined:

TimeFrameOverlap : TF × TF → N

which takes two time frames and determines if they overlap as specified by [All83] and
returns 0 if the two time frames do not overlap or the size of the overlap otherwise.

Based on the Area Registration, the unique constraint regarding the Locked Area usage
can be formalized as follows:

60

4.2. General Elements of the Processing Model

Let
arτ,l, arτ,k ∈ ARτ with l, k ∈ 1...|ARτ | and l 6= k

then
¬∃ πLockedArea(arτ,l) ∩ πLockedArea(arτ,k) 6= Ø ∧

TimeFrameOverlap(πT imeFrame(arτ,l), πT imeFrame(arτ,k)) 6= 0∧
πFpInstance(πFpIteration(arτ,l)) 6= πFpInstance(πFpIteration(arτ,k))

where πx is the projection to x
(4.1)

In order to manage the Area Registrations, two functions for the registration and release
of the areas are needed. The function’s definition however has to be scenario-specific as
they need to implement a scenario-specific collision-handling as discussed in Section 4.5.4.
Thus, in the following, the functions are only declared together with a definition of their
general, scenario independent, behavior:

Definition 4.5 (Focus Area and Locked Area Registration Life-Cycle Functions).

Registration Function (Create Area Registration)
The registration function tries to create a new Area Registration for the given Focus
Area, Locked Area and for the given new Focused Situation Processing Iteration
fpi ∈ FPIτ in the given time frame tf ∈ TF . According to (4.1), the registration
must fail when the requested Locked Area la ∈ LA overlaps with another already
assigned Locked Area registration in the same time frame. If the registration of the
requested area is not possible, the function does not create a new Area Registration
but provides the set of Focused Situation Processing Iteration col ∈ P(FPIτ) whose
Locked Areas overlap with the requested Locked Area for the requested time frame.
If the registration is successful, the function results in the creation of a new Area
Registration which contains the provided parameters.

RegisterAreaτ : FPIτ × FA× LA× TF ×ARτ −→ P(FPIτ)×ARτ
(fpi, fa, la, tf, ARτ,0) 7−→ (col, ARτ,1)

where for a successful registration:

col = Ø ∧ARτ,0 ∪ (fpi, fa, la, tf) = ARτ,1

and for a failed registration attempt:

col 6= Ø ∧ fpi /∈ col ∧ARτ,0 = ARτ,1

61

4. Processing Model

Possible Situation
Indication Stream

Processing Topology
SPT Indication

Stream
Processing
Topology

<<abstract>>

Focused Situation
Iteration Stream

Processing Topology
SPT FPIteration

Figure 4.2.7.: A Stream Processing Topology consists of several Stream Processing Func-
tions which form the processing topology.

Registration Release Function (Delete Area Registration)
The release function deletes a previously created Area Registration (fpi, fa, la, tf) ∈
ARτ of a given Focused Situation Processing Iteration fpi of a Locked Area la and
Focus Area fa for a given time frame tf :

ReleaseAreaRegistration : FPIτ × FA× LA× TF ×ARτ −→ ARτ

(fpi, fa, la, tf, ARτ,0) 7−→ (ARτ,1)

where the result complies with:

ARτ,0\(fpi, fa, la, tf) = ARτ,1

4.2.4. Stream Processing Topology

The processing Phases 1 and 3 execute the actual event stream processing to detect possible
situations (Phase 1) and to verify and follow them (Phase 3)1. Within the processing
model the used stream processing set ups are defined as Stream Processing Topologies. A
Stream Processing Topology is a set of Stream Processing Functions (Nodes) where each
function takes a number of event streams (Edges) as its input and may2 produce one new
event stream as output. The generated stream can then again function as input to other
processing functions, thereby forming a directed acyclic graph.
The processing model differentiates two sets of Stream Processing Topologies based

on their use and capabilities. For the Phase 1 processing, the model defines the set of
Possible Situation Indication Stream Processing Topologies SPT Indication where for each
Scenario Processing Template τ exists only one such topology SPT Indicationτ . For the Phase
3 processing, the model defines the set of Focused Situation Iteration Stream Processing
Topologies SPTFPIteration where for each Focused Situation Processing Instance, the set

1As Phase 2 only decides if a new Focused Situation Processing Instance shall be created, it does not do
any event stream processing.

2The later Phase 3 processing defines stream processing functions which may manipulate a processing
context which can be their only result (See Section 4.6.2.5).

62

4.3. Phase 1: Possible Situation Indication Processing

Possible Situation
Indication Processing

 Initialization

Possible Situation
Indication Processing

Terminate

Publish Possible
Situation Indication Event

P0.1

Initialization Complete

Initialize

P1.1

Handled by Phase 2
Processing

uses

Figure 4.3.1.: Overview of Processing Phase 0 and 1

contains several topologies as for each iteration of the Focused Situation Processing a
separate stream processing topology is needed (see Section 4.6).
The detailed definition of the topologies and the stream processing functions takes place

for the Phase 1 processing in Section 4.3 and in Section 4.6.2.5 for the Phase 3 processing.

4.3. Phase 1: Possible Situation Indication Processing State P1.1

Phase 1 executes the stream processing required to find possible situation indications. The
processing is based on the execution of the Stream Processing Topology SPT Indicationτ

(Figure 4.3.1) that is defined during the execution of Phase 0. The stream processing
takes a number of event streams as its input to screen them for situation indications. The
result of the Phase 1 processing is a single stream of Possible Situation Indication Events
σIndicationτ ∈ ΦIndication specific for the current Scenario Processing Template which is then
handled by processing Phase 2.
As the situation indication processing design is the basis for the definition of Phase 0,

the Situation Indication Initialization, this section first defines the Phase 1 processing and
is then followed by the definition of Phase 0.

4.3.1. General Design Considerations for Phase 1

The situation indication phase screens the possible great number of event streams produced
by a measured system to discover indications for possibly relevant situations. The indica-
tion process is intended to identify sections of the overall event streams for the processing
system to focus on in more detail. With this, its central goal is to reduce the amount of
event data that needs to be processed in further detail by the Phase 3 processing to analyze
relevant situations.
As specified in Section 2.2.2 by requirement SC2, the possible situation indication pro-

cessing must not prevent scalability with growing numbers of events that need to be mon-
itored. In order to cope with this requirement, the processing done in this phase has to

63

4. Processing Model

be fairly simple. As a trade-off for this simplicity, the processing is assumed to result in
low quality results by producing a high number of false possible situation indications as a
detailed verification is not possible within the given boundaries.

In general the event volume that has to be coped with in this step is the result of two
factors:

1. The amount of separate event streams generated by separate measurement sources
(e.g. the separate streams generated by each of the monitored solar panels) and

2. the amount of data per event stream as it might be generated by some high speed
monitoring system like power quality related frequency measurement equipment in a
Smart Grid scenario.

These two factors result in the following considerations for the design of the Phase 1 possible
situation indication stream processing: In order to handle big amounts of measurement
data within single data streams, the situation indication function should only invest a
limited amount of processing time per event. To cope with big numbers of parallel event
streams, the situation indication should only require the correlation between a limited
subset of the available streams in order to allow for a parallelization of the situation
indication processing.

Based on these general considerations, an initial approach for the Possible Situation Indi-
cation Stream Processing Topology would only be one processing step, realized by a Single
Event Stream Processing Function which implemented a scenario-specific mechanism to
detect Possible Situation Indication Events. For this approach, the function is instantiated
once for each event stream that is to be monitored for possible situations. In order to guar-
antee for horizontal scalability, the indication functions are only allowed to each look at one
single event stream with no correlation to other processing function instances. However,
such an initial approach needs to extended by the capability to incorporate pre-queried
background knowledge as parameters to the stream processing functions. Querying the
background knowledge before the stream processing starts protects the stream processing
from negative performance impacts due to the queries.
Even though such an approach guarantees for horizontal scalability due to the separate

indication detection, it is not capable to handle more complex scenarios which require
the correlation between fixed sets of event streams in order to detect indications. This
limitation leads to the actual processing mechanism which is defined in the remainder of
this sub-section.

4.3.2. Definition of the Situation Indication Stream Processing

The final approach for the Possible Situation Indication Processing can be described as an
acyclic graph of stream processing functions which represent the nodes with the intercon-
necting event streams as the edges.

64

4.3. Phase 1: Possible Situation Indication Processing

*consumes

Event
Stream

Possible Situation
Indication Stream

Processing Topology

SPT Indication

Φ

1..*

produces

1

1

Possible Situation
Indication

Event Stream

Φ
Indication

Internal Event
Stream

Φ
Indication , Interim

Measurement
Event Streams

Π(N Φ
)

1

*
uses

Internally

Τ

+InputStreams +ResultStream+InternalStreams

Possible Situation
Indication Stream

Processing Parameters

P Indication

*+Parameters

1

parameterizedBy
defines

Figure 4.3.2.: A Possible Situation Indication Stream Processing Topology SPT Indication
consumes several event streams from the set Π(NΦ) in which it is searching for possi-
ble situations and produces a single event stream σIndicationτ ∈ ΦIndication of Possible
Situation Indication Events. Internally it may create several event streams from the set
ΦIndication,Internal in order to create its processing graph.

Within the graph, the following three kinds of event streams can be defined (Figure
4.3.2):

Π(NΦ)

as the set of event streams which are the input of the Situation Indication Processing
Topology.

ΦIndication,Interim
τ

as the set of event streams that carry internal interim results from one stream pro-
cessing function to another within the scope of the Situation Indication Processing
Topology of a given Scenario Processing Template τ .

φIndicationτ ∈ ΦIndication

as the resulting event stream of the one Situation Indication Processing Topology of
a given Scenario Processing Template τ .

In order to allow the usage of background knowledge within the event stream processing
functions, the required knowledge needs to be retrieved before the actual stream processing
starts in order to prevent the negative impacts on the stream processing performance
caused by the knowledge base access. In order to provide the knowledge to the processing
functions, a set of parameters can be defined:

P Indicationτ := {pIndicationτ,l , ...}l=1...n

for n Stream Processing Functions in SPT Indicationτ

65

4. Processing Model

The parameters are retrieved from the background knowledge in a scenario-specific way
prior to the execution of the stream processing function. The resulting parameters are then
used by the stream processing functions, where each function takes one of the parameters.

Based on these definitions, a stream processing function itself can be declared as a
function that takes multiple event streams as its input from the two sets Π(NΦ) and
ΦInterim
τ , together with one of parameters from the parameter set P Indicationτ and produces

one new event stream as its result which is either an interim result stream from the set
ΦInterim
τ or the stream of situation indications φIndicationτ ∈ ΦIndication:

Definition 4.6 (Indication Stream Processing Function).

spIndicationτ : P(Π(NΦ) ∪ ΦIndication,Interim
τ)× P Indicationτ → ΦIndication,Interim

τ ∪ ΦIndication

Further the set of all Stream Processing Functions SP Indicationτ within the Indication
Processing Topology of one Scenario Processing Template can be defined as

SP Indicationτ := {spIndicationτ,l , ...}l=1...n

for n Stream Processing Functions in SPT Indicationτ

As a result, the Stream Processing Topology SPT Indicationτ for the situation indication
phase can be defined as a Tupel of the set of stream processing functions SP Indicationτ with
the set of parameters P Indicationτ and the three sets of event streams Π(NΦ) , ΦIndication,Interim

τ

and φIndicationτ :

Definition 4.7 (Indication Stream Processing Topology).

SPT Indicationτ := (P Indicationτ , SP Indicationτ ,Π(NΦ),ΦIndication,Interim
τ , φIndicationτ)

4.3.2.1. Stream Duplication and Merging

As the stream processing topology allows the assignment of a single stream as input to
more than one stream processing function as well as the publication of one event stream
by more than one function, definitions of the handling of these cases need to be made.
When an event stream is assigned as input to more than one stream processing function,

the stream is duplicated so that all functions get all events from the event stream. When
two or more stream processing functions in the topology publish to the same event stream,
the individual output streams are merged honoring the time ordering of the events.

4.3.3. Result of the Situation Indication Phase

The defined situation indication Stream Processing Topology SPT Indicationτ produces a
stream of situation indication events φIndicationτ . Each single event contained in the stream

66

4.3. Phase 1: Possible Situation Indication Processing

Event

*N

Possible Situation
Indication Event

E Indication

<<abstract>>

Φ
Indication

* 1

constistsOf

IndicatedTime

1..*

+ IndicationNodes

Figure 4.3.3.: Possible Situation Indication Event

represents the indication of a possible situation, where each event contains a set of nodes
∈ N for which the possible situation is indicated and a point in time for which the possible
situation was detected (Figure 4.3.3).

It is not required or assumed that a single situation is only reported once by the possible
situation indication processing. Instead, it is the task of the Phase 2 processing to group
together related indications and to drop duplicates. As such the generated event stream
φIndicationτ is the input for the processing in Phase 2 which is discussed in Section 4.5.

67

4. Processing Model

4.4. Phase 0: Possible Situation Indication Processing Initialization

State P0.1

Based on the definition of the processing Phase 1, the initial Phase 0 can now be defined.
During the Possible Situation Indication Processing Initialization phase, the information

from the Scenario Processing Template τ ∈ T is combined with the background knowledge
k ∈ K to create the actual Indication Processing Topology SPT Indicationτ suitable for the
monitored system. As such, this setup phase prepares the situation indication processing
that takes place in the following Phase 1 (Figure 4.3.1). The initialization of the processing
instances of the other phases (2 & 3) is however not part of the initial setup done by Phase
0 as the required information for their setup is based on the situation-specific results of
the preceding processing phases.

The topology SPT Indicationτ is created by a builder function BuildIndicationτ which takes
as input, a set of nodes with linked event stream that shall be monitored for possible
situations P(NΦ) together with the available background knowledge k ∈ K and defines the
Indication Stream Processing Topology for the current scenario template SPT Indicationτ ∈
SPT Indication. The function BuildIndicationτ itself is therefore specific for each scenario τ
and also defined by the Scenario Processing Template (Figure 4.3.2).

Definition 4.8 (Indication Stream Processing Builder).

BuildIndicationτ : P(NΦ)×K −→ SPT Indication

(n, k) 7−→ spt

where the result complies with

πStreamProcessingFunctions(spt) 6= ∅∧πInputStreams(spt) 6= ∅∧πResultStream(spt) ∈ ΦIndication

The builder creates a new Stream Processing Topology for a specific set of relevant
nodes P(NΦ) which is retrieved from the background knowledge k by a scenario-specific
Indication Nodes Query Function QIndicationτ which is defined by the Scenario Processing
Template:

Definition 4.9 (Indication Nodes Query Function).

QIndicationτ : K −→ P(NΦ)

k 7−→ n

where the result complies with
n 6= ∅

68

4.4. Phase 0: Possible Situation Indication Processing Initialization

Both functions QIndicationτ and BuildIndicationτ are executed only in Phase 0 before the
actual event stream processing starts. Therefore, these functions have no access to the
information contained in the event streams.

Based on the two declared functions, the Situation Processing Initialization can be de-
fined as shown in Algorithm 1. The result of the algorithm and the processing Phase 0
is the defined Situation Indication Stream Processing Topology SPT Indicationτ specifically
generated for the system that is to be monitored.

Data: k ∈ K
Result: indicationTopology ∈ SPT Indication

1 indicationNodes← QIndicationτ (k)

2 indicationTopology ← BuildIndicationτ (indicationNodes, k)
3 return indicationTopology

Algorithm 1: Situation Indication Processing Initialization

69

4. Processing Model

4.5. Phase 2: Focused Processing Initialization

The Phase 2 processing categorizes the raised situation indications from Phase 1. The
responsibility of this phase lies in two areas, (A) the triggering of a new Focused Situation
Processing Instance if the situation can not be assigned to an already existing Focused
Situation Processing Instance and (B) the classification and filtering of duplicate situation
indications for situations that are already processed in a current Focused Situation Pro-
cessing Instance. The categorization itself is largely based on scenario-specific rules which
are specified by the corresponding Scenario Processing Template τ . The Phase 2 process-
ing will thus classify each incoming indication in one or more of the following categories
based on the actions that are executed for handling the indication.
A complete example of the process defined in this section based on the Cloud Tracking

scenario is given at the end of this section in Subsection 4.5.9.

Definition 4.10 (Indication Classification Results).

New Possible Situation
The indication regards a potential new situation that is not yet investigated
and a new Focused Situation Processing Instance needs to be started.

Additional Indication
The indication is related to one ore more currently ongoing Focused Situation
Processing Instances and needs to be assigned to them to be incorporated into
their analysis process.

Duplicate Indication
The indication is a duplication of a previous indication and can be discarded
without the need to correlate it with ongoing or past Focused Situation Pro-
cessing Instances.

Ignored Indication
No analysis of the indication needs to be initialized even though it could be
matched to one or more ongoing Focused Situation Processing Instances as
scenario-specific rules decided that no assignment to the existing instances is
needed for the current scenario.

Figure 4.5.1 gives an overview of the processing flow within this processing phase and the
corresponding classification results which are discussed in the following subsections.

The following subsection discusses the pre-classification which is used to filter out dupli-
cate indications. The later subsections will then cover the classification of the remaining
events and the action execution based on the classification results.

70

4.5. Phase 2: Focused Processing Initialization

Ac
tio

n
Ex

ec
uti

on

In
di

ca
tio

n
Pr

e-
Cl

as
si

fic
ati

on

In
st

an
tia

tio
n

ne
w

 F

oc
us

ed
 S

itu
ati

on

Pr
oc

es
si

ng
&

Lo
ck

ed
 a

nd
 F

oc
us

Ar

ea
 R

eg
ist

ra
tio

n

e τ
,j

In
di

ca
ti
on
∈

φ
τIn

di
ca

ti
on

Dr
op

 In
di

ca
tio

n

 C
ol

lis
io

n
D

et
ec

tio
n

Co
lli

si
on

Cl

as
si

fic
ati

on

Co
lli

si
on

D

et
ec

tio
n

D
on

e

St
ar

t N
ew

Fo

cu
se

d
Pr

oc
es

si
ng

Re
ce

iv
e

In
di

ca
tio

n

Eq
ua

l i
nd

ic
ati

on

w
as

 a
lre

ad
y

re
ce

iv
ed

D
up

lic
at

e

N
ew

 P
os

si
bl

e
Si

tu
ati

on

Ad
di

tio
na

l I
nd

ic
ati

on

In
di

ca
tio

n
be

lo
ng

s
to

 o
ne

or

 m
or

e
Ru

nn
in

g
Fo

cu
se

d
Si

tu
ati

on
 P

ro
ce

ss
in

g
In

st
an

ce
s

N
o

eq
ua

l i
nd

ic
ati

on

w
as

 a
lre

ad
y

re
ce

iv
ed

P2
.1

P2
.3

P2
.8

P2
.6

P2
.4

As
si

gn
m

en
t t

o
Ac

tiv
e

Fo
cu

se
d

Si
tu

ati
on

Pr

oc
es

si
ng

 In
st

an
ce

P2
.7

P2
.5

Ig
no

re
d

In
di

ca
tio

n

N
o

Ac
tio

n
As

si
gn

ed

Ac
tio

ns
 A

ss
ig

ne
d

τ

τ

τ BG

BGτ
=

U
se

s
Kn

ow
le

dg
e

fr
om

 S
itu

ati
on

 P
ro

ce
ss

in
g

Te
m

pl
at

e
=

U
se

s
Kn

ow
le

dg
e

fr
om

 B
ac

kg
ro

un
d

Kn
ow

le
dg

e
Ba

se

Al
l a

ss
ig

ne
d

ac
tio

ns
 e

xe
cu

te
d

 L
oc

ke
d

an
d

Fo
cu

s
Ar

ea

 a
nd

 T
im

e
Fr

am
e

D
et

er
m

in
ati

on

BGτ
P2

.2

Lo
ck

ed
 A

re
a

an
d

Fo
cu

s
Ar

ea
 d

et
er

m
in

ed

F
ig
u
re

4.
5.
1.
:
O
ve
rv
ie
w

of
th
e
ha

nd
lin

g
of

a
re
ce
iv
ed

po
ss
ib
le

si
tu
at
io
n
in
di
ca
ti
on

ev
en
t
eI
n
d
ic
a
ti
o
n

τ
,j

∈
φ
I
n
d
ic
a
ti
o
n

τ
by

pr
oc
es
si
ng

P
ha

se
2

71

4. Processing Model

4.5.1. Indication Pre-Classification State P2.1

Every indication eIndicationτ,i ∈ φIndicationτ received regarding a possible situation related to
a set of nodes πIndicatedNodes(eIndicationτ,i), is checked for being a duplicate with regard to
previously received indications for the same set of nodes. If the indication is considered a
duplicate, it is dropped without further processing (State P2.8) otherwise the classification
of the indication continues with the Locked Area and Focus Area determination (State
P2.2) and based on it, the collision detection with other Focus Processing Instances based
on their Locked and Focus Areas in State P2.3.

The processing model considers an indication eIndicationτ,i as a duplicate if a previous
indication eIndicationτ,j for the same set of nodes was already raised recently where the time
frame for this check is specific to the given scenario and needs to be expressed as a scenario-
specific parameter pIndication,Dupτ . The duplication detection is then done by the following
pre-classification function PreClassIndication :

Definition 4.11 (Indication Pre-Classification Function).

PreClassIndication : φIndicationτ × ΦIndication
τ × N −→ {true, false}

(eIndicationτ,i , φIndicationτ , pIndication,Dupτ) 7−→ res

where res = true indicates a duplicate indication when

∃ eIndicationτ,j ∈ φIndicationτ ∧
πIndicationNodes(e

Indication
τ,j) = πIndicationNodes(e

Indication
τ,i)∧

πIndicatedT ime(e
Indication
τ,j) ≥ πIndicatedT ime(eIndicationτ,i)− pIndication,Dupτ ∧

πIndicatedT ime(e
Indication
τ,j) ≤ πIndicatedT ime(eIndicationτ,i)∧

eIndicationτ,j 6= eIndicationτ,i

and res = false otherwise.

It is important to note, that this check can be done without considering currently run-
ning or past Focused Situation Processing Instances and without querying any additional
background knowledge. It is thus used to reduce the number of events that require a more
detailed classification in the following steps P2.2 to P2.4.

For example for the cloud tracking scenario, a very simple situation indication pro-
cessing could check for solar panels that have very little to no energy production as
it would be the case if a cloud currently shades these panels. This condition is how-
ever not only met when the cloud first starts to shade the panel but also the whole
time while the panel is shaded. Therefore, the indication processing will continue to
raise new indication events for the given panel until the cloud is not shading it any-
more. The pre-classification of such recurring indications as duplicates can be used

E
xa

m
pl

e
5

72

4.5. Phase 2: Focused Processing Initialization

to suppress these additional indications.

4.5.2. Potential Locked Area and Focus Area and Time Frame Determination
State P2.2

The following collision detection is done based on the potential Locked Area of the indi-
cated possible situation. The potential Locked Area therefore has to mark the area of the
potential situation in order to allow the detection of other situations based on an overlap
with their Locked and Focus Area. In order to be usable for this process, the potential
Locked Area needs to adhere to the conditions specified by Definition 4.3.
In addition to the determination of the potential Locked Area, also the potential Focus

Area is determined during this phase. The potential Focus Area, as discussed in Section
4.1, is a set of nodes which share a common possible relevance for the indicated possible
situation. If the received indication results in the creation of a new Focused Situation
Processing Instance, the potential Focus Area is required in order to initialize the new
processing task. As for the potential Locked Area, the potential Focus Area also has to
adhere to the previously defined conditions in Definition 4.4.

In addition, to the potential Locked Area and potential Focus Area, the initial Time
Frame tfeIndicationτ,i

for the later registration needs to be determined to allow the collision
detection to take place. The initial Time Frame for the registration equals the Time Frame
that will be used for a first iteration of a new Focused Situation Processing Instance.

In order to determine the potential Locked Area and potential Focus Area as well as the
initial Time Frame based on the raised possible situation indication eIndicationτ,i , a scenario-
specific query function is needed that combines the indication event with available back-
ground knowledge k ∈ K to determine the two sets of nodes that represent the potential
Locked Area and the potential Focus Area together with the Time Frame:

Definition 4.12 (Potential Locked, Focus Area and initial Time Frame Query Function).

QPotentialLAFAτ : φIndicationτ ×K −→ P(N)× P(N)× TF

(eIndicationτ,i , k) 7−→ (LAeIndicationτ,i
, FAeIndicationτ,i

, tfeIndicationτ,i
)

where the result complies with LAeIndicationτ,i
6= /O∧FAeIndicationτ,i

6= /O and the scenario-

specific definition of QPotentialLAFAτ needs to adhere to the Locked Area (Def. 4.3) and
Focus Area (Def. 4.4) conditions. Further the duration of the time frame tfeIndicationτ,i

must
be greater than zero.

73

4. Processing Model

For example for a received possible situation indication in the Cloud Tracking scenario
eIndicationSmartGrid,i ∈ φIndicationSmartGrid with one indicated node n = πIndicatedNodes(e

Indication
SmartGrid,i),

and the indicated time t = πIndicatiedT ime(e
Indication
SmartGrid,i) the potential Locked Area, the

potential Focus Area and the initial Time Frame are determined as follows:
The potential Locked Area would consist of exactly the one indicated node n (solar

panel) as so far this represents the indicated possible situation. The potential Focus
Area contains the solar panel node n and in addition any solar panel node within a
certain geographical distance from n as the new Focused Situation Processing Instance
needs to investigate if they are also affected by the cloud (Figure 4.2.5). The initial
Time frame starts from the indicated time t and ends for example 5 minutes later at
t+ 5min.
As such, the query function can be defined as follows:
QInitialLaFaSmartGrid := A query function that produces the

• potential Locked Area equal to πIndicatedNodes(eIndicationSmartGrid,i).

• potential Focus Area equal to πIndicatedNodes(eIndicationSmartGrid,i) plus solar panel nodes
in geographical proximity to πIndicatedNodes(eIndicationSmartGrid,i).

• initial Time Frame as (πIndicatiedT ime(e
Indication
SmartGrid,i), πIndicatiedT ime(e

Indication
SmartGrid,i)+

5min).

were the area covered by the generated initial Focus Area needs to be large enough
to contain typical clouds including a small area around such a cloud in order to allow
the first iteration of the Focused Processing Instance to determine if a suitable area
is affected by finding the borders of the affected area and thus allowing to determine
the size of the affected area.

E
xa

m
pl

e
6

Based on the results of this processing step (the potential Locked Area LAeIndicationτ,i

and potential Focus Area FAeIndicationτ,i
as well as the initial Time Frame tfeIndicationτ,i

), the
collision detection can be executed in the following state.

4.5.3. Collision Detection State P2.3

In order to determine if a received possible situation indication eIndicationτ,i is related to one
or more current Focused Situation Processing Instances, a collision detection between the
potential Locked Area LAeIndicationτ,i

of the indicated possible situation and all registered
Locked Areas and Focus Areas in the matching time frame is done. The collision detection
results in 0 or n Collision Tuples ∈ CTτ . As defined in Figure 4.5.2, each Collision
Tuple contains the indication event eIndicationτ,i together with the colliding Area Registration
∈ ARτ .
In order to specify the grade of the collision, the tuple contains three more properties:

74

4.5. Phase 2: Focused Processing Initialization

Node

*

1

Situation Processing
Template

Τ

Locked Area

LA

Focus Area

FA

Area Registration

Time Frame

1 1

11

TF

Focused Situation
Processing Iteration

FPI

valid for

regards

1..* *1..*

0,1

consistsOf

0..*

1..*

N

consistsOf

0..*

1..*

AR

StartTime
EndTime

Collision Tuple
1 *

1
*

CT
collisionGradeLA
collisionGradeFA
timeFrameOverlap

regards

Possible Situation
Indication Event

E Indication

IndicatedTime

regards

0..*

1 regards

Action
* *

+actions+indication

Focused Situation
Processing Instance

FP
*1

1..*

*

Figure 4.5.2.: The collision detection results in a number of collisions. Each collision is
represented by a Collision Tuple which references the Indication Event as well as the con-
flicting Area Registration.

1. The grade of the collision of the potential Locked Area with the Locked Area of the
Area Registration (collisionGradeLa ∈ N+) and

2. in the same way the grade of the collision of the potential Locked Area with the
Focus Area of the Area Registration (collisionGradeFa ∈ N+).

3. the duration of the overlap between the initial time frame for the indication with the
time frame of the Area Registration (timeOverlapDuration ∈ N+).

The two collision grades are elements of N+ where the number represents the count of nodes
from the potential Locked Area LAeIndicationτ,i

which overlaps with the corresponding area
in the Area Registration. Thus, the grade can range from 0 (no overlap) to |LAeIndicationτ,i

|
which resembles a complete overlap with the corresponding area. In the same way, the time
overlap duration represents the duration for which the two time frames overlap. Further-
more, the Collision Tuple can contain zero or more actions that are to be taken to handle
the collision. The actions are however not yet set as they are determined later during the
Step P2.4.
The collision detection function ColDetect can thus be defined as a function that takes a

given indication eIndicationτ,i ∈ φIndicationτ together with the corresponding potential Locked
Area LAeIndicationτ,i

∈ P(N) and the corresponding initial Time Frame tfeIndicationτ,i
∈ TF

from Step P2.2 together with one of the Area Registrations from the scope of the current
processing template ARτ ∈ AR and produces a Collision Tuple ct ∈ CTτ . As the collision
detection mechanism is independent of the actual scenario, the function can be defined
independently of the current processing template.

75

4. Processing Model

Definition 4.13 (Collision Detection Function).

ColDetect : φIndicationτ × TF × P(N)×ARτ −→ CTτ

(eIndicationτ,i , tfeIndicationτ,i
, LAeIndicationτ,i

, ar) 7−→ ct

where

ct = (eIndicationτ,i , ar, |πLockedArea(ar) ∩ LAeIndicationτ,i
|, |πFocusArea(ar) ∩ LAeIndicationτ,i

|,

T imeFrameOverlap(πT imeFrame(ar), tfeIndicationτ,i
))

Based on this function, the set of all collision Tuples CTeIndicationτ,i
for a given indication

eIndicationτ,i can be defined as:

CTeIndicationτ,i
:= ColDetect(eIndicationτ,i , tfeIndicationτ,i

, LAeIndicationτ,i
, ARτ)

4.5.4. Collision Action Assignment State P2.4

Based on the results of the collision detection, a decision can be made, which actions
are to be taken to handle the possibly detected collisions for a received possible situation
indication. Based on the actions the overall classification in the initially defined categories
(Definition 4.10) is done.

An example on how the indication collision classification and later action execution works
is given in Subsection 4.5.9 for the Cloud Tracking Scenario.

In order to handle a possible situation indication together with possibly occurred colli-
sions, the following actions are possible:

Actions := {StartNew,AddToExisting,NoAction}

StartNew
Request the start of a new Focused Situation Processing Instance for the re-
ceived indication.

While this first action can only be executed once for a possible situation indication inde-
pendent of the number of collisions, the action AddToExisting can be executed multiple
times for the indication in order to assign the indication to multiple Focused Situation
Processing Instances that collided with the initial Locked Area.

AddToExisting
Assign the received indication to an already existing Focused Situation Pro-
cessing Instance that is considered related to this particular (possible) situation

76

4.5. Phase 2: Focused Processing Initialization

based on the detected collision. Thus, the action can be assigned for multi-
ple collision tuples in order to assign the indication event to multiple Focused
situation Processing Instances.

NoAction
Do not take any action for a particular collision. This can also be assigned to
multiple collision tuples in order to mark them as not relevant for the handling
of the current indication event.

Based on the kind of collisions that occurred for a given indication, these actions can be
used to handle the indication event.

The collisions that occur for an indication can be divided into four distinct categories.
With regard to these four categories, only for the first two, a scenario independent handling
of the indication is possible. The later two actions however contain some ambiguousness
regarding their collision with existing Focused Situation Processing Instances and thus
require a scenario-specific handling. All four cases are discussed in detail in the following
sections:

Ê No Overlap with any Area of any Focused Situation Processing Instance

Condition: ∀ct ∈ CTeIndicationτ,i
: πT imeFrameOverlap(ct) = 0∨

(πCollisionGradeLA(ct) = 0∧
πCollisionGradeFA(ct) = 0)

Action: StartNew (Fixed)
Classification: New Possible Situation

In this simplest case, a received possible situation indication has no overlap
between its potential Locked Area and the Locked Area or Focus Area of any
Area Registration in the scope of the current Scenario Template in the same
or overlapping time frame. In this case the received indication is considered as
a new possible situation and should thus lead to the creation of a new Focused
Situation Processing Instance to investigate the possible situation. Therefore,
this case results in the fixed action StartNew.
If the defined condition holds, the indication is classified as New Possible

Situation.

77

4. Processing Model

Ë Complete Overlap with the Locked Area of a Focused Situation Processing Instance

Condition:
∃ct ∈ CTeIndicationτ,i

: πT imeFrameOverlap(ct) 6= 0∧
πCollisionGradeLA(ct) = |LAeIndicationτ,i

|
Action: AddtoExisting (Fixed)
Classification: Additional Indication

For this case also an indication can be mapped to an existing Focused Situ-
ation Processing Instance due the complete overlap of the potential Locked
Area of the indication with the Locked Area of an existing Focused Situation
Processing Instance as this area exclusively links the hereby marked nodes to
the corresponding situation investigated by the Focused Situation Processing
Instance. Thus, no new Focus Processing Instance is started but the indication
is forwarded to the existing Focused Situation Processing Instance. Therefore,
the fixed Action for this case is AddToExisting.
If the defined condition holds, the indication is classified as an Additional

Indication.

Ì Partial Overlap with the Locked Area of a Focused Situation Processing Instance

Condition: ∃ct ∈ CTeIndicationτ,i
: πT imeFrameOverlap(ct) 6= 0∧

(0 < πCollisionGradeLA(ct) < |LAeIndicationτ,i
|)

¬∃ct ∈ CTeIndicationτ,i
: πT imeFrameOverlap(ct) 6= 0∧
πCollisionGradeLA(ct) = |LAeIndicationτ,i

|
Action(s): AddToExisting,NoAction (Scenario Specific)
Classification: Additional Indication or Ignored Indication

As the partial collision with at least one Locked Area prevents the creation of
a new Focused Situation Processing Instance, only two possible actions remain
(AddToExisting and NoAction) to handle the indication3. The decision, if
the indication event shall be assigned to a colliding Focused Situation Pro-
cessing Instance or if no action is to be taken is based on a scenario-specific
function which has to assign one of the two actions to each collision tuple
(Definition 4.14). If the defined condition holds, the indication is classified
as either an Additional Indication if it was assigned to at least one Focused
Situation Processing Instance or as Ignored Indication if it was not assigned
to any Focused Situation Processing Instance.

3Starting a new Focused Situation Processing Instance is not possible anymore as the Area Registration
that needs to be created for the new instance would not comply with the Locked Area uniqueness
constraint (4.1).

78

4.5. Phase 2: Focused Processing Initialization

Definition 4.14 (Partial Locked Area Collision Action Assignment Function).

ActionAssignmentPartialLaOverlapτ : P(CTτ) −→ P(CTτ)

Í Complete or Partial overlap with the Focus Area of a Focused Situation Processing Instance

Condition: ∃ct ∈ CTeIndicationτ,i
: πT imeFrameOverlap(ct) 6= 0∧

πCollisionGradeFA(ct) > 0

¬∃ct ∈ CTeIndicationτ,i
: πT imeFrameOverlap(ct) 6= 0∧
πCollisionGradeLA(ct) > 0

Action(s): StartNew,AddToExisting,NoAction (Scenario Specific)
Classification: New Possible Situation and/or Additional Indication or

Ignored Indication

As only collisions with one or more Focus Areas of Focused Situation Processing In-
stances where detected, the indication may be handled by all three kinds of actions
(StartNew, AddToExisting and NoAction). As for the previous case Ì, the de-
cision how the indication shall be handled is based on a scenario-specific function
(Definition 4.15). The function assigns to each collision tuple either AddToExisting
or NoAction. Further it may request that the action StartNew is executed. If the
defined condition holds, the indication can be classified as a New Possible Situation
if a new Focused Situation Processing Instance was started based on the indication.
In addition, it can be classified as Additional Indication if it was assigned to one
or more already existing Focused Situation Processing Instances. If neither of these
cases occurred, the indication is classified as Ignored Indication.

Definition 4.15 (Focus Area Collision Action Assignment Function).

ActionAssignmentFaOverlapτ : P(CTτ) −→ P(CTτ)× {StartNew, false}

Based on these four cases, actions have been selected for handling the received indications
which are executed in the two following states (P2.6 and P2.7).

4.5.5. New Focused Situation Processing Instance State P2.6

If a received indication was classified as an indication for a new possible situation, a new
Focused Situation Processing Instance fpeIndicationτ,i

is initiated in this state. As a prepa-
ration for the start-up of this new Instance, a new Area Registration needs to be created
for the potential Locked Area and potential Focus Area in order to mark the situation as
being investigated. The Area Registration is created by calling the RegisterAreaτ func-
tion (Definition 4.5) with the potential Locked Area, potential Focus Area and initial Time

79

4. Processing Model

Frame which where determined during P2.2. Once the Area Registration was created,
the new Focused Situation Processing Instance fpeIndicationτ,i

is started. Due to the Area
Registration, all later indications for the same possible situation can be assigned to the
newly instantiated fpeIndicationτ,i

.

The actual start-up of the Focused Situation Processing Instance fpeIndicationτ,i
is part of

the processing Phase 3 and is thus discussed in Section 4.6.

4.5.6. Assignment to Active Focused Situation Processing Instances State P2.7

During this state the indication is assigned to all Focused Situation Processing Instances
contained in the collision set where the AddToExisting action was assigned by the collision
classification during State P2.4. To hand over the indication event to the Focused Situation
Processing Instance, the indication is assigned to the currently active Focused Situation
Processing Iteration fpifpx,it of this processing instance by adding the indication to the set
of additional indications EAdditionalndicationsfpx,it

. It is then the responsibility of this iteration to
incorporate the indication in a suitable manner in its ongoing processing. This handling of
additional indications is thus discussed in the processing Phase 3 descriptions in Subsection
4.6.3.

4.5.7. Drop Possible Situation Indication State P2.8

Based on a given indication eIndicationτ,i that was classified as DuplicateIndication, the
Phase 2 processing will drop this indication without any further consideration.

4.5.8. Resulting Focused Processing Initialization Algorithm

Based on the definitions in the previous sections, the complete Focused Situation Processing
Algorithm can be defined as shown in Algorithm 2.

4.5.9. Phase 2 Indication Classification Example

For example for the Cloud Tracking Scenario, the Phase 2 classification could be
configured by defining the two scenario-specific collision-handling functions as follows:

• ActionAssignmentPartialLaOverlapτ as a function that assigns noAction to all
collision tuples.

• ActionAssignmentFaOverlapτ as a function that assigns noAction to all collision
tuples if at least one collision has a complete overlap with the Focus Area of
an already instantiated Focused Situation Processing and request the start of a
new Focused Situation processing instance if there are only one or more partial
overlaps with Focus Areas of already instantiated Focused Situation Processing

E
xa

m
pl

e
7

80

4.5. Phase 2: Focused Processing Initialization

Data: eIndicationτ,i , φIndicationτ , pIndication,Dupτ , ARτ ,k
Result: Possibly a new Focused Situation Processing Instance fp

1 if PreClassIndication(eIndicationτ,i , φIndicationτ , pIndication,Dupτ) = true then
2 // P2.8: Drop Possible Situation Indication, no further handling of eIndicationτ,i needed
3 else
4 // P2.2
5 (LAeIndicationτ,i

, FAeIndicationτ,i
, tfeIndicationτ,i

)← QPotentialLAFAτ (eIndicationτ,i , k)

6 // P2.3
7 CTeIndicationτ,i

← ColDetect(eIndicationτ,i , tfeIndicationτ,i
, LAeIndicationτ,i

, ARτ)

8 // P2.4: Determine and assign the actions that shall be taken
9 CollisionCase1← true , CollisionCase2← false , CollisionCase3← false

10 forall ct ∈ CTeIndicationτ,i
do

11 if πTimeFrameOverlap(ct) 6= 0 ∧ (πCollisionGradeLA(ct) 6= 0 ∨ πCollisionGradeFA(ct) 6= 0) then
12 CollisionCase1← false
13 end
14 if πTimeFrameOverlap(ct) 6= 0 ∧ πCollisionGradeLA(ct) = |πLockedArea(eIndicationτ,i)| then
15 CollisionCase2← true
16 // add fixed action
17 CTActions

eIndicationτ,i

← CTActions
eIndicationτ,i

∪ {(ct, addToExisting)}

18 end
19 if πTimeFrameOverlap(ct) 6= 0 ∧ πCollisionGradeLA(ct) < |πLockedArea(eIndicationτ,i)| then
20 CollisionCase3← true
21 end
22 end

23 startNewFocusedProcessing ← false
24 if CollisionCase1 = true then
25 startNewFocusedProcessing ← true
26 else
27 if CollisionCase2 = true then
28 // actions where already assigned
29 else
30 if CollisionCase3 = true then
31 // Assign Scenario specific actions
32 CTActions

eIndicationτ,i

← ActionAssignmentPartialLaOverlapτ (CTeIndicationτ,i
)

33 else
34 // Assign Scenario specific actions
35 (CTActions

eIndicationτ,i

, startNewFocusedProcessing)←

ActionAssignmentFaOverlapτ (CTeIndicationτ,i
)

36 end
37 end
38 end

39 // P2.5: Execute the assigned actions
40 forall ct ∈ CTActions

eIndicationτ,i

do

41 if AddToExisting = πaction(ct) then
42 // P2.7
43 ar ← πAreaRegistration(t)
44 fpi← πFpIteration(ar)

45 EAdditionalIndicationsfpi ← EAdditionalIndicationsfpi ∪ {eIndicationτ,i }
46 end
47 end
48 if startNewFocusedProcessing = true then
49 // P2.6
50 fpeIndicationτ,i

← createNewFocusedProcessing(eIndicationτ,i)

51 (collions,ARτ)←
RegisterAreaτ (fpifp

eIndication
τ,i

,1, LAeIndicationτ,i
, FAeIndicationτ,i

, tfeIndicationτ,i
, ARτ)

52 return fpeIndicationτ,i

53 end
54 end

Algorithm 2: Focused Situation Processing Initialization
81

4. Processing Model

P1 P2

Two separate Indication Events are raised

P1 P2

First the Event eP2 from P2 is processed by Phase 2

Locked Area of FP #1

Focus Area of FP #1

Potential Locked Area of eP2

Potential Focus Area of eP2

Locked Area of FP #1

Focus Area of FP #1

As the potential Locked Area for ep2 does
not collide with the Focus Area or Locked Area of

any other Focused Situation Processing, a new
Focused Situation Processing Instance FP#2 is created

P1 P2

Locked Area of FP#2

Focus Area of FP#2

Locked Area of FP #1

Focus Area of FP #1

As the potential Locked Area for ep2 does
not collide with the FA of any other Focused

Situation Processing, a new Focused Situation
Processing Instance FP#2 is created

P1 P2

Locked Area of FP#2

Locked Area of FP #1

Focus Area of FP #1

As the potential Locked Area for ep1 lies in the
Focus Area of FP#2, no new Focus Processing

Instance is created.

Focus Area of FP#2

Now Event eP1 from P1
is processed by Phase 2

Potential Locked Area of eP1

Potential Focus Area of eP1

A new cloud enters the monitored area from the north.
Initially it shades the two solar panels P1 and P2 thus

creating two separate possible situation indication events.

1 2

3 4New Focused Situation Processing Instance is started

Figure 4.5.3.: Example Collision Classification for two raised indications eP1 and eP2.

82

4.5. Phase 2: Focused Processing Initialization

Tasks.

Where the potential Locked and Focus Area is determined as defined in the Example
4.5.2.

Figure 4.5.3 Part 1 shows a small field of solar panels, where on the right hand side
a cloud is shading four panels. This cloud is already tracked by the Focused Situation
Processing Instance FP#1. Now a new cloud entered the field of solar panels from
the north where it first shades the solar panel P2 and a little later the solar panel P1.
The shading of the two panels results in two new Possible Situation Indication events
eP2 and eP1 which need to be handled by the Phase 2 Processing.
As the event eP2 appeared earlier than eP1, it is handled first by the Phase 2

Processing. The First step is the pre-classification which it passes as it is the first
indication raised for this particular node P2. In the next step, the potential Locked
and Focus Areas are determined for the indication as shown in 4.5.3 Part 2. As
the potential Locked Area of eP2 does not overlap with any other registered area,
no collision is detected by the collision detection function (State P2.3). Therefore,
a new Focused Situation Processing Instance FP#2 needs to be created. The Area
Registration for FP#2 then contains the potential Locked and Focus Area of eP2

thereby marking these areas for the new Focused Situation Processing Instance FP#2

as shown in Figure 4.5.3 Part 3. Therefore, the event eP2 is classified as a New
Potential Situation.
Now the second indication event eP1 is processed by Phase 2. First the pre-

classification is again passed as it is the first event for the solar panel P1. In the
next step, the potential Locked Area and potential Focus Area for eP1 are determined
as shown in 4.5.3 Part 4. for this event, the potential Locked Area has a complete
overlap with the Focus Area of FP#2. Based on the initially defined rules, the start
of a new Focused Situation Processing instance is prevented (Action PreventNew) and
all further action execution for this event is stopped (Action StopActionExecution).
Thus, the event eP1 is classified as an Ignored Indication and is dropped without
triggering any further processing.

83

4. Processing Model

4.5.10. Synchronization Considerations

In order to ensure the correct function of the collision detection mechanism and with it
the correct assignment of indications to already instantiated focused situation processing
instances, the processing model defines two synchronization mechanisms in the scope of
the Phase 2 processing which are discussed in the following two subsections.

4.5.10.1. Synchronized Collision Detection and Action Execution for parallel Indications

The Possible Situation Indication Processing (Phase 1) may raise possible situation in-
dication events in parallel. The Phase 2 processing of those events should thus also be
parallelized wherever possible. However, the Processing Steps P2.3 to P2.7 need to be
synchronized between multiple parallel indication classification processes in order to pre-
vent concurrent operations to invalidate the collision detection results (Step P2.3) before
a decision on the collision-handling has been made (P2.4) and executed (P2.5 - P2.7).

4.5.10.2. Synchronization of Collision detection with Focused Processing Instances

Aside from handling parallel indications correctly, also a basic synchronization with the
instantiated Focused Situation Processing Instances is needed in order to prevent the Possi-
ble Situation Indication Processing from outrunning the possibly slower Focused Situation
Processing Instances as illustrated by the following example:

For example for the cloud tracking scenario consider the following process for a single
cloud that shades the solar panel n and does not change its position in the considered
time frame:

1. The Possible Situation Indication Processing raises a Possible Situation Indi-
cation Event for the node n for the indication time 0. The Focused Situa-
tion Processing Initialization (Phase 2) determines an initial Time Frame as
t1 := (0, 10) and a potential Locked Area including the node n. As no Focused
Situation Processing Instance was started yet, no collisions are detected, and the
Locked Area is registered for the Time Frame t1 and a new Focused Situation
Processing Instance fp1 is created.

2. While the Focused Situation Processing Instance is active, additional indications
arrive for the node n with an indication time within t1. These indications can be
assigned to the already running instance fp1 due to the overlap of their initial
Time Frame and potential Locked Area with the Area Registration of fp1.

3. Some time later, the Focused Situation Processing Instance fp1 is finished with
its processing of time frame t1 and is now in the process of determining the time
frame and Locked Area for the next iteration but has not yet acquired this next

E
xa

m
pl

e
8

84

4.5. Phase 2: Focused Processing Initialization

locked are yet.

4. Meanwhile, another Possible Situation Indication Event arrives for Node n with
the indication time 11. The initial Time Frame is determined as t2 := (11, 21)

with a potential Locked Area including n. As no collision is detected as there is
no time overlap between t1 and t2, the Locked Area can be acquired and another
new Focused Situation Processing Instance fp2 is started.

5. The original Focused Situation Processing Instance fp1 has by now determined
that it will process the time frame t3 := (10, 20) next with a Locked Area that
includes n. When it tries to acquire this Locked Area, the acquisition fails as
the second Focused Situation Processing Instance fp2 already occupies it. This
results in the need of a merge between the two Focused Situation Processing
Instances fp1 and fp2.

If however the Possible Situation Processing had been prevented from outrunning
the Focused Situation Processing Instance fp1, the processing would have proceeded
normally without starting redundant Focused Situation Processing Instances.

In order to prevent such cases, the processing model requires the Focused Situation
Processing Initialization to delay the collision detection (P2.3) for Possible Situation In-
dications if the determined initial time frame would outrun the current Focused Situation
Processing Instances. Thus, to ensure this mechanism, the collision detection (P2.3) for
any given indication event eIndicationτ,i needs to be delayed till the following condition holds:

¬∃fpx ∈ FPτ with

tfLastfpx := The time frame of the Area Registration

of the most recent Iteration of fpx

and

tfeIndicationτ,i
:= The initial time frame determined for eIndicationτ,i

where

πendT ime(tfeIndicationτ,i
) > πendT ime(tfLastfpx)

∧ ¬TimeFrameOverlap(tfeIndicationτ,i
, tfLastfpx)

85

4. Processing Model

4.6. Phase 3: Focused Situation Processing

The Phase 3 Focused Situation Processing resembles a specialized processing implemented
by multiple Focused Situation Processing Instances, where each instance is focused on
the investigation of one particular (possible) situation. The aim of a Focused Situa-
tion Processing Instance fpeIndicationτ,i

∈ FP which was created for an indication event

eIndicationτ,i ∈ EIndicationτ is to allow an in-depth analysis of the indicated possible situation
for which the indication event eIndicationτ,i was raised. Here the Focused Situation Processing
Task has the following goals:

G1: verify that the indicated possible situation eIndicationτ,i is an actual situation,

G2: analyze the situation in further detail and if necessary,

G3: follow a situation as it changes over time.

For example for the cloud tracking scenario, the focused situation processing first
has to verify that the triggering indication concerns an actual cloud and not only a
malfunctioning solar panel installation. In this scenario, the verification is realized by
identifying more than one solar panel in the same geographical area as affected. Then
once the verification is done, the analysis of the situation determines the size of the
cloud by identifying the border between the affected panels and non affected panels.
Over time the focused situation processing then has to follow the movement of the
cloud as the panels affected by the cloud change requiring a new analysis to detect
the new cloud border.

E
xa

m
pl

e
9

To simplify the definitions in this section, let

x := eIndicationτ,i .

The final result rfpx ∈ RFP (Section 4.6.2.7) of every Focused Situation Processing is
either

1. a false situation, if the indication turns out to be invalid or

2. a specific situation analysis result.

Further a Focused Situation Processing can publish interim results (Section 4.6.2.7) based
on the current state of its analysis. For example for the cloud tracking scenario, the focused
situation processing can publish the current position and size of the followed cloud every
time a change in the clouds position or size is detected.

86

4.6. Phase 3: Focused Situation Processing

Stream
Processing Publish Results if needed

Adapt if needed

 Termination Needed?

Focused Situation Processing Iteration

Focused
Situation

Processing
Start

yes

Focused
Situation

Processing
End

no

Figure 4.6.1.: Simplified view of the focused situation processing flow.

In contrast to the situation indication processing in Phase 1, the Focused Situation
Processing is designed to support more complex processing tasks in order to implement
the three aforementioned goals (G1-G3). To allow for such processing tasks, the Focused
Situation Processing is allowed to use more resources per processed event than the Phase 1
processing as only a limited subset of the overall event load needs to be handled by a single
Focused Situation Processing Instance due to its use of a limited Focus Area (Section 4.2.3).
Further, the Focused Situation Processing can access the available background knowledge
during the ongoing focused situation processing, something that is prohibited for the Phase
1 processing.
Moreover, the Focused Situation Processing is designed to support the automatic adap-

tation of its current processing setup to handle changes in the investigated situation or
to adapt the processing based on new insights into the investigated situation provided by
interim processing results. This adaptive capability is a central functionality of the Phase
3 processing and the overall processing model. The following Subsection 4.6.1 discusses
this adaptive functionality in detail and is followed by the design of the internal structure
of the Phase 3 processing in Section 4.6.2 ff.
The function itself follows a defined process which is shown in Figure 4.6.1 in its high

level form (See Section 4.6.2 for the complete version). The process incorporates scenario-
specific elements from the Scenario Processing Template τ which in turn define the actual
analysis of the possible situation in order to verify the indication and to further investigate
the situation as required for the given scenario. As such the processing function will be
defined based on the process given in Figure 4.6.2 in the following sections concluded by
Section 4.6.5 providing a complete definition of the focused situation processing function.

4.6.1. Adaptive Processing

The capability of the processing model to adapt itself to the current (possible) situation
is one of the central functionalities of the whole processing model and is thus discussed in
this section separately from the following discussions of the different Phase 3 processing
steps.

Two general types of adaptation can be distinguished within the scope of the whole
focused processing model which are both part of the focused situation processing:

87

4. Processing Model

1. An adaptation in terms of the overall processing system to set up the focused situation
processing based on a raised indication before the actual situation-specific processing
started in order to provide the environment to verify the situation’s existence and to
start with the situation-specific processing.

2. Adaptation of the already running focused situation processing in order to follow
changes in the focused situation or based on new information on the situation. In
contrast to 1, this adaptation has to take place during an ongoing situation-specific
processing.

The initial adaptation (1) of the overall processing system is realized by instantiating a
new separate processing task that is not interlinked with the existing stream processing
used for the Phase 1 processing. The second kind of adaptation (2) needed for the focused
situation processing however bears a higher complexity as the situation-specific analysis is
already running.
In order to implement discrete adaptation steps, the Focused Situation Processing is

executed as a number of iterations, where an adaptation is only possible after the iteration
processing was done. The applied adaptation is then valid for the next iteration. The exact
process used for the iterations and their adaptations is discussed in the following sections.

4.6.2. Focused Situation Iteration Processing

Based on the chosen iteration-based adaptation mechanism, the high level processing flow
presented in Figure 4.6.1 can be refined with the following steps which are defined in detail
in Subsections 4.6.2.1 to 4.6.3 (Figure 4.6.2):

1. Iteration pre-processing to set up the environment for the current iteration.

2. Generation of the iteration stream processing task based on the current situation-
specific processing state.

3. Execution of the iteration stream processing.

4. Post-Iteration processing to gather results from the stream processing step and pre-
pare for the following steps.

5. Interim result publication if any notable results where generated during this iteration.

6. Locked area and Focus Area derivation and registration update if the results of this
iterations processing require a new adapted setup for the next iteration.

Further some special cases need to be considered like the termination of a Focused Situation
Processing Instance or the collision of two instances based on their Locked Areas.

88

4.6. Phase 3: Focused Situation Processing

Iteration Stream
Processing

Focused Situation
Processing Initialization

Iteration
Pre-Processing

Iteration Stream
Processing Set Up

P3.1

P3.2

P3.3

P3.4

Iteration
Post-Processing

P3.5

Interim
Result Publication

P3.6

Derive New Time Frame,
Locked Area and Focus Area

P3.7

Focused Situation
Processing Termination

P3.9 Request Area Registration
for Locked and Focus Area

P3.8

Focus Situation
Processing Merge Needed

P3.10

Area Registration
successful

End Focused Situation Iteration Processing due to
Locked Area Collision

Focused Situation Processing
handed over for merge

Locked Area and Focus
Area released

End Focus Situation
Iteration Processing
due to stop condition

Begin Iteration Processing

Area Registration assigned from P2.X
→ Start New Focused Situation Processing

Figure 4.6.2.: Overview of the Phase 3 processing states

89

4. Processing Model

Focused Situation
Processing IterationFocused Situation

Processing Instance
FP

Custom
Property

P

1 *

Possible Situation
Indication Event

E Indication

IndicatedTime

*

1..*

*

+properties

+assignedIndications

NodeNode

1

Locked Area

LA

Focus Area

FA

Area Registration

Time Frame

1

11

TF

valid for

regards

1..* *1..*

0,1

consistsOf

0..*

1..*

N

consistsOf

0..*

1..*

AR

StartTime
EndTime

1

Focused Situation
Processing

Iteration Context
CX

*

FPI

1

Figure 4.6.3.: Each Focused Situation Processing Instance FP has multiple Focused Sit-
uation Processing Iterations FPI where each iteration relates to zero or one Area Registra-
tion ∈ AR, a set of assigned indication events EAssignedIndicationsfpix,it

⊆ EIndication and has
zero or more Context tuples ∈ CX. Each Context can contain a number of scenario-specific
properties ∈ P .

90

4.6. Phase 3: Focused Situation Processing

4.6.2.1. Focused Situation Processing Iteration and its Environment

For each Focused Situation Processing Iteration, the processing model defines several
iteration specific elements (Figure 4.6.3):

Focused Situation Processing Iteration Context
In order to allow for the different steps of the iteration processing to keep the pro-
cessing state, a Focused Situation Processing Context CXfpx,it is defined for each
iteration it of a Focused Situation Processing Instance fpx. The context is specific
to one iteration of one Focused Situation Processing Instance fpx and is defined as a
set of properties {pl, ...}l∈N that can be specified by the scenario-specific processing
logic defined in the Scenario Processing Template τ . Each iteration has zero or up
to three contexts assigned. Zero, if the iteration has not yet been initialized, and up
to three contexts representing the results of each context-manipulating function of
each iteration (see Subsection 4.6.2.2)

Area Registration
In addition to the context, for each iteration it also zero or one Area Registration
arfpx,it ∈ AR exist which contains the Locked Area, Focus Area and Time Frame
of the corresponding iteration where the iteration is only allowed to have no Area
Registration assigned if it has not yet been initialized.

Assigned Indications
Further, for each iteration it always one set of Indication Events EAssignedIndicationsfpx,it

⊆
EIndication exists which contains all events assigned to the current iteration for pro-
cessing.

The described iteration specific environment is available during the whole iteration pro-
cessing. In contrast to the situation indication processing in Phase 1, this includes the
iteration stream processing which is also allowed to manipulate the current Focused Situ-
ation Processing Iteration Context.

4.6.2.2. Focused Situation Processing Iteration Context Use and Initialization

In order to initialize the Focused Situation Processing Iteration Context, the processing
model defines two separate initialization steps which are both implemented by a scenario-
specific function (Figure 4.6.4 and 4.6.2):

Focused Situation Processing Initialization (P3.1) for the general initialization of the Fo-
cused Situation Processing Iteration Context after instantiating a new Focused Sit-

91

4. Processing Model

uation Processing Instance. This step results in the initial processing context4

CXfpx,0,3.

Iteration Pre-Processing (P3.2) for the initialization of the context specific to the current
iteration. The Pre-initialization uses the final version (Version 3) of the context of the
previous iteration CXfpx,it−1,3 and based on it generates the initial context version
(Version 1) for the current iteration: CXfpx,it,1.

Once the processing context has been initialized for the current iteration (Figure 4.6.4 Step
A), it is used to generate the new Stream Processing Topology for the current iteration
(Step B). Based on the newly generated topology, the iteration stream processing takes
place (Step C). During this phase, the context is also available in order to allow the ongoing
stream processing to store processing results for later use. Due to the changes applied by
the stream processing, the initial context version CXfpx,it,1 is transformed into CXfpx,it,2.
Once the stream processing is finished, a post processing is done based on the context
CXfpx,it,2 in order to sum up the results generated during the stream processing (Step
D). The result of this transformation is the context CXfpx,it,3. Based on CXfpx,it,3 the
possible publication of interim results takes place as well as the generation of a new Locked
and Focus Area as preparation for the next iteration (Step E). In addition, the context
is used to determine if the Focused Situation Processing Instance is finished or should
continue with the next iteration. If the processing shall continue, the process starts once
again which is illustrated in the remainder of Figure 4.6.4 after Step E.

4.6.2.3. Focused Situation Processing Initialization State P3.1

In order to prepare for a new Focused Situation Processing Instance, a scenario-specific
Focused Situation Processing Initialization allows the preparation of an initial Focused
Situation Processing Iteration Context which serves as the basis for the context of the first
iteration. The initialization function has access to the background knowledge k ∈ K, the
Area Registration of the upcoming first iteration arfpx,1 as well as the set of indication
events assigned to the new Focused Situation Processing Instance EAssignedIndicationsfpx,1

. The
result of the scenario-specific initialization is the processing context CXfpx,0,3 that is used
in the next step as basis for the context of the first iteration (See following Section).

Definition 4.16 (Focused Situation Processing Initialization Function).

InitFPτ : K ×AR× P(EIndication) −→ CX

k, arfpx,1, E
AssignedIndications
fpx,1

7−→ CXfpx,0,3

4The context CXfpx,0,3 is numbered for iteration 0 context version 3 as the third version of a previous
iteration is always used as basis for the definition of the context of the current iteration (See Subsection
4.6.2.4).

92

4.6. Phase 3: Focused Situation Processing

In
it

τF
P

P
re

τF
P

P
os
t τF

p
SP

T
τ
,1F
pI
te
r

P
re

τF
P

B
ui
ld
er

τF
pI
te
r <
<
de

fin
es

>
>

Q
τL
aF

aT
f

C
X

fp
i x

,0
,3

C
X

fp
i x

,1
,1

C
X

fp
i x

,1
,2

A
R

fp
i x

,1

A
R

fp
i x

,2

In
te
ri
m
R
es
ul
tE
ve
nt
G
en

τF
p

C
τF
pT
er
m

C
X

fp
i x

,1
,3

A
re
aA

qu
is
it
io
n

P
os
t τF

p
SP

T
τ
,2F
pI
te
r

B
ui
ld
er

τF
pI
te
r

C
X

fp
i x

,2
,1

C
X

fp
i x

,2
,2

<
<
d
ef

in
es

>
>

C
X

fp
i x

,2
,3

Ite
ra

tio
n

1

Ite
ra

tio
n

2

St
ep

 A
St

ep
 B

St
ep

 C
St

ep
 D

St
ep

 E

F
ig
u
re

4.
6.
4.
:
U
sa
ge

of
th
e
Fo

cu
se
d
Si
tu
at
io
n
P
ro
ce
ss
in
g
C
on

te
xt

as
pa

rt
of

th
e
it
er
at
iv
e
pr
oc
es
si
ng

w
it
h
tw

o
it
er
at
io
ns

an
d
an

ad
ap

ta
ti
on

be
tw

ee
n
th
e
fir
st

an
d
th
e
se
co
nd

it
er
at
io
n.

(N
ot
e:

T
he

fig
ur
e
on

ly
in
cl
ud

es
co
nt
ex
t
m
od

ify
in
g
st
ep
s
an

d
is

th
us

no
t
a
co
m
pl
et
e
re
pr
es
en
ta
ti
on

of
th
e
Fo

cu
se
d
Si
tu
at
io
n
P
ro
ce
ss
in
g.

Se
e
A
lg
or
it
hm

3
fo
r
a
co
m
pl
et
e
vi
ew

.)

93

4. Processing Model

4.6.2.4. Iteration Pre-Processing State P3.2

Based on the context that resulted from the execution of the previous iteration5, a scenario-
specific iteration pre-processing function PreFPτ allows the initialization of the processing
context for the new iteration. Thus, it generates the context for the current iteration
CXfpx,it,1. For this it accesses the final context of the previous iteration CXfpx,it−1,3.
Furthermore, it can access the available background knowledge k ∈ K, the current Area
Registration arfpx,it as well as the set of Indications that have been assigned to the current
iteration EAssignedIndicationsfpx,it

.

Definition 4.17 (Pre-Iteration Processing Function).

PreFPτ : CX ×K ×AR× P(EIndication) −→ CX

CXfpx,it−1,3, k, arfpx,it, E
AssignedIndications
fpx,it

7−→ CXfpx,it,1

4.6.2.5. Iteration Stream Processing and Iteration Stream Processing Topology Build
State P3.3 & P3.4

The stream processing that is done for each Focused Situation Processing Iteration is based
on a similar mechanism as the stream processing done for the Possible Situation Indication
in Phase 1. The iteration stream processing is also defined as an acyclic directed graph
of stream processing functions (nodes) with the interconnected event streams (edges) (see
Subsection 4.3.2). In a similar way as for the Possible Situation indication Processing, the
whole processing graph together with its required parameters is considered as the Stream
Processing Topology SPTFpIteration.

Iteration Stream Processing Topology

In contrast to the stream processing done during the Possible Situation Indication Pro-
cessing, the processing done in each focused Situation Processing Iteration is altered in the
following way:

1. Support access to the Focused Situation Processing Iteration Context CXfpx,it,1 in
order to access previous results as well as to store current results for later use. The
changes applied to CXfpx,it,1 during an ongoing processing thus result in a new
version of the context CXfpx,it,2 which contains all changes done during the iterations
stream processing.

2. The iteration stream processing does not lead to the generation of a possible situation
indication stream but instead stores all its processing result into the stream processing
context CXfpx,it,2 .

5or for the very first iteration the context that resulted from the Focused Situation Processing Initialization
Function: CXfpx,0,3 .

94

4.6. Phase 3: Focused Situation Processing

*consumes

Event
Stream

Focused Situation
Iteration Stream

Processing Topology

SPT FpIteration

Φ

1..* 0,1

1

Focused Situation
Iteration

Processing Context
CX

Iteration Internal
Event Stream

Φ
FpIteration , Interim

Measurement
Event Streams

Π(N Φ
)

1

*
uses

internally

ΤDefinesBuilderFor

+InputStreams
+outputContext

+InternalStreams

FP Iteration Stream
Processing
Parameters
PFpIteration

+inputContext
1

0,1

parameterizedBy

*+Parameters

1

Figure 4.6.5.: A Focused Situation Iteration Stream Processing Topology SPTFpiteration
consumes several event streams from the set Π(NΦ). Further it uses the current Focused
Situation Processing Context ∈ CX as additional input to access results from previous it-
erations. As a result it produces a new version of the Focused Situation Processing Context
∈ CX which contains the results of the stream processing so that it can be used by later
process steps as well as following iterations. Internally it may create several event streams
from the set ΦIndication,Internal in order to create its processing graph.

As a result, only the following two kinds of event streams are defined (Figure 4.6.5):

Π(NΦ)

as the set of event streams which are the input of the Iteration Stream Processing
Topology.

ΦFpIteration,Interim
τ

as the set of event streams that carry internal interim results from one stream process-
ing function to another within the scope of one Iteration Stream Processing Topology
of one Focused Situation Processing Instance.

In the same way as for the Indication Stream Processing in Phase 1, background knowledge
can be provided to the stream processing functions contained in the topology by a set of
parameters which is retrieved in a scenario-specific way from the available background
knowledge:

PFpIterationfpx,it
:= {pFpIterationfpx,it,k

,}k=1...n for n stream processing functions

In addition to the event streams and the pre-fetched background knowledge, the topology
has also access to the Focused Situation Processing Iteration Context CXfpx,it,1 of the
current iteration it that resulted from the Pre-Processing (State P3.2). Based on the input
context, the stream processing generates a new version of the context CXfpx,it,2 which

95

4. Processing Model

contains the results of the stream processing so that it can be used by the later steps in
the process including the following iterations.
Based on these definitions, the stream processing functions contained in the Iteration

Stream Processing Topology can be defined as stream processing functions that take as
their input one or more event streams from the sets Π(NΦ) and ΦFpIteration,Interim

τ together
with the current processing context CXfpx,it,2 and one of the parameters from PFpIterationfpx,it

.
As their processing result, each function may produce one or no event stream from the set
ΦFpIteration,Interim
τ together with the changed processing context CXfpx,it,2. Thus, the

stream processing functions spFpIteration for the Iteration Stream Processing Topology can
be defined as follows:

spFpIteration : P(Π(N) ∪ ΦFpiteration,Interim)× PFpIteration × CX

−→ (ΦFpiteration,Interim ∪Ø)× CX

Further the set SPFpIterationfpx,it
which contains all stream processing functions of one iter-

ation it of one focused situation processing instance fpx can be defined as:

SPFpIterationfpx
:= {spFpIterationfpx

, ...}k=1...n for n stream processing functions

As a result, the Iteration Stream Processing Topology SPTFpIterationfpx,it
for an iteration

it can now be defined as the tuple of the set of parameters PFpIterationfpx,it
, the set of stream

processing functions SPFpIterationfpx
, the inbound event streams related to the current Focus

Area Π(FAfpx,it), together with the interim event streams ΦFpIteration,Interim
fpx,it

and lastly
the current iteration processing context CXfpx,it,1 and the resulting changed processing
context CXfpx,it,2:

SPTFpIterationτ := (PFpIterationfpx,it
, SPFpIterationfpx

,Π(FAfpx,it),Φ
FpIteration,Interim
fpx,it

, CXfpx,it,1, CXfpx,it,2)

Based on the definitions from the indication stream processing, the focused processing
iteration stream processing function build can be defined as follows:

Iteration Stream Processing Function Generation State P3.3

During the adaptation phase of the iterative processing, a new Stream Processing Topol-
ogy needs to be derived. The definition of the topology during run-time is realized by
a scenario-specific builder function BuildFpIterationτ . The builder function is similar to
the function used for the initialization of the situation indication ind Phase 0. However,
BuildFpIterationτ has to generate the processing based on the current Focus Area, Locked
Area and Time Frame, contained in the current Area Registration ARfpx,it in combina-

96

4.6. Phase 3: Focused Situation Processing

tion with interim results from the previous iterations contained in the processing context
CXfpx,it,1 in combination with the available background knowledge k ∈ K. Therefore,
BuildFpIterationτ can be declared as follows:

Definition 4.18 (Iteration Stream Processing Builder).

BuildFpIterationτ : CX ×AR×K −→ SPTFpIteration

(CXfpx,it,1, ARfpx,it, k) 7−→ SPTFpIterationfpx,it

Iteration Stream Processing Execution State P3.4

Once the Stream Processing Topology SPTFpIterationfpx,it
for the current iteration was de-

fined by the previous step, the stream processing is executed. The iteration stream pro-
cessing uses the iteration context CXfpx,it,1 and modifies it based on its stream processing
results into the modified context CXfpx,it,2 which is used by the following steps to gather
the results of the stream processing.

4.6.2.6. Post Iteration Processing State P3.5

Once the iteration stream processing is finished, the post iteration state is entered which
allows a post processing of the generated results from the iteration stream processing in
the previous phase. In particular this phase allows the structuring of the results in order
to be usable for

1. the publication as interim or final result

2. the derivation of the next Locked Area and Focus Area and

3. the evaluation of the termination criteria of this Focused Situation Processing In-
stance

The scenario-specific post iteration processing function can be declared in the same way as
the pre-iteration processing function (Definition 4.6.2.4). It takes the processing context
that resulted from the iteration stream processing CXfpx,it,2 together with the background
knowledge k ∈ K, the current Area Registration arfpx,it ∈ AR and the assigned Indication
Events EAssignedIndicationsfpx,it

∈ EIndication and produces a new version of the processing
context CXfpx,it,3.

Definition 4.19 (Post-Iteration Processing Function).

PostFPτ : CX ×K ×AR× P(EIndication) −→ CX

CXfpx,it,2, k, arfpx,it, E
AssignedIndications
fpx,it

7−→ CXfpx,it,3

97

4. Processing Model

4.6.2.7. Interim Focused Situation Processing Result Publication State P3.6

Aside from the final processing result of a finished Focused Situation Processing Instance,
interim states within the ongoing process may be of interest for external systems. For
example for the cloud tracking scenario, the current position, size, trajectory and speed of
the tracked cloud is relevant for external systems to update their prognosis on the impact
of the cloud on the energy production. As such, a running Focused Situation Processing
Instance requires the capability to publish interim results during the ongoing processing.

In order to generate such interim result events, a scenario-specific function InterimResultEventGenFpτ
is defined, which for an iteration it of a Focused Situation Processing Instance fpx, gener-
ates zero or more interim result events as the set EInterimResultsfpx,it

∈EInterimResults based on
the final processing context of the current iteration CXfpx,it,3 which contains the results
of the previous post processing step:

Definition 4.20 (Interim Result Event Generation Function).

InterimResultEventGenFpτ : CX −→ EInterimResults

CXfpx,it,3 7−→ EInterimResultsfpx,it

Where if the resulting EInterimResultsfpx,it
6= Ø the contained events are published to external

systems to inform them about the state of the ongoing processing.

4.6.2.8. Next Iteration Locked Area, Focus Area and Time Frame Determination State P3.7

Similar to the determination of the first Locked Area LAfpx,1 and Focus Area FAfpx,1, a
Locked Area LAfpx,it and Focus Area FAfpx,it for each following iteration it is required.
Furthermore, the Time Frame for next iteration needs to be determined. Both, the Locked
Area and the Focus Area as well as the Time Frame for the next iteration are determined
in a scenario-specific way from the current iteration processing context together with the
last iteration time frame tffpx,it and additional knowledge from k ∈ K.

With regard to the synchronization considerations discussed in Subsection 4.6.6, the
Time Frame for the next iteration must not end before the end of the current iterations
Time Frame πendT ime(tffpx,it+1) >= πendT ime(tffpx,it).

The corresponding query function can thus be declared as a function that takes the
current processing context CXfpx,it,3 together with a subset of the available background
knowledge k ∈ K to generate a tuple of two sets of nodes and one Time Frame where the
first set of nodes resembles the new Locked Area LAfpx,it+1 and the second the new Focus
Area FAfpx,it+1 while the Time Frame is the Time Frame for the next iteration tffpx,it+1.

98

4.6. Phase 3: Focused Situation Processing

Definition 4.21 (Iteration Locked Area, Focus Area and Time Frame Query Function).

QLaFaTfτ : CX × TF ×K −→ P(N)× P(N)× TF

(CXfpx,it,3, tffpx,it, k) 7−→ (LAfpx,it+1, FAfpx,it+1, tffpx,it+1)

with

LAfpx,it+1 6= Ø∧FAfpx,it+1 6= Ø∧

πendT ime(tffpx,it+1)− πstartT ime(tffpx,it+1) > 0∧

πendT ime(tffpx,it+1) >= πendT ime(tffpx,it)

The definition of the function itself is specific to the current scenario as it needs to select
suitable candidates for the scenario that is implemented by the current focused processing
task following the conditions specified in Definition 4.3 and Definition 4.4 .

4.6.2.9. Iteration Focus Area and Locked Area Acquisition State P3.8

Once a new Locked Area LAfpx,it+1 and Focus Area FAfpx,it+1 was derived for the next
iteration it+ 1, it needs to be registered for the time frame of the new iteration tffpx,it+1

in order to link the both areas to the next Focused Situation Processing Iteration:

(col, ARτ) := RegisterAreaτ (fpifpx,it+1, LAfpx,it+1, FAfpx,it+1, tffpx,it+1, ARτ)

In the process of this acquisition, possible collisions with the registered areas of other
Focused Situation Processing Instances are detected. If no collision is detected (col = Ø),
the processing for the next iteration is started again with State P3.2. If however one or
more collisions where detected (col 6= Ø), the focused situation processing transitions to
State P3.10 to handle the collisions.

If no collision was detected, and the registration was therefore successful and the next
Iteration concerns the same Time Frame as the current iteration did, the newly created
Area Registration supersedes the old Area Registration for this Time Frame. Therefore,
the old Area Registration is deleted:

ARτ := ReleaseAreaRegistration(fpifpx,it, LAfpx,it, FAfpx,it, tffpx,it, ARτ)

The following example demonstrates such a process:

99

4. Processing Model

This example continues Example 4.5.9 (Figure 4.5.3) where a cloud enters a monitored
area from the north thus causing a new Focused Situation Processing Instance to be
created.
For its first iteration, the new Focused Situation Processing Instance has only P2

as its Locked Area for the Time Frame tf1 (Figure 4.6.6 Part 5). The processing of
the first iteration determines that its Locked Area for the Time Frame tf1 also needs
to include the solar panel P1. Thus, it determines a new Locked and Focus Area
for the next iteration where the Locked Area contains the nodes P1 & P2 and sets
the 2nd iteration to the same time frame as the first iteration. As the new Locked
and Focus Areas concern the same time frame, the area registration from iteration
1 is released and a new Area registration for iteration 2 is made, both for the same
time frame but with different Locked and Focus Areas. The processing of the second
iteration determines that its Locked Area is now correct for the time frame tf2 and
no further update is needed (Figure 4.6.6 Part 6).
Some time later, the cloud changes its position further to the south thus also cover-

ing the solar panels P3 & P4 (Figure 4.6.6 Part 7). The iteration responsible for the
corresponding time frame, for this example iteration 3 with tf3, again detects that
its current Locked Area is not suitable for the Time Frame tf3 and determines a new
Locked Area that contains P1 to P4 and will replace the Area Registration of the
current iteration as the new iteration will repeat the processing of the Time Frame
tf3. After this 4th iteration, the Locked Area for tf3 is again correct and no update
of the Locked Area for this time frame is needed (Figure 4.6.6 Part 8).

E
xa

m
pl

e
10

4.6.2.10. Focused Processing Merge Required State P3.10

The current Focused Situation Processing Instance is stopped and shut down without re-
leasing the current Area Registration as the investigation of the situation is still considered
ongoing until a merging decision was made.
Based on the collision a separate handling process is executed which decides how to

merge the two colliding ongoing Focused Situation Processing Instances. The task itself is
described in Section 4.6.4.

4.6.2.11. Termination of Focused Processing and Final Result Publication State P3.9

A running Focused Situation Processing Instance fpx can be terminated after the process-
ing of the current iteration it has finished. The termination is controlled by a scenario-
specific termination condition CFPTermτ that is evaluated against the focused situation
processing context of the current iteration CXfpx,it,3.

100

4.6. Phase 3: Focused Situation Processing

P1 P2

Next Locked Area of FP#2

Locked Area of FP #1

Focus Area of FP #1

The first iteration of FP#2 has determined that the used
Locked Area for Time Frame t1 did not contain all nodes

that belong to the situation in this time frame. It thus
determines an extended Locked Area for the next iteration
which will then repeat the processing of the time window

for the new Locked Area

Next Focus Area of FP#2End of first iteration
of FP#25

P1 P2

Locked Area of FP#2 Iteration 2

Locked Area of FP #1

Focus Area of FP #1

The Locked Area for iteration 2 has been acquired by replacing the
Locked Area from iteration 1. The iteration processing determines

 that the Locked Area is correct and will not request any changes to
the Locked Area.

Focus Area of FP#2 Iteration 2Start and End of second
iteration of FP#26

P1

P3

P2

P4

Next Locked Area of FP#2

Locked Area of FP #1

Focus Area of FP #1

During Iteration 3 the cloud changed its position causing
the assumed Locked Area for this time frame to be incorrect.

The Focused Processing Instance will thus determine a new suitable
Locked Area for the next iteration and update the Area Registration

Next Focus Area of FP#2End of third
iteration of FP#27

P1

P3

P2

P4

Locked Area of FP#2 Iteration 4

Locked Area of FP #1

Focus Area of FP #1

Iteration 4 repeats the Time Frame of iteration 3 with the
new Locked Area and determines that the Locked Area is once

more correct and no further updates are needed for the current
time frame

Focus Area of FP#2 Iteration 3Start and end of fourth
iteration of FP#28

T
im

e
F

ra
m

e
s

of
 b

ot
h

ite
ra

tio
ns

 a
re

 t
he

 s
am

e:

tf
1

=
 t

f 2

T
im

e
F

ra
m

e
s

of
 b

ot
h

ite
ra

tio
ns

 a
re

 t
he

 s
am

e:

tf
3

=
 t

f 4

Processing of the Initial Time Frame is finished after iteration 2,
next iteration 3 continues with a later Time Frame

Figure 4.6.6.: Locked Area updates to incorporate changes of the tracked situation. (Con-
tinuation of Example 4.5.9, Figure 4.5.3)

101

4. Processing Model

Definition 4.22 (Focused Situation Processing Termination Condition).

CFpTermτ : CX −→ {true, false}

CXfpx,it,3 7−→ term

When the termination condition is positively evaluated, no further iteration is started
and the Focused Situation Processing Instance is shut down.

Final Focused Situation Processing Result

Once a Focused Situation Processing Instance finishes, the overall result of its analysis
has to be published. If the investigated potential situation turned out to be a false positive,
the result of the processing is FalseSituation. If however, the situation was verified as a
valid situation, a scenario-specific set of properties can be returned to provide the analysis
results to external systems. Therefore, the processing result can be defined as

RFP := {FalseSituation, {pi,}i=1...n}

with n scenario-specific properties representing the result of a successful focused situation
processing.

In addition to the processing results, the decision needs to be made, whether the Area
Registration from the last iteration is to be kept in order to mark the situation or if the
Area Registration shall be released as the assumption under which the registration was
made turned out to be incorrect. As the decisions that need to be made are specific to the
current scenario, a scenario-specific function can be defined which produces the processing
result ∈ RFP as well as the decision to keep the Area Registration ∈ {true, false} based
on the last Focused Processing Context CXfpx,it,3 and the last Area Registration arfpx,it:

Definition 4.23 (Focused Situation Processing Result Query Function).

QFpResultτ : CX ×AR −→ RFP × {true, false}

(CXfpx,it,3, arfpx,it) 7−→ (RFPfpx , keepAR)

The function may also request to keep the Area Registration from the last iteration if
the processing result states the investigated possible situation as a FalseSituation (RFPfpx =

FalseSituation). In this case keeping the Area Registration allows to prevent the creation
of new Focused Situation Processing Instances for the FalseSituation.

102

4.6. Phase 3: Focused Situation Processing

4.6.3. Handling of Additional Situation Indications During an Ongoing Processing

The possible situation indication classification that takes place in processing Phase 2 may
classify a raised indication as an Additional Indication. In this case, the indication is
related to an ongoing Focused Situation Processing Instance. As such, the classification as
Additional Indication is tied to a running Focused Situation Processing Instance fpx.
In order to hand over the indication to the Focused Situation Processing Instance fpx,

the indication is injected into the set of additional indication events EAdditionalIndicationsfpx

of the processing instance. The processing instance then incorporates them into the set
of assigned indications during its preparation of the next iteration. Afterwards the actual
usage of the indication is the responsibility of the scenario-specific parts of the processing
logic.

4.6.4. Focused Processing Instance Collision-Handling

When a running Focused Situation Processing Instance fpa requests a new Area Registra-
tion whose Locked Area would collide with the Locked Area of another Focused Situation
Processing Instance fpb, the processing model assumes that both tasks concern the same
situation. Thus, a merge of the two processing tasks is required.
Several possibilities to handle the occurrence of such collisions exist. The processing

model defines a simple mechanism which always terminates the Focused Situation Pro-
cessing Instance fpa that collided with the valid Area Registration of another Focused
Situation Processing Instance fpb. This process is defined in Subsection 4.6.4.1.

Aside from the mechanisms chosen here, other approaches could be considered like for
example:

Replace both with one new Processing Task
Create a new Focused Situation Processing Instance that replaces the two colliding
ones. As a completely new task is started, the processing states of the colliding tasks
will be lost or needs to be incorporated into the new instance in a scenario specific
way. In order to create the new task, a suitable initial Locked and Focus Area needs
to be found which would in its simplest form be the union of the Locked Areas of
the colliding tasks and in the same way for the Focus Areas.

Merge Focused Situation Processing Tasks
Merge the two processing tasks into one while keeping the processing states intact.
Such a mechanism requires in-depth knowledge on the scenario that is being imple-
mented by the tasks in order to decide how to merge the scenario and situation-
specific processing states.

Aside from these extended approaches, the next subsection discusses the approach defined
by the processing model.

103

4. Processing Model

4.6.4.1. Focused Situation Processing Collision-Handling Process

The processing model handles the collision of two Focused Situation Processing Instances
fpa and fpb by dropping the processing instance fpa whose Area Registration Request
failed due to a collision with the already acquired Area Registration of the other processing
instance fpb.
As defined by the processing flow shown in Figure 4.6.2, the Focused Situation Processing

Instance of the processing task fpa that caused the collision is immediately halted. The
other task fpb participating in the collision, will also be stopped once its current iteration
is finished and it tries to update its Locked Area and Focus Area registrations.
Once both Focused Situation Processing Instances have been halted for the execution of

the merge, the following process is executed:

1. Release all Area Registrations of the losing Focused Situation Processing Instance fpa
that overlap with its last Area Registration Requests time frame. This removes all
Area Registrations which would have been replaced if the Area Registration Request
of fpa would have been successful. As these registrations where thus considered
obsolete by fpa they can safely be removed so that the winning fpb can claim them.

2. A scenario-specific merge function may then read processing state from the processing
context CXfpa,itLastfpa ,3

of the last iteration itLastfpa of the losing Focused Process-
ing Instance fpa and manipulate the processing context CXfpb,itLastfpb ,3

of the most
recent iteration itLastfpb of the surviving Focused Situation Processing Instance fpb
to incorporate interim processing results from the terminated processing instance.

3. The Area Registration Request for fpbis executed as usual. If this leads to a successful
registration, the processing instance continues with its next iteration. If the request
also results in a collision, another collision-handling process is started.

The used scenario-specific Merging function can thus be defined as a function that takes
two processing contexts as its input and generates a new processing context as result:

Definition 4.24 (Focused Situation Processing Collision-Handling Function).

ColHandlerτ : CX × CX → CX

(CXfpa,itLastfpa ,3
, CXfpb,itLastfpb ,3

) 7−→ CXMerge
fpb,itLastfpb ,3

Where fpa is the Focused Situation Processing Instance that is to be terminated with
itLastfpa being its last iteration and fpb the Focused Situation Processing Instance that
survives the merge with itLastfpb being the last iteration executed before it entered the
merge process.

104

4.7. Conclusion

Collision Timing

Even though the focused situation processing tasks are synchronized based on the ac-
quisition of Area Registrations, the processing model makes no guarantees which Focused
Situation Processing Instance first claims its Area Registration. As a result, no guarantees
can be made which one of two colliding Focused Situation Processing Tasks will be the one
terminated by a merge.

4.6.5. Resulting Definition of the Focused Situation Processing Algorithm

Based on the discussions on the focused situation processing algorithm of the processing
model can be defined as shown in Algorithm 3.

4.6.6. Synchronization Considerations

The Phase 3 Focused Situation Processing is intended to be executed for multiple Situations
in parallel. The different FSP Instances are considered independent from each other as
they concern separate situations. The only synchronization between the different FSP
Instances is provided by the Area Registration mechanism.
In order to allow for the correct handling of colliding situations, multiple FSP Instances

should not outrun each other but instead wait for slower FSP Instance to finish before they
claim their Area Registrations for following time frames.

4.7. Conclusion

The chapter defined the focused processing model with its three processing phases (Figure
4.7.1). In order to be applicable for the processing of a certain scenario, it defines various
functions that are specific to the scenario. The following chapter will therefore define a
language for the specification of these functions as Scenario Processing Templates that can
be used to specify processing tasks adhering to the model defined in this chapter.

105

4. Processing Model

Data: eIndicationτ , FAeIndicationτ
, LAeIndicationτ

, tweIndicationτ
, k

1 LAfpx,1 ← LAeIndicationτ

2 FAfpx,1 ← FAeIndicationτ

3 tffpx,1 ← tfeIndicationτ

4 arfpx,1 ← (fpix,1, LAfpx,1, FAfpx,1, tffpx,1)

5 EAssignedIndicationsfpx,0
← {eIndicationτ }

6 CXfpx,0,3 ← InitFPτ (k, arfpx,1, E
AssignedIndications
fpx,1

)

7 c← true , it← 1 // it as iteration counter

8 while c == true do
9 EAssignedIndicationsfpx,it

← EAssignedIndicationsfpx,it−1 ∪ EAdditionalIndicationsfpx

10 EAdditionalIndicationsfpx
← Ø

11 CXfpx,it,1 ← PreFPτ (CXfpx,it−1,3, k, arfpx,it, E
AssignedIndications
fpx,it

)

12 SPTFpIterationfpx,it
← BuildFpIterationτ (CXfpx,it,1, arfpx,it, k) // Stream Processing Topology Build

13 CXfpx,it,2 ← SPTFpIterationfpx,it
(Π(FAfpx,it), CXfpx,it,1) // Stream Processing Execution

14 CXfpx,it,3 ← PostFPτ (CXfpx,it,2, k, arfpx,it, E
AssignedIndications
fpx,it

) // Post Processing

15 EInterimResultfpx,it
← InterimResultEventGenτ (CXfpx,it,3)

16 if EInterimResultfpx,it
6= Ø then

Output: EInterimResultfpx,it

17 end

18 if CFpTermτ (CXfpx,it,3) = true then // Termination
19 c← false

20 (RFpfpx , keepAR)← QFpResultτ (CXfpx,it,3, arfpx,it)

21 if keepAR = false then // Do not keep Area Registration
22 ARτ ← ReleaseAreaRegistration(fpifpx,it, LAfpx,it, FAfpx,it, tffpx,it, ARτ)
23 end

Output: RFpfpx as final result
// Publish Final Result

24 else
25 (LAfpx,it+1, FAfpx,it+1, tffpx,it+1)← QLaFaTfτ (CXfpx,it,3, tffpx,it, k) // Prepare for Next

Iteration
// Locked and Focus Area Acquisition

26 (collisions,ARτ)← RegisterAreaτ (fpifpx,it+1, LAfpx,it+1, FAfpx,it+1, tffpx,it+1, ARτ)
27 if collisions = Ø then

; // Locked and Focus Area Acquisition Successfull
28 if tffpx,it = tffpx,it+1 then

; // New AR superseeds old AR
29 ARτ ← ReleaseAreaRegistration(fpifpx,it, LAfpx,it, FAfpx,it, tffpx,it, ARτ)

30 end
31 else
32 c← false , Output: CXfpx,it,3 for merging via Collision Handling Function
33 end
34 end
35 it← it+ 1

36 end
Algorithm 3: Focused Situation Processing Algorithm

106

4.7. Conclusion

Knowledge Base

Node

Property

Edge

+properties0..*

1

N

NodeWithLinkedEventStream

NΦ
ProvidesEventStream

+source

+destination

1

1

0..*

0..*

1

0..1

Knowledge
Base
K 11

1

0..*

1..*

0..*

value

0..*

1

Scenario Processing
Template

Τ

Locked Area

LA

Focus Area

FA

Area Registration

Time Frame

1 1

11

TF

Focused Situation
Processing Instance

FP

valid for

regards

1..* *1..*

1..*

consistsOf

0..*

1..*

consistsOf

0..*

1..*

AR

startTime
endTime

regards

+FpInstance

+LockedArea
+FocusArea +timeFrame

+Nodes

+Nodes

Focused Situation
Processing Iteration

FPI

partOf

*1

Stream
Processing
Topology

<<abstract>>

*consumes

Event
Stream

Possible Situation
Indication Stream

Processing Topology

SPT Indication

Φ

1..*

produces

1

1

Possible Situation
Indication

Event Stream

Φ
Indication

Internal Event
Stream

Φ
Indication , Interim

Measurement
Event Stream

Π(N Φ
)

1

*
uses

Internally

+InputStreams +ResultStream+InternalStreams

Possible Situation
Indication Stream

Processing Parameters

P Indication

*+parameters

1parameterizedBy
definesBuilderFor

*

Event
<<abstract>>

*

1 constistsOf

1..*+ IndicationNodes

Collision Tuple
1 *

1
*

CT
collisionGradeLA
collisionGradeFA
timeFrameOverlap

regards

Action
* *

+actions+indication

Custom
Property

P

Possible Situation
Indication Event

E Indication

IndicatedTime

*

1..*

*

+properties

+assignedIndications

1

Focused Situation
Processing

Iteration Context
CX

*

*consumes Focused Situation
Iteration Stream

Processing Topology

SPT FpIteration

1..*

0,1

1

Iteration Internal
Event Stream

Φ
FpIteration , Interim

1

*

usesInternally

definesBuilderFor

+InputStreams

+outputContext

+Internal
 Streams

FP Iteration Stream
Processing
Parameters
PFpIteration

+inputContext
1

0,1
parameterizedBy

*+parameters

1

regards

0..*

1

specificFor

1

Figure 4.7.1.: Overview of the whole Processing Model

107

4. Processing Model

Knowledge Base

Node

Property

Edge

+properties0..*

1

N

NodeWithLinkedEventStream

NΦ
ProvidesEventStream

+source

+destination

1

1

0..*

0..*

1

0..1

Knowledge
Base
K 11

1

0..*

1..*

0..*

value

0..*

1

Scenario Processing
Template

Τ

Locked Area

LA

Focus Area

FA

Area Registration

Time Frame

1 1

11

TF

Focused Situation
Processing Instance

FP

valid for

regards

1..* *1..*

1..*

consistsOf

0..*

1..*

consistsOf

0..*

1..*

AR

startTime
endTime

regards

+FpInstance

+LockedArea
+FocusArea +timeFrame

+Nodes

+Nodes

Focused Situation
Processing Iteration

FPI

partOf

*1

Stream
Processing
Topology

<<abstract>>

*consumes

Event
Stream

Possible Situation
Indication Stream

Processing Topology

SPT Indication

Φ

1..*

produces

1

1

Possible Situation
Indication

Event Stream

Φ
Indication

Internal Event
Stream

Φ
Indication , Interim

Measurement
Event Stream

Π(N Φ
)

1

*
uses

Internally

+InputStreams +ResultStream+InternalStreams

Possible Situation
Indication Stream

Processing Parameters

P Indication

*+parameters

1parameterizedBy
definesBuilderFor

*

Event
<<abstract>>

*

1 constistsOf

1..*+ IndicationNodes

Collision Tuple
1 *

1
*

CT
collisionGradeLA
collisionGradeFA
timeFrameOverlap

regards

Action
* *

+actions+indication

Custom
Property

P

Possible Situation
Indication Event

E Indication

IndicatedTime

*

1..*

*

+properties

+assignedIndications

1

Focused Situation
Processing

Iteration Context
CX

*

*consumes Focused Situation
Iteration Stream

Processing Topology

SPT FpIteration

1..*

0,1

1

Iteration Internal
Event Stream

Φ
FpIteration , Interim

1

*

usesInternally

definesBuilderFor

+InputStreams

+outputContext

+Internal
 Streams

FP Iteration Stream
Processing
Parameters
PFpIteration

+inputContext
1

0,1
parameterizedBy

*+parameters

1

regards

0..*

1

specificFor

1

108

5. Language Definition

Contents

5.1. Overview . 109

5.2. General Elements of the Template Language . 112

5.3. Scenario Processing Template Preamble . 114

5.4. Possible Situation Indication Processing Specification 114

5.5. Focused Situation Processing Initialization . 116

5.6. Focused Situation Processing . 123

5.7. Stream Processing Builder Function Definition 128

5.8. Summary . 138

In order to instruct a processing system that implements the Focused Situation Pro-
cessing Model defined in the previous chapter, the definition of several scenario-specific
functions and parameters is required to configure a processing system for a concrete sce-
nario. In order to allow for these definitions, the Scenario Processing Template Language
(SPTL) was designed which allows the specification of these properties as a „Scenario Pro-
cessing Template“. The language and its interpretation is presented in this chapter while
the prototype discussed in the next chapter provides an implementation of the language
and the processing model.

5.1. Overview

5.1.1. Scenario Processing Template Structure

A scenario processing template contains all scenario-specific information to parameterize
a processing system for a scenario (e.g. How to detect a cloud and how to determine its
trajectory). The template is divided into a preamble and three blocks which resemble the
three major phases defined in the processing model (Section 4.1):

1name "SmartGridCloudTracking"
2

3PossibleSituationIndication {

109

5. Language Definition

Scenario Processing Template

Phase 0/1 Definitions

Indication Nodes Query Function

Indication Stream Processing Builder

Phase 2 Definitions

Indication Pre-Classification Function

Potential Locked, Focus Area and initial Time
Frame Query Function

Partial Locked Area Collision Action
Assignment Function

Focus Area Collision Action Assignment
Function

Phase 3 Definitions

Focused Situation Processing Initialization Function

Pre-Iteration Processing Function

Iteration Stream Processing Builder

Post-Iteration Processing Function

Interim Result Event Generation Function

Iteration Locked Area, Focus Area and Time Frame
Query Function

Focused Situation Processing Termination
Condition

Focused Situation Processing Result Query
Function

Template Preamble

Def. 4.9

Def. 4.8

Def. 4.11

Def. 4.12

Def. 4.14

Def. 4.15

Def. 4.16

Def. 4.17

Def. 4.18

Def. 4.19

Def. 4.20

Def. 4.21

Def. 4.22

Def. 4.23

Focused Situation Processing Collision Handling
Function Def. 4.24

Related Definition from Processing Model

Figure 5.1.1.: Structure of a Scenario Processing Template with references to the corre-
sponding definitions from the Processing Model.

4...
5}
6FocusedSituationProcessingInitialization {
7...
8}
9FocusedSituationProcessing {
10...
11}

Each block contains the specifications required for the setup and execution of the corre-
sponding phase (Figure 5.1.1).

In EBNF the processing template is defined as follows, where the used symbols are
defined and discussed in the remainder of this chapter:

〈ScenarioProcessingTemplate〉 ::= 〈TemplatePreamble〉
〈PossibleSituationIndication〉
〈FocusedProcessingInitialization〉
〈FocusedSituationProcessing〉

The complete EBNF definition of the SPTL is summarized in Appendix A.

110

5.1. Overview

Template Interpretation Running Processing System

Scenario Processing
Template

Background
Knowledge

Measurement
Event Streams

Required Adaptation
based on information on (possible) Situation

Stream Processing Rules
& Additional Configuration

Figure 5.1.2.: High level view of the Scenario Processing Template interpretation.

5.1.1.1. Embedded Languages

Aside from general configuration parameters, the template also needs to specify several
knowledge retrieval functions, context manipulation functions as well as the stream pro-
cessing builder functions. As already several languages for knowledge retrieval as well as
general purpose scripting languages exist, the SPTL embeds three existing languages for
such purposes (SPARQL, Drools and MVEL):

• In order to provide knowledge query support, the template uses knowledge query
statements which embed a SPARQL [Gro13] query fragment that is used with the
background knowledge repository.

• The specification of stream processing builder functions is based on an own language
that describes in a procedural form how the actual stream processing rules should
be generated. However, the rules themselves are specified in the Drools Rule Lan-
guage as used by the rule engine employed in the prototype.

• For the specification of processing context manipulation functions as well as con-
ditions, the SPTL uses the MVFLEX Expression Language (MVEL) [MVE]
which is a general purpose Java Virtual Machine based scripting language and is
already used as part of the Drools Rule Language.

5.1.2. Template Interpretation

The template on purpose omits any information on the concrete system that is the source
of the measurement data (e.g. the set of available solar panels and their actual geographical
position). The information on the monitored system instead has to be provided by the
background knowledge repository.
Once a processing system is instantiated, the scenario processing template is combined

with the background knowledge for the actual system that is to be monitored in order to
provide the correct processing setup (Figure 5.1.2).

111

5. Language Definition

5.2. General Elements of the Template Language

5.2.1. Variables

The processing template language supports variables for example to store retrieved back-
ground knowledge or interim processing results. Within the template variables are prefixed
with „$$“:

〈VAR〉 ::= ’$$’ [a-zA-Z0-9_]+

5.2.2. Embedded Language: SPARQL

In order to access the background knowledge from within the Scenario Processing Tem-
plates, SPARQL Queries [Gro13] can be used to query the background knowledge and to
assign the result to variables (e.g. define a set of nodes that is to be monitored for possible
situation indications) or as parameters for the processing model (e.g. to specify a Focus
Area).
Within the template, SPARQL queries are always specified as follows:

〈SPARQL〉 ::= ’from’ ’sparql’ 〈STRING〉

Instead of the specification of the complete SPARQL query, only the condition part of
the query needs to be specified. The condition is automatically extended to the full query
before execution.
The specified SPARQL query condition must always provide the ?VALUE variable which

is used as the result of the query. All other result variables are ignored. Furthermore, a
query may contain placeholders which refer to variables in the current context of the
Scenario Processing Template. If such placeholders exist, they are replaced before the
execution of the query with the current value of the variable from the context where the
query was specified. Such embedded variables can be specified as $${{varName}} like for
example:

1from sparql "?VALUE some:relation $${{ indicatedTime }}"

If the embedded variables value contains a set of elements, the query is automatically
expanded so that it queries for all values of the variable separately and returns the union
of the results.
All SPARQL queries are only allowed to retrieve data from the background knowledge

base without making any changes to the knowledge base.

5.2.3. Embedded Language: MVEL

The MVEL language is used in many places in the template in order to provide a flexible
definition of conditions and scenario-specific functions. MVEL is a Java inspired scripting

112

5.2. General Elements of the Template Language

language which is also used within DROOLS and was thus chosen as scripting language
for the SPTL. The MVEL Language Guide [MVE] provides an introduction to the MVEL
language.

Whenever MVEL is used in the template, the MVEL statements must be encapsulated
in [MVEL] and [/MVEL] :

〈MVEL〉 ::= ’[MVEL]’.*?’[/MVEL]’

MVEL statements can access variables from the scope of the Scenario Processing Tem-
plate via the „$$“ prefix. In the Focused Situation Processing phase, MVEL expressions
are also allowed to edit existing variables and define new variables in the Focused Situa-
tion Processing Context (Subsection 5.6.1). Except for this, MVEL expressions must be
side-effect free, thus they are not allowed to modify the state of the processing system
other than explicitly allowed for the current expression. In general, they are not allowed to
create and publish their own events and must not make any assumptions on their execution
environment other than explicitly specified for the current function. In particular, they
are not allowed to access external data sources (local or remote) other than the defined
background knowledge base.

5.2.3.1. Access to the Knowledge Base from MVEL

In order to provide access to the background knowledge base from MVEL, two functions
are provided via a globally available processing context „CONTEXT“ which allows the
execution of complete SPARQL queries:

1[MVEL]
2$$result1 = CONTEXT.querySet("sparql query");
3$$result2 = CONTEXT.queryScalar("sparql query");
4[/MVEL]

The queries issued are not allowed to modify the contents of the background knowledge
base.

5.2.3.2. Domain Specific Functions

In order to provide complex domain- or scenario-specific functions, which would be com-
pletely to develop and test in MVEL, custom domain-specific functions may be provided
as static Java methods which can then be called from within MVEL statements.
The domain-specific function must adhere to the same rules as MVEL statements. If

the function needs access to the current processing context, the context may be provided
as a parameter to the function. Via the context, the domain-specific function may access
the background knowledge.

One example for such a function is the clustering of solar panel nodes based on their
geographical position as needed by the cloud tracking scenario (Appendix B.1.1).

113

5. Language Definition

5.2.4. Embedded Language: DROOLS

The Drools language allows the specification of stream processing rules for the JBoss Drools
Fusion Rule Engine and is used for this purpose in the Situation Processing Templates (See
Section 3.2.3 for an example rule).
As the actual Stream Processing rules need to be specific for the situation that is to

be investigated, the Stream Processing Templates also only contain the Stream Processing
Rules as templates. Such rule templates contain placeholders that need to be inserted
in order to generate the actual processing rule for the investigation of a specific situation.
This generation process is implemented by the Stream Processing Builder function which is
discussed in Section 5.7. Within the Scenario Processing Template, Drools rule templates
are always encapsulated by [DROOLS_TEMPLATE] and [/DROOLS_TEMPLATE] :

〈DROOLS〉 ::= ’[DROOLS_TEMPLATE]’.*?’[/DROOLS_TEMPLATE]’

Variables can be embedded into the DROOLS templates by specifying them as $${{vari-
ableName}}. Variables can only be directly embedded if the variable does not contain a
set of elements but only a single element.

5.3. Scenario Processing Template Preamble

The scenario processing template preamble contains general configuration attributes re-
garding the template, like an identifier of the template as well as optional prefixes for the
embedded SPARQL and DROOLS language parts that are to be used by the run-time
system in addition to its own definitions:

〈TemplatePreamble〉 ::= 〈TemplateName〉 〈DroolsPrefix 〉? 〈SPARQLPrefix 〉?

〈TemplateName〉 ::= ’name’ 〈STRING〉 ’;’

〈DroolsPrefix 〉 ::= ’drools prefix’ 〈STRING〉 ’;’

〈SPARQLPrefix 〉 ::= ’sparql prefix’ 〈STRING〉 ’;’

If no prefixes are specified, the run-time system has to provide sensible defaults which
for the SPARQL prefix define basic namespaces and for the Drools prefix specify basic
imports needed for a template to work with the run-time system.

5.4. Possible Situation Indication Processing Specification

The possible situation indication processing specification consists of two parts: (1) The
selection of nodes to monitor for situation indications as specified in Definition 4.8 and
(2) the specification of a stream processing function builder that can be used together

114

5.4. Possible Situation Indication Processing Specification

Variable Name Access Contents Defined in Model
$$indicationNodes Read

Only
The set of nodes for which a possible
situation indication should be set up.

Variable indicationNodes in
Algorithm 1.

Table 5.4.1.: Variables available to the Stream Processing Builder of the Possible Situation
Indication Processing Specification.

with selected nodes by (1) to generate the actual event stream processing function for the
situation indication processing as specified in Definition 4.8:

〈PossibleSituationIndication〉 ::= ’PossibleSituationIndication’ ’{’
〈IndicationNodesQueryFunction〉
〈IndicationStreamProcesssingBuilder〉
’}’

For the selection of the nodes which should be monitored, Definition 4.9 specifies a
query function that retrieves the relevant nodes from the knowledge base. In the pro-
cessing template, this function is specified as a SPARQL query that results in the set
$$indicationNodes:

〈IndicationNodesQueryFunction〉 ::= ’$$indicationNodes’ 〈SPARQL〉 ’;’

Based on the query results, the actual Event Stream Processing Topology that detects
possible situations is generated. The topology generation is specified in the template
within the IndicationStreamProcessingBuilder block which uses the stream processing
build mechanisms specified in Section 5.7. This builder block represents the Situation
Indication Stream Processing Builder function as defined in Definition 4.8:

〈IndicationStreamProcesssingBuilder〉 ::= ’IndicationStreamProcessingBuilder’ ’{’
〈StreamProcessingBuilder〉
’}’

The Stream Processing Builder function has access to the variable $$indicationNodes in
order to create a suitable stream processing function (Table 5.4.1).

115

5. Language Definition

Based on these definitions, the following listing shows a simplified ex-
ample of the possible situation indication processing specification for
the cloud tracking scenario. The query fragment in Line 2 retrieves
a set of nodes from the knowledge base. All retrieved nodes will
be of the type smartgrid:PVPowerProduced, a subclass of the type
NodeWithLinkedEventStream which is part of the processing model
knowledge base (Figure on the right hand side). The resulting nodes
are assigned to the variable $$indicationNodes which is then used
within the IndicationStreamProcessingBuilder.

1PossibleSituationIndication {
2$$indicationNodes from sparql "?VALUE rdf:type smartgrid:

PVPowerProduced"
3

4IndicationStreamProcessingBuilder {
5foreach $$indicationNodes as $$pv {
6rule [DROOLS_TEMPLATE] ... from entry -point "$${{pv}}"

... publishIndication("$${{pv}}") ... [/
DROOLS_TEMPLATE] publishes indications;

7}
8}
9}

Node

N

NodeWithLinked
EventStream

NΦ

Knowledge
Base
K

1

1..*

SmartGrid:
pvPowerProduced M

1
M

2

Excerpt from Fig. 4.2.2.

E
xa

m
pl

e
11

5.5. Focused Situation Processing Initialization

The Focused Situation Indication Processing Initialization (Phase 2) of the processing
model defines the following four functions and properties as scenario-specific (Subsection
4.5.1ff). Thus, their definition needs to be supported by the template language:

• Indication Pre-Classification threshold value: pIndication,Dupτ .

• Potential Locked and Focus Area Query and Time Frame determination Function:
QPotentialLaFaτ .

• Partial Locked Area Collision Action Assignment Function: ActionAssignmentPartialLaOverlapτ .

• Focus Area Collision Action Assignment Function: ActionAssignmentFaOverlapτ .

Within the template, the following constructs allow the definition of the above functions
and properties which are all part of the FocusedProcessingInitialization block:

〈FocusedProcessingInitialization〉 ::= ’FocusedProcessingInitialization’ ’{’
〈IndicationPreClassificationThreshold〉
〈PotentialLockedFocusAreaInitialTimeFrameQueryFunction〉
〈PartialLockedAreaCollisionActionAssignmentFunction〉
〈FocusAreaCollisionActionAssignmentFunction〉

116

5.5. Focused Situation Processing Initialization

Variable Name Access Contents Defined in Model
$$indicatedNodes Read

Only
The set of nodes of the current
indication event.

Projection from the Possible
Situation Indication Event
eIndicationτ,i from Algorithm 2:
πindicationNodes(e

Indication
τ,i)

$$indicatedTime Read
Only

The indicated time of the current
indication event.

Projection from the Possible
Situation Indication Event
eIndicationτ,i from Algorithm 2:
πindicatedT ime(e

Indication
τ,i)

Table 5.5.1.: Variables available in the scope of the Focused Situation Processing Initial-
ization definition.

’}’

Within the scope of the Focused Processing Initialization’s execution, the contents of
the current indication event are available through variables as defined in Table 5.5.1.

5.5.1. Indication Pre-Classification Function

With regard to the pre-classification of raised possible situation indications discussed in
Subsection 4.5.1, duplicate indication events are detected based on a scenario-specific
threshold pIndication,Dupτ ∈ N (Definition 4.11). Within the processing template, this
threshold is specified as a time duration (e.g. 30 seconds) via the duplicationThreshold
property1:

〈IndicationPreClassificationThreshold〉 ::= ’duplicationThreshold’ 〈TIME_DURATION 〉 ’;’

It is also allowed to set the duration to zero which deactivates the Pre-Classification mech-
anism.

5.5.2. Potential Locked, Focus Area and initial Time Frame Query Function

The definition of the potential Locked Area, Focus Area and the initial time frame is based
on three separate statements:

〈PotentialLockedFocusAreaInitialTimeFrameQueryFunction〉 ::= 〈PotentialLockedArea〉
〈PotentialFocusArea〉
〈InitialTimeFrame〉

5.5.2.1. Potential Locked Area and Focus Area Query

For the collision detection, a potential Locked Area needs to be derived in a scenario-
specific way. Further a potential Focus Area needs to be derived, also in a scenario-specific

1TIME_DURATION is defined in Appendix A

117

5. Language Definition

way for each indication that results in a new Focused Situation Processing Instance. As
such, the two corresponding query functions are part of the template definition.

The potential locked area and Focus Area query part of the function QPotentialLAFAτ

(Definition 4.12) is defined by two statements, one for the potential Locked Area and one
for the potential Focus Area.

〈PotentialLockedArea〉 ::= ’potentialLockedArea’ (〈VAR〉 | 〈SPARQL〉) ’;’

〈PotentialFocusArea〉 ::= ’potentialFocusArea’ (〈VAR〉 | 〈SPARQL〉) ’;’

Both statements allow the specification of the corresponding area in two different ways:

1. Based on the contents of a variable. For example to set the potential Locked Area
to the contents of the variable $$indicationNodes:

1potentialLockedArea $$indicatedNodes;

2. Based on the result of a SPARQL query that is expanded based on the given nodes
contained in an embedded variable like $$indicationNodes. The query expansion
mechanism itself is discussed in Subsection 5.2.2.

1potentialLockedArea from sparql "?NAME some:relation $${{ indicatedNodes }}";

5.5.2.2. Timing Specification

The initial time frame determination is defined as part of the function QPotentialLAFAτ

(Definition 4.12) specified in the template as follows:

〈InitialTimeFrame〉 ::= ’initialTimeFrame’ ’startsAt’ (〈VAR〉 | 〈MVEL〉)
’withDurationOf’ (〈TIME_DURATION 〉 | 〈MVEL〉) ’;

The initial time frame is defined by specifying its start time and its duration. The start
value can be set to the value of the available variable $$indicatedTime or to another value
by defining an MVEL expression which provides an Unix time stamp in seconds. The
duration of the time frame can be defined as a static value or any other positive scalar
value by defining an MVEL expression which provides the duration in seconds.

For example for the cloud tracking scenario, the following statements can be used (as
discussed in Subsection 7.3) in order to set the initial Locked Area to the set of nodes
contained in the indication event (Line 1). To determine the initial Focus Area as a set
of nodes within a certain geographical distance from the indicated nodes, a suitable
SPARQL query is used (Lines 2 - 12). Finally, the initial Time Frame is defined to
begin with the indicated time ($$indicatedTime) with a fixed duration of 300s (Line
14).

E
xa

m
pl

e
12

118

5.5. Focused Situation Processing Initialization

1potentialLockedArea $$indicatedNodes;
2potentialFocusArea from sparql "
3$${{ indicatedNodes }} smartgrid:hasLocation ?LOC1.
4?NAME smartgrid:hasLocation ?LOC2.
5?LOC1 smartgrid:hasLat ?LAT1.
6?LOC2 smartgrid:hasLat ?LAT2.
7?LOC1 smartgrid:hasLon ?LON1.
8?LOC2 smartgrid:hasLon ?LON2.
9FILTER (?LAT1 +0.0041 > ?LAT2).
10FILTER (?LAT1 -0.0041 < ?LAT2).
11FILTER (?LON1 +0.0041 > ?LON2).
12FILTER (?LON1 -0.0041 < ?LON2). ";
13

14initialTimeFrame startsAt $$indicatedTime withDurationOf 300s ;

5.5.3. Collision Action Assignment

After the Pre-Classification is finished, the processing model defines a collision detection in
order to prepare for the classification for the remaining indications. The collision detection
itself is scenario independent (Definition 4.13) and does not need any special properties in
the template. The handing of found collisions is, however, scenario-specific as discussed in
Subsection 4.5.4.
For the collision classification, the processing model defines two scenario-specific func-

tions:

• ActionAssignmentPartialLaOverlapτ for the case were at least one partial overlap with
the Locked Area of an already instantiated Focused Situation Processing Instance
occurred (Definition 4.14) and

• ActionAssignmentFaOverlapτ for collisions where the only overlap occurred with one
or more Focus Areas of already instantiated Focused Situation Processing Instances
(Definition 4.15).

The scenario-specific behavior of these two functions can be specified in two different ways
in the template:

Option 1: Define the two collision-handling functions by specifying two MVEL state-
ments, each representing one of the functions.

Option 2: Define one or more collision action rules which together define the functionality
of the two functions.

Thus, the template language allows two mutually exclusive definitions for the scenario-
specific collision-handling which are discussed in the following two subsections:

119

5. Language Definition

〈PartialLockedAreaCollisionActionAssignmentFunction〉 ::= (〈PartialLAcollisionFunction〉
| 〈CollisionRules〉)

〈FocusAreaCollisionActionAssignmentFunction〉 ::= (〈FaCollisionFunction〉 | 〈CollisionRules〉)

If neither option is used and thus no scenario-specific definition of the collision-handling
function is given, a default rule is used. The default rule defines that for collisions with
a partial Locked Area overlap, no action is assigned for the indication and the indication
is thus ignored. If no partial Locked Area overlap occurred, but one or more partial or
complete Focus Area overlaps, the processing system triggers the instantiation of a new
Focused Situation Processing Instance for the indicated possible situation.

5.5.3.1. Option 1: MVEL based collision Function definition

The collision-handling can be specified by defining the two scenario-specific functions
ActionAssignmentPartialLaOverlapτ and ActionAssignmentFaOverlapτ declared by the pro-
cessing model (Definitions 4.14 and 4.15) as MVEL statements:

〈PartialLAcollisionFunction〉 ::= ’partialLACollision’ 〈MVEL〉 ’;’

〈FaCollisionFunction〉 ::= ’FACollision’ 〈MVEL〉 ’;’

Both statements have access to the set of all occurred collisions as Collision Tuples (Ap-
pendix A.2.1) via the variable $$collisions. In order to assign an action for each collision
from $$collisions, the following function is provided:

1void CONTEXT.setAction(CollisionTuple collision , CollisionAction action);

Actions that can be assigned for each of the tules are „AddToExisting“ and „NoAction“ as
specified by the CollisionAction Enum (Subsection A.2.1.1) based on the processing models
Definitions 4.14 & 4.15. If the setAction function is not called for a collision tuple from
$$collisions, this is equivalent to calling it with the „NoAction“ action for this Collision
Tuple.

Furthermore, the Focus Area Collision Function is allowed to request the creation of a
new Focused Situation Processing Instance by calling the following provided function (see
Definition 4.15):

1void CONTEXT.requestStartNew ();

All variables available to the functions are specified in Table 5.5.2.

For example for the cloud tracking scenario, the collision-handling can be defined
by the following functions which will only start a new Focused Situation Processing
Instance for a raised indication, if the indication causes no collision at all or onlyE
xa

m
pl

e
13

120

5.5. Focused Situation Processing Initialization

Variable Name Access Contents Defined in Model
Also all variables specified in Table 5.5.1.

$$collisions Read
Only

The set of Collision Tuples for the
current indication event.

The set CTeIndicationτ,i
defined in

Algorithm 2.
$$potentialLA Read

Only
The set of nodes that resemble
the potential Locked Area for the
current indication event.

The set LAeIndicationτ,i
defined in

Algorithm 2.

$$potentialFA Read
Only

The set of nodes that resemble
the potential Focus Area for the
current indication event.

The set FAeIndicationτ,i
defined in

Algorithm 2.

$$initialTF Read
Only

The initial Time Frame for the
current indication event.

The tuple tfeIndicationτ,i
defined in

Algorithm 2.

Table 5.5.2.: Variables available in the scope of the Collision Action Assignment.

a partial collision with the Focus Area of an existing Focused Situation Processing
Instance (as discussed in Subsection 7.3):

1// noAction if a partial Locked Area collision occured
2partialLACollision [MVEL][/ MVEL];
3

4// only start a new Focused Processing if no 100% Focus Area collision
occured

5FACollision [MVEL]
6fullFACollisionFound = false;
7foreach (col : $$collisions) {
8// check for 100% FA overlap
9if(col.getGradeFa () == $$potentialLA.size())
10fullFACollisionFound = true;
11}
12if(!fullFACollisionFound){
13CONTEXT.requestStartNew ();
14}
15[/MVEL];

5.5.3.2. Option 2: Collision Action Rules

In order to allow for a simpler definition of the collision-handling behavior in cases where
no overall view over all collisions for the current indication event is required, the template
allows for a rule based specification of the scenario-specific collision handing actions.
Each rule may specify one or more conditions on the Locked and Focus Area overlap

grades when it should match. When a rule matches the properties of a collision, one or
more actions that where specified for the rule are assigned for handling the current collision.
The order in which the rules are specified in the template is used as processing order of
the rules where the rule processing for each separate collision stops once a rule matches for
this collision. The rules are executed separately for each collision and thus do not allow the
specification of a single action based on all occurred collisions for the current indication.

121

5. Language Definition

The actions can be chosen from the following set:

startNew
Request the creation of a new Focused Situation Processing Instance for the indicated
possible situation. This action can be assigned multiple times but will only be exe-
cuted once. However, the conditions defined in Subsection 4.5.4 for a partial Locked
Area overlap require that the action startNew is only possible if no partial Locked
Area collision was detected for the received indication. If the action is assigned by
any rule in such a case, the action is not executed.

addToExisting
Request the assignment of the indication event to the Focused Situation Processing
Instance responsible for the current collision so that this already running instance
may handle the indication event.

noAction
Do not take any action for handling this collision.

preventNew
Request that no new Focused Situation Processing Instance is to be started for this
indication event even if for another collision the startNew action was assigned.

stopActionExecution
Request the stop of the action processing for all collisions that where not yet handled
by the rule processing.

As the stopActionExecution action requires a deterministic ordering of the collision rule
matching process. To ensure this, the set of collisions is sorted based on their collision
grade (first on the Locked Area overlap grade then on the Focus Area overlap grade) were
the collisions with the highest grade are processed first. This allows a high ranked collision
to prevent the rule processing of all other collisions with a lower grade than its own.
Within the template, collision action rules can be specified as follows2:

〈CollisionRules〉 ::= (〈CollisionRule〉)*

〈CollisionRule〉 ::= ’collisionAction’ 〈CollisionAction〉 (’,’ 〈CollisionAction〉)*
’if’ 〈Condition〉 (’and’ 〈Condition〉)* ’;’

〈Condition〉 ::= (’LA’|’FA’) ’overlap’ (’〈’ | ’〉’ | ’==’ | ’〈=’ | ’〉 =’)
〈PERCENTAGE〉

〈CollisionAction〉 ::= ’startNew’ | ’addToExisting’ | ’noAction’ |
’preventNew’ | ’stopActionExecution’

2PERCENTAGE is defined in Appendix A

122

5.6. Focused Situation Processing

For example for the cloud tracking scenario, the collision-handling can be defined by
the following rules which will only start a new Focused Situation Processing Instance
for a raised indication, if the indication causes no collision at all or only a partial
collision with the Focus Area of an existing Focused Situation Processing Instance (as
discussed in Subsection 7.3)a:

1collisionAction preventNew if FA overlap = 100%;
2collisionAction startNew if FA overlap < 100%;

aA separate rule that prevents the creation of a new Focused Situation Processing Instance in case
of a partial Locked Area overlap is not required, as the creation of a new instance is not allowed
by the processing model in this case (Subsection 4.5.4).

E
xa

m
pl

e
14

5.6. Focused Situation Processing

The Focused Situation Processing part of the language defines all aspects relevant for an
ongoing Focused Situation Processing Instance (Phase 3 of the processing model). This
includes Pre- and Post-Processing steps as well as the result publication and the termina-
tion rules. Further it contains the specification of the iteration stream processing builder
function.
Within the template, all situation-specific processing configuration is given in the

FocusedSituationProcessing block:

〈FocusedSituationProcessing〉 ::= ’FocusedSituationProcessing’ ’{’
〈FocusedSituationProcessingInitializationFunction〉
〈PreIterationProcessingFunction〉
〈IterationStreamProcessingBuilder〉
〈PostIterationProcessingFunction〉
〈InterimResultEventGenerationFunction〉
〈FocusedSituationProcessingTerminationConditionAndTerminationResult〉
〈IterationLockedAreaFocusAreaTimeFrameQueryFunction〉
〈FocusedSituationProcessingCollisionHandlingFunction〉
’}’

5.6.1. Focused Situation Processing Context

As specified in Subsection 4.6.2.1 of the processing model definition, the Focused Situation
Processing context provides access to several properties defined by the processing model as
well as freely definable template specific properties. In order to provide this functionality,
the processing context is defined in the template as a set of key value pairs with a number
of reserved keys for framework specific values as specified in Table 5.6.1.
The processing context is available to the Focused Situation Processing Instance during

all MVEL based executions as well as during the Stream Processing Builder Function

123

5. Language Definition

Variable Name Access Contents Defined in Model
$$focusArea Read

Only
The set of nodes forming the
Focus Area of the current
iteration

The tuple FAfpx,it defined in
Algorithm 3 with it as the current
iteration.

$$lockedArea Read
Only

The set of nodes forming the
Locked Area of the current
iteration

The tuple LAfpx,it defined in
Algorithm 3 with it as the current
iteration.

$$timeFrame Read
Only

The time frame of the current
iteration

The tuple tffpx,it defined in
Algorithm 3 with it as the current
iteration.

$$indications Read
Only

The set of indication events
assigned to this Focused Situation
Processing Instance

The set EAssignedIndicationsfpx,it

defined in Algorithm 3 with it as
the current iteration.

$$iterationCounter Read
Only

The number of the current
iteration

The variable it defined in
Algorithm 3.

$$indicatedNodes Read
Only

The set of nodes of the indication
event that triggered the Focused
Situation Processing Instance

Projection from the Possible
Situation Indication Event from
Algorithm 3 that triggered the
processing instance:
πindicationNodes(e

Indication
τ)

$$indicatedTime Read
Only

The indicated time of the
indication event that triggered
the Focused Situation Processing
Instance

Projection from the Possible
Situation Indication Event from
Algorithm 3 that triggered the
processing instance:
πindicatedT ime(e

Indication
τ)

Table 5.6.1.: Variables available in the scope of the Focused Situation Processing.

execution. Further, during the Focused Situation Iteration Stream Processing, the context
can be accessed from within the event stream processing functions.
As defined in Subsection 4.6.2.2, the processing context is kept across the boundary of

a single Focused Situation Processing Iteration and thus allows the transfer of information
from one iteration to the next.

5.6.2. Focused Situation Processing Initialization Function

In order to initialize the very first Focused Situation Processing Context, the processing
model defines the initialization function InitFPτ (Definition 4.16). Within the template,
this function has to be specified as an MVEL expression as follows:

〈FocusedSituationProcessingInitializationFunction〉 ::= ’contextInitialization’ 〈MVEL〉 ’;’

The function is allowed to populate the Focused Situation Processing Context by defining
variables with the „$$“ prefix which are automatically assigned to the initial Focused
Situation Processing Context.

124

5.6. Focused Situation Processing

In order to create a suitable context for the assigned possible situation, the function has
access to the variables specified in Table 5.6.1 which contain the properties for the first
iteration as they were determined during the Phase 2 processing. Furthermore, access to
the knowledge base is possible as defined in Section 5.2.3.

5.6.3. Pre-Iteration Processing Function

In a similar way to the general context initialization, an iteration context initialization
function PreFPτ (Definition 4.17) needs to be specified. The function is executed at the
beginning of each iteration in order to set up its processing context for the next iteration in
a scenario-specific way. The new processing context is pre-populated based on values from
the previous processing context CXfpx,it−1,3 as specified in Subsection 4.6.2.4. Within the
processing template, the initialization function is specified in MVEL as follows:

〈PreIterationProcessingFunction〉 ::= ’preIterationProcessing’ 〈MVEL〉 ’;’

5.6.4. Iteration Stream Processing Builder

The definition of the builder function follows the mechanism described in Section 5.7. It
is based on the current processing context CXfpx,it,1 that was the result of the iteration
Pre-Processing function.

〈IterationStreamProcessingBuilder〉 ::= ’IterationStreamProcessingBuilder’ ’{’
〈StreamProcessingBuilder〉 ’}’

5.6.5. Post-Iteration Processing Function

After the stream processing is finished, the Focused Situation Processing Instance executes
a scenario-specific post-processing function PostFPτ (Definition 4.19) in order to prepare
the processing context resulting from the stream processing CXfpx,it,2 for the evaluation
of the result publication and termination rules as well as for finding the new Locked Area
and Focus Area for the next iteration, which takes place based on the resulting context
CXfpx,it,3. The Post-Processing function PostFPτ is specified in the same way as the Pre-
Processing function as MVEL. Within the processing template it needs to be specified as
follows:

〈PostIterationProcessingFunction〉 ::= ’postIterationProcessing’ 〈MVEL〉 ’;’

5.6.6. Interim Result Event Generation Function

In order to publish interim processing results, a scenario template needs to define an
interim result publication function InterimResultEventGenFpτ (Definition 4.20). Within

125

5. Language Definition

the template, this function is defined by zero or more interim result publication rules. The
rules are evaluated against the current Focused Situation Processing Context CXfpx,it,3 to
determine if a result has to be published. If a rule is positively evaluated, a result event is
generated based on a set of values from the processing context and published. Within the
template, the publish rules can be specified as follows:

〈InterimResultEventGenerationFunction〉 ::= 〈publishRuleDef 〉*

〈publishRuleDef 〉 ::= ’publish’ ’result’ 〈vars〉 ’when’ 〈MVEL〉 ’;’

〈vars〉 ::= 〈VAR〉 (’,’ 〈vars〉)?

Where the keys specify which elements of the current processing context should be em-
bedded in the event. The condition is evaluated against the same processing context and
triggers the publication of the defined event. If no rule is specified, no interim results will
be published.

5.6.7. Focused Situation Processing Termination

In order to determine if a Focused Situation Processing Instance needs to be terminated, the
processing model defines a Focused Situation Processing Termination Condition CFpTermτ

(Definition 4.22).
In the template, this function is defined by one or more termination rules. Furthermore,

the rules define the Focused Situation Processing Result Query Function QFpResultτ (Defini-
tion 4.23) by specifying if the processing resulted in a FalseSituation or a valid situation
and in the later case provide appropriate processing results in the same way as defined for
the interim result publication (Subsection 5.6.6). Further the termination rule needs to
specify if the situations Locked Area and Focus Areas are to be kept after the processing
has finished in order to mark the situation (Definition 4.23).
Within the processing template, the rules can be specified as follows:

〈FocusedSituationProcessingTerminationConditionAndTerminationResult〉 ::= 〈TerminationRule〉+

〈TerminationRule〉 ::= ’terminate’ ’if’ 〈MVEL〉
’with’ ’result’ (’FalseSituation’ | 〈vars〉)
’keep’ ’area’ ’registration’ ’if’ 〈MVEL〉

5.6.8. Iteration Locked Area, Focus Area and Time Frame Query Function

If a Focused Situation Processing Instance is not terminated, the next processing iteration
needs to be prepared by determining the next iterations Locked Area and Focus Area
as well as its Time Frame. For this purpose the processing model defines the Iteration
Locked Area, Focus Area and Time Frame Query Function QLaFaTfτ (Definition 4.21). In

126

5.6. Focused Situation Processing

the scenario processing template the function is defined by three separate statements which
are discussed in the following two subsections:

〈IterationLockedAreaFocusAreaTimeFrameQueryFunction〉 ::= 〈NextIterationLockedArea〉
〈NextIterationFocusArea〉 〈NextTimeFrame〉

5.6.8.1. Iteration Locked Area and Focus Area Determination

To prepare for the next iteration, a new Locked Area and Focus Area needs to be derived
from the processing context. The determination conditions are specified in the same way
as for the initial Locked Area and Focus Area as a SPARQL query fragment (Subsection
5.2.2) that is expanded to a full query based on the referenced contents from the processing
context CXfpx,it,3. Aside from the specification based on a SPARQL query, the areas can
also be set to the contents of a variable available from the processing context CXfpx,it,3. If
a variable is provided it must contain one or more references to nodes from the knowledge
base so that they can be used for the next iteration’s area registration.

Within the processing template, the Locked and Focus Area determination mechanism
needs to be specified as follows:

〈NextIterationLockedArea〉 ::= ’nextFocusArea’ (〈VAR〉 | 〈SPARQL〉) ’;’

〈NextIterationFocusArea〉 ::= ’nextLockedArea’ (〈VAR〉 | 〈SPARQL〉) ’;’

5.6.8.2. Timing Specification

The timing of the Focused Situation Processing (Subsection 4.6.2.8) is specified in the
same way as the initial time frame during the Focused Situation Processing Initialization
(Subsection 5.5.2.2) but with the keyword nextIterationTimeFrame:

〈NextTimeFrame〉 ::= ’nextIterationTimeFrame’ ’startsAt’ (〈VAR〉 | 〈MVEL〉)
’withDurationOf’ (〈TIME_DURATION 〉 | 〈MVEL〉) ’;’

The same restrictions as defined in Subsection 5.5.2.2 regarding the start time and duration
apply here with the difference that the set of available variables is the current Focused
Situation Processing Context CXfpx,it,3 (Subsection 5.6.1).

5.6.9. Focused Situation Processing Collision-Handling Function

As defined in Subsection 4.6.4.1, two Focused Situation Processing Instances may need to
be merged into one if they collide. In this case one of the two Focused Situation Processing
Instances is chosen to be terminated (fpa) while the other may continue (fpb). In order to
allow the continuing instance to incorporate interim results from the terminating instance,
a scenario-specific function ColHandlerτ is defined by the processing model (Definition
4.24). In the template the merge function needs to be specified in MVEL:

127

5. Language Definition

Variable Name Access Contents Defined in Model
CONTEXT_A Read

Only
Allows read only access to the last
Focused Situation Processing Context
of the Focused Situation Processing
Instance fpa.

The two sets
CXfpa,itLastfpa ,3

and
CXfpb,itLastfpb ,3

from
Definition 4.24 with
itLastfpa and itLastfpb as
the last iteration of the
corresponding processing
task before the collision
occurred.

CONTEXT_B Read /
Write

Allows read write access to the last
Focused Situation Processing Context
of the Focused Situation Processing
Instance fpb which will be used by
this processing instance to initialize its
next processing iteration.

Table 5.6.2.: Variables available in the scope of the Focused Situation Processing Merge
Function.

〈FocusedSituationProcessingCollisionHandlingFunction〉 ::= ’mergeFunction’ 〈MVEL〉

The merge function allows access to the processing contexts of both processing instances
and thereby allows to copy values from the terminating instance to the continuing.

For the execution of the merge function, the instance fpa is always the instance that is
about to be terminated while the instance fpb is always the instance that will continue its
processing after the merge. In order to access the processing context of each of these two
processing instances, the two objects CONTEXT_A and CONTEXT_B are available as
defined in Table 5.6.2. The two objects are available during the MVEL function execution
as java.util.Map objects and thus support the Map API to retrieve and add elements.
In contrast to the typical way to assign properties to the processing context defined in
Subsection 5.2.3, within the merge function, all access to the processing context needs to
be made via these two objects in order to explicitly state which context should be used.
As the purpose of the merging function is to combine the information from processing

instance fpa with processing instance fpb, no access to the knowledge base is possible.

5.7. Stream Processing Builder Function Definition

This section describes the language elements for the stream processing builder function def-
inition that is employed for the preparation of the Phase 1 Situation Indication Processing
as well as during the Phase 3 Focused Situation Processing.

Within the processing template, the builder functions are specified as procedural descrip-
tions which contain templates for the event stream processing. The definition is executed
with a given set of inputs and generates the actual stream processing functions by defining
the actual stream processing topology for the event streams that are to be processed. Based

128

5.7. Stream Processing Builder Function Definition

Stream Processing
Builder Execution

Stream Processing

Scenario Processing
Template

Stream Processing
Topology

Background
Knowledge

Event Streams

Stream Processing Builder Def.

Runtime
Information

Figure 5.7.1.: Schematic view of the Stream Processing Builder execution.

on the generated topology, the stream processing is then instantiated by the processing
system (Figure 5.7.1).
To specify the Stream Processing Rule templates, the Scenario Processing Template

language embeds the Drools rule language. Within the Scenario Processing Template, the
Drools rules are defined with certain placeholders which are later filled when the builder
function is executed. This placeholder replacement then results in the definition of the set
of actual stream processing rules which form the stream processing topology which in turn
can then be deployed to the rule engine.

The procedural definition of the builder functions has to be given within either the
IndicationStreamProcessingBuilder (Section 5.4) or the IterationStreamProcessingBuilder
(Subsection 5.6.4) blocks where their content is defined as follows:

〈StreamProcessingBuilder〉 ::= 〈ProcOperation〉+

〈ProcOperation〉 ::= 〈BackgroundKnowledgeQuery〉
| 〈ForEach〉
| 〈ForEachGroup〉
| 〈PublishStatement〉
| 〈SetOperation〉
| 〈Conditional〉

Within this block, several language constructs are available in order to specify the builder
function by for example iterating over sets of nodes, grouping them or to retrieve addi-
tional background knowledge. Based on this general functionality, the SPTL allows the
specification of stream processing statements which define the actual stream processing
topology.

The following subsections describe the different language constructs and their interpre-
tation, each with short examples. The section concludes with a complete stream processing

129

5. Language Definition

builder execution example for the possible Situation Indication Processing for the cloud
tracking scenario (Subsection 5.7.7).

5.7.1. Stream Processing Builder Context

The stream processing builder function has its own context during the execution with read
write access to its contents. Before the builder function execution, the context is populated
with the variables available to the current block in the Scenario Processing Template:

Phase 0 (Possible Situation Indication Processing):
The variable $$indicationNodes is copied to the Stream Processing Builder Context.

Phase 1 (Focused Situation Processing):
The current Focused Situation Processing Context is copied to the Stream Processing
Builder Context.

After the function’s execution, the context is dropped, so changes to the context are only
scoped to the current builder function’s execution.

5.7.2. Background Knowledge Queries

In order to access the background knowledge from within the stream processing builder
function, the template language supports the specification of SPARQL based queries where
the results are assigned to variables in the scope of the builder function execution. The
queries can be specified as follows:

〈BackgroundKnowledgeQuery〉 ::= 〈VAR〉 〈SPARQL〉 ’;’

The SPARQL query follows the definitions in Subsection 5.2.2. Embedded variables are
resolved against the Stream Processing Builder Context.

5.7.3. Control Structures: Loops

The language supports two kinds of loops to handle variables, foreach and foreach group.
They are similar to the „for each“ construct known in many programming languages. How-
ever, the foreach group loop extends this basic concept with the capabilities to form groups
of elements based on a grouping relation.

Foreach
The foreach loop takes a variable and executes its loop body for each element in the
set. The current element is available within the scope of the loop via the specified
variable:

1foreach $$SetVariable as $$InternalVariable{
2// Body called for each value of $$SetVariable assigned to

$$InternalVariable
3}

130

5.7. Stream Processing Builder Function Definition

The foreach loop is defined as follows:

〈ForEach〉 ::= ’foreach’ 〈VAR〉 ’as’ 〈VAR〉 ’{’ 〈ProcOperation〉+ ’}’

Foreach Group
In a similar way as the foreach statement, the foreach group statement can be used
to iterate over the contents of a variable. In contrast to the normal foreach, the loop
body is executed for subsets of the elements from the provided variable. The groups
are generated based on the grouping relation provided after the group by statement:

1foreach $$SetVariable as $$InnernalVariable group by "grouping relation" {
2// Body called for each group that was formed from the $$SetVariable

contents with the corresponding grouping relation. The set that
corresponds to the current group is assigned to $$InnernalVariable

3}

The foreach group is defined as follows:

〈ForEachGroup〉 ::= ’foreach’ 〈VAR〉 ’as’ 〈VAR〉 ’group by’ 〈STRING〉
’{’ 〈ProcOperation〉+ ’}’

The given grouping relation is used to form a SPARQL query to retrieve a single
grouping value for each element from the given input variable. The groups are then
built based on the grouping values retrieved by the query, were all elements with
the same grouping value are assigned to the same group as shown in the following
example:

Assuming the following triples are available from the background knowledge:

L1 − telco : SubLink − Agg1

L2 − telco : SubLink − Agg1

L3 − telco : SubLink − Agg2

L4 − telco : SubLink − Agg2

And assuming that the variable $$In has the following contents: L1,L2,L3,L4. Then
based on this, the following foreach group statement is evaluated as follows:

1foreach $$In as $$Group group by "telco:SubLink" { ... }

In order to form the groups, for each value of $$In, the grouping criteria is queried
from the background knowledge by creating and executing the following query:

1select distinct ?VALUE where {{ ?VALUE telco:subLink $${currentElement} }
UNION { $${currentElement} telco:subLink ?VALUE}}

The query is executed for each value of $$In with the following results:

E
xa

m
pl

e
15

131

5. Language Definition

L1 =⇒ Agg1 → Group 1

L2 =⇒ Agg1 → Group 1

L3 =⇒ Agg2 → Group 2

L4 =⇒ Agg2 → Group 2

The results are used to form groups based on equal results. In this case two groups
are generated: Group 1 = {L1, L2} Group 2 = {L3, L4}. The body of the loop is
then executed for each of the groups which will be assigned to the specified variable
$$Group.

5.7.4. Event Stream Processing Statements

In order to specify the actual event stream processing functions from Phase 1 (spIndicationτ ,
Subsection 4.3.2) and Phase 3 (spFpIteration, Subsection 4.6.2.5), the SPTL provides a rule
statement which allows for the specification of Drools stream processing rule templates.
Each rule statement specifies one stream processing rule as a template with placeholders

for variables from the processing context as well as placeholders for the required inbound
event streams that should be assigned to the rule when it is instantiated. Furthermore,
the result of the stream processing rule is specified by the rule statement.

In order to accommodate for the different requirements of the two event stream process-
ing functions, the rule statement requires the explicit specification of the type of result
produced by a given rule:

• For realizing spIndicationτ (Phase 1) the rule statement allows the publication of interim
result streams and the publication of possible situation indication events.

• For realizing spFpIteration (Phase 3) the rule statement allows the publication of
interim result streams but also the modification of the Focused Situation Processing
Context.

The publish statement for both rule types is defined as follows:

〈StreamProcessingRule〉 ::= ’rule’ 〈DROOLS〉 ’publishes’ (
’indications’
| (’stream’ (〈VAR〉 ’.’ 〈ID〉 | 〈ID〉) | ’no’ ’stream’) (’manipulates’ ’context’)?
) ’;’

For example a stream processing rule for Phase 1, that produces possible situation indica-
tion events is specified as:

1// Note: Only possible for Phase 1 Processing
2rule [DROOLS_TEMPLATE]...[/ DROOLS_TEMPLATE] publishes indications;

132

5.7. Stream Processing Builder Function Definition

A stream processing rule for Phase 1 or 3, that produces an interim result stream named
„myInterimResultStream“ related to $$var but does not manipulate the current processing
context is specified as:

1// Note: Possible for Phase 1 and Phase 3 Processing
2rule [DROOLS_TEMPLATE]...[/ DROOLS_TEMPLATE] publishes stream $$var.

myInterimResultStream;

When a rule also stores processing results in the current processing context, the rule
statement needs to be suffixed by „manipulates context“ (which is only allowed in the
Phase 3 processing):

1// Note: Only possible for Phase 3 Processing
2rule [DROOLS_TEMPLATE]...[/ DROOLS_TEMPLATE] publishes stream $$var.

myInterimResultStream manipulates context;

Furthermore, a rule for the Phase 3 processing may completely omit the generation of an
event stream and only store its processing results in the processing context:

1// Note: Only possible for Phase 3 Processing
2rule [DROOLS_TEMPLATE]...[/ DROOLS_TEMPLATE] publishes no stream manipulates

context;

The different types on how to specify result streams are discussed in the following subsec-
tions.

5.7.4.1. Situation Indication Stream Processing Rule

If a stream processing rule is defined with „publishes indications“ it may publish Possible
Situation Indication Events for the current Scenario. In order to publish such indication
events, the Drools rule has to use the provided publishIndication(...) function which takes
as first argument the set of nodes for which the possible situation is indicated and as
optional second argument the time for which the indication should be created. If the time
is omitted, the current time of the rule engine is used. The two versions of the function
are declared as follows:

1/**
2Publishes a Possible Situation Indication Event with the given set of

indicatedNodes and the indicatedTime set to the current time of the rule
engine

3*/
4void publishIndication(Set indicatedNodes);
5

6/**
7Publishes a Possible Situation Indication Event with the given set of

indicatedNodes and the indicatedTime set to the specified time.
8*/
9void publishIndication(Set indicatedNodes , long indicatedTime);

For example:
1rule [DROOLS_TEMPLATE]
2when

133

5. Language Definition

3Number($average : doubleValue) from accumulate(
4SingleMeasurement($val:doubleValue) over window:length(5) from entry -

point "$${{ childlink.traffic_in_average }}", average($val)
5)
6eval($average > 10)
7then
8publishIndication($${{ childlink }});
9end
10[/ DROOLS_TEMPLATE] publishes indications;

5.7.4.2. Interim Result Event Stream Generating Rule

If a stream processing rule is defined with „publishes stream“ it may publish own interim
result events which can be used by other rules of the same FSP Instance as input. To
publish such an event, the Drools rule has to use the provided publish(...) function which
takes the event object as parameter and publishes it to the interim result stream defined
for this rule. The function is declared as follows:

1void publish(Object event);

The resulting stream is only available within the scope of the current stream processing
topology of the current FSP Instance in the scope of the current scenario. In contrast, the
measurement data streams provided to the processing system like the measurements from
the solar panels are globally available.
In order to reference the newly created streams within the template, they are assigned

as either a sub-stream to a given node or set of nodes or get a unique name within the
scope of the stream processing topology . If multiple stream processing rules in the same
stream processing topology publish to the same interim result event stream, the results are
merged into one event stream.

5.7.4.3. Context Access and Context Manipulating Stream Processing Rule

If a stream processing rule for the Phase 3 processing is defined with „manipulates context“,
it may change variables in the current processing context by calling the following function
on the provided context:

1void CONTEXT.set("$$variableName",Object value);

In order to access variables from the processing context, the following function may be
used:

1Object CONTEXT.get("$$variableName");

Additional access methods may be provided by the implementation.

5.7.4.4. Variable Placeholders

Stream processing statements can contain embedded references to variables from the pro-
cessing context of the stream processing builder where the embedded variable is specified

134

5.7. Stream Processing Builder Function Definition

as $${variableName} like for example:
1rule [DROOLS_TEMPLATE] ... $${{ someVariable }} == 0 ... [/ DROOLS_TEMPLATE]

publishes stream someInternalStream;

Before the execution of the stream processing rule takes place, this placeholder is replaced
by the current value of the specified variable.

5.7.4.5. Inbound Event Stream Assignment

The inbound event stream subscription is based on the embedded variable replacement of
variables in a processing rule specification. As the actual event stream processing rule defi-
nition is based on the Drools language, the inbound streams need to be specified according
to Drools based on so called „entry-point“ definitions:

1rule [DROOLS_TEMPLATE] ... $ev : MeasurementEvent from entry -point "$${{ childlink
}}" ... [/ DROOLS_TEMPLATE] ...;

Two general types of event streams can be assigned to a stream processing rule which are
discussed in the following paragraphs:

1. External event streams provided by the monitored system for example the energy
production measurements of solar panels.

2. Internal interim result event streams within the scope of a Stream Processing Topol-
ogy like for example some initial aggregation of measurement data.

External Event Stream Assignment

The selection of the actual measurement event streams is based on suffixes appended to
variables containing node references in Drools stream processing templates. For example
the following statement requests the stream „PVPowerProduced“ for the node contained
in the variable $$someNode.

1rule [DROOLS_TEMPLATE] from entry -point "${{ someNode?PVPowerProduced }}"....
[/ DROOLS_TEMPLATE] ... ;

The prefixes are domain and implementation specific mappings to available event stream
types from the background knowledge (nodes in the background knowledge that are sub-
classes of NodeWithLinkedEventStream as illustrated in Figure 4.2.1). For example for
providing access to photo-voltaic power production measurements, the prototype uses the
„PVPowerProduced“ prefix which is mapped to nodes of type pvPowerProduced in the
background knowledge as shown in Figure 4.2.2. Similarly, for the telecommunications
domain the prefix „TrafficIn“ is available which is mapped to nodes of type trafficIn which
provide the appropriate event stream as shown in Figure 4.2.3.
The variable to which the prefix is applied to must at the time of the template interpre-

tation only contain a single node and not a set of nodes as no automatic merge of multiple
inbound event streams is supported.

135

5. Language Definition

Internal Interim Result Event Streams

Within the scope of the current Stream Processing Topology, interim result event streams
generated by another event stream processing rule in the same topology can be assigned
as input in a similar way as the external streams:

1rule [DROOLS_TEMPLATE] from entry -point "${{ someNode.myInterimResultStream }}"
.... [/ DROOLS_TEMPLATE] ... ;

The streams can be referenced by the name assigned to them during the processing rule
specification (see Subsection 5.7.4.2).

5.7.5. Set Operations

As the language is aimed at handling sets of nodes that should be set up for a monitoring
or further analysis, the language supports basic set operations like building a union or
intersection of two sets of nodes.
The following language constructs are supported:
• Union: ’+’
• Intersection: ’&&’
• Difference: ’-’

Which are defined in the template language as:

〈SetOperation〉 ::= 〈VAR〉 ‘=’ 〈VAR〉 (’+’ | ’&&’ | ’-’) 〈VAR〉 ’;’

5.7.6. Conditional Statement

The language supports the typical if/else conditional statement where the condition needs
to be specified in MVEL and must return a boolean value:

〈Conditional〉 ::= ’if’ 〈MVEL〉 ’{’ 〈ProcOperation〉* ’}’ (’else’ ’{’ 〈ProcOperation〉* ’}’)?

136

5.7. Stream Processing Builder Function Definition

5.7.7. Stream Processing Builder Example

This section discusses an example on how the stream processing builder functions are
defined and evaluated based on the cloud tracking scenarios possible situation indication.
The complete Scenario Processing Template is given in Appendix B.1 and is discussed in
Section 7.3.

The Possible Situation Indication Processing for the cloud tracking
scenario takes place for all solar panels in parallel. For this purpose
the variable $$indicationNodes is assigned with a set of all available
solar panels from the background knowledge (See Section 5.4). Based
on this input, the following stream processing builder is evaluated to
generate the Indication Stream Processing Topology for the scenario:

1IndicationStreamProcessingBuilder{
2foreach $$indicationNodes as $$pv {
3rule [DROOLS_TEMPLATE]
4when
5Number($delta : doubleValue)
6from accumulate(
7MeasurementEvent($val:value)
8over window:length(2)
9from entry -point "$${{pv?PVPowerProduced }}",
10SuddenChangeDetector($val)
11) eval($delta > 50)
12then
13publishIndication("$${{pv}}");
14end
15[/ DROOLS_TEMPLATE] publishes indications;
16}
17}

During the builder execution, the foreach loop iterates over all nodes
in $$indicationNodes and generates with the rule statement one
stream processing rule for each solar panel that is to be monitored.
Table 5.7.2 illustrates a generated rule with its inbound event stream
assignment for the node provider:panel1. In the same way, processing
rules will be generated for all other elements in the $$indicationNodes
set.

Node

N

NodeWithLinked
EventStream

NΦ

Knowledge
Base
K

1

1..*

SmartGrid:
pvPowerProduced M

1
M

2

Excerpt from Fig. 4.2.2.

E
xa

m
pl

e
16

137

5. Language Definition

Possible Situation Indication Rule for Node: provider:panel1

Input Data Stream: provider:panel1.production as internal entry-point „datastream_0“
Output Data Stream: possible situation indication stream for the current scenario
Processing Rule: when Number($delta : doubleValue)

from accumulate(MeasurementEvent($val:value)
over window:length(2) from entry-point "datastream_0",
SuddenChangeDetector($val)) eval($delta > 50)
then
publishIndication("provider:panel1");
end

Figure 5.7.2.: One processing rule generated by the stream processing builder for the node
provider:panel1 from the set $$indicationNodes with the assigned inbound and outbound
event streams.

5.8. Summary

The chapter defines the Scenario Processing Template Language (SPTL) to allow the spec-
ification of scenario-specific functions and parameters for a processing system implement-
ing the defined processing model (Chapter 4). The language embeds existing languages
for certain purposes like the retrieval of background knowledge or the definition of stream
processing rules which can ease the usage for users experienced with one or more of the
embedded languages.

The processing templates defined in SPTL are combined with background knowledge
during run-time by a processing system to configure itself for the scenario. The next
chapter discusses the prototype of a processing system implementing the defined language
and model.

138

6. Prototype

Contents

6.1. Goal of the Prototype . 139

6.2. Component View . 140

6.3. Run-Time View . 145

6.4. Deployment . 152

6.5. Conclusion . 154

After the two previous chapters defined the processing model and the Scenario Pro-
cessing Template Language, this chapter discusses the architecture of the prototypical
implementation of the model and language. The prototype discussed here was used for
the evaluation of the designed processing model and language discussed in the following
Chapter 7.

The chapter discusses the prototype’s architecture loosely based on the structure dis-
cussed in [GKRS15, Chapter 4] by first discussing the goals of the prototype, then continues
with a component view of the architecture followed by the discussion of several run-time
aspects. The chapter concludes with a brief discussion of the prototype’s deployment and
surrounding systems (the Data Simulation and Result Visualization).

6.1. Goal of the Prototype

The goal of the designed and implemented prototype is to provide a test environment that
allows the verification of the processing model and specification language. As such the
prototype focuses on these aspects and is not aimed at providing a feature-rich distributed
scalable application directly usable for large amounts of streaming data and various sce-
narios. In the same way the following discussions of the prototype are focused on how the
processing model is implemented by the processing system.

Even though not the focus of the prototype, its architecture outlines how a processing
system implementing the focused situation processing model can be divided into compo-
nents with distinct responsibilities and limited linkage with other components which would

139

6. Prototype

also be suitable for the implementation of a distributed scalable version of the processing
system.

As the prototype is intended as a test environment only, the current implementation does
not verify if a given scenario processing template adheres to all rules specified in Section
5. Thus the prototype allows a template to specify processing functions, expressions or
queries that break with the processing model. However, for the implemented scenario
templates (Appendix B.1 and B.2) all given statements where carefully checked against
the specified rules in order to allow for a correct evaluation of the capabilities of the model
and language.

6.2. Component View

The prototype consists of 9 components, each with their distinct responsibility in imple-
menting parts of the processing model or providing support functionalities. Figure 6.2.1
gives an overview over the components and their dependencies and interactions while the
following sub-sections discuss each of these components.

6.2.1. Core Components

The following 4 components are considered core components as they implement the defined
processing model while the other components provide supporting functions:

6.2.1.1. Area Registration Manager

The Area Registration Manager (ARM) implements a central registry for Area Registra-
tions as defined by the processing model (Subsection 4.2.3.1). Furthermore, it decides if
requests for new Area Registrations are granted based on the defined constraint from the
processing model (Condition 4.1 on page 61) and acts as the central synchronization point
between the Phase 3 Focused Situation Processing Instances as well as the Phase 2 Possible
Situation Indication Event classification implemented by the Processing Manager.
In order to allow the creation, update or removal of Area Registrations, the ARM pro-

vides the Area Registration Service used by the Processing Manager and Focused Situation
Processing Manager.
The ARM internally manages multiple Area Registration Manager Instances, one for

each Scenario Processing Template in order to track its Area Registrations.

6.2.1.2. Processing Manager (Implements Phases 0 & 2)

The Processing Manager (PM) oversees the overall Focused Situation Processing process
by implementing the initial setup of new processing templates (Phase 0) as well as the

140

6.2. Component View

Processing
Manager

Event Stream
Manager

Area Registration
Manager

Background
Knowledge

Base Manager

Event Flow

Service Call

Event Stream
Processing

Possible
Situation Indication

Processing Manager

Focused Situation
Processing Manager

Scenario
Processing Template
Repository Manager

Result
Receiver

Dependency

Drools

Scenario
Specific

Extensions

Core components
implementing the
processing model

Core components
implementing the
processing model

Inbound
Events to
analyze

Outbound
Processing
Result Events

(PM) (ARM) (ESP) (ESM)

(RR)

(FSPM)

(SPTR)

(PSIPM)

(KB)

Focused
Situation Processing

Manager Service

Area Registration
Service

Possible Situation
Indication Processing

Manager Service

Scenario Processing
Template Repository
Service

Result Receiver
Service

Knowledge
Base Query

Service

Event
Stream
Subscription
Service

Figure 6.2.1.: Component view of the Prototype as discussed in Sections 6.2.1 and 6.2.2.

141

6. Prototype

classification of raised Possible Situation Indication Events1 (Phase 2). The PM offers no
services to the other components.
For Phase 0 the PM utilizes the Scenario Processing Template Repository Service to

retrieve the available Scenario Processing Templates. The retrieved templates are used to
generate the Phase 1 Possible Situation Indication Stream Processing Topologies together
with information obtained from the Background Knowledge Base Query Service. For the
generated topologies the PM triggers the set up and start of the Phase 1 Possible Situa-
tion Indication Processing by using the Possible Situation Indication Processing Manager
Service.
For Phase 2 the Processing Manager receives Possible Situation Indication Events from

the Phase 1 - Possible Situation Indication Processing (implemented by the Possible Sit-
uation Indication Processing Manager component) via an event queue. For the received
events, the PM implements the Phase 2 classification (Section 4.5). If the classification
results in a new possible situation, the PM triggers the set up and start of a new Focused
Situation Processing Instance by invoking the Focused Situation Processing Manager Ser-
vice.

6.2.1.3. Possible Situation Indication Processing Manager (Implements Phase 1)

The Possible Situation Indication Processing Manager (PSIPM) implements the Possi-
ble Situation Indication stream processing (Phase 1) based on a given stream processing
topology (Subsection 4.2.4), provided by the Processing Manager. The PSIPM utilizes
the functionality of the Event Stream Processing component for the stream processing.
Further it obtains the needed event streams from the Event Stream Subscription Service
provided by the Event Stream Manager component. The processing results of the imple-
mented Phase 1 processing, a stream of Possible Situation Indication Events, is published
to an event queue which is consumed by the Processing Manager to classify the raised
indications.
The PSIPM internally creates a Possible Situation Indication Processing Instance for

each deployed stream processing topology (Figure 6.2.2). To trigger the creation of new
instances, the component provides the Possible Situation Indication Processing Manager
Service which is used by the Processing Manager.

6.2.1.4. Focused Situation Processing Manager (Implements Phase 3)

The Focused Situation Processing Manager (FSPM) implements Phase 3 of the processing
model by providing the situation specific iterative processing as defined in Section 4.6.
Similar to the PSIPM, this component uses the Event Stream Processing component to

1This includes triggering the creation of new Focused Situation Processing Instances if needed.

142

6.2. Component View

Possible Situation Indication
Processing Manager

Processing
Manager

Event Stream
Manager

Event Flow

Service Call

Event Stream
Processing

Dependency

Drools

(PM)

(ESP)

(ESM)

(PSIPM)

Possible Situation
Indication Processing

Manager Service

Event Stream
Subscription
Service

Possible
Situation Indication

Processing Manager
Service Impl.

Possible
Situation Indication

Processing Instance
instantiates

Possible
Situation Indication

Processing Instance

Possible
Situation Indication

Processing Instance

Possible Situation Indication Events

Figure 6.2.2.: Components of the Possible Situation Indication Processing Manager
(PSIPM)

Processing
Manager

Event Stream
Manager

Area Registration
Manager

Background
Knowledge

Base Manager

Event Flow

Service Call

Event Stream
Processing

Result
Receiver

Dependency

Drools

(PM) (ARM) (ESP)

(ESM)

(RR)
(KB)

Focused
Situation Processing

Manager Service

Area Registration
Service

Result Receiver
Service

Knowledge
Base Query

Service

Event
Stream
Subscription
Service

Focused Situation Processing Manager (FSPM)

Focused Situation
Processing Manager

Service Impl.

Focused
Situation Processing

Instance

Focused
Situation Processing

Instance

Focused
Situation Processing

Instance
Instantiates

Figure 6.2.3.: Components of the Focused Situation Processing Manager (FSPM)

143

6. Prototype

implement the event stream processing. Further it uses the Event Stream Subscription
Service from the Event Stream Manager component to subscribe to the required event
streams.
As the Phase 3 processing is allowed to retrieve additional background knowledge, the
FSPM uses the Background Knowledge Base Query Service provided by the Background
Knowledge Base Manager. The results from the Phase 3 processing are forwarded to the
Result Receiver component via its Result Receiver Service.
Similar to the PSIPM, the FSPM creates several Focused Situation Processing Instances

(possibly multiple per scenario template) in order to analyze multiple (potential) situations
(Figure 6.2.3). To allow the creation of new Focused Situation Processing Instances, the
FSPM provides a Focused Situation Processing Manager Service used by the PM to create
new instances.

6.2.2. Supporting Components

Aside from the so far presented core components that implement the processing model,
several supporting components exist, which are discussed in the following subsections.

6.2.2.1. Scenario Processing Template Repository Manager

The Scenario Processing Template Repository Manager (SPTRM) provides access to the
Scenario Processing Templates so that they can be implemented by the processing system.
The SPTRM loads the templates from files where they are specified using the defined
SPTL (Chapter 5). To load the templates, the component implements a parser for the
SPTL based on the ANTLR [Ant] parser generator.
To access the loaded templates, the SPTRM provides the Scenario Processing Template

Repository Service which is used by the PM to retrieve the available templates when the
overall processing system starts.

6.2.2.2. Event Stream Processing

The Event Stream Processing (ESP) component implements the common functionality
needed to execute event stream processing topologies based on the JBoss Drools Fusion
[dro] rule engine which is utilized by the PSIPM and FSPM components. The component
can be seen as a supporting library and does not offer its own service.

6.2.2.3. Event Stream Manager

The Event Stream Manager (ESM) provides the capability to subscribe to event streams
by providing an Event Stream Subscription Service. The service is used by the PSIPM
and FSPM components. Once a subscription is made, the ESM creates an event queue for

144

6.3. Run-Time View

the subscription and streams the requested events to the receiving component through the
created event queue.
For this prototype the ESM reads the (measurement data) events from a number of CSV

files available to the ESM (Figure 6.4.1) and sends them to the receiver as event streams.

6.2.2.4. Background Knowledge Base Manager

The Background Knowledge Base Manager (KB) provides access to the background knowl-
edge available for the currently monitored system by providing a Background Knowledge
Base Query Service. The service is used by the PM and FSPM components to retrieve
background information based on the current Scenario Processing Template and the cur-
rently indicated or analyzed (Possible) Situation.
The KB is queried using SPARQL queries which are processed with the help of Eclipse

RDF4J2 [rdf]. The knowledge base contents are read from two Turtle [BBL11] files, one
for specifying the domain specific schema (e.g. for the Smart Grid domain as illustrated
in Figure 4.2.2 as Layer M1) and one for the actual information on the monitored system
(As illustrated in Figure 4.2.2 as Layer M0).

6.2.2.5. Result Receiver

The Result Receiver (RR) component receives interim and final processing results from
the FSPM component. To receive the events it provides a Result Receiver Service which
is consumed by the FSPM. In the current prototypical implementation the RR writes the
result events to a set of log files.

6.2.2.6. Scenario Specific Extensions

Aside from the components of the processing system, scenario-specific components may ex-
ist. Such components may provide domain specific methods like for example a geographical
clustering function needed for the cloud tracking scenario (Subsection B.1.1). In general
the prototype is completely independent of these scenario-specific extensions, they are only
referenced by Scenario Processing Templates as part of their processing logic.

6.3. Run-Time View

In order to illustrate how the prototype implements the processing model, the following
subsections discuss the realization of the 4 phases defined by the processing model. Af-
terwards Subsection 6.3.5 discusses the functionality of the Area Registration Manager
component as it provides the central synchronization between multiple Focused Situation
Processing Instances and can thus be seen as an essential part of the prototype and the

2Formerly known as Sesame

145

6. Prototype

Processing
Manager

Scenario Processing
Template

Repository
Service

Stream
Processing

Topology Builder

Possible Situation
Indication Processing

Manager Service

Knowledge
Base Query

Service

Possible Situation
Indication

Stream

Possible Situation
Indication
Processing
Instance

loop templates

subscribeToStream()

nodesToMonitor = queryIndicationNodes()

topology = generateTopology(nodesToMonitor)

query()

start(topology, queue)

startup()

New()

templates = getTemplates()

startIndicationProcessing(topology, queue)

Figure 6.3.1.: Phase 0: Initialization of Scenario Processing Templates by the processing
system.

realization of the processing model. Details on the supporting components is omitted as
they do not directly realize the processing model defined by this work.

6.3.1. Phase 0: Possible Situation Indication Processing Initialization

The initial step to configure the processing system for a given Scenario Processing Template
is the initialization of the Possible Situation Indication Processing to enable the processing
system to detect Possible Situations. The initialization process is defined by the processing
model as Phase 0 (Section 4.4) and in particular by Algorithm 1.

The processing system implements this algorithm in the Processing Manager (PM) which
executes the Indication Nodes Query Function defined in the Scenario Processing Template
with the help of the Knowledge Base Query Service. For the resulting set of nodes the PM
executes the Indication Stream Processing Builder that was constructed from the Scenario
Processing Template. The result of the builder call is a Stream Processing Topology. To
execute this topology, the PM utilizes the Possible Situation Indication Processing Manager
Service (PSIPM) and requests the instantiation of the given topology. In turn the PSIPM
creates a new Possible Situation Indication Processing Instance which implements the
actual event stream processing as discussed in the next subsection.

146

6.3. Run-Time View

6.3.2. Phase 1: Possible Situation Indication Processing

The actual event stream processing to detect Possible Situation Indications is implemented
in the Possible Situation Indication Processing Manager (PSIPM). The PSIPM encapsu-
lates the processing for each Scenario Processing Template in a separate Possible Situation
Indication Processing Instance. The Instance uses the event stream processing functionality
of the Event Stream Processing component which deploys the provided Stream Processing
Topology on the Drools Fusion rule engine and provides the necessary environment. The
required event streams are obtained by requesting suitable subscriptions from the Event
Stream Subscription Service.
Once the stream processing is started it can generate Possible Situation Indication Events

which are published by the Possible Situation Indication Processing Instance to an event
queue provided during the instantiation of this instance. The queued indication events are
then handled by the Processing Manager.

6.3.3. Phase 2: Focused Situation Processing Initialization

Phase 2 of the processing model is implemented by the Processing Manager (PM). The PM
receives the Possible Situation Indication Events from the PSIPM instances and classifies
each of the events as specified in Section 4.5 (Algorithm 2). The resulting interactions with
other components of the prototype are illustrated in Figure 6.3.2.
After the PM receives an indication event, it executes the Pre-Classification. If the Pre-

Classification function classifies the event as a duplicate, the PM drops it without further
consideration. If the event passed the Pre-Classification, the PM determines the initial
time frame. Further it determines the potential Locked Area and potential Focus Area
by executing the corresponding queries from the Scenario Processing Template against
the Knowledge Base Query Service. Afterwards the PM needs to determine collisions
with the Area Registrations of running Focused Situation Processing (FSP) Instances. To
determine the possible collisions, the PM tries to acquire an Area Registration based on
the determined initial Time Frame and the potential Locked and Focus Area.
Based on the results of the Area Registration request, the remaining classification is

executed utilizing the classification rules specified in the Scenario Processing Template.
Afterwards the resulting actions are executed: If the classification requires the assignment
of the indication event to already running FSP Instances, the event is assigned to them
by calling the FSPM together with the identifier of the FSP Instance which then forwards
the event to this FSP Instance. In a similar way the PM can request the creation of a new
FSP Instance by requesting it from the FSPM which in turn initializes and starts the new
instance.
If the Area Registration request is successful but the classification of the indication

event does not result in the start of a new FSP Instance, the PM releases the created Area
Registration so that it can be deleted.

147

6. Prototype

Processing
Manager

alt preClassification Result

[ContinueClassification]

[DropIndicationEvent]

loop actions

[AddToExisting Action Assigned]

alt Registration successful AND startNew FSP allowed AND startNew FSP Requested

[YES]

[NO]

releaseRegistration(...)

startNew(...)

handleRegistrationResult(RegResult)

handleEvent(PossibleSituationIndication)

actions= classifyRegistrationResult(...): Set of CollisionActionTuples

requestAreaRegistration(LaFa , tf)

«create»

LaFa= queryPotentialLaFa(...)

preClassification(...): boolean

tf= determineInitialTimeFrame(...)

processRequest()

Possible Situation
Indication

Stream

Each iteration of
the loop will assign
the Indication to
a different FSP
Instance #x

Possible Situation Indication Event
is dropped as no Action was taken
based on it

Focused Situation
Processing

Instance #y

Focused Situation
Processing

Instance #x

Focused Situation
Processing

Manager Service

addAdditionalIndication(...)
handleAdditional
Indication(...)

Knowledge
Base

Query Service

Area
Registration

Manager
Service

Figure 6.3.2.: Phase 2: Handling of raised Possible Situation Indication Events.

148

6.3. Run-Time View

6.3.4. Phase 3: Focused Situation Processing

All processing regarding Phase 3 of the processing model is encapsulated in the Focused Sit-
uation Processing Manager component. The component manages each requested Focused
Situation Processing (FSP) as a separate FSP Instance which encapsulates all information
on the corresponding (possible) situation.

The component provides a Focused Situation Processing Management Service which is
used by the Processing Manager to trigger the creation of new FSP Instances (Figure 6.3.2)
and to assign additional indications.

A FSP Instance implements the Phase 3 Algorithm specified by the processing model
(Algorithm 3). Figure 6.3.3 illustrates the processing flow of a FSP Instance and the
resulting interactions with other components of the prototype.

The focused situation processing is defined by the processing model as an iterative pro-
cess which is implemented as such by the prototype. As preparation for the iterative
processing, the FSP Instance creates a FSP Context object and initializes it with the con-
text initialization function defined in the Scenario Processing Template. Then, for each
iteration, the FSP Instance first executes the scenario-specific Pre-Iteration function on the
FSP Context followed by the execution of the FSP Iteration Stream Processing Builder3

based on the resulting FSP Context in order to generate the stream processing topology
for the current iteration. The FSP Instance then executes the stream processing which
stores its results into the FSP Context. As defined by the algorithm, the results in the
FSP Context are then provided to the scenario-specific Post-Processing function.

After the processing is finished, the FSP Instance evaluates all specified interim result
publication rules. For any rule that is positively evaluated, the corresponding Interim
Result Event is created from the contents of the FSP Context and forwarded to the Result
Receiver. Afterwards all specified termination rules are evaluated against the FSP Context
and the FSP Instance is terminated if requested by any of the rules. If the instance is
terminated, the final result event is forwarded to the Result Receiver and if not requested
otherwise the Area Registration Manager is informed that the Area Registration of the
current iteration can be released.

If the processing is not terminated by any of the specified rules, the FSP Instance pre-
pares for the next iteration by determining the next iterations time frame and by executing
the next iteration Locked Area and Focus Area queries against the Knowledge Base Query
Service. Based on the results the FSP Instance tries to acquire a new Area Registration
for the next iteration.

While acquiring the initial Area Registration in Phase 2 is done asynchronously, here
acquiring the Area Registration for the next Iteration is done synchronously as the corre-

3The FSP Iteration Stream Processing Builder was created by the Scenario Processing Template Repos-
itory Manager from the builder description contained in the Scenario Processing Template.

149

6. Prototype

loop InterimPublicationRules

opt res

[containsInterimResultEvent]

loop TerminationRules

opt res

[containsResultEvent]

opt Keep AreaRegistration?

[NO]

[YES]

Terminate InstanceTerminate Instance

alt res

[collisionDetected]
Terminate InstanceTerminate Instance

 loop

res= requestAreaRegistration(nextLaFa, nextTF): RegistrationResult

requestMerge(...)

res= evaluateTerminationRule(...):
ResultEvent

res= evaluateInterimResultPublicationRule(context):
Event

topology= generateTopology(context)

context=
«create»

iteration(context)

nextLaFa= query(...)

markAsDone(...)

contextInitialization(context)

nextTF= determineNextIterationTimeFrame(context)

publishInterimResult(res)

postIteration(context)

preIteration
(context)

streamProcessing(topology,context)

start()

releaseRegistration(...)

Focused Situation
Processing

Instance #x

Focused Situation
Processing

Context

Result
Receiver
Service

Iteration
Stream

Processing
Builder

Area
Registration

Manager Service

Knowledge
Base Query

Service

Further Queries to the
Knowledge Base Query Service
are possible from the MVEL
based functions or the Stream
Processing Builder depending
on the Scenario Processing
Template

Figure 6.3.3.: Phase 3: Iterative Focused Situation Processing implemented by Focused
Situation Processing Instances.

150

6.3. Run-Time View

sponding processing instance can not continue with the processing until the registration
was granted.
If the area registration request results in a collision with another FSP Instance, the

colliding FSP Instance requests the merging of the two colliding instances from the Area
Registration Manager which is responsible for the coordination between multiple FSP
Instances as discussed in the next Subsection (6.3.5).
If the area registration request succeeds, the FSP Instance starts with the processing of

the next iteration.

6.3.5. Area Registration Manager

The Area Registration Manager (ARM) acts as the central authority for granting Area
Registrations. It thereby implements the Focus and Locked Area concept defined by the
processing model (Subsection 4.2.3). Further it acts as central synchronization point be-
tween the Phase 2 and 3 processing (discussed in the following subsection) and is the
coordinator for the FSP Instance merging (discussed in Subsection 6.3.5.2).

6.3.5.1. Synchronization between Phase 2 and Phase 3

As discussed in Subsection 4.5.10 the processing model requires the synchronization be-
tween the Phase 2 and Phase 3 processing as the classification from Phase 2 must not
outrun any FSP Instance of Phase 3.
This synchronization requirement is realized by the ARM. The ARM grants and keeps

track of the Area Registrations of all FSP Instances and thus has an overview over the
current iteration time frames of each FSP Instance as they are part of the Area Registration.
Further the Phase 2 processing also requests Area Registrations in preparation for its
classification process.
To prevent the Phase 2 processing from outrunning the Phase 3 processing, the Area

Registration Manager may delay the area registration requests originating from Phase 2,
based on the requested time frame until all FSP Instances have at least reached the re-
quested time frame. For this purpose the Phase 2 Area Registration request is implemented
based on a callback as shown in Figure 6.3.2.
In order to implement this mechanism, the ARM needs to be informed if an FSP Instance

has finished its processing for the time frame contained in its Area Registration. For the
normal iterative processing flow of the FSP Instances, this notification is implicitly made
when an FSP Instance requests a new Area Registration thus implicitly stating that it is
finished with the processing of the previous one. However, as the ARM is not informed
about life-cycle changes of the FSP Instances, FSP Instances explicitly need to mark Area
Registrations as “done” if they terminate without releasing their last Area Registration4.

4This behavior can be explicitly requested by the FSP Instance as a termination rule specifies if the
current Area Registration should be kept or released.

151

6. Prototype

6.3.5.2. Merge Processing Coordination

Aside from the synchronization between Phase 2 and 3, the ARM is also part of the
coordination among FSP Instances as they request new Area Registrations.
If such an area registration request results in a collision between two or more FSP

Instances, the processing model defines that the colliding FSP Instances have to be merged
into one. To realize this merging, the ARM provides a synchronization between colliding
instances as follows (Figure 6.3.4):

1. If an FSP Instance A detects a collision with another FSP Instance B, FSP Instance
A requests a merge with Instance B from the ARM. The ARM then blocks the calling
FSP Instance A till the merge has been completed.

2. in the meanwhile, FSP Instance B requests a new Area Registration from the ARM.
As Instance A requested a merge, the area registration request is not immediately
executed. Instead, the ARM executes the merge function defined in the Scenario
Processing Template in order to allow the transfer of information from the to be
terminated Instance A to Instance B.

3. Once the merge function was executed, the area registration request of Instance B
is executed and the result returned to Instance B which will then continue with
the processing. Furthermore, the blocking merge request of Instance A returns,
thereby informing Instance A that the merge has been completed and Instance A is
terminated afterwards.

6.4. Deployment

The current prototype is implemented as a single Java application that runs on a single
machine. The prototype obtains its configuration as well as the event streams from a
number of files (Subsection 6.4.1). The processing results are written into protocol files
(Subsection 6.4.2). Aside from the prototype itself two additional components have been
created (Figure 6.4.1) to allow testing the prototype:

Data Simulator The data simulator provides test event streams as well as relationship data
to allow the evaluation of the processing system prototype as well as of the processing
model.

Result Visualization The result visualization allows the visualization of the processing re-
sults generated by the prototype together with the simulated input data to ease the
verification of the processing results and development of new Scenario Processing
Templates.

152

6.4. Deployment

loop mrs

requestAreaRegistration()

nextIterationAreaRegistration()

getResult()

getResult()

wait()

mrs= findMatchingMergeRequests(): Set of MergeRequests

mr= requestMerge(FSP Instance B): MergeRequest

:registrationResult

normal AreaRegistrationRequestExecution()

executeMergeFunction()

terminate()

megreNeeded()

«create»

return from getResult()

Area
Registration

Manager
Service

Focused
Situation

Processing
Instance A

Focused
Situation

Processing
Instance B

Merge
Request

Figure 6.3.4.: Phase 3: Coordination of the merge between two FSP Instances by the
Area Registration Manager.

153

6. Prototype

6.4.1. Prototype Configuration and Input Data

The prototype depends on several data and configuration files:

Background Knowledge The prototype imports the background knowledge base contents
from two Turtle files, one providing the domain specific schema (e.g. the Smart
Grid Schema) and the other providing the actual background knowledge regarding
the monitored system based on the domain specific schema (e.g. the available solar
panels and their geographical positions).

Event Stream Contents The prototype loads the measurement data streams that are to be
processed from a number of CSV files. The mapping of the CSV file contents to the
event streams defined in the background knowledge is defined in a configuration file
eventStreamSources.cfg. The configuration file further specifies which column of each
of the specified CSV files contains the measurement time and which column the
measurement value.

Scenario Processing Templates The prototype reads the Scenario Processing Templates
from a number of SPTL files.

6.4.2. Prototype Processing Output

The prototype generates a number of protocol files which are located in <runtime>/log/run_<

timestamp>/. The actual processing results are written into a separate protocol file for each
started FSP Instance. Further several more protocols are written in order to document
made area registration requests, the classification of raised Possible Situation Indications
as well as the iterations done by the FSP Instances.
The generated protocols are used by the Result Visualization tool to visualize the pro-

cessing results.

6.5. Conclusion

The prototype implements the designed processing model in a single Java application,
which together with the Data Simulator and the Result Visualization allows testing the
processing model. Further the prototype implements a parser and interpreter for the
designed SPTL thus allowing to test the definition of scenario processing templates defined
in SPTL.
The designed architecture of the prototype further demonstrates how the different phases

of the processing model can be compartmentalized into separate components with a limited
set of interactions and a central synchronization component (Area Registration Manager).
Due to this decoupling of the components, a possibility for distributing the processing
system for scalability is outlined.

154

6.5. Conclusion

Background
Knowledge

Measurement

Processing
Protocols

Simulation
Information

«executionEnvironment»

Java 8

DataSimulator

«executionEnvironment»

Java 8

Processing
System

Java 8

Result
Visualization

Scenario
Processing
Templates

Background
Knowledge

Schema

requires

requires

requires
generates

generates

generates

requires

requiresCSV

«executionEnvironment»

Data

generates
requires

Figure 6.4.1.: Deployment view of the prototype with the surrounding systems, the Data
Simulation and the Result Visualization and the produced and consumed data and configu-
ration files.

The prototype together with the Data Simulator and the Result Visualization as shown
in Figure 6.4.1 are the basis for the evaluation of the processing model and specification
language discussed in the next chapter and Appendix C.

155

7. Evaluation

Contents

7.1. Mapping of the Evaluation to the Defined Research Questions 158

7.2. Evaluation Plan . 161

7.3. Cloud Tracking Scenario Realization . 163

7.4. Case 1: Single Situation Detection and Tracking 174

7.5. Telecommunications Network Monitoring: Denial of Service Tracing 187

7.6. Case 5: DoS Tracing . 196

7.7. Synchronization Required by the Processing Model 200

7.8. Limitations of the Processing Model and Language 200

7.9. Preconditions for the Application of the Processing Model 202

7.10. Conclusions . 203

The goal of this work is to allow the development of situation-aware adaptive processing
systems without the need to implement a specific processing system for each scenario
(Subsection 1.4). The approach to achieve this goal is to define a situation-aware adaptive
processing model (Chapter 4) together with a specification language (Chapter 5) which
allows the specification of situation-aware adaptive processing tasks based on the defined
model so that they can be executed by a generalized processing system.
The evaluation discussed in this chapter shows that the specification language can be

used to define situation-aware adaptive processing tasks based on two example scenar-
ios from two different application domains. Based on these scenarios several tests were
conducted to demonstrate that the language is capable of defining all elements needed to
parameterize a processing system for a given scenario. Further, the tests demonstrate the
use of the designed situation-aware adaptive processing model as it is the foundation for
the realization of the two scenarios and the conducted tests.

The chapter starts with a discussion on how the resulting processing model and language
map to the defined research questions (Section 7.1). It then continues with a discussion
of the aspects of the processing model and language that need to be tested in order to
verify the solution’s suitability (Section 7.2). The remainder of this chapter then discusses

157

7. Evaluation

Figure 7.1.1.: Overview of the implemented test cases and the functionality demonstrated
by each test case and the mapping of the research questions to the processing model and
language.

the realization of the two application scenarios (Sections 7.3 and 7.5) and based on it, the
two primary test cases 1 and 5 in detail as they demonstrate the central aspects of the
processing model (Sections 7.4 and 7.6). The additional test cases 2 to 4 are discussed in
detail in Appendix C. A general discussion on the limitations of the processing model is
given at the end of this chapter in Section 7.8.

7.1. Mapping of the Evaluation to the Defined Research Questions

The defined research questions (Section 1.3.1) are answered by the designed processing
model and language as discussed in the following paragraphs (Figure 7.1.1).

The overall research question that motivates this work is defined in Subsection 1.3.1 as
follows:

RQ1: How to allow situation-aware adaptive processing without the need to implement a
specialized solution for each scenario that requires a situation-aware adaptive pro-
cessing?

158

7.1. Mapping of the Evaluation to the Defined Research Questions

In order to find an answer to this question, this work approached the problem by designing a
situation-aware adaptive processing model and a language in order to allow the specification
of situation-aware adaptive processing tasks which can be executed by a generic processing
system. Tests conducted based on a created prototype demonstrate that the designed
processing model and language provide the expected situation-aware adaptive processing
mechanism without the need to create a specific implementation for each scenario (Scenario
Realizations 1 & 2 and Test Cases 1 to 5).

The overall research question was subdivided into four sub-questions which are discussed
and mapped to the conducted test cases in the following paragraphs:

RQ1.1: How can a generalized solution provide a processing system suitable to handle large
amounts of streaming data for a situation-aware adaptive processing?

The designed processing model defines a separation of the rapid detection or indi-
cation of possible situations from the more time consuming possible situation ver-
ification and its further analysis in order to cope with large amounts of streaming
data. This separation allows the usage of simple operations for detecting potential
situations in a possibly large set of inbound event streams while the later more re-
source intensive analysis is only executed for potential situations and thus only for
subsets of the overall streaming data. This two step mechanism is demonstrated in
particular by the Test Cases 1 & 3.

Furthermore, the Possible Situation Indication Processing itself provides two mech-
anisms to better cope with large sets of inbound events:

a) All background information that is needed for the possible situation indication
is retrieved before the stream processing starts (in Phase 0) as retrieving the
background information is considered an expensive operation.

b) The processing model allows the parallel execution of the possible situation
indication stream processing if supported by the scenario (Phase 1). The only
required synchronization between the parallel processes is performed based on
their processing result, the detected possible situation indications in Phase 2
which thus operates only on a reduced set of events.

The Phase 2 processing (Focused Situation Processing Initialization) further supports
reducing the event load with its pre-classification mechanism (Subsection 4.5.1).

The following resource intensive Focused Situation Processing (FSP) in Phase 3 is
also only executed for potential situations if the Phase 2 deemed it necessary. Fur-
thermore, the Phase 3 FSP is designed with only one synchronization point per
processing iteration with other FSP Instances1 thereby also allowing for a mostly
parallel execution of multiple Focused Situation Processing Instances.

1During the acquisition of the next iterations Area Registration.

159

7. Evaluation

In order to coordinate between multiple (possible) situations, the processing model
defines the concept of Area Registrations (Subsection 4.2.3.1) which consist of two
sets of nodes (the Locked Area and the Focus Area) together with a time frame during
which a registration is valid. The set of created Area Registrations serves as the single
synchronization point among all active FSP Instances (Phase 3) and the classification
of new potential situations (Phase 2). Thus, it effectively limits the parallelization
of any processing system implementing the designed model. The implementation of
this synchronization mechanism can however be based on systems like for example
Apache Redis [red] or Apache Zookeeper [Apai] which allow scalability for such data
structures.

RQ1.2: How can a generalized solution define the adaptation steps in a flexible and domain
independent way?

RQ1.3: How can a generalized solution define a suitable semantic definition that clarifies
the behavior during the whole situation-aware adaptive processing in particular the
behavior of automatic adaptations?

With regard to RQ 1.2 and RQ 1.3, the designed processing model defines when and
how adaptations take place:

a) Adaptations take place to start a new FSP Instance if a Possible Situation
Indication Event has been classified as New Possible Situation (Figure 4.5.1).

b) Furthermore, adaptations may take place for running FSP Instances after the
completion of an iteration as part of the preparation of the next iteration (Sub-
section 4.6.2).

For both kinds of adaptations the processing model requires the scenario processing
template to specify the tuple of Focus Area, Locked Area and Time Frame which
is used to implement the adaptation and to provide the synchronization between
multiple Focused Situation Processing Instances. Based on this the processing model
defines the behavior of such adaptation steps.

These adaptation processes are demonstrated in particular by the Test Cases 1, 3
and 4 (Sections 7.4, C.2 and C.3). The definition of the scenario-specific aspects of
the adaptation is demonstrated by the realization of the two application scenarios
(Section 7.3 and 7.5). Both scenarios require the initial adaptation of the processing
system to start new FSP Instances and the later adaptation of their running FSP
Instances.

RQ1.4: How can situation-aware adaptive processing tasks be specified for a generalized pro-
cessing system?

160

7.2. Evaluation Plan

This work defines the Scenario Processing Template Language (SPTL) (Chapter 5)
which allows the definition of Focused Situation Processing Tasks.

In order to demonstrate the suitability of the language, the language has been used
to specify two scenarios (Section 7.3 and Section 7.5). The language itself is domain
independent which is also demonstrated by the fact that each of the two realized
scenarios originates in a different application domain.

In order to evaluate the suitability of the processing definition, the prototypical im-
plementation uses these definitions for its processing for the five test cases conducted
for the evaluation.

7.2. Evaluation Plan

The remainder of this chapter will evaluate the processing model and language by applying
it to two scenarios. Each scenario is realized by describing the necessary scenario-specific
processing steps in a Scenario Processing Template. Based on these templates and the
processing system prototype, several tests are conducted to demonstrate and verify the
different aspects of the processing model. The whole evaluation process is structured as
follows:

7.2.1. Evaluation Part 1: Cloud Tracking Scenario

Realization of Cloud Tracking Scenario (Section 7.3)
Realization of the Smart Grid Cloud Tracking scenario as discussed in Section 2.1.1.
The scenario realization demonstrates how the SPTL can be used.

Based on the created scenario template, four test cases where executed in order to demon-
strate the processing models functionalities as well as to point out its limitation towards
the tracking of non uniquely identified situations (Case 4). The test cases are structured
as follows (Figure 7.1.1 provides an overview):

Case 1: Detection and Tracking of a Single Cloud (Section 7.4)
The first test case demonstrates the main functionality of the processing model to
detect, verify and track a situation based on the example of a single cloud passing
through an area with monitored solar panel installations. Thereby the test case
discusses the following aspects of the processing model:

• The Stream Processing Topology Builder for setting-up the Possible Situation
Indication and FSP Iteration stream processing topologies.

• The Possible Situation Indication Stream Processing and the generation of Pos-
sible Situation Indication Events.

161

7. Evaluation

• The Focused Situation Processing Initialization with regard to the Possible Sit-
uation Indication classification process and the initial adaptation of the process-
ing system by starting a new FSP Instance.

• The Focused Situation Processing with regard to the iterative processing, in-
cluding the verification of the possible situation, the adaptation of the FSP
Instance over time as well as the publication of interim processing results and
the termination of the FSP Instance.

While the initial test case demonstrates the positive case for the detection of a valid
situation and its analysis, the second case demonstrates the negative case where
Possible Situation Indication Events where raised for non-existing clouds.

Thereby, the test case demonstrates in particular:

Case 2: False Situations(Section C.1) • The situation verification by a started FSP In-
stance.

• The generation of processing results, in this case the generation of False Situa-
tion events.

Case 3: Single Cloud Bigger Than the Initial Focus Area (Section C.2)
The third test case demonstrates the impact of „big” situations which are not fully
covered by the initial Focus Area used to classify the raised Possible Situation In-
dications. As a result the test case demonstrates the merging of two FSP Instances
which were created for the same situation (Cloud).

Thereby, the test case demonstrates in particular:

• The merging of multiple FSP Instances.

• The adaptation of FSP Instances in order to fully cover a situation.

The final test case based on the cloud tracing scenario, consists of two parts. In Part
1 it demonstrates the handling of multiple (two) separate situations by the processing
model. Part 2 discusses the temporary overlap of these two situations. Based on this
temporary overlap the limitation of the model to handle the ambiguity of tracked
situation identities is demonstrated.

Thereby, the test case demonstrates in particular:

Case 4: Multiple Clouds with a Collision Due to a Temporary Overlap(Section C.3) •
The detection and tracking of multiple separate situations.

• The FSP Instance merging and splitting.

• The limitation of the processing model with regard to handling a temporary
situation overlap due to the ambiguity of the situation identities.

162

7.3. Cloud Tracking Scenario Realization

7.2.2. Evaluation Part 2: Telco Denial of Service (DoS) Detection and Tracing

Realization of the DoS Detection and Tracing Scenario (Section 7.5)
Realization of the Telecommunications Network Monitoring for the Denial of Service
Attack Scenario (Subsection 2.1.2.1) in order to demonstrate the applicability of the
processing model and language to another domain.

Based on the scenario template, the fifth test case was conducted:

Case 5: Detection and Tracing of a DoS Attack (Section 7.6)
Test Case 5 is based on the realized DoS Detection and Tracing Scenario Template
and demonstrates the application of the processing model to another application
domain. In doing so, it further demonstrates the use of topology based background
knowledge.

7.3. Cloud Tracking Scenario Realization

This section discusses the realization of the Cloud Tracking Scenario (Section 2.1.1) based
on the developed processing model and Scenario Processing Template Language. The
following Section 7.4 then discusses the resulting behavior of the processing model based on
a test case and the implemented processing system prototype. Furthermore three additional
test cases based on the Cloud Tracking Scenario are discussed in Appendix C.

7.3.1. Scenario Realization

The Cloud Tracking Scenario requires the processing system to monitor a potentially large
number of solar panel installations for a drop in their energy production (Phase 1, Possible
Situation Indication) in order to detect and indicate potential clouds. Based on this it
needs to verify that the indication is valid and determine the clouds size and trajectory
(Phase 3, Focused Situation Processing). The following subsections discuss the realization
this process based on the three phases of the processing model.
The following descriptions are limited to only the relevant aspects of the processing

description, a full Scenario Processing Template is given in Appendix B.1.

The processing is based on energy production measurement events provided by the Test
Data Simulation (Subsection 7.3.2). For this simulation each measurement event contains
the relative energy production of one solar panel installation. To simplify the scenario
realization, the provided values are considered to be normalized as a relative value to the
maximum production of the specific solar panel installation. Further the normalization
values are considered to be independent of lower production in the morning an evening as
the sun raises or sets.

163

7. Evaluation

7.3.1.1. Phase 0&1: Possible Situation Indication

In order to detect possible situations (clouds), single solar panels need to be monitored
for a rapid decrease of their energy production as they become shaded by a cloud. This
detection needs to be done for all solar panels where measurement data is available. The
selection of these solar panels is specified in the processing template as a SPARQL query
which selects the nodes that should be monitored and assigns the result to the pre-defined
variable $$indicationNodes as shown in Listing 7.1 Line 2.
The stream processing needed for each solar panel that detects the rapid energy produc-

tion decrease, is expressed as a Stream Processing Builder in Lines 4 to 20. The builder
contains a single rule template as shown in Lines 6 to 18 which contains a placeholder ($$pv)
for the actual solar panel to be monitored. The value for this placeholder is provided by
the surrounding foreach statement (Line 5) which iterates over all nodes in $$indicationN-
odes which have been selected for the possible situation indication processing. When the
builder is executed it will thus generate a single stream processing rule based on the given
rule template for each node selected by the initial SPARQL query.
The stream processing rule template specifies that a window over two of the events re-

ceived from the PVPowerProduced event stream of the monitored panel should be created.
As aggregation function for the time frame, the custom „SuddenChangeDetector” aggre-
gation function is used. The output of the aggregation function represents the difference
between the maximum value and the minimum value of the measurements provided in the
event stream. If the resulting delta is greater than 502 (Line 14), the stream processing
rule body is executed. The rule body specifies that a new indication should be published
for the monitored solar panel (Line 16). The raised indications are then handled by the
next processing phase, the Focused Situation Processing Initialization.

Listing 7.1: Possible Situation Indication for Cloud Tracking

1PossibleSituationIndication {
2$$indicationNodes from sparql "?VALUE rdf:type smartgrid:device. ?VALUE

smartgrid:providesMeasurement ?point. ?point rdf:type smartgrid:
PVPowerProduced.";

3

4IndicationStreamProcessingBuilder{
5foreach $$indicationNodes as $$pv {
6rule [DROOLS_TEMPLATE]
7when
8Number($delta : doubleValue)
9from accumulate(
10MeasurementEvent($val:value)
11over window:length(2)
12from entry -point "$${{pv?PVPowerProduced }}",
13SuddenChangeDetector($val)

2The power production measurement values in the PVPowerProduced events is the solar panels output
in percent in relation to the total possible output of this panel. Thus, the given difference threshold
refers to a drop in production of 50%.

164

7.3. Cloud Tracking Scenario Realization

14) eval($delta > 50)
15then
16publishIndication("$${{pv}}");
17end
18[/ DROOLS_TEMPLATE] publishes indications;
19}
20}
21};

7.3.1.2. Phase 2: Focused Situation Processing Initialization

Based on the raised possible situation indication events, Focused Situation Processing
Instances need to be started, however only if a received indication event concerns a new
possible cloud. As specified by the processing model, the Focused Situation Processing
Initialization phase provides the general mechanism to classify indications in order to
decide if they are to result into a new Focused Situation Processing Instance. As defined
in Section 4.5 (Figure 4.5.1), the classification is based on the following steps which are
discussed for this scenario in the following subsections:

1. De-Duplication

2. Potential Locked, Focus Area and Time Frame determination

3. Collision Detection & Collision Classification

Pre-Classification

The first part of the process is the pre-classification to filter out reoccurring events
within a specified time frame. For this scenario, assuming that not another cloud needs to
be detected for any given panel earlier than 5 minutes after a previous cloud shaded this
panel, all indication events within 300 seconds after an indication was received for a given
panel can be considered as duplicates and are thus filtered out.
As the general pre-classification mechanism is scenario independent, only the scenario-

specific time frame needs to be specified in the template as shown in Listing 7.2 Line
2.

Potential Locked, Focus Area and Time Frame determination

For the classification of a raised possible situation indication, a potential Locked Area
and Time Frame is needed (Section 4.5.2). Following Definition 4.3, the Locked Area has to
represent the identity of the occurring situation. For a newly indicated possible situation,
the nodes contained in the indication can be considered as representing the identity of
the potential situation as these nodes represent the solar panel(s) currently shaded by the

165

7. Evaluation

potential cloud. Thus, the potential Locked Area can be set to the set of nodes from
the possible situation indication event as defined in Line 4.

Further a potential Focus Area needs to be defined that may be used by the Focused
Situation Processing Instance’s first iteration, if the classification results in a new Instance
being started. The initial Focus Area for this scenario is based on the selection of all
solar panels in geographical proximity to the indicated nodes from the possible situation
indication event. As such the initial Focus Area is defined by a SPARQL query based on
the contents of $$indicatedNodes as shown in Line 6.

The initial Time Frame can be defined as a time frame starting at the time indicated
by the possible situation indication event and ending 300 seconds later in order to cover a
large enough time frame to verify that the solar panel’s production stays low and was not
just temporarily dropping due to some fluctuation (Line 17).

Based on the potential Locked Area and initial Time Frame, the collision detection and
classification can take place.

Collision Detection & Collision Classification

The collision detection itself is defined by the processing model in a scenario independent
way and needs no scenario-specific parametrization. However, the classification of the
results is partly scenario-specific (see Section 4.5.4).
The template language provides two separate possibilities to specify the scenario-specific

parts of the collision classification. The first option is to specify them as an MVEL function
while the second option is based on a number of rules (Section 5.5.3). For this scenario,
the classification is specified rule based as the additional functionality available through
MVEL is not needed.
The classification rules need to be specified based on the collision grade between the

potential Locked Area of the Possible Situation and the Locked Area and Focus Area of
already running Focused Situation Processing Instances.
The Possible Situation Indication Processing (Phase 1) of the cloud tracking scenario

and the following Locked Area determination will always result in a potential Locked Area
which only contains a single node. Thus, only three cases need to be distinguished for the
collision classification:

1. No overlap of the potential Locked Area at all.

2. Full overlap of the potential Locked Area with the Focus Area of an already running
Focused Situation Processing Instance.

3. Full overlap of the potential Locked Area with the Locked Area of an already running
Focused Situation Processing Instance.

166

7.3. Cloud Tracking Scenario Realization

For the first and last case, the processing model defines a fixed scenario independent
behavior3. Only the second case is scenario-specific and needs to be expressed as a rule.
For this case, the indication is considered to be related to the colliding Focused Situation
Processing Instance and thus no new processing instance must be created. This behavior
is specified by the collision action rule in Line 194.

The specification of the Collision Action rule concludes the specification needed for the
Focused Situation Processing Initialization.

Listing 7.2: Focused Situation Processing Initialization for Cloud Tracking

1FocusedProcessingInitialization {
2duplicationThreshold 300s;
3

4potentialLockedArea $$indicatedNodes;
5

6potentialFocusArea from sparql "$${{ indicatedNodes }} smartgrid:hasLocation ?LOC1
. ?VALUE smartgrid:hasLocation ?LOC2.

7?LOC1 smartgrid:hasLat ?LAT1.
8?LOC2 smartgrid:hasLat ?LAT2.
9?LOC1 smartgrid:hasLon ?LON1.
10?LOC2 smartgrid:hasLon ?LON2.
11

12FILTER (?LAT1 +0.0035 > ?LAT2) .
13FILTER (?LAT1 -0.0035 < ?LAT2) .
14FILTER (?LON1 +0.0035 > ?LON2) .
15FILTER (?LON1 -0.0035 < ?LON2) . ";
16

17initialTimeFrame startsAt $$indicatedTime withDurationOf 300s ;
18

19collisionAction preventNew if FA overlap == 100% ;
20};

7.3.1.3. Phase 3: Focused Situation Processing (FSP)

If the Phase 2 Focused Situation Processing Initialization classified an Indication as a New
Possible Situation (Subsection 4.5.5), a new Phase 3 Focused Situation Processing (FSP)
Instance is started by the processing system. For the Cloud Tracking Scenario, the FSP
has to provide the following functionality:

1. Verify that the indicated possible situation really concerns a cloud.

2. Determine the position and size of the cloud.

3. Follow the cloud over time to allow determining its speed and trajectory.

3For the first case, the model defines the fixed scenario independent classification as New Possible Situ-
ation. For the third case the model defines the fixed scenario independent classification as Additional
Indication.

4The specification of this rule is needed as the default behavior if no collision-handling rules are specified
(defined in Subsection 5.5.3) is to trigger a new FSP Instance in this case.

167

7. Evaluation

The verification is performed by the very first FSP Iteration by identifying all shaded solar
panels in the initial Focus Area and determining if a cluster of more than one solar panel
can be found.
Once the situation was verified, determining the position and size as well as following

the cloud when it moves, is realized by the following process (Figure 7.3.1):

Step 1: Generate and execute a Stream Processing Topology for the current Focus Area
which checks for each node (Solar Panel) from the Focus Area if it is shaded during
the current time frame. If a panel was shaded, it is added to the set $$positiveNodes.

Step 2: After the stream processing, all nodes from $$positiveNodes are clustered based on
their geographical location. The biggest cluster resulting from this process is assumed
to represent the currently tracked cloud. The nodes of this cluster are added to the
set $$verifiedNodes (performed during the Post-Processing Step).

Step 3: If $$verifiedNodes contains less than two nodes, terminate the processing as no valid
cloud could be found. For this case, two separate reasons can be distinguished:

a) If this was the first iteration, terminate the processing as a FalseSituation as
the cloud was not found and thus the indicated possible situation could not be
verified.

b) If this was the second or a later iteration, terminate the processing as Cloud
Lost as the cloud was tracked for a number of iterations but now disappeared.

Step 4: Prepare the next iterations Locked and Focus Area and Time Frame. Here again two
cases can be distinguished:

a) If the nodes in $$verifiedNodes are the same as in the current Locked Area, the
Locked Area of this iteration was correctly representing the situation (cloud)
and the processing for the current Time Frame is thus finished and interim
results on the clouds position can be published.
For the next iteration: Generate the next consecutive Time Frame as the Time
Frame for the next iteration and set the next iterations Locked and Focus Area
to the same values as the current iteration.

b) If the nodes in $$verifiedNodes are different from the current Locked Area, the
current iterations Locked Area was incorrect and the processing of the current
Time Frame needs to be repeated with an updated Locked Area.
For the next iteration: Keep the current Time Frame, set the new Locked Area
to $$verifiedNodes and generate the new Focus Area accordingly.

Step 5: Repeat the process from Step 1.

The remainder of this subsection discusses the realization of these steps in the scenario
template.

168

7.3. Cloud Tracking Scenario Realization

Figure 7.3.1.: Locked Area and Focus Area adaptation Process for the Cloud Tracking
Scenario

Context Initialization and Pre-Iteration Processing

The cloud tracking scenario requires no special context initialization or pre-iteration
processing for the normal processing flow. If however the current FSP Instance was merged
with another FSP Instance during the last iteration, a pre-iteration processing is needed
in order to incorporate processing results from the colliding FSP Instance. The following
listing shows the needed context initialization and pre-iteration processing functions which
are discussed in Section 7.3.1.3:

1contextInitialization [MVEL]
2$$oldLAofMergedFPI = null;
3[/MVEL];
4

5preIteration [MVEL]
6$$positiveNodes = new java.util.HashSet ();
7$$nodesToConsider = $$focusArea;
8

9if($$oldLAofMergedFPI !=null){
10// remove the nodes that were already verified
11java.util.Iterator iter = $$oldLAofMergedFPI.iterator ();
12while (iter.hasNext ()) {
13$$nodesToConsider.remove(iter.next());
14}
15$$positiveNodes.addAll($$oldLAofMergedFPI);
16$$oldLAofMergedFPI = null;
17}
18[/MVEL];

169

7. Evaluation

Stream Processing Topology Generation

For the actual Focused Situation Processing, each iteration’s stream processing has to
determine which nodes in the Focus Area are shaded. In order to determine this, the
stream processing is defined as follows for each of the nodes in the set $$nodesToConsider
which contains all nodes of the Focus Area except nodes that where already verified:

1IterationStreamProcessingBuilder {
2foreach $$nodesToConsider as $$pv {
3rule [DROOLS_TEMPLATE]
4when
5Number($average0 : doubleValue)
6from accumulate(
7MeasurementEvent($val:value)
8over window:time(300s)
9from entry -point "$${{pv?PVPowerProduced }}",
10average ($val)
11) eval($average0 < 30.0)
12then
13if(CONTEXT.noEarlyFiring("150s")){
14CONTEXT.addToSet("$$positiveNodes","$${{pv}}");
15}
16end
17[/ DROOLS_TEMPLATE] publishes no stream manipulates context;
18}
19};

The stream processing builder generates a single stream processing rule for each solar
panel in $$nodesToConsider. The stream processing rule then checks if the average energy
production over 300s is below 30% of the panels capacity. If the production is below this
threshold, the panel is considered shaded and the corresponding node is added to the set
$$positiveNodes.

After the stream processing is complete, the set $$positiveNodes contains all solar panels
in the current Focus Area that have a low energy production during the current iterations
Time Frame.

Iteration Post Processing

Based on the set $$positiveNodes, the post processing step determines geographical clus-
ters were in the optimal case only one cluster is found which represents the currently
tracked cloud. If however more than one cluster was found, more than one cloud is shad-
ing panels in the current Focus Area. In this case one of the clusters needs to be chosen
as representing the current cloud. For this scenario, the largest cluster in terms of solar
panel count is used5. All nodes of the selected cluster are then assigned to $$verifiedNodes
so that they can be used by the following steps.

5An alternative strategy could be to choose the cluster closest to the last known position of the tracked
cloud.

170

7.3. Cloud Tracking Scenario Realization

The clustering itself is performed by a domain specific function findClusters (Defined in
B.1.1). The function also calculates the center of each cluster which is extracted by the
post processing step and used as new position of the tracked cloud. The post processing
function is thus defined as follows:

1postIteration [MVEL]
2$$verifiedNodes = new java.util.HashSet ();
3

4$$resLon = -1;
5$$resLat = -1;
6

7if($$positiveNodes.size() > 0){
8clusters = es.schaaf.cloudTracking.GeoNodeClustering.findClusters(CONTEXT ,

$$positiveNodes , 0.003);
9// There must be at least one cluster.
10// The first one is always the biggest one.
11$$verifiedNodes.addAll(clusters [0]. members);
12$$resLon = clusters [0]. centerLon;
13$$resLat = clusters [0]. centerLat;
14}
15

16$$positiveNodes.clear();
17[/MVEL];

After the post-processing, the current position of the cloud is known by the processing
system and can be published as an interim processing result thus making it available to
external systems. However the position should only be published, if the current Locked
Area correctly represented the cloud and contains more than a single node. For this
purpose, the following publish rule can be defined:

1publish result "$$verifiedNodes", "$$resLon", "$$resLat" when "$$verifiedNodes.
size() >1 && $$verifiedNodes.equals($$lockedArea)";

Termination

Furthermore, the termination of the Focused Situation Processing needs to be defined.
For the termination, the following two cases need to be distinguished:

No cloud was detected
The first iteration of the Focused Situation Processing was not able to find a cluster
of more than one shaded solar panel within the initial Focus Area. Thus, the possible
situation was determined as a False Situation. For this case, the following termination
rule is defined:

1terminate if [MVEL] $$verifiedNodes.size() < 2 && $$iterationCounter < 2 [/
MVEL] with result FalseSituation keep area registration if [MVEL]true[/
MVEL];

171

7. Evaluation

As the indicated situation was determined as a False Situation, the termination rule
requests that the initial Area Registration is being kept in order to mark the False
Situation as such and prevent other FSP Instances from being created for it.

Cloud disappeared
The possible situation was successfully verified in the first iteration of the Focused
Situation Processing and might have been tracked for a while but now disappeared
for example by leaving the monitored area. In order to handle this case, the following
rule can be defined:

1terminate if [MVEL] $$verifiedNodes.size() < 2 && $$iterationCounter >= 2 [/
MVEL] with result $$verifiedNodes , $$resLon , $$resLat keep area
registration if [MVEL]false [/MVEL];

As the Focused Situation Processing terminated due to the fact that the cloud could
not be found anymore during this last iteration, the rule releases the Area Registra-
tion as this last iteration was not correctly marking the situation anymore.

Next Iteration Preparation

If the Focused Situation Processing was not shut down by the termination rules, the
Locked Area, Focus Area and Time Frame for the next iteration need to be determined.
Here also two scenario-specific cases can be distinguished (Figure 7.3.1):

Current Iteration Locked Area was Correct:
The Locked Area of the current iteration was successfully verified as fitting the situa-
tion for the current iterations Time Frame. For this case, the next iteration can look
at a new Time Frame, which is following the Time Frame to the current iteration.
The assumption for the clouds position for the new Time Frame is, that it is still at
the same position as for the current Time Frame. Thus, the Locked Area and Focus
Area of the next iteration will be the same as for the current, only the Time Frame
is advanced.

Current Iteration Locked Area was Incorrect:
The Locked Area of the current iteration was not correctly fitting the cloud for the
current iterations Time Frame and thus needs to be adapted. For this case, the next
iteration needs to cover the same Time Frame as the current iteration but with an
updated Locked and Focus Area. The new Locked Area equals the nodes from the
set $$verifiedNodes which are the result of the iteration post processing, the Focus
Area then consists of the nodes from the geographical area around the Locked Area.

Thus, the next iteration Locked Area, Focus Area and Time Frame determination can be
defined as follows:

172

7.3. Cloud Tracking Scenario Realization

1nextIterationTimeFrame startsAt [MVEL] if($$verifiedNodes.equals($$lockedArea) {
$$endTime } else { $$startTime } [/MVEL] withDurationOf 300s ;

2

3nextLockedArea $$verifiedNodes;
4

5nextFocusArea from sparql " $${verifiedNodes} smartgrid:hasLocation ?LOC1. ?VALUE
smartgrid:hasLocation ?LOC2.

6?LOC1 smartgrid:hasLat ?LAT1.
7?LOC2 smartgrid:hasLat ?LAT2.
8?LOC1 smartgrid:hasLon ?LON1.
9?LOC2 smartgrid:hasLon ?LON2.
10

11FILTER (?LAT1 +0.0035 > ?LAT2) .
12FILTER (?LAT1 -0.0035 < ?LAT2) .
13FILTER (?LON1 +0.0035 > ?LON2) .
14FILTER (?LON1 -0.0035 < ?LON2) .
15";

Situation Merging

In order to support the merging of two FSP Instances that turned out to be investigating
the same situation, in this case the same cloud, a merge function needs to be specified (See
Sub-Section 5.6.9). The function is called once for the two processing instances that tried
to acquire an overlapping Locked Area for an overlapping Time Frame. In such a case
the processing model assumes that the two instances regard the same situation. Thus, the
processing model terminates one of the instances (Instance „A”) and lets the other continue
with the processing (Instance „B”) after A was merged into B.
To facilitate the merge, a merging function can retrieve information from the processing

context of the terminated processing instance A and incorporate it into the processing
context of Instance B.

For this scenario the merging function retrieves the most recent Locked Area from the
FSP Instance A that is to be terminated and assigns it to the variable $$oldLAofMergedFPI
in the context of the FSP Instance B that continues the situation processing. The merge
function can thus be defined as follows:

1mergeFunction [MVEL]
2if(CONTEXT_A.get("$$timeFrame").equals(CONTEXT_B.get("$$timeFrame"))){
3la = CONTEXT_A.get("$$lockedArea");
4CONTEXT_B.put("$$oldLAofMergedFPI",la);
5}
6[/MVEL];

The Locked Area is taken from FSP Instance A as all nodes in it have already been
verified by this instance as being shaded. Therefore the FSP Instance B can directly incor-
porate the set if nodes into its ongoing processing without checking them once again. This
exclusion is done during the preparation of the next iteration of the FSP Instance B in its
Pre-Iteration function as shown in Section 7.3.1.3 where all nodes in $$oldLAofMergedFPI

173

7. Evaluation

are removed from the set of nodes which are considered by the following iteration stream
processing.

Based on the defined Template, several tests where conducted following the evaluation
plan in Section 7.2. The Tests and their results are discussed in Section 7.4 and Appendix
C.

7.3.2. Test Data Simulation

For conducting the cloud tracking test cases based on the prototype processing system, test
data was generated based for a grid of 10 x 10 evenly distributed solar panels (Figure 7.4.2).
Energy production measurements where produced for every 30 seconds of the simulated
time frame. Depending on the actual test case, one or more clouds moving over the solar
panels where simulated with varying speeds, sizes and trajectories specific for the test case.

The simulation provides the measurement data as a number of CSV files which are loaded
by the processing systems prototype. Further the simulator generates the background
knowledge base contents based on the positions of the simulated solar panels as a Turtle
file that is also used by the prototype.
To verify the cloud tracking process, the simulation also creates a log of the positions

of the simulated clouds which is however not available to the processing system but only
displayed in the result visualization in order to compare the reported cloud positions from
the processing system with the actual positions from the simulation.

7.4. Case 1: Single Situation Detection and Tracking

The goal of the first test case is to determine the general capabilities of the designed
processing model. The test case demonstrates the tracking of a single cloud across a field
of solar panels based on the scenario processing template discussed in the previous section
(Complete listing in Appendix B.1). The execution of this test case demonstrates that the
processing models fulfills the following initially defined requirements (Section 2.3):

RQ1: Support to set up a situation indication processing that can handle large amounts
of streaming data.

The generation of Stream Processing Topologies for the Possible Situation In-
dication is demonstrated by the test case during Phase 0 (Subsection 7.4.1).
Several independent rules are generated that can be executed in parallel in or-
der to handle large amounts of streaming data (on multiple machines) where
only their processing results are gathered together in a single result stream.

RQ2: Support to deduce and initiate an analysis processing for a detected situation,
where the analysis processing is specific for the detected situation.

174

7.4. Case 1: Single Situation Detection and Tracking

The classification of the generated indications which leads to the creation of a
new FSP Instance is demonstrated during Phase 2 (Subsection 7.4.3). Based on
it the adaptation of the processing system to instantiate a new situation-specific
FSP Instance for the indicated cloud is shown as well as the adaptation of the
started FSP Instance to cover the whole cloud during Phase 3 (Subsection 7.4.4).

RQ3: Support to handle changes of a currently investigated situation that require the
adaptation of the processing of an ongoing situation-specific analysis based on
interim results.

For the running FSP Instance, the adaptation to follow the changes of the clouds
position is demonstrated during Phase 3 (Subsection 7.4.4).

Furthermore, general functionalities like the Area Registration based collision detection
and classification, the verification of an indicated possible situation, the publication of
interim processing results and the termination of the FSP Instance after the situation was
tracked are demonstrated.

The following sections discuss the execution of the Focused Situation Processing based
on the generated test data for a single cloud based on the Scenario Processing Template
(B.1) defined in the previous section.

7.4.1. Phase 0: Possible Situation Indication Processing Initialization

In order to set up the Possible Situation Indication Processing, the Indication Stream
Processing Topology Builder from the Template discussed in the previous section (Listing
B.1) needs to be executed. As a preparation, the set of nodes that need to be monitored for
possible situation indicators is determined by executing the defined SPARQL query. For
this template, the query returns all solar panels from the background knowledge base which
provide measurement data. The nodes are assigned to the variable $$indicationNodes.
Based on the $$indicationNodes the Situation Indication Stream Processing Topology

is generated, following the definition given in the Template in the „IndicationStreamPro-
cessingBuilder” block. The builder generates one stream processing rule for each node in
$$indicationNodes.
Each of the rules takes the event stream „PVPowerProduced” for the corresponding solar

panel as input and directly generates Possible Situation Indication events if an indicator
for a cloud (a sudden drop of the solar panels energy production) is found. Thus, the
resulting Stream Processing Topology consists of n parallel stream processing rules for n
solar panels all with their separate input stream and all emitting possible situation events
to the Possible Situation Indication event stream (Figure 7.4.1).
Listing 7.3 gives an example for a such a processing rule generated by the builder func-

tion for the solar panel „tests:panel_89” which was assigned to the variable $$pv. The

175

7. Evaluation

Listing 7.3: Generated Stream Processing Rule for the Situation Indication by the corre-
sponding builder function

1rule rule_0
2when
3Number($delta : doubleValue)
4from accumulate(
5MeasurementEvent($val:value)
6over window:length(2)
7from entry -point "dfcfbc80e5c1b1c32f4a5ad6023053bc",
8SuddenChangeDetector($val)
9) eval($delta > 50)
10then
11__INDICATION_HANLDER__.handleIndication("tests:panel_89");
12end

listing shows that the entry-point was replaced by a unique identifier specific to the proto-
type. Based on this identifier, the prototype stream the measurement events to the rule.
Further the generation of the Possible Situation Indication event has been replaced by an
implementation specific code block to generate and publish the actual indication event, in
this case for the solar panel „tests:panel_89”.

7.4.2. Phase 1: Possible Situation Indication Processing

The Stream Processing Topology defined in Phase 0 is instantiated by the processing
system and monitors all solar panels for a sudden drop of their energy production.

For the test data set, a single cloud enters the monitored area from the west and starts to
shade the Solar Panels 4 and 5 at time 1438293900. The corresponding stream processing
rules detect the drop in production and raise possible situation indication events (Table
7.4.1). For Panels 4 and 5 each one of the first indications is correctly raised for time
1438293900 when the first low measurement occurred as this results in the rapid change
from 100% production to 0% (Line 1 & 2).

As the defined indication only looks at two events to detect a delta in the power pro-
duction of at least 50%, only a single indication event is raised for each panel.

7.4.3. Phase 2: Focused Situation Processing Initialization

The indications raised by the Possible Situation Indication Processing (Phase 1) are clas-
sified in this phase. The results of the performed classification are listed in Table 7.4.1
in the column „P2 Classification”. For the first Indication Event (Table 7.4.1 Line 1) the
classification took place as follows:

Step 1: The Pre-Classification lets the event pass as it is the first event for this node
(Panel 4).

176

7.4. Case 1: Single Situation Detection and Tracking

Rule for node tests:panel_1PvPowerProduced
for tests:panel_1

Rule for node tests:panel_2PvPowerProduced
for tests:panel_2

Rule for node
tests:panel_100

PvPowerProduced
for tests:panel_100

Possible Situation
Indication Event
Stream for the
Cloud Tracing

Scenario

Figure 7.4.1.: Structure of the Stream Processing Topology generated for the Cloud
Tracking Possible Situation Indication based on the Scenario Processing Template from
Listing B.1.

#
1 1438293900 tests:panel_4 tests:panel_4

2 1438293900 tests:panel_5 tests:panel_5

3 1438296330 tests:panel_3 tests:panel_3

4 1438296330 tests:panel_6 tests:panel_6

5 1438299360 tests:panel_15 tests:panel_15

6 1438299360 tests:panel_14 tests:panel_14

Indicated
Time

Indicated
Nodes

Initial
TimeFrame

Potential
LockedArea

P2
Classification

Resulting Focused Situation
Processing Instance

1438293900-
1438294200

New Possible
Situation

FP__CloudTracking1__10c40795-
b2f2-4b8a-a80d-8b7842e4db45

1438293900-
1438294200

Ignored
Indication

1438296330-
1438296630

Ignored Ind.
(LA Collision)

1438296330-
1438296630

Ignored Ind.
(LA Collision)

1438299360-
1438299660

Ignored Ind.
(LA Collision)

1438299360-
1438299660

Ignored Ind.
(LA Collision)

#1

Table 7.4.1.: Case 1: Excerpt of the first 6 Possible Situation Indication Events from the
Possible Situation Indication Event Log.

177

7. Evaluation

Figure 7.4.2.: Case 1: Area Registration Request caused by the first Possible Situation
Indication Event (Participating nodes of the request shown as circles).

Step 2: The potential Locked and Focus Areas and initial Time Frame are determined
(The potential Locked Area and initial Time Frame is listed in Table 7.4.1,
the potential Focus Area is illustrated in Figure 7.4.2 as part of the Area
Registration „Request 0”).

Step 3: The processing system tries and succeeds in acquiring the potential Locked
and Focus Area for the initial Time Frame without any collisions with other
registrations as it is the very first registration.

Step 4: As no collisions with already running Focused Situation Processing Instances
where detected, the Indication Event is classified as „New Possible Situation”
and a new Focused Situation Processing Instance is created with the ID shown
at the end of Line 1 in Table 7.4.1. For later reference, the ID of this instance
shall be „#1”.

After the first Possible Situation Indication Event was classified, the processing system
classifies the second event as follows (Table 7.4.1 Line 2):

Step 1: The Pre-Classification lets the event pass as it is the first event for this node
(Panel 5).

Step 2: The potential Locked and Focus Areas and initial Time Frame is determined
(The potential Focus Area is illustrated in Figure 7.4.3 for Area Registration
„Request 2”)

178

7.4. Case 1: Single Situation Detection and Tracking

Figure 7.4.3.: Case 1: Area Registration Request caused by the second Possible Situation
Indication Event which was rejected as it collides with the initial Area Registration of the
Focused Situation Processing Instance #1 (Figure 7.4.2).

Step 3: The processing system tries and succeeds in acquiring the potential Locked
and Focus Area for the initial Time Frame but detected a collision with the
Focus Area of the already running Focused Situation Processing Instance #1.

Step 4: Based on the collision action rule specified in the template, the detected colli-
sion results in the classification of the Indication Event as „Ignored Indication”
as its potential Locked Area is a subset of the Focus Area of the Focused Sit-
uation Processing Instance #1. The Indication Event is thus dropped by the
processing system and the acquired Area Registration released.

The third Indication Event shown in Table 7.4.1 Line 3 is classified as follows:

Step 1: The Pre-Classification lets the event pass as it is the first event for this node
(Panel 3).

Step 2: The potential Locked and Focus Areas and initial Time Frame is determined
(Figure 7.4.4 as part of „Request 13”).

Step 3: The processing system tries and fails to acquire the Area Registration as the
running Focused Situation Processing Instance #1 already acquired the cor-
responding nodes as part of its Locked Area for the overlapping Time Frame
1438296300 to 1438296600 (Figure 7.4.4 shown as red rectangles).

Step 4: As the registration failed due to a collision, the Indication Event is classified

179

7. Evaluation

Figure 7.4.4.: Case 1: Area Registration Request caused by the third Possible Situation
Indication Event caused by the newly shaded Solar Panel 3 (shown in circles). The registra-
tion request was denied as the requested Locked Area overlaps with the Locked Area of the
Focused Situation Processing Instance #1 (shown as rectangles).

as „Ignored Indication” and dropped by the processing system.

All following Possible Situation Indication Events generated by the Phase 1 processing
follow the same pattern as discussed for the third event.

7.4.4. Phase 3: Focused Situation Processing

For the current test case, a single situation (cloud) needs to be followed by the processing
system. For this purpose a single FSP Instance was started by the processing system
as the result of Phase 2. The following subsections discuss the first 11 iterations of this
FSP Instance where the potential situation is first verified and then later the processing is
adapted to follow the movement of the cloud.

7.4.4.1. Context Initialization

The specified context initialization function only initializes the context with the empty
variable $$oldLAofMergeFPI in preparation for a possible later merge (Subsection 5.6.2).

180

7.4. Case 1: Single Situation Detection and Tracking

Rule for node tests:panel_2PvPowerProduced
for tests:panel_2

Rule for node tests:panel_3PvPowerProduced
for tests:panel_3

Rule for node tests:panel_27PvPowerProduced
for tests:panel_27

Processing
Context

One Rule for each panel in [2,7],[12,17],[22,27]

Figure 7.4.5.: Case 1: Stream Processing Topology generated for Iteration 0 of the Fo-
cused Situation Processing Instance #1.

7.4.4.2. Iteration 1

For the first iteration, the Focused Situation Processing Instance starts with the Locked
Area, Focus Area and Time Frame determined during Phase 2 as shown in Figure 7.4.2 as
„Request 0” (marked by the red and blue circles).
The FSP Instance starts with the first iteration of its processing by executing the Pre-

Iteration function which defines a new variable $$positiveNodes and assigns an empty set
to it. Further the set $$nodesToConsider is set to the contents of the Focus Area.

Based on the resulting processing context, the Iteration Stream Processing Builder func-
tion is executed to generate the stream processing topology for the first iteration:
The stream processing builder generates a single event stream processing rule for each

node in the current Focus Area where each of these stream processing rules writes its
results to the processing context. The stream processing rule calculates the average energy
production for the given node (solar panel Installation) over a sliding time frame of 300s and
if the production is below a certain threshold adds the node to the set of $$positiveNodes.
As the current Focus Area consists of 15 nodes, the builder created 15 separate stream

processing rules as outlined in Figure 7.4.5.

After the stream processing topology was created, the stream processing took place. It
identified the low energy production of nodes tests:panel_4 and tests:panel_5 and added
them to the set of $$positiveNodes.

Once finished, the processing results were gathered by the Post-Iteration function. The
function uses a domain specific function to cluster the results based on their geographical
location and to calculate the center of each cluster (Subsection B.1.1). For the two nodes in
$$positiveNodes, a single cluster was found which consisted of the two nodes tests:panel_4
and tests:panel_5. The post-processing function added the two nodes of the cluster to
$$verifiedNodes and assigned the clusters position to $$resLon and $$resLat.

After this post processing step, the termination rules were evaluated but did not match

181

7. Evaluation

as $$verifiedNodes contained more than one node, so the processing could continue with
another iteration.

As the focused processing was not terminated, the interim result publication rules were
evaluated. As $$verifiedNodes did not contain the same set of nodes as the current itera-
tions Locked Area, the processing state was not yet published as the calculated position
was not considered final for the iteration’s time frame.

With the evaluation of the interim publication results, all steps regarding the first itera-
tion were completed and the processing system prepared for the next iteration by defining
the next iteration’s Locked and Focus Area as well as its Time Frame.

As the first iteration’s Locked Area was found to be incorrect for the current iterations
time frame ($$verifiedNodes.equals($$lockedArea)) the second iteration needed to repeat the
same time frame (Subsection 7.3.1.3) but with an adapted Locked and Focus Area to
check if the adapted version is correct. Thus, the second iteration’s time frame was set to
the same time frame as the first iteration.

The next Locked Area was set to the contents of $$verifiedNodes (which contained the
two panels tests:panel_4 and tests:panel_5) and the new Focus Area was set to contain
nodes surrounding the nodes of the new Locked Area. The area registration for the second
iteration was then successfully requested by the processing system (shown in Figure 7.4.6
as „Request 1”). After the new registration was made, the second iteration began.

7.4.4.3. Iteration 2

The second iteration operated on the adapted Locked and Focus Area and followed the
same pattern as the first iteration with the difference that the generated stream processing
topology covered a larger set of nodes as the Focus Area size was increased. The result
of the stream processing for this iteration was the same as for iteration 1 as no additional
nodes were identified as being shaded. As such the Post-Processing function and the
termination rules are executed in a similar way.

As however the Locked Area and the determined set $$verifiedNodes were the same
for this iteration, the calculated cloud position is considered final for the this iteration’s
time frame and the interim result publication rule matched. Thus, an interim result was
generated and published as shown in Line 1 of Table 7.4.2. The event contained the position
of the cloud as $$resLat and $$resLon as well as the time frame of current iteration and
the nodes that were detected as being affected by the cloud.

Furthermore, as the current Locked Area equaled the contents of $$verifiedNodes and
thus correctly represented the situation for the current time frame, the next iteration’s
time frame was determined as the next consecutive time frame of 300s following the time
frame of the current iteration.

182

7.4. Case 1: Single Situation Detection and Tracking

Figure 7.4.6.: Case 1: Request for the updated Area Registration for the Focused Situa-
tion Processing Instance #1 for the second iteration (shown in circles) which then covered
the two shaded solar panels.

Event Type Time Event Contents
1 InterimResultEvent 1438294200

2 InterimResultEvent 1438294500

3 InterimResultEvent 1438294800

...

$$endTime = [1438294200],
$$resLat = [47.356595],
$$resLon = [7.889175445556641],
$$startTime = [1438293900],
$$verifiedNodes = [tests:panel_4;tests:panel_5]

$$endTime = [1438294500],
$$resLat = [47.356595],
$$resLon = [7.889175445556641],
$$startTime = [1438294200],
$$verifiedNodes = [tests:panel_4;tests:panel_5]

$$endTime = [1438294800],
$$resLat = [47.356595],
$$resLon = [7.889175445556641],
$$startTime = [1438294500],
$$verifiedNodes = [tests:panel_4;tests:panel_5]

Table 7.4.2.: Case 1: Excerpt form the Interim Result Events log generated by the Fo-
cused Situation Processing Instance #1.

183

7. Evaluation

Figure 7.4.7.: Case 1: The Area Registration (circles) used for Iteration 10 of the Focused
Situation Processing Instance #1

7.4.4.4. Iterations 3 to 9

The third iteration continued with the same Locked Area and Focus Area as Iteration 2
but with the next consecutive time frame. As the cloud was still shading the same solar
panels during this iteration’s time frame, no changes to its Area Registration were required
and the next iteration time frame was determined as the next consecutive time frame. The
next Locked and Focus Areas were set to the same set of nodes as for the current iteration.
Furthermore, the iteration emitted an interim result event to report the verified position

of the cloud for the current time frame as shown in Figure 7.4.2 Line 3.

The iterations up to Iteration 9 followed the same pattern as the panels shaded by the
cloud did not change during the time frame covered by those iterations.

7.4.4.5. Iteration 10

Within the time frame of Iteration 10 (1438296300 to 1438296600), the Panels 3 and 6
became shaded in addition to the original two panels. In the same way as for the very
first iteration, the stream processing detected the newly shaded panels and added them to
$$positiveNodes together with the so far shaded Panels 4 and 5.
Thus, the set $$positiveNodes contained four elements (Panels 3-6) at the end of the

iteration stream processing. The post-processing step determined that the four panels

184

7.4. Case 1: Single Situation Detection and Tracking

Figure 7.4.8.: Case 1: The Area Registration (circles) used for Iteration 11 of the Focused
Situation Processing Instance #1.

form a single cluster and assigned all four nodes to $$verifiedNodes.

As again the set $$verifiedNodes did not equal the current Locked Area which only
contained the Panels 4 and 5 (Figure 7.4.7, Request 10), the current iteration’s time frame
needed to be repeated by the next iteration with an adapted Locked Area which covered all
four panels. Thus, the next iterations time frame was set to the time frame of the current
iteration, the next iteration Locked Area was set to $$verifiedNodes and the next iteration
Focus Area was determined in the specified manner based on the new Locked Area (Figure
7.4.8, Request 11). Once done, the next iteration started in order to verify if the adapted
Locked Area was now correct for the current time frame.

7.4.4.6. Iteration 11

Iteration 11 followed once again the same pattern as Iterations 3 to 9 as it determined
that the current Locked Area was correct and thus produced an interim result event and
prepared for the following iteration-based on the next consecutive time frame with the
same Locked Area.

This pattern once again continued until the shaded panels changed as discussed for
Iteration 10.

185

7. Evaluation

7.4.5. Conclusions from the Test Results

The first test case successfully demonstrated the central functionality of the processing model
by showing all processing phases defined by the processing model. In particular the test
case demonstrated the setup of the indication processing (Phase 0) as well as the detection
of potential situations (Phase 1). Based on it the test case showed the classification of
potential situations as well as the adaptation of the processing system in order to start a
new Focused Situation Processing Instance. Following the start-up, the verification of a
potential situation was demonstrated as well as the tracking of the situation over time and
with it the generation of interim processing results and the adaptation of a running FSP
Instance to follow the situation.

Appendix C discusses three additional test cases that demonstrate special cases aside
from the general processing flow based on the cloud tracking scenario discussed here. A
summary of the test results is given as part of the overall conclusion for this chapter in
Section 7.10.

186

7.5. Telecommunications Network Monitoring: Denial of Service Tracing

7.5. Telecommunications Network Monitoring: Denial of Service Tracing

This section discusses the realization of the Denial of Service (DoS) detection and tracing
Scenario (Section 2.1.2.1) based on the developed processing model and the correspond-
ing Scenario Processing Template Language. The realized template is then used for the
following Test Case 5 (Subsection 7.6).
The following discussions are focused on how the scenario is realized and thus omit

detailed explanations of the related principles of the processing model and specification
language as they were already discussed for the realization of the Cloud Tracking Scenario
in Section 7.3.
A complete listing of the created scenario processing template is given in Appendix B.2.

7.5.1. Scenario Realization

The goal of this scenario is to detect DoS attacks on certain routers that for example
connect data centers to the monitored network. Such routers are marked in the knowledge
base as „dosMonitoredRouter”. Further the DoS traffic shall be traced back to the point
where it entered the monitored network so that it can be blocked there before entering the
network.

The scenario realization approaches this task in the following way:

Possible Situation Indication (Detailed in Subsection 7.5.1.1)
Monitor the average package size for network interfaces of routers that are marked as
„dosMonitoredRouter”. If the average package size drops significantly, raise a possible
situation indication for the interface as this indicates a possible DoS attack.

Focused Situation Processing Initialization (Detailed in Subsection 7.5.1.2)
For each raised indications, set the potential Locked Area to the network interface
that was reported in the indication event. Thereby multiple indications raised for
the same router are automatically assigned to an already started FSP Instance. If
no such instance exists, a new FSP Instance is started for the indicated possible DoS
attack.

Focused Situation Processing (Detailed in Subsection 7.5.1.3)
The analysis of a potential DoS attack is then realized in two separate steps:

Step 1: Verify the possible attack by checking if not only the average package size
dropped but also that the average package count increased significantly.

Step 2: Iteratively trace the traffic of the DoS attack trough the network until a
router at the network border was reached or the traffic pattern can’t be
found anymore.

187

7. Evaluation

Listing 7.4: Possible Situation Indication for DoS detection
1

2PossibleSituationIndication {
3// select all interfaces of routers that are flagged for DoS monitoring
4$$indicationNodes from sparql "?VALUE rdf:type telco:interface.
5?VALUE fsp:providesMeasurement ?point.
6?point rdf:type telco:trafficIn .
7?router telco:hasInterface ?VALUE .
8?router rdf:type telco:dosMonitoredRouter .
9";
10

11IndicationStreamProcessingBuilder{
12foreach $$indicationNodes as $$interface {
13rule [DROOLS_TEMPLATE]
14when
15// package size dropped
16$b : SuddenChange(consideredEvents == 6 , delta < -700)
17from accumulate(
18$meB : MeasurementEvent()
19over window:length(6)
20from entry -point "$${{ interface?packageSizeAvgIn }}",
21ExtendedSuddenChangeDetector ($meB)
22)
23then
24publishIndication("$${{ interface }}");
25end
26[/ DROOLS_TEMPLATE] publishes indications;
27}
28}
29};

7.5.1.1. Possible Situation Indication

The Situation Indication Processing monitors all network interfaces of routers that are
marked as „dosMonitoredRouter” in the knowledge base (Listing 7.4 Line 4). If for any of
the monitored interfaces a significant drop in the measured average package size is detected
this is considered as an indication for a DoS attack and a Possible Situation Indication
Event is raised for the network interface (Listing 7.4 Line 13).
In order to detect such a drop, the processing system considers six consecutive measure-

ment events. As the measurements are generated every 10 seconds, this resembles a time
frame of 60 seconds. The used „ExtendedSuddenChangeDetector” splits this time frame
into the first and second half, calculates for each half the average value and then the delta
between these two values. If this delta is large enough, the indication event is raised.

7.5.1.2. Focused Situation Processing Initialization

The raised Possible Situation Indication Events are classified in Phase 2. During this phase,
first the Pre-Classification mechanism is used to filter out duplicate indications. For the
current scenario newly raised indications within 600 seconds (Listing 7.5) after the first
indication was raised for the same network interface, are ignored assuming that no new
DoS attack needs to be detected that starts within less than 10 minutes after the first one
was reported.

188

7.5. Telecommunications Network Monitoring: Denial of Service Tracing

Listing 7.5: Focused Situation Processing Initialization for the DoS detection
1

2FocusedProcessingInitialization {
3duplicationThreshold 600s;
4

5potentialLockedArea $$indicatedNodes;
6potentialFocusArea $$indicatedNodes;
7

8initialTimeFrame startsAt [MVEL]$$indicatedTime - 30[/ MVEL] withDurationOf 60s;
9collisionAction preventNew if FA overlap == 100%;
10}

For the classification of the remaining indication events, the Phase 2 processing needs
to determine the initial time frame as well as the potential Locked and Focus Areas that
result from the indication.
The potential Locked Area needs to represent the identity of the possible situation. For

the DoS case, a situation can be identified by the network interface of a certain router
that is under attack. As such, the potential Locked Area resulting from a raised Situation
Indication Event is the node (network interface) contained in the indication event (Listing
7.5 Line 5).
The potential Focus Area needs to contain all nodes that are relevant for the first iteration

of the potentially stated FSP Instance. The first iteration of a started FSP Instance will
analyze the indicated interface in further detail in order to verify the potential attack and
to determine the magnitude of the attack. As such, the potential Focus Area is also set to
the node contained in the indication event (Listing 7.5 Line 6).
The initial time frame is chosen to overlap with the time frame used by the possible

situation indication processing by 30 seconds but also contains the following 30 seconds
(Listing 7.5 Line 8). Thus the first iteration of the new FSP Instance can verify that
the drop of the average package size continues after the initial drop was detected by the
Possible Situation Indication Processing.

With regard to the classification of potential collisions, only the case of a complete
collision with the Focus Area of a running FSP Instance needs to be considered. The only
other possible case for this scenario is a complete Locked Area collision where the handling
is defined by the processing model.
If the potential Locked Area of a raised indication is part of the Focus Area of an already

active FSP Instance, the indication is considered related to the DoS attack traced by this
FSP Instance as its Focus Area is adapted by the Focused Situation Processing to represent
the path of the DoS traffic through the network.

7.5.1.3. Focused Situation Processing

The Focused Situation Processing for the DoS Scenario implements two steps:

Step 1: Verify the indicated possible situation:

189

7. Evaluation

Rule for Interface
x

(over a time frame detect
significant changes)

trafficIn
Interface

x

Detected
Change

pkgSizeIn
Interface

x

∀ Interface x∈$ $ interfacesToProcess

Add to set
$$iterationDeltas

Processing
Context

Figure 7.5.1.: Illustration of the iteration stream processing implemented by the Focused
Situation Processing for the DoS scenario. The defined Stream Processing Builder (List-
ing 7.6) generates a rule for every network interface that needs to be analyzed. The rule is
triggered if a significant delta in the average packet size and package count measurements
of the current interface is detected. In this case the rule adds the calculated deltas for the
given interface to the set $$iterationDeltas in the Focused Situation Processing Context.

The first iteration verifies the indicated possible DoS Attack by checking that
not only the average package size dropped significantly but also the package
count increased. Further both the package size and the package count deltas
are determined and stored in the processing context so they can be used for
the tracking of the DoS traffic.

Step 2: Trace the traffic of the DoS Attack trough the monitored network:
The following iterations implement the tracing by hopping from one router to
the next with each new iteration of the FSP Instance. This process continues
until the traffic leaves the network or can not be traced anymore as it becomes
indistinguishable from the normal traffic.

For both steps, the Iteration Stream Processing Builder (Listing 7.6) generates a Stream
Processing Topology that determines the package size and package count differences for
each network interface contained in the set $$interfacesToProcess and writes them to the
FSP Context by adding the delta values to the set $$iterationDeltas (Figure 7.5.1).
The set $$interfacesToProcess is the subset of the current iterations Focus Area where

all network interfaces have been removed which are already verified as being part of the
attack’s path trough the network. The Focus Area contains those verified interfaces in
order to mark the path through the network so that other Possible Situation Indications
can be linked to an already investigated DoS trace.

The different handling of the two steps, possible situation verification and the later
tracing, is implemented in the Post-Processing function that is executed for each iteration
after the stream processing finished. The structure of the contained functionality is as
follows (illustrated in Figure 7.5.2):

190

7.5. Telecommunications Network Monitoring: Denial of Service Tracing

Listing 7.6: Iteration Stream Processing Builder of the Focused Situation Processing Tem-
plate for the DoS detection and tracing

1

2IterationStreamProcessingBuilder {
3foreach $$interfacesToProcess as $$interface {
4rule [DROOLS_TEMPLATE]
5when
6// package count increased
7$a : SuddenChange(consideredEvents == 6 , delta > 300)
8from accumulate(
9$meA : MeasurementEvent()
10over window:length(6)
11from entry -point "$${{ interface?trafficIn }}",
12ExtendedSuddenChangeDetector ($meA)
13)
14// package size dropped
15$b : SuddenChange(consideredEvents == 6 , delta < -300)
16from accumulate(
17$meB : MeasurementEvent()
18over window:length(6)
19from entry -point "$${{ interface?packageSizeAvgIn }}",
20ExtendedSuddenChangeDetector ($meB)
21)
22then
23CONTEXT.addToSet("$$iterationDeltas",new InterfaceDelta("$${{ interface

}}",$a.getDelta (),$b.getDelta ()));
24end
25[/ DROOLS_TEMPLATE] publishes no stream manipulates context;
26}
27};

For the first iteration (Step 1: Verification): (Listing 7.7 Lines 2ff)
If the stream processing executed for the first iteration was able to detect a sig-
nificant enough change in the package count and package size measurements of the
indicated interface, the determined differences are stored in the processing context
as $$deltaCount and $$deltaSize so that the following iterations can use these values
to find similar traffic deltas on other interfaces. Further the interface is added to
the set of $$verifiedInterfaces which holds all interfaces that are part of the already
verified traffic path through the network. Moreover, the interface are added to the set
$$iterationVerifiedInterfaces which holds all interfaces newly verified by the current
iteration so that they can be used as the starting point for finding the interfaces to
look at during the next iteration.
If the iteration stream processing was not able to find a large enough delta on the
indicated interface, the set $$iterationVerifiedInterfaces will remain empty which
triggers the termination of the FSP Instance as a False Situation as the indicated
possible DoS attack could not be verified.

For all following iterations (Step 2: Tracing): (Listing 7.7 Lines 13ff)
The traffic is traced through the network in several iterations. In every iteration,
the post processing function looks at all interfaces from the current Focus Area that
where identified by the current iterations stream processing as possibly affected by

191

7. Evaluation

the investigated DoS attack (All interfaces part of the set $$iterationDeltas). From
the set of those interfaces, the Post-Processing selects as many nodes as needed to
get the total amount of traffic change caused by the DoS attack. The selection starts
with the interface that shows the highest measurement differences as this interface
is considered the most likely origin of the DoS traffic (Listing 7.7 Lines 33ff).
If enough interfaces are found to account for the overall traffic delta, all the selected
interfaces together are then considered as the source of the DoS attack and added
to the set of $$verifiedInterfaces. Further the selected interfaces are assigned to the
set $$iterationVerifiedInterfaces so that they are used to generate the Focus Area for
the next iteration.
If however it is not possible to find enough interfaces with delta values above the
threshold to reach the total DoS traffic amount, the path is considered as lost and
the flag $$pathLost is set which later triggers the matching termination rule (Listing
7.7 Lines 47).

After the selection of the interfaces is complete, the Focus Area for the next it-
eration is determined. The next Focus Area has to contain for each newly verified
interface (from the set $$iterationVerifiedInterfaces) all interfaces of the router which
is linked to this verified interface.
Furthermore the set of verified interfaces $$verifiedInterfaces is added to the Focus
Area in order to mark the so far determined traffic path so that other possible situ-
ation indications can be correlated with this FSP Instance. Based on the resulting
Focus Area, the processing continues with the next iteration.

Termination of the Trace

If the Focus Area of an iteration only contains already verified interfaces ($$focusArea
= $$verifiedInterfaces) and no new interfaces which could be the source of the DoS attack,
the Stream Processing Builder generates an empty rule set. Due to the empty rule set,
no stream processing happens during this iteration and the set $$iterationDeltas remains
empty. In this case, the Post-Processing function only determines if the trace of the DoS
traffic is complete (traffic was traced to Edge Routers) or if the trace failed as the trail of
the DoS traffic was lost during the last iteration. Based on the results, the Post-Processing
function sets an appropriate flag ($$traceFinished or $$trailLost) which later triggers a
termination rule matching the determined outcome. If the trace was completed, the post-
processing function determines the origin routers which are reported as part of the final
processing result, stating the origin of the DoS attack.

192

7.5. Telecommunications Network Monitoring: Denial of Service Tracing

Sum up the detected deltas
from $$iterationDeltas and

store them into $$deltaCount
and $$deltaSize.

 Add these nodes to
$$verifiedInterfaces

and
$$iterationVerifiedInterfaces

[$$foundDelta
< 80% of total delta] $$traceFinished = true

Select interfaces from
$$iterationDeltas

till overall package count
delta is reached or no

Interfaces are left.
Add these nodes to

$$verifiedInterfaces and
$$iterationVerifiedInterfaces

$$trailLost = true

Determine next Focus Area from
$$iterationVerifiedInterfaces and $$verifiedInterfaces

Assign to $$nextFA

[$$iterationCounter == 1]

[$$interfacesToProcess.size() == 0]

Post-Iteration Function

Check if all interfaces
verified by the previous
iteration are linked to a

telco:edgeRouter

DoS
Verification

DoS
Tracing

Trace
Termination

[YES][NO]

[no deltas found]

$$falseSituation = true

[deltas found]

Step 1 Step 2

Figure 7.5.2.: Structure of the Focused Situation Processing Post-Iteration function for
the DoS tracing.

193

7. Evaluation

Listing 7.7: Post Iteration Function of the Focused Situation Processing template for the
DoS scenario

1postIteration [MVEL]
2if($$iterationCounter == 1) {
3// in the first iteration sum up the deltas of the attacked interfaces
4foreach(i : $$iterationDeltas){
5$$deltaCount += i.getDeltaTraffic ();
6$$deltaSize += i.getDeltaSize ();
7$$iterationVerifiedInterfaces.add(i.getInterface ());
8$$verifiedInterfaces.add(i.getInterface ());
9}
10if($$iterationVerifiedInterfaces.size()==0){
11$$falseSituation = true;
12}
13}else{
14if ($$interfacesToProcess.size() == 0) {
15// if there where no interfaces to process ,
16// check if trace is complete or if we lost the path
17allBorderRouters = true;
18

19foreach(i : $$lastIterationVerifiedInterfaces){
20res = CONTEXT.querySet(" SELECT DISTINCT ?VALUE WHERE { " + i + " telco:

hasLink ?LNK . ?srcInterface telco:hasLink ?LNK . ?VALUE telco:
hasInterface ?srcInterface . ?VALUE rdf:type telco:edgeRouter }");

21if(res.size() == 0){
22allBorderRouters = false;
23}else{ // res contains the Router where the attack is comming from
24$$originRouters.addAll(res);
25}
26}
27

28if(!allBorderRouters) {
29$$trailLost = true;
30}else{
31$$pathComplete = true;
32}
33}else{ // otherwise continue with the trace
34$$lastIterationVerifiedInterfaces.clear();
35$$lastIterationVerifiedInterfaces.addAll($$iterationVerifiedInterfaces);
36$$iterationVerifiedInterfaces.clear ();
37

38trafficSum = 0;
39java.util.Collections.sort($$iterationDeltas);
40foreach(i : $$iterationDeltas){
41if(trafficSum < $$deltaCount){
42$$iterationVerifiedInterfaces.add(i.getInterface ());
43$$verifiedInterfaces.add(i.getInterface ());
44trafficSum += i.getDeltaTraffic ();
45}}
46// if less then 80% of the package count was found on the considered

interfaces the trace is stopped as the path can’t be traced anymore
47if(trafficSum < ($$deltaCount * 0.8)){
48$trailLost = true;
49$$message = "Path was lost during iteration " + $$iterationCounter + "

as less then 80% of the traffic could be found";
50}
51}
52}
53

54// build the next Focus Area manually so there is more control
55$$nextFA = new java.util.HashSet ();
56// query all interfaces of routers reachable from the interfaces verified in

the current iteration
57foreach (n : $$iterationVerifiedInterfaces){
58$$nextFA.addAll(CONTEXT.querySet(" SELECT DISTINCT ?VALUE WHERE { " + n + "

telco:hasLink ?LNK . ?srcInterface telco:hasLink ?LNK . ?srcNode telco:
hasInterface ?srcInterface . ?srcNode telco:hasInterface ?VALUE }"));

59}
60// also add all verified interfaces to mark our path
61$$nextFA.addAll($$verifiedInterfaces);
62};

194

7.5. Telecommunications Network Monitoring: Denial of Service Tracing

Listing 7.8: Interim result publication, termination rules and statements for preparing the
next iteration of the Focused Situation Processing template for the DoS scenario

1

2// publish our current tracking state if the processing is not yet finished
3publish interim result $$verifiedInterfaces when [MVEL] !$$pathComplete && !

$$trailLost [/MVEL];
4

5// terminate if no DoS could be verified
6terminate if [MVEL] $$falseSituation [/MVEL]
7with result FalseSituation keep area registration if [MVEL]false[/MVEL];
8

9// terminate if we traced the path
10terminate if [MVEL] $$pathComplete [/MVEL]
11with result $$verifiedInterfaces , $$originRouters keep area registration if [

MVEL]true[/MVEL];
12

13// terminate if we can’t follow the path any further
14terminate if [MVEL] $$trailLost [/MVEL]
15with result $$message , $$verifiedInterfaces keep area registration if [MVEL]true

[/MVEL];
16

17// For DoS tracing the Time Frame is fixed so we can track the path
18nextIterationTimeFrame startsAt $$startTime withDurationOf 60s ;
19

20// lockedArea is fixed to the nodes that are under attack
21nextLockedArea $$lockedArea;
22

23// focusArea was determined in a custom way during pre -Processing
24nextFocusArea $$nextFA;
25

26// as the Locked Area never moves , no merge possible
27mergeFunction [MVEL][/ MVEL];

195

7. Evaluation

7.5.2. DoS Test Data Simulation

The simulation is based on the telecommunications network shown as part of the scenario
discussions in Subsection 2.1.2.1 (Figure 2.1.3). The network consists of two routers which
connect a data center to the network of a telecommunications provider (Router 1 and
13), several routers representing the provider’s network and three routers connecting the
provider’s network with other providers (Routers 10, 11 and 15). Furthermore, in the
corresponding background knowledge, Routers 1 and 13 are marked to be monitored for
possible DoS Attacks by the property telco:dosMonitoredRouter. Routers 10,11 and 15 in
turn are marked as telco:edgeRouter to mark their role as interconnecting routers with the
networks of other providers.

For the following test case (Case 5), a DoS attack was simulated based on the discussed
network (Figure 7.6.1). The attack is simulated by a burst of very small network packages
against one of the border routers of a data center (Router 13). In the simulation, the attack
starts at 1438293710 (100s after the simulation starts) and originates from the Router 10.
The DoS traffic is routed through the simulated network via the Routers 9,8,6 and 5 to
reach Router 13.

In order to simulate normal network traffic, in which the DoS attack needs to be detected
and traced, several other nodes in the network generate network traffic by sending packages
to other Routers which automatically reply.

The simulation provides the measurement data as a number of CSV files which are loaded
by the processing systems prototype. Further the simulation generates the background
knowledge base contents based on the simulated network topology as a Turtle file that is
also loaded by the prototype.

7.6. Case 5: DoS Tracing

This section discusses the test of the Scenario Processing Template developed for the
detection and tracing of a DoS attack. The test is based on a simulated data set which
contains a simulated DoS attack against Router 13 originating from Router 10 as discussed
in the previous section.

The following subsections discuss the execution of the processing template based on the
developed prototype. The discussions are structured along the processing phased defined
by the processing model. Furthermore the discussions focus on aspects specific to this
application domain and scenario as the general execution of the processing model is already
discussed in detail for the previous test cases.

196

7.6. Case 5: DoS Tracing

Indicated Time Indicated Nodes Initial TimeFrame Potential LockedArea
1 1438293720 tests:interface_13_5 tests:interface_13_5

2 1438293730 tests:interface_13_5 - - -

3 1438293740 tests:interface_13_5 - - -

P2
Classification

Resulting Focused Situation
Processing Instance

1438293690-
1438293751

New Possible
Situation

FP__DosTracing__d20f923f-8c85-
4b97-b55f-1067daeb6dcd

Duplicate
Indication
Duplicate
Indication

Table 7.6.1.: Case 5: Generated Possible Situation Indication Events

7.6.1. Phase 0: Possible Situation Indication Processing Initialization

The Phase 0 processing used the specified indication nodes query to select two interfaces to
monitor for potential DoS Attacks, one interface of each of the Routers 1 and 13. For each
interface a single stream processing rule is generated. The resulting structure of the Stream
Processing Topology is similar in structure to the Indication Stream Processing topology of
the Cloud Tracking Scenario (Figure 7.4.1). Due to the similarity, the generation process
and resulting topology is not discussed in further detail.

7.6.2. Phase 1: Possible Situation Indication Processing

The generated stream processing topology was instantiated by the processing system. The
following stream processing resulted in the generation of three Possible Situation Indication
Events starting with the first one at time 1438293720 which is 10 seconds after the simulated
attack started for the interface tests:interface_13_5 of Router 13 as shown in Table 7.6.1.
The following two events were the result of the used sliding window in which the drop in
average package size continues to be evident thus causing additional indications.

7.6.3. Phase 2: Focused Situation Processing Initialization

The first Possible Situation Indication Event was correctly classified as concerning a new
possible situation and the creation of a new Focused Situation Processing Instance (Ref-
ereed to as Instance #1) was triggered (Table 7.6.1 Line 1). The potential Focus Area
and Locked Area was set to the interface contained in the indication and the initial time
frame started 30s before the indicated time and ended 30s after, thus allowing the created
FSP Instance to verify the DoS attack based on the measurement data from the indicated
interface.
The following two events (Lines 2 and 3) were raised for the same interface shortly

after the initial indication event and were therefore classified as duplicate indications in
accordance with the specified time threshold of 600s (Listing 3 Line 3).

7.6.4. Phase 3: Focused Situation Processing

During the first iteration, the FSP Instance successfully verified the possible situation as
shown by the generated Interim Result Event (Table 7.6.3, Event #1) which confirms the

197

7. Evaluation

Time Frame Requested Focus Area

1 tests:interface_13_5; tests:interface_13_5; Yes

2 tests:interface_13_5; Yes

3 tests:interface_13_5; Yes

4 tests:interface_13_5; Yes

5 tests:interface_13_5; Yes

6 tests:interface_13_5; Yes

7 tests:interface_13_5; Yes

Requesting Focused Situation
Processing Instance

Requested Locked
Area

Registrati
on

Granted?

1438293690-
1438293751

FP__DosTracing__d20f923f-
8c85-4b97-b55f-1067daeb6dcd

1438293690-
1438293751

FP__DosTracing__d20f923f-
8c85-4b97-b55f-1067daeb6dcd

tests:interface_5_13;tests:interface_5_17;tests:interface_5_2;tests:inter
face_5_6;tests:interface_13_5;

1438293690-
1438293751

FP__DosTracing__d20f923f-
8c85-4b97-b55f-1067daeb6dcd

tests:interface_6_8;tests:interface_5_13;tests:interface_5_17;tests:inter
face_6_15;tests:interface_5_2;tests:interface_6_3;tests:interface_5_6;t
ests:interface_6_5;tests:interface_6_7;tests:interface_13_5;

1438293690-
1438293751

FP__DosTracing__d20f923f-
8c85-4b97-b55f-1067daeb6dcd

tests:interface_6_8;tests:interface_8_6;tests:interface_8_9;tests:interfa
ce_8_14;tests:interface_6_15;tests:interface_6_3;tests:interface_6_5;te
sts:interface_5_6;tests:interface_8_4;tests:interface_6_7;tests:interface
_13_5;1438293659 -

1438293720
FP__DosTracing__d20f923f-
8c85-4b97-b55f-1067daeb6dcd

tests:interface_8_6;tests:interface_6_8;tests:interface_8_9;tests:interfa
ce_9_8;tests:interface_8_14;tests:interface_9_16;tests:interface_9_10;t
ests:interface_5_6;tests:interface_8_4;tests:interface_9_4;tests:interfac
e_13_5;1438293690-

1438293751
FP__DosTracing__d20f923f-
8c85-4b97-b55f-1067daeb6dcd

tests:interface_10_9;tests:interface_6_8;tests:interface_9_8;tests:interf
ace_8_9;tests:interface_9_16;tests:interface_9_10;tests:interface_5_6;t
ests:interface_9_4;tests:interface_13_5;

1438293690-
1438293751

FP__DosTracing__d20f923f-
8c85-4b97-b55f-1067daeb6dcd

tests:interface_6_8;tests:interface_8_9;tests:interface_9_10;tests:interf
ace_5_6;tests:interface_13_5;

Table 7.6.2.: Case 5: Area Registration Requests generated as part of the tracking process
by the created FSP Instance.

interface tests:interface_13_5 of Router 13 as being an interface of the DoS attacks traffic
path.
Based on the verification, the FSP Instance started with the tracing the DoS attack

trough the network in its second iteration. The trace was completed after five iterations
as shown by the Area Registration Requests (Table 7.6.2 Lines 2 to 6). For the first
tracing step (Iteration 2), the FSP Instance focused on all interfaces of the Router 5
(tests:interface_5_*) and the already verified interface tests:interface_13_5 as shown by
the Area Registration Request #2. This first tracing step added the network interface
tests:interface_5_6 to the list of verified interfaces as shown by the generated Interim
Result Event (Table 7.6.3, Event #2). For the third iteration the same process was repeated
for all network interfaces of Router 6 where the processing resulted in the addition of the
interface tests:interface_6_8 (Table 7.6.3, Event #3).
This process was continued until the FSP Instance reached Router 10 where no additional

interface was added to the list of verified interfaces anymore, which completed the trace.
The FSP Instance concluded its processing with one additional iteration for which the
registered Focus Area represented the complete traced path of the DoS traffic trough the
network (Area Registration Request #7). The FSP then terminated with a Final Result
Event which correctly stated the traced traffic path in $$verifiedInterfaces as well as the
routers which where the origin of the attack in $$originRouters (Table 7.6.3, Event #6).
Figure 7.6.1 illustrates the resulting path by showing the Focus Area from the final Area
Registration in blue rectangles.

In total the FSP Instance needed 7 iterations to verify the situation and to trace it back
to its origin. The first iteration for the verification, the iterations 2 to 6 to trace the traffic
to its origin and the final iteration to update the Area to correctly represent the traced
path.

198

7.6. Case 5: DoS Tracing

Figure 7.6.1.: Case 5: Visualization of the simulated telecommunications network with
an active DoS attack against Router 13. The red rectangle shows the Locked Area of the
FSP Instance which traced the DoS attack to its origin as shown by the blue Rectangles
which represent the final Focus Area acquired by the FSP Instance once it had completed
the trace.

Event Type Time Contents
1 InterimResultEvent 1438293751 $$verifiedInterfaces = [tests:interface_13_5]
2 InterimResultEvent 1438293751 $$verifiedInterfaces = [tests:interface_13_5;tests:interface_5_6]
3 InterimResultEvent 1438293751 $$verifiedInterfaces = [tests:interface_13_5;tests:interface_5_6;tests:interface_6_8]
4 InterimResultEvent 1438293751 $$verifiedInterfaces = [tests:interface_13_5;tests:interface_5_6;tests:interface_6_8;tests:interface_8_9]
5 InterimResultEvent 1438293751 $$verifiedInterfaces = [tests:interface_13_5;tests:interface_5_6;tests:interface_6_8;tests:interface_8_9;tests:interface_9_10]
6 FinalResultEvent 1438293751 $$verifiedInterfaces = [tests:interface_13_5;tests:interface_5_6;tests:interface_6_8;tests:interface_8_9;tests:interface_9_10]

$$originRouters = [[tests:node_10]]

Table 7.6.3.: Case 5: Result Events generated by the FSP Instance reporting the inter-
faces along the DoS traffic path.

199

7. Evaluation

7.6.5. Conclusions from Case 5

The processing system correctly identified the DoS attack and traced the traffic through the
network to its origin as illustrated by Figure 7.6.1. The test case thereby demonstrated the
use of the processing model based on a processing template defined in SPTL for a different
application domain than the so far used Smart Grid domain.

7.7. Synchronization Required by the Processing Model

The processing model is aimed at the parallel execution of the stream processing tasks in
order to achieve scalability over potentially large numbers of event streams. This section
discusses the amount of synchronization required by the processing model as this effectively
limits the amount of parallelization possible (Also see the discussion of the answer to RQ1.1
on page 159).
The indication stream processing in Phase 1 needs no coordination within this phase

and can from the perspective of the processing model be executed in parallel for each
separate event stream. However, the resulting possible situation indications need to be
synchronized with each other and with already active FSP Instances during the Phase 2
processing. Moreover, in Phase 3, the active FSP Instances need to be synchronized after
the completion of each iteration. The synchronization for both processing phases is realized
through the Area Registration mechanism as discussed in Section 4.5.10 for Phase 2 and
Section 4.6.6 for Phase 3. these synchronization requirements effectively limit the number
of parallel (potential) situations that can be handled by the system (See Limitation L3).
The synchronization requirements have however no limiting impact on the number of event
streams that need to be monitored for potential situations.
While multiple FSP Instances can be executed in parallel based on the discussed syn-

chronization mechanisms, the processing of any single situation can not be distributed
onto multiple machines as the processing model does not define how such a distributed
processing of a single situation has to be synchronized between multiple machines (See
Limitation L2).

7.8. Limitations of the Processing Model and Language

The evaluation of the processing model demonstrated, that it behaves as expected. How-
ever, the processing model itself has certain limitations which are discussed in the following
paragraphs as a foundation for the later discussion of possible future work in Section 8.2:

L1: Suitable Possible Situation Indication Functions Required
The processing model relies on the existence of „suitable” indication functions that
can be used to identify potential situations. Such an indication function is consid-
ered suitable if it can detect potential situations from a fixed set of event streams

200

7.8. Limitations of the Processing Model and Language

with an acceptable rate of false positives & false negatives for the given scenario.
Furthermore, the indicator must only require a limited amount of processing time to
allow the possible situation indication processing to keep up with the rate of inbound
events that need to be screened for possible situations.

L2: Limited Size of Single Situations
The processing model uses a situation-specific processing context for each investi-
gated (possible) situation. This context can be used freely by the scenario-specific
processing logic. This however limits the processing of a single situation to the scope
of a single machine as no synchronization mechanism for accessing the processing
context in a distributed context is specified by the model. Thus, the maximum size
of a situation is effectively limited by the capacity of the used machines.

L3: Limited Number of Parallel (Possible) Situations
The processing model uses its Area Registration mechanism for the coordination
between multiple parallel (possible) situations. While the processing of the (possible)
situations can be executed in parallel on multiple machines, the Area Registration
mechanism acts as the central synchronization mechanism between them. Thus, the
set of active Area Registrations needs to be managed by a single machine which
effectively limits the number situations that can be processed in parallel as each
(possible) situation requires at least one Area Registration.

L4: Only Static Background Knowledge Supported
The processing model does not define how changes in the background knowledge can
be incorporated into the ongoing processing, for example into an ongoing tracing
process of a cloud. Thus, the processing model is currently only suitable for static
background knowledge.

L5: Limited Continuity of Situation Identities Under Certain Circumstances
The processing model is providing a situation-specific processing which implies situation-
specific processing results. Thus, every processed situation has its own identity while
being processed (represented by the responsible Focused Situation Processing In-
stance). For the two following cases however, the identity of a situation can change,
leading to the assignment of a new identity:

Merging of Situations: (Discussed in Test Case 3, Section C.2)
When two situations A,B merge into one situation, the processing system gives
no guarantees which of the two situation identities is used for the situation
after the merge. Thus, the selection of the identity is dependent on the actual
implementation of the processing system and the timing during execution.

Collision of Situations: (Discussed in Test Case 4, Section C.3)
As mentioned in the previous paragraph, when two situations A,B collide with

201

7. Evaluation

each other, the processing model handles this collision by merging the two sit-
uations into one, e.g. A. This for example happens if two clouds move close
enough together so that the processing system can no longer separate them,
while the actual clouds do not merge into one. When these two actual situa-
tions at a later point in time become distinguishable again by the processing
system, the processing system will only follow one of these situations with the
identity A. The other situation is detected as a new situation with a new iden-
tity C. Thus, after the merge and separation of the two actual situations, three
situations have been reported by the processing system. Further the processing
model gives no guarantees, which one of the two actual situations retains the
identity and which one becomes a new identity.

L6: Limited to one Situation Type per Template with no Interaction between
Different Templates
The processing model does not define any interactions between different situation
types defined in different Scenario Processing Templates. For example if one template
defines the tracking of clouds and another describes the tracking of storm fronts, no
processing model conform interaction between the two templates is possible.
Furthermore, the Area Registration mechanism defined by the processing model does
not define a mechanism to register different kinds of Area Registrations in order to
separate registrations based on the type of situations they represent. This effectively
prevents the implementation of two different types of situations like the cloud and
storm front tracking in a single template as the Area Registrations of the different
situation kinds can not be distinguished.

7.9. Preconditions for the Application of the Processing Model

Based on the previous discussion of the limitations of the processing model, this subsection
discusses the preconditions that need to be fulfilled by a scenario to allow the application
of the designed processing model:

1. Possibility to subdivide the the processing task of a given scenario into the processing
phases of the processing model by defining a matching indication function as well
as Locked Area and Focus Area selection functions together with a collision handling
function.

2. Suitable background knowledge for the given scenario must exist and must be linked
to the available event streams in oder to allow the generation of stream processing
topologies for the indication processing as well as the situation specific processing.
Further the scenario must be based on static background knowledge only (See Limi-
tation L4).

202

7.10. Conclusions

3. For the Locked Area and Focus Area mechanism, a scenario specific neighborhood
criteria between nodes in the knowledge base is needed to allow to determine which
nodes are part of a new Locked Area or Focus Area like for example a geographical
relation as demonstrated by the Cloud Tracking Scenario or a topological relation as
demonstrated by the DoS Scenario.

4. Any situation that is to be processed needs to have a unique identity based on the
defined Locked Area from the Area Registration mechanism to allow the processing
model to process multiple situations separately for a given scenario. Further situa-
tions need to stay separable over time based or a loss of the situation identities needs
to be acceptable by the scenario as discussed for Limitation L5.

5. The scenario must only require one kind of situation as the Area Registration mech-
anism does not allow to distinguish between different kinds of situations as discussed
for Limitation L6.

6. The processing load of any single situation that can be expected for a scenario must
not exceed the capabilities of a single machine of a used processing system as the
situation specific processing of any one situation needs to take place on a single
machine (See Limitation L2).

7.10. Conclusions

The realization of the Cloud Tracking Scenario and the DoS Detection and Tracing Scenario
successfully demonstrated the use of the SPTL for the definition of situation-aware adaptive
processing tasks for two distinct scenarios from two separate application domains. Based
on the realized scenarios, several tests where successfully conducted:
The first four6 cloud tracking based test cases demonstrated the use of the processing

model as well as special functionality like the merging of situations. The final fifth test
case demonstrated the use of the processing model for a different application domain thus
demonstrating the domain independence of the SPTL and the processing model. Further
it demonstrated the use of non geographical background knowledge and static Focused
Situation Processing Time Frames.
Aside from the verification of the processing model and SPTL functionalities, Test Case

4 (Appendix C.3) also pointed out the limitation of the processing model towards the
tracing of multiple parallel situations with temporarily ambiguous situation identities.

6The Test Cases 2 to 5 are documented in Appendix C.

203

8. Conclusions and Outlook

Contents

8.1. Summary and Resulting Conclusions . 205

8.2. Outlook . 208

8.1. Summary and Resulting Conclusions

This work defines a situation-aware adaptive event stream processing model and scenario
specification language. The processing model and language allow the specification of stream
processing tasks which support an automatic scenario-specific adaptation of their process-
ing logic based on detected situations in order to analyze and follow detected situations.
The motivation for this work lies in the missing support of current state of the art Event
Stream Processing (ESP) systems for such a „situation-aware adaptive Event Stream Pro-
cessing”. Scenarios that can benefit from this a processing model are scenarios that require

• the identification of situations of potential interest in a large set of streaming data
while
• the verification and analysis of the situation requires an in-depth analysis based on

a situation-specific subset of the overall streaming data.

One such scenario is the detection and tracing of solar energy production drops caused
by clouds shading solar panels as they pass by. The scenario requires a stream processing
system to handle large amounts of streaming data (energy production measurements from a
great number of solar panel installations) to detect a cloud (possible situation). However,
the later verification of the detected cloud as well as its tracking only requires a small
situation-specific subset of the overall streaming data, namely the measurements from the
solar panels of the affected area. The scenario thus requires a situation-aware adaptation of
its processing setup in order to focus on a detected cloud. Further the cloud will change its
position over time resulting in a different set of affected solar panels which again requires the
processing system to adapt its processing setup based on changes in the tracked situation.

205

8. Conclusions and Outlook

Aside from this scenario, two additional scenarios from the application area of telecom-
munication network monitoring were discussed which pose similar challenges.

8.1.1. Gap in the State of the Art

Based on the analysis of the three scenarios, a set of six characteristic properties was de-
fined (Section 2.2). Based on these properties, the analysis of the current State of the Art
has revealed that the existing classes of event stream processing systems and approaches
are not on their own capable of a situation-aware adaptive event stream processing.
Even though distributed Data Stream Management Systems (DSMS) provide a lot of the

functionality that is needed, they lack support for the automatic query adaptations based
on a higher level model as they have no support for such a model (Section 3.2.4). Other
approaches, targeted at adaptive DSMS optimization, exist like systems that employ statis-
tics based optimizations of their query graphs. Other approaches introduce new operators
which allow for an adaptive partitioning or query plan execution. Such approaches allow
for a certain degree of adaptiveness of DSMS. Yet, they are focused on the optimization
of the already deployed queries to handle fluctuations in the incoming data stream sizes
or wrong initial assumptions. These approaches also do not provide a higher level model
that allows the targeted scenario-specific adaptation of the queries themselves based on
the detection of a possible or changing situation.

8.1.2. Problem Statement

This leads to the problem that a lack of support for scenarios that require a situation-
aware adaptive event stream processing is given. As a result, for each new scenario, a new
processing system needs to be designed, implemented and maintained. Such a processing
system is specific for this scenario’s required adaptivity. It is therefore the aim of this
work to ease the development of such situation-aware adaptive processing systems.
This work approaches the problem by defining a situation-aware adaptive stream pro-

cessing model together with a matching scenario definition language to allow the definition
of situation-aware adaptive processing scenarios for a scenario independent processing sys-
tem. The requirements for the definition of the model and language are the result of
an analysis of three distinct scenarios from two application domains which all require a
situation-aware adaptive event stream processing.

8.1.3. Contribution

Based on the approach, this work has two main contributions:

1. The Processing Model defines situation-aware adaptive event stream processing
in an implementation independent way. It consists of three main phases. The first
phase is aimed at the rapid detection of possible situations in large sets of event

206

8.1. Summary and Resulting Conclusions

streams. The second phase is responsible for the decision whether an indicated pos-
sible situation needs to be investigated by a Focused Situation Processing Instance.
Phase three then constitutes the situation focused analysis performed for a specific
situation. Further the model defines a mechanism to provide identities to detected
(possible) situations by assigning Locked Areas based on an Area Registration mech-
anism.

2. Based on the model the Scenario Processing Template Language (SPTL) was de-
fined which allows the specification of situation-aware adaptive processing tasks in
the form of scenario processing templates. These templates are combined with the in-
formation available from a background knowledge to configure a processing system.
Further, the templates are used together with information on detected (possible)
situations to adapt the processing system in a scenario and situation-specific way.

8.1.4. Evaluation

A prototype was created which implements the defined processing model and can execute
situation-aware adaptive processing scenarios defined in the SPTL. Thus, it implements a
parser and interpreter for the SPTL.
Even though the prototype is not created as a distributed scalable system, its architecture

outlines how the several components needed for implementing the processing model can
be tailored to have a high cohesion of the components with only service or event based
interactions with other components as it is required for a distributed version.

For the evaluation of the developed model and language, two scenarios have been re-
alized in SPTL as templates and were tested on the processing system prototype. The
realization of the two scenarios (Cloud Tracking and Denial of Service Tracing) demon-
strates the usability of the defined language to express complex scenarios. Further it
demonstrates the independence of the SPTL from the application domain as the scenarios
originate from two separate domains with different requirements1.
Based on the prototype and realized scenarios, five test cases have been performed

and the results analyzed. The first test case (Detection and tracking of a single Cloud)
successfully demonstrates the main aspects of the processing model as well as the capability
of the corresponding scenario template to provide the required information for executing a
situation-aware adaptive processing. The following three test cases demonstrate additional
functionality of the processing model like the handling of false situations or the merging
of focused situation processing tasks.
While the first four cases are based on the Cloud Tracking scenario, the last test case

demonstrates the application of the processing model for the telecommunication network
1For example with regard to the kind of the needed background knowledge which, for the Cloud Tracking
scenario, is of a geographic nature while being of a topological nature for the Denial of Service Tracing
scenario.

207

8. Conclusions and Outlook

DoS tracing scenario, and thus for a separate application domain.

The evaluation demonstrates that the language and processing model fulfill the defined
requirements by providing an application domain and scenario independent mechanism to
define and execute situation-aware processing tasks on a generic processing system.
Even though the scenario realization is still a complex task that requires planning on how

the processing should take place like for example, when and how to select new nodes for
the processing (Focus Area), the templates only concern scenario-specific aspects. Thus,
the scenario developer does not need to tackle technical problems on how to obtain the
needed event streams or how to integrate background knowledge into parts of the process.
Most importantly, the complete process of detecting potential situations (Phase 1) to their
classification (Phase 2) and to verify and analyze possible situations (Phase 3), is provided
and only needs to be configured for a given scenario.

8.2. Outlook

Based on the results of this work and the discussed limitations (Section 7.8), further re-
search topics can be identified in the following areas: Adding additional functionality,
adding increased usability, further enhancing scalability and providing additional evalua-
tion of the model and language.
The following discussions also offer approaches to address the Limitations L3 to L6

outlined in Section 7.8. The limitations L1 & L2 are however not addressed as they are
considered a design aspect of the model.

Additional Functionality: 1. The third test case (Multiple FSP Instances for One Cloud)
discusses that the processing model does not define which one of two merging
situations retains its identity and which one looses its identity (Limitation L5).
A possible approach for avoiding this limitation is to allow a scenario-specific
function to determine which of the two merging situations should be merged
into the other one.

2. The fourth test case (Temporary Situation Merge) demonstrates the limitation
of the processing model in handling temporarily colliding situations (Limitation
L5). More generally the current model has only limited capability to handle sit-
uations with temporary non-unique situation identities. This limitation could
be mitigated for example by adding the capability of retaining a situation’s iden-
tity based on additional scenario-specific knowledge (e.g. the clouds trajectory
and speed to calculate likely further occurrences of the same situation) even if
the situation is temporary lost or is indistinguishable from another situation.
Further, the capability to reuse a situation’s identity after it is detected again
could be added to the model.

208

8.2. Outlook

3. The current processing model does not provide any handling for changes of the
background knowledge during run-time (Limitation L4). In order to support
changes of the background knowledge, additional research on how to incorporate
the changes into active FSP Instances would be needed. One possible approach
could be to synchronously change the background knowledge for all active FSP
Instances as well as the Phase 2 processing in order to avoid inconsistencies.
This step would also need to include the handling of Area Registration updates
due to the changed background knowledge and with it also the handling of
collisions.

4. As discussed for Limitation L6, the processing model does not support more
than one kind of situation per processing template. This limitation is caused by
the Area Registration mechanism which does not provide the means to distin-
guish between two different situation kinds. The limitation could be mitigated
by extending the Area Registration mechanism to support multiple types of
Locked Areas in order to support more than one kind of situation in one tem-
plate. This would however require further research towards the handling of
collisions between different situation kinds.

Enhancing the Scalability:
With regard to enhancing the scalability of the processing model towards larger
numbers of parallel situations (Limitation L3), the processing model could allow some
parallelization of the Area Registration Mechanism. Such parallelization could be
achieved by partitioning the Area Registration mechanisms co-domain in a scenario-
specific way. This would require further research towards the definition of a scenario-
specific partitioning scheme.

Increasing Usability:
The usability of the designed specification language may be improved by providing
some basic tooling for the definition of Scenario Processing Templates as well as the
debugging of their execution, for example an Eclipse based IDE could simplify the
realization of new scenarios. Furthermore, providing some abstraction from the used
stream processing rule language (Drools) could ease the development of templates
and allow the use of other stream processing engines with their own languages.

Extending the Evaluation:
An implementation of the processing model and language suitable for a large scale
distributed deployment would allow determining the practical scalability limitations
of the chosen Area Registration based synchronization mechanism. Further, the
realization of other scenarios from additional domains would further verify the general
applicability of the results.

209

A. Scenario Processing Template Language

This chapter contains the complete specification of the language designed by this work as
it has been discussed in Chapter 5. It further specifies additional details regarding the
handling of the embedded languages.

A.1. EBNF Representation

〈ScenarioProcessingTemplate〉 ::= 〈TemplatePreamble〉
〈PossibleSituationIndication〉
〈FocusedProcessingInitialization〉
〈FocusedSituationProcessing〉

Template Preamble:

〈TemplatePreamble〉 ::= 〈TemplateName〉 〈DroolsPrefix 〉? 〈SPARQLPrefix 〉?

〈TemplateName〉 ::= ’name’ 〈STRING〉 ’;’

〈DroolsPrefix 〉 ::= ’drools prefix’ 〈STRING〉 ’;’

〈SPARQLPrefix 〉 ::= ’sparql prefix’ 〈STRING〉 ’;’

Possible Situation Indication:

〈PossibleSituationIndication〉 ::= ’PossibleSituationIndication’ ’{’
〈IndicationNodesQueryFunction〉
〈IndicationStreamProcesssingBuilder〉
’}’

〈IndicationNodesQueryFunction〉 ::= ’$$indicationNodes’ 〈SPARQL〉 ’;’

〈IndicationStreamProcesssingBuilder〉 ::= ’IndicationStreamProcessingBuilder’ ’{’
〈StreamProcessingBuilder〉
’}’

Focused Situation Processing Initialization:

〈FocusedProcessingInitialization〉 ::= ’FocusedProcessingInitialization’ ’{’
〈IndicationPreClassificationThreshold〉
〈PotentialLockedFocusAreaInitialTimeFrameQueryFunction〉
〈PartialLockedAreaCollisionActionAssignmentFunction〉
〈FocusAreaCollisionActionAssignmentFunction〉
’}’

〈IndicationPreClassificationThreshold〉 ::= ’duplicationThreshold’ 〈TIME_DURATION 〉 ’;’

211

A. Scenario Processing Template Language

〈PotentialLockedFocusAreaInitialTimeFrameQueryFunction〉 ::= 〈PotentialLockedArea〉
〈PotentialFocusArea〉
〈InitialTimeFrame〉

〈PotentialLockedArea〉 ::= ’potentialLockedArea’ (〈VAR〉 | 〈SPARQL〉) ’;’

〈PotentialFocusArea〉 ::= ’potentialFocusArea’ (〈VAR〉 | 〈SPARQL〉) ’;’

〈InitialTimeFrame〉 ::= ’initialTimeFrame’ ’startsAt’ (〈VAR〉 | 〈MVEL〉)
’withDurationOf’ (〈TIME_DURATION 〉 | 〈MVEL〉) ’;’

〈PartialLockedAreaCollisionActionAssignmentFunction〉 ::= (〈PartialLAcollisionFunction〉
| 〈CollisionRules〉)

〈FocusAreaCollisionActionAssignmentFunction〉 ::= (〈FaCollisionFunction〉
| 〈CollisionRules〉)

〈PartialLAcollisionFunction〉 ::= ’partialLACollision’ 〈MVEL〉 ’;’

〈FaCollisionFunction〉 ::= ’FACollision’ 〈MVEL〉 ’;’

〈CollisionRules〉 ::= (〈CollisionRule〉)*

〈CollisionRule〉 ::= ’collisionAction’ 〈CollisionAction〉 (’,’ 〈CollisionAction〉)*
’if’ 〈Condition〉 (’and’ 〈Condition〉)* ’;’

〈Condition〉 ::= (’LA’|’FA’) ’overlap’ (’〈’ | ’〉’ | ’==’ | ’〈=’ | ’〉 =’)
〈PERCENTAGE〉

〈CollisionAction〉 ::= ’startNew’,’addToExisting’,’noAction’,’preventNew’,
’stopActionExecution’

Focused Situation Processing:

〈FocusedSituationProcessing〉 ::= ’FocusedSituationProcessing’ ’{’
〈FocusedSituationProcessingInitializationFunction〉
〈PreIterationProcessingFunction〉
〈IterationStreamProcessingBuilder〉
〈PostIterationProcessingFunction〉
〈InterimResultEventGenerationFunction〉
〈FocusedSituationProcessingTerminationConditionAndTerminationResult〉
〈IterationLockedAreaFocusAreaTimeFrameQueryFunction〉
〈FocusedSituationProcessingCollisionHandlingFunction〉
’}’

〈FocusedSituationProcessingInitializationFunction〉 ::= ’contextInitialization’ 〈MVEL〉 ’;’

〈PreIterationProcessingFunction〉 ::= ’preIterationProcessing’ 〈MVEL〉 ’;’

〈IterationStreamProcessingBuilder〉 ::= ’IterationStreamProcessingBuilder’ ’{’
〈StreamProcessingBuilder〉 ’}’

〈PostIterationProcessingFunction〉 ::= ’postIterationProcessing’ 〈MVEL〉 ’;’

〈InterimResultEventGenerationFunction〉 ::= 〈publishRuleDef 〉*

〈publishRuleDef 〉 ::= ’publish’ ’result’ 〈vars〉 ’when’ 〈MVEL〉 ’;’

〈FocusedSituationProcessingTerminationConditionAndTerminationResult〉 ::= 〈TerminationRule〉+

212

A.1. EBNF Representation

〈TerminationRule〉 ::= ’terminate’ ’if’ 〈MVEL〉
’with’ ’result’ (’FalseSituation’ | 〈vars〉)
’keep’ ’area’ ’registration’ ’if’ 〈MVEL〉

〈IterationLockedAreaFocusAreaTimeFrameQueryFunction〉 ::= 〈NextIterationLockedArea〉
〈NextIterationFocusArea〉 〈NextTimeFrame〉

〈NextIterationLockedArea〉 ::= ’nextFocusArea’ (〈VAR〉 | 〈SPARQL〉) ’;’

〈NextIterationFocusArea〉 ::= ’nextLockedArea’ (〈VAR〉 | 〈SPARQL〉) ’;’

〈NextTimeFrame〉 ::= ’nextIterationTimeFrame’ ’startsAt’ (〈VAR〉 | 〈MVEL〉)
’withDurationOf’ (〈TIME_DURATION 〉 | 〈MVEL〉) ’;’

〈FocusedSituationProcessingCollisionHandlingFunction〉 ::= ’mergeFunction’ 〈MVEL〉

Stream Processing Builder:

〈StreamProcessingBuilder〉 ::= 〈ProcOperation〉+

〈ProcOperation〉 ::= 〈BackgroundKnowledgeQuery〉
| 〈ForEach〉
| 〈ForEachGroup〉
| 〈PublishStatement〉
| 〈SetOperation〉
| 〈Conditional〉

〈BackgroundKnowledgeQuery〉 ::= 〈VAR〉 〈SPARQL〉 ’;’

〈ForEach〉 ::= ’foreach’ 〈VAR〉 ’as’ 〈VAR〉 ’{’ 〈ProcOperation〉+ ’}’

〈ForEachGroup〉 ::= ’foreach’ 〈VAR〉 ’as’ 〈VAR〉 ’group by’ 〈STRING〉
’{’ 〈ProcOperation〉+ ’}’

〈StreamProcessingRule〉 ::= ’rule’ 〈DROOLS〉 ’publishes’ (
’indications’
| (
’stream’ (〈VAR〉 ’.’ 〈ID〉 | 〈ID〉)
| ’no’ ’stream’
) (’manipulates’ ’context’)?
) ’;’

〈SetOperation〉 ::= 〈VAR〉 ‘=’ 〈VAR〉 (’+’ | ’&&’ | ’-’) 〈VAR〉 ’;’

〈Conditional〉 ::= ’if’ 〈MVEL〉 ’{’ 〈ProcOperation〉* ’}’ (’else’ ’{’ 〈ProcOperation〉* ’}’)?

General Elements:

〈SPARQL〉 ::= ’from’ ’sparql’ 〈STRING〉

〈MVEL〉 ::= ’[MVEL]’.*?’[/MVEL]’

〈DROOLS〉 ::= ’[DROOLS_TEMPLATE]’.*?’[/DROOLS_TEMPLATE]’

〈VAR〉 ::= ’$$’ [a-zA-Z0-9_]+

〈vars〉 ::= 〈VAR〉 (’,’ 〈vars〉)?

〈PERCENTAGE〉 ::= (’100’|’1’..’9”0’..’9’|’0’..’9’)(’.’(’0’..’9’)+)?’%’

213

A. Scenario Processing Template Language

〈TIME_DURATION 〉 ::= 〈INT 〉 (’h’|’m’|’s’)

Comments:

〈SL_COMMENT 〉 ::= ’//’ .*? ’\n’

〈ML_COMMENT 〉 ::= ’/*’ .+? ’*/’

A.2. Java Interfaces Available from MVEL

A.2.1. CollisionTuple

1package es.schaaf.fsp.model;
2

3public interface CollisionTuple extends Comparable <CollisionTuple > {
4/**
5* Get the collision grade with the Locked Area as absolute value (count of
6* overlapping nodes)
7*/
8public int getGradeLa ();
9

10/**
11* Get the collision grade with the Focus Area as absolute value (count of
12* overlapping nodes)
13*/
14public int getGradeFa ();
15

16/**
17* Get the colliding Area Registration
18*/
19public AreaRegistration getAreaRegistration ();
20}

A.2.1.1. Enum CollisionAction

1package es.schaaf.fsp.model;
2

3public enum CollisionAction {
4AddToExisting , NoAction;
5}

A.2.2. AreaRegistration

1package es.schaaf.fsp.model;
2

3public interface AreaRegistration {
4/**
5* Get the {@link FocusedProcessingIdentifier} of the FSP Instance that owns
6* the area registration
7*/
8public FocusedProcessingIdentifier getFpId ();
9

10/**
11* Get {@link TimeFrame} for the area registration
12*/
13public TimeFrame getTimeFrame ();
14

15/**
16* Get the Locked Area for the registration
17*/
18public Area getLockedArea ();
19

20/**

214

A.2. Java Interfaces Available from MVEL

21* Get the Focus Area for the registration
22*/
23public Area getFocusArea ();
24}

A.2.3. TimeFrame

1package es.schaaf.fsp.model;
2

3public interface TimeFrame {
4/**
5* get start end time in seconds since 1970
6*/
7long getStartTime ();
8

9/**
10* get the end time in seconds since 1970
11*/
12long getEndTime ();
13

14/**
15* Returns the number of seconds the time frames overlap , 0 if they don’t
16* overlap
17*/
18int overlaps(TimeFrame tf);
19

20/**
21* Returns true if the given time frame is included in this
22*/
23boolean includes(TimeFrame tf);
24}

A.2.4. Area

1package es.schaaf.fsp.model;
2

3import java.util.Set;
4

5public interface Area extends Set <String > {
6/**
7* Returns the number of nodes the given area overlaps with this area
8*/
9int overlaps(Area la);
10}

A.2.5. Event

1package es.schaaf.fsp.model.events;
2

3public interface Event {
4/**
5* get the time of the event in seconds since 1970
6* */
7long getTime ();
8}

215

B. Implemented Processing Specifications

B.1. Cloud Tracking Scenario

The Listing B.1 shows the complete Scenario Processing Template used for realizing the
cloud tracking as discussed in Section 7.3 and used for the tests in Section 7.4 and Appendix
C.

1

2Name "Cloud Tracking";
3

4SPARQL prefix "
5PREFIX tests:<smartGrid :// smartgrid/tests#>
6";
7

8// load scenario specific accumulation function into Drools
9DROOLS prefix [DROOLS_TEMPLATE]
10import accumulate es.schaaf.cloudTracking.SuddenChangeDetector

SuddenChangeDetector;
11[/ DROOLS_TEMPLATE];
12

13

14PossibleSituationIndication {
15$$indicationNodes from sparql "?VALUE rdf:type smartgrid:device. ?VALUE

smartgrid:providesMeasurement ?point. ?point rdf:type smartgrid:
PVPowerProduced.";

16

17IndicationStreamProcessingBuilder{
18foreach $$indicationNodes as $$pv {
19rule [DROOLS_TEMPLATE]
20when
21Number($delta : doubleValue)
22from accumulate(
23MeasurementEvent($val:value)
24over window:length(2)
25from entry -point "$${{pv?PVPowerProduced }}",
26SuddenChangeDetector($val)
27) eval($delta > 50)
28then
29publishIndication("$${{pv}}");
30end
31[/ DROOLS_TEMPLATE] publishes indications;
32}
33}
34};
35

36

37FocusedProcessingInitialization {
38duplicationThreshold 300s;
39

40potentialLockedArea $$indicatedNodes;
41

42potentialFocusArea from sparql "
43$${{ indicatedNodes }} smartgrid:hasLocation ?LOC1.
44?VALUE smartgrid:hasLocation ?LOC2.
45?LOC1 smartgrid:hasLat ?LAT1.
46?LOC2 smartgrid:hasLat ?LAT2.
47?LOC1 smartgrid:hasLon ?LON1.
48?LOC2 smartgrid:hasLon ?LON2.

217

B. Implemented Processing Specifications

49FILTER (?LAT1 +0.0041 > ?LAT2) .
50FILTER (?LAT1 -0.0041 < ?LAT2) .
51FILTER (?LON1 +0.0041 > ?LON2) .
52FILTER (?LON1 -0.0041 < ?LON2) . ";
53

54initialTimeFrame startsAt $$indicatedTime withDurationOf 300s ;
55

56collisionAction preventNew if FA overlap == 100% ;
57};
58

59FocusedSituationProcessing {
60

61contextInitialization [MVEL]
62$$oldLAofMergedFPI = null;
63[/MVEL];
64

65preIteration [MVEL]
66$$positiveNodes = new java.util.HashSet ();
67

68$$nodesToConsider = $$focusArea;
69

70if($$oldLAofMergedFPI !=null){
71// remove the nodes that where already verified
72java.util.Iterator iter = $$oldLAofMergedFPI.iterator ();
73while (iter.hasNext ()) {
74$$nodesToConsider.remove(iter.next());
75}
76$$positiveNodes.addAll($$oldLAofMergedFPI);
77$$oldLAofMergedFPI = null;
78}
79[/MVEL];
80

81IterationStreamProcessingBuilder {
82foreach $$nodesToConsider as $$pv {
83rule [DROOLS_TEMPLATE]
84when
85Number($average0 : doubleValue)
86from accumulate(
87MeasurementEvent($val:value)
88over window:time(300s)
89from entry -point "$${{pv?PVPowerProduced }}",
90average ($val)
91) eval($average0 < 30.0)
92then
93if(CONTEXT.noEarlyFiring("150s")){
94CONTEXT.addToSet("$$positiveNodes","$${{pv}}");
95}
96end
97[/ DROOLS_TEMPLATE] publishes no stream manipulates context;
98}
99};
100

101postIteration [MVEL]
102$$verifiedNodes = new java.util.HashSet ();
103

104$$resLon = -1;
105$$resLat = -1;
106

107if($$positiveNodes.size() > 0){
108clusters = es.schaaf.cloudTracking.GeoNodeClustering.findClusters(

CONTEXT , $$positiveNodes , 0.003);
109// there must be at least one cluster.
110// The first one is always the biggest one.
111$$verifiedNodes.addAll(clusters [0]. members);
112$$resLon = clusters [0]. centerLon;
113$$resLat = clusters [0]. centerLat;
114}
115

218

B.1. Cloud Tracking Scenario

116$$positiveNodes.clear();
117

118[/MVEL];
119

120

121publish interim result $$verifiedNodes , $$resLon , $$resLat , $$startTime ,
$$endTime when [MVEL] $$verifiedNodes.size() > 1 && $$verifiedNodes.equals
($$lockedArea) [/MVEL];

122

123terminate if [MVEL] $$verifiedNodes.size() < 2 && $$iterationCounter < 2 [/
MVEL] with result FalseSituation keep area registration if [MVEL]true[/
MVEL];

124

125terminate if [MVEL] $$verifiedNodes.size() < 2 && $$iterationCounter >= 2 [/
MVEL] with result $$verifiedNodes , $$resLon , $$resLat keep area
registration if [MVEL]true[/MVEL];

126

127

128nextIterationTimeFrame startsAt [MVEL] if($$verifiedNodes.equals($$lockedArea
)) { $$endTime } else { $$startTime } [/MVEL] withDurationOf 300s ;

129

130nextLockedArea $$verifiedNodes;
131

132nextFocusArea from sparql "
133$${{ verifiedNodes }} smartgrid:hasLocation ?LOC1.
134?VALUE smartgrid:hasLocation ?LOC2.
135?LOC1 smartgrid:hasLat ?LAT1.
136?LOC2 smartgrid:hasLat ?LAT2.
137?LOC1 smartgrid:hasLon ?LON1.
138?LOC2 smartgrid:hasLon ?LON2.
139FILTER (?LAT1 +0.0041 > ?LAT2) .
140FILTER (?LAT1 -0.0041 < ?LAT2) .
141FILTER (?LON1 +0.0041 > ?LON2) .
142FILTER (?LON1 -0.0041 < ?LON2) .";
143

144mergeFunction [MVEL]
145if(CONTEXT_A.get("$$timeFrame").equals(CONTEXT_B.get("$$timeFrame"))){
146la = CONTEXT_A.get("$$lockedArea");
147CONTEXT_B.put("$$oldLAofMergedFPI",la);
148}
149[/MVEL];
150};

B.1.1. Domain Specific Function

The cloud tracing scenario realization uses a domain specific clustering function in order
to determine geographical clusters of solar panels based on their position available through
the background knowledge. The function is realized as follows:

1package es.schaaf.cloudTracking;
2

3import java.util.ArrayList;
4import java.util.Arrays;
5import java.util.Comparator;
6import java.util.HashMap;
7import java.util.HashSet;
8import java.util.List;
9import java.util.Map;
10import java.util.Set;
11

12import es.schaaf.fsp.knowledgeBase.QueryFailedException;
13import es.schaaf.fsp.model.MVELProcessingContext;
14

15public class GeoNodeClustering {
16

17/**

219

B. Implemented Processing Specifications

18* Determines clusters of nodes based on the given maximal distance for
19* nodes that belong to the same cluster. Returns an array of
20* {@link Cluster} where the results are sorted descending by the cluster
21* size.
22*
23* @param CTX
24* as the current MVEL processing context to access the
25* background knowledge
26* @param nodes
27* as the set of nodes that shall be clustered
28* @param as
29* the maximum distance for nodes in a cluster
30*/
31public static Cluster [] findClusters(MVELProcessingContext CTX , Set <String >

nodes , double distanceThreshold)
32throws QueryFailedException {
33

34List <ClusterPoint > clusterPoints = new ArrayList <>(nodes.size());
35

36int clusterCounter = 0;
37for (String s : nodes) {
38clusterPoints.add(new ClusterPoint(s, clusterCounter ++, getGeoPosition(CTX ,

s)));
39}
40

41boolean changedSomething = false;
42

43Set <Integer > clusters = new HashSet <>();
44for (ClusterPoint clusterPoint : clusterPoints) {
45clusters.add(clusterPoint.clusterID);
46}
47

48for (Integer c : clusters) {
49

50do {
51changedSomething = false;
52for (ClusterPoint clusterPoint : clusterPoints) {
53int clusterID = clusterPoint.clusterID;
54

55if (clusterID != c)
56continue;
57

58double smallestDistance = Double.MAX_VALUE;
59ClusterPoint smallestDistanceTo = null;
60

61for (ClusterPoint clusterPoint2 : clusterPoints) {
62if (clusterPoint == clusterPoint2)
63continue;
64if (clusterPoint2.clusterID == clusterID)
65continue;
66

67double distance = clusterPoint.distance(clusterPoint2);
68

69if (distance < smallestDistance) {
70smallestDistance = distance;
71smallestDistanceTo = clusterPoint2;
72}
73}
74

75if (smallestDistance < distanceThreshold) {
76changedSomething = true;
77smallestDistanceTo.clusterID = clusterID;
78}
79

80}
81} while (changedSomething);
82}
83

220

B.1. Cloud Tracking Scenario

84clusters = new HashSet <>();
85for (ClusterPoint clusterPoint : clusterPoints) {
86clusters.add(clusterPoint.clusterID);
87}
88

89Cluster [] resultingClusters = new Cluster[clusters.size()];
90

91clusterCounter = 0;
92for (Integer c : clusters) {
93Set <String > m = new HashSet <>();
94double lat = 0, lon = 0;
95

96for (ClusterPoint cp : clusterPoints) {
97if (cp.clusterID == c) {
98m.add(cp.id);
99lat += cp.geoPosition.m_lat;
100lon += cp.geoPosition.m_lon;
101}
102}
103lat /= m.size();
104lon /= m.size();
105

106Cluster cl = new Cluster(c, m, lat , lon);
107

108resultingClusters[clusterCounter ++] = cl;
109}
110

111// sort the clusters by size
112Arrays.sort(resultingClusters , new BiggestClustersFirstComparator ());
113

114return resultingClusters;
115}
116

117/* ***
118* Utils
119*** */
120

121private static Map <String , GeoPosition > m_positionCache = new HashMap <>();
122

123/**
124* retrieve the position of the given solar panel from the background
125* knowledge base. NOTE: Uses a local cache of positions to reduce calls to
126* the knowledge base.
127*/
128private static GeoPosition getGeoPosition(MVELProcessingContext kb, String s)

throws QueryFailedException {
129

130GeoPosition cached = m_positionCache.get(s);
131if (cached != null)
132return cached;
133

134String q = "select ?VALUE where { " + s + " smartgrid:hasLocation ?LOC . ?LOC
smartgrid:hasLon ?VALUE. }";

135double lon = Double.parseDouble ((String) kb.queryScalar(q));
136q = "select ?VALUE where { " + s + " smartgrid:hasLocation ?LOC . ?LOC

smartgrid:hasLat ?VALUE. }";
137double lat = Double.parseDouble ((String) kb.queryScalar(q));
138

139cached = new GeoPosition(lon , lat);
140m_positionCache.put(s, cached);
141return cached;
142}
143

144private static class BiggestClustersFirstComparator implements Comparator <
Cluster > {

145@Override
146public int compare(Cluster o1 , Cluster o2) {
147return o2.members.size() - o1.members.size();

221

B. Implemented Processing Specifications

148}
149}
150

151private static class GeoPosition {
152public final double m_lat;
153public final double m_lon;
154

155public GeoPosition(double lon , double lat) {
156m_lon = lon;
157m_lat = lat;
158}
159

160public double distance(GeoPosition g) {
161return Math.sqrt(Math.pow(m_lon - g.m_lon , 2) + Math.pow(m_lat - g.m_lat , 2)

);
162}
163}
164

165private static class ClusterPoint {
166public int clusterID;
167public final String id;
168public final GeoPosition geoPosition;
169public Set <Integer > previousIDs = new HashSet <>();
170

171public ClusterPoint(String s, int i, GeoPosition g) {
172id = s;
173clusterID = i;
174previousIDs.add(i);
175geoPosition = g;
176}
177

178public double distance(ClusterPoint p2) {
179return geoPosition.distance(p2.geoPosition);
180}
181}
182}
183

184

185

186

187

188package es.schaaf.cloudTracking;
189

190import java.util.Set;
191

192public class Cluster {
193public final int id;
194public final Set <String > members;
195public final double centerLat;
196public final double centerLon;
197

198public Cluster(Integer c,Set <String > m,double cLat ,double cLon) {
199id = c;
200members = m;
201centerLat = cLat;
202centerLon = cLon;
203}
204}

222

B.2. Telecommunication Scenario

B.2. Telecommunication Scenario

The Listing B.2 shows the complete Scenario Processing Template used for realizing the
DoS Detection and Tracing Scenario as discussed in Section 7.5 and used for the test in
Section 7.6.

1Name "Dos Tracing";
2

3SPARQL prefix "
4PREFIX tests:<myCompany :// tests#>
5";
6

7// load scenario specific accumulation function into Drools
8DROOLS prefix [DROOLS_TEMPLATE]
9import accumulate es.schaaf.dos.ExtendedSuddenChangeDetector

ExtendedSuddenChangeDetector;
10import es.schaaf.dos.SuddenChange;
11import es.schaaf.dos.InterfaceDelta;
12[/ DROOLS_TEMPLATE];
13

14PossibleSituationIndication {
15// select all interfaces of routers that are flagged for DoS monitoring
16$$indicationNodes from sparql "?VALUE rdf:type telco:interface.
17?VALUE fsp:providesMeasurement ?point.
18?point rdf:type telco:trafficIn .
19?router telco:hasInterface ?VALUE .
20?router rdf:type telco:dosMonitoredRouter .
21";
22

23IndicationStreamProcessingBuilder{
24foreach $$indicationNodes as $$interface {
25rule [DROOLS_TEMPLATE]
26when
27// package size dropped
28$b : SuddenChange(consideredEvents == 6 , delta < -700)
29from accumulate(
30$meB : MeasurementEvent()
31over window:length(6)
32from entry -point "$${{ interface?packageSizeAvgIn }}",
33ExtendedSuddenChangeDetector ($meB)
34)
35then
36publishIndication("$${{ interface }}");
37end
38[/ DROOLS_TEMPLATE] publishes indications;
39}
40}
41};
42

43FocusedProcessingInitialization {
44duplicationThreshold 600s;
45

46potentialLockedArea $$indicatedNodes;
47potentialFocusArea $$indicatedNodes;
48

49initialTimeFrame startsAt [MVEL] $$indicatedTime - 30 [/MVEL] withDurationOf
60s ;

50

51// if LA is part of already active FSP Instance , it is likely that the
indication

52// is related to the already active instance
53collisionAction preventNew if LA overlap == 100% ;
54};
55

56

57FocusedSituationProcessing {
58

223

B. Implemented Processing Specifications

59contextInitialization [MVEL]
60// flags used to terminate the processing
61$$pathComplete = false;
62$$trailLost = false;
63$$message = "";
64$$falseSituation = false;
65

66// if the trace was a success: contains the routers that are the origin of the
DoS

67$$originRouters = new java.util.HashSet ();
68

69// will contain all interfaces along the path
70$$verifiedInterfaces = new java.util.ArrayList ();
71// contains all interfaces that have been verified by the current iteration
72$$iterationVerifiedInterfaces = new java.util.HashSet ();
73// same for the previous iteration
74$$lastIterationVerifiedInterfaces = new java.util.ArrayList ();
75

76// contains the results of the current iteration stream processing , the
77// deltas of package count and package size per interface if deltas are above

threshold
78$$iterationDeltas = new java.util.ArrayList ();
79

80// will contain the delta of package count and package size determined for
81// the attacked node during the first iteration
82$$deltaCount = 0;
83$$deltaSize = 0;
84[/MVEL];
85

86preIteration [MVEL]
87// prepare a new iteration ...
88$$iterationDeltas.clear();
89

90// for the iteration stream processing we only need to look at
91// interfaces from the focus area that we don’t consider as part
92// of the verified path yet
93$$interfacesToProcess = new java.util.HashSet($$focusArea);
94$$interfacesToProcess.removeAll($$verifiedInterfaces);
95

96[/MVEL];
97

98IterationStreamProcessingBuilder {
99foreach $$interfacesToProcess as $$interface {
100rule [DROOLS_TEMPLATE]
101when
102// package count increased
103$a : SuddenChange(consideredEvents == 6 , delta > 300)
104from accumulate(
105$meA : MeasurementEvent()
106over window:length(6)
107from entry -point "$${{ interface?trafficIn }}",
108ExtendedSuddenChangeDetector ($meA)
109)
110

111// package size dropped
112$b : SuddenChange(consideredEvents == 6 , delta < -300)
113from accumulate(
114$meB : MeasurementEvent()
115over window:length(6)
116from entry -point "$${{ interface?packageSizeAvgIn }}",
117ExtendedSuddenChangeDetector ($meB)
118)
119then
120CONTEXT.addToSet("$$iterationDeltas",new InterfaceDelta("$${{

interface }}",$a.getDelta (),$b.getDelta ()));
121end
122[/ DROOLS_TEMPLATE] publishes no stream manipulates context;
123}

224

B.2. Telecommunication Scenario

124};
125

126postIteration [MVEL]
127

128if($$iterationCounter == 1) {
129// in the first iteration sum up and store the detected deltas of the

attacked node(s)
130foreach(i : $$iterationDeltas){
131$$deltaCount += i.getDeltaTraffic ();
132$$deltaSize += i.getDeltaSize ();
133$$iterationVerifiedInterfaces.add(i.getInterface ());
134$$verifiedInterfaces.add(i.getInterface ());
135}
136

137if($$iterationVerifiedInterfaces.size()==0){
138$$falseSituation = true;
139}
140}else{
141if ($$interfacesToProcess.size() == 0) {
142// if there where no interfaces to process ,
143// check if trace is complete or if we lost the path
144

145

146// check if the last step connected only to border routers
147allBorderRouters = true;
148

149foreach(i : $$lastIterationVerifiedInterfaces){
150res = CONTEXT.querySet(" SELECT DISTINCT ?VALUE WHERE { " + i + "

telco:hasLink ?LNK . ?srcInterface telco:hasLink ?LNK . ?VALUE
telco:hasInterface ?srcInterface . ?VALUE rdf:type telco:
edgeRouter }");

151

152if(res.size() == 0){
153allBorderRouters = false;
154}else{
155// res contains the Router where the attack is comming from..
156$$originRouters.addAll(res);
157}
158}
159

160

161// if not only there are still other routers , we didn’t complete
162// the trace but lost the trail
163if(!allBorderRouters) {
164$$trailLost = true;
165}else{
166$$pathComplete = true;
167}
168

169}else{
170// otherwise continue with the trace
171

172$$lastIterationVerifiedInterfaces.clear();
173$$lastIterationVerifiedInterfaces.addAll($$iterationVerifiedInterfaces);
174$$iterationVerifiedInterfaces.clear ();
175

176trafficSum = 0;
177java.util.Collections.sort($$iterationDeltas);
178foreach(i : $$iterationDeltas){
179if(trafficSum < $$deltaCount){
180$$iterationVerifiedInterfaces.add(i.getInterface ());
181$$verifiedInterfaces.add(i.getInterface ());
182trafficSum += i.getDeltaTraffic ();
183}
184}
185

186// if less then 80% of the package count was found on the considered
interfaces

225

B. Implemented Processing Specifications

187// the trace is stopped as the path can’t be traced anymore
188if(trafficSum < ($$deltaCount * 0.8)){
189$trailLost = true;
190$$message = "Path was lost during iteration " + $$iterationCounter + "

as less then 80% of the traffic could be found";
191}
192}
193}
194

195// we want to have more control over the next Focus Area so we build it
ourselfs

196$$nextFA = new java.util.HashSet ();
197// query all interfaces of routers reachable from the interfaces verified in

the current iteration
198foreach (n : $$iterationVerifiedInterfaces){
199$$nextFA.addAll(CONTEXT.querySet(" SELECT DISTINCT ?VALUE WHERE { " + n + "

telco:hasLink ?LNK . ?srcInterface telco:hasLink ?LNK . ?srcNode telco:
hasInterface ?srcInterface . ?srcNode telco:hasInterface ?VALUE }"));

200}
201// also add all verified interfaces to mark our path
202$$nextFA.addAll($$verifiedInterfaces);
203[/MVEL];
204

205// publish our current tracking state if the processing is not yet finished
206publish interim result $$verifiedInterfaces when [MVEL]

$$iterationVerifiedInterfaces.size() > 0 [/MVEL];
207

208// terminate if no DoS could be verified
209terminate if [MVEL] $$falseSituation [/MVEL]
210with result FalseSituation keep area registration if [MVEL]false[/MVEL];
211

212// terminate if we traced the path
213terminate if [MVEL] $$pathComplete [/MVEL]
214with result $$verifiedInterfaces , $$originRouters keep area registration

if [MVEL]true[/MVEL];
215

216// terminate if we can’t follow the path any further
217terminate if [MVEL] $$trailLost [/MVEL]
218with result $$message , $$verifiedInterfaces keep area registration if [

MVEL]true[/MVEL];
219

220// For DoS tracing the Time window is fixed so we can track the path
221nextIterationTimeFrame startsAt $$startTime withDurationOf 60s ;
222

223// lockedArea is fixed to the nodes that are under attack
224nextLockedArea $$lockedArea;
225

226// focusArea was determined in a custom way during pre -Processing
227nextFocusArea $$nextFA;
228

229// as the Locked Area never moves , no merge possible
230mergeFunction [MVEL][/ MVEL];
231};

226

C. Further Tests

Chapter 7 discusses the evaluation of the processing model and language based on the
realization of two scenarios as well as the discussion of two test cases based on these
scenarios. In addition to these test cases, this chapter discusses three additional cases
which focus on more specific cases and how the processing model handles them:

• The handling of False Situations (Test Case 2)

• The handling of multiple Focused Situation Processing Instances for the same actual
situation and their required merging (Test Case 3)

• The handling of temporary collisions of two distinct situations and the resulting loss
of the situation identities (Test Case 4).

C.1. Case 2: False Situations

In addition to the detection and tracing of valid situations (Test Case 1 on page 174), the
negative case is demonstrated by this test case. Based on the scenario definition, a cloud
needs to cover more than one solar panel to distinguish clouds from temporary failing solar
panel installations (Section 2.1.1).
In order to demonstrate the classification of incorrect indications as false situations, a

data set was generated were two solar panels report a low energy production shortly after
the processing begins. The two panels where chosen so that together they do not form a
single cluster of shaded panels. Further the two panels where chosen so that the potential
Focus Areas generated for each panel based on the possible situation indication will include
the other solar panel that reports low energy production1. Due to this overlap, a started
Focused Situation Processing Instance will in its first iteration see more than one solar
panel as shaded and needs to determine if these shaded panels warrant for a cloud or if
they are too separated to be considered.

The following subsections discuss the processing done by the processing system for this
case.

C.1.1. Phase 0: Possible Situation Indication Processing Initialization

The indication processing is set up in the same way as for Test Case 1 and is thus not
discussed again (See Subsection 7.4.1).

C.1.2. Phase 1: Possible Situation Indication Processing

The Stream Processing Topology defined in Phase 0 was instantiated in Phase 1 and
generated two separate Possible Situation Indication Events (Table C.1.1), one for the

1The case where the failing solar panels are even further apart is not explicitly considered as it is a
simplification of the here considered case.

227

C. Further Tests

#
1 1438296630 tests:panel_22 tests:panel_22

2 1438296630 tests:panel_44 tests:panel_44

Indicated
Time

Indicated
Nodes

Initial
TimeFrame

Potential
LockedArea

P2
Classification

Resulting Focused Situation
Processing Instance

1438296630-
1438296930

New Possible
Situation

FP__CloudTracking1__a660dfed
-1b15-4723-b481-e4632ebf86e7

1438296630-
1438296930

Ignored
Indication

Table C.1.1.: Case 2: Generated Indication Events.

solar panel 22 and one for the solar panel 44. Both indications were generated for the
same indication time as both solar panels simultaneously stop producing. Both possible
situation indication events were forwarded to the Phase 2 processing.

C.1.3. Phase 2: Focused Situation Processing Initialization

As the behavior is similar to the Phase 2 processing already discussed for Test Case 1
(Subsection 7.4.3) only a brief summary is given.

The system first processed the indication for solar panel 22. Its classification resulted in
the creation of a new Focused Situation Processing Instance as shown in Table C.1.1. The
newly created instance is referred to as #1 for the remainder of the test case.
The Possible Situation Indication Event received for solar panel 44 is processed after-

wards. As however the generated potential Locked Area for this indication (consisting of
the solar panel 44) is a subset of the Focus Area of the already created Focused Situation
Processing Instance #1 (Figure C.1.2), the Indication Event was classified as Ignored and
no further processing was triggered based on it.
As only two Possible Situation Indication Events where generated, the Focused Situation

Processing Initialization is finished.

C.1.4. Phase 3: Focused Situation Processing

A single Focused Situation Processing Instance #1 was started based on the Phase 2
classification.
The Instance #1 generates and executed the stream processing as discussed for Test

Case 1 (Subsection 7.4.4). The result of the stream processing is the set $$positiveNodes
which contained the two shaded solar panels 22 & 44 as they are both not producing energy
and are part of the current iterations Focus Area.

The postIteration processing step tried to cluster the two nodes which results in the
generation of two separate clusters as the solar panels are too far apart to be part of the
same cluster. The postIteration processing assigned the cluster with the highest number
of nodes to $$verifiedNodes. As both clusters had the same size, no specific precedence is
defined. As a result of the post processing, the set $$verifiedNodes contained one single
solar panel.

The Iteration is terminated as the identified cluster only contained a single node. As
the FSP Instance was still in the first iteration, the termination rule for terminating the
processing if no cloud was found (Listing B.1 Line 123) terminated the processing with the
FalseSituation result as shown in Table C.1.2.

228

C.1. Case 2: False Situations

Event Type Time Event Contents
1 FinalResultEvent 1438296930 FalseSituaton

Table C.1.2.: Case 2: Result event generated by the Focused Situation Processing In-
stance #1.

Figure C.1.1.: Case 2: The Area Registration (circles) resulting from the Possible Situa-
tion Indication Event.

229

C. Further Tests

Figure C.1.2.: Case 2: The Area Registration Request 1 (circles) which resulted from the
second Possible Situation Indication Event which was generated for the solar panel 44. The
potential Locked Area of this registration is a subset of the Focus Area of the running Fo-
cused Situation Processing Instance #1 shown as the blue rectangles.

230

C.2. Case 3: Multiple Focused Situation Processing Instances for One Cloud

C.1.5. Conclusions from the Test Results

This second test case successfully demonstrated the possible situation verification process
by correctly identifying possible situation indications caused by fluctuations in the solar
energy production as False Situations.

C.2. Case 3: Multiple Focused Situation Processing Instances for One
Cloud

For this test case, a single cloud was simulated like for Test Case 1. However, for this test
case the clouds size was increased and the cloud was simulated with a rectangular shape
so that the cloud covers a rectangular field of 6x6 Solar Panels. Due to the shape change
and the increase size, the cloud immediately shades 6 solar panels when it first enters the
monitored area (Panels 2 to 7) as shown in Figure C.2.1.
Due to the great distance between the outer edges of the shaded area (Panel 2 on the top

edge and Panel 7 on the bottom edge) the initial Focus Area generated during Phase 2 does
not cover the whole shaded area. Due to this, the Phase 2 Possible Situation Indication
Classification was not able to correctly assign all indication events generated for the cloud
to the same Focused Situation Processing Instance. As a result multiple (in this case two)
Focused Situation Processes were started for the same Situation.
The processing model handles such a case by merging the two processing instances into

one, which is demonstrated by this test case:

The following sections discuss the handling of this case in detail for each of the processing
steps.

C.2.1. Phase 0: Possible Situation Indication Processing Initialization

The indication processing was set up in the same way as for Test Case 1 and is thus not
discussed here (See Subsection 7.4.1).

C.2.2. Phase 1: Possible Situation Indication Processing

As the cloud entered the monitored area by simultaneously shading the first six panels on
the left hand side of the monitored area (Figure C.2.1), the stream processing generated
six Possible Situation Indication Events as shown in Table C.2.1 in Lines 1-6. Over time
as the cloud moved further to the right, the Phase 1 processing raised further indications
for the newly shaded solar panels as shown for the next set of panels shaded by the cloud
in Lines 7 to 12. As the cloud moved further over the monitored area, further indications
where raised in the same way.

C.2.3. Phase 2: Focused Situation Processing Initialization

As the behavior is similar to the Phase 2 processing already discussed for Test Case 1
(Subsection 7.4.3) only a brief summary is given:

1. The very first Possible Situation Indication Event that was raised for Panel 3 resulted
in the instantiation of the first Focused Situation Processing Instance here referred
to as „#1” (Table C.2.1 Line 1).

231

C. Further Tests

#
1 1438293780 tests:panel_3 tests:panel_3

2 1438293780 tests:panel_2 tests:panel_2

3 1438293780 tests:panel_6 tests:panel_6

4 1438293780 tests:panel_7 tests:panel_7

5 1438293780 tests:panel_5 tests:panel_5

6 1438293780 tests:panel_4 tests:panel_4

7 1438299240 tests:panel_17 tests:panel_17

8 1438299240 tests:panel_15 tests:panel_15

9 1438299240 tests:panel_13 tests:panel_13

10 1438299240 tests:panel_12 tests:panel_12

11 1438299240 tests:panel_14 tests:panel_14

12 1438299240 tests:panel_16 tests:panel_16

… … … … … … …

Indicated
Time

Indicated
Nodes

Initial
TimeFrame

Potential
LockedArea

P2
Classification

Resulting Focused Situation
Processing Instance

1438293780-
1438294080

New Possible
Situation

FP__CloudTracking1__81844638-
ecad-4c59-843e-c7bd7bbf1bb3

1438293780-
1438294080

Ignored
Indication

1438293780-
1438294080

New Possible
Situation

FP__CloudTracking1__9bd3f406-
eb85-4127-813d-4e4a52104134

1438293780-
1438294080

Ignored
Indication

1438293780-
1438294080

Ignored
Indication

1438293780-
1438294080

Ignored
Indication

1438299240-
1438299540

Ignored Ind.
(LA Collision)

1438299240-
1438299540

Ignored Ind.
(LA Collision)

1438299240-
1438299540

Ignored Ind.
(LA Collision)

1438299240-
1438299540

Ignored Ind.
(LA Collision)

1438299240-
1438299540

Ignored Ind.
(LA Collision)

1438299240-
1438299540

Ignored Ind.
(LA Collision)

Table C.2.1.: Case 3: Generated Indication Events.

2. The second Possible Situation Indication Event concerned the Panel 2. As the re-
sulting potential Locked Area is a subset of the registered Focus Area of the already
started Focused Situation Processing Instance #1, the event is ignored (Line 2).

3. The third Possible Situation Indication Event concerned the Panel 6. In this case the
resulting potential Locked Area was not a subset of the already started Focused Situ-
ation Processing Instance #1. Therefore, an additional Focused Situation Processing
Instance, here referred to as #2 was started for the same cloud (Line 3).

The following three Possible Situation Indication Events (Lines 4-6) were classified in the
same way as the second Possible Situation Indication Event.
All remaining Possible Situation Indication Events were classified as Ignored and dropped

due to their collision with the Locked Area of the Focused Situation Processing Instance2

that was already tracking the cloud.

C.2.4. Phase 3: Focused Situation Processing

Two Focused Situation Indication Processing Instances where started (#1 and #2) based
on the Phase 2 classification (Table C.2.1 Lines 1 & 3). From the perspective of the pro-
cessing system these two FSP Instances concerned separate situations and both processing
instances where executed as such. However, as the instances in fact concern the same ac-
tual situation (Cloud), the processing system detected a collision of their Locked Areas and
initiated a merge of the two instances. In the process the FSP Instance #2 was terminated

2The Possible Situation Indication Events collide only with one Focused Situation Processing Instance as
one of the two initially started instance is merged into the other one as they concern the same situation
(See the following Section C.2.4).

232

C.2. Case 3: Multiple Focused Situation Processing Instances for One Cloud

while the FSP Instance #1 was allowed to continue. The following sub-sections discuss
this process in detail.

Note: The following discussions of the initial iterations of FSP Instances #1 and #2 all
concern the same time frame (Table C.2.2 Column 2).

C.2.4.1. Iteration 1 of Instance #1

The first iteration was executed based on the Area Registration created during the Phase
2 classification as shown in Table C.2.2 Line 1. The processing determined in the first
iteration that the nodes 2, 4 and 5 are also affected by the investigated situation. As such
FSP Instance #1 requested an update of its Area Registration where the requested Area
Registration contained the nodes 2 to 5 as the Locked Area. As no collision was detected,
the Area Registration was granted (Table C.2.2 Line 3) and the FSP Instance #1 continues
with its second iteration.

C.2.4.2. Iteration 1 of Instance #2

The first iteration of the FSP Instance #2 was also executed based on the Area Registration
created during the Phase 2 classification as shown in Table C.2.2 Line 2. The processing
determined that the nodes 4, 5 and 7 are also affected by the investigated situation. As
such the FSP Instance #2 requested an update of its Area Registration for the current
time frame where the requested new Area Registration contained the nodes 4 to 7 as the
Locked Area.
However, as the already updated Area Registration of FSP Instance #1 collided with the

requested Area Registration of FSP Instance #2, the Area Registration was not granted
(Table C.2.2 Line 4). This collision triggered the merge processing between the two FSP
Instances #1 and #2.
As the Area Registration request of FSP Instance #2 was rejected, this instance was

immediately stopped. Afterwards the merge process waited for the next Area Registration
Request of FSP Instance #1 during which the FSP Instance #1 was also paused while the
merge is executed.

C.2.4.3. Iteration 2 of Instance #1

The second iteration of FSP Instance #2 was based on the updated Area Registration from
the first iteration. The processing determined that the nodes 6 and 7 were also affected
and thus requested an update of its Area Registration where the requested Locked Area
contained the nodes 2 to 7 (Table C.2.2 Line 5).
As discussed in the previous subsection, the FSP Instance #2 collided with the FSP

Instance #1. Due to this collision the FSP Instance #1 was temporarily paused once
it requested the new Area Registration. While paused the merge function (Subsection
7.3.1.3) was executed.
The merge function copied the requested Locked Area from the FSP Instance #2 to

its own processing context into the variable $$oldLAofMergedFPI. Afterwards all Area
Registrations of the FSP Instance #2 for the current time frame were released and the
merge process was finished.

233

C. Further Tests

Figure C.2.1.: Case 3: Locked and Focus Area resulting from the merge of the two ini-
tially started FSP Instances and the later growth of the Locked and Focus Area of the sur-
viving FSP Instance.

As the merge process released the last valid Area Registration of FSP Instance #2, which
contained the node 6 as Locked Area, the Area Registration Request from FSP Instance
#1 was granted as no collision wss detected (Table C.2.2 Line 5).
As the Area Registration was successful, the FSP Instance #1 continued with the next

iteration.

C.2.4.4. Iteration 3 of Instance #1

The third iteration of FSP Instance #1 is based on the updated Area Registration from
iteration 2 and based on the results of the merge that took place at the end of iteration 2.
As the merge processing set the variable $$oldLAofMergedFPI based on the requested

Locked Area of FSP Instance #2, all nodes contained in this set have already been verified
as being shaded. Thus the contained nodes were not considered anymore during the itera-
tion stream processing but instead directly added to the set $$positiveNodes so that they
were taken into account during the iterations post processing. Otherwise, the processing
of this iteration happened in the same way as the other iterations.

As the affected nodes matched the Locked Area of the current Area Registration, the
registration was not updated but instead the processing continued with the next consec-
utive time frame as discussed for Test Case 1. From here on the processing continued in
the same way as already discussed for Test Case 1.

234

C.3. Case 4: Temporary Situation Collision

Time Frame Requested Focus Area

1 Yes

2 Yes

3 Yes

4

5 Yes

Requesting Focused
Situation Processing

Instance

Requested
Locked Area

Registration
Granted?

1438293780
-

1438294080

FP__CloudTracking1__
81844638-ecad-4c59-
843e-c7bd7bbf1bb3

tests:panel_3; tests:panel_12; tests:panel_23; tests:panel_11; tests:panel_22;
tests:panel_14; tests:panel_25; tests:panel_13; tests:panel_24;
tests:panel_1; tests:panel_2; tests:panel_21; tests:panel_3;
tests:panel_15; tests:panel_4; tests:panel_5;

1438293780
-

1438294080

FP__CloudTracking1__
9bd3f406-eb85-4127-
813d-4e4a52104134

tests:panel_6; tests:panel_14; tests:panel_25; tests:panel_24; tests:panel_16;
tests:panel_27; tests:panel_15; tests:panel_26; tests:panel_18;
tests:panel_17; tests:panel_28; tests:panel_4; tests:panel_5;
tests:panel_6; tests:panel_7; tests:panel_8;

1438293780
-

1438294080

FP__CloudTracking1__
81844638-ecad-4c59-
843e-c7bd7bbf1bb3

tests:panel_2;
tests:panel_3;
tests:panel_4;
tests:panel_5;

tests:panel_23; tests:panel_22; tests:panel_25; tests:panel_24;
tests:panel_21; tests:panel_20; tests:panel_27; tests:panel_26;
tests:panel_4; tests:panel_5; tests:panel_6; tests:panel_7;
tests:panel_12; tests:panel_11; tests:panel_14; tests:panel_13;
tests:panel_0; tests:panel_1; tests:panel_10; tests:panel_2;
tests:panel_3; tests:panel_16; tests:panel_15; tests:panel_17;

1438293780
-

1438294080

FP__CloudTracking1__
9bd3f406-eb85-4127-
813d-4e4a52104134

tests:panel_4;
tests:panel_5;
tests:panel_6;
tests:panel_7;

tests:panel_23; tests:panel_22; tests:panel_25; tests:panel_24;
tests:panel_27; tests:panel_26; tests:panel_29; tests:panel_28;
tests:panel_4; tests:panel_5; tests:panel_6; tests:panel_7;
tests:panel_8; tests:panel_9; tests:panel_12; tests:panel_14;
tests:panel_13; tests:panel_2; tests:panel_3; tests:panel_19;
tests:panel_16; tests:panel_15; tests:panel_18; tests:panel_17;

No
Collision with:
FP__CloudTracking1__
81844638-ecad-4c59-
843e-c7bd7bbf1bb3

1438293780
-

1438294080

FP__CloudTracking1__
81844638-ecad-4c59-
843e-c7bd7bbf1bb3

tests:panel_2;
tests:panel_3;
tests:panel_4;
tests:panel_5;
tests:panel_6;
tests:panel_7;

tests:panel_23; tests:panel_22; tests:panel_25; tests:panel_24;
tests:panel_21; tests:panel_20; tests:panel_27; tests:panel_26;
tests:panel_29; tests:panel_28; tests:panel_4; tests:panel_5;
tests:panel_6; tests:panel_7; tests:panel_8; tests:panel_9;
tests:panel_12; tests:panel_11; tests:panel_14; tests:panel_13;
tests:panel_0; tests:panel_1; tests:panel_10; tests:panel_2;
tests:panel_3; tests:panel_19; tests:panel_16; tests:panel_15;
tests:panel_18; tests:panel_17;

#1

#1

#2

#2

#1

Table C.2.2.: Case 3: Area Registration Requests and their Outcome from the two started
Focused Situation Processing Instance for the initial Time Frame.

C.2.5. Conclusions

The test case demonstrated the merge of two FSP Instances created for the same situation.
With this it also demonstrated the impact of too small initial Focus Areas which prevented
the Phase 2 classification to correctly correlate all Possible Situation Indications raised for
a single situation thus causing the creation of two separate FSP Instances which then need
to be merged during the Phase 3 processing.

C.3. Case 4: Temporary Situation Collision

This final cloud tracking test case demonstrates two separate aspects of the processing
model:

Part 1: The detection and tracking of multiple independent situations.

Part 2: a temporary overlap of two situations which prevents the processing system to dis-
tinguish them.

While the first part demonstrates normal model functionality, the second part shows a
limitation of the processing model.

C.3.1. Part 1: Two Separate Situations

The first part of this test case discusses the normal behavior of the processing model when
detecting and tracking more than one situation.

235

C. Further Tests

#
1 1438294230 tests:panel_4 tests:panel_4

2 1438294230 tests:panel_5 tests:panel_5

3 1438294560 tests:panel_50 tests:panel_50

4 1438294560 tests:panel_40 tests:panel_40

… … … … … … …
33 1438343340 tests:panel_94 tests:panel_94

34 1438343340 tests:panel_95 tests:panel_95

35 1438343640 tests:panel_49 tests:panel_49

36 1438343640 tests:panel_59 tests:panel_59

Indicated
Time

Indicated
Nodes

Initial
TimeFrame

Potential
LockedArea

P2
Classification

Resulting Focused Situation
Processing Instance

1438294230-
1438294530

New Possible
Situation

FP__CloudTracking1__2f931009-
0ba7-45bb-893a-3a39add6c860

1438294230-
1438294530

Ignored
Indication

1438294560-
1438294860

New Possible
Situation

FP__CloudTracking1__08d45f6c-
f8c3-47b0-b1cc-e2b0597f2eca

1438294560-
1438294860

Ignored
Indication

1438343340-
1438343640

New Possible
Situation

FP__CloudTracking1__76416d89-
9f19-4667-90bc-250e51555d84

1438343340-
1438343640

Ignored
Indication

1438343640-
1438343940

Ignored
Indication

1438343640-
1438343940

Ignored
Indication

Table C.3.1.: Case 4: Generated Possible Situation Indication Events (only the initial 4
events and the final 4 are shown).

C.3.1.1. Phase 0: Possible Situation Indication Processing Initialization

The indication processing is set up in the same way as for Test Case 1 and is thus not
discussed here (See Subsection 7.4.1).

C.3.1.2. Phase 1 & 2: Possible Situation Indication Processing and Focused Situation
Processing Initialization

The first cloud entered the monitored area at 1438294230 from the west by shading the
solar panels 4 and 5 causing two individual Possible Situation Indication Events (Table
C.3.1 Lines 1 & 2). In the same way as discussed for Test Case 1, the first indication event
was classified as „New Possible Situation” causing the creation of a new Focused Situation
Processing Instance (later refereed to as #1) while the second indication was ignored.
A little later at 1438294560 the second cloud entered the monitored area from the north

by shading the solar panels 40 and 50 resulting in two separate Possible Situation Indi-
cation Events (Table C.3.1 Lines 3 & 4). As the generated potential Locked Areas for
both indications did not collide with the Area Registration of the FSP Instance #1, the
classification took place in the same way as for the two initial indications resulting in the
creation of another Focused Situation Proceeding Instance (later refereed to as #2).

Over time as the clouds moved further into the monitored area, the P1 processing raised
further indications for the newly shaded solar panels in the same way as discussed for Test
Case 1.

The classification of the Possible Situation Indication Events 33ff are discussed in Part
2 (Subsection C.3.2) as they are the result of the temporary situation merge.

C.3.1.3. Phase 3: Focused Situation Processing

Two FSP Instances where started by Phase 2. Each followed a separate cloud, Instance
#1 the cloud that entered the monitored area from the west, Instance #2 the cloud that
entered from the north.

236

C.3. Case 4: Temporary Situation Collision

Time Frame Requested Focus Area

0 tests:panel_4 Yes

2 Yes

4 Yes

6 Yes

… … … … … …
131 Yes

132

… … … … … …
135 Yes

136 Yes

137 Yes

.. … … … … …
260 Yes

… … … … … …
279 Yes

281 Yes

… … … … … …

Requesting Focused
Situation Processing

Instance

Requested
Locked Area

Registration
Granted?

1438294230
-

1438294530

FP__CloudTracking1__
2f931009-0ba7-45bb-
893a-3a39add6c860

tests:panel_12 tests:panel_23 tests:panel_22 tests:panel_14 tests:panel_25
 tests:panel_13 tests:panel_24 tests:panel_2 tests:panel_3 tests:panel_16
tests:panel_15 tests:panel_26 tests:panel_4 tests:panel_5 tests:panel_6

1438294230
-

1438294530

FP__CloudTracking1__
2f931009-0ba7-45bb-
893a-3a39add6c860

tests:panel_4
tests:panel_5

tests:panel_12 tests:panel_23 tests:panel_22 tests:panel_14 tests:panel_25
 tests:panel_13 tests:panel_24 tests:panel_2 tests:panel_3 tests:panel_16
tests:panel_27 tests:panel_15 tests:panel_26 tests:panel_17 tests:panel_4
tests:panel_5 tests:panel_6 tests:panel_7

1438294560
-

1438294860

FP__CloudTracking1__
08d45f6c-f8c3-47b0-
b1cc-e2b0597f2eca

tests:panel_50 tests:panel_30 tests:panel_41 tests:panel_52 tests:panel_40 tests:panel_51
 tests:panel_62 tests:panel_32 tests:panel_31 tests:panel_42
tests:panel_70 tests:panel_50 tests:panel_61 tests:panel_72 tests:panel_60
 tests:panel_71

1438294560
-

1438294860

FP__CloudTracking1__
08d45f6c-f8c3-47b0-
b1cc-e2b0597f2eca

tests:panel_40
tests:panel_50

tests:panel_22 tests:panel_30 tests:panel_41 tests:panel_52 tests:panel_40
 tests:panel_51 tests:panel_62 tests:panel_21 tests:panel_32
tests:panel_20 tests:panel_31 tests:panel_42 tests:panel_70 tests:panel_50
 tests:panel_61 tests:panel_72 tests:panel_60 tests:panel_71

1438310760
-

1438311060

FP__CloudTracking1__
08d45f6c-f8c3-47b0-
b1cc-e2b0597f2eca

tests:panel_52
tests:panel_41
tests:panel_51
tests:panel_42

tests:panel_23 tests:panel_44 tests:panel_22 tests:panel_24 tests:panel_41
 tests:panel_63 tests:panel_40 tests:panel_62 tests:panel_43
tests:panel_21 tests:panel_42 tests:panel_64 tests:panel_20 tests:panel_61
 tests:panel_60 tests:panel_34 tests:panel_33 tests:panel_30
tests:panel_52 tests:panel_74 tests:panel_51 tests:panel_73 tests:panel_32
tests:panel_54 tests:panel_31 tests:panel_53 tests:panel_70 tests:panel_50
 tests:panel_72 tests:panel_71

1438310760
-

1438311060

FP__CloudTracking1__
08d45f6c-f8c3-47b0-
b1cc-e2b0597f2eca

tests:panel_34
tests:panel_24
tests:panel_52
tests:panel_41
tests:panel_51
tests:panel_43
tests:panel_42
tests:panel_53

tests:panel_45 tests:panel_44 tests:panel_46 tests:panel_41 tests:panel_40
 tests:panel_43 tests:panel_42 tests:panel_12 tests:panel_56
tests:panel_55 tests:panel_14 tests:panel_13 tests:panel_52 tests:panel_51
 tests:panel_54 tests:panel_53 tests:panel_16 tests:panel_15
tests:panel_50 tests:panel_23 tests:panel_22 tests:panel_25 tests:panel_24
tests:panel_63 tests:panel_62 tests:panel_21 tests:panel_65 tests:panel_64
 tests:panel_20 tests:panel_26 tests:panel_4 tests:panel_5 tests:panel_6
tests:panel_61 tests:panel_60 tests:panel_34 tests:panel_33 tests:panel_36
 tests:panel_35 tests:panel_30 tests:panel_74 tests:panel_73
tests:panel_32 tests:panel_2 tests:panel_3 tests:panel_31 tests:panel_75
tests:panel_70 tests:panel_72 tests:panel_71

No

Collision with:
FP__CloudTrac
king1__2f9310
09-0ba7-45bb-
893a-
3a39add6c860

1438311030
-

1438311330

FP__CloudTracking1__
2f931009-0ba7-45bb-
893a-3a39add6c860

tests:panel_34
tests:panel_14
tests:panel_25
tests:panel_35
tests:panel_24
tests:panel_15

tests:panel_23 tests:panel_45 tests:panel_22 tests:panel_44 tests:panel_25
 tests:panel_47 tests:panel_24 tests:panel_46 tests:panel_43
tests:panel_42 tests:panel_27 tests:panel_26 tests:panel_4 tests:panel_5
tests:panel_6 tests:panel_7 tests:panel_12 tests:panel_34 tests:panel_56
tests:panel_33 tests:panel_55 tests:panel_14 tests:panel_36 tests:panel_13
tests:panel_35 tests:panel_57 tests:panel_52 tests:panel_32 tests:panel_54
 tests:panel_2 tests:panel_53 tests:panel_3 tests:panel_16 tests:panel_15
tests:panel_37 tests:panel_17

1438311030
-

1438311330

FP__CloudTracking1__
2f931009-0ba7-45bb-
893a-3a39add6c860

tests:panel_34
tests:panel_25
tests:panel_35
tests:panel_24
tests:panel_52
tests:panel_43
tests:panel_53
tests:panel_42

tests:panel_45 tests:panel_44 tests:panel_47 tests:panel_46 tests:panel_40
 tests:panel_12 tests:panel_56 tests:panel_55 tests:panel_14
tests:panel_13 tests:panel_57 tests:panel_54 tests:panel_16 tests:panel_15
 tests:panel_17 tests:panel_50 tests:panel_23 tests:panel_22
tests:panel_25 tests:panel_63 tests:panel_62 tests:panel_21 tests:panel_65
tests:panel_64 tests:panel_20 tests:panel_27 tests:panel_26 tests:panel_4
tests:panel_5 tests:panel_6 tests:panel_61 tests:panel_7 tests:panel_60
tests:panel_33 tests:panel_36 tests:panel_35 tests:panel_30 tests:panel_74
 tests:panel_73 tests:panel_32 tests:panel_2 tests:panel_3 tests:panel_31
tests:panel_75 tests:panel_37 tests:panel_70 tests:panel_72 tests:panel_71

1438311030
-

1438311330

FP__CloudTracking1__
2f931009-0ba7-45bb-
893a-3a39add6c860

tests:panel_34
tests:panel_25
tests:panel_24
tests:panel_35
tests:panel_52
tests:panel_41
tests:panel_51
tests:panel_43
tests:panel_42
tests:panel_53

tests:panel_45 tests:panel_44 tests:panel_47 tests:panel_46 tests:panel_41
 tests:panel_40 tests:panel_43 tests:panel_42 tests:panel_12
tests:panel_56 tests:panel_55 tests:panel_14 tests:panel_13 tests:panel_57
 tests:panel_52 tests:panel_51 tests:panel_54 tests:panel_53
tests:panel_16 tests:panel_15 tests:panel_17 tests:panel_50 tests:panel_23
 tests:panel_22 tests:panel_25 tests:panel_24 tests:panel_63
tests:panel_62 tests:panel_21 tests:panel_65 tests:panel_64 tests:panel_20
 tests:panel_27 tests:panel_26 tests:panel_4 tests:panel_5 tests:panel_6
tests:panel_61 tests:panel_7 tests:panel_60 tests:panel_34 tests:panel_33
tests:panel_36 tests:panel_35 tests:panel_30 tests:panel_74 tests:panel_73
 tests:panel_32 tests:panel_2 tests:panel_3 tests:panel_31 tests:panel_75
tests:panel_37 tests:panel_70 tests:panel_72 tests:panel_71

1438338330
-
1438338630

FP__CloudTracking1__
2f931009-0ba7-45bb-
893a-3a39add6c860

tests:panel_56
tests:panel_58
tests:panel_47
tests:panel_46
tests:panel_57
tests:panel_48

tests:panel_45 tests:panel_67 tests:panel_44 tests:panel_66 tests:panel_47
 tests:panel_69 tests:panel_25 tests:panel_46 tests:panel_68
tests:panel_24 tests:panel_65 tests:panel_64 tests:panel_49 tests:panel_27
 tests:panel_48 tests:panel_26 tests:panel_29 tests:panel_28
tests:panel_34 tests:panel_56 tests:panel_78 tests:panel_55 tests:panel_77
 tests:panel_36 tests:panel_58 tests:panel_35 tests:panel_57
tests:panel_79 tests:panel_74 tests:panel_54 tests:panel_76 tests:panel_75
 tests:panel_38 tests:panel_37 tests:panel_59 tests:panel_39

1438343340
-

1438343640

FP__CloudTracking1__
76416d89-9f19-4667-
90bc-250e51555d84

tests:panel_94 tests:panel_74 tests:panel_85 tests:panel_96 tests:panel_73 tests:panel_84
 tests:panel_95 tests:panel_76 tests:panel_75 tests:panel_86
tests:panel_92 tests:panel_72 tests:panel_83 tests:panel_94 tests:panel_82
 tests:panel_93

1438343340
-

1438343640

FP__CloudTracking1__
76416d89-9f19-4667-
90bc-250e51555d84

tests:panel_85
tests:panel_74
tests:panel_84
tests:panel_95
tests:panel_75
tests:panel_94

tests:panel_67 tests:panel_66 tests:panel_63 tests:panel_85 tests:panel_84
 tests:panel_62 tests:panel_65 tests:panel_87 tests:panel_64
tests:panel_86 tests:panel_83 tests:panel_82 tests:panel_56 tests:panel_77
 tests:panel_55 tests:panel_57 tests:panel_74 tests:panel_96
tests:panel_52 tests:panel_73 tests:panel_95 tests:panel_76 tests:panel_54
tests:panel_75 tests:panel_97 tests:panel_53 tests:panel_92 tests:panel_94
 tests:panel_72 tests:panel_93

#1

#1

#1

#2

#2

#2

#2

#1

#1

#3

#3

#1

Table C.3.2.: Case 4: Subset of the Area Registration Requests made. First four concern-
ing the beginning of the two Focused Situation Processing Instances #1 & #2. The next 5
concerning the occurring collision between #1 & #2 and the last two concerning the start of
a third Focused Situation Processing Instance #3 after the situations separated again.

237

C. Further Tests

Figure C.3.1.: Case 4: The Collision of two independent situations (clouds) results in the
merge of the two FSP Instances #1 and #2 where only instance #1 survives and claims the
shaded solar panels of both clouds as its Locked Area.

The iteration processing of both instances is very similar to the iteration processing
already discussed for Test Case 1 and is thus only summarized here. The first iteration
of each of the two FSP Instances determined that the cloud affected more than the single
solar panel set as initial Locked Areas (Table C.3.2 Request 0 & 4) and determined new
Locked Areas which covered the whole shaded area for each cloud. The new Locked Areas
were successfully acquired by the corresponding FSP Instances (Table C.3.2 Request 2 &
6) and the processing repeated the initial Time Frame during its second iteration.
As for Test Case 1 the third iteration then continued with the next consecutive Time

Frame but with the same Locked Area and Focus Area as the previous iteration. This
continued until the solar panels affected by the cloud change, while the process is similar to
Test Case 1 until the shaded areas of the two clouds get too close to each other, preventing
the FSP Instances to keep them separate. The resulting collision and its handling is
discussed in the following subsection.

C.3.2. Part 2: Temporary Overlap of Two Situations

The second part of this test case discusses the limitation of the processing model to dis-
tinguish situations from each other when their identification criteria (Locked Area for a
specific Time Frame) is not unique anymore. In the case discussed here, the ambiguity is
the result of a temporary overlap of two situations (clouds) as they cross each other’s path
in an overlapping time window.

The discussions of this part continues the processing flow discussed in Part 1 starting
around the time 1438310880 when the two situations start to collide as shown in Figure
C.3.1.

238

C.3. Case 4: Temporary Situation Collision

Figure C.3.2.: Case 4: After the shaded areas of the two clouds became separated again,
the FSP Instance #1 continued its tracking by following the cloud from the north while the
cloud that appeared from the west is temporarily not tracked by any FSP Instance.

C.3.2.1. Collision Detection and Handling

A collision was detected as FSP Instance #2 tried to acquire a new Locked Area for the
Time Frame 1438310760 to 1438311060 which includes the solar panels 24 and 34 which
belong to the shaded area of the cloud tracked by FSP Instance #1. FSP Instance #2
tried to acquire them as they were part of its most recent Focus Area (Table C.3.2 Request
131), and were therefore determined as relevant. As they were close to the shaded area
tracked by FSP Instance #2 they were grouped together into one cluster with the tracked
cloud during the post iteration processing of FSP Instance #2.

As the Area Registration request collided with the Area Registration of FSP Instance #1
it was rejected (Table C.3.2 Request 132) and FSP Instance #2 was stopped for merging
into FSP Instance #1.

Once FSP Instance #1 requested a new Area Registration (Table C.3.2 Request 135)
the merge was executed. Afterwards the Area Registration was granted and FSP Instance
#1 continued with the next iteration. During this iteration, FSP Instance #1 determined
that the nodes 14 and 15 are not shaded anymore but the nodes 52, 53, 42 and 43 were
also shaded (by the cloud coming from the north) and belong to the same geographical
cluster of nodes. Thus, it updated its Locked Area and Focus Area once again (Table C.3.2
Request 136). The following iteration then determined that the Locked Area was correct
and FSP Instance #1 continued with the normal processing flow as already discussed in
Part 1.

This continues until the two clouds separate again which is discussed in the next sub-
section.

239

C. Further Tests

FSP #1

FSP #2

FSP #3

Cloud moving from
West to East

Cloud
moving

from North
to South

Figure C.3.3.: Case 4: Illustration on the sections of the cloud paths tracked by the three
created FSP Instances.

C.3.2.2. Situation Split

As the clouds further moved along their corresponding paths, the shaded area of the two
clouds is split into two separate areas. At time 1438338330 these areas were separated
enough so that the used clustering mechanism in the post iteration processing of the current
FSP Instance #1 did not consider them as a single cluster anymore. (Figure C.3.2) Instead
two separate clusters were found during the post processing and FSP Instance #1 selected
the biggest of the two clusters to follow.
As shown by the following Area Registration (Table C.3.2 Request 260), the FSP Instance

#1 followed the cloud moving from the north to the south while ignoring the shaded panels
of the cloud moving from west to east. After this separation the FSP Instance #1 continued
with its normal processing flow as discussed during Part 1.
The shaded area split of from FSP Instance #1 continued to move to the east. Due to

its change in position it generated additional Possible Situation Indication Events. The
first Possible Indication Events raised after the shaded area separated and left the Focus
Area of FSP #1 are the events raised for the panels 94 and 95 (Table C.3.1 Events 33
and 34). As the nodes concerned by those events were not part of the Focus Area of FSP
Instance #1, they were not assigned anymore to FSP Instance #1 but instead result in
the creation of a new FSP Instance #3 as shown in Table C.3.1 for the Possible Situation
Indication Event 33.
Further Possible Situation Indication Events (34ff) created by this cloud were then ig-

nored based on the same mechanism that was already discussed for the initial detection of
the two clouds.

C.3.3. Case 4 Conclusions

Part 1 of this test case demonstrated the capability of the processing model to be used to
track multiple independent situations. Part 2 however demonstrated the limitation of this

240

C.3. Case 4: Temporary Situation Collision

process in relying on the uniqueness of the situation identification (Locked Area + Time
Frame). This limitation leads to an incorrect tracking of the situations in this case as
illustrated in Figure C.3.3. For this specific case, the FSP Instance #1 started by tracking
the cloud appearing from the west but due to the temporary situation overlap switched over
to tracking the cloud that appeared from the north. FSP Instance #2 started the tracking
of the cloud from the north but got terminated due to the merge of the situations, while
FSP #1 continued the tracking. Once the clouds separated, a new completely independent
FSP Instance #3 was started which continued the tracking of the cloud that appeared from
the west and was initially tracked by FSP #1. As such the test case illustrated that the
temporary loss of a situation’s unique identity results in incorrect results as the processing
model relies on these identities.

The results from the three test cases discussed in this chapter are summarized as part
of the conclusion of the overall evaluation in Section 7.10.

241

Bibliography

[AAB+05] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Mitch Cherniack, Jeong hyon
Hwang, Wolfgang Lindner, Anurag S. Maskey, Er Rasin, Esther Ryvkina, Nesime
Tatbul, Ying Xing, and Stan Zdonik. The Design of the Borealis Stream Processing
Engine. In In CIDR, pages 277–289, 2005. (Referenced on pages 4, 32, 40, and 45)

[ABB+04] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Keith Ito, Rajeev
Motwani, Utkarsh Srivastava, and Jennifer Widom. STREAM: The stanford data
stream management system. Technical Report 2004-10, Stanford InfoLab, 2004.
(Referenced on pages 32 and 38)

[ABB+13] Tyler Akidau, Alex Balikov, Kaya Bekirouglu, Slava Chernyak, Josh Haberman,
Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. Mill-
Wheel: Fault-tolerant Stream Processing at Internet Scale. Proc. VLDB Endow.,
6(11):1033–1044, aug 2013. (Referenced on page 36)

[ABM10] David Alves, Pedro Bizarro, and Paulo Marques. Flood: Elastic Streaming MapRe-
duce. In Proceedings of the Fourth ACM International Conference on Distributed
Event-Based Systems, DEBS 10, pages 113–114, New York, NY, USA, 2010. ACM.
(Referenced on page 33)

[ABQ13] Leonardo Aniello, Roberto Baldoni, and Leonardo Querzoni. Adaptive On-
line Scheduling in Storm. In Proceedings of the 7th ACM International
Conference on Distributed Event-based Systems, pages 207–218. ACM, 2013.
(Referenced on page 37)

[ABW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL Continuous Query
Language: Semantic Foundations and Query Execution. The VLDB Journal,
15(2):121–142, jun 2006. (Referenced on pages 38, 41, and 42)

[ACC+03a] Daniel Abadi, Donald Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey,
C. Erwin, Eduardo Galvez, M. Hatoun, Anurag Maskey, and Alex Rasin. Aurora:
a data stream management system. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, 2003. (Referenced on page 39)

[ACC+03b] Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Con-
vey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora:
a new model and architecture for data stream management. The VLDB Jour-
nal - The International Journal on Very Large Data Bases, 12(2):120–139, 2003.
(Referenced on pages 32, 39, and 43)

[AFRS11] Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic. EP-SPARQL:
a unified language for event processing and stream reasoning. In Proceedings
of the 20th international conference on World wide web, pages 635–644, 2011.
(Referenced on page 44)

[AH00] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously Adaptive Query Pro-
cessing. In Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’00, pages 261–272, New York, NY, USA, 2000.
ACM. (Referenced on page 45)

[All83] James F. Allen. Maintaining Knowledge About Temporal Intervals. Commun. ACM,
26(11):832–843, nov 1983. (Referenced on page 60)

243

Bibliography

[Amaa] Amazon Kinesis. Online: http://aws.amazon.com/de/kinesis/. Visited: 28.12.16.
(Referenced on page 37)

[Amab] Amazon Simple Notification Service (SNS). Online:
https://aws.amazon.com/de/sns/. Visited: 20.01.15. (Referenced on page 35)

[Ant] ANTLR Parser Generator. Online: http://www.antlr.org/. Visited: 08.06.16.
(Referenced on page 144)

[Apaa] Apache ActiveMQ. Online: http://activemq.apache.org. Visited: 30.12.16.
(Referenced on page 34)

[Apab] Apache ActiveMQ: What is the Prefetch Limit For? Online:
http://activemq.apache.org/what-is-the-prefetch-limit-for.html. Visited: 28.12.16.
(Referenced on page 31)

[Apac] Apache Camel. Online: http://camel.apache.org. Visited: 30.12.16.
(Referenced on page 34)

[Apad] Apache Camel: SEDA Component. Online: http://camel.apache.org/seda.html.
Visited: 20.12.16. (Referenced on page 31)

[Apae] Apache Jena. Online: http://jena.apache.org/. Visited: 17.02.2015.
(Referenced on page 44)

[Apaf] Apache Samza. Online: http://samza.apache.org/. Visited: 28.12.16.
(Referenced on page 36)

[Apag] Apache ServiceMix 1.0-M1 Release. Online:
http://servicemix.apache.org/downloads/servicemix-1.0-m1-release.html. Vis-
ited: 28.12.16. (Referenced on page 31)

[Apah] Apache Spark Streaming. Online: https://spark.apache.org/streaming/. Visited:
28.12.16. (Referenced on page 36)

[Apai] Apache Zookeeper. Online: http://zookeeper.apache.org/. Visited: 13.07.14.
(Referenced on pages 36 and 160)

[Apaj] S4: Distributed Stream Computing Platform. Online:
http://incubator.apache.org/s4. Visited: 19.07.13. (Referenced on pages 36 and 37)

[Bab05] Shivnath Babu. Adaptive Query Processing in Data Stream Management Systems.
PhD thesis, Stanford, CA, USA, 2005. AAI3187262. (Referenced on page 45)

[BB05] Shivnath Babu and Pedro Bizarro. Adaptive query processing in the looking glass. In
Proceedings of the Second Biennial Conference on Innovative Data Systems Research
(CIDR), 2005. (Referenced on page 46)

[BBC+09] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and
Michael Grossniklaus. C-SPARQL: SPARQL for continuous querying. In Proceedings
of the 18th international conference on World wide web, pages 1061–1062, 2009.
(Referenced on page 44)

[BBL11] David Beckett and Tim Berners-Lee. Turtle - Terse RDF Triple Language. Technical
report, March 2011. Online: https://www.w3.org/TeamSubmission/2011/SUBM-
turtle-20110328/. Visited: 08.06.16. (Referenced on page 145)

[BD10] Ralf Bruns and Jürgen Dunkel. Event-Driven Architecture. Springer Berlin Heidel-
berg, 2010. (Referenced on pages 30 and 31)

[BGJ08] Andre Bolles, Marco Grawunder, and Jonas Jacobi. Streaming SPARQL - Extend-
ing SPARQL to Process Data Streams. In Sean Bechhofer, Manfred Hauswirth,
Jörg Hoffmann, and Manolis Koubarakis, editors, The Semantic Web: Research and
Applications, number 5021, pages 448–462. Springer Berlin Heidelberg, jan 2008.
(Referenced on page 44)

244

Bibliography

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture - Volume 1: A System of Patterns.
Wiley Publishing, 1996. (Referenced on page 34)

[Bor] Borealis Distributed Stream Processing Engine. Online:
http://cs.brown.edu/research/borealis/public/. Visited: 20.07.14.
(Referenced on page 40)

[BV07] Thomas Bernhardt and Alexandre Vasseur. Esper: Event Stream Processing and
Correlation. Online: http://www.onjava.com/pub/a/onjava/2007/03/07/esper-
event-stream-processing-and-correlation.html, 03 2007. Visited: 30.06.14.
(Referenced on page 38)

[BW04] Shivnath Babu and Jennifer Widom. StreaMon: An Adaptive Engine for Stream
Query Processing. In Proceedings of the 2004 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’04, pages 931–932, New York, NY, USA,
2004. ACM. (Referenced on page 45)

[CBB+03] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Don Carney, Uğur
Çetintemel, Ying Xing, and Stan Zdonik. Scalable distributed stream processing.
In In CIDR, 2003. (Referenced on pages 40, 43, and 45)

[CCD+03a] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden,
Vijayshankar Raman, Frederick Reiss, and Mehul A. Shah. TelegraphCQ:
Continuous Dataflow Processing for an Uncertain World. In CIDR, 2003.
(Referenced on page 38)

[CCD+03b] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden, Fred
Reiss, and Mehul A. Shah. TelegraphCQ: continuous dataflow processing. In Pro-
ceedings of the 2003 ACM SIGMOD international conference on Management of
data, pages 668–668, 2003. (Referenced on pages 32 and 38)

[CCG10] Jean-Paul Calbimonte, Oscar Corcho, and Alasdair J. G. Gray. Enabling ontology-
based access to streaming data sources. In Proceedings of the 9th international
semantic web conference on The semantic web - Volume Part I, ISWC’10, pages
96–111, Berlin, Heidelberg, 2010. Springer-Verlag. (Referenced on page 44)

[CDNF01] G. Cugola, Elisabetta Di Nitto, and A. Fuggetta. The JEDI event-based infrastruc-
ture and its application to the development of the OPSS WFMS. Software Engi-
neering, IEEE Transactions on, 27(9):827–850, Sep 2001. (Referenced on page 35)

[CDTW00] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: A Scalable
Continuous Query System for Internet Databases. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’00, pages
379–390, New York, NY, USA, 2000. ACM. (Referenced on page 41)

[CEF+04] Owen Cooper, Anil Edakkunni, Michael J. Franklin, Wei Hong, Shawn R. Jeffery,
Sailesh Krishnamurthy, Fredrick Reiss, Shariq Rizvi, and Eugene Wu. HiFi: A
Unified Architecture for High Fan-in Systems. In Proceedings of the Thirtieth In-
ternational Conference on Very Large Data Bases - Volume 30, VLDB ’04, pages
1357–1360. VLDB Endowment, 2004. (Referenced on page 41)

[CEvA11] Mani K. Chandy, Opher Etzion, and Rainer von Ammon, editors. The Event
Processing Manifesto, volume 10201 of Dagstuhl Seminar Proceedings, 2011.
(Referenced on pages 1, 29, and 32)

[CJ09] Sharma Chakravarthy and Qingchun Jiang. Stream data processing: a quality of ser-
vice perspective: modeling, scheduling, load shedding, and complex event processing,
volume 36. Springer Science & Business Media, 2009. (Referenced on page 30)

245

Bibliography

[CM12] Gianpaolo Cugola and Alessandro Margara. Processing Flows of Information: From
Data Stream to Complex Event Processing. ACM Comput. Surv., 44(3):15–1, jun
2012. (Referenced on page 32)

[Con96] The ACT-NET Consortium. The Active Database Management System Manifesto:
A Rulebase of ADBMS Features. ACM SIGMOD Record, 25(3):414–471, sep 1996.
(Referenced on page 30)

[CRW01] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and Eval-
uation of a Wide-area Event Notification Service. ACM Trans. Comput. Syst.,
19(3):332–383, aug 2001. (Referenced on page 35)

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing
on large clusters. In OSDI’04: Proceedings of the 6th conference and sympo-
sium on operating systems design and implementation. USENIX Association, 2004.
(Referenced on page 33)

[DL11] W. Roy Schulte David Luckham. Event Processing Technical Society: Event Pro-
cessing Glossary 2.0, July 2011. (Referenced on pages 29, 30, and 32)

[dro] Drools Business Rules Management System. Online: http://www.drools.org/. Vis-
ited: 20.12.16. (Referenced on pages 39 and 144)

[Dun09] J. Dunkel. On complex event processing for sensor networks. In Autonomous De-
centralized Systems, 2009. ISADS ’09. International Symposium on, march 2009.
(Referenced on page 30)

[EFGK03] Patrick Th Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Ker-
marrec. The many faces of publish/subscribe. ACM Computing Surveys (CSUR),
35(2):114–131, 2003. (Referenced on page 35)

[EN11] Opher Etzion and Peter Niblett. Event Processing in Action. Manning, Greenwich,
74◦ w. long., 2011. (Referenced on page 32)

[Esp] Esper - Complex Event Processing. Online: http://esper.codehaus.org/. Visited:
10.06.14. (Referenced on page 38)

[GAW+08] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and Myungcheol Doo.
SPADE: The System s Declarative Stream Processing Engine. In Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data, SIGMOD
’08, pages 1123–1134, New York, NY, USA, 2008. ACM. (Referenced on page 44)

[GJPPM+12] V. Gulisano, R. Jiménez-Peris, M. Patiño-Martínez, C. Soriente, and P. Val-
duriez. StreamCloud: An Elastic and Scalable Data Streaming System. Paral-
lel and Distributed Systems, IEEE Transactions on, 23(12):2351–2365, Dec 2012.
(Referenced on page 41)

[GJPPMV10] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, and P. Valduriez. Stream-
Cloud: A Large Scale Data Streaming System. In Distributed Computing Systems
(ICDCS), 2010 IEEE 30th International Conference on, pages 126–137, june 2010.
(Referenced on pages 37, 41, and 45)

[GKBF98] Stella Gatziu, Arne Koschel, Günter Bültzingsloewen, and Hans Fritschi.
Unbundling active functionality. SIGMOD Rec., 27(1):35–40, 1998.
(Referenced on page 31)

[GKRS15] Mahbouba Gharbi, Arne Koschel, Andreas Rausch, and Gernot Starke. Basiswissen
für Softwarearchitekten. dpunkt.verlag, 2 edition, 2015. (Referenced on page 139)

[GKS14] Mario Golling, Robert Koch, and Lars Stiemert. Architektur zur mehrstufi-
gen Angriffserkennung in Hochgeschwindigkeits-Backbone-Netzen. DFN- Forum
Kommunikationstechnologien, ser. LNI, Gesellschaft für Informatik (GI), 2014.
(Referenced on page 48)

246

Bibliography

[Gro13] The W3C SPARQL Working Group. SPARQL 1.1 Overview. Technical re-
port, march 2013. Online: https://www.w3.org/TR/2013/REC-sparql11-overview-
20130321/. Visited: 20.11.16. (Referenced on pages 111 and 112)

[Gul12] Vincenzo Massimiliano Gulisano. StreamCloud: An Elastic Parallel-Distributed
Stream Processing Engine. PhD thesis, Universidad Politécnica de Madrid, De-
cember 2012. (Referenced on page 41)

[HAG+09] Martin Hirzel, Henrique Andrade, Bugra Gedik, Vibhore Kumar, Giuliano Losa,
Mark Mendell, Howard Nasgaard, Robert Soulé, and Kun-Lung Wu. SPL Stream
Processing Language Specification. Technical report, IBM Research Division,
Thomas J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598,
November 2009. (Referenced on page 44)

[HFC+00] Joseph M. Hellerstein, Michael J. Franklin, Sirish Chandrasekaran, Amol Desh-
pande, Kris Hildrum, Samuel Madden, Vijayshankar Raman, and Mehul A. Shah.
Adaptive query processing: Technology in evolution. IEEE Data Eng. Bull., 23(2):7–
18, 2000. (Referenced on page 46)

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
science in information systems research. MIS quarterly, 28(1):75–105, 2004.
(Referenced on page 9)

[HSS+14] Martin Hirzel, Robert Soulé, Scott Schneider, Bugra Gedik, and Robert Grimm. A
Catalog of Stream Processing Optimizations. ACM Comput. Surv., 46(4):46–1, mar
2014. (Referenced on pages 4 and 45)

[HW12] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Signature Series (Fowler). Pearson
Education, 2012. (Referenced on pages 33 and 34)

[KCC+03] Sailesh Krishnamurthy, Sirish Chandrasekaran, Owen Cooper, Amol Deshpande,
Michael J. Franklin, Joseph M. Hellerstein, Wei Hong, Samuel Madden, Frederick
Reiss, and Mehul A. Shah. TelegraphCQ: An architectural status report. IEEE
Data Eng. Bull., 26(1):11–18, 2003. (Referenced on page 38)

[KHI11] Holger Knublauch, James A. Hendler, and Kingsley Idehen. SPIN - Overview and
Motivation. Online: http://www.w3.org/Submission/2011/SUBM-spin-overview-
20110222/, feb 2011. Visited: 13.07.14. (Referenced on page 44)

[KK98] A. Koschel and R. Kramer. Configurable event triggered services for
CORBA-based systems. In Enterprise Distributed Object Computing Workshop,
1998. EDOC ’98. Proceedings. Second International, pages 306–318, nov 1998.
(Referenced on page 31)

[KKP11] Wilhelm Kleiminger, Evangelia Kalyvianaki, and Peter Pietzuch. Balancing load in
stream processing with the cloud. In Proceedings of the 2011 IEEE 27th Interna-
tional Conference on Data Engineering Workshops, ICDEW ’11, pages 16–21, Wash-
ington, DC, USA, 2011. IEEE Computer Society. (Referenced on pages 37 and 45)

[KL98] Arne Koschel and Peter C. Lockemann. Distributed events in active database sys-
tems: letting the genie out of the bottle . Data Knowl. Eng., 25(1-2):11–28, 1998.
(Referenced on page 31)

[KORR12] Boris Koldehofe, Beate Ottenwälder, Kurt Rothermel, and Umakishore Ra-
machandran. Moving Range Queries in Distributed Complex Event Processing.
In Proceedings of the 6th ACM International Conference on Distributed Event-
Based Systems, DEBS 12, pages 201–212, New York, NY, USA, 2012. ACM.
(Referenced on page 47)

247

Bibliography

[Kos99] Arne Koschel. Ereignisgetriebene CORBA-Dienste für heterogene, verteilte Infor-
mationssysteme. PhD thesis, Forschungszentrum Informatik, Karlsruhe (FZI), 1999.
(Referenced on page 31)

[Krä07] Jürgen Krämer. Continuous Queries over Data Streams – Semantics and Implemen-
tation. PhD thesis, Philipps-Universität Marburg , 2007. (Referenced on page 41)

[KS04] Jürgen Krämer and Bernhard Seeger. PIPES – A Public Infrastructure for Process-
ing and Exploring Streams. 2004. (Referenced on page 41)

[LC08] Z. Laliwala and S. Chaudhary. Event-driven Service-Oriented Architecture. In
Service Systems and Service Management, 2008 International Conference on, pages
1–6, June 2008. (Referenced on page 31)

[LLP+12] Wang Lam, Lu Liu, S. T. S. Prasad, Anand Rajaraman, Zoheb Vacheri, and AnHai
Doan. Muppet: MapReduce-Style Processing of Fast Data. CoRR, abs/1208.4175,
2012. (Referenced on page 36)

[LRD+11] Mo Liu, E. Rundensteiner, D. Dougherty, C. Gupta, Song Wang, I. Ari, and
A. Mehta. High-performance nested CEP query processing over event streams.
In Data Engineering (ICDE), 2011 IEEE 27th International Conference on, pages
123–134, April 2011. (Referenced on page 44)

[Luc] David Luckham. SOA, EDA, BPM and CEP are all Complementaty. Online:
http://complexevents.com/wp-content/uploads/2007/05/SOA_EDA_Part_1.pdf.
Visited: 27.03.15. (Referenced on page 31)

[Luc96] David C. Luckham. Rapide: A Language and Toolset for Simulation of Distributed
Systems by Partial Orderings of Events. Technical report, Stanford, CA, USA, 1996.
(Referenced on page 44)

[Luc01] David C. Luckham. The Power of Events: An Introduction to Complex Event Pro-
cessing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2001. (Referenced on pages 30, 31, and 44)

[Luc07a] David Luckham. A Short History of Complex Event Processing Part 2: the rise
of CEP. Online: http://complexevents.com/wp-content/uploads/2008/07/2-final-
a-short-history-of-cep-part-2.pdf. Visited: 20.11.16, 2007. (Referenced on page 31)

[Luc07b] David C. Luckham. A short history of Complex Event Processing. part 1: Begin-
nings. Online: http://complexevents.com/wp-content/uploads/2008/02/1-a-short-
history-of-cep-part-1.pdf. Visited: 20.11.16, 2007. (Referenced on page 30)

[LY08] Dionysios Logothetis and Kenneth Yocum. Ad-hoc data processing in the cloud.
Proc. VLDB Endow., 1(2):1472–1475, aug 2008. (Referenced on page 33)

[Mar] Nathan Marz. A Storm is coming: more details and plans for re-
lease. Online: http://engineering.twitter.com/2011/08/storm-is-coming-more-
details-and-plans.html. Visited: 19.07.12. (Referenced on page 36)

[Mar06] Jean-Louis Maréchaux. Combining Service-Oriented Architecture and Event-Driven
Architecture using an Enterprise Service Bus. Technical report, IBM, March
2006. Online: http://www.ibm.com/developerworks/library/ws-soa-eda-esb/. Vis-
ited: 25.02.15. (Referenced on page 31)

[MCT14] Alessandro Margara, Gianpaolo Cugola, and Giordano Tamburrelli. Learning from
the past: Automated rule generation for complex event processing. In Proceedings of
the 8th ACM International Conference on Distributed Event-Based Systems, DEBS
’14, pages 47–58, New York, NY, USA, 2014. ACM. (Referenced on page 44)

[MFP06] Gero Mühl, Ludger Fiege, and Peter Pietzuch. Distributed Event-Based Systems.
Springer Berlin / Heidelberg, 2006. (Referenced on pages 30 and 35)

248

Bibliography

[MOB+08] Y. Magid, D. Oren, D. Botzer, A. Adi, B. Shulman, E. Rabinovich, and M. Barnea.
Generating real-time complex event-processing applications. In 2008 32nd Annual
IEEE International Computer Software and Applications Conference, volume 47,
pages 251–263, July 2008. (Referenced on page 44)

[MSHR02] Samuel Madden, Mehul Shah, Joseph M. Hellerstein, and Vijayshankar Raman.
Continuously Adaptive Continuous Queries over Streams. In Proceedings of the
2002 ACM SIGMOD International Conference on Management of Data, SIGMOD
’02, pages 49–60, New York, NY, USA, 2002. ACM. (Referenced on page 45)

[Mul14] MULE ESB Enterprise Performance. Technical report, MuleSoft, 2014. On-
line: http://www.mulesoft.com/downloads/mule-performance-metrics.pdf. Visited:
10.12.14. (Referenced on page 31)

[MVE] MVEL Language Guide. Online: https://en.wikisource.org/w/index.php?title=
MVEL_Language_Guide&oldid=6036377. Visited: 10.02.16.
(Referenced on pages 111 and 113)

[nis12] NIST Framework and Roadmap for Smart Grid Interoperability Standards. Tech-
nical Report 1108R2, feb 2012. (Referenced on page 13)

[NRNK10] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari. S4: Dis-
tributed Stream Computing Platform. In ICDM Workshops, pages 170–177, 2010.
(Referenced on page 37)

[OKR+14a] Beate Ottenwälder, Boris Koldehofe, Kurt Rothermel, Kirak Hong, David Lil-
lethun, and Umakishore Ramachandran. MCEP: A Mobility-Aware Complex
Event Processing System. ACM Trans. Internet Technol., 14(1):6–1, aug 2014.
(Referenced on page 47)

[OKR+14b] Beate Ottenwälder, Boris Koldehofe, Kurt Rothermel, Kirak Hong, and Umakishore
Ramachandran. RECEP: Selection-based Reuse for Distributed Complex Event
Processing. In Proceedings of the 8th ACM International Conference on Distributed
Event-Based Systems, DEBS 14, pages 59–70, New York, NY, USA, 2014. ACM.
(Referenced on page 47)

[PGS+10] Helge Parzyjegla, Daniel Graff, Arnd Schröter, Jan Richling, and Gero Mühl. De-
sign and Implementation of the Rebeca Publish/Subscribe Middleware. chapter
From Active Data Management to Event-based Systems and More, pages 124–140.
Springer-Verlag, Berlin, Heidelberg, 2010. (Referenced on page 35)

[PSPP14] Om Prasad Patri, Vikrambhai S. Sorathia, Anand V. Panangadan, and Viktor K.
Prasanna. The Process-oriented Event Model (PoEM): A Conceptual Model for
Industrial Events. In Proceedings of the 8th ACM International Conference on Dis-
tributed Event-Based Systems, DEBS 14, pages 154–165, New York, NY, USA, 2014.
ACM. (Referenced on page 46)

[PVAM12] Adrian Paschke, Paul Vincent, Alex Alves, and Catherine Moxey. Tutorial on Ad-
vanced Design Patterns in Event Processing. In Proceedings of the 6th ACM Inter-
national Conference on Distributed Event-Based Systems, DEBS 12, pages 324–334,
New York, NY, USA, 2012. ACM. (Referenced on pages 7 and 8)

[PVM+12] Adrian Paschke, Paul Vincent, Catherine Moxey, Martin Hirzel, and
Alex Alves. Event Processing Reference Architecture - Design Patterns.
Online: http://de.slideshare.net/isvana/epts-debs2012-event-processing-
reference-architecture-design-patterns-v204b, 2012. Visited: 2014.11.20.
(Referenced on page 8)

[rdf] Eclipse RDF4J Homepage. Online: http://rdf4j.org/. Visited: 10.06.16.
(Referenced on page 145)

249

Bibliography

[RDS+04] Elke A. Rundensteiner, Luping Ding, Timothy Sutherland, Yali Zhu, Brad Pielech,
and Nishant Mehta. CAPE: Continuous Query Engine with Heterogeneous-grained
Adaptivity. In Proceedings of the Thirtieth International Conference on Very Large
Data Bases - Volume 30, VLDB ’04, pages 1353–1356. VLDB Endowment, 2004.
(Referenced on page 45)

[red] Apache Redis Homepage. Online: http://redis.io/. Visited: 11.07.16.
(Referenced on page 160)

[SAG+09] S. Schneider, H. Andrade, B. Gedik, A. Biem, and Kun-Lung Wu. Elastic scaling
of data parallel operators in stream processing. In Parallel Distributed Process-
ing, 2009. IPDPS 2009. IEEE International Symposium on, pages 1–12, may 2009.
(Referenced on pages 37 and 45)

[SAKG14] Marc Schaaf, Irina Astrova, Arne Koschel, and Stella Gatziu Grivas. The om4space
activity service: A semantically well-defined cloud-based event notification mid-
dleware. International Journal On Advances in Software, 7:697 to 709, 2014.
(Referenced on page 35)

[SBC+98] Robert Strom, Guruduth Banavar, Tushar Chandra, Marc Kaplan, Kevan Miller,
Bodhi Mukherjee, Daniel Sturman, and Michael Ward. Gryphon: An information
flow based approach to message brokering. 1998. (Referenced on page 35)

[SGA+13] Robert Soulé, Michael I. Gordon, Saman Amarasinghe, Robert Grimm, and Mar-
tin Hirzel. Dynamic Expressivity with Static Optimization for Streaming Lan-
guages. In Proceedings of the 7th ACM International Conference on Distributed
Event-based Systems, DEBS 13, pages 159–170, New York, NY, USA, 2013. ACM.
(Referenced on page 47)

[SGLN+11] Sriskandarajah Suhothayan, Kasun Gajasinghe, Isuru Loku Narangoda, Subash
Chaturanga, Srinath Perera, and Vishaka Nanayakkara. Siddhi: A Second Look at
Complex Event Processing Architectures. In Proceedings of the 2011 ACM Work-
shop on Gateway Computing Environments, GCE ’11, pages 43–50, New York, NY,
USA, 2011. ACM. (Referenced on page 44)

[SHCF03] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin. Flux: an
adaptive partitioning operator for continuous query systems. In Data Engineer-
ing, 2003. Proceedings. 19th International Conference on, pages 25–36, March 2003.
(Referenced on page 45)

[SLJR05] Timothy M. Sutherland, Bin Liu, Mariana Jbantova, and Elke A. Rundensteiner.
D-CAPE: Distributed and Self-tuned Continuous Query Processing. In Pro-
ceedings of the 14th ACM International Conference on Information and Knowl-
edge Management, CIKM ’05, pages 217–218, New York, NY, USA, 2005. ACM.
(Referenced on page 45)

[Sof] TIBCO Software. StreamSQL Guide. Online:
https://docs.tibco.com/pub/stibco_StreamSQLtreambase_cep/7.3.6_aug_2013/
pdf/streamsql.pdf. Accessed: 10.12.14. (Referenced on page 44)

[sto] Storm, distributed and fault-tolerant realtime computation. Online: http://storm-
project.net/. Visited: 04.06.13. (Referenced on page 36)

[SZS+03] Stan Zdonik Sbz, Stan Zdonik, Michael Stonebraker, Mitch Cherniack, Ugur C.
Etintemel, Magdalena Balazinska, and Hari Balakrishnan. The Aurora and Medusa
Projects. IEEE Data Engineering Bulletin, 26, 2003. (Referenced on page 40)

[Tel] The Telegraph Project at UC Berkeley. Online: http://telegraph.cs.berkeley.edu.
Visited: 28.12.16. (Referenced on page 38)

250

Bibliography

[W3C04] SWRL: A Semantic Web Rule Language Combining OWL and RuleML. On-
line: http://www.w3.org/Submission/SWRL/, may 2004. Visited: 13.07.14.
(Referenced on page 43)

[WDR06] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance Complex Event Pro-
cessing over Streams. In Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’06, pages 407–418, New York, NY,
USA, 2006. ACM. (Referenced on page 44)

[Wel02] Matthew David Welsh. An architecture for highly concurrent, well-conditioned in-
ternet services. PhD thesis, University of California, 2002. (Referenced on page 31)

[WG96] Klaus Peter Wershofen and Volker Graefe. Situationserkennung als Grundlage der
Verhaltenssteuerung eines mobilen Roboters. 1996. (Referenced on page 48)

[WS09a] Kerstin Werner and Alexander Schill. An Event-processing Architecture for an
RFID based Logistics Monitoring System. In RFID Systems and Technolo-
gies (RFID SysTech), 2009 5th European Workshop on, pages 1–8, June 2009.
(Referenced on page 30)

[WS09b] G. Wishnie and H. Saiedian. A Complex Event Routing Infrastructure for Dis-
tributed Systems. In Proceedings of the 33rd Annual IEEE International Computer
Software and Applications Conference, COMPSAC ’09, volume 2, pages 92–95, July
2009. (Referenced on page 35)

[WSB+14] Gwendolin Wilke, Marc Schaaf, Erik Bunn, Topi Mikkola, Remo Ryter, Holger
Wache, and Stella Gatziu Grivas. Intelligent dynamic load management based on
solar panel monitoring. In Proceedings of the 3rd Conference on Smart Grids and
Green IT Systems, pages 76–81, 2014. (Referenced on page 2)

[WSGL11] Daniela Wolff, Marc Schaaf, Stella Gatziu Grivas, and Uwe Leimstoll. Context-aware
website personalization. In Proceedings of Knowlege-Based and Intelligent Informa-
tion and Engineering Systems, pages 51–62. Springer, 2011. (Referenced on page 30)

[WY10] Yongheng Wang and Shenghong Yang. High-performance complex event processing
for large-scale RFID applications. In Proceedings of the 2nd International Conference
on Signal Processing Systems (ICSPS), July 2010. (Referenced on page 40)

[XZH05] Ying Xing, Stan Zdonik, and Jeong-Hyon Hwang. Dynamic Load Distribution in
the Borealis Stream Processor. In Proceedings of the 21st International Conference
on Data Engineering, ICDE ’05, pages 791–802, Washington, DC, USA, 2005. IEEE
Computer Society. (Referenced on pages 40 and 45)

[YG02] Yong Yao and Johannes Gehrke. The Cougar Approach to In-network
Query Processing in Sensor Networks. SIGMOD Rec., 31(3):9–18, sep 2002.
(Referenced on page 41)

[YKPS07] Yin Yang, J. Kramer, D. Papadias, and B. Seeger. HybMig: A Hybrid Approach to
Dynamic Plan Migration for Continuous Queries. IEEE Transactions on Knowledge
and Data Engineering, 19(3):398–411, March 2007. (Referenced on page 4)

[ZRH04] Yali Zhu, Elke A. Rundensteiner, and George T. Heineman. Dynamic Plan Migration
for Continuous Queries over Data Streams. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD ’04, pages 431–442,
New York, 2004. ACM. (Referenced on page 45)

251

List of Figures

1.1.1. Moving cloud causing reduced energy production 3
1.4.1. High level view of the processing model . 6
1.5.1. Event Processing Reference Architecture 7
1.6.1. Overview of the design and evaluation process of this work. 9

2.1.1. A cloud moving across several solar panel installations 14
2.1.2. Changing energy production over time due to a cloud 15
2.1.3. Exemplary network structure for Scenario 2 18
2.1.4. Exemplary network structure for Scenario 3 19
2.2.1. Overview over the formalized processing type 23

3.1.1. Sample Event Processing Network . 30
3.1.2. Database Management System and Data Stream Management System . . 32
3.1.3. Pipes and Filters Architecture . 33
3.2.1. Hierarchy of the discussed Event Stream Processing classes. 34
3.2.2. Event Notification Service . 35
3.2.3. Stream Query distribution process implemented by a distributed DSMS . 40
3.3.1. Stream relation conversions in CQL . 41
3.3.2. Aurora System Model . 43

4.1.1. Simplified view of the processing model. 52
4.2.1. Meta model of the background knowledge 54
4.2.2. Example Smart Grid background knowledge base contents. 56
4.2.3. Example Telecommunications Network background knowledge base 57
4.2.4. Exemplary Locked Area and Focus Area for the DoS tracking scenario. . . 57
4.2.5. Exemplary Locked Areas and Focus Areas for the cloud tracking scenario . 58
4.2.6. Contents of an Area Registration . 60
4.2.7. Contents of a Stream Processing Topology 62
4.3.1. Overview of Processing Phase 0 and 1 . 63
4.3.2. Possible Situation Indication Stream Processing Topology 65
4.3.3. Possible Situation Indication Event . 67
4.5.1. Handling of a received Possible Situation Indication Event 71
4.5.2. Collision Tuples . 75
4.5.3. Example Collision Classification for two raised indications eP1 and eP2. . . 82

253

List of Figures

4.6.1. Simplified view of the focused situation processing flow. 87
4.6.2. Overview of the Phase 3 processing states 89
4.6.3. Situation Processing Instance and Iteration 90
4.6.4. Usage of the Focused Situation Processing Context 93
4.6.5. Focused Situation Iteration Stream Processing Topology 95
4.6.6. Locked Area updates to incorporate changes of the tracked situation . . . 101

5.1.1. Structure of a Scenario Processing Template 110
5.1.2. High level view of the Scenario Processing Template interpretation. 111
5.7.1. Schematic view of the Stream Processing Builder execution. 129
5.7.2. A processing rule generated by the Stream Processing Builder 138

6.2.1. Component view of the Prototype . 141
6.2.2. Components of the Possible Situation Indication Processing Manager . . . 143
6.2.3. Components of the Focused Situation Processing Manager 143
6.3.1. Initialization of Processing Templates by the processing system 146
6.3.2. Handling of raised Possible Situation Indication Events 148
6.3.3. Iterative Focused Situation Processing . 150
6.3.4. Merge coordination between two Focused Situation Processing Instances . 153
6.4.1. Deployment View of the Prototype . 155

7.1.1. Overview of the implemented test cases . 158
7.3.1. Cloud Tracking: Locked Area and Focus Area adaptation Process 169
7.4.1. Case 1: Structure of the generated Indication Stream Processing Topology 177
7.4.2. Case 1: Area Registration Request caused by the first Indication Event . . 178
7.4.3. Case 1: Area Registration Request caused by the second Indication Event 179
7.4.4. Case 1: Area Registration Request caused by the third Indication Event . 180
7.4.5. Case 1: Stream Processing Topology generated for Iteration 0 181
7.4.6. Case 1: Updated Area Registration Request for the second Iteration . . . 183
7.4.7. Case 1: The Area Registration used for Iteration 10 184
7.4.8. Case 1: The Area Registration used for Iteration 11 185
7.5.1. Illustration of the Iteration Stream Processing of the DoS Scenario 190
7.5.2. DoS Tracing: Structure of the Post-Iteration Function 193
7.6.1. Case 5: Visualization of the simulated network and final result 199

C.1.1. Case 2: Area Registration resulting from the Indication Event 229
C.1.2. Case 2: Area Registration Request for the second Indication Event 230
C.2.1. Case 3: Locked and Focus Area resulting from the merge 234
C.3.1. Case 4: Merge result from the collision of two situations 238
C.3.2. Case 4: Result from the splitting of the two previously merged situations . 239
C.3.3. Case 4: Illustration of the cloud paths tracked by the created FSP Instances.240

254

List of Tables

3.2.1. Suitability of Event Stream Processing Middlewares 38
3.2.2. Suitability of Centralized Data Stream Management Systems 39
3.2.3. Suitability of distributed Data Stream Management Systems 42
3.4.1. Suitability of adaptive DSMS optimization mechanisms 46
3.4.2. Suitability of the Process-oriented Event Model 47
3.4.3. Suitability of the “Hybrid Static & Dynamic Scheduling” approach 48
3.4.4. Suitability of Moving Range Queries . 49
3.6.1. Overview of the suitability of the considered event stream processing classes 50

5.4.1. Variables in the Possible Situation Indication Processing Specification . . . 115
5.5.1. Variables available in the Focused Situation Processing Initialization . . . 117
5.5.2. Variables available in the Collision Action Assignment 121
5.6.1. Variables available in the Focused Situation Processing 124
5.6.2. Variables available in the Focused Situation Processing Merge Function . . 128

7.4.1. Case 1: Excerpt of the Possible Situation Indication Event Log. 177
7.4.2. Case 1: Excerpt from the Interim Result Event log 183
7.6.1. Case 5: Generated Possible Situation Indication Events 197
7.6.2. Case 5: Area Registration Requests . 198
7.6.3. Case 5: Result Events . 199

C.1.1. Case 2: Generated Indication Events . 228
C.1.2. Case 2: Result event generated by the Focused Situation Processing 229
C.2.1. Case 3: Generated Indication Events . 232
C.2.2. Case 3: Area Registration Requests . 235
C.3.1. Case 4: Generated Possible Situation Indication Events 236
C.3.2. Case 4: Subset of the Area Registration Requests 237

255

List of Definitions

Chapter 2
2.1. Definition – Events and Event Streams . 22
2.2. Definition – The set of all available Event Streams 22

Chapter 4
4.1. Definition – Background Knowledge Base 54
4.2. Definition – Event Stream Selection Function 55
4.3. Definition – Locked Area . 58
4.4. Definition – Focus Area . 59
4.5. Definition – Focus Area and Locked Area Registration Life-Cycle Functions 61
4.6. Definition – Indication Stream Processing Function 66
4.7. Definition – Indication Stream Processing Topology 66
4.8. Definition – Indication Stream Processing Builder 68
4.9. Definition – Indication Nodes Query Function 68
4.10. Definition – Indication Classification Results 70
4.11. Definition – Indication Pre-Classification Function 72
4.12. Definition – Potential Locked, Focus Area and initial Time Frame Query

Function . 73
4.13. Definition – Collision Detection Function . 75
4.14. Definition – Partial Locked Area Collision Action Assignment Function . . . 79
4.15. Definition – Focus Area Collision Action Assignment Function 79
4.16. Definition – Focused Situation Processing Initialization Function 92
4.17. Definition – Pre-Iteration Processing Function 94
4.18. Definition – Iteration Stream Processing Builder 97
4.19. Definition – Post-Iteration Processing Function 97
4.20. Definition – Interim Result Event Generation Function 98
4.21. Definition – Iteration Locked Area, Focus Area and Time Frame Query

Function . 98
4.22. Definition – Focused Situation Processing Termination Condition 100
4.23. Definition – Focused Situation Processing Result Query Function 102
4.24. Definition – Focused Situation Processing Collision-Handling Function . . . 104

257

