
Pierre Schnarz

Security Patterns for AMP-based
Embedded Systems

SSE-Dissertation 19

Software
Systems
Engineering

Institut für Informatik
Lehrstuhl von Prof. Dr. Andreas Rausch

P
ierre

Sch
n
arz

Security
Patterns

for
A
M
P-based

Em
bedded

System
s

Vol.19
2018

The consolidation of diverse functionalities onto a single platform is an
ongoing, and still emerging, trend in the development of automotive

electronic control units. More and more, these software-intensive functions
imply different requirements concerning their system quality. In the future,
this so-called mixed-criticality systems will emerge and consolidate even mo-
re functions, towards large computational platforms. Through the advent
of hardware virtualization features into automotive-grade microcontrollers,
software partitioning on hardware-level has been made possible. Particularly,
asynchronous multiprocessing (AMP) is suitable to host several domains
"bare-metal"by utilising these hardware virtualization capabilities. The AMP
paradigm aims to assign a group of hardware elements statically to a single
software partition. This composition is referred to as asynchronous domain.
AMP is considered to be very performance effective, while the effort of reali-
sing hypervisors is kept at a minimum. However, an important requirement
of mixed-criticality systems is to provide a platform to consolidate functions
with a high degree of freedom of interference, dependability and security.
Particularly, the availability and integrity aspect of co-hosted functions need
to be enforced. Notwithstanding the utilisation of a common hardware plat-
form, side-effects might end up in severe vulnerabilities.

This work elaborates on security patterns considering the specific constructi-
on paradigm of AMP-based systems. The patterns include security problems
and solutions describing the offensive and defensive aspects of the given
context. A tailored security assessment methodology combines methods and
tools to analyse, quantify and evaluate the particular artefacts. The vulnerabi-
lity assessment conducted in this work revealed a surface for denial-of-service
of shared last-level caches (LLC) and elevation-of-privilege and tampering
threats by misusing co-processors. Accordingly, the exploitability of these
threats is demonstrated by penetration tests. The strategy to solve these is-
sues, a reordering of the system memory map is proposed. A domain-block
based mapping is shown to partition the LLC, which limits in this way the
interference of adjacent domains. Furthermore, memory-map shuffling is
proposed, to limit the exploitability of elevation-of-privilege threats by obfus-
cating the target memory structure. The findings of the security problems
are transferred into rules to detect the issues in system architecture models.
Furthermore, it is proposed to implement on each system layer primary and
secondary security countermeasures. Particularly, systems utilizing hardware
protection capabilities this leads to a extensive defence-in-depth security
architecture. Therefore, the concepts contribute to the deterrence and the
prevention of adverse actions to physical memory.

Security Patterns for AMP-based
Embedded Systems

D o c t o r a l T h e s i s
(D i s s e r t a t i o n)

to be awarded the degree of
Doktor-Ingenieur

(Dr. -Ing.)

submitted by

Pierre Schnarz
from Alzenau

approved by the Department of Informatics,
Clausthal University of Technology

2018

Dissertation Clausthal, SSE-Dissertation 19, 2018

Chairperson of the Board of Examiners
Prof. Dr. Jörg P. Müller

Chief Reviewer
Prof. Dr. Andreas Rausch

2. Reviewer
Prof. Dr. JoachimWietzke

3. Reviewer
Prof. Dr. Jörn Eichler

Date of oral examination: December 19, 2018

Für Katrin

Declaration

I hereby declare that except where specific reference is made to the work of others,
the contents of this dissertation are original and have not been submitted in whole
or in part for consideration for any other degree or qualification in this, or by any
other university. This dissertation is my own work and contains nothing which is the
outcome of work done in collaboration with others, except as specified in the text and
Acknowledgements.

Pierre Schnarz
January 2019

Acknowledgements - Danksagung

The probability that we may fail in the struggle ought not to
deter us from the support of a cause we believe to be just.

Abraham Lincoln

Viele Menschen haben mich auf dem langen Weg bis zur Fertigstellung dieser Arbeit
begleitet. Daher möchte ich mich hier bei all Jenen bedanken, die beigetragen haben
mir dies zu ermöglichen.

Bei Prof. Dr. Joachim Wietzke bedanke ich mich für die Betreuung meiner
Promotion. Gerade die Mitarbeit in seiner Forschungsgruppe und darüber hinaus hat
mir die nötige Hartnäckigkeit vermittelt, welche es brauchte um dieses große Projekt
zu Ende zu bringen.

Ich möchte mich außerdem bei Prof. Dr. Andreas Rausch bedanken, welcher mich
in seinem Institut als Doktorand aufgenommen hat. Seine konstruktive Kritik und
leitende Fragen haben mir geholfen den Inhalt dieser Arbeit zu sortieren.

Des weiteren, möchte ich Prof. Dr. Ingo Stengel und Prof. Dr. Ronald Moore
danken, welche mich gerade in der Anfangsphase der Promotion begleitet haben.

Frau Prof. Dr. Elke Hergenröther und Herrn Prof. Dr. Urs Andelfinger bedanke
ich mich für die Unterstützung seitens der Hochschule Darmstadt und die Chance
meinen Weg über die TU Clausthal gehen zu können.

In der Zeit als wissenschaftlicher Mitarbeiter im In-Car Multimedia Labor haben
mich meine Kollegen im Bereich der Technischen Informatik unterstützt. Daher möchte
ich mich hier bei Bettina, Sergio, Michael, Manfred für die aufschlussreiche Zeit
bedanken.

viii

Auch meine Doktorandenkollegen in unserer Forschungsgruppe trugen eine großen
Teil dazu bei, diese Forschungsarbeit zu bestreiten. Hier möchte ich Clemens Fischer
danken, welcher maßgeblich an der Umsetzung der Implementierungen beigetragen hat.
Tobias Holstein für konstruktive Diskussionen rund um das Thema Multi-OS. Andreas
Knirsch welcher mich zur Forschungsgruppe gebracht und in all den Jahren nicht nur
bei Forschungsfragen zur Seite stand. Markus Glaab mit dem ich gerade in der zweiten
Phase auch gerne über die fachlichen Themen hinaus philosophiert habe.

Gerade auch meine Arbeitskollegen welche ich außerhalb der Forschungsgruppe
hatte und habe, ermutigten mich bei Zweifeln und unterstützten mich bei inhaltlichen
Fragen.

Über alle Inhaltlichen Aspekte hinaus, ist es mein familiäres und soziales Umfeld
welches dazu beigetragen hat mich vor allem als Mensch weiterzuentwickeln.

Meiner Familie danke ich für die Stütze in allen Lebenslagen. Gerade meine Eltern
Ulrike und Reiner unterstützen mich vorbehaltlos bis zur Erreichung all meiner Ziele.

Meinen Freunden danke ich für das “Da” sein, um mir einen gewissen Abstand zur
Arbeit zu ermöglichen. Sabine du bist ein Freund wie ihn sich jeder wünscht.

Außerordentlich möchte ich an dieser Stelle meiner Frau Katrin danken. Mit ihrer
Nähe hat sie mich und unsere kleine Familie über all die Jahre getragen und stand
über den Dingen. Der Erfolg dieses Projektes geht vor allem auf sie zurück. Ihr widme
ich diese Arbeit.

Abstract

The consolidation of diverse functionalities onto a single platform is an ongoing, and
still emerging, trend in the development of automotive electronic control units. More
and more, these software-intensive functions imply di�erent requirements concerning
their system quality. In the future, this so-called mixed-criticality systems will emerge
and consolidate even more functions, towards large computational platforms. Through
the advent of hardware virtualization features into automotive-grade microcontrollers,
software partitioning on hardware-level has been made possible. Particularly, asyn-
chronous multiprocessing (AMP) is suitable to host several domains "bare-metal" by
utilising these hardware virtualization capabilities. The AMP paradigm aims to assign
a group of hardware elements statically to a single software partition. This composition
is referred to as asynchronous domain. AMP is considered to be very performance
e�ective, while the e�ort of realising hypervisors is kept at a minimum. However,
an important requirement of mixed-criticality systems is to provide a platform to
consolidate functions with a high degree of freedom of interference, dependability
and security. Particularly, the availability and integrity aspect of co-hosted functions
need to be enforced. Notwithstanding the utilisation of a common hardware platform,
side-e�ects might end up in severe vulnerabilities.

This work elaborates on security patterns considering the specific construction
paradigm of AMP-based systems. The patterns include security problems and solutions
describing the o�ensive and defensive aspects of the given context. A tailored security
assessment methodology combines methods and tools to analyse, quantify and evaluate
the particular artefacts. The vulnerability assessment conducted in this work revealed a
surface for denial-of-service of shared last-level caches (LLC) and elevation-of-privilege
and tampering threats by misusing co-processors. Accordingly, the exploitability of

x

these threats is demonstrated by penetration tests. The strategy to solve these issues,
a reordering of the system memory map is proposed. A domain-block based mapping
is shown to partition the LLC, which limits in this way the interference of adjacent
domains. Furthermore, memory-map shu�ing is proposed, to limit the exploitability
of elevation-of-privilege threats by obfuscating the target memory structure. The
findings of the security problems are transferred into rules to detect the issues in
system architecture models. Furthermore, it is proposed to implement on each system
layer primary and secondary security countermeasures. Particularly, systems utilizing
hardware protection capabilities this leads to a extensive defence-in-depth security
architecture. Therefore, the concepts contribute to the deterrence and the prevention
of adverse actions to physical memory.

Table of contents

List of figures xv

List of tables xix

1 Introduction 1
1.1 Motivation of This Research . 2
1.2 Research Goal . 5
1.3 Structure . 5

2 Fundamental Concepts 9
2.1 Profile of Asymmetric Multiprocessing Systems 10

2.1.1 Definitions and Terminology . 10
2.1.2 ToE Description . 13
2.1.3 Hardware Elements . 18
2.1.4 ToE MPSoC Components . 19
2.1.5 Security Problem Definition . 27
2.1.6 Security Objectives . 29

2.2 Security Engineering . 31
2.2.1 Introduction to Security Engineering 31
2.2.2 Security Assessment Methodology 49

2.3 Research Methodology . 54
2.4 Summary . 59

3 Risk Assessment: Driver Information System Case Study 61
3.1 ToE- and Context Profiling . 62

xii

3.1.1 Mixed-Criticality Systems: A Case for AMP 62
3.1.2 System Decomposition . 64
3.1.3 Experimental Platform . 69
3.1.4 Threat Context Analysis . 74

3.2 Threat and Attack Analysis . 83
3.2.1 Threat Analysis . 83
3.2.2 Attack Analysis . 86

3.3 Risk Analysis . 90
3.3.1 Impact Analysis . 90
3.3.2 Attack Potential Analysis . 92
3.3.3 Risk Definition . 94
3.3.4 Hypothesised Attacks . 94

3.4 Summary . 95

4 Vulnerability Assessment 97
4.1 Hyp-Attack1: PEi disrupts PEj access to LLC 99

4.1.1 Vulnerability Analysis . 99
4.1.2 Penetration Test: Cache Thrashing 113

4.2 Hyp-Attack2: PE’s memory base is tampered with by adjacent PE . . 120
4.2.1 Vulnerability Analysis . 120
4.2.2 Penetration Test: Co-Processor Exploit 125

4.3 Generalized Vulnerability and Exploitation Pattern 131
4.3.1 Modelling Protection Architectures 132
4.3.2 Preliminaries of an AMP system 132
4.3.3 Breach Access Controls on Intermediated Level 133
4.3.4 Denial-of-Service a Shared Resource 135
4.3.5 Identification of Attack Surfaces in AMP Systems 136
4.3.6 Primary and Secondary Assets 138
4.3.7 Attack Objectives and Scenarios 139

4.4 Summary . 142

5 Risk Treatment 145
5.1 Risk Treatment Strategy . 146

5.1.1 Target and Residual Attack Potential 147
5.1.2 Exploitation Prevention on the Intermediate Layer 147
5.1.3 Security Solution . 148
5.1.4 Primary and Secondary Countermeasures 152

xiii

5.2 Countermeasure 1: Memory Domain-Blocks 154
5.2.1 E�ectiveness Requirements . 154
5.2.2 Mitigation Concept Analysis . 154
5.2.3 Proof-of-Concept Implementation 157

5.3 Countermeasure 2: Memory-Map Shu�ing 160
5.3.1 E�ectiveness Requirements . 161
5.3.2 Mitigation Concept Analysis . 161
5.3.3 Case Study . 168

5.4 Summary . 170

6 Security Evaluation 173
6.1 Domain-Block Memory Mapping . 174

6.1.1 E�ectiveness Assessment . 174
6.1.2 Evaluation of the PoC Implementation 176
6.1.3 Residual Risk Analysis . 181

6.2 Memory-Map Shu�ing . 183
6.2.1 E�ectiveness Assessment . 183
6.2.2 Residual Risk Analysis . 186

6.3 Comparison to Hypervisor-based System Architectures 188
6.3.1 Attack Potential: Cache-Thrashing 189
6.3.2 Attack Potential: Tamper with Memory of Adjacent OS Guest . 191

6.4 Summary . 192

7 Related Work 195
7.1 Security Requirements Engineering . 196
7.2 Security Architectures of AMP-based Systems 198
7.3 O�ensive Methods and Attacks . 198
7.4 Exploitation Prevention . 200
7.5 Summary . 202

8 Conclusion 203
8.1 Contents . 204
8.2 Contributions of this Research . 206
8.3 Answers to the Research Questions . 208

8.3.1 Research Question 1 . 208
8.3.2 Research Question 2 . 209

8.4 Limitations . 209

xiv

8.5 Future Work . 210
8.6 Summary . 211

9 Acronyms 213

References 221

Appendix A Technical Specification OMAP5 237
A.1 Schematics . 238
A.2 Features . 239

List of figures

2.1 ToE overview. 13
2.2 Layered system hierarchy. 14
2.3 Comparison of domain separation paradigms. 18
2.4 Considered Multiprocessor System-on-Chip (MPSoC) components. . . . 20
2.5 Generalized MPSoCstructure combining diverse elements. 21
2.6 Memory architecture. 22
2.7 Communication architecture interface. 23
2.8 System memory-map concept. 26
2.9 Two-stage memory translation. 26
2.10 First and second page-table. 27
2.11 System functions with a focus on particular product qualities. 28
2.12 The fundamental dependencies of actors and artefacts in security [41]. . 32
2.13 FIRST ontology. (adopted from [49, p. 31]) 37
2.14 Relationship of security metrics. 49
2.15 Risk-based Security Assessment Process. 52
2.16 Applied security evaluation process. 53
2.17 Discovering security knowledge. 54
2.18 Research Methodology. 55

3.1 Quality assignment for the Driver Information System. 64
3.2 Case Study: Driver Information System use case. 65
3.3 Technical architecture and software stack assignments. 67
3.4 Memory map overview. 68
3.5 Data flow diagram of the driver information system. 68

xvi List of figures

3.6 Exemplary E/E architecture and functional domains. 69
3.7 Texas Instruments OMAP5432 EVM [79]. 70
3.8 Boot sequence of the experimental system setup. 74
3.9 Presumed path into the MC-system. ToE threats defined in 2.1.5. . . . 78
3.10 Logical Level DFD. 84
3.11 DFD of the technical platform. Dashed items are out-of-scope. 87

4.1 Considered cache thrashing scenario. 101
4.2 Cache associativity mapping. [160, p. 132] 102
4.3 Shared way-set cache principle. 104
4.4 Cache DoS attack tree. 105
4.5 Target address array allocation principle. 107
4.6 Timing diagram in flooded way-set. 108
4.7 NUMA and cache memory access latencies. 110
4.8 Sequence diagram of thrashing measurements. 117
4.9 Comparison of way-set occupancy. 118
4.10 Identity memory mapping. 119
4.11 Breach or circumvent memory protection controls in a SoC. 121
4.12 Misuse scenario utilizing a co-processor to attack a target memory area. 122
4.13 Misuse scenario utilising a GPU to attack a target memory area. 123
4.14 Implemented attack vector. 126
4.15 Memory mapping (extract) for the attack vector. 128
4.16 Exploitation firmware structure overview. 129
4.17 Exploitation firmware attack sequence. 130
4.18 System layers and entity relationships. 133
4.19 Generalized access control problem. 134
4.20 Resource sharing. 135

5.1 Primary and secondary countermeasures in relation to exploitation and
asset. 148

5.2 Distributed access control. 151
5.3 Modified MPSoC architecture to prevent from direct access misuse. . . 152
5.4 Object sharing security problem model. 152
5.5 MMU utilized as means of access control. 153
5.6 Integration of a secondary countermeasure on the intermediate level. . . 153
5.7 Principle of domain blocks with exemplary mapping of main memory. . 156
5.8 Addressing of domain-blocks in main memory. 157

List of figures xvii

5.9 Principle of randomized memory assignment. 162
5.10 Integration into the boot process. 164
5.11 Coverage of the main memory shu�ing. 166
5.12 Comparison of page size, shu�ed memory size and the resulting entropy

bits. 169

6.1 Comparison of identity and DB mapping. 178
6.2 Memory bandwidth comparison. 180
6.3 DFD of the Type-1 hypervisor system architecture. 189

A.1 TI OMAP5 IP-cores and Communication Architecture [170]. 238

List of tables

2.1 Impact severity classes [67]. 38
2.2 Attack Potential rating table [173]. 39
2.3 Attack Potential level and likelihood [173]. 40
2.4 Security risk level [67]. 41
2.5 Required and Residual AP (based on [173, p. 418]). 42
2.6 Microsoft STRIDE Threats. [154] . 42
2.7 Data flow diagram . 43
2.8 Threats per Data Flow Diagram (DFD) Element. 43
2.9 CVSS Base Score [47]. 46
2.10 CVSS Base Score continued [47]. 47

3.1 Listing of logical level threats, including a description of the violated
security goals. 85

3.2 Technical DFD: STRIDE-per-element. Check marks in brackets state
out-of-scope threats. 87

3.3 STRIDE-per-element analysis. 89
3.4 Impact analysis (Safety, Financial, Operational, Privacy). 91
3.5 Attack: PEs memory base is tampered with by adjacent PE. 92
3.6 Attack: PEi disrupts PEj access to LLC. 93
3.7 Risk analysis results. 94

4.1 Caching terminology and parameters. 103
4.2 Symbols for Cache Scheduling. 108
4.3 Symbols of cache access latency metrics. 110

xx List of tables

4.4 CVSS base score of the cache-thrashing exploit concept. 111
4.5 Measurement symbols. 114
4.6 Overview of the measurement results. 118
4.7 Common Vulnerability Scoring System (CVSS) temporal score of the

Last Level Cache (LLC) disruption pentest. 119
4.8 CVSS base score of the access control breach. 124
4.9 CVSS temporal score of the co-processor misuse pentest. 130

5.1 Tactics for threat mitigation (summary of [154, p. 145�]). 150
5.2 Domain-block specific parameters. In addition to Table 4.1 157
5.3 Platform cache parameters. 159
5.4 Entropy and probability symbols. 166

6.1 CVSS base score of the domain-block concept. 175
6.2 E�ectiveness Domain Block concept. 176
6.3 Measurement symbols. 177
6.4 Overview of the measurement results. 178
6.5 CVSS Environmental score of the Domain-Block mapping. 181
6.6 Attack: PEi disrupts PEj access to LLC with applied Domain-Block

mapping. 182
6.7 Domain-Block Mapping: residual risk analysis results. 183
6.8 CVSS base score of the memory-map shu�ing concept. 184
6.9 E�ectiveness memory-map shu�ing countermeasure. 185
6.10 CVSS Environmental score of the Memory-Map Shu�ing. 186
6.11 Modified Attack Potential: PEi is tampered with by adjacent PE with

applied Memory-Map Shu�ing. 186
6.12 Residual risk analysis results. 188
6.13 Hypothesised attack: OSguest disrupts adjacent OSguestÕs access to

LLC. 190
6.14 Hypothesised attack: OSguest is tampered with by adjacent OSguest. 191

1
Introduction

Contents
1.1 Motivation of This Research 2
1.2 Research Goal . 5
1.3 Structure . 5

2 Introduction

1.1 Motivation of This Research

Complex systems such as automobiles consist of a plethora of Electronic Control
Unit (ECU)s. The number of such embedded devices ranges from 60 over to 100,
depending on the particular model [117]. Traditionally, each of those ECUs were
dedicated to a specific purpose, meaning roughly to be categorized into sensors,
actuators and processing units. For example, the brake controller actuates on the
de-acceleration of the vehicle, while the cluster instrument processes and provides a
visualization of the driving information to the driver, as well as, the so-called head
unit that processes the infotainment features and provides it to the user. However, the
consolidation of functions into a single system platform (such as an ECU) is an emerging
trend in automotive system engineering [90]. The vehicle Electric/Electronic (E/E)
architecture has changed from many-single purpose ECU networks to a few so-called
centralized Domain Control Unit (DCU)s [76, 162]. This might be motivated by the need
to e�ciently implement driver assistance features such as the Electronic Stabilization
Program (ESP) at a centralized point within the vehicle. Furthermore, Advanced Driver
Assistant Systems (ADAS) features aiming at the automotive megatrend, automated
driving, imply much more fusion and processing of data [34].

The challenge induced by this consolidation is to consider the diverse quality goals
of the di�erent functions and features. To refer back to the previous example, there
are functions obviously dealing with safety of the driver, such as the brake controller.
Accordingly, the reliability of that function is crucial not only to the driver itself but also
for many stakeholders. In contrast to that, infotainment features demand processing
power in order to embellish the user experience. Consequently, the supply chain for
these domain controllers is di�erently facilitated. In the old-fashioned landscape, each
supplier delivered a system consisting of the hardware and software to the customer
(Original Equipment Manufacturer (OEM)) who is integrating it into the vehicular
network. Considering domain controllers, the hardware is supplied by one party and the
software that implements the functions is delivered by third parties. This challenges the
trustworthiness of each delivery [19]. As a result, domain controllers are multi-tenant
Mixed Criticality Systems (MC-systems). They aim for function consolidation while
keeping them separated as they were before in dedicated ECUs.

By introducing the connected-car, automobiles have become the next thing in
the Internet-of-Things (IoT). An increasing connectivity of the vehicle will transfer
automobiles from smart cars to self-driving (autonomous) cars [125]. The possibilities of
communication to either, other vehicles (Vehicle-to-Vehicle (V2V)), to the infrastructure

1.1 Motivation of This Research 3

(Vehicle-to-Infrastructure (V2I)) or to online (cloud) services are tremendous. Many
value-adding online services or a virtual 360-degree view will be made possible.
However, along with the increasing connectivity, a number of security incidents are
observable. This is particularly caused by the increased attack surface due to the new,
remotely accessible interfaces. Researchers began in 2011 to conduct surveys to turn
out the attack surfaces of modern automobiles [25, 121]. The wireless entry vectors
for adversaries are broad, ranging from near field communication technologies such as
Bluetooth over to Long Term Evolution (LTE), wide range, technologies. Recently,
it has been demonstrated that those services are exploitable in order to introduce a
safety-relevant incident [59, 122, 158]. These grounds finally gave a rise to the need of
sophisticated security engineering within the automotive development [137]. Meaning,
former assumptions are made invalid. Attack surfaces go extensively far beyond direct
physical access to the vehicle [25]. The benefit of bringing rigidly implemented security
engineering into the development cycle will help to increase the security of products
[176].

Bringing the previous arguments together, there are e�orts to consolidate functions
into powerful domain controllers inside the vehicle. In parallel, features of the vehicles
have lead to new mega trends in mobility. This is not only grounded in connectivity,
but to a significant extent driven by it. On the other hand, this also brings stakeholders
to the field who wish to misuse those developments for their own purposes. This is
why making considerations to security in those areas is necessity.

So, it is reasonable to assume that adversaries have found their way into a single
system, such as an ECU in a vehicle. It is then worthwhile to raise the question: how
does a compromisation from the outside propagate through the entered system? What
steps are necessary for the attacker in order to reach his goal? The goal, in this case,
is something they want to gain benefit from. From the protection perspective, the aim
is to make it hard or harder to take a further step into the system. Furthermore, the
number of steps to take shall be as high as possible, which is the core idea of defence-
in-depth [7]. That means hurdles will be integrated that facilitate such previously
mentioned steps. Concepts, such as isolation or separation, address this aim. Those
concepts aim for the e�ort to prevent one entity from interfering with another. As an
example, particularly in automotive systems, a function’s security properties such as
the integrity and availability will need to avoid external adversarial actions, in order
to reduce the risk of safety impacts. A practical example of isolation mechanisms are
network firewalls that separate network segments from each other.

4 Introduction

How those isolation mechanisms are facilitated depends on the system and its
technical architecture. From this technical viewpoint, isolation of functions can be
achieved on several levels of the system architecture. These levels apply to both the
software-stack and the hardware. For example, software levels are often di�erentiated
by privilege levels. Here, processes which represent the actual functions, operating
systems which manage the resources for the processes and the hardware, are worth
mentioning. If multiple Operating Systems (OSs) are applied, then virtualization
comes into play. Meaning, a further layer is added to the system levels. Particularly,
virtualization is not new to the automotive embedded systems domain [126]. However,
the specific implementation experienced new opportunities due to the integration of
virtualization capabilities into the embedded micro-controllers.

Asymmetric Multiprocessing (AMP) is a way to approach isolation by utilizing
dedicated hardware capabilities. This enables the separation of several software-stacks,
such as OS, on top of it. In contrast to traditional virtualization schemes, whose
involve a virtual machine monitor or a hypervisor, the AMP approach lacks this kind of
software instance between the multiple OS and hardware [30]. The means of indirection,
which is enforcing the isolation, are distributed into the hardware elements. AMP
aims at separating resources on the intermediate level between the software-stacks
and the hardware elements. As a result, the levels above have an asymmetric access
to the hardware resources [108, 109]. By applying the concept of AMP in embedded
systems, it experiences a revitalization from the earlier years of large-scale main-frame
systems when the OS capabilities of handling several processors on a single hardware
were limited. In the field of software engineering, particularly in the automotive area,
there are advantages of applying this concept. For example, OS running on top of the
AMP system does not need to be modified to run on a hypervisor. Accordingly, the
development cost is reduced and the maintenance e�ort is limited. A further, very
substantial aspect in embedded systems is the performance, in this case, more precisely,
the negative performance impact by introducing a further level of indirection. AMP
systems run the software-stacks directly on the hardware, rather than implement the
indirection in software that has, in turn, to be handled by the processor instead of
doing other computations [63, 82, 131].

Embedded system hardware is often facilitated by the concept of MPSoCs. This is
particularly true for automotive ECUs. MPSoCs combine processors, peripherals and
memory through a particular infrastructure to a heterogeneously integrated circuit [75].
As it was mentioned previously, the isolation of software-stacks in AMP systems is
moved to the hardware. Since MPSoCs can be seen as a network of hardware elements,

1.2 Research Goal 5

the challenge in isolation is to handle this complexity and apply the protection to these
elements.

Isolation instantiates aspects that contribute to the security of systems, in this case,
of AMP systems. To come up with means to implement protection for isolation is
subject to structured security-enabled development processes. However, the continuous
character of security has to be taken into account. Assuming there is any inconsistency
or vulnerability in the design of isolation, the question arises as to how to handle
the immutability of the hardware protection architecture. Despite that the hardware
manufacturer might come up with new architecture to fix the weakness, if the system is
already deployed, changes to the hardware are impossible or at least very cost intensive.
As a result, if the protection mechanisms are moved to the hardware, there is no further
line of defence in the case of compromisation. The consequences could be cumbersome,
depending on the particular use-case of the system. In order to solve this issue, several
strategies are possible. One option is to put an e�ort into hardening another hurdle
at a higher level in order to increase its e�ectiveness and keep the adversary out of
the system. This means the problem is solved at a di�erent place in the environment.
If the development is still in progress, one might put an e�ort into hardening the
AMP isolation as it is. For example, this could be done through rigid and formalized
development, meaning, it is tried harder to avoid any vulnerabilities.

Nonetheless, the specific issues of AMP system security could also be investigated.
This is then applicable to countermeasures that use the AMP specific construction
paradigm again to limit the potential of the system of being attacked.

1.2 Research Goal

New paradigms of building systems might require rethinking assumptions made from
traditional paradigms. This work seeks to build security patterns for AMP system
paradigms. The security pattern shall describe1 recurring security problems in a
particular context and conclude with a security solution. The given concepts shall
suitably comply with constraints given by the automotive context.

1.3 Structure

The structure of this thesis is outlined as follows.
1according to Schumacher et al. [149]

6 Introduction

Fundamental Concepts: In Chapter 2, the foundations and state-of-the-art
information according to the research area is given. It profiles the Target of Eval-
uation (ToE) and di�erentiates other, recently applied paradigms. Furthermore,
the means of security engineering are elaborated. This concludes with a descrip-
tion of the security process employed in this work. On this basis, the research
methodology is described. This includes the research questions, approaches,
methods and artefacts conducted throughout this work.

Risk Assessment: Driver Information System Case Study: In Chapter
3, the foundations are turned into a case-study showing the application of the
previously introduced concepts. Here, a driver information system instantiates an
MC-system based on the AMP paradigm. The case-study is intended to provide
a context and running example in the thesis. Furthermore, the experimental
platform that has been used for several activities throughout this work is explained.
The security assessment derives two hypothesised attacks that are investigated
further in this document.

Vulnerability Assessment: Chapter 4 conducts the vulnerability assessment.
Here, the specific security aspects of the hypothesised attacks from the case-study
are assessed. Furthermore, the findings are abstracted to a general attack model
for the given ToE class.

Risk Treatment: Measures against the identified findings from the previous
chapter are described in Chapter 5. Two countermeasures that address the
security issues from the vulnerability assessment are examined. The findings
are derived from a general protection model that categorizes the dependencies
between the attacks and countermeasures.

Security Evaluation: The security evaluation is conducted in Chapter 6. The
attacks and countermeasures have been scored against a common scheme. In
this chapter, the e�ectiveness based on the common scoring scheme is elaborated
upon. Furthermore, a brief comparison to a hypervisor based system is given.
Here, the findings also are discussed by evaluating the solutions in the context of
the case-study.

Related Work: In Chapter 7, the findings are aligned with related work in the
particular research fields this work deals with.

1.3 Structure 7

Conclusion: This document concludes with Chapter 8, where a summary of
the key contributions and findings of this research is presented. Furthermore, an
outline of future work is given.

2
Fundamental Concepts

Target of Evaluation, Security Process and Research
Methodology

Contents
2.1 Profile of Asymmetric Multiprocessing Systems 10

2.1.1 Definitions and Terminology 10
2.1.2 ToE Description . 13
2.1.3 Hardware Elements . 18
2.1.4 ToE MPSoC Components 19
2.1.5 Security Problem Definition 27
2.1.6 Security Objectives . 29

2.2 Security Engineering . 31
2.2.1 Introduction to Security Engineering 31
2.2.2 Security Assessment Methodology 49

2.3 Research Methodology . 54
2.4 Summary . 59

10 Fundamental Concepts

Out of the crooked timber of humanity, no straight thing was
ever made

Immanuel Kant

Discussing the security of a system requires a comprehensive definition of the
ToE. Particularly, AMP systems rely on the hardware architecture and composition
of hardware elements. This diversity needs to be abstracted in order to handle the
complexity on the one hand and make results transferable on the other. In addition,
the term security is overused in many contexts. It is mandatory to discuss what it
means for the intended purpose of this work.

Accordingly, this chapter addresses these two significant issues. It first profiles
AMP systems, which facilitates the ToE considered by this work. This definition of
how the AMP paradigm is treated is supported by the reflection of the state-of-the-art
and di�erentiation to other system paradigms. The second part provides an overview
of how to address security in systems engineering, and concludes with the security
assessment methodology applied in this work. Given that foundation, the chapter
ends with the description of the research methodology including the research questions,
methods and artefacts.

2.1 Profile of Asymmetric Multiprocessing Systems

2.1.1 Definitions and Terminology

Asset: Anything that has value to an owner.

Threat: Potential cause of an unwanted incident, which may result in harm to
a system or organization [86].

Threat Agent / Attacker: Individual who acts adversely on an asset.

Attack: Attempt to destroy, expose, alter, disable, steal or gain unauthorized
access to or make unauthorized [86]. use of an asset.

Risk: E�ect of uncertainty on objectives [86]. Quantitative estimation of an
event (attack), with respect to its impact and likelihood to occur.

Impact: Negative e�ect which a successful attack causes.

Attack Potential: The Attack Potential (AP) quantifies the "e�ort required to
create the attack"[173, p. 420].

2.1 Profile of Asymmetric Multiprocessing Systems 11

Risk Treatment: Process to modify risk [86].

Risk Mitigation: A mean which reduces the attack potential and, therefore,
the risk of an asset.

Countermeasure: The implementation of a risk mitigation.

Security function: Synonym to countermeasure. Implements measure against
adversarial actions.

Vulnerability: Weakness of an asset or control that can be exploited by one or
more threats [86].

High Level Security Goals: Confidentiality Integrity Availability (CIA) are
the most common and fundamental security goals. Additionally, authenticity
and authority are properties a common embedded system setup has to deal with.

The action of acting adversely on a target is referred to as attacking or compromising.
The term attack defines a series of actions that achieve a particular objective. The victim
of an attacker is referred to as the attack target. In a multi-level system architecture,
this includes processes, threads, operating systems, Asynchronous Domains (ADs),
etc. For example, an attacker may act adversely on a target AD or a target process,
respectively. Reaching the phase of a successful attack, the target’s state is considered
as being compromised, illicit or malformed. Accordingly, the target’s state is considered
as being untrusted which is in contrast to the trusted state from before. An attack is
usually mounted from a malformed origin, a compromised source or an illicit entity.

Definition and Operational Usage

The consideration of this work aims for the particular instantiation of separation in an
AMP system. AMP describes the paradigm to enforce a spacial distribution of software
functions on a common computing platform. Within this work, AMP is referred to
as1:

Definition 2.1 AMP is a system utilization paradigm aiming for a spacial separation
of hardware elements in order to establish ADs on the software layer.

As a result, an AMP system consists of two or more ADs. To address the logical
composition of several hardware elements and software components, the term AD is
defined.

1System separation paradigms are elaborated in detail in Section 2.1.2

12 Fundamental Concepts

Definition 2.2 An AD is a logical composition of software components ran by the
same processing element (Central Processing Unit (CPU) core). AD are decoupled from
adjacent domains by definition.

Typical uses of an AMP-system are highly integrated systems that aim to combine
diverse functions in heterogeneous software-stacks. Accordingly, AMP is a paradigm
to organise computer systems such as embedded, desktop and server systems. The
intention of facilitating an AMP system has changed over the last decades of computer
history. In the early days of mainframes, AMP was used as a stopgap, due to the
inability to manage multiple processors within a single operating system. Today’s
definitions of AMP systems comply to the heterogeneous nature of MPSoCs. Colin
[30] defines AMP as a system consisting of multiple processors, each of which can
apply a di�erent architecture. Each processor operates on its memory space, while an
operating system is not mandatory. Furthermore, communication facilities between
the processors are applied. A more technical view on the AMP-paradigm is given by
ARM in the technical documentation:

"An Asymmetric Multi-processing (AMP) system enables you to statically
assign individual roles to a core within a cluster so that, in e�ect, you have
separate cores, each performing separate jobs within each cluster. This is
known as a function-distribution software architecture and typically means
that you have a separate OS running on the individual cores. The system
can appear to you as a single-core system with dedicated accelerators for
certain critical system services." [109, p. 14-7]

In Chapter 3, the concept is applied to an exemplary automotive embedded system.

ToE Type

The ToE facilitates the software configuration of a hardware platform. Throughout
this work, this facilitation is referred to as the intermediate layer between the physical
hardware and the logical software-stack(s). As a result, it is considered how the
hardware is to be interfaced. There is a direct dependency on the composition of logical
software-stacks (ADs) and the composition of hardware elements. In the following
sections, the building blocks that are considered in this work are elaborated upon. The
hardware platform consists of integrated building blocks. In this work, MPSoCs for
embedded environments are considered. Generally, these components include processors
and peripherals, for example. The MPSoC elements are considered to be shared by

2.1 Profile of Asymmetric Multiprocessing Systems 13

ToE

Software-Stack

OS

App App App

Software-Stack

OS

App App App

MPSoC

Assigned HW
Elements

Shared HW Elements

Assigned HW
Elements

Fig. 2.1 ToE overview.

all ADs (referred to as Shared HW Elements) or they are assigned to a specific AD
(referred to as Assigned HW Elements). Figure 2.1 shows a brief overview of the
ToE architecture. The figure shows two ADs coring the assigned software-stacks and
assigned HW elements in red or blue, respectively.

Non-TOE Software Applications and Functionality

In this work, particular features and functionalities that are run by the described ToE
are not considered. This enables a context-free conduction of results. Furthermore, as
it is mentioned in the previous section, only the interface between the hardware and
the software is concerned. Particular OSes or applications that are run by such an
AMP-based ToE are out-of-scope. For example, it will not matter if the OS implements
a microkernel or monolithic-kernel architecture.

2.1.2 ToE Description

Architecture

System Privilege Hierarchy The ToE consists of several logical ADs that are a
collection of software-stacks and physical hardware elements. In general, the considered
ToE architecture is comprised of two main layers: the software-stack and the SoC
Layer. It is considered that the hardware allows to run software in the software-stack in
more than one privilege levels. This is needed to allow, privileged software to separate
less privileged software components from each other. In order to implement an AMP
system, MPSoC elements need to be assigned to a particular AD. Accordingly, the

14 Fundamental Concepts

Intermediate ln+1

Hardware (SoC)

Software-stack ln+2

ln

Fig. 2.2 Layered system hierarchy.

layer that separates the several MPSoC elements and assigns them to software-stacks
must run on a higher privilege level than the software-stack. As a result, this is referred
to be run on the intermediate layer. A visualization of the layers is depicted in Figure
2.2.

Layering in general aims at maintaining the divide-and-conquer principle to handle
complex systems. Therefore, in the following, the platform layer structure of a system
platform is given. Architectural layers aiming at dividing complex systems horizontally.
This makes it possible to distinguish specific aspects within several layers from each
other. Particularly, in security assurance methodologies a layered consideration is
recommended. A prominent example is the Common Criteria (CC) security evaluation
framework [172]. To conclude, layering will provide the foundation for the security
consideration within this work. In the following, the particular layers are introduced.

SoC layer: The System-on-Chip (SoC) layer is considered to instantiate hard-
ware layer. Typical entities are the distinct building blocks of that a SoC consists
of. These building blocks are commonly referred to as Intellectual Property (IP)
blocks, or cores. IP blocks are, by their nature, pre-qualified and integrated into
the SoC layout. A minimal set of IP blocks includes a Processing Unit (PU),
Read Only Memory (ROM), and Random Access Memory (RAM). MPSoCs
integrate more than one PU. The communication is facilitated by simple proto-
cols such as Serial Peripheral Interface (SPI) [106] or I2C [106, 151] or complex
communication infrastructures such as the ARM Advanced Microcontroller Bus
Architecture (AMBA) and Advanced eXtensible Interface (AXI) bus [11]. The
IP blocks are considered to be configurable via a management interface. Tech-
nically, this is represented by memory registers mapped to the system memory
address space. This is elaborated upon in the following sections on the practical
implications of AMP systems. Furthermore, a security-relevant configuration can
be applied, such as access control to the IP blocks.

Intermediate layer: The intermediate layer represents the link between the
hardware layer and the software layer. Entities on this layer are distinct software

2.1 Profile of Asymmetric Multiprocessing Systems 15

stacks. For example, these include operating systems (OS) of any kind or
more straightforward constructs such as firmware. To create these entities, the
configuration interface of the SoC layer has to be utilised. Typical configuration
interfaces include: translation tables for the Memory Management Unit (MMU)s
to apply access control and proper function of the memory accesses, interrupt
tables to facilitate signalling between the PU and power control for energy and
frequencies to configure the appropriate clocks for the hardware elements. The
intermediate layer is sometimes referred to as hypervisor layer or the layer at
which the Virtual Machine Monitor (VMM) is implemented.

Software-Stack layer: On the software-stack layer, everything is included
that runs on top of the hardware elements. Typically, this includes an OS
representing the lowest logical layer of the software stack. Entities on this layer
are typically the infrastructure to manage the operation of applications. Usually,
this infrastructure is referred to as the OS kernel. In general, two types of
kernels are di�erentiated: micro-kernels where the infrastructure runs as much
as possible in small and self-contained components and monolithic kernels that
integrate the entire functionality into a common, so-called, kernel-space. To fulfil
extensive requirements of safety-relevant or multimedia applications, di�erent
types of operating systems are used. These inlcude, Real-time Operating System
(RTOS), General Purpose Operating System (GPOS) or Mobile Operating System
(mobileOS). On top of the OS, the functional logic of the system is encompassed.
Features and applications of the system are implemented at this logical application
layer. Technically, the layer entities are represented as processes or threads that
are maintained by the OS. For example, Linux OS consists of the OS layer
and the application layer. The latter is called user-space and the former kernel-
space. Despite the separation of user-space and kernel-space privilege granularity,
processes can be assigned to access control compartments with fine-grained
privileges.

Di�erentiation of Separation Paradigms This section seeks to di�erentiate the
AMP-idea from other paradigms to partition software-intense systems. Partitioning,
or separation, is achievable on all layers of a system architecture. An important aspect
is the utilization and management of the hardware. This influences at which layer the
special separation must be implemented.

16 Fundamental Concepts

Symmetric Multi Processing. Symmetric Multi Processing (SMP) systems
are the pendant to AMP systems. Here, only one software-stack instance is controlling
the hardware, symmetrically. SMP systems apply multiple processors as well, but they
all operate in the same memory space. Typically, a single instance OS is used to run
the sharing all processors [30]. The vast majority of computer systems utilize the SMP
paradigm. The infrastructure of a single OS is managing the underlying resources and
makes them available for applications to the upper system levels.

"[...] SMP is a software architecture that dynamically determines the roles
of individual cores. Each core in the cluster has the same view of memory
and shared hardware. Any application, process, or task can run on any core,
and the operating system scheduler can dynamically migrate tasks between
cores to achieve optimal system load. A multi-threaded application can run
on several cores at once." [109, p. 14-3]

Virtualization Virtualization, in general, is a term vastly used in the IT and
desktop computing area. Silberschatz et al. defines virtualized systems as follows.

"Generally, with a virtual machine, guest operating systems and applications
run in an environment that appears to them to be native hardware and
that behaves toward them as native hardware would but that also protects,
manages, and limits them." [155, p. 711]

The main purpose is to run multiple operating systems on a single system. In literature,
a virtual machine monitor (VMM) or hypervisor facilitate the infrastructure to create
virtual machines.

"A relatively small control program called Virtual Machine Monitor (VMM)
or Hypervisor is placed between the OS and the hardware. Typically the
VMM executes in privileged mode and can host one or more operating
systems – GuestOSs – in a sandbox called Virtual Machine: a controlled
construct of the underlying hardware." [120, p. 2]

As a result, virtualization endeavours to put a privileged instance underneath guest
OSs in order to manage their access to the underlying hardware. These instances are
commonly referred to as hypervisor or VMM. The community di�erentiates three
types of facilitating virtualization [155].

Type-0: The virtualization capabilities are incorporated into the hardware. The
virtualization infrastructure is managed by a configuration interface.

2.1 Profile of Asymmetric Multiprocessing Systems 17

Type-1: A type-1 virtualization runs the hypervisor bare-metal on hardware.

Type-2: A type-2 solution relies on a so-called host OS that manages the system
abstraction. The host OS provides the infrastructure to virtualize the guest OS.

Furthermore, it is di�erentiated between para-virtualized systems and full-virtualized
systems. The former considers adaptions of the guest OSs to the underlying virtual-
ization solution in order to make it functional or to improve performance. The latter
aims to fully abstract the hardware by the hypervisor.

Type-0 Virtualization and AMP In this work, Type-0 virtualization capabilities
of the hardware are treated as a precondition in order to implement an AMP system.
AMP describes the aim of dividing hardware elements into ADs. Therefore, the
hardware, or the particular elements of the hardware, must support assignments to
logical compositions. The practical implications and the interface of recent hardware
architectures are elaborated in Section 2.1.3.

"Implementing e�cient virtualized systems cost e�ectively requires hardware
support. In particular memory management can provide great challenges
and have severe repercussions on system reliability and performance. To
address this ARM is introducing the Virtualization Extensions to its ARM
v7 architecture and the System Memory Management Unit (SMMU) Archi-
tecture." [120, p. 1]

Comparison of Domain Separation Paradigms Vertical separation software-
stacks is a well-established technique to organise software entities in a software-stack.
In the following, it is briefly shown how AMP relates to other partitioning schemes.
In general, three schemes are di�erentiated. Figure 2.3 depicts three paradigms. The
architectural system layers are visualized according to the multilayer scheme shown
in Figure 2.2. The separated logical domains are coloured in blue or red, respectively.
On the left, the SMP concept is depicted. It shows one domain that spans over the
entire software-stack as well as the entire hardware. Accordingly, the software-stack
controls the entire hardware symmetrically by privileged software that is included into
the software-stack. In contrast to that, in the right example, AMP is depicted. Here,
two domains span over dedicated software-stacks and assigned hardware elements of
the MPSoC. These elements are considered as residing on the intermediate layer. In
the centre, domain separation using a hypervisor on the intermediate layer is shown.

18 Fundamental Concepts

Here, the hypervisor abstracts the underlying hardware and provides a context for the
software-stacks on top of it. In this way, two separated domains are created.

In Figure 2.3, the three approaches to create software partitions are shown.

AMPHypervisor
(SMP)

SMP

Shared HW Elements

SW Hypervisor

Software-
Stack

Software-
Stack

Software-
Stack

Software-
Stack

Software-
Stack

MPSoC

Shared HW Elements

MPSoC MPSoC

Elements Elements

Shared HW Elements

Privileged Software

Fig. 2.3 Comparison of domain separation paradigms.

2.1.3 Hardware Elements

MPSoC fit well into the heterogeneous environment such as the automotive. Accordingly,
Wolf et al. defines MPSoCs as follows:

"Multiprocessor systems-on-chips have emerged in the past decade as an
important class of very large scale integration (VLSI) systems. An MPSoC
is a system-on-chip—a VLSI system that incorporates most or all the com-
ponents necessary for an application—that uses multiple programmable
processors as system components. ... They are not simply traditional mul-
tiprocessors shrunk to a single chip but have been designed to fulfill the
unique requirements of embedded applications." [186, p. 1701]

Basically, two general types of MPSoCs are di�erentiated in literature: heterogeneous
and homogeneous architectures [75]. The former is composed of diverse system com-
ponents such as processors, memories, accelerators and peripherals. The latter refers
to the multiple instantiation of the identical processor system component [179]. In
many cases, the heterogeneous approach fits well with automotive needs. In this case,
heterogeneous means that a combination of di�erent processor architectures can be
possible. Accordingly, plenty degrees of freedom regarding the composition of functions
are possible. For example, a low energy, real-time capable architecture can be combined
with a high-performance general-purpose processor. Furthermore, the integration of

2.1 Profile of Asymmetric Multiprocessing Systems 19

pre-qualified software can easily be migrated to the platform by adding the suitable
processor architecture to the MPSoC. To this end, the high-level integration demands
are supported by the hardware platform as well.

Wolf et al. analysed in [186] the technological history of MPSoC and states that the
most MPSoC architectures follow a heterogeneous structural taxonomy. The authors
argue that the architectural design is mostly influenced by the application of the
hardware. Nevertheless, standards can influence the MPSoC structure as well as the
centralization of a particular system component. In such cases, often a communication
architecture centralised approach is realised [186] .

Many SoC vendors establish platform-based approaches to foster their product-lines.
Usually, the platforms are tailored to a specific application area, such as in-vehicle
infotainment systems, including a certain amount of variability to fit the product
to the customer’s needs. The variations reach from adding more processor cores,
more memory or di�erent accelerators such as Digital Stream Processor (DSP) or
Graphical Processing Unit (GPU)s. As a result, the SoCs emerge from very specialized
to commodity platforms based on reusable components [22].

Practical, state-of-the-art and automotive relevant examples include the MPSoC
platforms such as Texas Instruments OMAP, Freescale iMX.X, Xillinx Zync2 and
Renesas RCar3.

2.1.4 ToE MPSoC Components

The ToE consists of a particular set of typical MPSoC components that are presented
in this section. In general, this work considers MPSoCs as follows:

"They combine several embedded processors, memories and specialised cir-
cuitry (accelerators, I/Os) interconnected through a dedicated infrastructure
to provide a complete integrated system. Contrary to SoC s, MPSoCs
include two or more master processors managing the application process,
achieving higher performances." [75, p. 1]

Accordingly, MPSoCs facilitated by the ToE integrate diverse system elements such
as Processing Element (PE), Memory Architecture (MA), Communication Architecture
(CA) and further peripherals. Particularly, heterogeneous MPSoCs integrate diverse
PEs each of which is intended for di�erent purposes. Sometimes these heterogeneous
processor integrations are also referred to as multi-core or many-core SoC. Viewing

2http://www.xilinx.com/products/silicon-devices/soc.html
3http://am.renesas.com/applications/automotive/cis/cis_highend/index.jsp

http://www.xilinx.com/products/silicon-devices/soc.html
http://am.renesas.com/applications/automotive/cis/cis_highend/index.jsp

20 Fundamental Concepts

PE

PECore PECore PE Accelerator
(DMA)

Memory
Peripheral

Communication Architecture

Fig. 2.4 Considered MPSoC components.

from the perspective of Flynn’s Taxonomy, the general architecture is based on the
Multiple Instructions Multiple Data (MIMD) architecture [167]. Multiple processors
work independently and asynchronously on di�erent data sets while sharing a common
hardware platform. In Figure 2.4 an overview over the considered SoC elements is
depicted. These elements are described in detail in the following sections.

Processing Elements

The term PE will be used as a general-purpose abstraction for active system elements
or IP-cores. Active means, in this context, that the PEs have their independent
and asynchronous control flow. Usually, this control flow is defined by machine code
that the processor is operating on. CPU is a typical example of a PE. Nevertheless,
the PEs does not necessarily need to impersonate a processor in a general meaning.
Co-processors, accelerators such as GPUs or DSPs which usually support the PE by
special purpose computing results. The heterogeneous nature of MPSoCs allows for
the combination of di�erent processor architectures. Those include Reduced Intruction
Set Computer (RISC) architectures, stream processors (such as GPU), DSP and
Field Programmable Gate Array (FPGA). A widely used representative is the ARM
architecture. Nevertheless, real-time a�ne architectures such as the SH-4 or PowerPC
can be included as well. As an example, the Renesas R-Car H3 platform provides a
SH-4 system component within their automotive infotainment portfolio.

The internal components of the PE depend on their specific architecture. Most
commonly, they integrate a processor core and infrastructure to handle data/instruc-
tions and addresses. Particularly, the MMU plays an important role in redirecting
address requests from PUs4. In Figure 2.5, a two-stage address translation is depicted.
Furthermore, the processor caches represent a key element of a PE. Particularly from
the performance perspective, characteristics such as size, organisation and relationship

4The MMU will be elaborated in more detail in Section 2.1.4

2.1 Profile of Asymmetric Multiprocessing Systems 21

PE

L1 Cache

L2 Cache

1st
MMU

D
at

a
Pa

th

Address Path

CA Interface

1st

MMU

Communication Architecture

L2 Cache 2nd

MMU

CA interface

Fig. 2.5 Generalized MPSoCstructure combining diverse elements.

to the cached memory are key factors. Modern PEs operate on a two-levelled cache
subsystem. Level one is typically small in size and usually is split into an instruction
cache and data cache (I-cache and D-cache), while for the second level, the instruc-
tions and data are mixed and the cache size is significantly larger. At the end of the
line, the PE is connected by an interfacing element which enables the access to the
communication architecture. This concept is depicted in Figure 2.5.

Also, the PE might consist of multiple processing cores sharing a certain part of
the caching and addressing the infrastructure of the hardware element. Typically, the
level one cache is private to each processing core whereas the second level is shared
by all cores. In theory, the number of processing cores is not limited. As of today,
the typical number of cores of a multi-core PE ranges from two (dual-core) to eight
(octa-core) cores.

Memory Architecture

The memory hardware element is a crucial part of the MPSoC architecture. In general,
the memory is considered to implement the RAM, which stores the instructions and
data to be operated by the PEs. Upon request, the memory subsystem provides
read or write operations to access the data in its physical storage over an interface.
Physically, the memory is considered a volatile memory. The concept of integrating a
shared memory element relates to the concept of Unified Memory Architecture (UMA).
However, this would then lead to a SMP system. In order to achieve an AMP system,

22 Fundamental Concepts

PE Memory

PE reads from dedicated [Partition x]

Communication Architecture

2nd

MMU

Partition 1

Partition 2

Partition n
PE writes to dedicated [Partition x]

Fig. 2.6 Memory architecture.

hardware capabilities need to be utilized to dedicate memory partitions to particular
ADs.

Recent MPSoC implementations integrate Double Data Rate (DDR)-Synchronous
Dynamic Random Access Memory (SDRAM) for example in SoCs such as shown in
[169]5. However, the particular physical implementation of the memory storage is out
of the scope of this work. Therefore, it is considered as being abstracted by the CA
interface of the memory element. Furthermore, the memory is considered to be passive
on memory requests. By providing a memory address, the interface will retrieve or
store data to or from the physical storage. In Figure 2.6, the model is depicted.

Communication Architecture

The communication network connects all hardware elements (IP-cores) of the SoC.
Therefore, it plays a central role in the communication architecture of the system. Tech-
nically, there are numerous topologies, protocols and utilisation strategies to implement
communication architectures for SoCs [123]. The topologies reach from communication
bus approaches up to complex Network-on-Chip (NoC) architectures. The selection of
a certain topology depends either on bandwidth requirements, system complexity or
scalability [65]. NoC approaches are packet-based comparable to computer networks.
Through their switching and routing facilities, NoCs are said to be scalable, while
bus-based communication architectures are cost-e�ective yet limited in scalability.

Representative examples of CAs applying a bus topology have been conducted
by Mitic et al. [123]. For Example, the authors introduce bus systems such as the
ARM AMBA [11, 159] and the IBM CoreLink [78]. NoC CAs are investigated by
Bjerregaard et al. [15]. Among the capability to connect IP-cores, the CA can be
used to synchronise data retained in the cache systems of PEs. The ARM AMBA

5The experimental platform used in this work bases on the mentioned memory architecture

2.1 Profile of Asymmetric Multiprocessing Systems 23

CA
Master

CA
Slave

CA Interface
Master reads from [PA]

Master writes to [PA]

Communication Architecture

Fig. 2.7 Communication architecture interface.

AXI Communication Network incorporates such a last level cache coherency protocol
[161]. Sharing data across hardware element borders can now be handled without the
involvement of a dedicated memory system component. This technique enables low
latency and high bandwidth data transfers.

For this work, an interface is assumed which abstracts data transfers from the
underlying protocol and topology that is capable of abstracting high-level memory
requests on the address basis. Certain master IP-cores, such as the PE or accelerators,
can act as masters on the CA. They issue a request, which could be either read or
write, to a particular slave node (IP) such as the main memory or a peripheral. In
Figure 2.7, the CA interface is depicted. The read and write operations are handled in
the physical address space6.

Accelerators and Peripherals

Hardware elements represent the groups of co-processors or slave devices connected to
the CA. Typical examples are GPUs, DSP, display subsystems or networking interfaces.
The first category includes components providing Direct Memory Access (DMA)
capabilities. This means the component acts as a master device on the CA on the one
hand, but is also considered a companion device of any logic running on a PE on the
other. General purpose co-processors are implemented this way. The second category
includes components of which are not capable of accessing the memory on their behalf.
They only provide a slave interface to PEs. Typical examples are serial interfaces or a
Network Interface Controller (NIC).

6Compare Section 2.1.4 for further information on address levels.

24 Fundamental Concepts

Virtualization Extensions

Following the previously given classification of virtualization, the referred to system
facilitates a Type-0 virtualization class. In the following, the key implications to
facilitate Type-0 hardware virtualization are given [120].

Hypervisor execution mode: The introduction of a new Hypervisor execution
mode, of higher priority than supervisor mode in which the system is usually
executed. This will enable the VMM to execute at a higher privilege than the
guest OSs, and the guest OSs to execute with traditional operating system
privileges, removing the need to employ para-virtualization techniques.

Interrupt Provisioning: The provision of mechanisms to aid interrupt handling,
with native distinction of interrupt destined to secure monitor, hypervisors,
currently active guest OSs or non-currently-active guest OSs.

Multi-Level address management: The provision of a system MMU to aid
memory management, supports: multiple translation contexts for multiple DMA
capable masters, two levels of address translation and hardware acceleration and
abstraction.

Operational Environment

The ToE is considered to instantiate a sub-system of a system, meaning that it resides
in a broader functional and technical context. It not only has to fulfil functional and
operational requirements of that context but also orthogonal aspects such as quality
goals of that given context have to be applied. Technically, it is considered that the
ToE is connected to its context using domain-specific, wired or wireless, technologies.
In this work, the automotive domain specific use-case of a DCU is taken as an example
to instantiate the considered class of ToE. In Chapter 3, a case study including a
domain-specific description of the ToE is given.

System States

System states are relevant to the consideration of security of a ToE. The diverse
security functions are often only e�ective in a specific state of the system. Therefore,
in order to address particular security needs, it is necessary to di�erentiate the states.
Security relevant states in the life cycle of the ToE focus primarily on situations when
security functions are applied to enforce the security objectives. These states of the
life cycle are listed in the following:

2.1 Profile of Asymmetric Multiprocessing Systems 25

Startup: The startup or boot phase is crucial for security considerations. In
this phase, the chain-of-trust is built up. Most commonly, this is referred to as a
secure boot, where the authenticity and integrity of the system are attested and
enforced (compare with example [156]).

Operate: During the runtime, the system needs to be kept secure. Since the ToE
interacts with its operational environment over defined interfaces, interference
induced by adversaries might occur. Therefore, appropriate security functions
will take e�ect for those situations.

O�ine: The state when the system is not used. This means it is turned o� or
it is suspended and no function is activated. Here, the aspect of information
disclosure and confidentiality of data resting inside the system are of concern.

Technical Realization

This section describes the particular technique of realizing an AMP system hosting sev-
eral ADs. The general idea is based on the memory-map resource utilisation paradigm
in today’s embedded systems. Memory-map paradigm means that every resource in
the hardware platform is accessible through a dedicated memory address. This concept
is commonly referred to as memory mapped I/O [167]. Hence, the memory addresses
are the handles that assign hardware elements to particular logical domains (AD). Ac-
cordingly, as a preliminary, it is considered that the ToE applies a central memory-map
that represents its hardware elements. The mapping is handled by dedicated integrated
functions that control accesses to a particular address. Technically, it is considered that
this is implemented by a hardware MMU or hardware Memory Protection Unit (MPU).
The central memory-map is considered to realize the configuration of the MMUs or
MPUs. In Figure 2.8, the concept of a system memory map is visualized. The figure
shows two PEs each of which instantiate an AD. Two peripherals are mapped to
the PEs. Peripheral 1 is mapped to AD 1 and Peripheral 2 is mapped to AD 2,
accordingly. Furthermore, the memory is virtually divided into two partitions. Each
of these partitions are mapped to the particular ADs, respectively. As a result, the
combination of several addresses which are mapped to the same PE realizes an AD.

Multi Level Address Translation

The ToE is considered to implement multiple address levels. This is necessary to
handle multiple domains on the hardware while maintaining the possibility for the

26 Fundamental Concepts

PE 1
(AD 1)

Peripheral 1

Memory Partition 1

Memory Partition 2

Peripheral 2

Shared Memory

…

…

PE 2
(AD 2)

System
Address
Space

Fig. 2.8 System memory-map concept.

software-stacks to utilize the hardware MMUs for address space separation. In the
following, the three considered address levels are defined.

Virtual address: This space is typically maintained by the software-stack.
Mainly, the purpose is to provide separate address spaces to each process of an
OS, for example. Historically, the introduction of Virtual Addresss (VAs) was
also motivated by the lack of enough main memory. VAs memory handling allows
swapping memory pages onto persistent memory storages. Usually, the VA di�er
from the actual physical position within the main memory.

Physical address: Physical Address (PA) represents the address of the physical
position in the main memory. The PA covers the entire addressable memory
space of a system. Accordingly, the system memory-map is represented by PAs.

Intermediate physical address: Along with the introduction of the virtualiza-
tion extensions to the PEs7, a further level of indirection was introduced to make
memory accesses of virtual machine guests manageable. This level is referred to
as Intermediate Physical Address (IPA).

As a result of the three address levels, a two-staged memory translation is imple-
mented in the ToE. The translation process goes as follows:

VA 1st-stage
MMU

2nd-stage
MMU

IPA PA

Fig. 2.9 Two-stage memory translation.
7Compare Section 2.1.4

2.1 Profile of Asymmetric Multiprocessing Systems 27

MMUs are configured by so-called translation tables. These tables associate an
input address to its designated output address. According to the three address space
types (VA, PA, IPA), two indirection levels are needed, meaning that, two translation
tables are necessary. This principle is depicted in Figure 2.10.

Page No.

0

1

Address

0x…

0x…

n2 p2

Page No.

0

1

Address

0x…

0x…

n1 p1a

Second Stage
Page Table

Physical
Memory

First Stage
Page Table

Page Frame p2

Requested
Address

Fig. 2.10 First and second page-table.

2.1.5 Security Problem Definition

Primary Assets

The memory of AD contains valuable assets that are of interest for an adversary. As
such, on the intermediate level, the memory partitions are considered. The value
depends on what is contained in the partition. This is then represented by the next
higher level, for example, the memory layout of the OS on the software-stack of the
AD. Furthermore, the MPSoC components which are assigned to a particular AD are
crucial assets. In the following, the primary assets are listed.

Software-stack instructions: Machine code which is executed by a PE. The par-
ticular machine code or assembly code is dependent on the architecture of the
PE. The instructions implement the control-flow of a functionality.
Security properties: confidentiality, integrity, availability, authenticity, au-
thority

28 Fundamental Concepts

Software-stack data: Data that is processed by the ToE.
Security properties: confidentiality, integrity, availability)

Configuration data: Data that facilitates the configuration of the ToE and the
ToE’s Target Security Function (TSF).
Security properties: confidentiality, integrity, availability, authenticity

AD resources: Resources that are assigned to and utilized by a particular AD.
Security properties: integrity, availability, authority

Secondary Assets

The ToE is expected to run applications and functions with widespread quality goals.
Here, the following quality goals are implied: functional suitability, performance
e�ciency, compatibility, usability, reliability, security, maintainability, portability [85,
p. 4].

Asynchronous Multiprocessing System

AD 1 AD 2 AD n

S R P T P M CS

Safety Reliability Performance Trustworthi-
ness

Portability Maintain-
ability

Security Compatibility

S

SR

R P
P

T

U

M

S
C

P S

R
P

S

Fig. 2.11 System functions with a focus on particular product qualities.

Threats

It is considered that the previously stated assets are potentially put on risk by the
following threats.

Tampering: [TH.Tamper] Modification of the integrity of all assets of an AD.

Information Disclosure: [TH.ID] Disclosing of an AD’s information, including
for reconnaissance purposes.

2.1 Profile of Asymmetric Multiprocessing Systems 29

Denial-of-Service: [TH.DoS] of an AD

Elevation-of-Privilege: [TH.EoP] of an AD or its subcomponents.

2.1.6 Security Objectives

Integrity For each asset, the ToE must preserve integrity in order to isolate all
ADs from each other.

Obfuscation: For each asset, the ToE must preserve the means to limit the
impact of compromises in order to mitigate reconnaissance e�orts.

Resource availability: For each asset, the ToE must preserve the means to
limit the impact of competing accesses to shared resources of particular AD

Resource authorization: For each asset, the ToE must preserve the means to
control the access to resources dedicated to a particular AD

Security Mitigation Properties

Types of Security Risk Mitigations The objective regarding the protection of
the ToE is to consider the four modes of threat mitigation. These modes are prevent,
detect, reduce and fix. This relates to the di�erentiation of Andy et al. in [8]. The
authors divide the time axis into four modes of security mitigations:

"Security needs to be designed into the vehicle architecture from the very
start and it must furthermore be maintained throughout the vehicle’s entire
lifecycle. Contrary to common belief, security is much more than prevention
only." [8, p. 3]

Furthermore, the aspect of deterrence should also be considered. Deterrence takes
place before an attack would be mounted by the attacker. It means that a hurdle in
the security countermeasure is too high so that an attacker could try to break into the
system. As a result, it deters him from attacking and would be, therefore, the ultimate
goal of protecting a system.

Evolution Within the ToE Life Cycle The issue of securing the ToE depends
on the evolutionary state inside the Product Life Cycle (PLC) or outside within the
product-line. Generally, the PLC is mainly focused on when it comes to security
processes. PLCs for automotive products are roughly dividable into two main phases.

30 Fundamental Concepts

First, in the pre-Start of Production (SOP) phase, the product will be developed using
a suitable development cycle such as the v-model. Second, in the post-SOP phase, the
product needs to be maintained. From a security perspective, two major goals are
spread over these two phases. The first goal is to create a state in which the system can
be treated as secure. In other words, one needs to be aware of risks in the first place
and to mitigate or accept them in the second. The second goal is to keep a certain
risk threshold in which the system is still in this secure state. Most commonly, the
applied method to find security requirements in the pre-SOP phase is risk assessment
[81]. For every function the system has a potential impact and likelihood that will
be analysed. Concerning the particular risk, a risk treatment phase follows and the
specific strategies to mitigate those risks will be defined. Those mitigations are fed
as logical and technical requirements into a system design. In the verification and
validation phase in the v-model, appropriate security testing methods are applied to
raise confidence in the absence of severe vulnerabilities. Security testing methods
include fuzzing (negative testing) and penetration testing. In other words, during the
development, the foundations for determining the security requirements so they are
accompanied by techniques to gain confidence in the derived logical and technical
security architecture. During the post-SOP phase, the system should be observed. An
occurring incident will be responded to in an organized manner. Accordingly, if this
response requires a security update (software), the development of this update will
traverse the secure development v-model for the new function. Limiting factors for
the upcoming security mitigations are immutable components of the system which
might be functional or technical. A prominent example is the hardware platform
which is significantly hard to modify once it is deployed. However, this immutability
is not only true for products that are already deployed, as within product lines, the
engineering strategy such as top-down and bottom-up might also practically imply
further restrictions as well. For example, a hardware platform is to be integrated
(bottom-up) for a certain set of software functions. Some of the functions then need
to be fitted and developed onto (top-down) the hardware platform. This also implies
restrictions for security solutions. This might appear in many reuse situations in
automotive product line development. To summarise, security solutions need to fit into
this evolving landscape.

2.2 Security Engineering 31

2.2 Security Engineering
This section describes the aspects of security engineering that aim for securing an
AMP-system. Given the automotive context, it is elaborated upon as to how the
engineering of problem space and solution space is handled in security. Whereas the
latter deals with defining countermeasures and secure system designs, the former aims
at developing the awareness about adversarial behaviour against the ToE, which is the
identification of potential threats.

The outcome of this section is the security methodology that has been applied to
gain the research results in this work. This methodology, which is elaborated upon in
Section 2.2.2, is motivated and aligned with well-established frameworks and methods.

2.2.1 Introduction to Security Engineering

The Role of Security and Secure Systems

In general, implications of security are elaborated upon within this section. These
include the goals of security engineering, the correlation with a typical automotive
product life-cycle and an outline of activities along within this life-cycle.

It is not trivial to define the meaning of security. First of all, it is necessary to
di�erentiate between the terms secure and security. Both terms imply a particular
perspective to a system or a component of a system. Secure means a property of
something, such as a system element describes. For example, an AMP system is a
secure AMP system if something has been done to make it secure. This might be a
procedural, functional/technical or organisational treatment. On the contrary, security
describes a purpose or a functional justification of something that is in place. For
example, a firewall is a security function because it filters unwanted network accesses.
To summarize, something is secure when the appropriate security functions are applied.
However, a secure system is not the sum of its security functions. It also concerns the
design of the particular system. This is where the term secure-by-design originates.
It means that the way the system is constructed avoids certain unwanted weaknesses.
For example, if the availability of a component is a crucial security goal, a reasonable
design tactic would be to introduce a redundant component.

Goals of Security Engineering

The overall goal of manufacturers is to deliver a product that meets all stakeholder
requirements and wishes. Regarding security, this is to deliver a secure product.

32 Fundamental Concepts

Countermeasures

Owners

Threat Agents

Threats

Assets

Risk

value

impose

which to minimize

reduce

th
at

 in
cr

ea
se

give rise to

which to abuse/damage

to

to

Fig. 2.12 The fundamental dependencies of actors and artefacts in security [41].

Accordingly, all activities in security engineering focus on two aspects. First, at which
state is the product secure and second, how to reach and keep that state. Additionally,
to maintain and keep the product in a secure state is a challenge that arises from the
fact that security engineering is a continuous and evolving activity over the entire
lifetime of a product.

To secure a system, it is necessary to find the suitable design or security functions.
The question is, what is necessary and suitable? In the field of security, the answer is
approached by thinking about what has value to the owners and what risk is expected
that the asset is going to be compromised. Accordingly, this can be seen by thinking of
two parties competing for an asset. Owners value their assets, and therefore, they wish
to protect them from compromisation. On the contrary, threat agents wish to abuse and
may damage such assets. Accordingly, they put e�ort into adverse actions and increase
the risk of an asset to being attacked. The owners again, impose countermeasures to
reduce the risk to assets. The CC methodology introduced these dependencies which
are also depicted in Figure 2.12. A proper security engineering framework deals with
the dependencies as mentioned above of actors and artefacts.

Engineers that envisage building a secure system encounter three main questions
and therefore goals. These goals are stated in the following listing and aligned to three
major areas of the CC [176].

Goal 1: Identify security needs

Goal 2: Definition of countermeasures

2.2 Security Engineering 33

Goal 3: Assurance of countermeasures

In the following paragraphs, common methods are introduced which address the
previously mentioned goals.

Common Criteria The common criteria for information technology security evalua-
tion (in short CC) have been introduced to permit comparability between independent
security evaluations [176].

"The CC is useful as a guide for the development, evaluation and/or
procurement of IT products with security functionality."[176, p. 11]

The CC are standardised in the ISO15408 standard [84] for certification intents of
hardware, firmware and software. Historically, the CC arose from certain methodologies
of several governances including the trusted computer system evaluation criteria, the
so-called Orange-Book, of the United States Government Department of Defense and,
furthermore, the counterpart of European governmental institutions. The CC define
ToE to describe the system to be evaluated. ToEs will be evaluated on the basis
of a particular Protection Profile (PP). In a PP, typical security requirements are
applicable to a specific class of devices. PP can serve as a template for a ToE Security
Target (ST) which defines the security properties a specific ToE should have. The PP
and ST formulate the Security Functional Requirement (SFR) and Security Assuarnce
Requirement (SAR) on which the ToE is finally evaluated against. The intention of
SFR is:

"These requirements describe the desired security behaviour expected of a
Target of Evaluation (TOE) and are intended to meet the security objectives
as stated in a PP or an ST." [175, p. 13].

whereas SAR aims at the

"(...) evaluation criteria for PPs and STs and presents evaluation assurance
levels that define the predefined CC scale for rating assurance for TOEs,
which is called the Evaluation Assurance Levels (EALs)" [174, p. 13].

An important aspect of the CC are the Evaluation Assurance Levels (EALs). They
provide a numerical rating indicating the activities and the depth and rigour of the
evaluation within a scale of one to seven. As an example, at EAL 7, the ToE design

34 Fundamental Concepts

must be formally verified and stringently tested. Whereas on EAL level 1, only basic
functional tests need to be conducted.

Aside from the functional aspects of a ToE, the CC also include a vulnerability
assessment method.

"The purpose of the vulnerability assessment activity is to determine the
existence and exploitability of flaws or weaknesses in the TOE in the opera-
tional environment."[173, p. 402]

The main factors for conducting a vulnerability assessment are

• the identification of potential vulnerabilities,

• an assessment to determine whether the identified potential vulnerabilities could
allow an attacker with the relevant AP to violate the SFRs,

• and penetration testing to determine whether the identified potential vulnerabili-
ties are exploitable in the operational environment of the ToE.

AP plays an important role in the determination and guidance of further activities
in the analysis. It indicates system elements of the ToE that imply a certain level of
potential to be attacked. The particular AP level that is aimed for depends on the EAL
of the ToE. Accordingly, the AP is also used to express a certain amount of resistance.
Moreover, and in addition, it is used to define a target potential. This means that
countermeasures or SFR can be required to limit the AP to a particular level according
to the EAL. In Section 2.2.1, the AP characteristics and dependencies to a security
methodology are elaborated upon in more detail. Further risk assessment frameworks
also adopt the concept of AP to quantify the likelihood of particular security risks8.

As a result, the CC cover the above-mentioned goals (Goal 2 and Goal 3), regarding
the structured definition of security needs, countermeasures and the evaluation as
such. However, they does not cover all aspects that are necessary to reach the above
aforementioned goals of security engineering. This is particularly true for Goal 1. The
identification of crucial assets is not a concern CC and is considered as being

"(...) outside the scope of the CC, but used as an input into the development
of the PP/ST in terms of the Security Problem Definition (...)" [173, p.
417]

8These frameworks are elaborated in the following paragraphs.

2.2 Security Engineering 35

Risk and Threat-based Security Engineering Frameworks

Risk assessment is the commonly applied method for determining security requirements
in development projects within the automotive context. According to Freund, the
following questions with regard to risk define the scope of risk based assessments.

"How much risk do we have?
How much risk is associated with ...?
How much less (or more) risk will we have if ...?" [49, p. 1]

A security risk is quantified by relating two major components: impact and likeli-
hood (Risk = Impact ú Likelihood). Risk is related to an unwanted incident that is
anticipated. Impact embodies the expected damage or negative e�ect to a system’s
stakeholder/owner. Likelihood quantifies the expected probability of the unwanted
incident to occur.

In this paragraph, automotive related risk assessment frameworks are introduced.
Furthermore, methods and tools to implement the framework are described. The section
concludes with the generalized essentials of security engineering in the automotive
context. Additionally, the aspects of integrating research and novel observations into
the previously given context are discussed.

SAEJ3061. In January 2016, the SAE International issued the cybersecurity guide-
book for cyber-physical vehicle systems [81] in a standard for surface vehicles. By issuing
this standard, the SAE International is the first institution that has fostered a security
process applicable to the automotive environment. As a result, this standard can be
interpreted as an important foundation for automotive related security considerations:

"The recommended practice provides guidance on vehicle Cybersecurity
and was created based on, and expanded on from, existing practices which
are being implemented or reported in industry, government and conference
papers. [81, p. 5]

In general, the standard includes a definition of a complete life-cycle process frame
work with the intent to be tailorable to a company’s development process. Further-
more, information on common existing tools and methods for the in-vehicle system
development are given[81]. The SAE International aims at providing a foundation for
further standards on information security for automotive development processes as well
as management frameworks for product life cycles. As a basis, they align every process
element to the well-established functional safety process given in the ISO26262 [83]

36 Fundamental Concepts

standard. They state that the two disciplines, security and safety, have some overlap
between the engineering activities and similar objectives. Safety aims at defining
a state which does not cause harm to life, property, or the environment, whereas
information security aims not allowing the exploitation of vulnerabilities which would
lead to losses such as financial, operational, privacy, or safety. The standard elaborates
every element in a common v-cycle development process in detail. Additionally, the
guidebook considers the management and supporting processes as well.

EVITA. The European commission for information society and media and industrial
partners funded the project E-Safety Vehicle Intrusion Protected Applications (EVITA)
[66]:

"The objective of EVITA is to design, verify, and prototype an architec-
ture for automotive on-board networks where security-relevant components
are protected against tampering, and sensitive data are protected against
compromise. [66, p. 1]

This approach includes methods for security requirements analysis, secure on-board ar-
chitecture design, implementation and prototype-based demonstration. Briefly spoken,
the process aims at identifying security goals on the system feature level. Therefore,
it identifies these features of the system and assigns potential threats to it. This is
adopted from the Hazard and Risk Assessment (HARA)9 and is called Threat and
Operability Analysis (THROP). The impact component of risks is approached by
anticipating the expected damage to four aspects. These aspects include safety, finance,
operation and privacy. The likelihood component of the risk is approached by the AP
quantification according to the CC.

The HEAVENS Project. The HEAling Vulnerabilities to ENhance Software
Security and Safety (HEAVENS) security model [81] focuses on methods, processes and
tool support for threat analysis and risk assessment concerning the vehicle E/E system.
Mostly the model follows the EVITA approach in defining the impact severity, including
some enhancements in certain aspects. As an example, the authors give reference to
commonly accepted methods by rating impacts to the four security objectives (safety,
operational, financial and privacy). For example, the estimation of safety impacts will
be supported by methods adopted by the ISO26262 standard [83]. Moreover, the risk
likelihood is determined by the CC’s AP. Additionally, HEAVENS adopts Microsoft’s

9Safety related risk assessment [83]

2.2 Security Engineering 37

Spoofing, Tampering, Repudiation, Information Disclosure, Denial-of-Service, Elevation
of Privilege (STRIDE) threat model to determine potential threats in a structured
manner.

Factor Analysis of Information Risk. Factor Analysis of Information Risk
(FAIR) is a methodology for measuring and managing information risk [49]. FAIR
provides a practical and credible framework to understand, measure and analyse security
risks of any size or complexity. The framework provides an ontology to decompose risk
into the

"(...) probable frequency and probable magnitude of future loss." [49, p.27]

In Figure 2.13, the main factors of risk determination in FAIR are shown. One of the
key aspects of the FAIR approach is to quantify occurrences by rating probabilities
such as the probability that a threat agent’s action will result in a loss.

Prob. Loss
Magnitude

Risk

Loss Event
Frequency

Primary Loss
Secondary

Loss
Vulnerability

Threat Event
Frequency

Fig. 2.13 FIRST ontology. (adopted from [49, p. 31])

Methods and Tools

Risk Quantification.

Impact Severity. In the following the impact severity factors are proposed. The
factors refer to the context of automotive risk assessment [66].

Safety: Ensure safety of the vehicle occupants and road users.

Financial: Prevent negative impact to the financial situation of a concerned
party.

Operation: Maintain operational performance of all vehicle functions.

Privacy: Protect privacy of drivers or the intellectual property of the manufac-
turer.

38 Fundamental Concepts

To each of those threats, a severity of four security objective categories will be assigned
(compare with Table 2.1).

Table 2.1 Impact severity classes [67].

Severity
Class

Safety Financial Operational Privacy

0 no injuries no financial loss no impact to op-
erational perfor-
mance

no unauthorized
access to data

1 light or moderate
injuries

low-level loss (¥
10Ä)

impact not dis-
cernible to driver

anonymous data
only (no specific
vehicle driver
data)

2 severe injuries
(survival prob-
able): light
moderate injuries
for multiple
vehicles

moderate loss (¥
100Ä), low losses
over multiple ve-
hicles

driver aware
of performance
degradation;
indiscernible
impacts for mul-
tiple vehicles

identification of
vehicle or driver,
anonymous data
for multiple vehi-
cles

3 life threatening
(survival uncer-
tain) or fatal
injuries

heavy losses (¥
1000Ä), moderate
losses over multi-
ple vehicles

significant
impact on
performance,
noticeable im-
pact for multiple
vehicles

driver or vehicle
tracking, identifi-
cation of driver or
vehicle for multi-
ple vehicles

4 life threatening
or fatal injuries
for multiple vehi-
cles

heavy losses over
multiple vehicles

significant im-
pact for multiple
vehicles

driver or vehicle
tracking for mul-
tiple vehicles

Attack Potential. The potential of an attack will be determined. The resulting
AP quantifies the probability of a potential attack. To determine the probability, five
characteristics will be factored. These characteristics include elapsed time, expertise,
knowledge of the system, window of opportunity, equipment required. The respective
qualitative rating scale is shown in Table 2.2.

The risk components have values assigned which will be summarised with the
resulting AP factor. In Table 2.3, the AP factors are mapped to a severity level as well
as an attack probability. The attack potential levels reach from Basic to Beyond High
and the corresponding likelihood from 5 to 1, respectively.

2.2 Security Engineering 39

Table 2.2 Attack Potential rating table [173].

Factor Level Value

Elapsed time

Æ Day 0
Æ Week 1
Æ 1 Month 4
Æ 3 Months 10
Æ 6 Months 17
> 6 Months 19
Not practical Œ

Expertise

Layman 0
Proficient 3
Expert 6
Multiple experts 8

Knowledge of system

Public 0
Restricted 3
Sensitive 7
Critical 11

Window of opportunity

Unnecessary/unlimited 0
Easy 1
Moderate 4
Di�cult 10
None Œ

Equipment

Standard 0
Specialized 4
Bespoke 7
Multiple bespoke 9

Correlation of Risk Factors. The combination of the components impact
severity and attack likelihood is shown in Table 2.4. According to the CC’s EAL levels
the risk levels reach from 0 to 7+. Impact severity classes are weighted di�erently in
the given table. Impacts to safety (denoted by S) independently modify the severity
class. The other impact factors (financial, operational, privacy) are denoted by C and
are represented by the maximum value out of these three factors.

Definition of Required and Residual AP. In the CC evaluation guidelines
for vulnerability assessment, it is proposed to use the AP as an assurance criterion.
The AP is not only used to express a likelihood, but can also be used to state a targeted
capability to resist attacks. In other words, it can be used to describe a required

40 Fundamental Concepts

Table 2.3 Attack Potential level and likelihood [173].

Range Required attack
potential

Attack likeli-
hood

0 - 9 Basic 5
10 - 13 Enhanced basic 4
14 - 19 Moderate 3
20 - 24 High 2
> 25 Beyond high 1

quality of countermeasures. Evaluations for whether or not proposed risk treatments
are su�cient in the given context are possible. Since the risk cannot be eliminated, a
required residual AP can be attached to the risk acceptance level.

In Table 2.5, the risk levels are correlated to required AP and the corresponding
residual AP level. This correlation is based on the evaluation assurance components
for vulnerability assessment (compare [174, p. 32])) and the vulnerability testing
and AP given in [173, p. 418]). The latter assigns a particular component (AV N.X)
to the required and residual AP, whereas, the former relates EAL to the assurance
components. In the following table, this arithmetic is adopted to correlate a risk level
with the targeted AP.

Threat Modelling. Threat modelling is a method to show what can go wrong
concerning something that has to be built. Shostack formulates threat modelling as
follows:

"Threat modelling is the key to a focused defence. Without threat models,
you can never stop playing whack-a-mole. In short, threat modelling is the
use of abstractions to aid in thinking about risks." [154, p. XXIII]

To make use of threat modelling, two things are necessary: first, a model of threat
types that covers all possible types of hazards to a system element and second, a
suitable system model to apply the previously mentioned threats. In research and
industry, a plethora of threat models have been introduced [42]. A widespread and
well accepted threat model is Microsoft’s STRIDE approach. STRIDE is introduced
in the following paragraph.

STRIDE. STRIDE is a mnemonic for things that go wrong in security [154].
Spoofing, tampering, repudiation, information disclosure, denial-of-service and ele-
vation of privilege are threat types which Microsoft has introduced along with their

2.2 Security Engineering 41

Table 2.4 Security risk level [67].

Attack likelihood
Impact Severity AL = 1 AL = 2 AL = 3 AL = 4 AL = 5

C=1

S = 1 0 0 1 2 3
S = 2 0 1 2 3 4
S = 3 1 2 3 4 5
S = 4 2 3 4 5 6

C=2

S = 1 0 1 2 3 4
S = 2 1 2 3 4 5
S = 3 2 3 4 5 6
S = 4 3 4 5 6 7

C=3

S = 1 1 2 3 4 5
S = 2 2 3 4 5 6
S = 3 3 4 5 6 7
S = 4 4 5 6 7 7+

C=4

S = 1 2 3 4 5 6
S = 2 3 4 5 6 7
S = 3 4 5 6 7 7+
S = 4 5 5 6 7+ 7+

comprehensive security development life-cycle [68]. In Table 2.6, the threat types are
associated with the corresponding security properties. Furthermore, a short description
provides the meaning of the threats.

Data Flow Diagrams. DFD are suitable models to apply threat models such
as STRIDE:

"DFD’s often form an important role in the design of information systems.
Their intention is to model the process aspects of an information system
(...). They are often used in the

first phases of information analysis to establish a global model of an infor-
mation system which can be further refined." [20, p. 1]

DFD model processes, data storages, data flows and external actors such as shown
in Table 2.7.

Threat Model Application. Given a certain system model such as DFD, the
threats need to be associated with each other. According to Shostack [154], there are

42 Fundamental Concepts

Table 2.5 Required and Residual AP (based on [173, p. 418]).

Risk Level Required Resis-
tance AP

Residual AP

Ø 6 High Beyond High
Ø 5 Moderate High
Ø 4 Enhanced Basic Moderate
Ø 2 3 Basic Enhanced Basic
1 Basic Enhanced Basic

Table 2.6 Microsoft STRIDE Threats. [154]

Threat Property Vio-
lated

Definition

Spoofing Authenticity Pretending to be something or someone other
than yourself.

Tampering Integrity Modifying something on disk, on a network,
or in memory.

Repudiation Non-
Repudiation

Claiming that you didn’t do something, or
were not responsible. Repudiation can be hon-
est or false, and the key question for system
designers is, what evidence do you have?

Information Dis-
closure

Confidentiality Providing information to someone not autho-
rized to see it.

Denial-of-
Service

Availability Absorbing resources needed to provide ser-
vice.

Elevation of Priv-
ilege

Authorization Allowing someone to do something they’re
not authorized to do.

two general methods to associate threats with model elements. One is the STRIDE-by-
element, and the other is STRIDE-by-interaction. As the names may imply, the first
method seeks to associate each element in the model with a defined set of threats. The
second method assigns the threats to a pair of elements which are related with in data
flow. In [18] the authors compared both methods and concluded that STRIDE-per-
element is more e�cient. This section elaborates on the application of STRIDE threats
to the DFD elements (STRIDE-per-Element). Not every STRIDE threat applies to all
DFD elements, due to their nature. For instance, a process can be spoofed because it
logically represents an instance for something that can be impersonated. Data flows,
as they are, on the contrary, represent just a logical connection which can not be
impersonated. However, in the case that two processes are connected by a data flow,

2.2 Security Engineering 43

Table 2.7 Data flow diagram

Element Description

TB
Trust boundaries surround a certain set of nodes
which belong logically or physically together and
set a border for untrusted elements in the system.

Data Storage In data storages, data are stored and represented
as files, memory, databases, etc..

Process Processes (such as P1) are nodes which handle and
compute information.

Representing data flow across object from process
P1 to process P2.

Table 2.8 Threats per DFD Element.

Threat
DFD Element S T R I D E
Process X X X X X X
Data Flow X X X
Storage X X X

the spoofing threat (impersonation) then applies for both processes. For the process
that is sending data, wants to ensure to send it to an authentic entity. Accordingly,
the receiving process might want to ensure that the data was sent by an authentic
origin. Table 2.8 shows the STRIDE to DFD element correlation.

Attack Modelling by Attack Trees. Attack trees are a formal method to show the
security of a system. Basically, potential attacks will be visualised in a tree structure
[148]. They support a security analyst in understanding attack goals, motivations and
causal interconnections of certain intermediate steps an attacker may take to achieve
his main goal. In the EVITA approach [67] to attack trees, a generic structure is
proposed consisting of the following levels:

Level 0: attack goal (analogous to the top event in a fault tree)

Level 1: attack objectives

44 Fundamental Concepts

Level 2: attack methods

Level 3: (n - 1): intermediate goals / methods

Level n: asset attacks (the base level methods of performing an attack; analogous
to base events in a fault tree).

Penetration Testing. Penetration testing (pentesting) is an activity which aims
at examining vulnerabilities of a ToE during the evaluation. In many contexts this is
referred to as negative testing.

In a sophisticated analysis setup, the results from the risk assessment can be applied
to direct a pentest to the riskiest system elements. The risk assessment then will provide
hypothesised threats. Notably, the AP indicates needs for further investigations.

Factorization of Vulnerabilities

Whereas the AP quantifies an estimation of a likelihood for a vulnerability to be
exploited, the factorization of vulnerabilities aims at the quantification of a discovered
vulnerability.

The leading question is: what does an attacker need to do in order to exploit a
particular vulnerability? Hence, the exploitability aspect is defined as such:

Definition 2.1 Exploitability is the level of di�culty an attacker must overcome [49].

Accordingly, exploitability expresses what e�ort is necessary to reach a particular
attack goal. In contrast to that, the threat capability aims for the given circumstances
of an assumed threat agent. So, it answers the question about "What is the attacker
capable of doing?". The threat capability is defined as such:

Definition 2.1 The Threat Capability is the level of force an attacker can apply [49].

It depends on the particular security engineering framework if the meaning of threat
capability or exploitability will be applied. For example, the strength of cryptographic
methods is often defined by assuming a certain capability of an adversary. So, the
threat capability applies here. In risk-based engineering frameworks the requirements
are derived to raise the exploitability to an acceptable amount.

In this work, the exploitability is applied as a metric to evaluate the findings. The
threat capability is only applied for informal purposes.

2.2 Security Engineering 45

Exploitability Factorization. With the CVSS, an open framework to communicate
characteristics of IT vulnerabilities has been introduced. As a standard quantification
model, the CVSS aims for an industrial, organisational and governmental application.
Particularly, the CVSS is adopted by the international telecommunication union [87]
and is used in the National Vulnerability Database (NVD) [127] by the National
Institute of Standards and Technology (NIST) to characterize security flaws within
their security content automation protocol specification [32].

CVSS Metrics - Base Score. The metrics to score vulnerabilities are categorised
as exploitability and impact. These categories describe particular preliminaries, com-
plexity, scope and security properties to break a component [97, 61]. Each category
assigns a characteristic, for example, none, low, high. These characteristics correspond
to a quantitative value, which represents the severity of the metric. In the end, all
ratings will result in a vulnerability score10.

10Please refer to [47, p. 18] to retrieve the corresponding equations to calculate the particular
scores.

46 Fundamental Concepts

Table 2.9 CVSS Base Score [47].

Score Description Values

Entry
Attack
Vector

This metric reflects the context by which vulnerability ex-
ploitation is possible. This metric value (and consequently
the base score) will be larger the more remote (logically, and
physically) an attacker can be in order to exploit the vul-
nerable component. The assumption is that the number of
potential attackers for a vulnerability that could be exploited
from across the Internet is larger than the number of po-
tential attackers that could exploit a vulnerability requiring
physical access to a device, and therefore warrants a greater
score.

High/
Low

Attack
Com-
plexity

This metric describes the conditions beyond the attacker’s
control that must exist in order to exploit the vulnerability.
As described below, such conditions may require the collec-
tion of more information about the target, the presence of
certain system configuration settings, or computational ex-
ceptions. Importantly, the assessment of this metric excludes
any requirements for user interaction in order to exploit the
vulnerability (such conditions are captured in the User In-
teraction metric). This metric value is largest for the least
complex attacks.

High/
Low/
None

Privileges
Re-
quired

This metric describes the level of privileges an attacker must
possess before successfully exploiting the vulnerability. This
metric if greatest if no privileges are required.

High/
Low/
None

User
Interac-
tion

This metric captures the requirement for a user, other than
the attacker, to participate in the successful compromise of
the vulnerable component. This metric determines whether
the vulnerability can be exploited solely at the will of the
attacker, or whether a separate user (or user-initiated pro-
cess) must participate in some manner. This metric value is
greatest when no user interaction is required.

None
/ Re-
quired

-

2.2 Security Engineering 47

Table 2.10 CVSS Base Score continued [47].

Scope Formally, Scope refers to the collection of privileges defined
by a computing authority (e.g. an application, an operating
system, or a sandbox environment) when granting access to
computing resources (e.g. files, CPU, memory, etc). These
privileges are assigned based on some method of identification
and authorization. In some cases, the authorization may be
simple or loosely controlled based upon predefined rules or
standards. For example, in the case of Ethernet tra�c sent
to a network switch, the switch accepts tra�c that arrives
on its ports and is an authority that controls the tra�c flow
to other switch ports.

Un-
changed
/
Changed

Impact
(CIA)

The Impact metrics refer to the properties of the impacted
component. Whether a successfully exploited vulnerability af-
fects one or more components, the impact metrics are scored
according to the component that su�ers the worst outcome
that is most directly and predictably associated with a suc-
cessful attack. That is, analysts should constrain impacts
to a reasonable, final outcome which they are confident an
attacker is able to achieve.

High /
Low /
None

-

Environmental Score The environmental score provides an opportunity to connect
risk assessment results with the CVSS in order to modify the particular base scores
according to contextual circumstances. The modified base metrics a�ect all metrics of
the base score shown in Table 2.9.

Temporal Metrics Temporal metrics are an opportunity to modify the overall
CVSS score due to the current exploit situation.

"The Temporal metrics measure the current state of exploit techniques
or code availability, the existence of any patches or workarounds, or the
confidence that one has in the description of a vulnerability." [47, p. 12]

The metrics include the exploit code maturity, the remidation level and the report
confidence. The maturity of exploit code factorizes the likelihood of the vulnerability

48 Fundamental Concepts

of being attacked. If the exploit code is available in a, for example, functional manner
then potential attackers can directly reuse it. In contrast to the exploit maturity,
the remidation level factorizes the availability of security fixes in relationship to the
discovered vulnerability. Furthermore, the report confidence measures the degree
of confidence in the existence of the vulnerability and the credibility of the known
technical details [47, p. 13].

Sources for Attack and Vulnerability Analysis

For the analysis and evaluation the consultation of publicly available sources is common
practice and required by the CC [173]. In the following, legitimate sources are discussed.

Attack and Vulnerability Databases The MITRE corporation issued two systems
to describe and enumerate common security weaknesses and vulnerabilities. In publicly
accessible databases such as the NVD11, comprehensive lists of the previously mentioned
vulnerabilities are shown.

Well known examples of common enumeration and categorization schemes are the
Common Weakness Enumeration (CWE), the Common Vulnerability Evaluation (CVE)
and the Common Attack Pattern Enumeration and Classification (CAPEC). Whereas
the latter, CAPEC, aims at providing a comprehensive dictionary and classification
taxonomy of attack patterns12 the former schemes, CWE and CVE, enumerate and
list weaknesses and vulnerabilities in common software architectures.

Scientific Sources In the domain of public accessible sources for attacks the category
of research results plays an important role. Legitimate sources can be university libraries,
scientific indexes such as IEEE, ACM, Springer or comprehensive internet databases
such as Google Scholar.

Relationship of Security Metrics

In the previous sections and paragraphs particular metrics are introduced, that are
applied in particular stages of the security assessment methodology. In Figure 2.14,
the relationship between the metrics is depicted.

11https://nvd.nist.gov/
12https://capec.mitre.org/

2.2 Security Engineering 49

Scored Vulnerabilities: CVSS

Base Score
Temporal

Score
Environme
ntal Score

Hypothesised Attacks: Attack Potential

Equipment
Elapsed

Time
Knowledge
of System

Window of
Opportunity

Expertise

Impact

Safety Operational Financial Privacy

modifies

de
fin

es

sc
or

es

es
tim

at
es

sc
or

es

es
tim

at
es

Fig. 2.14 Relationship of security metrics.

2.2.2 Security Assessment Methodology

In this section, the applied security methodology is described. The methodology
consists of two major activities: first, the identification and definition of security
requirements and second, the evaluation of the proposed countermeasures.

Risk-based Security Requirements Engineering Process

To conclude with the previously given security engineering approaches, here, a gener-
alized approach to conduct security requirements is outlined to serve as a reference
throughout this thesis. Security Engineering seeks to cope with the complexity of
determining a certain risk on an asset. The risk will guide to the crucial system elements
and point out where risk treatments need to be applied. The identification of assets in
the system relies upon a suitable threat identification and assessment. The goal, in the
end, is to define risk treatments. These are represented as security countermeasures
that are required to be implemented in order to mitigate the risk. As a result, the
general process components are the risk assessment, vulnerability assessment and and
risk treatment.

ToE- and Context Profiling: At the very beginning, the ToE must be defined.
Here, the functional and technical aspects are elaborated upon. In order to
prepare the analysis in the next step, the ToE is decomposed into system elements

50 Fundamental Concepts

(assets) in a granularity that is intended to investigate. Furthermore, an analysis
of the threat context is conducted. This defines the attack surface form the
ToE environment. Assets in the ToE and potential goals and motivations of
adversaries.

Threat and Attack Analysis: In the first analysis step (Threat Identification),
the identification of assets is aimed in order to identify how they are threatened.
An asset is an element that has a specific value to the owner13. Threats are
considered to categorise how a certain system element is attackable. In this
particular case, the STRIDE threat model is applied. Through the application
of this threat model14, each system element is exposed to each of the six threats.
This step will deliver a fully covered and exhaustive list of threats associated
with the technical system elements. Whereas the threat list is gained deductively,
the Attack Analysis is characterised as an inductive consideration. The Attack
Analysis seeks to identify attacks that facilitate the previously identified threats.
Attacks are modelled in an attack tree.

Risk Analysis: In the Risk Analysis, the two risk components, impact and
likelihood, are investigated. The former is achieved by taking the attacks to
the system elements (assets) into account. Impacts are quantified by expressing
the expected damage to the system owners or other stakeholders. This damage
is categorised into safety, operational, financial and privacy and refers to the
method given in Section 2.2.1. The likelihood of an attack to occur is assessed by
anticipating the minimum e�ort to mount a given attack. Here, the concept of AP
according to the CC is adopted. Taking such information into account is required
by the CC assessment in order to comply with high EAL. Compare Action
AVA_VAN.1.2E in the CC evaluation methodology [173]. The result of the risk
assessment is a list of risks with an associated risk level. This works considers
two attacks/vulnerabilities in detail, therefore these Hypothesised Attacks will be
further investigated in the vulnerability assessment.

Vulnerability Assessment: The Vulnerability Assessment aims at identifying
and score vulnerabilities of the ToE. Vulnerability analysis is the structured
decomposition of the assessed Hypothesised Attack. The outcome of the vul-
nerability analysis are hypothesised vulnerabilities that could be investigated in
a Penetration Test. An associated vulnerability score is used as the basis for

13As it is described in the security principle in Section 2.2.1
14compare Section 2.2.1

2.2 Security Engineering 51

the e�ectiveness evaluation in the security evaluation process. Furthermore, the
vulnerability analysis states a security problem to be mitigated by a risk treat-
ment. In order to create evidence of the existence and practical implications, a
penetration test is applied. The penetration test is scored by the Temporal Score.
The outcome of the vulnerability analysis and the evidence of the penetration test
creates evidence for the attack potential analysis of the risk assessment.

Risk Treatment: The selection of proper risk treatments comprises the last
step in the engineering process. Usual strategies are the avoidance, transfer,
acceptance and mitigation of risk. When it comes to the risk mitigation, technical
measures are required. These countermeasures have a direct connection with the
associated threat category. As an example, if tampering with a system element
is identified as a critical risk, the risk treatment to mitigate tampering would
be the integrity protection. The appropriate strategy will be defined in the first
step. Afterwards, the Mitigation Concepts will be analyzed and comprises the
actual security solution. The targeted e�ectiveness quality of the treatments are
defined in parallel and evaluated in the security evaluation process.

The reference process shown here demonstrates how to apply available concepts to
approach security engineering. However, there are limitations by applying a concept
such as the one previously shown. As of today, there is no guidance on defining
accepted risk levels. It has to be decided in the context of a particular development
project which risk level is acceptable and which one has to be mitigated. Furthermore,
the countermeasures to mitigate risks are not defined. The above-given examples and
relationship to the threat model is a proposal to encounter the issue, by categorising
the countermeasures in a structured manner.

Security Evaluation Process

The aim of the evaluation is to identify the residual risk and the e�ectiveness of the
proposed countermeasures. Intentionally to conduct the evaluation, the previously
mentioned process is partially re-assessed. This applies to the process activities which
evaluate and score the AP and the vulnerability score. During the risk assessment,
the impact analysis is not re-executed. This is motivated by the fact that the actual
impact to the functionality does not change if the capabilities of the functionality do
not change. The applied evaluation process is depicted in Figure 2.16.

E�ectiveness Assessment: In the E�ectiveness Assessment swim lane, the
E�ectiveness Analysis outputs the modified vulnerability score which is applied

52 Fundamental Concepts

Vu
ln

er
ab

ili
ty

 A
ss

es
sm

en
t

Ri
sk

 T
re

at
m

en
t

Threat
Identification

(STRIDE)

ToE

Attack Analysis
(Attack Tree)

Attack Potential
Analysis

Impact Analysis

Vulnerability
Analysis

Penetration
Test

Risk Definition

Treatment
Strategy

Definition

Definition of
Effectiveness

Mitigation
Concept Analysis

Security Evaluation

AP

Impact

Scored
Vulnerability

Hypothesised
Attack

Risk

Temporal
Score

Hypothesised
Vulnerability

SQR

Threats

Attacks

ToE Definition

Ri
sk

 A
ss

es
sm

en
t

Ri
sk

 A
na

ly
si

s
Th

re
at

 a
nd

 A
tt

ac
k

An
al

ys
is

To
E-

 a
nd

 C
on

te
xt

Pr

ofi
lin

g

Threat Context
Analysis

ToE
Decomposition

Assets, Attack
Surface, Goals

System
Elements

Security
Problem

Statement

Security
Solution

Fig. 2.15 Risk-based Security Assessment Process.

2.2 Security Engineering 53

to the ToE with the applied countermeasure. In the E�ectiveness Evaluation the
E�ectiveness Delta and Environmental Score is determined.

Residual Risk Analysis: During the Residual Risk Analysis, the Risk from the
initial Risk Definition and the modified vulnerability score is taken into the Attack
Potential Analysis to analyse the modified AP. The delta of the initial risk (Risk)
and the residual risk (Risk’) indicates the overall risk mitigation-e�ectiveness of
the given countermeasure approaches.

Ef
fe

ct
iv

en
es

s
As

se
ss

m
en

t
Re

si
du

al
 R

is
k

An
al

ys
is

Attack Potential
Analysis

Effectiveness
Analysis

Residual
Risk Definition

Modified
Scored Vuln.

Hypothesised
Attack

Conclusion

ToE with
countermeasures

applied

Effectiveness
Evaluation

Effectiveness
Delta

Scored
Vulnerability

Risk

Modified
AP

Environmental
Vuln. Score

Residual
Risk

Fig. 2.16 Applied security evaluation process.

Discovering Security Knowledge - Security Cycle

This section seeks to elaborate upon the interplay between the knowledge of security
issues and the discovery of new, currently unknown, security issues. More precisely,
how does a discovery a�ect the knowledge base which is taken into account for secure
systems?

54 Fundamental Concepts

Two main stages to describe this cycle of security are considered. The first stage is
the security knowledge base which is comprised of known threats, attacks, vulnerabilities,
patterns, etc. The second stage is the security discovery or the discoveries which describe
a novel threats, attacks, etc. Discoveries shall enrich or enhance the knowledge base.
Whereas the knowledge base might evoke new discoveries. These interactions are
visualized in Figure 2.17.

Methods to conduct analysis on the knowledge base are of a deductive nature. For
example, in Section 2.2.2, the risk assessment process is applied. This includes the
application of a threat model that represents generic categories of attacks and an
attack analysis that should reveal specific instances of the generic threats concerning
the specific ToE architecture.

The methods which are applied in the discovery stage are of an inductive nature.
This means, that a certain ToE is already in the stage to be specific and discovered
security issues have to be patterned in order to enhance the knowledge base. The
problem in this kind of inductive analysis is finding the suitable level of abstraction
of the discoveries in order to make them reusable. This is caused by the fact that,
contrary to general purpose computing, the area of embedded systems engineering
aims at creating a system which fulfills a special purpose. This includes all engineering
disciplines including, electrical, mechanical, hardware and software engineering. This
is particularly the case for the herein considered AMP-based systems. The challenge is
to reveal the intrinsic security issue concerning the intrinsic nature of the ToE.

Knowledge
base

Discovery

enhance

evoke

Inductive
Analysis

Deductive
Analysis

Fig. 2.17 Discovering security knowledge.

2.3 Research Methodology
This section elaborates on how the research is carried out by this work. Hence, first,
the research questions are discussed in 2.3. In 2.3 the research artefacts are also given.
Lastly, in 2.3 the applied scientific methods are discussed.

2.3 Research Methodology 55

RQ1 RQ2

Answer
RQ1

Answer
RQ2

Case Study
(Descriptive)

Hypothesis: AMP-based systems are prone to DMA
and cache-thrashing attacks.

Harden a AMP-based system with respect to the specific circumstances on the
intermediate layer.

Vulnerability/
Attack Pattern
(Descriptive)

Mitigation
Strategy
(Descriptive)

Vulnerability/
Attack Assessment
(Descriptive)

Countermeasures
(Descriptive)

Penetration Test/
Proof-of-Concept
(Descriptive)

LE

CI

CA

CS

CI

CA

CA

LE

CA: Conceptual
Analysis

CI: Concept
Implementation

LE: Laboratory
Experiment

CS: Case Study RQ: Research
Question

Fig. 2.18 Research Methodology.

Research Questions

This work considers particular security aspects concerning technical constraints of the
intermediate layer. Those constraints are implied by a specific construction paradigm
for computing systems, which is, in this case, AMP. In general, the research in this
work aims for the following:

Research Aim: Harden an AMP-based system with respect to the specific
circumstances on the intermediate layer.

According to Shaw [153], this type of research is considered a:

"Method or means of development." [153, p. 5]

56 Fundamental Concepts

It, therefore, aims at finding a better way or improve the security of AMP-systems.
According to the research methodology visualized in Figure 2.18, the approach of

inductive reasoning is adopted throughout this thesis.

"[...] inductive reasoning [...] is the process by which generalizations are
made based on individual instances." [23, p. 27]

It assumes that an AMP-system as it is, is preliminarily characterized in this
chapter. The starting point for this research is the following presupposition:

Hypothesis: AMP-based systems are prone to DMA and cache-thrashing
attacks.

From this point, the research is conducted by questioning two main areas. The first
research question (RQ1) considers the security problem space of the aforementioned
presupposed attacks. The other considers the security solution space by dealing with
the mitigation of the discovered attacks (RQ2).

Research Question 1 (RQ1): What is the pattern of DMA and cache-thrashing
attacks reflecting the particular AMP characteristics?

This question is approached by analysing the concepts of DMA and cache-thrashing
attacks in order to apply them to an AMP system. These analyses are, furthermore,
conceptually implemented in a Proof-of-Concept (PoC) in order to make conclusions
about the presupposed hypothesis. The perception of these attacks builds the basis
for discovering patters within the findings. This then evokes the question: are those
findings a general problem of AMP-systems? The foundation for this endeavour is
conducted by a case study of a driver information system. The study establishes the
context of the ToE and serves as a running example throughout the thesis. The purpose
of this research question is to identify gaps in a protection architecture in a layered
system design. This will help to reveal structural weaknesses to define protective means
to fulfil security goals or to limit the e�ects of exploitation.

With respect to the first research question, the second research question focuses
on the possibilities to harden the system against the identified gaps in the protection
architecture. Therefore, it the research question is formulated as follows:

Research Question 2 (RQ2): How can one mitigate the risk of exploitation
of the previously identified vulnerabilities?

2.3 Research Methodology 57

This question is approached by taking the results of RQ1 into account and proposes
strategy specific countermeasures based on general mitigation. An important aspect for
formulation is the relationship between the identified vulnerabilities and the proposed
mitigation approaches.

The purpose of this research question is either to find technical solutions to the
previously identified security issues or to find a general mitigation strategy which can
be taken into account in the design of AMP systems.

Research Approaches and Methods

In order to find answers to the given research questions, multiple research techniques
have been applied. In general, the nature of the approaches are descriptive, formulative
and evaluative by following the definition given in [54].

The targeted research combines several disciplines of computer science and security
engineering respectively. These include systems engineering, software engineering and
security engineering. Accordingly, the research methods are aligned to that areas.

Hence, with respect to [53, 54], the following research methods have been applied:

CA: Gain knowledge by analysing a phenomenon in a structured way [53].

Conceptual Analysis Mathematical: A conceptual analysis is performed by
utilizing mathematical techniques. [53]

Concept Implementation (CImpl): Realization of a concept in order to
prove a certain degree of feasibility [53].

Case Stuy (CS): A case study investigates a contemporary phenomenon (...)
in its real-world context [190].

Laboratory Experiment (LE): Drawing conclusions by an experiment, for
example, by collecting and evaluating data [53].

Research Artefacts

According to Figure 2.18 and the research questions given in the previous section, this
work includes several types of research artefacts. Here, these are outlined including
their dependency to other artefacts.

58 Fundamental Concepts

Case Study: Driver Information System This is approached by providing a
real-world instance of an AMP-system. Furthermore, this sets the context for the
security engineering methodology. The study, presented in Section 3.1.1, describes
a Mixed-Criticality System (MCS) in an automotive context. According to Shaw et
al. [153], it is represented as a descriptive model. The input for this artefact is the
profile of AMP-systems15 and the security assessment methodology16. In the second
part of the case study, the risks of the MCS are assessed. This includes the definition
of impacts and the AP. Based upon the risk analysis, the risk treatment strategy is
defined. A further output of this artefact are hypothesised attacks which are assessed
in the vulnerability assessment.

Vulnerability Assessment The analysis seeks to endeavour, conceptually, instances
of DMA and cache-thrashing in an AMP-system (given in Section 4.1 and 4.2). Ac-
cording to Shaw et al. [153] this is represented as a descriptive model. The inputs of
this artefact are the hypothesised attacks from the risk assessment of the case study.
The AMP-architectural vulnerabilities are evaluated according to the vulnerability
factorization17. The generated outputs are represented by scored vulnerabilities, which
are the reference to evaluate the countermeasure later in this work.

Vulnerability/Attack Pattern The vulnerability and attack pattern representing
the generalised concept of the previously identified security issues (given in Section 4.3).
According to Shaw et al. [153], this is represented as a descriptive model. The inputs for
this artefact are the two vulnerabilities/attacks from the previous vulnerability/attack
assessment. Furthermore, the concept proposal maps the given information to threat
categories in order to define them on a general level. A consideration of other system
utilisation paradigms will conclude this pattern generalization.

Penetration Test and Proof-of-Concept The penetration test and PoC instanti-
ates a CImpl of the several proposed approaches and concepts based on commodity
embedded hardware. According to Glass et al. [53], this is represented as a system
concept or approach. The input for this artefact is given by the vulnerability analysis
and the countermeasure approaches. The presupposed hypothesis and the e�ectiveness
of the countermeasures are tested through a LE.

15Compare Section 2.1
16Compare Section 2.2.2
17Introduced in Section 2.2.1

2.4 Summary 59

Mitigation Strategy The mitigation strategy artefact endeavours the conceptual
strategies in hardening AMP-systems. It, therefore, conceptually analyses the relation-
ship of vulnerability/attack and mitigations in order to be able to suitable requirements.
According to Shaw et al. [153], this is represented as a descriptive model. Here, the
outputs are the requirements as part of the risk treatment.

Countermeasures The countermeasures represent the solution (TSF) of the previ-
ously mentioned artefacts and seek to address the identified security issues. According
to Glass et al. [53], this is represented as a system concept or approach. The solution
space for the countermeasures is limited to the utilization of the intermediate level
memory map capability. The countermeasures are evaluated by the security evaluation
process18. The output is an e�ectiveness factor.

2.4 Summary

This chapter profiled the fundamental concept of AMP-based systems. Furthermore,
the assessment process to identify, measure and evaluate security risks have been
discussed. The chapter concludes with a description of the research methodology.
Primarily, the following research questions are formulated due to the previous problem
analysis and the foundation review.

In contrast to traditional virtualization schemes, which involves a virtual machine
monitor or a hypervisor, the AMP approach does not intent to implement that kind of
software instance between the multiple OS and hardware. However, the intermediate
layer comprises of the configuration the underlying hardware layer. If it is assumed that
the hardware design cannot be changed, the possibilities to eliminate vulnerabilities are
limited to the higher layers. The following research aim has therefore been formulated:

Research Aim: Harden an AMP-based system concerning the specific circum-
stances on the intermediate layer.

The aim should be reached by keeping the actual AMP characteristic. According
to the research aim, the following research questions have been formulated.

Research Question 1: What is the pattern of DMA and cache-thrashing attacks
reflecting the particular AMP characteristics?

18Introduced in Section 2.2.2

60 Fundamental Concepts

Research Question 2: How can one mitigate the risk of exploitation of the
previously identified vulnerabilities?

Furthermore, the research artefacts and methods are detailed. Primarily, devel-
opmental methods are applied. These include formulative and descriptive methods.
Accordingly, the research artefacts are descriptive and formulative models. Case studies
are conducted to show the applicability concerning two cases. The evaluation of
the resulting proof-of-concept implementation is conducted by observing laboratory
experiments.

3
Risk Assessment: Driver Information System

A Case Study of a Mixed-Criticality System for Vehicles

Contents
3.1 ToE- and Context Profiling 62

3.1.1 Mixed-Criticality Systems: A Case for AMP 62
3.1.2 System Decomposition . 64
3.1.3 Experimental Platform . 69
3.1.4 Threat Context Analysis . 74

3.2 Threat and Attack Analysis 83
3.2.1 Threat Analysis . 83
3.2.2 Attack Analysis . 86

3.3 Risk Analysis . 90
3.3.1 Impact Analysis . 90
3.3.2 Attack Potential Analysis 92
3.3.3 Risk Definition . 94
3.3.4 Hypothesised Attacks . 94

3.4 Summary . 95

62 Risk Assessment: Driver Information System Case Study

Example is not the main thing in influencing others. It is the
only.

Albert Schweitzer

From a functional perspective, AMP is just one particular way to empower a system
with hardware utilization and separation capabilities. It does not matter what functions
or features are executed by the AMP-based platform. However, an applied example
warrants and legitimizes the concept. Therefore, this chapter elaborates on a case
study through realizing an AMP MCS in the automotive context. Given that example,
the risk assessment (compare with Section 2.2.2) is applied in order to derive the risks
that are investigated further throughout this work.

3.1 ToE- and Context Profiling

3.1.1 Mixed-Criticality Systems: A Case for AMP

Introduction of Mixed-Criticality Systems

MCS is a particular type of system which aims to combine functions that are di�er-
entiated in their criticality. Various subcomponents which represent those functions
are compiled together on a common hardware platform and aggregated in a greater
context. The general advantage of such a system can be stated due in following:

"Most of the complex embedded systems found in, for example, the automo-
tive and avionics industries are evolving into mixed criticality systems in
order to meet stringent non-functional requirements relating to cost, space,
weight, heat generation and power consumption [...] how, in a disciplined
way, to reconcile the conflicting requirements of partitioning for (safety)
assurance and sharing for e�cient resource usage." [21, p. 3]

The authors state the problem of combining functions on one hardware platform while
handling the assurance verification di�erently for each of them. This leads to the
following definition of criticality by Burns et al. [21]:

"Criticality is a designation of the level of assurance against failure needed
for a system component" [21, p. 3].

Accordingly, the definition of MCS is:

3.1 ToE- and Context Profiling 63

"A mixed criticality system (MCS) is one that has two or more distinct
levels (for example safety critical, mission critical and low-critical)" [21, p.
3].

Here, the authors aim explicitly for safety-relevant assurance. Well-known examples
are the Automotive Safety Integrity Levels (ASIL) defined by the ISO26262 [83].

MCS in Automotive Environments

The aggregation of features is an ongoing trend in the automotive industry. As it
was mentioned in the previous section, the advantage of MCS has multi-dimensional
motivations (cost, space, etc.). The result of such aggregation e�orts has evolved into
highly integrated control units. Most commonly they are referred to as DCU [162].
Particularly, examples such as the zFAS1 show that this has become a reality in the
automotive sector [76].

A further automotive application of mixed-criticality is ECUs combining In-Vehicle
Infotainment (IVI) and Driver Information (DI) functionality. The first example has
decent requirements towards processing power and multimedia features. This includes
graphics power, connection versatility and audio capabilities. However, the second
example builds primarily on safety or dependability in general. The cluster instrument
which shows the speedometer, mileage, rotations per minute and telltales is an example
for DI functionality. That information is considered to be safety critical and mandatory
to the driver. Particularly the telltales, which are warning signs shown by the cluster
instrument, imply a certain ASIL criticality.

The previous example shows that MCS not only handle functions which imply
requirements such as timing or stability (compare with Goswami et al. [57]), but also
all possible system quality aspects can be targeted in an automotive system.

Hence, within this work, the definition of MCS has been adopted to the broader
functional field of the automotive domain. Accordingly, MCS is defined concerning
system quality goals.

Definition 3.1 MCS integrate multiple quality domains (MC-domains), each of which
is designated to the assurance of system quality goals.

On a logical basis, the question arises as to how to suitably organise the mixed-
critical functions. Special separation provides the ability to compose functions with
similar criticality requirements into the same MC-domain. However, in practice the

1zentrale Fahrerassistenzsteuergerät - centralized driver assistance control unit

64 Risk Assessment: Driver Information System Case Study

bundles of functions can be driven by several reasons. For example, integration issues
during the development of the system might lead to a di�erent distribution criteria
[101].

MC-domains compose functions with a certain tendency to fulfil a particular system
quality. This means that, one MC-domain might be composed of functions with a
focus on safety and reliability and another domain could consist of functions aiming for
usability and performance. In Figure 2.11, this assumption is exemplarily shown. The
severity of this tendency of a certain function is commonly referred to as criticality.

3.1.2 System Decomposition

In general, the case study realizes a dual domain MCS. The driver information system
has been utilised to serve as a concept implementation to provide context to the
assessment conducted in this work. Furthermore, it is applied in the experimental
platform in order to mount laboratory experiments as well as penetration testing.
Furthermore, this system concept has been adopted in several publications outside of
the research scope of this work [72–74, 100, 101].

Driver Information System

Cluster Instrument (MC2) Infotainment (MC1)

S

SR

R

S

U

C

R

P
U

MPSoC

PE1 CoPE

Communication Architecture

Memory Architecture

PE2 GPU

SHM_1_CoPE SHM_1_GPU

SHM_1_2

Part1-4

LLC

Fig. 3.1 Quality assignment for the Driver Information System.

3.1 ToE- and Context Profiling 65

Driver Information System

Cluster Instrument Infotainment

MPSoC

PE1 CoPE

Communication Architecture

Memory Architecture

PE2 GPU

SHM_1_CoPE SHM_1_GPUPart1-4

LLC

SHM_1_2

Pixel Buffer Command Buffer

Display

UI AppCompositor

Fig. 3.2 Case Study: Driver Information System use case.

In general, the system composition consists of the two MC-domains. Referring to
the definition of the ToE, an MC-domain realizes the concept of AD. These domains
are denoted by MC1 and MC2, respectively. Each MC-domain implies a main purpose.
Here, MC1 implements a controller for cluster instruments, whereas MC2 facilitates a
typical IVI system. The functional goal is to provide close-coupled graphical output.
This means the output of each MC-domain will be composited and visualised on
a common display. This display is located at the traditional position for cluster
instruments, which is behind the steering wheel. Figure 3.2 visualises the interplay
between the two MC-domains and the display. The communication is handled via a
shared memory region in the main memory. There, a pixel bu�er and a command bu�er
are located. Within the pixel bu�er the graphical output is carried. The command
bu�er is used to transfer user interactions from the user interface back to the respective
domain.

Function Architecture Each domain contains functionality which is typical for
the applied area. MC1 is considered to visualize the cluster instrument content and

66 Risk Assessment: Driver Information System Case Study

information to the driver. These include: speed, mileage, gage, tell-tales2, blinking
lights and others. Furthermore, to display such information the domain includes
functions to receive the information from an in-vehicle bus (such as the Controller Area
Network (CAN)). According to the criticality consideration in MC2 the vast majority
of duties emphasise a criticality in safety and dependability.

In contrast, MC1 includes functions with performance and usability emphasis.
This is motivated by the fact that the IVI system implements functions such as media
processing, radio, telephony and value-added cloud services. Notably, the latter involves
connectivity interfaces such as Bluetooth, Wireless Local Area Networking (WiFi) and
broadband Internet connections. In Figure 3.1 the criticality aspect is visualized.

Technical Architecture Technically, the setup incorporates system elements which
are typical for MPSoCs in this area. The two MC-domains are assigned to the
technical architecture, as shown in Figure 3.3. Three DMA capable PEs are considered.
According to the ToE profile, these elements include a CA interface. A dual-core PE is
incorporated, where each core is denoted by PE1 and PE2, respectively. This dual-core
PE is considered to be the application processing unit, executing the major software
stacks of the MC-system. Internally, each PE incorporates a private level one (L1)
cache and additionally, a second level cache (L2) is shared by PE1 and PE2. Address
translations are supported by the two-stage MMU concept, whereby the first stage is
private to the each of the PE and the second stage is globally maintained. This aspect
will be discussed later in this section.

The system includes a co-processor for special computation purposes. Within the
automotive domain, this is often used to encounter real-time requirements or to make
special hardware features available. Those include fault-tolerance technologies such as
lock-step hardware failure detection and prevention [12].

Furthermore, a GPU is integrated into the system. In the functional scenario, the
GPU handles all graphics rendering tasks. Main memory is represented by the Memory
subsystem. For the sake of simplicity, Memory is considered to provide concurrent
access. Arbitration of competing accesses is out of scope. The PE subsystems are
connected through a simple interface to the CA. The CA itself is considered to be
transparent to the PEs. It simply handles the issued data transfers. As it is for Memory
the particular class or implementation of CA (NoC, cross-bar etc.) is opaque for this
consideration. As a result, the PE address memory through their CA interfaces.

2Tell-tales are small warning pictographs which are intended to warn or inform the driver about
the state of the vehicle.

3.1 ToE- and Context Profiling 67

PE1 PE2

CoPEMMU(2nd)
GPU

Memory

Part1 Part2 Part3 Part4

Software
Stack1

Software
Stack2

Software
Stack3

Firmware

SHM_1_2 SHM_1_CoPE SHM_2_GPU

Software

Hardware

Fig. 3.3 Technical architecture and software stack assignments.

Further aspects shown in Figure 3.3, are the logical software-stack assignments
of the particular hardware elements. Each PE is assigned with its software-stack.
Internally the software-stacks consist of di�erent system levels, as described in Section
2.1.2. The software-stacks of PE1 and PE2 are considered to contain the main
functions of the system. Therefore, they consist of a rich OS. The Companion
Processing Element (CoPE) is run by a firmware OS and a thin application software
stack. The GPU is provided with firmware as well. Within the Memory, each software
stack is assigned to a private memory partition. The partitions are denoted by
Parti. Furthermore, a Shared Memory (SHM) partition is reserved for communication
purposes between the software-stacks. The logical MC-domain separation is shown in
detail in the system memory map. Figure 3.4 depicts the two MC-domains and the
system address space. In this simplified address space overview, the memory partitions
are shown as single rows. Every row represents a particular block of memory. In
this simplified view all memory blocks are equal in size. The coloured row in the
corresponding column indicates whether the MC-domain has access to the memory
range.

General Data Flow Diagram. Figure 3.5 illustrates the data flows between the
technical system elements.

68 Risk Assessment: Driver Information System Case Study

PE1

MC2

CoPE

Part1

Part3

Part4

Part2

SHM_1_2

SHM_1_CoPE

SHM_2_GPU

MC 1

System
Address
Space

GPU

PE2

Fig. 3.4 Memory map overview.

PE1

PE2

CoPE

GPU

Part1

Part2

Part3

Part4

SHM_1_2 SHM_1_CoPESHM_2_GPULLC

Fig. 3.5 Data flow diagram of the driver information system.

Operational Environment

From a broader perspective, a driver information system is part of a system of sys-
tems. The previously described system will be integrated into a vehicular environment.
Accordingly, this system of systems implies a certain complexity which can be di�eren-
tiated in several aspects. There are topological views on the system which represent the
technical segregation of the systems, sometimes referred to as E/E architectures. They
di�er over the range of OEMs and their products. Usually, it consists of several ECUs
connected through diverse automotive bus systems. From a functional viewpoint, there
are distinct domains which categorise the function of a system. Functional domains
make segments for the intended purpose of the ECUs. As an example, there is a
domain for the powertrain ECUs. Those include ECUs such as engine controllers,

3.1 ToE- and Context Profiling 69

wheel speed sensors, and other actuators. To extend this example, most commonly,
there are usually domains for infotainment, body control and ADAS as well. The
infotainment domain includes functions such as navigation and telematics, just to
name a few. Body control domains might include a Body Control Unit (BCM) ECU
handling the wireless key access to the vehicle, for example. The ADAS domain might
implement automated driving functionality and incorporates the necessary sensors and
actuators for that purpose. Figure 3.6 has exemplary E/E architecture and functional
domains. Domains and topologies are independently segmented. However, often this is
a common practice in E/E topologies.

Gateway

Engine
Controller

Driver
Information

System

BCM

Telematics
ECU

Actuator

Sensor

Wheel Sensor

Gateway Gateway

MCU

Radar Sensor

Wire
Interface

Wireless
Interface

Fig. 3.6 Exemplary E/E architecture and functional domains.

3.1.3 Experimental Platform

Mainly, the aim for selecting a suitable hardware platform (MPSoC) is to enable
reproducibility and transferability of the given results and concepts. Hence, a commodity
platform was chosen which is available to the public domain. A MPSoC platforms is
typically an integrated set of IP-cores (hardware elements). The integration, in other
words, the actual platform, is proprietary and therefore a specific facility. Nonetheless,
the integrated IP-cores implement common or widespread architectures. What this
means is, as long as the compilation of the hardware elements follows the ToE definition,
the aspects and results of this work are reproducible and transferable.

As a result, to select the appropriate platform these two aspects have to be con-
sidered. The particular platform facility must be available including all necessary
documentation and sources to implement and operate the experiments. This enables
their reproducibility. Transferability relies, in this case, on the utilisation and archi-
tecture of the IP-cores. They must apply universal architectural concepts which in

70 Risk Assessment: Driver Information System Case Study

turn are widespread. If this is not be given, the results are only applicable to a limited
amount of systems. In the following sections, the experimental platform is described in
detail.

Texas Instruments OMAP5432 EVM

Platform Introduction

Fig. 3.7 Texas Instruments OMAP5432 EVM [79].

In this work, the Texas Instruments OMAP5432 Evaluation Module (EVM) [79] has
been chosen. The OMAP5x platform was one of the first to incorporate multi-core PEs
with virtualization extensions. This feature and the broad range of further IP-cores
and peripherals made it into a suitable hardware platform, particularly for the driver
information case study.

"OMAP5432 EVM is an OMAP5432 ES2.0 platform designed to provide
access to as many of the powerful features of the OMAP5432 Multimedia
Processor as possible, while maintaining a low cost. This will allow the
user to develop software to utilize the features of the powerful OMAP5432
processor." [79, p. 9]

3.1 ToE- and Context Profiling 71

In addition to the range of functionalities, the manufacturer provides a reasonable
software development kit in order to use the system out-of-the-box [171]. Here, the
Linux and Android Board Support Package (BSP) are worth mentioning, since they are
utilized in the PoC implementation. However, the availability of QNX and Greenhills
INTEGRITY BSPs is valuable for researchers seeking domain specific operating system
evaluations.

The EVM is equipped with the OMAP5432 MPSoC of Texas Instruments. Amongst
other external peripherals, the EVM features 4GB of Embedded Multi Media Card
(eMMC) non-volatile flash memory, 2GB DDR3L3 volatile random access memory.
The entire specification is listed in Appendix A. Furthermore, Figure 3.7 visualizes the
features of the EVM.

OMAP5 General Features

The OMAP5432 MPSoC embodies the heart of the EVM. It integrates a plethora of
IP-cores, of which the ARM Cortex-A15 microprocessor units (MPU)4 is the central
PE on this platform. Further PEs are incorporated. Here, the Image Processing
Unit (IPU) and the 3D-graphics accelerator are prominent examples, because they are
utilised to demonstrate some of the attack approaches. A detailed visualisation of the
entire MPSoC architecture is given in Figure A.1. In the following, a brief overview of
the MPSoC is given [169, p. 288]:

• Cortex™-A15 microprocessor unit (MPU) subsystem, including two ARM®
Cortex-A15 cores

• Digital signal processor (DSP) subsystem accelerator, hardware virtualization
support, and large physical address extensions (LPAE)

• Cortex™-M4 image processing unit (IPU) subsystem, including two ARM Cortex-
M4 microprocessors

• Audio back-end (ABE) subsystem

• Imaging subsystem (ISS), consisting of image signal processor (ISP) and still
image coprocessor (SIMCOP) block

• 3D-graphics accelerator subsystem, including POWERVR™ SGX544 dual-core
3Dynamic Data Rate type 3 - low voltage SDRAM
4Within the Texas Instruments documentation, the microprocessor unit is abbreviated with

MPU. However, this collides with the abbreviation of the memory protection unit within this work.
Throughout this text, it will be made clear by the context which definition applies.

72 Risk Assessment: Driver Information System Case Study

Cortex-A15 MPU

Particularly, the ARM Cortex-A15 design [9] made it possible to introduce virtualized
systems in embedded environments. The design facilitates the ARM Virtualization
Extension (VE) [119]. The ARM VE feature a certain set of functions which are
previously mentioned in Section 2.1.4. These features include [119]:

Hypervisor execution mode: Additional privilege level which is higher than
supervisor mode. This will enable the VMM to execute at a higher privilege than
the guest OSs, and the guest OSs to execute with traditional operating system
privileges, removing the need to employ Paravirtualization techniques.

Interrupt provisioning: The provision of mechanisms to aid interrupt han-
dling, with native distinction of interrupt destined to secure monitor, hypervisors,
currently active guest OSs or non-currently-active guest OSs. This will dramat-
ically reduce the complexity of handling interrupts using software emulation
techniques and shadow structures inside the VMM.

Two Staged System MMU: The provision of a System MMU to aid memory
management, that supports: multiple translation contexts for multiple DMA
capable masters, two levels of address translation and hardware acceleration and
abstraction.

Despite the VE, the Cortex-A15 implements the ARM architecture version 7 [10].
Due to the advent of 64bit architectures in embedded devices, the successive architecture
ARMv8, the concept of the VE remains similar to the 32bit version. Particularly,
concerning the transferability aspect, the ARMv7 is the most implemented processor
architecture on the MPSoC marked for mobile devices. Superficially, the aspect of
demonstrating attacks on common or commodity hardware comes into focus when it
comes to transferability. The broader the spread of the architecture, the broader the
impact of the investigated attack. However, the given concepts are based on general
design principles rather than industrial implementations.

Software Stack

In order to provide some level of reproducibility, all results have been created using
open-source software. In the following, the major components are briefly described.

3.1 ToE- and Context Profiling 73

Operating System The software stack is comprised of a fairly common Linux
distribution. The implemented Kernel Version is Kernel 3.8.13. EVM specific patches
were used from the OMAP repository [177]. Only the kernel-space of Linux is used
to perform the software-stack level approaches. Accordingly, the description of the
userland implementation can be omitted, because it is not needed to reproduce the
shown concepts.

Bootloader The system bring-up is implemented by utilising the well-known u-boot
bootloader [36]. U-boot aims at beeing simple, fast, portable and configurable. Due to
the wide acceptance and widespread hardware support, this bootloader is suitable to
facilitate the PoC. The EVM specific patches and configurations have been taken from
the EVM development kit [177].

Boot Sequence

In the following, the initial boot sequence of the experimental setup is described. The
boot sequence is a crucial part of the setup of an AMP-system because in this phase,
the system will be configured. In Figure 3.8 the boot sequence is visualized in a
sequence diagram. PE1 is considered to act as the boot processor in this example.
Accordingly, this processor core loads and executes the Initial Program Loader (IPL).
An IPL is usually a particularly small portion of code that performs the fewest steps
necessary to configure the bare hardware [138]. IPLs, hence, are delivered along with
the hardware.

The sequence starts o� with the reset of the hardware. PE1 invokes the IPL which
loads and invokes the u-boot bootloader. All necessary configurations of the hardware
are done by the u-boot program. One of these initializing steps is the setup up the
MMUs which enforce the memory isolation of MC-domains when the system is running.
During this step, the memory mappings are created and stored in memory. The last
step is to load the OS images, which are, in this case, Linux kernels. Furthermore,
configuration files (device-tree-blobs) to set up the kernels are loaded. Right after the
loading is finished, the kernels can be invoked. During the initial boot sequence, PE2
is idling in a wait for reset state. With the Kernel invoked, the processor cores start
the boot sequence of the Linux kernels.

Due to the sake of simplicity, the boot sequence shown here lacks the verification
and attestation of the booted images. For a proper secure boot sequence, the control
flow must not be handed over to the code without a successful verification of the

74 Risk Assessment: Driver Information System Case Study

PE1:IPL

Hardware reset

invoke IPL()

load Uboot image()

PE1:uBoot PE1:MC1 PE2:MC2

invoke uBoot() initialize hardware()

AMP setup()

create L2
mapping table()

load Linux kernels/
config()

invoke kernel MC1()

invoke kernel MC2()

Linux OSs running

Fig. 3.8 Boot sequence of the experimental system setup.

authenticity of all binaries that are to be executed. In state-of-the-art automotive
ECUs this would be mandatory in terms of security.

3.1.4 Threat Context Analysis

Security considerations always deal with the question of what are the security relevant
elements of the system. The answer to this question is rather simple: everything is
security relevant. Security stands orthogonal to anything in a system. In other words,
security is a non-functional requirement that can be expressed as a quality constraint.
A method to determine such constraints is threat analysis. Since every functional or
technical element of a system is a�ected by threats, this is a complex and demanding
e�ort. Particularly, the challenge is to identify the specific elements of concern with

3.1 ToE- and Context Profiling 75

regards to the appropriate abstraction of the system and the state of the system in
which it is threatened.

Context and Assets

Although this section encompasses o�ensive aspects of the ToE, in the beginning, a
fundamental aspect needs to be discussed. This is the question: what are the subjects
of this analysis? In other words, what are the assets to be assigned with a protection
goal? For sure, an asset is an entity with a certain value to one of the stakeholders of
the ToE. As it is described in Section 2.2.1, the particular STRIDE threats will by
applied by the STRIDE-by-Element pattern.

Stakeholders. In this work, two stakeholders are considered: first the OEM, which
makes the vehicular systems and second, the driver who uses the vehicle as the end
user. The value chain or supply chain in the automotive environment is large. Several
levels of suppliers (tiers) are involved. For the sake of simplicity, this context will be
represented by the OEM stakeholder. Furthermore, the end user (driver) will represent
the human beings in the driving environment.

Assets in MC-systems. As it was stated before, an impact analysis shall reveal or
help to identify what the important assets of a potential target are. On a high level,
those assets are categorized by safety, financial, operational and privacy (compare
impact severity definition in 2.2.1). Applied to automotive scenarios, a high-level asset
on safety is the physical integrity of the driver and other tra�c participants. The
physical integrity of a human-being is one of the most significant concerns when it
comes to vehicles and their safety relationship. Also, from the OEMs perspective, the
financial aspect of their product turns into focus as well. Business cases must be secured.
A good example of "lost" business cases is if a charged feature is fraudulently activated
by an end user. In an environment which is subject to an evolving modularization of
functionality, this becomes a serious case. As a consequence, the financial aspect of
protecting business cases is a high-level asset for the OEM. Moreover, there are much
more examples applicable to this environment.

MC-domains are logical assets. The system model in Section 3.3 consists of a
functional and logical view on the system. On a higher level, there is an MC-system
which consists of several MC-domains. A specific MC-domain represents the level of
granularity this threat analysis refers to. MC-domains are introduced to compose

76 Risk Assessment: Driver Information System Case Study

functions with a certain criticality. Therefore, since it has a defined criticality, it implies
a certain impact to the stakeholders if the quality of this particular MC-domain is not
met. If the MC-domain is compromised, the impact is high.

Hardware elements are technical assets. On the hardware, technical level (com-
pare Section 3.1.2) the assets are the single hardware elements on the MPSoC. This is
true for all elements that relate to the intermediate level. In fact, all those elements are
addressable by the system memory map: PE, memory, peripherals etc. This selection
is motivated by the fact that these elements on the level given in the system model
technically facilitate the actual Mixed-Criticality (MC)-domain. If the ultimate goal is
to analyse a particular MC-domain, the technical facilities need to be assessed.

Asset Summary. Ultimately, a single MC-domain is concerned in this analysis. The
analysis is centralised to the identified assets. Therefore, the threat analysis seeks to
determine the threats on this level first. In the following, the intermediate level system
elements are assessed in order to lead into the attack analysis.

Entry Points

External Threat Surface. The vehicular attack surface is wide-spread and complex.
Despite the past decades of automotive engineering, attacks have turned into the focus
of manufacturers and suppliers because interference is a crucial factor for the dependable
and reliable operation of their products. This is motivated by the fact, that the number
of wireless interfaces into the car evolved substantially.

External connections to the environment from a functional point of view include
two main areas: services and functions, which add value to the inner-vehicular system
and Consumer Electronics (CE) oriented infotainment services. The latter include
general purpose Internet access, which opens the entire world of connectivity services.
Those services include social media such as communities, messaging and data sharing.
Furthermore, media access to audio and video streaming are an important functionality
to be integrated into the vehicular system. The area of value-added services which
are provided by the manufacturers or operators includes: remote software updates or
Over-the-Air (OTA), map and positioning services such as high definition maps for
automated driving functions, fleet management services for the commercial car sector,
remote diagnostics, Car2X5 communication and Emergency Call Interfaces (eCall)
[125]. Notably, the value-added services have potentially a high impact on the function

5Abbreviation for Car to something else.

3.1 ToE- and Context Profiling 77

of the vehicle. For example, remote software updates are naturally prone to bring illicit
functionality directly into the vehicle.

Technically, all of the services as mentioned earlier need to apply a technical interface
to communicate to the outside world. Common technologies which are used in this
area are WiFi, Bluetooth and cellular networks such as LTE. However, the technical
interfaces are not limited to such wide and near range general purpose communication
technologies. In the automotive environment, further wireless channels are implemented.
Those include keyless and wireless entry systems and wireless sensors such as wheel
speed odometry.

In addition to the wireless interfaces, cable connections are still a crucial aspect.
Aside from media devices which are plugged into the IVI system, for example, diag-
nostics accesses are also important to mention. The latter are usually implemented
using the standardised On Board Diagnostics (ODB)-interface or the Joint Test Ac-
tion Group (JTAG) interface of an ECU. The former includes USB pluggable media,
smartphones, or optical media such as CD, DVD or Blue-rays.

Attack Goals. Before the particular relationship to attacks is elaborated upon, this
section aims at building the overall context for attacks on vehicular systems. In order
to mount attacks on the technical MC-system, the threat agent needs to break several
horizontal or vertical security controls to reach out to the ToE. Although these steps
are out of scope of this work, they are discussed very briefly to set the overall context
and makes it easier to delimit the contribution of this work.

In Section 3.1.4, the vehicular environment is described. There are all entry vectors
(interfaces) into the vehicle shown. In Figure 3.9, the presumed attack-tree to break
into the MC-system is shown.

The attack goals are derived from the three major threats of the previous chapter,
which are Denial-of-Service, Tampering and Elevation of Privilege. These threats are
taken over and shown as generic attack methods (dashed orange rectangles).

For the sake of simplicity, the attack tree is condensed and encompasses two root
nodes, each of which partially shares the same nodes on the lower levels.

The specific attack goals are illustrated in the red rectangles. Either adversary
seeks to degrade or disrupt the performance or takes control of a particular function in
a target MC-domain. The latter refers to tampering and EoP threats and the former
to DoS.

The following sub-notes towards the root, comprise of the actual scope of this attack
assessment. In general, the intermediate layer must be exploited. These designated

78 Risk Assessment: Driver Information System Case Study

methods are dependent on the two roots (goals) of the attacker. Here, these are denoted
by Stall-PE for the DoS threat and Breach Memory Protection.

Furthermore, the attack tree shows two initial events (blue circles) which are assumed
to be done in advance. It is obvious but yet not trivial that the attacker is required
to gain entry into the MC-system first. In parallel to gaining entry, the adversary
must at least control a software-stack of one of the MC-domains. In order to reach this
goal, it might me necessary to exploit the application layer as well. Most commonly,
such kind of elevation of privilege exploits are initiated from applications within the
highest layer. As an illustration, at this level, the data is handled which was sent over
a communication channel and therefore a severe attack surface. Nevertheless, it might
be possible that vulnerabilities within the software-stack are remotely exploitable such
as, improper implementation of the communication stacks, such as shared memory,
Internet Protocol (IP) or even CAN.

DoS target MC-
domain
[TH.DoS]

Tamper with
target MC-

domain
[TH.Tampering] [TH.IS]

EoP of MC-
domain

[TH.EoP] [TH.IS]

Control
Software-

Stack

Stall PE
Breach Memory

Protection

Exploit
Intermediate

Layer

Gain Entry
into MC-
system

AND

Control target
MC-domain

Disrupt service of
target MC-

domain

ToE Threats

Attack goals:
Driver

Information
System

AND

Fig. 3.9 Presumed path into the MC-system. ToE threats defined in 2.1.5.

3.1 ToE- and Context Profiling 79

Threat Agents

To estimate the likelihood of a threat being exploited, adversaries have to be taken
into account. Generally speaking, a threat agent is an entity acting adversely on the
ToE. The root of such adverse actions are usually human beings. They have an intent
and follow a motivation to gain benefit out of an adverse action. In compliance with
[49, p. 51] the following threat agent categories are considered:

• State Agents: State-sponsored national groups that are engaged in espionage
and either clandestine or covert action. Examples are national intelligence
agencies.

• Cybercriminals: Criminal enterprises or loosely organized group of criminals
that are usually well-funded. Common examples are black-hat6 hackers.

• Ethical Hacker: Enterprise or loosely organized group which is well funded
and skilled. Common examples are researchers and white-hat7 hackers.

• Non-Privileged Insiders: People that have to overcome resistive controls in
order to a�ect harm. Examples are end users such as the driver or owner of a
vehicle.

• Privileged Insiders: Group that has legitimate access to resources of the ToE.
Examples are employees and car garages.

• Malware: Non-human means which acts autonomously to a certain extend.
Most commonly this is initiated by cybercriminals.

The threat agent categories mentioned earlier are distinguishable by characteristics
such as motivation, primary intent, sponsorship, capability, preferred targets, personal
risk tolerance and concern of collateral damage. As an example, an end user might
want to activate features in his infotainment unit to save money fraudulently. However,
his capabilities are low. In contrast, an ethical hacker, such as a researcher, has much
more resources and knowledge to compromise the feature activation, but his motivation
is di�erent in this regard. Researchers aim for reputational aspects of motivation.

In this work, we assume threat agents with rather high capabilities, including
the resources and knowledge to compromise a system which is under consideration.
This includes the knowledge of concepts in mixed critical systems, access to restricted

6Black-hat hackers aim at gaining benefit to the disadvantage of others.
7Activities of white-hat hackers aim for the education of the advantage of others.

80 Risk Assessment: Driver Information System Case Study

documentation and access to the ToE as well. It is assumed to deal with a mixture of
privileged insiders and ethical hackers with high motivation.

Presumed Threat Agent Capabilities

This section elaborates upon the attacker classification which has been assumed.
Assumptions on the attackers are an essential key. On the one hand, it helps to set
the level of detail of investigations and analysis, and on the other hand, it serves as a
factor to choose suitable countermeasures for certain attacks. As is mentioned in the
previous Section 3.1.4, attacker classes range from non-privileged insiders, to white-hat
hackers to state agencies. They di�er regarding their motivation, intention, resources,
risk tolerance and expertise. Although in this consideration only the technical skills
will be considered in detail, some examples of objectives of attackers are given.

Particularly, in the automotive domain, safety is a crucial impact aspect for security
considerations. Intentionally, safety might be the aspect which comes to someone’s
mind first when it comes to protection from attacks. The range of possible incidents
is wide, particularly regarding the physical integrity of tra�c participants or the
driver. As an example, within the impact analysis, the higher severity levels expect
an uncertainty of survival of the vehicle’s occupants. An attacker could compromise
one of the actuators of the vehicle and take over the longitudinal or lateral driving
function. By compromising the actuation, an attacker would have direct control
over the car, which allows for the conclusion that the actuation has the most severe
impact on the safety of the e�ected targets. However, by attacking the sensing and
furthermore the computational part of the vehicle, an adversary might be able to a�ect
the motion of the vehicle as well. It can be assumed that an MC-system will more likely
be implemented to combine a large set of abstracted functionalities rather than to
physically control actuators directly. The objective of an attacker might be to interfere
with the physical integrity of human beings or physical things in order to blackmail
others, for example. This is indeed a very dark scenario. Nevertheless, if an attacker
could show that they are capable of doing so, they might reach their goal without
actually mounting an attack in the real world. An evenly important category of attack
objectives is the financial side. This can be considered for the driver and even more
critical for the producer of the vehicular system. Attackers could aim for intercepting
payments which are issued to assign a value-added-service. So, the objective is to
gain a financial advantage. For the driver or owner of the vehicle, this has a direct
impact on their financial situation. Also, for the OEMs or tiers, finance might be
a�ected directly or indirectly. For sure, attackers could intercept payments handled

3.1 ToE- and Context Profiling 81

by their vehicular or backend infrastructure as well. More severe are the financial
impacts caused by regulatory fines due to non-compliance with regulations, for example.
Due to an illicit configuration, system limits could be manipulated, and the vehicle
could lose its operating license. Attacks on the operation of the vehicle generally aim
for the degradation of the performance of the system. Adversaries might aim for an
annoyance of the vehicle’s owner or to deny the service of an entire fleet of a particular
manufacturer. A good example can be adopted from the private computer environment.
So-called ransom ware aims at encrypting the user’s data on its hard drive to make it
only accessible by the originators of the malware. Only after a certain payment can
the personal data be decrypted and made accessible again. Privacy aspects becoming
more and more into the focus of users, on the one hand, and attackers, on the other.
Particularly, value-added services which are potentially connected services might reveal
plenty of data to create profiles of the vehicle’s owner or driver. For example, the vehicle
could be tracked, or private data such as identities can be collected and stolen. For
adversaries, there is a broad black market to turn private data into revenue. Attackers
might also aim for degrading the reputation of a particular manufacturer. Through
the introduction of any of the mentioned attack objective categories, their reputation
would be indirectly degraded.

Capability Factors

In the following, the technical aspects of the threat capabilities are elaborated upon.
This aims at creating an attacker profile based on the concept of quantifying risk
(compare 2.2.1).

Knowledge of the targeted system is a crucial aspect when one is considering
the potential of an attacker. In general, knowledge means the awareness of system
internals. This includes technical documentation of software and hardware as
well as the functional behaviour. As an example, the attacker might be aware
of the communication infrastructure of particular MC-domains. Moreover, it is
considered to be known how to configure the hardware to create the MC-system.
Indeed, some of the information about the SoC architecture is only available
through non-disclosure agreements with the manufacturer, which is even more
the case for security-related information. Nevertheless, to follow a security-by-
obscurity principle has been proven to be a bad strategic choice [118]. As a result,
it is considered better to defend against adversaries who are aware of the entire
system construction.

82 Risk Assessment: Driver Information System Case Study

The level of expertise describes the attacker’s ability to conduct an adverse
action against the target. In contrast to the knowledge of the system, which aims
for the available information, the expertise helps to gain unknown information.
Reverse engineering skills are a good example for gaining information about the
target. Moreover, it is not only about the information of the system, but it is
also the identification of vulnerabilities. Namely, the vulnerabilities will later be
combined and formed into an attack vector. Not only the information about a
target becomes certain, but also the actual act of compromising the system is an
important factor to express the level of expertise of an adversary. This includes,
for example, the ability to implement exploits or use the appropriate resources
to do it. As a result, concerning the AP model, the assumed level of expertise is
on the expert and multiple experts level.

Equipment is the actual mean of applying the expertise of the adversary. It is,
therefore, a crucial factor to estimate capabilities. The factor is influenced by
the degree of how tailored a means must be to be applicable for the purpose of
the attack. For example, is it environment-specific or rather standardised? Cost
is also an important factor. It makes a di�erence if the adversary needs to make
huge investments. As a side note, this lowers the return on investment as well.
The assumed resource level might also be seen as an expression on how much
power an adversary can apply to an attack. The anticipated level of equipment
is bespoke. The adversary is capable of crafting equipment for the specific ToE.

The window of opportunity is treated as unlimited. Usually, the window
would limit the time range in which the target might be accessible to the adversary.
In some scenarios, this is a crucial factor, mainly when feasibility needs to be
considered. As an example, in a situation when the attacker seeks to gain remote
access to a vehicular system, he has several possibilities, as described in 3.1.4.
Considering a wireless interface, an adversary could spoof the roadside broadcast
antenna, for example. It would be necessary to be in the physical range of
the target vehicle. Hence, the window of opportunity is limited to the physical
broadcasting range of a wireless transmitter to get a connection to the vehicle.
By considering an MC-system, it is assumed that the attacker has already gained
access to the system. Once the adversary has compromised an MC-domain, the
window of opportunity is unlimited.

3.2 Threat and Attack Analysis 83

Summary of technical capabilities It is presumed that the adversary has the
following capabilities:

• Compromise an MC-domain on all logical and technical layers. Practically
speaking this means that the adversary fully controls the hardware and SoC
(hardware elements) which have been assigned to the MC-domain by purpose.
To put it in another view, the adversary inherits all technical capabilities the
layers he has compromised have. This includes, for example, access privileges
and address mappings. This assumption is reasonable due to the integration of
connected services.

• Access to all necessary documentation of hardware and software running on the
system. The attackers know exactly how the MPSoC is implemented. They are
aware of the system memory map to utilise the hardware from the software layers.
Furthermore, all software layers, reaching from applications, software frameworks,
and operating systems are known to the adversary, either through re-engineering
beforehand or due to its documentation.

3.2 Threat and Attack Analysis
This section provides an overview of threats applicable to the DFD shown in 3.11. The
section is split into three subsections which elaborate on high-level threats based on a
logical system architecture. This allows for the showing of the threat scope. Within
the subsequent subsections, this scope is analysed in further detail. The threats are
presented per interaction following the STRIDE-per-Element as discussed in Section
2.2.1.

3.2.1 Threat Analysis

In order to consider the threats to a single entity, such as a MC-domain, it makes sense
to assume another entity of equal type. For sure, a MC-system consists at least of two
or more MC-domains. Therefore, herein are two MC-domains considered. One for the
adversary and one for the asset (victim).

Logical Data Flow Diagram. In Figure 3.10 the logical DFD is illustrated. The
MC-domains are denoted by MC1 and MC2. To illustrate the communication of the two
domains, two data flows are incorporated. One of them (HMI commands) represents

84 Risk Assessment: Driver Information System Case Study

the ability to trigger Human Machine Interface (HMI) events in the infotainment
domain. The other data flow, denoted by Rendered Pixels, represents graphics that are
transferred to the cluster instrument domain (MC1) which displays the video output.
As a result, data flows bi-directionally. This means that each of them implies inbound
and outbound data tra�c.

Rendered Pixels

MC1 MC2

HMI commands

Fig. 3.10 Logical Level DFD.

Furthermore, Table 3.1 elaborates on the applied threats in more detail. In
this regard, the explanation includes practical examples on how such threats could
be facilitated. Asides from this, the violated security goals or missing protection
mechanisms are stated. This will lead to the attack assessment in the following step of
the o�ensive assessment of the ToE.

Threat Scoping

Overall, the STRIDE model provides six classes of threats to be applied to an asset.
However, not every threat is contributing to the attack goals defined in Section 3.1.4.
Therefore, in this work and for the purpose of considering these attack goals the
STRIDE threats are divided into primary, secondary and out-of-scope. Justifications
are given on the basis of the primary threats.

Primary Threats: Tampering and DoS. The main focus is put on threats that
concern the integrity and availability of functions. As a result, tampering and denial-
of-service are the primary threats in this area. It is considered, that tampering is the
root-cause for other, secondary, threats in such system compilations. For example,
due to modified and therefore illicit data the privilege of a (DFD) process might be
elevated as a result. Therefore, tampering leads to Elevation of Privilege (EoP).

Secondary Threats: Spoofing, EoP and Information Disclosure. Although
spoofing is a common and very severe threat in many areas, as it is in MC-systems, on

3.2 Threat and Attack Analysis 85

Table 3.1 Listing of logical level threats, including a description of the violated security
goals.

Type Threat Description
S MC1 impersonates MC2.

MC2 is impersonated by
MC1.

An adjacent entity (MC-domain) imperson-
ates by compromising a communication chan-
nel. Communication entities are improperly
authenticated.

T MC1 tampers with MC2.
MC2 tampers with MC1.

MC-domain is tampered with by another by
modification of data or control flow. Memory
storage does not implement proper access
control mechanisms.

R - Repudiation is not applicable in this technical
scenario

I MC2 discloses information
of MC1. MC1 discloses
information of MC2.

A MC-domain information has been disclosed
by another. Information includes intellectual
property or implementation details for reverse
engineering. This is often induced due to
improper access control.

D MC1 disrupts the service
of MC2. MC2 disrupts the
service of MC1.

Mount a DoS attack by over committing
shared resources. Resource accesses are not
scheduled by a privileged instance.

E MC2 elevates privilege of
MC1 by compromising it’s
control flow. MC1 ele-
vates privilege of MC2.

MC-domain is compromised with by another
due to the exploitation of a vulnerability to el-
evate/escalate privileges. Improper isolation
mechanisms (vertically/horizontally).

the intermediate level the in-personification of entire MC-domains is not concerned.
This is only reasonable if the particular functions within the MC-domains would be
considered. As a result, this is omitted in this consideration. In the case of EoP, it
is assumed that this threat can be represented by tampering. Information Disclosure
has many aspects in the automotive domain. Those reach from privacy to intellectual
property issues. In this consideration, information disclosure is more or less treated as
the ability to read data for the purpose of re-engineering of system internals. Therefore,
it contributes to the reconnaissance phase of attack vectors.

Out-of-Scope Threat: Repudiation. Repudiation is a threat which is usually
applied in complex scenarios involving security concepts such as trust in third parties.

86 Risk Assessment: Driver Information System Case Study

In this mostly technical driven consideration, the security goal non-repudiation is not
reasonable.

Focus Threats

MC-domain is tampered with by adjacent MC-domain. Possibilities of tam-
pering with an MC-domain are broad. Many assets inside the MC-domain exist which
are modifiable for any reason. Despite the previously discussed qualities, the domain
has to satisfy the facilities of the MC-domain to imply reasonable motivations for
threat agents. The root cause of being able to tamper with such facilities are, for
example, missing access control capabilities. A crucial precondition to implement an
access control mechanism is that the subjects and objects that are to be controlled are
tangible. This means that the adjacent elements must be identifiable and therefore
also di�erentiate-able.

MC-domain is disrupted by adjacent MC-domain. The disruption of an MC-
domain concerning the MC-system model is considered to be inducted by resource
sharing issues. For sure, in a highly integrated platform, a large surface exists where
resources need to be shared among all domains. Those touch-points are not practically
avoidable. There must always be a mechanism which is handling competing accesses.
Nonetheless, if accesses are not administered, by implementing collision avoidance,
for example, disruption e�ects could be enforced by the purpose of a threat agent.
Furthermore, examples of those touch-points are not obvious in every case like shared
memory is. Shared power supplies and caches are worthwhile to mention here as well.

3.2.2 Attack Analysis

The two threats that have been introduced previously, are now analysed in their
technical context.

Technical Data Flow Diagram. The technical representation of the DFD includes
the physical elements of the system model. In Figure 3.11, the DFD representing
the driver information system is shown. Due to the complexity of this particular
DFD, the detailed analysis is limited to the items which are drawn in solid lines. The
items in-scope cover all possible threats concerning the system model. This means
all technical elements such as PE (and multi-core PE), CA, memory and data flows
are represented. All other elements are treated as adjacent entities which embody the

3.2 Threat and Attack Analysis 87

PE1

PE2

CoPE

GPU

Part1

Part2

Part3

Part4

SHM_1_2 SHM_1_CoPESHM_2_GPULLC CA

Fig. 3.11 DFD of the technical platform. Dashed items are out-of-scope.

same threats as the considered ones. As a result, the findings are transferable to the
rest of the elements. Table 3.2 shows the list of STRIDE-per-element threats which
the thread model application reveals.

Table 3.2 Technical DFD: STRIDE-per-element. Check marks in brackets state out-of-
scope threats.

Threat
Element S T R I D E
1 PE1 X X (X) (X) X X
2 PE2 X X (X) (X) X X
3 Part1 X (X) X
4 Part2 X (X) X
5 LLC X (X) X
6 Part1 data trans-

fer
X (X) X

7 Part2 data trans-
fer

X (X) X

8 PE1 cache trans-
fer

X (X) X

9 PE2 cache trans-
fer

X (X) X

10 PE1 SHM access X (X) X
11 PE2 SHM access X (X) X

88 Risk Assessment: Driver Information System Case Study

Furthermore, Table 3.3 elaborates in detail about the applied threats. In this regard,
as is done for the logical threats, the explanation includes practical examples on how
such threats could be realized. Also, the violated security goals or missing protection
mechanisms are stated. On this level, the combination of threats and protection goal
violation will lead to security requirements for each system element.

Notwithstanding, the data flows are mentioned in the DFD and the further inves-
tigation focuses on the elements which process or store data. This is motivated by
the previously set limitation that the CA is treated as opaque to the system elements.
Consequently, the threat analysis omits the technical facilities of data flows.

PEi is tampered with by adjacent PEj.

PE can be tampered with in many ways. They contain plenty of facilities which are
worth for modifying, including registers, arithmetic, and the caches. Truly, the DFD
omits some interactors and interfaces which would be capable of tampering with a PE
directly. Debugging interfaces such as JTAG [1] are widespread in embedded MPSoCs
and usually capable of interfering with the data even in processor registers. Practically,
those opportunities do not apply when considering a modification by an adjacent PE.
Consequently, the threat of directly tampering with adjacent PE is not considered
any further. However, the modification of data and instructions within the memory
partition the PE utilizes is subject to this consideration.

Parti is tampered with by PEj

Memory partitions contain a plethora of valuable information for a threat agent. Obvi-
ously, all instructions and data structures which facilitate the function implementation
are compiled at this place. Therefore, threatening the integrity of memory partitions
(Parti) has a major impact to the system behavior and consequently on the system
qualities. As a result, the focussed attack for the threat [MC-domain is tampered
with by adjacent MC-domain.] is tampering with the memory base of which a PE is
operating on.

PEi disrupts PEj access to LLC.

The proper operation in terms of performance is a key aspect when it comes to the
availability of PEs. The dependency on the qualities of the MC-domain is direct. If
the PE is degraded in performance, it e�ects the operation of the functions within
the MC-domain executed by the PE. With respect to the DFD (compare 3.11), this

3.2 Threat and Attack Analysis 89

Table 3.3 STRIDE-per-element analysis.

Type Threat Description
S PEi is tampered with by

adjacent PEj .
A PE is impersonated by another by compro-
mising a communication channel, for example.
Communication entities (PEs) are improper
authenticated.

T Parti is tampered with by
PEj

PE is tampered with by another by modifica-
tion of data or control flow. Data at rest or
transfer facilities does not implement proper
access control mechanisms.

T PEi tampers with LLC PE is tampered with by adjacent by modifi-
cation of data or control flow. Data at rest or
transfer facilities does not implement proper
access control mechanisms.

T PE1 tampers with Part2 Part2 is tampered with by PE1 by modifi-
cation of data or control flow. Data-at-rest
(storage) facilities does not implement proper
access control mechanisms.

T PE2 tampers with Part1 Part1 is tampered with by PE2 by modifi-
cation of data or control flow. Data-at-rest
(storage) facilities do not implement proper
access control mechanisms.

D PE1 disrupts the service
of PE2 or vice versa.

Mount a DoS attack by over committing
shared resources. Resource accesses are not
scheduled by a privileged instance.

E PE1 elevates privilege of
PE2 by compromising it’s
control flow. PE2 elevates
privilege of MC1.

PE is compromised with by another due
to the exploitation of a vulnerability to ele-
vate/escalate privileges. Improper isolation
mechanisms (vertically/horizontally).

correlates with the touch-points (surface) between two PEs, that are represented by the
incoming data flows. These touch-points are the LLC or SHM_1_2. As a result, by
disrupting either LLC or SHM_1_2, the availability of the competing PE is interfered
with.

It should be di�erentiated between compromising LLC and a SHM memory partition.
LLC represents a piece of hardware. Practically, there is no opportunity to change
anything in the way they are implemented. The SHM partition is technically a portion
which is virtually owned by a PE or by multiple PE. The means to access the partitions

90 Risk Assessment: Driver Information System Case Study

relies on the software implementation of a communication protocol. For example, this
could be an entire Ethernet communication stack or a simple queue and semaphores
for signalling. As a result, the proper function of the SHM relies upon a higher level
implementation, rather than the intermediate level. Therefore, the availability of the
SHM partition such as the SHM_1_2 is out-of-scope.

However, the disruption (DoS) of the LLC is crucial to be investigated.

3.3 Risk Analysis

3.3.1 Impact Analysis

According to the previously identified threats, here a quantified impact estimation is
shown. In Table 3.4 the analysis results are given. The actual severity values refer to
the approach presented in Section 2.2.1. The severities are calculated by considering
the impact to the entire vehicle function. This means that the analyses function is
regarded in its greater context. The leading question for each threat is: what is the
impact to the vehicle if the function is compromised?

The presumed stakeholders for this case study are the OEM and the driver (compare
Section 3.1.4). Although this is a limited set of stakeholders, they are representative
to elaborate on the impacts.

3.3 Risk Analysis 91

Table 3.4 Impact analysis (Safety, Financial, Operational, Privacy).

Threat S F O P Rationale

MC1 Cluster Instrument

S 2 1 1 0 Safety and operation is a�ected
T 3 1 2 0 Safety relevant data could be falsified. Vehicle

still operational with compromised function.
R - - - - Not applicable to scenario
I 0 1 0 1 Reduced reputation of manufacturer leads to

financial impact. Disclosed private information
of the driver possible.

D 2 1 2 0 Disruption of MC1 e�ects total operation of
the vehicle with safety relevance. For example,
tell-tales could be missed.

E 3 1 2 0 MC1 handles vehicle bus communication.
Threat of sending unauthorized messages to the
bus. Higher impact on safety.

MC2 Infotainment

S 1 1 1 0 Limited impact on stakeholders.
T 1 1 1 0 Vehicle fully operational with compromised func-

tion. Chance of issuing a "sound-shock" to dis-
tract the driver with a low safety impact con-
ceivable.

R - - - - Not applicable to scenario.
I 0 1 0 2 Reduced reputation of manufacturer leads to

financial impact. Due to media and connectivity,
mid impact on the privacy of the driver or owner.

D 1 1 2 0 Infotainment is a comfort function. Hence, not
mandatory for vehicle operation. However, mid
annoyance to the driver.

E 2 1 2 0 MC1 handles vehicle bus communication.
Threat of sending unauthorized messages to the
bus. Higher impact on safety.

92 Risk Assessment: Driver Information System Case Study

In general, the MC1 which represents the cluster instrument implies higher safety
severities compared to MC2. This is motivated by the fact that MC1 involve more
safety-relevant functions than MC2. These include the display of warnings (tell-tales).
Warnings include events such as low tire pressure. The infotainment domain (MC2) han-
dles a comfort function. A likely scenario of an infotainment unit threatening the safety
of the driver is for example distraction by deafening audio playback ("sound-shock").
Financial impacts are lowly expected on both sides. Due to the necessity of updates, a
slight increase in cost is expected at OEM side. Furthermore, compromisations always
have a negative e�ect on the reputation. This might result in a reluctant purchase
behaviour from customers. The operation of the vehicle is slightly a�ected by the
given threats. In any case, the vehicle will still be operational except if an elevation of
privilege is achieved and the system gains the capability to issue other messages on the
vehicle than allowed. Privacy concerns play a role mostly in the infotainment domain.
Here, privacy-relevant data is processed. These include, for example, contact data in
the driver’s smartphone or GPS positions of the navigation software.

3.3.2 Attack Potential Analysis

According to the given technical context, the potential attacks given in Section 3.2.1
are now rated for their attack potential.

Table 3.5 Attack: PEs memory base is tampered with by adjacent PE.

Factor Level Value

Elapsed time Æ Week 1
Expertise Expert 6
Knowledge of system Restricted 3
Window of opportunity Unnecessary/unlimited 0
Equipment Bespoke 7

AP: Moderate 17

Attack: PEi is tampered with by adjacent PEj

Rationale

3.3 Risk Analysis 93

Elapsed time: The investigation and reconnaissance are expected to take
approximately one week. This is in accordance to the levels estimated for the
other factors.

Expertise: A potential attacker needs to apply expert knowledge to mount the
attack. MPSoCs or generally the embedded area deals with highly customized
non standardized architectures. The re-engineering of concepts and designs is
subject for rigid preparation.

Knowledge of system: Some of the information or documentation of the SoCs
is sometimes declared to be non-discloseable to the public (confidential). This
implies a higher e�ort in the re-engineering.

Window of opportunity: This is considered to be unlimited due to the fact
that it was assumed that the attacker already found its way into the system.

Equipment: Handling embedded devices is subject to the application of bespoke
equipment. This includes programming interfaces such as JTAG debuggers. This
equipment has to be built or purchased for a particular ToE.

Table 3.6 Attack: PEi disrupts PEj access to LLC.

Factor Level Value

Elapsed time Æ Week 1
Expertise Expert 6
Knowledge of system Public 0
Window of opportunity Unnecessary/unlimited 0
Equipment Specialized 4

AP: Enhanced basic 11

Attack: PEi disrupts PEj access to LLC

Rationale

Elapsed time: The investigation and reconnaissance is expected to take ap-
proximately one week. This is in accordance to the levels estimated for the other
factors.

94 Risk Assessment: Driver Information System Case Study

Expertise: An potential attacker needs to apply expert knowledge to mount
the attack. MPSoCs or general the embedded area deals with highly customized
non standardized architectures. The re-engineering of concepts and designs is
subject of rigid preparation.

Knowledge of system: It is assumed that the e�ects of a DoS attack are
measurable without non-disclosed information of the system.

Window of opportunity: This is considered to be unlimited due to the fact
that it was assumed that the attacker already found its way into the system.

Equipment: DoS is expected to be caused in a state where the device operates
normally. The e�ects of an attack might be observable specialized measuring
software.

3.3.3 Risk Definition

According to the security risk level Table 2.4 and the analysis results from the impact
and attack potential analysis, here, the risk analysis results are presented in Table 3.7.

Column AP refers to the results from Section 3.3.2. The Attack Likelihood (AL)
results from the correlation of the AP and the AL levels given in Table 2.3. The impact
severity is split into the C and S component. S is directly derived from the safety
severity given Section 3.3.1. The C value represents the maximum severity over the
classes financial, operational and privacy with respect to the threat category.

Table 3.7 Risk analysis results.

Threat Attack AP AL Impact
Severity

Risk
Level

DoS PEi disrupts PEj access to LLC 11 4 C2|S2 4
Tampering PEs memory base is tampered

with by adjacent PE

17 3 C2|S3 4

3.3.4 Hypothesised Attacks

As a result from the threat and attack analysis and the risk assessment, here the
hypothesised attacks are formulated and further investigated in the vulnerability
analysis. The conceptual portion of the vulnerability analysis is given in Chapter 4,
whereas the penetration test is described the Sections 4.1.2 and 4.2.2.

3.4 Summary 95

Hyp-Attack1: PEi disrupts PEj access to LLC -> Risk Level 4

Hyp-Attack2: PEs memory base is tampered with by adjacent PE -> Risk
Level 4

3.4 Summary
This chapter formed a risk assessment on a ToE that functionally implements a driver
information system. The outcome are two hypothesised attacks that are investigated
in detail thoroughly the following chapters. As a case study, this ToE facilitates the
approach of a mixed-criticality system in an automotive deployment. Functionally, it
consolidates two typical automotive functional domains. It includes a cluster instrument
domain, which operates a common display and the HMI to the driver, as well as an
infotainment domain which mainly operates media and connectivity functions. These
two domains run a common MPSoC Platform which implements the AMP system
utilization paradigm. A threat context analysis elaborated upon the capabilities of
adversaries in the given context. Here, the motivation of an adversary is to control one
of the asynchronous domains within the ToE has been discussed. With the threat and
attack analysis, the second part of this chapter identified threats from the decomposed
system elements. Here the interference with other asynchronous domains by tampering
and denial-of-service has been considered in the attack analysis. These results have
been discussed in the risk analysis in order to quantify the findings by determining
a risk. Here, two hypothesised attacks have been revealed, that will be assessed in
further detail in the following chapters. These hypothesised attacks are:

Hyp-Attack1: PEi disrupts PEj access to LLC

Hyp-Attack2: PE’s memory base is tampered with by adjacent PE

For both attacks the identified risk level of 4 was identified. The resulting countermea-
sures are required to increase the AP of the vulnerabilities to the level High in order
to reach a lower risk level. This means Hyp-Attack1 is to be increased from Enhanced
Basic to High and Hyp-Attack2 from Moderate to High.

4
Vulnerability Assessment

of the Intermediate Layer Attack Surface

Contents
4.1 Hyp-Attack1: PEi disrupts PEj access to LLC 99

4.1.1 Vulnerability Analysis . 99
4.1.2 Penetration Test: Cache Thrashing 113

4.2 Hyp-Attack2: PE’s memory base is tampered with by
adjacent PE . 120

4.2.1 Vulnerability Analysis . 120
4.2.2 Penetration Test: Co-Processor Exploit 125

4.3 Generalized Vulnerability and Exploitation Pattern 131
4.3.1 Modelling Protection Architectures 132
4.3.2 Preliminaries of an AMP system 132
4.3.3 Breach Access Controls on Intermediated Level 133
4.3.4 Denial-of-Service a Shared Resource 135
4.3.5 Identification of Attack Surfaces in AMP Systems 136
4.3.6 Primary and Secondary Assets 138
4.3.7 Attack Objectives and Scenarios 139

4.4 Summary . 142

98 Vulnerability Assessment

"The essence of hacking is finding unintended or overlooked uses
for the laws and properties of a given situation and then
applying them in new and inventive ways to solve a problem
whatever it may be"

Jon Erickson - Hacking: The Art of Exploitation

Vulnerability assessment as such is an o�ensive method to determine in which ways
a ToE is exploitable. Analysts should think as attackers would do. In other words,
they hack their own devices. Hacking is considered to be an art, sometimes referred
to as esoteric engineering [40]. Truth be told, computer science and esoteric methods
obviously don’t compare very well in the first place. However, a quite significant
security research community contributes to the improvement of the computer system
protection, with their work on recent discoveries of vulnerabilities. They optimise attack
methods regarding their e�ectiveness, degrade the performance of countermeasures or
just simply circumvent them. Either way, it is about to be one step ahead of adversaries,
because this knowledge can be used to build a proper protection strategy.

One might ask, why does it make sense to think about the exploitability of my
system? Why do researchers spend e�ort in that direction and not the other way
around? System architectures, particularly protection architectures, are built on
assumptions. For example, this is often the anticipated capability of an adversary,
particularly when it comes to cryptographic protocols. What hackers mostly do is to
break the assumptions on which such systems are built, rather than break a security
countermeasure directly [44]. Such countermeasures, a cryptographic protocol, for
example again, is publicly reviewed or even formally proven. To aim for breaking the
mathematics behind it is a high investment of time and resources. In many cases, it
is much easier to leak, for example, the private key material from a communication
endpoint.

As a result, vulnerability assessment during the development of a system can be seen
as a test of assumptions. This is particularly true for the AMP-paradigms. Hardware
was designed having traditional SMP hypervisor paradigms in mind. Even though
modern MPSoCs are heterogeneous and highly integrated systems, it might be obvious
that if an administrative software layer is moved away to design an AMP system, some
security issues would arise.

Within the security cycle, the vulnerability assessment covers the inductive driven
phase. It aims to discover specific instances of vulnerabilities and attack instances.

In this chapter, the hypothesised attacks defined in Section 3.3.4 are conceptually
analysed. The results on cache thrashing are based on findings of Schnarz et al. in

4.1 Hyp-Attack1: PEi disrupts PEj access to LLC 99

[144, 146]. This considers the hypothesised attack: Hyp-Attack1: PEi disrupts PEj

access to LLC and is elaborated upon in Section 4.1. Furthermore, the hypothesised
attack: PEs memory base is tampered with by adjacent PE is examined in Section
4.2. The findings are based on the results of Schnarz et al. [143, 145]. Both misuse
cases are evaluated following the concept introduced in Section 2.2.1. In Section 4.3, a
generalised analysis of the findings is described.

4.1 Hyp-Attack1: PEi disrupts PEj access to LLC

4.1.1 Vulnerability Analysis

The inherent aim of Denial of Service (DoS) attacks is the interference with the
performance of the targeted entity. It aims to degrade the performance to a level where
particular functions cannot be executed with the intended quality. In practice, this
might be the over-commitment of a certain capability of a service. Examples are the
handling of messages or requests. The service is forced to operate illicit data and is
prevented from fulfilling the original functionality.

Cache thrashing, in general, is a phenomenon which appears due to inappropriate
use of a processor’s caching infrastructure. Two scenarios lead cache thrashing into
taking e�ect. One is when the cache coherence protocol (such as Modified Exclusive
Shared Invalid (MESI)1) is forced to synchronise data between processors or main
memory due to concurrent accesses. The second scenario is when two or more entities
(such as processors) exhaust the limited capacity of the shared cache and force the
infrastructure to evict and re-fetch data ine�ciently. This work is concerned with the
last case.

The result of cache thrashing is an increase in latency to access data in memory.
In other words, the memory bandwidth and therefore the performance of the system
degrades. Each time that entity (E1) makes use of the memory data or instructions will
be loaded into a particular location of the cache. If another entity (E2) concurrently
accesses the same location inside the cache the cache management first writes the
former values back to main memory to free the space for E2. The other way around is
also true: if E1 regains the focus of the cache E2 ’s data will be evicted. This causes
the interference between the two entities.

1MESI is a protocol to enforce the coherence of data shared in multiprocessor systems. The
acronym MESI describes the discrete states a single data can reside in.

100 Vulnerability Assessment

Cache thrashing can appear on several system levels. On the application level, for
example, two or more concurrent processes or threats could interfere with each other.
In this case, both types of cache thrashing are possible whereas the thrashing induced
by the coherence protocol at these levels impacts applications which frequently access
common data structures. Good examples for this situation are sorting algorithms [104].

Attack Objective and Scenario

From an adversary perspective, the cache thrashing can be induced to mount a DoS
attack to a target MC-domain. Particularly in AMP-based MC-systems, the second
type of cache thrashing turns into focus. Whereas the cache coherence based thrashing
applies for shared data, the eviction of data of concurrent processing elements does
not rely on the existence of shared data. Under those circumstances, the adversary
just needs to find a particular way to force the data eviction from its target.

For simplicity, the concept is shown concerning the driver information system
considering two MC-domains. Each MC-domain runs a private PE, including a private
L1 cache. Both PE share a L2-cache of a certain size (compare with Section 3.1.2 for
the detailed case study description). Figure 4.1 depicts the considered cache thrashing
scenario. It is considered that MC2 is the targeted domain, thus the victim of the
attack. Hence, the attacker who is assumed to reside in MC1 aims at deliberately
decreasing the MC2 performance to operate on the target frame denoted by t. It is
assumed that t contains data which is critical to the overall mission of the function. In
practice, this might be a critical value from a sensor in the vehicle.

Caching Terminology and Design

The general intention of the integration of caches to processors is to speed up access to
frequently used data in memory. The memory in computing systems is hierarchically
organised [65]. Caches usually consist of several storage levels which contain the
data and instructions. A particular kind of cache-logic manages the data inside the
cache storage. Typical functions of the cache-logic are the coherence protocol and the
write-back strategy. Data in the cache is typically referenced via memory addresses.
Two types of cache addresses exist. These include virtual caches, which are sometimes
referenced to as logical caches, and physical caches [160]. In physical caches, the
requested addresses are translated by a MMU. In logical caches, the data inside the
cache is referenced by the virtual addresses. In this work, the scope is on physical
caches. In order to reference the data in the cache, the respective requested memory

4.1 Hyp-Attack1: PEi disrupts PEj access to LLC 101

Physical
Memory

Target Frame t
MC2

MC1

PE1

PE2

Memory
Partition

MC2

Memory
Partition

MC1

LLC

Fig. 4.1 Considered cache thrashing scenario.

address is divided into a tag and a word section. This is elaborated upon in the later
sections.

Despite the highest memory levels, which are the processor’s registers, several
cache levels can be implemented. Cache levels closest to the processor are commonly
referenced to as L1. Further levels are denoted as L2 or Ln, respectively. The cache
level closest to the main memory is commonly referenced to as the LLC. In multi-core
systems, some cache levels are private to the processor, and some are shared between
multiple processors. The size of caches usually expands from the lower to the higher
levels.

Three important parameters of caches are the cache size, cache-line size and the
associativity [70]. Aside from the cache size which defines the capacity, the smallest
addressable entity within a cache are Cache Line (CL). CL have a fixed CL size,
such as, for example, 64 Byte. Data which are loaded from the main memory into a
particular CL are referred to as the Memory Line (ML).

The relationship between the memory and the LLC is referred to as the associativity
scheme. It defines the number of possible locations a single ML can be loaded to the
cache. Hence, the associativity degree is usually fixed and therefore immutable. The
location where a ML is loaded to is denoted as CLi. The associativity between the LLC
and main memory can be fully associative or organised into associativity-cache-way sets.
Fully associative means that each CL can be loaded to all CL positions in the LLC.
However, due to the sake of e�ciency, in the vast majority of LLC implementations,

102 Vulnerability Assessment

main memory
first v blocks

cache-memory
setv-1

cache-
memory set0

B0

Lk-1

L0

Bv-1

Fig. 4.2 Cache associativity mapping. [160, p. 132]

caches are divided into Way-Sets (WSs) [160]. WSs have a certain size, which are
defined by the number of CLs they can contain. If one contains eight CLs, it is
referenced as an 8-way-set associative cache. A commonly used associativity for LLCs
is 16-way. In way-set caches, a specific ML is always loaded into a specific way-set.
This principle is depicted in Figure 4.2. To put it in another way, fully associative
caches consist of a single way-set. Referring to Stallings [160] and Hill et al. [70] the
following applies for way-set caches.

m = v ◊k

i = j mod v

where

i = way-set number

j = main memory block number

m = number of lines in the cache

v = number of sets

k = number of lines in each set

It depends on the replacement algorithm to determine the specific position within
a WS (denoted by CLi) to which a ML will be loaded. Depending on the specific
technical realization, this could be done by a managed Least Recently Used (LRU)

4.1 Hyp-Attack1: PEi disrupts PEj access to LLC 103

algorithm or upon a randomised scheme. The CL that gets replaced will be written
back (evicted) to the main memory. In the literature, the situation where requested
data does not reside in the cache is referred to as a cache-miss. The other way around
is also true: when the data is existent in the cache a cache-hit occurred. Optimising
the cache-hit rates of caches is the target of a wide range of research [70] whereas
increasing the cache-miss rate is the target of the DoS-attack. In Table 4.1, the caching
key parameters are summarized.

Table 4.1 Caching terminology and parameters.

Sign Description
WS Way-Set
CL Cache Line
ML Memory Line
MB Memory Block
CLSize Size of single cache line
CacheSize Size of cache
MLSize Size of single memory line equals to

CLSize

WSi Identifies a specific set in the cache
CacheAssoc. Cache Associativity
CLi Identifies a specific CL in the cache
MLi Identifies a specific CL in the memory
v Total number of way-sets in the cache
m Number of CLs in the cache
k Number of CLs in each way-set
b Number of memory blocks in main

memory

The number of way-sets, denoted by v, is calculated by:

v = CacheSize

CLSize úCacheAssoc.)

Exploitation of the Cache Associativity

Given the terminology and key parameters of caches an adversary aims at degrading,
the computational performance is to increase the cache-miss rate for its victim. In
order to achieve this goal, in the following, the cache associativity is examined in
more detail. In general, the memory mapping which is applied to the MMU has no
relation to the memory association. As a result, if the adversary aims at exploiting the

104 Vulnerability Assessment

associativity scheme, they need to flood a particular WS in which the targeted ML
resides.

Preliminaries and Threat Capabilities are parameters the attacker has assumed
to be known such as the LLC cache size, cache-Line size, associativity degree and
the physical address of the targeted memory line. The former parameters are usually
part of the technical documentation of the hardware, and therefore it is feasible that
adversaries are aware of those parameters. To determine the physical address of the
target memory line is out of scope for this consideration. As a result, it is presumed to
be aware of the address.

The principle of sharing a k-way-cache by two processing elements working on
two di�erent main memory partitions is shown in Figure 4.3. For the sake of simplicity,
the private L1 cache is omitted. The example shows PE1 and PE2, each working on
two distinct memory lines. Furthermore, this example shows WS0 which is shared by
an ML from both memory partitions. In general, this means that each ML belongs to
a specific WS in the cache. Such as:

MLi œ MBn æ CLj œ WSi

MB0

MBj

Physical
Memory

MC2

MC1

PE1

PE2

WSj

WS0

WSv-1

LLC

MBb-1

MLv-1

ML0

ML0

MLj

Memory
Partition

MC2

Memory
Partition

MC1

Fig. 4.3 Shared way-set cache principle.

4.1 Hyp-Attack1: PEi disrupts PEj access to LLC 105

Attack Tree

Here, the subsequent actions to exploit a shared k-way-set are described. Figure 4.4
depicts the attack tree of the DoS attack. The root of the tree states the ultimate goal
of the attack, which is to deny the service of a target MC-domain. To increase the
cache miss-rate for the target is the method for achieving the goal and is stated in the
next level of the attack tree.

Cache
Parameters

lookup target
physical address

determine
shared way-set

number

flood shared
way-set

increase cache-
miss rate for

target

DoS target MC-
domain

Target
physical
address

AND

OR

Fig. 4.4 Cache DoS attack tree.

As it was defined that the cache parameters previously are presumed to be known
to the adversary, they appear as an initial state in the attack tree diagram. Those
parameters are usually documented in the technical specification of the applied hardware
architecture. More importantly, the target physical address is either known by the
adversary or looked up in the main memory by any action which is out of scope
for this consideration. The core actions are essentially the sub-goals of determine
shared way-set and flood shared way-set. The latter goal aims at producing the actual

106 Vulnerability Assessment

performance impact on the side of the victim whereas the former seeks to set up the
environment. In the following sections, these two actions are detailed.

Determination of Target Set (WSv)

By the reference of the targeted physical address, the target WS can be identified.
In the following, this particular WS is denoted by victim WS (WSv). Substantial
preliminaries are the technical properties of the cache. In this case, these include the
cache-line size (denoted by CLsize) and the WS associativity (denoted by k). Given
by those values, WSv can be determined by the following equation.

WSv = TargetAddress(PA)
CLsize

mod v

Alternatively, WSv can be directly derived from the physical memory address. The
memory addresses for k-way-set caches consist of three portions. These components
are tag, set, and word [160].

Tag Set Word

t bits d bits w bits

where

t = s≠d = tag size

d = logv = set size

The d bits specify a particular set within the cache, which is in this case WSv.

Flood Target Way-Set

Flooding a specific WS causes an increase in cache-misses in that particular WS. As it
has been revealed previously, the WSs are the shared memory spaces within the LLC.
To introduce a performance impact to target a MC-domain, the adversary just needs
to over-commit the particular WS to which the targeted physical address is assigned
to. Flooding or over-committing is introduced by frequently fetching cache-lines into
the WS in a way that the cache-management is forced to evict other cache-lines. If
the attacked PE tries to access its data, it su�ers from the higher access latency of
the main memory due to a cache-miss. The procedure for forcing this cache-miss and

4.1 Hyp-Attack1: PEi disrupts PEj access to LLC 107

reload penalty is detailed in the following. Su�cient memory lines need to be allocated
and afterwards, accessed very frequently in a loop.

The number of memory lines to be allocated equals the number of cache-lines in the
WS (way-set size), which is given by k. An allocation procedure assigns k addresses,
which fulfil two aspects. They need to correspond to distinct Memory Blocks (MBs),
and all have the same MLID (o�set) within those blocks. This concept is depicted in
Figure 4.5. The assigned addresses will be stored in a target address array. According
to the tag, set, and word notation, the allocation procedure simply needs to allocate
and assign data having an equal t and d bit portion in their addresses.

MLjMB0 MLk-1

Physical
Memory

MBb-1

MLi

Memory
Partition

MC2

Memory
Partition

MC1

MLi MLi

MBt

Fig. 4.5 Target address array allocation principle.

The actual flooding is introduced by memory accesses to every entry in the target
address array in a loop. Here, the term memory access abstract either read or write
operations on external data in main memory. For example, the load-store principle of
an ARM RISC architecture those accesses are implemented by instructions such as
LDM2, STM3, PUSH4, POP5.

Security Problem Factorization

Timing Consideration In this section, the timing and scheduling issues of memory
access are causing the stall of the victim. For the consideration, the time when a
cache-line is requested, loaded and evicted is focused. The delta between a request
and the actual load of a cache-line is the penalty the PE faces due to the cache-miss.
Table 4.2 shows the symbols for the timings in the scheduling diagram.

Figure 4.6 depicts the timing situation of the attack scenario. On the top, the
content of the target WS is shown. The bottom part depicts the time-line of the

2LoaD Multiple
3STore Multiple
4Store data at stack pointer position
5Load data from stack pointer position

108 Vulnerability Assessment

Table 4.2 Symbols for Cache Scheduling.

Symbol Parameter Description
ri request time time at which a cache-line is to

be loaded (fetched) into way-set
ei eviction time time at which a cache-line is

wrote back to main memory
li load time time at which the cache-line is

loaded into way-set
pi miss penalty time introduced due to cache

miss

two competing parties. In the initial state, the WS is filled with cache-lines from the
adversary only. This is the flooded state. In this moment (rt1) when the target requests
a new cache-line (CLt1), it su�ers a penalty (p1) for the first time due to a cache-miss.
Now the CL of the target is resident in the cache. From this state the adversary seeks
to force the eviction of CLt1 by re-flooding the WS. As a result, on the next request
of CLt1 the target su�ers again a cache-miss penalty p2.

CLa1

CLt1

Adversary
cache-line

Target
cache-line

la1 tea1rt1 lt1 et1ra1

CLa2

la2

Way-set
contents
in LLC

CLak-1

CLt1

CLa1 CLa2 CLak-1

CLt1

p2(re-)flooding

CLt1

p1

Fig. 4.6 Timing diagram in flooded way-set.

In this scenario, the first access penalty p1 does not contribute formally to a
performance degradation of the target because the cache-line needs to be fetched from
main memory anyways. p2 and potential following cache-line requests contribute to
the performance degradation and therefore to the stall of the PE.

Impact of Replacement Algorithms. An important aspect is the algorithm of
the cache-management which determines the specific CL to be evicted. The most

4.1 Hyp-Attack1: PEi disrupts PEj access to LLC 109

commonly used eviction algorithms are LRU and random. The latter simply chooses
the designated CL randomly. The former tracks which CL was least used in the last
period. The eviction algorithm is usually chosen to provide the best e�ort on average.

In the case of a randomised scheme, the following is considered. It is assumed that
the randomization function within the cache-management is non-biased and therefore
fair. As a result, the probability of a single CL to be chosen for eviction is 1/k where
k denotes the number of CLs in the WS. Assuming the adversary controls the entire
WS due to its flooding function, the eviction probability of a target CL results in 1/k.
The higher the k-way-set associativity, the lower the probability of a target CL to be
evicted.

If a LRU scheme is used, the situation is di�erent. Theoretically, at each point in
time it is determines which CL will be evicted next. Unfortunately, from the adversary’s
point of view, this is not visible from the outside, meaning there is no way for the
adversary to make a distinction for if he needs to continue to flood the WS to make
the target CL least recently used.

As a result, the eviction algorithm plays a secondary role in the implementation
of the flooding mechanism. Nevertheless, in randomised schemes, the e�ect, average
penalty over time, is potentially higher when the size of the WSs is smaller.

Dependencies of Access Frequency and Penalty. The impact to taccess depends
on how often the adversary is capable of introducing the t”≠DoS penalty. This is directly
dependent on the frequency the target consumes data from the cache and memory
subsystem. The e�ect of the DoS attack is higher if the target consumes data in a
lower frequency compared to the attacker. With attention to Figure 4.6, the e�ect
is highest if the adversary is capable of flooding the entire WS after the target has
accessed its CL.

Metrics to Interfere with Data Access Latency. Increasing the CL miss rate
is the goal of the described DoS-attack. In this section, the metrics to quantify this
e�ect are elaborated upon.

Penalty Metric. A commonly applied metric to quantify cache miss-rates or hit-
rates respectively is to measure the memory access latencies (denoted by taccess). In this
Non Uniform Memory Architecture (NUMA), with memory construction, the memory
access latencies increase with every cache or memory level (compare Figure 4.7) from
the higher level (PE) to the lower level (main memory). Each subsequent level adds a

110 Vulnerability Assessment

tllc_miss

tpenalty

PE L1 LLC
Main

Memory
very
fast

fast

tMM

slow

tLLCtL1

tllc_hit

Fig. 4.7 NUMA and cache memory access latencies.

delay to the total access latency. Subsequent latencies are denoted by tL1, tLntLLC and
tMM respectively. Usually, the access speeds relate as follows: tMM > tLLC > tLn > tL1.

Table 4.3 Symbols of cache access latency metrics.

Symbol Parameter Description
ti access latency time needed to request data
tpenalty �(tllc_miss, tllc_hit) penalty
tllc_miss llc miss time time needed to request a memory-line

due to a cache-miss
tllc_hit llc hit time time needed to request a cache-line due

to a cache-hit

The focused exploitability metric is the delta (denoted by tpenalty) between a
successful LLC cache-hit (denoted by tllc≠hit) and a LLC cache-miss (denoted by
tllc_miss).

tpenalty = tllc_miss ≠ tllc_hit

From the attacker’s point of view, the amount of tpenalty is the value they are
capable of adding to the taccess its target. The portion of the total latency denotes
the delay until a PE can consume the requested data. Subsequent latencies between
di�erent cache levels and the main memory are indicated by tLLC and tMM respectively.

Penalty Impact on Execution Time. In the previous section, it is elaborated
upon as to why the cache-miss penalty is a factor for exploitability. Furthermore, it is
shown how the impact theoretically works. Programs usually take a certain amount
of time to execute a particular operation, task or algorithm. One factor to measure
the quality of this performance is the Worst Case Execution Time (WCET). If the

4.1 Hyp-Attack1: PEi disrupts PEj access to LLC 111

WCET factor is violated, other dependability issues could arise. Particularly in the
automotive scenario, those are safety impacts.

Substantial impacts to the performance of the target are to be expected if there are
sequences of memory accesses penalised by a cache-miss. In such cases, the penalties
would summarise and result in a tremendous impact on execution time. The severity of
the impact is dependent on the actual program. For example, the most crucial aspect
is the frequency of the memory accesses. As a result, it is proposed to measure the
impact and therefore the exploitability with a mean value of a sequence of memory
accesses.

Vulnerability Score

In this section, the CVSS of the identified hypothesised attacks are rated and justified.
The Base Score is rated at 5.3 (Medium) according to the metrics given in Table
4.4. The nature of the vulnerability is the degradation of the performance of memory
accesses. Accordingly, it impacts only the availability of adjacent domains.

Table 4.4 CVSS base score of the cache-thrashing exploit concept.

Base Score Type Rating Score

Attack Vector Local
Attack Complexity High
Privileges Required High
User Interaction None
Scope Changed
Confidentiality None
Integrity None
Availability High

Base Score Medium 5.3

Rationale.

Attack Vector. The given exploit relies on local access to the device (compare
with the attack tree in Section 4.1.1). Since it is assumed that the attack takes place at
the intermediate level, requiring further e�ort to reach that system level, the severity
is set to Local.

112 Vulnerability Assessment

Attack Complexity. The attacker must prepare the target environment to
implement a successful exploit. Furthermore, since it is anticipated that the attack is to
be mounted from the intermediate level, an attacker needs to find further vulnerabilities
to be successful (compare with the attack tree in Section 4.1.1). Additionally, the
knowledge of the cache parameters are preliminarily required for the attack. This has
to be revealed by a device specific research or reconnaissance. For those reasons, the
attack complexity is scored at High.

Privileges Required. The level of privileges an attacker must possess before
successfully exploiting the vulnerability is High. This is in line with the previous scores
since it is assumed that the attack has to be mounted at a privileged level. However,
the exposure to higher levels is subject to future work.

User Interaction. The vulnerable system can be exploited without interaction
from any user. Therefore, the score None is justified.

Scope. The vulnerability a�ects resources beyond the domain separation of the
vulnerable component. In this case, this is the contention of particular WSs. In this
case, the score Changed is chosen. However, in the case of a shared cache, one might
argue that the cache management is a higher privileged entity which fails to arbitrate
to competing accesses. Since the k-way-set associative cache is only administered by
the replacement algorithm and the memory association, the assumption of dealing with
two distinct authorities (the asynchronous domains) is reasonable.

Confidentiality. The confidentiality of information is not a�ected.

Integrity. The integrity of information or code is not a�ected.

Availability. The potential impact on the availability has been rated at High.
This refers to the adversary’s ability to introduce a penalty (tpenalty compare with
Section 4.1.1) to the cache access latency by deliberately interfering with the cache
scheduling as it is shown in Section 4.1.1. A rebuttal of the general e�ciency of the
attack is a cache replacement algorithm and the access frequency that cannot be
controlled by the adversary. However, these aspects a�ect the impact of the mounted
attack.

Nonetheless, the granularity of the CVSS metric is rather coarse. From case
to case the rating shall be in between Low and High. In this case, the worst case

4.1 Hyp-Attack1: PEi disrupts PEj access to LLC 113

impact severity has been chosen. However, this is modifiable with the corresponding
environmental vulnerability score, considered in Section 6.1.2 of the security evaluation.
For example, taking the targeted context into account, which is the automotive sector,
severe functions could be a�ected by the loss or dramatic reduction of the availability.
The attacker can disrupt the availability of the vehicular functionality. The loss of
availability presents a direct, serious consequence to the impacted component. However,
the attack is only possible for punctuated memory accesses. For that reason, there is
reduced performance or interruptions in resource availability but not for the full range
of service provided by the a�ected domain.

4.1.2 Penetration Test: Cache Thrashing

In this section, the penetration test of the cache thrashing concept is described. The
test relates to the hypothesised attack shown in Section 4.1.

Experiment Setup

Generally, the experiment aims at demonstrating the cache access latency penalty.
This will be approached by measuring the delta between the execution time of a
test-program with and without the applied attack. The resulting tpenalty is used as
evidence to test the hypothesis as stated below.

The hypothesis (Hypothesise1) considers an o�ensive aspect. The alternative
hypothesis considers a significant delta between the results of the thrashed and the
non-thrashed measurements. In order to define a reasonable threshold, results from
similar attacks have been taken into account. For example, Kim et al. [95] show
that through unfair cache sharing on application level the performance of a memory
consuming function can be degraded up to 63 percent. However, the test setup and
the experimental platform di�er from the one used herein. Hence, finding suitable
reference values requires at least a setup with similar cache parameters to be comparable.
Therefore, here, the e�ect of the penetration is measured by comparing the mean
execution time of two measure runs, which will be introduced in the following paragraphs.
In order to test whether or not a significant performance impact is measurable by
applying the cache thrashing, the average execution time must be at least higher than
normal duty workload plus the standard deviation. The symbols are explained in
4.5. The intention is to prevent from interpreting jitter (variant execution times) as a
success of the test.

114 Vulnerability Assessment

Table 4.5 Measurement symbols.

Name Equation Description
si si œ N CPU cycle count value at the start of

iteration.
ei ei œ N CPU cycle count value at the end of

iteration.
k k œ N Number of iterations

”t

Aqk
i=0 e1(i)≠s1(i)

k

B

i,k œ N Delta of DoS/thrashing measurements

”n

Aqk
i=0 e1(i)≠s1(i)

k

B

i,k œ N Delta of normal duty measurements

”i ”t ≠ ”n Delta reflecting identity mapping
sn - Standard Deviation of ”n

st - Standard Deviation of ”n

Hypothesise1: The adversary domain is able to decrease the computing cache
access performance by the deliberate thrashing of a common cache WS.

H0: The impact on the performance is not measurable (”t <= sn).

H1: There is a significant delta (”t > sn) in the performance.

However, the significance of the impact is dependent on the particular use-case of the
attacked program. If there are requirements on the worst case execution time (WCET),
performance degradations would impact di�erent delta levels.

In Table 4.5, the key measurement symbols are described.

Measurement Setup. To conduct the experiment, a certain set of measurements
need to be executed. This paragraph elaborates on the details of the experimental
sequences. In general, the setup is as follows: the victim-domain logs the latency
of its memory accesses by consuming data out of the target WS in the cache. The
adversary-domain floods this WS at the same time.

Cycle Counts. In order to achieve precise measurement results, an appropriate
timing reference must be chosen. In this case, CPU cycle counts are used to measure
the latencies of memory accesses. Cycle counts enable a fine-grained resolution of
relative measure points. ARM processors usually implement a cycle count [10] register.
The ARM Cortex A15 processor includes a system control coprocessor (CP15) which

4.1 Hyp-Attack1: PEi disrupts PEj access to LLC 115

controls and provides status information. One function of this CP15 is the Performance
Monitor Control Cycle Counter (PMCCNTR). This PMCCNTR is readable from
privileged code by the following assembly instruction:

1 asm volatile ("MRC p15 , 0, %0, c9 , c13 , 0\n\t": "=r" (result)::);

Measure Functions. The experiment involves both MC-domains each of which
executes a particular set of functions. The functions are briefly introduced in the
following:

Get Time. The get_time(): function retrieves the cycle count from the PMCCNTR.
This is done according to the assembly instruction given in Paragraph 4.1.2.

Prepare Cache Lines. The prepare_cachelines() function determines the
ML associated with the targeted WS in the physical memory. This ML structure
will be iterated by the measurement and DoS loop functions. The structure is built
according to the concept given in Section 4.1.1.

Iterate Memory Lines. The get_next_CL() function iterates and retrieves the
next CL from ML structure.

Modify Cache Line. The modify_CL() accesses the current ML and to force
the cache to evict another CL from the target WS.

Measure Loop. The measure_loop() function iterates over the structure which
has been created in the prepare_cachelines() function. During each iteration it
loads the cycle count timestamp from the PMCCNTR register and stores it in a stack
variable. Refer to Listing 4.1, where the measure loop function is presented in pseudo
code. The listing shows a constant TEST_ITERATIONS which defines how often the loop
will run and measure. In the controlled environment of this laboratory experiment, the
constant has been set to 100.000 iterations. Since there are no other tasks running
on the system, there are no statistical outliers expected which could be caused by a
concurrent process.

DoS Loop. Compares to the previous function, however without the time mea-
surements. Refer to Listing 4.2, for a pseudo code example.

116 Vulnerability Assessment

1 measure_loop (){

2 for (k = 0; k < TEST_ITERATIONS ; k++) {

3 reset_counter ();

4 ML_structure [] = prepare_cachelines ();

5 for (l = 0; l < ML_structure []. end () ; l++) {

6 s = get_cycle_count ();

7 current_CL = get_next_CL (l);

8 modify_CL (current_CL);

9 e = get_cycle_count ();

10 delta += e - s;

11 }

12 }

13 }

Listing 4.1 Pseudo code to accumulate the memory access latencies measured in
CPU cycles

1 DoS_loop (){

2 for (k = 0; k < TEST_ITERATIONS ; k++) {

3 ML_structure [] = prepare_cachelines ();

4 for (l = 0; l < ML_structure []. end () ; l++) {

5 current_CL = get_next_CL (l);

6 modify_CL (current_CL);

7 }

8 }

9 }

Listing 4.2 Pseudo code to thrash the common way-set.

Measurement Sequence. Technically, the functions are invoked according to
the sequence diagram shown in Figure 4.8. After the initial boot sequence (compare
with Section 3.1.3) is executed, each of the PE load and execute a Linux Kernel module
which contains the testing functions. PE1 which is considered to be the victim domain
first starts a measure-loop and stores its results. These results are the reference values
(”n) for determining the delta later on. Next, PE1 triggers PE2 to invoke the DoS-loop
and starts the measure-loop right after. The trigger is used to synchronise the execution
of both loops. Technically, the trigger is implemented with the means of a semaphore
in a shared memory area. After each of the PEs finished the loop iterations, PE1
stores the results (”t).

Measurement Results

Way-Set Occupancy The first measurement determines how the thrashing impact
compares to the number of CLs iterated in a single WS. In this case, both systems
run the measure-loop and measure the latency concurrently. The results to test the
DoS method are depicted in Figure 4.9. The most significant impact on the execution
performance of the victim-domain peaks at about 457 percent. This means that in

4.1 Hyp-Attack1: PEi disrupts PEj access to LLC 117

PE2:MC1

kernel initialized
Identity mapping applied

load DoS
kernel module()

PE1:MC2

load measure
kernel module()

measure-loop()

trigger DoS()
measure-loop()

store results [1]()

DoS-loop()

stop DoS()

store results [2]()

Fig. 4.8 Sequence diagram of thrashing measurements.

this scenario, the consumption memory is delayed by this magnitude. The number
of cache-lines which are iterated within the measure-loop and DoS-loop influence the
impact on the delta. Since the experimental platform implements a random cache-line
replacement strategy, the probability of a CL eviction is highest when every cache-line
in the WS is iterated. According to Figure 4.9, the highest peak of interference appears
when the victim and the attacker are using 16 CL.

118 Vulnerability Assessment

Table 4.6 Overview of the measurement results.

Mapping Impact (%) CPU Cycles (”) Std. Deviation (s)
identity - 3,602 (”n) 0,022 (sn)

identity DoS 3686,90% 132,803 (”t) 2,265 (st)

0,0%

50,0%

100,0%

150,0%

200,0%

250,0%

300,0%

350,0%

400,0%

450,0%

500,0%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Ac
ce

ss
 L

at
en

cy
 Im

pa
ct

(%
)

Occupied Cache Lines

MC2 MC1

Fig. 4.9 Comparison of way-set occupancy.

Identity Mapping The following results aim at providing evidence to test Hypothesise1.
For this purpose, the measurements are conducted as stated in the sequence diagram
depicted in Figure 4.8. The victim-domain first executes the measure-loop in order to
create a reference value. Right after that, the adversary-domain is triggered to invoke
the DoS-loop. For these measurements, both systems iterate over 16 cache-lines, which
produces the highest impact (compare Figure 4.9). The results are shown in Figure
6.1, whereas Table 6.4 gives and summarizes the measured results.

The first measurement-loop run reveals the mean cycles count to consume the data
within the cache. The arithmetic mean of ”n is about 3,602 cycles, which means
around 4 cycles are consumed to access the data in the cache. The second set of results
reveals ”t with about 132,803 cycles (~133 cycles). With these results, ”i is about

4.1 Hyp-Attack1: PEi disrupts PEj access to LLC 119

129,501 cycles. This implies that the invocation of the DoS-loop in parallel with the
measurement-loop impacts the mean access cycles at about 3686%. By comparing the
sn and ”t, the significant increase is clearly observable. As a result, the measurements
prove evidence that H1 applies. Invoking the cache-thrashing is a significant delta in
the performance of the memory accesses.

0

20

40

60

80

100

120

140

M
ea

n
CP

U
 C

yc
le

s

Normal DoS

Fig. 4.10 Identity memory mapping.

Temporal Vulnerability Score

The temporal vulnerability score considered in this section refers to the base score
given in Table 4.4. Accordingly, the corresponding Base Score is 5.3 (Medium). The
pentest is rated at 4.8, which is still rated as (Medium) severity. As is shown in Table
4.7, the temporal vulnerability score manipulates in a positive direction and limits the
severity.

Table 4.7 CVSS temporal score of the LLC disruption pentest.

Temporal Metric Rating Multiplier

Exploit code maturity Proof-of-Concept 0.94
Remediation level Unavailable 1
Report confidence Reasonable 0.96

Temporal Score Medium 4.8

Rationale

120 Vulnerability Assessment

Exploit Code Maturity In this situation, the score Functional or Proof-of-
Concept is considered. Other metric values, such as High do not apply, for example,
since there is no autonomous code made available. In this case, Proof-of-Concept is
applied. During the penetration test, code has been produced which is capable of
testing a hypothesis6. This code has not been made public. However, the technique
and the conceptual consideration is practical to similar systems. Since the exploit code
is not runnable with interaction and manual work of the tester, it is reasonable not to
apply the metric value Functional.

Remediation Level The metric value Unavailable is motivated by the fact that
no solution is applicable at the given system level. The remediation is subject to the
proposed countermeasure.

Report Confidence To the date of discovering the vulnerability, no evidence
indicated such impacts to the availability of AMP-based systems. However, the root-
cause of this exploit technique is based on well-known issues in real-time computing.
Therefore, the metric value is set to Reasonable rather than Unknown.

4.2 Hyp-Attack2: PE’s memory base is tampered
with by adjacent PE

4.2.1 Vulnerability Analysis

In this section one of the initial hypothesises is conceptually analysed. The question
is: are AMP-based systems prone to DMA attacks? The answer seeks to deliver an
instance for the misuse case that is elaborated upon in the case study (refer to Section
3.3.4. Hyp-Attack2: PE’s memory base is tampered with by adjacent PE. For that
purpose, the technical hardware architecture vulnerability is examined.

DMA-based attacks are often referenced in research according to commodity desktop
or server systems, which commonly implement the x86 architecture (compare for
example [17, 142, 188]). Hence, in AMP-systems this becomes in focus because of two
essential properties of DMA devices. DMA was introduced to detach a general-purpose
processor from the burden of memory transfers, in order to handle them asynchronously.
In this case, the DMA-controller copies data from one main memory location to another.
The memory is transferred within the same address space. DMA-capable devices are

6Compare Section 4.1.2

4.2 Hyp-Attack2: PE’s memory base is tampered with by adjacent PE 121

PE2

Memory

Part1 Part3 Part4

SHM_1_2 SHM_1_CoPE SHM_2_GPU

Target

MMU(2nd)

PE1

CoPE
GPU

Fig. 4.11 Breach or circumvent memory protection controls in a SoC.

also utilized to copy data between two disjointed address spaces. Practically, this is
the case if a subsystem needs to copy data from the system physical address space to a
domain partition.

In MPSoC environments, the direct access to memory is an essential functionality
in order to integrate the large set of heterogeneous hardware elements. This is
particularly true for PEs. The inter-PE communication is often implemented via
shared memory communication (Inter Process Communication (IPC)). Thus, each
PE needs to implement a memory access capability. In the following, there are two
approaches of misusing the memory access capability of co-processors and GPUs. In
the later sections, the generalized issue of DMA in AMP-systems is examined.

Co-Processor Exploit Scenario

Roughly, in computation setups, the PE can be divided into two classes. There
are elements handling the main function of the embedded device, and there are PE
supporting the execution of those main functions. PE that work on behalf of the main
function are referred to as co-processors or CoPE. From the functional point of view,
these CoPE are working in a master-slave setup. The master PE has the control over
the slave PE.

However, from the technical point of view, the CoPEs are implemented as a fully
qualified processor running its software stack or firmware. As it is mentioned previously,
it also often implements an interface to the CA which is the DMA capability. On the
one hand, this is necessary to provide external RAM to the CoPE. The CoPE might
also implement private ROM and RAM to execute its firmware. On the other hand,
the access to the CA and accordingly, to the main memory (RAM) are needed for IPC
purposes.

122 Vulnerability Assessment

MMU(2nd)

PE2

GPU

Memory

Part1 Part3 Part4

SHM_1_2 SHM_1_CoPE SHM_2_GPU

PE1

CoPE

Target

Compromised Firmware

Malicious Firmware

[Tamper with memory]

Fig. 4.12 Misuse scenario utilizing a co-processor to attack a target memory area.

That means, as a result, functionally, the CoPE is under control of the master PE,
but technically they are independent. This circumstance is adopted in this misuse case.

It is assumed that the master PE implements a proper access control enforcement
by the MMU. This is actually, what the attacker wants to breach. The master PE
takes advantage of the CoPE in order to let it attack the target on its behalf. The
concept is visualized in Figure 4.12. The concept proposes injecting the malicious
behaviour by code/firmware that is to be loaded and executed by the co-PE. In the
penetration test, this will be demonstrated on commodity MPSoC hardware. The
penetration test is described in Section 4.2.2.

GPU Exploit Scenario

In the range of co-processors, the GPU is considerably one of the most powerful forms
for the performance perspective. GPUs are not only used in multimedia appliances to
visualize content, but also applications requiring a tremendous amount of acceleration
in any stream-processing related purpose. In vehicular environments, this might be
the analysis of camera data or any artificial intelligence task. As a result, GPUs are
widely used and therefore, integrated into MPSoCs.

The key concept of misusing the GPU to circumvent access control mechanisms is
similar to the co-processor approach. GPUs in MPSoC environments access the main
memory in order to execute the computation on data that resides there. In reference to
the case study, the pixel data is e�ciently communicated/handled in a SHM memory
area.

4.2 Hyp-Attack2: PE’s memory base is tampered with by adjacent PE 123

MMU(2nd) CoPE

PE2

Memory

Part1 Part3 Part4

SHM_1_2 SHM_1_CoPE SHM_2_GPU

PE1

Target

GPU

A (x,y,z)

B (x,y,z)C (x,y,z)

Compromized Graphical Primitive

[Tamper with memory]

Fig. 4.13 Misuse scenario utilising a GPU to attack a target memory area.

However, in the case of communicating commands to the GPU, the master PE
must setup graphical primitives. Those primitives contain the description/construction
of the graphics data and the graphics commands to be applied to the graphics data.
Particularly, in the description of these graphical primitives is described where the input
data resides in memory and where the output should be written. By manipulating
these input and output descriptors, the GPU made up the ability to write arbitrary
data from one memory location to another.

Security Problem Statement

The previously given exploit scenarios base on the problem that DMA capable system
elements might implement an inconsistent access control architecture. That means, on
the intermediate level an EoP to accesses to a memory resource cannot be prevented.
A detailed analysis of this issue is given in Section 4.3.

124 Vulnerability Assessment

Vulnerability Score

Table 4.8 CVSS base score of the access control breach.

Base Score Metric Rating Score

Attack Vector Local
Attack Complexity Low
Privileges Required High
User Interaction None
Scope Changed
Confidentiality High
Integrity High
Availability Low

Base Score High 8.1

Rationale. With respect to the metrics in shown in Section 2.2.1, the following
aspects refer to the exploitability.

Attack Vector. The given exploit relies on local access to the device since it is
already assumed that the attack takes place at the intermediate level requiring further
e�ort to reach that system level. As a result, the severity is set to Local.

Attack Complexity. The required entry attack vectors and required privileges
are discussed in the previous section. With regards to the complexity of the attack,
the attacker does not need to conduct a target-specific reconnaissance. The system
configuration is considered to be static due to the fixed memory mapping. There is
no intended variation from target to target. As a result, once an adversary is able
to breach the memory protection for one system, the concept is applicable to other
systems in the product-line or vehicle fleet.

Privileges Required. The level of privileges an attacker must possess before
successfully exploiting the vulnerability is High. This is in line with the previous scores
since it is assumed that the attack has to be mounted at a privileged level. However,
the exposure to higher levels is subject to future work.

4.2 Hyp-Attack2: PE’s memory base is tampered with by adjacent PE 125

User Interaction. The vulnerable system can be exploited without interaction
from any user. Therefore, the score None is justified.

Scope. Due to its nature, memory protection breaches allow a wide range of
impacts on security goals. In this particular case, the adversary is able to conduct
control flow integrity attacks and elevate the privileges of certain functions of the
system. This implies a change of scope [61], meaning the attacker is not only able to
control the targeted function but also further assets from this position.

Confidentiality. The confidentiality is exploitable by the shown vulnerability.
Due to the breached memory protection, an adversary is able to disclose information
from the ToE. Accordingly, the impact to the confidentiality is scored at High.

Integrity. Compromising the integrity of the ToE is the direct result of an exploit
of the breached memory protection. By tampering with the memory within the ToE, a
proper function cannot be guaranteed. Therefore, the impact is rated at High.

Availability. The availability is not directly endangered by the vulnerability.
However, due to the change-of-scope (compare with Section 4.2.1), denial-of-service
attacks might be conducted by further exploitation. Accordingly, the availability
impact is rated at Low.

4.2.2 Penetration Test: Co-Processor Exploit

The heretofore described penetration test implementation realizes the concept breaching
memory protections, which is introduced in Section 4.2.1. This contribution is based
on the publications shown by Schnarz et al. [143, 145].

Hypothesisd1: The adversary domain (MC2) can utilize the IPU write to a
target memory area that belongs to MC1.

H0: There is no data that can be written into the target memory area that
belongs to MC1.

H1: The data in the target memory area is changed on behalf of MC2.

126 Vulnerability Assessment

PE2

GPU

Memory

Part1 Part3 Part4

Software
Stack1

Software
Stack2

Software
Stack3

Firmware

SHM_1_2 SHM_1_CoPE SHM_2_GPU

Adversary Domain (MC1) Victim Domain (MC2)

PE1

IPU

Part2

MMU(2nd)

Fig. 4.14 Implemented attack vector.

Attack Vector Implementation

The attack vector utilises the MPU and IPU of the experimental platform7 (EVM).
The MPU facilitates a double-core PE, each of which executes a MC-domain (compare
Section 3.1.2). Furthermore, the IPU is utilised by one of the MC-domains to circumvent
the memory protection of the MPU.

Accordingly, the cluster domain (MC2) is declared as a victim domain and the
infotainment domain (MC1) as the adverse domain. In this scenario, it is assumed
that the adverse domain has access to the IPU. The assumption is reasonable because
of image processing acceleration, which the IPU was intended for, and is a feature
utilised by infotainment applications.

To circumvent the isolation, in this scenario an adversary utilises the IPU and
exploits its capability to access the main memory independent of the MPU. Since the
evaluated architecture of the OMAP5432, does not feature VE or Intellectual Property
Memory Management Unit (IPMMU) for the Cortex-M4 processors, the IP-core is
capable of accessing the full address range of the main memory. Only the memory-
mapping of the IPU has to be manipulated to gain access to the entire memory range.
Accordingly, the attack approach is based on injecting a malicious firmware to the
co-processor. If the firmware is executed, it compromises the memory-mapping of the
IPU’s translation table. This results in the capability to circumvent the MC-domain
isolation on behalf of the adversary-domain. Figure 4.14 visualizes the attack vector.

7compare with Section 3.1.3

4.2 Hyp-Attack2: PE’s memory base is tampered with by adjacent PE 127

Experimental Setup

The experiment is assumed to be mounted during normal system runtime. That means,
when the original boot sequence is done, and the OS of both domains are initialized.

Therefore, the experiment is crafted by involving the three system components.

Adversary (MC1) General system setup and installation of the exploitation
firmware. Executed by the MPU-PE2 on behalf of the adversary-domain.

Adversary (MC1) Exploit-firmware execution. Executed by the IPU on behalf
of the adversary-domain (MC2).

Victim (MC2) Evaluation of success. Observing the target memory area.
Executed by MPU-PE1 on behalf of the victim-domain (MC2).

Preliminary to the attack sequence, a target memory area with the address addrtarget

within the victim’s memory space is defined. Furthermore, a signature sig will be
negotiated between the two domains before the attack. In this example, the string
0xEEAADDCC is used. If the victim-domain recognises sig at the given address
addrtarget, the experiment gained evidence that the hypothesis could be tested.

Attack Sequence

A substantial prerequisite is the initialization of the IPU. This is done by the adversary-
domain. Therefore, all of the necessary configuration-registers need to be mapped
to the MPU’s memory space. These configuration registers include, amongst others,
the interfaces to set up the device’s internals such as system clock and processor
frequencies as well as the setting of necessary base registers that the IPU can access
external resources. Most importantly, this includes the L2-MMU-Translation-Table-
Base-Register in order to initially provide a well-formed translation-table to the IPU’s
internal MMU. An overview of registers and their addresses is depicted in Figure 4.15.

Once, the IPU is set up, and the system is running, the adversary crafts the
exploitation firmware and provides it with the addrtarget and sig. In Section 4.2.2, the
exploitation firmware is elaborated upon in more detail. In the end, the adversary
populates the previously prepared exploitation firmware to where the main memory
is so the IPU can execute it. This is referred to as firmware load address (FLA) and
denoted by addrF LA.

In the next step, the exploit-code that resides within the exploitation firmware is
triggered. The attack code attempts to add the malicious MMU entry to the L2-MMU-
Translation-Table of the IPU. Finally, the exploit-code simply writes the sig to the

128 Vulnerability Assessment

MPU
(MC1)

Part2

IPU
(malicious)

IPU_RSTCTRL

MMU_CNTL

IPU_TTB

addrtarget

addrFLA

MPU
(MC2)

System
Address
Space

IPU

Part1

Part3

Part4

SHM_1_2

SHM_1_IPU

Fig. 4.15 Memory mapping (extract) for the attack vector.

previous written mapped memory area in which addrtarget resides. A detailed view of
the memory mapping is given in Figure 4.15.

The victim’s side cyclically checks whether the signature was written to the target
area.

Memory Mapping. The IPU processor is connected to the system bus (CA) (L3-
Interconnect) through a L2-MMU. The L2 MMU translates from the IPU’s VA to
the PA of the system. The configuration of the MMU can be done from one of the
Cortex-M4 cores or a system bus slave port. By utilizing the MMU control register
IPU_MMU_CNTL the IPU MMU is configurable. In the shown example, the MMU
is programmed from the IPU locally. Therefore, the control register is mapped to the
IPU (compare with Figure 4.15). The IPU’s translation table consists of 32 entries,
each of which points to a 1MB physical address area [79]. In this PoC-implementation,
all entries are mapped to the address where the exploitation firmware is located in
the main memory. Since the exploitation firmware size is smaller than 1MB, only the
first entry in the translation table is necessary to provide a correct MMU setup. This
is the minimally required setup to build a proper virtual address space environment

4.2 Hyp-Attack2: PE’s memory base is tampered with by adjacent PE 129

…ISR
Exploit
Code

Trans-
lation
Table

…

Stack
RestISR

DefaultISR
…

ISR-vector

Fig. 4.16 Exploitation firmware structure overview.

for the IPU. Within the exploitation firmware, the very last entry of the translation
table is used to point to addrtarget in the victim-domain. When the IPU accesses the
appropriate VA, the M4 is now able to write the signature (sig) to the target address.

Exploitation Firmware. As the utilisation of the IPU includes the definition of
entry points, interrupt service routines and further configurations, is a common format
to craft the exploitation firmware that has been chosen. Therefore, the adversary-
firmware is organised in the Executable and Linking Format (ELF) format [31]), which
is the common standard for executables in UNIX-like OSs. Furthermore, it is a common
technique to craft the binary format of co-processor firmware by utilising ELF. For
example, utilization-frameworks such as the remoteproc [91] rely on ELF binaries.
Figure 4.17 visualises the concept of the exploitation firmware.

According to the ELF specification [31]), the firmware implements the basic code
sections to execute commands on a processor. These code sections include the interrupt
service routine vector table (ISR_vector), a translation table for the MMU and
additionally the exploit-code section. Unlike the usual usage of ELF-binaries, the
reset Interrupt Service Routine (ISR) (ResetISR) is utilized as the entry point for the
execution. This means that, after the interrupt is raised to the IPU, the ResetISR
immediately redirects to the exploit-code which reconfigures the MMU. Thus, a
ResetISR-function within the ISR_vector of the firmware is registered. This enables
the adversary-domain to trigger this function by setting the appropriate value to the
reset register. Once the IPURSTCTRL is raised it delegates to the function within
which the exploit will be executed. Furthermore the firmware contains the translation
table of the IPU’s L2-MMU (compare Figure 4.16).

In Figure 4.17, the attack sequence is depicted. In the following the subsequent
steps in the sequence is described.:

[1]: Craft and write firmware to firmware load address (FLA) addrF LA

[2]: Gain access to memory partition Part2 of victim’s memory space. The
translation table is allocated and initialized by setting each entry to the PA

130 Vulnerability Assessment

Memory

MMU(2nd)
GPU

Part1 Part4

SHM_1_2 SHM_1_IPU SHM_2_GPU

PE1 PE2

IPU

Part3Part2

<addrtarget> <addrFLA>

[1] Propagate
Firmware

[2] Gain access to Part2
by manipulating
MMU settings

[3] Write signature
to target address

[2] Gain access to Part2
by manipulating
MMU settings

Fig. 4.17 Exploitation firmware attack sequence.

where the firmware is located (addrF LA). Next, the PA addrtarget of the victim-
domain’s memory-partition is written to the translation tables last entry (or any
other available)

[3]: The exploit code writes the signature 0xEEAADDCC to addrtarget

Temporal Vulnerability Score

The temporal vulnerability score considered in this section refers to the base score
given in Table 4.8. Accordingly, the corresponding Base Score is 8.1. As a result, the
penetration test is rated to 7.4, which is still rated as high severity. As is shown in
Table 4.9, the temporal vulnerability score manipulates in a positive direction and
limits the severity.

Table 4.9 CVSS temporal score of the co-processor misuse pentest.

Temporal Metric Rating Multiplier

Exploit code maturity Proof-of-Concept 0.94
Remediation level Unavailable 1
Report confidence Reasonable 0.96

Temporal Score High 7.4

Rationale The rational to the scoring of the exploit code maturity is fairly similar
to the previous penetration test given in 4.1.2.

4.3 Generalized Vulnerability and Exploitation Pattern 131

Exploit Code Maturity In this particular case, either the score Functional
or Proof-of-Concept is applicable. Other score values, such as High do not apply,
for example, since there is no autonomous code made available. However, since the
pentest has shown, it is feasible to mount an attack and exploit co-processors on this
particular system level. Accordingly, the score value Proof-of-Concept is applicable.
During the penetration test, source code has been produced which is capable of testing
a hypothesis8. This code has not been made public. However, the technique and
the conceptual consideration is practical to similar systems. Since the exploit code
is not runnable with the interaction and manual work of the penetration tester, it is
unreasonable to apply the metric value Functional.

Remedation Level The metric value Unavailable is reasoned by the fact that
no solution is applicable at the intermediate system level. The remediation is subject
to the proposed countermeasure that is part of the following chapter. However, DMA
based access control issues are encountered in many approaches applying, for example,
hypervisors and para-virtualized drivers. Therefore, a workaround which involves one
of those solutions might be applicable. In such cases, the remediation level could be
set to Workaround and the overall temporal score is multiplied by 0.97 instead of 1.

Report Confidence To the date of discovering the vulnerability, no evidence
indicated such impacts to the integrity of AMP-based systems. However, the root-cause
of exploit technique to be e�ective based on well-known issues in DMA attack scenarios.
Therefore, the metric value is set to Reasonable rather than Unknown.

4.3 Generalized Vulnerability and Exploitation Pat-
tern

In this section, the previously analysed vulnerabilities and attack vectors are generalized
and defined as a common applicable pattern. The pattern analysed here takes the
design paradigms of AMP into account and examines the di�erences to well-known
SMP based approaches.

8Compare Section 4.2.2

132 Vulnerability Assessment

4.3.1 Modelling Protection Architectures

In the following a model is proposed which describes the protection architecture in
multi-layered system architectures. The system is horizontally divided into a set of
logical layers each of which contains a certain number of entities. Vertically, each entity
belongs to a trust boundary. In the following, the elements of the architecture are
described in detail.

Entities. The entities are distinguishable into three categories. These are subjects,
objects and TSF. Subjects represent active entities such as processes, OSs, or hardware
elements, depending on the respective layer. Subjects will be denoted by •. Objects
(denoted by ⌅) are passive entities which are either shared or exclusive by subjects.
TSFs instantiate protection mechanisms such as access control, denoted by N.

Layers. A system consists of l layers forming a privilege hierarchy. The hierarchy is
defined that the lowest layer comprises the highest privileges. Layers are denoted as
the subscript of an entity. For example: •l. The layers are in conjunction with the
layered architecture introduced in Section 2.1.2.

Trust Boundaries. Trust Boundary (TB) are in analogy to AD and describe a
logical assignment to a particular group of entities. TBs are denoted as the superscript
on an entity. For example: •tb.

Relationships. Entities interact with each other. In this case, the accesses, forming
a read or write for example, are denoted by æ. For example: • æ ⌅.

Graphical Visualization. In Figure 4.18, the concept is visualized. TBs are visu-
alized by the colouring of the entities. The example shows three TB: red, green and
blue. According to the defined denotion, here the subjects •red

l+2 and •blue
l+2 , the objects

⌅red
l+1 and ⌅blue

l+1 and the TSF Ngreen
l are visualized. In the visualization the access

relationship •red
l+2 æ ⌅red

l+1 and •red
l+2 æ ⌅blue

l+1 are shown.

4.3.2 Preliminaries of an AMP system

In this section the preliminaries for defining threat detection rules.

Subjects: • > 1

4.3 Generalized Vulnerability and Exploitation Pattern 133

l

l+1

l+2
Subject
Entity

Object
Entity

TSF
Entity

Access

Layer

Fig. 4.18 System layers and entity relationships.

Objects: ⌅ > 1

Layers: l > 1

Trust Boundaries: tb > 1

4.3.3 Breach Access Controls on Intermediated Level

Security Problem Statement

The issue of breached access control mechanisms is not new in certain areas. As was
mentioned before, in traditional hypervisor-based SMP-systems this issue, particularly
the DMA problem, is discussed thoroughly.

All proposed memory access breaches are based on the same concept. They exploit
a missing access control mechanism in the co-processor implementation. On the
master PE side, the access control is implemented by the second-stage MMU, which
is commonly part of the virtualization extension of modern processors. However, a
problem arises if PEs are implemented which do not thoroughly support the concept
of AMP, and accordingly, properly managed access control on the intermediate layer.

In general, the root-cause of attacks in a memory-mapped system is the UMA
architecture. Regardless of the means to separate the shared resource, it is still a
single element which is operated by multiple AMP-domains. The aim of the memory-
map AMP approach is to virtually facilitate a NUMA architecture. In the same
fashion, UMA provides functional advantages on the contrary. Amongst others, the
closed-coupled application can share data very e�ciently. Nevertheless, most MPSoCs
implement an UMA memory architecture, and therefore those are the focus of the
attack analysis.

In an access control scenario, multiple subjects request access to objects. The
subjects are instantiated entities. Accordingly, the objects are resource entities. Fur-

134 Vulnerability Assessment

thermore, there must be an enforcement entity which applies a policy. In a layered
system, each of the entities resides on a particular level.

Concerning the given problem of direct memory access of co-processors, the system
looks like as shown in Figure 4.19. Two entities on the higher layers (ln + x) access
the resource entity on the lowest level (ln). One of the entities is, like in the anal-
ysed exploit, the master PE and a co-PE, which are denoted by RequestingSubject1
and RequestingSubject2 respectively. The di�erence between both accesses is the
policy enforcement entity (green triangle) on the intermediate layer denoted by l +1.
Whereas RequestingSubject2 does not apply a policy enforcement (such as a MMU),
RequestingSubject1 is intercepted by such.

ln

ln+1

ln+2

Requesting
Subject 1 (PE1)

Requesting
Subject n (Co-PE)

TSF

(2nd Stage MMU)
Object

(Memory)

Fig. 4.19 Generalized access control problem.

Although the general access control problem would lead to serious attack surfaces,
this issue might have arisen from a changed assumption on the system design. Formerly,
the system architectures incorporated a traditional hypervisor which utilised the
hardware synchronously. Every request or operation would be interceptable by the
hypervisor. That means the hypervisor has been assumed to be the single point of
policy enforcement. As an example, concerning the GPU exploit scenario mentioned
earlier, the hypervisor could have been empowered to validate or enforce the in and
output descriptors to prevent a manipulation of the higher system layers. Since this
instance does not exist, or should not exist, in the targeted AMP environment, the
enforcement of the access policies must be performed in a di�erent place.

Decomposition

Here, a rule-set is introduced to detect the security problem. The rules apply only to
the preliminaries given in Section 4.3.2.

4.3 Generalized Vulnerability and Exploitation Pattern 135

EoP_1: Access from adjacent trust boundary. An EoP threat occurs, when a
subject that belongs to an di�erent trust boundary as the object. In this case, the
layer is considered to be the same.

(•n
l æ ⌅n

l)· (•m
l æ ⌅n

l)

EoP_2: Access from higher layers. An EoP threat occurs, when a subject that
belongs to layer that is higher than the object’s layer.

•n
l+1 æ ⌅n

l)

EoP_3: TSF on a di�erent layer than the object. An EoP threat occurs,
when a TSF that belongs to layer that is higher than the object’s layer. Otherwise, a
similar situation as shown in EoP_2 occurs.

Nn
l+1 æ ⌅n

l

EoP_4: Subject uses TSF that belongs to a di�erent trust boundary.

•n
l+1 æ (Nm

l æ ⌅m
l)

4.3.4 Denial-of-Service a Shared Resource

Security Problem

Here, availability aspects of objects are considered to be threatened. If two or more
subjects (entities) utilize the same resource negative e�ects could occur. According to
a threat identification using a DFD, this can be identified as shown in Figure 4.20.

l+2

ln

ln+1

Requesting
Subject 1(PE1)

Requesting
Subject n(PE2)

Shared Object
(LLC)

Fig. 4.20 Resource sharing.

136 Vulnerability Assessment

According to the shown figure, the problem arises when two subjects out of two
distinct trust boundaries access a resource. It is assumed that the subjects and objects
reside on the same architectural layer.

DoS_1: Two subjects of di�erent TB share a resource without applying a
TSF.

(•n
lx æ ⌅p

lx)· (•m
lx æ ⌅p

lx)

4.3.5 Identification of Attack Surfaces in AMP Systems

The assessment throughout this chapter has shown, the hypothesised attacks are
conceptually and practically existent. There are two branches; one might think of, to
conclude and proceed on the foundation of this contributions. Either, the particular
problems will be solved in dedicated solutions, or the results will be turned into rules
to prevent new architectures from being prone to such security problems.

The former takes the details of the results into account when it comes to the
conceptualization of solutions to the revealed security problems. Here, the same
assumptions and architectures build the reference for such solutions9. The latter seeks
for design rules, patterns, tactics or formal models.

Security Models Aiming for Isolation

In the following security, models are elaborated aiming for a strict separation of
architectures in order to prevent security problems assessed in this work.

The main purpose of introducing layers and entities is motivated by the separation
of protection and security principle [187]. The principle seeks to distinct an actual
protection mechanism from security policies10. With this intention, here it is defined
what the general directives (policies) for a layer are. The properties are hence derived
from security properties such as confidentiality, integrity, availability, accountability
and authenticity. Consequently, the layer characteristics reflect those corresponding
security properties. Defining characteristics for system models is not new to certain
areas. Particularly in the field of AMP systems security models such as Multiple
Independent Levels of Security (MILS) have been introduced to model the security
of high assurance systems especially for aircraft, space, and defense purposes [5, 180].
MILS focuses on properties including data isolation, control of information flow, periods
processing and fault isolation [182].

9This is how it is done in the risk treatment chapter 5
10Policy is treated as a directive.

4.3 Generalized Vulnerability and Exploitation Pattern 137

Data isolation: The isolation of data does not only a�ect the confidentiality of
information, it is also aimed at the separation capabilities of the system design.

Control of information flow: The location of the information has to be defined.
Furthermore, access control has to be enforced.

Periods processing: This aims for single core or classical virtualized systems
which share one or more processors. In this case, it has to be proven that each
system can meet its timing requirements.

Fault isolation: Failures are detected, contained and recovered locally [182].

These properties relate to the definition of separation kernels [128, 140]. The
intention of kernels is to define properties for TSF in order to achieve a particular
degree of assurance. These properties include [128]:

• Protection of all resources (including CPU, memory and devices) from unautho-
rized access

• Separation of internal resources used by the TSF from exported resources made
available to subjects

• Partitioning and isolation of exported resources

• Mediation of information flows between partitions and between exported resources

Each entity of a layer must be delimit-able to other entities. This is applicable to
for two dimensions. Horizontally, it shall have defined boundaries to entities at the
same layer. Orthogonally, the vertical separation contributes to a defined boundary
and therefore interface to other layers. This property contributes to the security
properties integrity and confidentiality. In order to make an layer entity tangible
in their environment it needs to be identifiable. Identifiability is a key property to
organize and administer large systems. Furthermore, with respect to security this
property is essential when it comes to authentic communication. Availability is from
many perspectives an important quality and therefore a crucial property of a system
layer. Availability means that the resource consumption is well defined and controllable.
When it comes to resources, particularly shared resources, the privileges to operate on
them are considerable. It must be distinguishable if an requesting entity gets access to
a resource granted which is either horizontal or vertical. This property is quite complex
since it implies the combination of the above mentioned properties. An identification
of an requesting entity is needed as well as the delimitation of the resource itself.

138 Vulnerability Assessment

For the facilitated security policies, the protection mechanisms to following at-
tributes must be applicable. Protection mechanisms shall be:

• non-by-passable

• evaluable

• always invoked

• tamper proof

These are commonly known as the acronym NEAT [4].
In the EURO MILS CC PP [50], the authors require particular hardware facilities

in order to realize the TSF. These facilities include IPMMUs, MMUs, etc. That
means, the profiled ToE in this case, aims for a software-based solution, being hardware
agnostic as much as possible. However, the assessment in this chapter has revealed that
the security problems are due to architectural design flaws in the hardware which is due
to the AMP (Type-0 Hypervisor) construction, rather than implementing a hypervisor
and SMP. As a conclusion, if the separation capabilities are moved to the hardware,
the hardware, in turn, has to realize all necessary functions with the properties as they
are introduced in this section. Meaning, the hardware is the separation kernel then.

4.3.6 Primary and Secondary Assets

In the first place, this work focuses on tampering threats on the memory partitions of the
MC-domains. Concerning the example as given in Figure 5.2, one MC-domain tampers
with the memory partition (Parti) of another domain. Despite, the compromising
of the integrity of the main memory, this can be the root-cause for further or even
more advanced threats. It is worth mentioning that tampering might lead to elevation
of privileges or one subsequent step of spoofing a communication link to another
entity, even though, denial-of-service attacks can be mounted by tampering with the
memory-base of a system. This is motivated by the fact that software intensive systems
rely on their code and database stored in the main memory. Tampering with that does
not only compromise and modify information, but also the control flow integrity of their
function. This means, that by having the ability to change the control flow deliberately.
For example, an adversary might gain full or partial control of the vehicle’s behaviour.
Impacts on safety and operation of the entire vehicle are severe. As a result, memory
storage is a valuable asset. In the following section, the potential attacks on memory
assets are structured.

4.3 Generalized Vulnerability and Exploitation Pattern 139

4.3.7 Attack Objectives and Scenarios

This section describes the AMP system-specific technical attack objectives. As is
discussed in Section 4.3.7, threat actors aim for changing the system state. In other
words, the adversary wants to control or disrupt the system’s behaviour. Disregarding
of their motivation, it is assumed that the adversary aims for a specific function. A
specific function which is technically represented as a process on the application layer
and logically bound to a specific MC-domain (compare Section 4.3.3).

Harper et al. [62] define five phases of hacking/attacking a systems, from which
the first three are considered in the following: Reconnaissance, which means to "ob-
tain information either actively or passively" [62, p. 15], Scanning, to identify the
environment which will be compromised, Gaining Access, which means to exploit the
previously identified vulnerabilities [62], and Maintaining Access, or to make sure a
re-entry is possible and finally to cover tracks to hide the malicious activities.

A crucial fact of considering memory based (and memory-map based) attack vectors
is that the attacker needs to know its particular target memory area and therefore
its address. Many known memory exploits and techniques rely on this issue. Some
prominent examples are bu�er overflow attacks [40], format-string attacks [40] and
Return Oriented Programming (ROP) [24]. These techniques have one common base,
the modification of a return address of a function call in order to jump into injected
and malformed code sections. The details of those techniques are out of the scope of
this work. However, it is important to mention that the e�ort to determine the specific
address or the relative position (o�set) to a particular instruction is crucial. Usually
the attack vector works as follows. Somehow the adversary needs to gain access to the
application and exploits a vulnerability of a function, via a bu�er overflow for example.
In the next step, the adversary re-interprets the code structure and seeks for a suitable
position to interfere with the control flow of the application. Most commonly this is
done via overwriting the return address of a function call. The newly written address
points to a memory area which is under control of the adversary.

In the following this process is formalized.

Step 1: Gain access/entry the function

Step 2: Re-interpret structure

Step 3: Mount attack

In order to mount an attack described above, there were still some assumptions
made. In order to find a suitable entry to the system, the adversary needs to put e�ort

140 Vulnerability Assessment

into exploring it. This is usually referenced to as reconnaissance in a preparational step.
Reconnaissance also takes place in Step 2, when the adversary seeks to re-interpret
the structure of the system to proceed with Step 3, which is the execution of the
attack. As a result, this could be split into preparational reconnaissance and online
reconnaissance.

Threatening the System State. This subsection aims at defining the goal of
threatening a system element. In this particular environment, the fulfilment of system
qualities is prioritized. One important component in achieving this goal is to ensure that
the system operates as it was intended. Hence, the proper function of the system turns
into the focus of the stakeholder of the system. On the threat agent side this means
that if someone endeavours to misuse the system in any way, they must manipulate its
behaviour. The system state is, on a logical level, the asset that an adversary aims at
changing in order to reach their goal. The system’s state is an abstract description of
what a system or function is operating on during runtime. Consequently, if a threat
agent is capable of changing the state of a system, he has control over the system. If this
is transferred to AMP systems, OS have states which are exposed to be fraudulently
interfered with by other OS or data flows consumed by them.

Control-Flow Integrity (CFI) related Attacks

Attacks on the integrity of control-flows are a severe representation of tampering threats.
This type of attack is a�ecting the Control Flow Integrity (CFI) by subverting the
machine-code of software-systems [2]. In short, CFI attacks aim for illicit control of
a program’s state. Control-flows can be subverted either directly by tampering with
the instructions of the machine code or indirectly by modifications of data that are
consumed by the program. The latter type of attack is referred to as non-control flow
data. Control-flow data are kernel text sections, such as instructions in binary code
or function pointers which redirect the execution flow of instructions. Furthermore,
processor registers which contain the instructions to be executed [133]. Non-control
flow data preserve possibilities to interfere with the state of the program and can be
categorised with the following [26]. Typical examples concerning MPSoCs are input
data which are consumed by a program and a�ects their behaviour. Input data can
be something that has been issued by an external entity such as a sensor connected
by an automotive bus. On an application and OS level, this might be a message
passed over an SHM or on a SoC level data frame that was communicated through the
communication architecture. The subversion of configuration data includes a broad

4.3 Generalized Vulnerability and Exploitation Pattern 141

range of possible surfaces as well. Most notably, this could be the configuration of a
processing element or a memory protection unit which enforces the separated address
spaces for the particular system levels. Modifying identity data implements typical
spoofing threats. The modification can cause a program to falsely authenticate a
communication entity due to compromised identification data. Lastly, the category
of decision-making data can influence boolean variables which imply a conjunction or
disjunction to reach the final verdict [26].

CFI Attack Types

Following Petroni et. al [132], the following CFI-specific Threats are categories, which
are di�erentiated and considered:

User-space object hiding: Aims to inject code with an illicit capability within
an user-space object such as an application.

Privilege escalation: Code injection with illicit capability within user-space
aiming for escalating/elevating privileges.

Re-entry/Backdoor: Implements illicit capability on OS-level.

Reconnaissance: Reverse engineering of kernel structures in order to gain knowl-
edge about system structures or functionalities.

Defense neutralization: Deactivation of defense or protection controls imple-
mented on OS-level.

Control Flow Side Channel Attacks In general, side channel attacks aim at
exploiting leaked information which was gained by a covert channel [124]. Covert
channels are not intended for information transfers such as the software program’s
e�ect on the system load [105]. Recent endeavours revealed several instances of side
channel attacks that take e�ect on adjacent system entities. For example, Rowhammer
has been introduced by Kim et al. in order to flip bits in a DRAM11 row without
accessing them directly [96]. Furthermore, with Meltdown and Spectre, possibilities have
been demonstrated as how to misuse the speculative behaviour of modern (embedded)
processors [103, 111].

11Dynamic Random Access Memory

142 Vulnerability Assessment

4.4 Summary

This chapter elaborated upon the vulnerability assessment of two hypothesised attacks.
This was approached by the conceptual analysis of the vulnerability and exploitation
of these attacks. First, the disruption of the accesses to a shared last level cache
was examined. Second, the assessment on the tampering of memory by an adjacent
processing element has been conducted.

A denial-of-service attack on shared cache setups of modern processing element
designs has been discussed. The contention is caused by shared way-sets in k-way-set
associative caches. The concept shows how to provoke the contention by overcommit-
ting associated way-sets. As a result, the vulnerability is a non-controlled shared usage
of cache way-sets, which enables an adversary to provoke cache-misses on memory
accesses. In the CVSS scoring, this vulnerability has been scored at Medium (5.3) with
a high impact on the availability of the attacked domain.
The exploitation of the identified vulnerability has been conceptually and experimen-
tally approached. The assessment reveals that particular physical addresses can be
modified and cause the previously described e�ects. This is possible, even though
they are in separated memory partitions of asynchronous domains located in an AMP
system. In a penetration test, the formerly conceptualized attack was experimentally
demonstrated. Here, on the basis of the experimental platform, an increase of 129,501
CPU cycles (arith. mean) per memory access has been provoked by the DoS attack.
The consideration of the temporal CVSS score slightly decreased the value from 5.3 to
4.8, which is still a Medium exploitability score. The maturity of the given experimental
exploit code has been rated as Functional, which means it shows the e�ects but must
be adapted to be applicable in other systems.

The second assessment approached concepts of misusing a memory access capabil-
ity in heterogeneous MPSoC designs. DMA capable peripherals such as GPUs and
co-processors can be misused to exploit an insu�cient protection architecture within
the MPSoC. The conceptual exploitation has been analysed and scored with CVSS at
the level High (8.1). Having this vulnerability in place, a change of privilege scope is
possible. This leads to High impacts regarding the confidentiality and integrity of the
asset.
Experimentally, the exploitation of the identified vulnerability has been explored and
scored. The penetration test demonstrates a compromisation of a co-processor firmware
image to circumvent the memory protection of the main processors. As a result, the

4.4 Summary 143

temporal CVSS score is High but decreased to 7.4 due to the maturity of the shown
exploit code.

Both assessments were reflected in the third part of this chapter. Here, a general
view of the given vulnerabilities and assets is conducted. For that purpose, the concepts
have been generalized and reflected in the layer hierarchy of an AMP system. The
results are twofold. First, the systems should be analysed to reflect the distinct
hierarchies of an AMP system. This will reveal resource control and access violations.
Furthermore, the findings enable the ability to define requirements for protection
architectures such as multi-layered systems.

5
Risk Treatment

Exploitation Prevention and Mitigation Concepts

Contents
5.1 Risk Treatment Strategy . 146

5.1.1 Target and Residual Attack Potential 147
5.1.2 Exploitation Prevention on the Intermediate Layer 147
5.1.3 Security Solution . 148
5.1.4 Primary and Secondary Countermeasures 152

5.2 Countermeasure 1: Memory Domain-Blocks 154
5.2.1 E�ectiveness Requirements 154
5.2.2 Mitigation Concept Analysis 154
5.2.3 Proof-of-Concept Implementation 157

5.3 Countermeasure 2: Memory-Map Shu�ing 160
5.3.1 E�ectiveness Requirements 161
5.3.2 Mitigation Concept Analysis 161
5.3.3 Case Study . 168

5.4 Summary . 170

146 Risk Treatment

"We can’t solve our problems by using the same kind of thinking
we used to create them"

Albert Einstein

Reacting to observed vulnerabilities and novel attack vectors is a widely discussed
field in the security engineering discipline. Usually, new observations trigger the
engineers to come up with new countermeasures or architectural designs. This cat and
mice game is constantly changing the advantage between the contestants. Particularly,
the stakeholders of a system have aimed at keeping the advantage or the upper hand
for the adversaries. In general, this chapter considers the following research question:

Research Question 2: How can one mitigate the risk of exploitation of the
previously identified vulnerabilities?

The research question is approached by connecting to the generalised vulnerability anal-
ysis given in the previous chapter (compare with Section 4.3). The bottom-up/inductive
approach is in conjunction with the identified DMA and cache vulnerabilities. A pro-
posal to mitigate these specific weaknesses is conceptually analysed. The chapter
begins with an architectural proposal which enables future designs to be defined from
the top-down/deductive perspective.

After an analysis of the interdependencies between the vulnerability and its coun-
termeasures, first, a definition of protection categories in layered architectures is given.
This is considered as the foundation for the proposed mitigation approaches and aims
for the context of exploitation prevention on the intermediate layer. This approach
aims for transferability and are suitably abstracted to apply to other appliances. The
observed mitigation patterns will be generalised with a protection architecture model,
which seeks to abstract the key findings and empower future architectural designs.

The contribution in mitigating cache-thrashing is published in Schnarz et al. [144,
146]. Furthermore, the concept of memory-map shu�ing is proposed by Schnarz et al.
in [147].

5.1 Risk Treatment Strategy

On the basis of the hypothesised attacks, here, the risk treatment is discussed. This
includes the treatment strategy as well as functional and assurance requirements.

According to the risk levels that result from the risk assessment, the general strategy
to treat the risks is mitigation. As a result, the mitigation shall be facilitated as a

5.1 Risk Treatment Strategy 147

countermeasure that functionally contributes to the reduction of the overall risk. This
shall be measured and therefore assured by appropriate techniques.

Other risk treatment strategies are not considered at this level of abstraction. This
is motivated by the nature of the other risk treatment strategies. Risk avoidance, for
example, would imply a degradation of the functionality (applications) running on
the ToE. However, if the proposed mitigations are not capable of reducing the risk
properly, the result might be a limitation of the severity of functions that are executed
by the ToE. Furthermore, considering risk transfer, organizational means for handling
the risk are out of scope. Risk acceptance will play a role in the statement of the
residual risk as part of the result in the evaluation of the mitigation approaches.

5.1.1 Target and Residual Attack Potential

The targeted AP is defined concerning the definition given in Table 2.5. According to
the risk level of 4, the required resistance to the attacks shall be greater or equal to
Enhanced Basic (AP range: 10≠13). The residual AP should be greater or equal to
Moderate (AP range: 14≠19).

5.1.2 Exploitation Prevention on the Intermediate Layer

How to prevent from the exploitation of a vulnerability depends on the particular stage
in the product lifecycle. For example, if the product is in the design and development
phase, an observed vulnerability can be fixed by design changes or the implementation
of explicit countermeasures. However, if the product is already deployed, the fix of
vulnerabilities implies much more constraints. This section aims at analysing and
defining particular protection strategies in order to describe the dependencies between
vulnerabilities and the di�erent ways to prevent them from exploitation.

After a vulnerability in the architecture has been observed, exploitation prevention
mechanisms are the last line of defence to hinder an adversary from compromising the
aimed for asset successfully. Exploitation prevention mechanisms are countermeasures
which are facilitated due to expected but unknown vulnerabilities. These mechanisms
should apply when another protection mechanism has failed. That means exploitation
prevention measures are in place to increase the hurdle (e�ort) of implementing an
exploitation in order to penetrate security mechanisms.

As a result, there are primary and secondary countermeasures. The former aims
at controlling and protecting a particular asset explicitly. Primary countermeasures
are realized due to known and hypothesised/anticipated threats and attacks based on

148 Risk Treatment

Primary Countermeasure

Asset

Secondary Countermeasure

Unknown
Vulnerabilities

Hypothesised/Anticipated
Threats

Fig. 5.1 Primary and secondary countermeasures in relation to exploitation and asset.

the assumptions made during the design of the system. However, the latter aims at
countering an intrusion in case the primary measure has failed, or a new vulnerability
will be exploited. In Figure 5.1, this principle is depicted.

Defence-in-Depth. In complex systems consisting of several layers, usually the
security architecture facilitates a defence-in-depth philosophy.

"A defence in depth design philosophy proposes multiple levels of security
devices (...). The greater the value of the information assets within a given
risk domain, the greater the number of layers of security technology must
be penetrated to reach those information assets." [14, p. 518]

Bidgonli defined the defence-in-depth philosophy for the appliance of large enterprise
environments, which connects a wide set of Commercial Of The Shelf (COTS) devices.
Concerning the multi-layered system architecture, the defence-in-depth philosophy is
applicable from two perspectives. Each layer can facilitate its individual protection
mechanisms. The stack of architectural layers and the applied protection mecha-
nisms represent the depth of the defensive architecture. Furthermore, the previously
mentioned di�erentiation between countermeasures applies as well. Each of the facil-
itated protection mechanisms facilitates either the concept of primary or secondary
countermeasures.

5.1.3 Security Solution

This section aims at describing the dependency between a vulnerability and a coun-
termeasure. The dependency will close the gap between the security problem and its
solution. Therefore the security pattern will be completed by the countermeasures
proposed in this chapter. The context of the of the security pattern is defined in the

5.1 Risk Treatment Strategy 149

ToE description of this work (compare with Sections 2.1 and 3). Additionally, the
particular security problems were examined in Chapter 4. Here, the considered threats
and attacks to the given context are stated. In addition to that, the security problems
were quantified by applying the concept of AP and the CVSS.

The only missing point is the selection of a suitable protection mechanism, which is
the security solution. Many ontologies exist that map security problems or objectives
to security solutions. A prominent and well-accepted collection [149] of those mappings
is stated in the CC SFR. It is recommended to choose from the SFR families and
components functions that satisfy the security objectives [43]. The components include:

• Logging and audit

• Identification and authentication

• Cryptographic operation

• Access control

• Information flow control

• Management functions

• Protection of user data

• Protection of TSF

• Protection of (user) data during communication with external entities

However, there is no formal guidance on how to choose suitable functional requirements
for a particular problem. This relies only on the author and evaluator of ST or PP.
Furthermore, the definition of the STRIDE model also states at high-level categories
to mitigate identified threats. Here, tactics are identified to approach the particular
threats. This is shown in Table 5.1.

150 Risk Treatment

Table 5.1 Tactics for threat mitigation (summary of [154, p. 145�]).

Threat Property Vio-
lated

Countermeasure

Spoofing Authenticity Authentication by cryptographic means (mes-
sage authentication codes).

Tampering Integrity Implementing permission system or crypto-
graphic means.

Repudiation Non-
Repudiation

Digital signature systems.

Information Dis-
closure

Confidentiality Implementing permission system or crypto-
graphic means (encryption).

Denial-of-
Service

Availability Implement resource limitation or redundancy.

Elevation of Priv-
ilege

Authorization Implementing permission system.

The previously given examples for choosing suitable functional security requirements
will be taken into account for the countermeasures proposed in this chapter. However,
since the security problem of AMP systems are specific to its context, security patterns
for the ToE are stated in the following sections. These protection architecture tactics
are the result of the key findings of the particular countermeasures.

Security Solution Approach for a Breached Access Control

The solution to the security problem introduced in Section 4.3.3, is elaborated upon in
the following. The here given solution shall enable an architectural design which will
not lead to the identified threats. This is in contrast to the proposal given in Section
5.3. There a solution is shown that applies to systems that cannot be redesigned.

In Figure 5.2, the hardened solution is depicted. In the following, paragraphs the
design rules are elaborated and referred to the threats.

A TSF shall reside on a lower layer than the requesting subject. In order
to trust the TSF, it must be placed at a layer that is more privileged as the subject,
requiring access to an object. This shall ensure the integrity of the security solution
(EoP_2 and EoP_3).

5.1 Risk Treatment Strategy 151

l+2

ln

ln+1

Requesting
Subject 1

Requesting
Subject n(Co-PE)

TSF2

(2nd Stage MMU)

TSF1

(2nd Stage MMU)

Fig. 5.2 Distributed access control.

For each TB there shall be a TSF for a single object. In order to prevent
the circumvention of a TSF by subjects of adjacent trust boundaries, each TB shall
implement a TSF. This prevents EoP by a untrusted subject in a adjacent TB (EoP_1
and EoP_4).

TSF and Object shall reside on the same layer. The requested object shall be
controlled by a TSF that resides on the same layer. This prevents the EoP across
privilege layers (EoP_2).

Example of an optimized technical architecture. The resulting technical archi-
tecture must include a mean to protect the memory from requests issued by PEs that
have an interface to the system memory. In Figure 5.3, the exemplary architecture is
enhanced with a MPU for each PE. Those MPUs are facilitated on the intermediate
layer. Every violent access request would be trapped by the respective MPU. This
concept of a distributed access control architecture would enable a throughout AMP
domain design. No protection mechanism would rely on a higher level system element.

As a result of the given problem analysis, a properly crafted MPSoC design the
access control mechanisms shall be distributed as it is shown in Figure 5.2.

Security Solution Approach for DoS of a Shared Objects

Not in all cases, a total separation of objects is possible. This is particularly true for
LLCs, so it has been analyzed and demonstrated in Section 4.1. In general, a suitable
approach to mitigating a DoS attack to a resource is the arbitration of accesses. In
other words, a TSF shall handle those accesses and enforce a balanced (or controllable)
scheduling between competing subjects. The rules to instantiate such an TSF is
discussed in the section on access control (compare Section 5.1.3). From a functional

152 Risk Treatment

PE1 PE2 CoPE

MMU(2nd)

GPU

Memory

Part1 Part2 Part3 Part4

SHM_1_2 SHM_1_CoPE SHM_2_GPU

MPU MPU

Fig. 5.3 Modified MPSoC architecture to prevent from direct access misuse.

point of view, here resource arbitration or resource scheduling could suitably to be
applied [98, 99].

However, particularly for caches, this is not always possible without changes in
the design of a cache. Therefore, here the decomposition approach is proposed. This
means, that the object will be decomposed in its sub-components. On this, more
detailed, representation, possibly sub-objects exist that can individually be handled
(compare Figure 5.4). This general approach of de-compositing is utilized to present
the domain-block concept in Section 5.2.

ln

ln+1

Requesting
Subject 1(PE1)

Requesting
Subject n(PE2)

Sub-objects
(Way-Sets)

Shared Object
(LLC)

Fig. 5.4 Object sharing security problem model.

5.1.4 Primary and Secondary Countermeasures

According to the memory-map based AMP construction, the MMU capabilities are
utilisable to facilitate the concept of primary and secondary countermeasures. The
memory-map is comprised of a central point in the configuration of the hardware.

5.1 Risk Treatment Strategy 153

Memory-Maps as Primary Countermeasure. The intrinsic concept of memory
maps is clearly stated. It shall organize the physical memory by utilizing distinct
address spaces1. Form the security point of view, the memory protection capabilities
of a MMU turn into focus. The memory protection facilitates the concept of access
control to a resource. In Figure 5.5, the principle is visualized. The example is based on
the driver information case study and applies two asynchronous domains which access
the common memory resource. Accordingly, the PEs are the subjects that request
access the object, which is the memory. The manifest which keeps the security policy
is represented by the memory-map table. The actual enforcement for this policy is the
MMU device.

MMU(2nd)

PE1 PE2

Memory

Manifest
(Mem-Map)

Subject

Part1 Part2 Object

Enforce-
ment

Fig. 5.5 MMU utilized as means of access control.

Memory-Maps as a Secondary Countermeasure. As a result of the previous
analysis, the capability of secondary countermeasures was not currently considered on
the intermediate level of AMP-based systems. Hence, this work proposes the integration
of secondary countermeasure into the intermediate level (compare with Figure 5.6).

Software Stack

Intermediate

Primary Countermeasure

Secondary Countermeasure

Hardware

Fig. 5.6 Integration of a secondary countermeasure on the intermediate level.

Amongst the primary access control enforcement of the MMU, here the address
translation capability is utilized. In Section 5.3, there is a concept to re-organize the

1compare Section 2.1.4 for a detailed explanation

154 Risk Treatment

memory-map between the IPA and PA address mapping. Thus, the localization of
targeted physical memory pages shall be mitigated without knowledge of the mapping
table.

5.2 Countermeasure 1: Memory Domain-Blocks
The general mitigation approach aims at separating the WSs in the LLC in order to
avoid the impact of deliberately caused competing accesses. Therefore, the approach
shown here, adopts the concept of cache colouring and applies it to the concept of
intermediate layer memory-maps in an AMP-based environment. This results in a
technique for creating the second stage (IPA to PA) mapping.

Cache colouring is a technique that exploits the cache associativity to avoid cache
contention issues. Memory pages are tagged (coloured) according to their association
with the cache-lines in the LLC. The entity in the system which allocates those pages
to processes seeks to assign distinct processes with di�erent coloured pages. Since this
allocation technique is mostly applied on the OS layer, this is often part of the memory
allocator implementation of OS. For example, in Linux operating systems, the SLAB
allocator calculates o�sets for optimised cache contention [56].

In the following, a domain-block mapping is introduced to direct the access of
distinct ADs or MCs to a subset of the WS in the cache. By this token, a logical
separation of the shared LLC is achieved.

5.2.1 E�ectiveness Requirements

Conceptually, the method proposed here should fulfil and answer research question
RQ2 while also concerning the general aim of this research. The general aim requires
finding solutions adapting the intrinsic configuration interface of an AMP system,
which is the memory map. The countermeasure should implement the concept of a
primary countermeasure.

The proposed solution shall mitigate the risk of denial-of-service of a shared
LLC. The proposed solution shall avoid the tpenalty with regards to memory
accesses. According to the case study the targeted AP is Moderate.

5.2.2 Mitigation Concept Analysis

Domain-blocks represent a consecutive chunk of memory which belongs to a particular
AD. This memory chunk is divided into MLs each of which correspond to a particular

5.2 Countermeasure 1: Memory Domain-Blocks 155

WS in cache2. The index of the ML (MLi) directly indicates the index of the WS
(WSi) and is calculated by:

MLi mod v = WSi

The domain-blocks can be sized and properly placed in the main memory so that
the domains do not share any WS in the LLC. This concept is visualized in Figure 5.7.
The figure shows a domain-block mapping applied for two domains (MC1 and MC2
concerning the case study). According to the concept of page colouring, there are two
distinct colours used in this example. In the physical memory, an alternating pattern
of domain-blocks is arranged. The blocks coloured in blue correspond to domain MC2
and the red blocks to domain MC1, respectively. The size of each domain-block defines
how many WS are associated with a domain. In the given example, each domain shall
have access to half of the LLC. Thus, the number of WS (v) is divided. Accordingly, in
the example, each domain-block consists of v/2 ML. Within a particular domain-block
the first ML (index ML0) is associated with WS0 in the LLC and the last ML(v/2≠1)
with WS(v/2≠1). The number of ML per domain-block cannot be chosen freely. There
are dependencies to the granularity of page-sizes which can be addressed by the MMU.
This aspect is discussed in the following sections.

Sizing Domain-Blocks. In the following, the parameters are discussed to size and
arrange domain-blocks in general. Table 5.2 shows all key parameters for defining
domain blocks. It, therefore, enhances the terminology given in Table 4.1 within the
attack consideration.

As it is mentioned previously, to implement the domain-block concept some de-
pendencies to the memory page granularity have to be considered. Memory pages
are the mappable memory chunks a MMU usually handles. Size (denoted by PSize)
and granularity of such pages are architecture dependent. For example, a common
page size granularity is 4KiB [150]. In general, this influences the concept in two ways:
first, the smallest size of a domain-block equals the number of ML a memory page
contains. This number of ML also defines the number of WS in the LLC that belong
to a particular domain. Accordingly, the number of consecutive WS in the LLC that
are assigned to a particular domain is:

l = PSize

MLSize

2Refer to Section 4.1.1 for caching terminology and design.

156 Risk Treatment

Physical
Memory

MC1

MC2

PE1

PE2

WSv/2

WS0

LLC

Domain-
Block MC1

k

WSv-1

WS(v/2)-1
ML0

ML0

ML(v/2)-1

ML(v/2)-1

Domain-
Block MC2

Fig. 5.7 Principle of domain blocks with exemplary mapping of main memory.

The second influencing aspect for this concept is: since the domain-block concept
relies on the separation of WSs, the number of supported domains depends on the WS
number in the LLC. In the example given above, only two domains compete for the
shared cache. In the following, the general limits are given. The maximum number of
WSs per domains (wmax) supported by the concept equals the number of WSs (v).

wmax = v

Meanwhile, the minimum number to be allocated (denoted by wmin = l) equals the
number of ML (denoted by l) that fit into a memory page.

wmin = l

The domain-blocks are addressed and mapped according to their physical memory
address. In reference to Figure 5.8, the domain-blocks are addressed by the d bits
portion.

5.2 Countermeasure 1: Memory Domain-Blocks 157

Table 5.2 Domain-block specific parameters. In addition to Table 4.1

Sign Description
PSize Size of a smallest addressable memory-

page
CLSize Size of single cache line
MLSize Size of single memory line equals to

CLSize

DBSize Size of a domain-block in Byte
DBi Identifies a specific domain-block in the

memory
l Number of ML in domain-block
v Total number of way-sets in the cache
w Number of way-sets per domain
m Number of CLs in the cache
k Number of CLs in each way-set
d Number of domains supported

Tag Set Word

t bits s bits w bits

DB

d bits

Fig. 5.8 Addressing of domain-blocks in main memory.

5.2.3 Proof-of-Concept Implementation

To deploy the domain-blocks approach and the above-given parameters the actual
system specifications have to be taken into account. These include the LLC size, number
of domains and the memory page granularity. In the PoC implementation, an exhaustive
example of the concept is realized, described and evaluated. It, furthermore, elaborates
upon the utilisation of multi-staged page tables, as they are usually implemented in
modern MMU architectures.

The employment of domain-blocks implies that all domains follow this mapping
pattern. Portions of memory that are not mapped by the domain-block pattern would
interfere with the strict separation of WS. However, each domain-block colour must
not necessarily be exclusively assigned to an AD. Trusted domains might share a
cache-domain in LLC, for example.

158 Risk Treatment

Construction of Domain-Block Mappings In the following, an algorithm is
shown which outputs a proper translation table based on the domain-block concept.

Translation Table Descriptor The domain-blocks will be mapped to the MC-
domains using the 2nd-stage MMU. In the architecture of the experimental platform,
the description of the mappings is done in a translation table. This concept is described
in Section 2.1.4. The particular description of those page tables is specific to the
architectural implementation. In the case of an ARMv7 architecture, there are two
descriptor formats supported. Here, the Long-descriptor format3 is used, because 40bit
output addresses4 are necessary to address the entire PA space of the platform. Here,
three levels of descriptors are concatenated in order to provide e�cient page table
walks5. The first level refers to large chunks of memory, whereas the Level 3 descriptors
support a page granularity of 4096Byte.

Building the Descriptor Tables The mappings in the Level 3 descriptors
are generated as follows. The input address space represented by the IPA must be
consecutive for a proper operation of the OSs utilising them. The output addresses
(PA) are generated concerning the proposed domain pattern. In Table 5.3 the key
cache parameters are summarized.

In the given example, two domains need to be created in the cache and main memory.
According to CSize and CLSize each domain consists of 1024 WSs. By the same token,
in main memory, these 1024 WS blocks have to be created. Each addressable page
holds 4KiB and therefore 64 CLs with a size of 64Byte. As a result, 16 consecutive
Level 3 pages are needed to build a 1024 entry domain-block.

The mappings are generated using the Algorithm 1. The PA space for the main
memory starts at address 0x80000000. MC1’s IPA base address points to 0x80000000
and for MC2 at 0xA0000000. The algorithm iterates through the whole address space
of the main memory.

Boot Phase Adaption

The proposed mapping separates the shared WSs within the cache into dedicated cache-
domains. However, the implementation of the scheme implies challenges, particularly,
to the boot sequence of the system.

3Refer to [10, p. B3-1318] for further information on descriptor formats.
4ARMv7 is a 32Bit architecture. However, the Large Physical Address Extension (LPAE) enables

the handling of larger physical address spaces up to 40Bits [10, p. B1-1159].
5Table lookup.

5.2 Countermeasure 1: Memory Domain-Blocks 159

Table 5.3 Platform cache parameters.

Sign Value Description
CSize 2MiB Size of LLC
MSize 2GiB Size of Main Memory
CLSize 64Byte Size of single cache line
MLSize 64Byte Size of a single memory line equals to CLSize

DBSize 1024 cache-lines Size of a Domain Block (m)
v 2048 Total number of way-sets in the LLC
k 16 Number of CLs in each way-set

Algorithm 1 Generate level 3 translation table
IPA1 ≈ 0x80000000;IPA2 ≈ 0xA0000000
PA1 ≈ 0x80000000,PA2 ≈ 0x80010000
Pagesize ≈ 0x1000
for j = 0;j Æ MainMemoroysize;j+ = DBsize do

for i = 0; i Æ 16; i+ = Pagesize do
IPA[1,2] … IPA[1,2]+ = Pagesize
PA[1,2] … PA[1,2]+ = Pagesize

end for
IPA[1,2] … IPA[1,2]+ = Pagesize
PA[1,2] … PA[1,2]+ = DBsize ú2

end for

The proposed domain cache mapping must be created during the boot sequence of
the system. That means that, in the AMP configuration stage, which is in this case on
behalf of u-boot (according to Section 3.1.3), will create the domain mapping rather
than the usual identity mapping. This leads into the following chicken-egg issue in the
boot sequence. U-boot is located within the main memory. The memory mapping for
the u-boot code was set by the IPL in advance. Accordingly, u-boot works on identity
mapping. This means that, the Linux Kernel images that are loaded would be written
to memory in sequential order. Accordingly, the loading of the image needs to respect
the new domain-wise memory pattern. As a result, the image loader (u-boot) has to
divide the images and configuration files into chunks with the size of the domain-blocks
and load each of them to the respective location in memory. For example, the Linux
Kernel images have a size of about 3MiB. In the shown example, the domain-block
chunks are 64KiB. Accordingly, the images are divided into 47 chunks.

160 Risk Treatment

Concluding Remarks

The given concept provides the possibility for separating shared caches by a unique
memory mapping technique. It solves the issue of cache contention of competing
accesses to common WSs.

The given concept is limited to k-way-set associative LLCs. Other caching concepts
such as fully-associative caches do not provide the capability to tag specific cache-lines
through a reordering of physical page mappings. In these concepts, the placement
and replacement are handled by the cache management, independent of the physical
address tags.

In contrast to the proposals mentioned in the related works section 7.4, the charac-
teristics of the system that applies the concept is as follows. Page allocations are only
executed during the startup of the system. The page allocation, which is represented
in the memory map, is part of the system setup.

5.3 Countermeasure 2: Memory-Map Shu�ing
As is shown in the vulnerability assessment and the penetration test (compare with
Section 4.2), there is a surface for circumventing the memory protection in an AMP
system. Although the assessment only shows particular instances of vulnerabilities and
their exploitation, it reveals the major problem to be dealt with: the failure of a primary
countermeasure. This can occur either from the design, realization or assumption
perspective, as well as many other ways. Possible strategies for encountering this
problem are manifold and will be discussed in the following.

In order to prevent attacks, as they are shown in Section 4.2, the memory protection
mechanism shall only be configurable from a privileged entity other than the AD’s
software-stack. The privileged entity is, in the AMP case, software running in the
intermediate level, and configures the memory separation. Translation tables must be
set up by this intermediate level code and shall be made inaccessible by the CoPE,
in this particular example. However, this requires suitable hardware facilities on the
MPSoC. Most importantly, in cases where the memory access shall be controlled
from the intermediate/hypervisor level, IPMMUs shall be integrated. Sometimes those
MMUs are referred to as System Memory Management Unit (SMMU)s [110, 120].
Conceptually, they are intended to work as the second-stage MMUs do, which is the
enforcement of IPA to PA address translations/accesses. Nevertheless, the integration
of new hardware components is not possible in some situations. For example, it could
simply not be available on the market. Or, and this is often the case in the field of

5.3 Countermeasure 2: Memory-Map Shu�ing 161

security, the need for such a component has been identified too late for adapting the
hardware.

Whereas the former strategy was to extend the protection architecture on the
lower system levels, the technical mitigation is also achievable by introducing a further
software layer on top, for example, by a Type1/Type2 hypervisor (compare with Section
2.1.2). These instances apply to intercept accesses initiated from the main processors
(PE1/PE2 in the given example) and only allow firmware or configurations that are
authentic and trusted. Although this is a reasonable approach, it interferes with the
original idea of AMP systems to avoid such hypervisor software layers.

Taking the examples into account, here the introduction of a secondary counter-
measure is taken into account.

5.3.1 E�ectiveness Requirements

Conceptually, the method proposed here should fulfil and answer research question
RQ2 while also concerning the general aim of this research. The general aim requires
finding solutions adapting the intrinsic configuration interface of an AMP system,
which is the memory map. The countermeasure should implement the concept of a
secondary countermeasure.

The security solution shall utilize the capabilities of system memory-maps
to reduce the risk of exploitation. It shall encounter a tampering threat
on a memory partition by an adjacent processing element that belongs to
a di�erent trust boundary (in other words, asynchronous domain). The
identified attack potential of 17 (Moderate) must be raised to at least >20
(High).

5.3.2 Mitigation Concept Analysis

Obfuscation is the approach to mitigate the risk of exploitation. The concept aims at
increasing the e�ort of localizing and predicting the targeted structure in the main
memory partition of an adjacent domain.

In the history of OS security, the obfuscation of address layouts is a method
to increase the e�ort of exploiting vulnerabilities. Using this technique, it is more
di�cult for an attacker to determine the location of memory structures. Address space
obfuscation, which is often referred to as Address Space Layout Randomization (ASLR),
was originally implemented for user-space applications [168] and has been extended

162 Risk Treatment

to the kernel-space, for example, in Linux [37]. It added an artificial diversity of the
memory locations of the applications Stack, Heap and linked libraries and positions
within a process’s address space. Thus, the exploitation of bu�er-overflow and format-
string vulnerabilities have become harder.

By the same token as ASLR, in this approach the identity mapping (compare
with Figure 5.9) between the IPA and PA address mapping will be changed into an
unpredictable mapping. The utilization of the stage-two mapping will be handled as it
is introduced in the Domain-Block concept in Section 5.2.3.

The concept aims at placing the physical addresses in such a manner that without
the knowledge of the mapping table an adversary cannot reconstruct the entire memory
structure of an adjacent memory partition. That means, that after the access control
breach, the attacker is able to jump to and access every position in main memory.
Nevertheless, at PA level, it cannot be di�erentiated to which MC-domain the memory
pages belong. Furthermore, the order of pages is not sequential after the obfuscation.
According to the ToE, Figure 5.9 visualizes this principle. To summarize, the obfuscation
takes e�ect in two dimensions: first, the page assignment and second, the sequential
order of the pages.

IPA

PA

VA

MC-domain1 page MC-domain2 page

View of the
attacker

Identity mapping Obfuscated mapping

Fig. 5.9 Principle of randomized memory assignment.

Shu�ing Procedure

The core of the obfuscation concept is the algorithm to produce the permutation
of the address mappings. The procedure of randomizing the address space can be
compared to shu�ing of a deck of cards. Therefore, in order to transport the overall
approach, the shu�ing algorithm by Fisher and Yates [48] is chosen. The Fisher-Yates
shu�e is simple and fits well to produce random permutations of finite sets. In this
particular case, the finite set is the translation table which was previously created by
the initialization process during the start-up of the system. The translation table is

5.3 Countermeasure 2: Memory-Map Shu�ing 163

denoted as a finite set TT of mapping entries E.

TT = {E1,E2, ...,En} (5.1)

Each entry redirects an intermediate (IPA) input address to a corresponding output
address range. We assume TT is initialized with an identity mapping, which means
each intermediate address directs to the equal to the physical address IPA = PA. The
entries of the set would then be arranged as follows:

TT = {PA0x000000001,PA0x0000000040, ...,PAn} (5.2)

The Fisher-Yates algorithm is shown in Algorithm 2. It iterates through TT and
swaps the entry in the current position with a random position. The random position
is determined by a randomization function which draws values out of a specified range.

Algorithm 2 Memory-Map Shu�e
for all TT[] do

random ≈ random number such that 0 Æ random Æ range
swap TT[random] and TT[current]

end for

System Requirements

However, beyond identifying a proper permutation procedure the concept builds on
certain aspects relevant to the target environment. Architectural or technical constraints
are relevant as well as procedural prerequisites.

Boot Process Integration. The permutation procedure must be integrated into the
boot process of the AMP system. This is motivated by the fact that the intermediate
mappings are generated and applied during the startup. Therefore, the system boot
process introduced in Section 3.1.3 will be advanced by the permutation process. In
Figure 5.10, an overview of the causal dependencies of the concept is shown. After the
boot PE has initialized the hardware, the AMP is depended on the setup of the second
stage memory-map that is generated. In this case, first is the identity mapping. The
shu�ing of the mappings is invoked by the permutation procedure(). This procedure
retrieves random numbers in the defined range of the mapping table and reorders
with them the translation table (as it is shown in the Fisher-Yates shu�e example
previously in Section 5.3.2.). Having finished that procedure and set up the translation

164 Risk Treatment

PE:Boot

Hardware reset

invoke IPL()

SoC:RNG PE1:ADn

invoke SW-stack()

SW-stack running

initialize hardware()

AMP setup()

create L2
identity mapping table()

permutation
procedure()

get_RND_Numbers()

return_RND()
Draw from

entropy source

Fig. 5.10 Integration into the boot process.

tables properly, the particular software-stacks of the ADs can be invoked. During their
startup, the first-stage memory-maps will be created on their behalf.

Random Number Generation. One of the key elements of the shu�ing algo-
rithm or the permutation algorithm is a suitable Random Number Generator (RNG).
As shown in Listing 2, a discrete random number from a specified range (0 Æ
randomNumber Æ Range) is drawn. It is assumed that a cryptographic secure RNG is
providing su�cient entropy. The required entropy depends on the granularity of page
mappings of the system, in other words, the total number of entries in TT . Furthermore,
it is required that the generated numbers are still non-biased after truncating them
to the specified number range. The Fisher-Yates shu�e su�ciently fits to introduce

5.3 Countermeasure 2: Memory-Map Shu�ing 165

and transfer the core idea of the memory mapping approach. However, the practical
implementation of a non-biased random permutation isn’t trivial for certain aspects.
As an example, to fit the random numbers into a specific range a modulo operation
could be used. It has been shown that this will lead to a biased output.

Alternatively, only those numbers could be drawn which are in the specified range.
This means it has to wait until the RNG draws a value which suits the targeted range.
Practically, this could substantially contradict to startup time requirements of the
ToE.

Performance plays an important role since this approach will be integrated into a
critical timing environment. Every time the system is reset the memory mapping will
be randomized. Therefore, the algorithmic complexity must be kept to a minimum, so
the startup phase of the device is not significantly delayed.

E�ectiveness Metrics

Overall, the e�ectiveness of the given approach relates to the ability of the attacker to
guess or determine the position of randomly created data. In the evaluation of address
space randomization, three aspects are taken into account [13, 114]:

Coverage: All areas of the memory layout must be randomized to defeat
attackers. Known attacks on ASLR have shown that non-randomized memory
areas can be used to circumvent the obfuscation.

Entropy: The entropy is the metric to express the grade of uncertainty of the
randomized set. Therefore, the range of entropy must be as high as possible. The
granularity of the shu�ed memory pages plays an important role.

Relocation Frequency: The relocation frequency is important in determining
how much time an adversary has to break a particular randomized memory
layout.

Coverage. The proposed memory-map shu�e concept could be applied to the entire
system-memory space that is addressable by the second-stage MMU or SMMUs of a
MPSoC. However, not all of the addresses can be chosen dynamically. For example,
the configuration registers that are mapped to a particular area to the address space
are statically defined. As a consequence, the shu�ing of addresses is only feasible only
to the addresses that represent the main-memory partitions within the address space.

166 Risk Treatment

System
Address
Space

Configuration
Space

Main-Memory
Space

Static
addresses -
known by
attackers

Shuffled
addresses -
obfuscated
to attackers

Fig. 5.11 Coverage of the main memory shu�ing.

Entropy. This metric is an important factor in determining the probability of success
by a certain amount of attack attempts. In Table 5.4, the symbols for calculating the
probability are stated. The bits of entropy will be derived from the address space that
is to be shu�ed. An influencing aspect here is the granularity of the pages that are
handled within the translation table. Most commonly, the smallest page size is 4KiB.
This is particularly true for the experimental platform utilized throughout this thesis.
However, this is to be treated as architecture dependent.

Table 5.4 Entropy and probability symbols.

Sign Description

E Entropy bits for the shu�ed address space
–f attack attempts for fixed randomization
–c attack attempts for changed randomization
PSize Size of a addressable memory-page
MSize Size of memory to be shu�ed
N Number of translation table entries
Pf Probability for fixed randomization
Pc Probability for changed randomization

5.3 Countermeasure 2: Memory-Map Shu�ing 167

In order to determine the entropy bits, the number of entries in the translation
table has to be calculated. Here, the size of a single addressable memory page, denoted
by PSize, and the size of the memory area that is to be shu�ed, denoted by MSize,
must be taken into account. N denotes then the number of entries by the following
equation:

N =
A

MSize
PSize

B

The resulting entropy bits (denoted by E) are calculated by:

E = log2 N

Relocation Frequency. In the considered ToE, the relocation frequency is equal to
the reset cycle of the device. Since the shu�ing is executed on the startup, a relocation
can only be done when the system is restarted. A relocation during runtime is infeasible
because the system would need to be halted. Then, the IPA memory must be copied
to a bu�er area and copied back after the mapping has been applied to the PA. In
such cases, a restart of the whole system would be more e�cient and reliable.

Probability and Attack Attempts. According to Shacham et al. [152], there
are two ways to approach the probability with regards to the relocation frequency:
either the randomized set is fixed during the attack or the randomization changes with
each attack attempt. The former case describes a simple random sampling without
replacement to determine the probability. Whereas, the latter one, is random sampling
with replacement. The reference equation is shown in the following6:

P = 1≠ N ≠n

N

Fixed Randomized Set. The following equation applies for the probability
(denoted by Pf) of a fixed randomized set.

Pf = 1
2E

The number of attack attempts given this probability is:

–f = 2E≠1

6P denotes the probability, N the population and n the sampling size.

168 Risk Treatment

Changed Randomized Set. The following equation applies for the probability
(denoted by Pc) of a changed randomized set.

Pc = 1
2E

The number of attack attempts given Pc is:

–f = 2E

Practical Implications. Given these two ways of predicting the attack attempts,
the question arises which of these scenarios apply to the considered environment. It is
assumed that the adversary intends to tamper with the control flow of its target. It
is considered that the adversary ends up in two situations after guessing the memory
mapping. Either, he succeeds and hits its target, or he tampers with the wrong memory
locations. Here, it must be presumed that the target has an inconsistent or unstable
control flow which results in unpredictable behaviour. The system has to be rebooted
which will result in a di�erent memory map. As a result, practically, the probability and
attack attempts shall be calculated according to a random sampling with replacement.

5.3.3 Case Study

In the following, the above-described metrics are evaluated by giving practical examples.
The intention is to provide practical examples of entropy bits compared to common
page sizes and main memory sizes.

This includes the parameters of the experimental platform as it is described in
Section 3.1.3. It implements the ARMv7 system architecture specification. Essentially,
the architecture supports two-page sizes on the level three descriptors, which are either
4KiB or 2MiB. On the higher levels of the descriptors, for example, 1GiB pages are
supported.

In Chart 5.12 the page sizes: 4KiB, 2KiB, 1KiB, 2Mib and 1GiB are examined.
This is correlated to main memory sizes ranging from 1GiB up to 128GiB. Although,
2KiB and 1KiB are not common the e�ect of a larger number of translation table
entries to the entropy bits become visible.

5.3 Countermeasure 2: Memory-Map Shu�ing 169

Fig. 5.12 Comparison of page size, shu�ed memory size and the resulting entropy bits.

Focusing on the properties of the experimental platform, which is 4KiB PSize and
4GB MSize, an entropy of 20 bits is reached. Assuming a MSize of 128GB, the entropy
would rise to 25 bits whereas the more coarse-grained page size of 2MiB end up with
11 bits of entropy for 4GB main memory and 16bit for 128GB.

Discussion

By applying the random permutation on the intermediate physical address mappings,
the physical memory structure is obfuscated. It is obvious that exploits such as
referenced in the vulnerability assessment would fail. However, adversaries adapt to the
newly introduced circumstances and try to de-obfuscate the memory map. Referring
to crypto-analysis, a reasonable approach to evaluate the e�ectiveness of this kind of
statistical security control is used to estimate the e�ort needed to brake it. In general,
we assume two approaches to compromise a permuted address mapping: either the
attacker scans through the whole main memory for a page they are looking for or
by applying statistical analysis on the permutation procedure. The former approach
makes it necessary to assume that the attackers are able to scan through the whole
main memory space. Furthermore, they need an evaluation function that determines
whether or not the current scanned page is the one they were looking for. This is what
we also described in our threat scenario. However, the adversary now has to deal with

170 Risk Treatment

the fragmentation of binary patterns. By applying this brute force attack, the attacker
needs to scan half of all left pages on average to find the next designated page.

State-of-the-art ASLR mechanisms gain up to 16-bit entropy for 32-bit architectures
and 28 to 40 bits of entropy in 64-bit architectures [114, 152]. However, this depends
on the particular OS and the way in which all code sections are linked into the virtual
address space.

Furthermore, the approach of ASLR is applied to the OS-level as well. Current
Kernel Address Space Layout Randomization (KASLR) mechanisms provide from 6
bits entropy (Linux) over 8 bits (OS X) to 13 bits (Windows) [88]. As a result, the
herein proposed solution is comparable to solutions applied to higher systems layers.
However, the most important advantage, is the independence to other solutions applied
to the higher layers. That means, the combination of all three obfuscation techniques
increases the exploitation e�ort for adversaries.

Compared to these state-of-the-art (K)ASLR implementations, the intermediate
obfuscation is even more powerful. ASLR randomizes the relative o�set of memory
segments (such as code, text, etc ...) of an application according to a base address.
After the adversary guessed this o�set successfully, he can exploit the structure by
assuming a sequentially ordered memory. In contrast, memory-map shu�ing reorders
every memory page so that no sequential order of memory structures can be expected.

The concept proposed here is not considered to introduce significant performance
degradation. The mechanism is integrated into the second stage address translation
which is utilized for every address access either way. However, due to the scattered,
non-sequential, order of memory pages, the cache misses in the Translation Lookaside
Bu�er (TLB) are expected to be higher compared to a system utilizing page-tables
referring to 2MiB pages instead of 4KiB, for example. This is also discussed in the
Section 6.1.2 in the evaluation the proposed Domain-Block mapping.

5.4 Summary

This chapter elaborated upon the treatment of risks that were identified in the pre-
vious chapter. It, therefore, completes the consideration of security patterns defined
throughout this work. For that purpose, here, an exploitation of prevention mecha-
nisms and a denial-of-service mitigation have been proposed. Based on the generalized
findings of the vulnerability assessment, the concept of di�erentiating countermeasures
in primary and secondary has been proposed. Whereas a primary countermeasure

5.4 Summary 171

defeats a particular vulnerability, a secondary countermeasure aims at preventing from
unknown vulnerabilities or exploitation attempts.

Taking these concepts into account, a domain-block memory-mapping has been
introduced. This concept realizes an e�ective mitigation against denial-of-service attacks
against shared WSs in a LLC. It realizes a primary countermeasure by applying the
proposed mapping ADs work on private memory-chunks (domain-blocks) in the shared
cache. An enforced eviction of cache-lines by an adversary is prevented with this
technique. A limitation of the approach is that the cache will statically be divided
between the ADs. For applications seeking for best-e�ort performance, this might have
an impact.

Furthermore, in this chapter, a concept to mitigate the e�ects of breaching the
hardware memory protection is proposed. Here, a secondary countermeasure preventing
the exploitation has been designed. The obfuscation of the intermediate address
mapping is based on the introduction of random permutations of a normal, continuous
memory page arrangement. The so-called "memory-map shu�ing" increases the e�ort
to re-interpret the memory structures. The shu�ed-memory map is transparent to
higher layers in the system architecture. Revisiting the system properties of the
experimental platform, the proposed approach reaches 20 bits of entropy, which is
comparable to common ASLR implementations of 32-bit system architectures.

6
Security Evaluation

Contents
6.1 Domain-Block Memory Mapping 174

6.1.1 E�ectiveness Assessment . 174
6.1.2 Evaluation of the PoC Implementation 176
6.1.3 Residual Risk Analysis . 181

6.2 Memory-Map Shu�ing . 183
6.2.1 E�ectiveness Assessment . 183
6.2.2 Residual Risk Analysis . 186

6.3 Comparison to Hypervisor-based System Architectures . 188
6.3.1 Attack Potential: Cache-Thrashing 189
6.3.2 Attack Potential: Tamper with Memory of Adjacent OS Guest 191

6.4 Summary . 192

174 Security Evaluation

If it’s provably secure, it’s probably not.

Lars Knudsen

Proving a system’s security can be cumbersome or even contradictory. This means
that with particular e�orts, it must be shown whether the protection is adequate
based on assumptions and anticipations. There will be other, presently unknown,
circumstances that make the assumptions obsolete, so the protection mechanism is
ine�ective.

In this chapter, the security evaluation is conducted. The evaluation is based on the
process introduced in Section 2.2.2. For both proposed countermeasures, an analysis
and evaluation of the e�ectiveness is elaborated upon. Furthermore, the case study is
revisited by determining a residual risk level based on the findings in the e�ectiveness
evaluation.

In addition, the chapter features an AP based comparison of a system architecture
that implements a hypervisor to separate system domains.

6.1 Domain-Block Memory Mapping

6.1.1 E�ectiveness Assessment

E�ectiveness Analysis

The proposed Domain-Block mapping seeks to implement a primary countermeasure.
As a result, it will mostly a�ect the security property availability. Furthermore, since it
solves the problem of commonly used way-sets, the change of Scope is focused as well.
As it is shown in Table 6.1, the Modified Vulnerability Score is rated at 1.9 (Low).

Modified Vulnerability Score

Rationale. Most of the score factors remain una�ected. Only the availability aspect
is lowered from the score high down to low. This is motivated by the fact that the
shared resource (LLC) is isolated from domain to domain. In accordance with the
penalty metrics given in 4.1.1 the following achievements have been made.

The accumulated t”_DoSpenalty
is directly avoided due to the separated way-sets. As

a result, there is no surface for interference in this regard. Accordingly, the impact on
the execution time is prevented as well. However, there might be infrastructure such
as communication interfaces between the cache levels that are still used concurrently.

6.1 Domain-Block Memory Mapping 175

Table 6.1 CVSS base score of the domain-block concept.

Base Score Type Rating Score
Attack Vector (AV) Local
Attack Complexity (AC) High
Privileges Required (PR) High
User Interaction (UI) None
Scope (S) Unchanged
Confidentiality (C) None
Integrity (I) None
Availability (A) Low
Base Score Low 1.9

Attack Complexity. The proposed concept does not mainly a�ect the complexity
of exploiting the common shared cache. Therefore, the AC metric remains at High.
However, on a lower level of detail, there might be other ways to degrade the access
performance of an adjacent domain in the system.

Scope. Changing the scope is not possible after applying the proposed concept.
By the fixed assignment of way-sets in the LLC, an adversary can only a�ect way-sets
that belong to its domain. As a result, the Scope metric is rated at Unchanged.

Confidentiality. The confidentiality of information is not a�ected.

Integrity. The integrity of information or code is not a�ected.

Availability. Impacts to the availability are rated at Low. Particularly, the
measurements in the penetration test revealed that the proposed mapping takes e�ect.
However, the impact of the DoS test loops are still observable, but significantly limited.
Therefore, it is unreasonable to rate the availability at None.

E�ectiveness Evaluation

The evaluation of the e�ectiveness of the given domain-block approach refers to the
vulnerability score gained in the evaluation of the corresponding attack in Section
4.1. The e�ectiveness of the approach is represented by the delta of the exploitability
severity measured with and without the applied concept. The results are summarized
in Table 6.2.

176 Security Evaluation

Table 6.2 E�ectiveness Domain Block concept.

Base Score Type Countermeasure Vulnerability
Attack Vector (AV) Local Local
Attack Complexity (AC) High High
Privileges Required (PR) High High
User Interaction (UI) None None
Scope (S) Unchanged Changed
Confidentiality (C) None None
Integrity (I) None None
Availability (A) Low High
Exploitability Base Score Low (1.9) Medium (5.3)

6.1.2 Evaluation of the PoC Implementation

Experiment Setup

The experiment seeks to demonstrate the e�ectiveness of the proposed domain-block
mapping concept. Hence, the experiment implies two tests. The first shows the e�ect of
a cache thrashing attack as it is introduced in Section 4.1. In the second, the mitigation
method, as it is shown in Section 5.2 is tested. Two hypothesises are formulated and
tested accordingly.

Generally, the experiments measure a delta between the execution time of a program
with and without the applied concepts. The resulting impact-delta is used as evidence
to test the hypothesis (Hypothesise2).

Hypothesise2 The applied domain-block mapping mitigates the former cache
thrashing attack.

H0: The applied countermeasure shows no impact on the delta measurement.

H1: The impact-delta is decreased by the application of the domain-mapping.

In Table 6.3, the additional symbols for the measurements are defined. This
advances the contents given in Table 4.5.

In order to determine the delta between the identity mapping and the domain-block
mapping the according di�erence is calculated by Equation 6.1.

Aqk=10000
i=0 n1(i)≠n2(i)

k

B

≠
Aqk=10000

i=0 t1(i)≠ t2(i)
k

B

i,k œ N (6.1)

6.1 Domain-Block Memory Mapping 177

Table 6.3 Measurement symbols.

Name Equation Description
si si œ N CPU cycle count value at the start of

iteration.
ei ei œ N CPU cycle count value at the end of

iteration.
k k œ N Number of iterations

”t

Aqk
i=0 e1(i)≠s1(i)

k

B

i,k œ N Delta of DoS/thrashing measurements

”n

Aqk
i=0 e1(i)≠s1(i)

k

B

i,k œ N Delta of normal duty measurements

”db ”t ≠ ”n Delta reflecting domain block mapping
”i ”t ≠ ”n Delta reflecting identity mapping
sn - Standard Deviation of ”n

st - Standard Deviation of ”n

Domain Block Mapping. To evaluate the e�ectiveness of the domain-block map-
ping, the measurements are repeated with a system that applies the domain-block
mapping concept. Here, evidence to test Hypothesise2 is gained. The test execution
is similar to the previous test. The results are visualized in a graph shown in Figure
6.1 and summarized in Table 6.4. The normal execution of the measure-loop reveals a
mean cycle count (”n) of 3,599 (4 cycles). By invoking the DoS-loop, the mean cycle
count (”t) is 8,911 (9 cycles). Consequently, this results in a DoS impact of about
247,55%. The according ”db is in this case 5,321 cycles.

As a result, the measurements prove evidence that H1 of Hypothesise2 applies.
Due to the application of the domain-block mapping, the impact of the DoS-loop is
decreased.

However, the results still show a measurable impact even with the applied domain-
block mapping. Practically, this might be caused by the competing usage of the
interfaces and facilities within the caching infrastructure.

Overhead Evaluation. The previous evaluations show that the proposed approach is
e�ective against DoS attacks in AMP-based MC-systems. Despite the advantages of the
separability of the LLC, further performance aspects are evaluated here. Accordingly,
the approach is compared to the memory access latency of single memory access.
Furthermore, the latency for memory accesses in consecutive memory areas in copy

178 Security Evaluation

0

20

40

60

80

100

120

140

M
ea

n
CP

U
 C

yc
le

s

Normal Identity DoS DB DoS

Fig. 6.1 Comparison of identity and DB mapping.

Table 6.4 Overview of the measurement results.

Mapping Impact (%) CPU Cycles (”) Std. Derivation (s)
identity - 3,602 (”n) 0,022 (sn)

DB - 3,599 (”n) 0,021 (sn)
identity DoS 3686,90% 132,803 (”t) 2,265 (st)

DB DoS 247,55% 8,911 (”t) 2,062 (st)

operations will be measured. This shall show how the approach behaves in applied
scenarios.

TLB Refreshing. The introduction of the proposed memory mapping will in-
troduce overhead by retrieving the mapping entries from the MMU translation tables.
This might be caused by additional table walks. A full translation table lookup is
called a translation table walk. As mentioned previously, the MMU translation tables
are concatenated tables, where each level describes a finer-grained amount of data,
from the higher to the lower levels. Using an identity memory mapping, the granularity
of Level 2 block descriptors are su�cient to build a proper system mapping. According
to the domain block mapping, Level 3 descriptors which map to the 4KiB pages need
to be used rather than the 2MiB blocks in the second level. This implies that a lookup
for a physical output address needs to walk through all descriptor (Levels 1, 2, 3). The
number of entries in the Levels is dependent on the amount of memory to be addressed
by the MMU.

6.1 Domain-Block Memory Mapping 179

As mentioned above, the mapping method in the second stage MMU level implies
three table walks to convert the IPA input address into the PA output address. In
order to quantify the cost of the additional table walk, the latency of the measure-loop
has been observed with the original 2 MiB Level 2 mapping and the domain block
mapping which reside in the Level 3 translation table. The results show that the DB
mapping method does not add any performance overhead to the memory access if a
single WS is considered. The mean CPU cycles remain at 3,602 in identity mapping
and 3,599 using the DB mapping.

In addition to the table walks, the MMU implements a cache for its recently used
translation entries. This cache is commonly referred to as a TLB. Despite that the
size of the TLB is specific to the implementation, the experimental platform’s TLB
caches 512 translation descriptors. If a normal identity system-mapping is assumed
and the experimental platform, utilising Level 2 descriptors for 2MiB blocks, there is
the maximum number of 2048 descriptors to be stored in the TLB. In contrast to the
DB mapping method which uses fine-grained Level 3 descriptors, there are 1048576
(size of main memory divided by the size of page mapped by the Level 3 descriptor)
translations. Accordingly, the probability of refreshing the TLB is much higher than
the DB mapping compared with the normal method. The result would be a certain
overhead introduced by the increased number of TLB refreshments.

Particularly in this architecture, the TLBs store up to 512 translation descriptors.
In the conducted measurements, only 32 di�erent memory addresses are utilised.
Accordingly, the TLB is large enough to cache those descriptors in this example. To
measure the impact of frequent TLB refreshes, the number of the iterated cache-lines
in the measure-loop have been increased to 512 on each MC-domain. This forces the
TLB to refresh TLB descriptor entries.

The results quantify the impact to access latency caused by refreshing the TLB.
The introduction of the domain mapping increases the mean access latency of the
measure_loop at about 2.52 percent.

Memory Bandwidth. Practically, driver information systems sometimes tend
to transfer large amounts of data in memory. This might be graphics data or media
files which are processed. Therefore, it is evaluated as tohow the memory bandwidth
behaves when large amounts of data are copied. Figure 6.2 shows a comparison of the
mean CPU cycles consumed by copying a particular amount of data. It analyses the
overhead for large data operations. The data block is contiguously allocated in the
intermediate address space (IPA). The results show that the bandwidth of the identity

180 Security Evaluation

0"

2000000"

4000000"

6000000"

8000000"

10000000"

12000000"

14000000"

4096"KiB" 2048"KiB" 512"KiB" 256"KiB" 128"KiB" 64"KiB"

M
ea
n%
CP

U
%C
yc
le
s%

Iden1ty"" DB"

Fig. 6.2 Memory bandwidth comparison.

and the DB mapping is barely at the same level. In fact, the domain block approach
has no influence on the transfer of contiguous memory areas.

Environmental Vulnerability Score

Due to the character of the considered attack and vulnerability the environmental
requirement of availability is concerned. For the sake of completeness, the other
requirement metrics are listed as well. The environmental metric values are influenced
by the case study risk analysis shown in Section 3.3.3. As a consequence, the modified
score resulting from this metric does only apply for this particular case study.

The result of the environmental consideration of the CIA security requirements is
shown in Table 6.5. The case study reveals that a Medium severity rating goes for
integrity and availability . Confidentiality is not concerned and therefore is rated at
Low. A medium rating will not influence, the CVSS. Since there is no impact to the
confidentiality with the given vulnerability, the Low rating does not a�ect the resulting
score.

6.1 Domain-Block Memory Mapping 181

Table 6.5 CVSS Environmental score of the Domain-Block mapping.

Environmental Metric Rating Multiplier

Confidentiality Requirement Low 0.5
Integrity Requirement Medium 1
Availability Requirement Medium 1

Env. Score Countermeasure Low 1.9
Env. Score Vulnerability Medium 5.3

Concluding Remarks and Limitations

The evaluation shows the negative performance impact of the deliberate interference of
shared LLCs. By utilising the domain-block mapping, it is possible to mitigate these
e�ects substantially. Furthermore, it has been shown that the performance overhead
for domain blocking is negligible. However, there is no total freedom of interference
between the two domains, which is demonstrated by the still measurable impact even
with the applied domain-blocks. Here, one of the limitations of the approach becomes
visible. The mapping only controls the separation of WSs in a cache. If the cache
implements shared interfaces to transfer data between the cache levels, there is no
possibility to control the competing accesses with the proposed approach. Hence,
this surface for interference depends on the particular hardware implementation and
has to be considered. A reasonable consideration would be the WCET requirements
of applications ran by the target. If the worst-case is still acceptable, which means
including the maximum impact, then the solution is applicable. As a result, the
measurements show the worst-case scenario.

6.1.3 Residual Risk Analysis

Modified Attack Potential

The resulting AL corresponding to the AP of rated at 26 is 1. Compared to the initial
AP consideration, the AL was 4.

182 Security Evaluation

Table 6.6 Attack: PEi disrupts PEj access to LLC with applied Domain-Block
mapping.

Factor Level Value

Elapsed time Æ 3 Months 10
Expertise Expert 6
Knowledge of system Restricted 3
Window of opportunity Unnecessary/unlimited 0
Equipment Bespoke 7

AP: Beyond high 26

Rationale.

Elapsed time: The investigation and reconnaissance are expected to take ap-
proximately three months. Following the levels estimated for the other factors, it
will take an e�ort to gain knowledge of the internals of the caching infrastructure.

Expertise: A potential attacker needs to apply expert knowledge to mount the
attack. MPSoCs or generally the embedded area deals with highly customized
non-standardized architectures. The re-engineering of concepts and designs is
subject to rigid preparation. This remains unchanged.

Knowledge of system: With a countermeasure applied, the attack needs to
investigate and re-engineer on a deeper level of detail. It is considered, that not
all information is publicly available.

Window of opportunity: This is considered to be unlimited since it was
assumed that the attacker already found its way into the system. This remains
unchanged.

Equipment: DoS is expected to be caused in a state where the device operates
normally. The e�ects of an attack might be observable with specialised measuring
software. Since some of the details are not considered to be documented, the
adversary needs to conduct bespoke equipment to reveal the internals.

Residual Risk Definition

This section intends to revisit the risk analysis based on the case study of the Driver
Information System which is introduced in Paragraph 3. Based on the risk of the

6.2 Memory-Map Shu�ing 183

hypothesised attack (Hyp-Attack1: PEi disrupts PEj access to LLC), the residual
risk is evaluated involving the findings of the modified attack potential. Furthermore,
the environmental aspects of the security requirements are briefly evaluated in the
following paragraphs.

Residual Risk: Driver Information System. Considering the AP of 26 (Beyond
High), the resulting AL on low level. The e�ort to break the vulnerability is high,
and therefore, the probability that an adversary takes this path is considerably small.
Taking the Impact Severity from the case study into account, the resulting residual
risk level is 1. The risk level is, therefore, lowered by two levels from a medium (4)
down to low (1).

In the given setup, the low risk can be treated as acceptable. However, if the Impact
Severity rises to higher values, a risk mitigation might be required. For example,
considering an AL for 1 risk level up to 5 is still possible1. A feasible scenario in the
automotive environment would be a system that integrates safety-relevant functions,
for example, for ADAS or even automated driving systems. In such cases, the system
design requires countermeasures on other system levels.

Table 6.7 Domain-Block Mapping: residual risk analysis results.

Threat Attack AP AL Impact
Severity

Residual
Risk

DoS PEi disrupts PEj access to LLC 26 1 C2|S2 1

6.2 Memory-Map Shu�ing

6.2.1 E�ectiveness Assessment

E�ectiveness Analysis

The proposed countermeasure is e�ectively an exploitation prevention mechanism. It
facilitates the concept of a secondary security countermeasure, as is conceptualised in
Section 5.1.4. As a consequence, the e�ect to the particular metrics applies mostly
to the attack complexity and to the impacted security objectives. These include the
confidentiality, and mainly, the integrity. In Table 6.8, the modified vulnerability score
is shown.

1Compare with the security risk level Table 2.4

184 Security Evaluation

Table 6.8 CVSS base score of the memory-map shu�ing concept.

Base Score Type Rating Score

Attack Vector (AV) Local
Attack Complexity (AC) High
Privileges Required (PR) High
User Interaction (UI) None
Scope (S) Unchanged
Confidentiality (C) Low
Integrity (I) Low
Availability (A) Low

Base Score Medium 5

Modified Vulnerability Score

Rationale. Score types including AV, PR, UI, A are not a�ected by the application
of the memory-map shu�ing concept. Therefore, they are not elaborated upon in the
following rationale.

Attack Complexity. The complexity for an attacker to successfully mount an
attack against the vulnerability significantly rises. There is a need for a target-specific
reconnaissance to de-obfuscate the shu�ed memory mapping or at least portions of
it. The shu�ed memory mapping changes every rest-cycle since it is created at every
startup of the system. Transferring the de-obfuscated mappings to other targets is
prevented by this.

Scope. The proposed approach does not influence the ability to change the scope
(such as elevation of privileges) of the target. Due to its nature, the countermeasure
does not fix the root-cause of the memory access vulnerability.

Confidentiality. The disclosure of information is also possible although the adversary
has increased the e�ort to find the targeted information. Reading the data, then, does
not further impact the system. In other words, the de-obfuscation could be done o�ine
with increased resources and without interfering with the system. As a result, the
rearrangement of data is not su�cient to protect from information disclosure with the
memory-map shu�ing technique.

6.2 Memory-Map Shu�ing 185

Integrity. The impact on the integrity of either information or the control flow
is rated as Low. The attacker can still modify the content of the memory. Therefore, a
rating of None is not reasonable. However, due to the obfuscation of the exact position
of the targeted data, it is not controllable by the attacker. To identify the position is
subject to in-depth rest-cycle reconnaissance.

E�ectiveness Evaluation

Based on the Modified Vulnerability Score (compare with Table 6.8) the e�ect of the
memory-map shu�ing is conducted and justified in the following. The Base Score of
the discovered vulnerability is rated at 8.1 (High). The applied countermeasure limits
the score down to 5 (Medium).

Table 6.9 E�ectiveness memory-map shu�ing countermeasure.

Base Score Type Countermeasure Vulnerability

Attack Vector (AV) Local Local
Attack Complexity (AC) High Low
Privileges Required (PR) High High
User Interaction (UI) None None
Scope (S) Changed Changed
Confidentiality (C) Low High
Integrity (I) Low High
Availability (A) Low Low

Base Score Medium (5) High (8.1)

E�ectiveness Score

Environmental Vulnerability Score. Due to the character of the considered attack
and vulnerability, the environmental requirement of availability is a major concern.
For the sake of completeness, the other requirement metrics are listed as well. The
environmental metric values are influenced by the case study risk analysis shown in
Section 3.3.3. As a consequence, the modified score resulting from this metric does
only apply for this particular case study.

The result of the environmental consideration of the CIA security requirements is
shown in Table 6.10. The case study reveals that a Medium severity rating on integrity

186 Security Evaluation

and availability. Confidentiality is not to be concerned and therefore rated as Low. A
medium rating will not impact, the CVSS. The analysed vulnerability has an impact
to the confidentiality of the ToE. Accordingly, the multiplier a�ects the CVSS. For the
countermeasure this means that, the resulting CVSS drops from 5 to 4.5. Referring to
the vulnerability rating, the rating drops from 8.1 to 7.5.

Table 6.10 CVSS Environmental score of the Memory-Map Shu�ing.

Environmental Metric Rating Multiplier

Confidentiality Requirement Low 0.5
Integrity Requirement Medium 1
Availability Requirement Medium 1

Env. Score Countermeasure Medium 4.5
Env. Score Vulnerability High 7.5

6.2.2 Residual Risk Analysis

Modified Attack Potential

The resulting AL corresponds with the AP of rated at 27 is 1. Compared to the initial
AP consideration, the AL was 3.

Table 6.11 Modified Attack Potential: PEi is tampered with by adjacent PE with
applied Memory-Map Shu�ing.

Factor Level Value

Elapsed time > 6 Months 19
Expertise Multiple experts 8
Knowledge of system Restricted 3
Window of opportunity Unnecessary/unlimited 0
Equipment Bespoke 7

AP: Beyond High 27

Rationale. By applying the random permutation at the intermediate physical address
mappings, the physical memory structure is obfuscated. Exploits like those referenced
in the threat scenario would fail. However, adversaries would adapt to the newly
introduced circumstances and try to de-obfuscate the memory map.

6.2 Memory-Map Shu�ing 187

Elapsed time: The investigation and reconnaissance are expected to take
approximately one week. This is in accordance to the levels estimated for the
other factors. Due to the complexity, by gaining knowledge about the system,
the estimated time to mount further attacks on the system is rated above six
months.

Expertise: A potential attacker needs to apply expert knowledge in a certain
field to de-obfuscate the memory construction. Since there are several aspects as
they are mentioned in Knowledge of System, the Expertise is rated at multiple
experts.

Knowledge of system: Some of the information or documentation of the SoCs is
sometimes declared to be non-disclosable to the public (confidential). This implies
a higher e�ort in the re-engineering. Furthermore, since the obfuscation is added
to the system, particular approaches to de-obfuscate have to be identified. Either
the attacker scans the whole main memory for a page they are looking for or they
apply a statistical analysis to the permutation procedure. The former approach
makes it necessary to assume that the attacker can scan the whole main memory.
Furthermore, they need an evaluation function that determines whether or not the
current scanned page is the one they were looking for. In other security fields such
as cryptography, the strength of a certain function, such as encryption, is hard
to define using discrete methods. Statistical analysis or complexity estimations
on the randomization output forms the second approach to de-obfuscate the
mapping table. This mathematical problem is comparable to the crypto-analysis
of ciphertext. Concepts such as known-ciphertext and chosen-plaintext attacks
might reveal algebraic weaknesses of the implemented algorithms. The proposed
concept implies an in-depth target-specific reconnaissance to de-obfuscate the
system mappings. Since the mappings are randomised on each system individually
and change over time, given exploits are not directly applicable to a range of
systems.

Window of opportunity: This is considered to be unlimited due to the fact
that it was assumed that the attacker already found its way into the system.
This metric remains unchanged.

Equipment: Handling embedded devices is subject to the application of bespoke
equipment. This includes programming interfaces such as JTAG debuggers. This
metric remains unchanged.

188 Security Evaluation

Residual Risk Definition

This section intends to revisit the risk analysis based on the case study of the Driver
Information System which is introduced in Paragraph 3. Based on the risk of the
hypothesised attack (Hyp-Attack2: PE’s memory base is tampered with by adja-
cent PE, the residual risk is evaluated involving the findings of the modified attack
potential. Furthermore, the environmental aspects of the security requirements are
briefly evaluated in the following section.

Residual Risk: Driver Information System. Considering the AP of 27 (Beyond
High), the resulting AL on a low level. The e�ort to break the vulnerability is high,
and therefore, the probability that an adversary takes this path is considerably small.
Taking the Impact Severity from the case study into account, the resulting residual
risk level is 2. The risk level is, therefore, lowered by two levels from a medium (4)
down to low (2).

In the given setup, the low risk can be treated as acceptable. Here, the same conclu-
sion applies referring to the evaluation of the domain-block mapping countermeasure.
Higher impact severities lead to higher risks, and therefore a mitigation risk treatment
strategy must be chosen to lower the risk.

Table 6.12 Residual risk analysis results.

Threat Attack AP AL Impact
Severity

Residual
Risk

Tampering PE’s memory base is tampered
with by adjacent PE

27 1 C2|S3 2

6.3 Comparison to Hypervisor-based System Ar-
chitectures

This section aims at providing a brief comparison of the shown concepts to a typical
Type-1 based hypervisor architecture. For that purpose, the DFD of the considered
system is shown in Figure 6.3. The DFD models the domain separation paradigm as it
is shown in 2.1.2.

6.3 Comparison to Hypervisor-based System Architectures 189

Hyp

OS

PE1 PEn GPU

Memory

Software-Stack Layer
TrustBoundary

Intermediate Layer
TrustBoundary

SoC Layer
TrustBoundary

LLC

AD
TrustBoundary

AD
TrustBoundary

Hyp

OS

Mem
Alloc

Fig. 6.3 DFD of the Type-1 hypervisor system architecture.

The general di�erence, between the AMP ToE and the Type-1 based system is the
software instance on the intermediate layer. Furthermore, the trust boundaries from
the AD and the intermediate layer overlap for the hypervisor processes (Hyp). This
means that the separation relies on the capabilities of these layer entities. A general
weakness of a hypervisor solution is that the software of the hypervisor instance is
threatened to be compromised from lower privileged software. This could happen due
to a malformed interface or erroneous implementations of the hypervisor facilities. In
such a case, the compromised hypervisor process is capable of propagating through
the system on behalf of an attacker. Compared to an AMP system, the hypervisor
solution is prone to such hypothetical problems. In AMP systems, all intermediate
layer interfaces are enforced in hardware which is less prone to modifications.

6.3.1 Attack Potential: Cache-Thrashing

The cache-thrashing pattern as it is conceptualized by this work will be considered
and the resulting AP evaluated. For this consideration, it is important to define how
the hypervisor processes map the memory between the address space of the software-

190 Security Evaluation

stack and the physical memory. There are two reasonable approaches: either in the
hypervisor, a memory allocator (Mem Alloc) exists which is mapping the memory to
the OSs on request or it is assumed that the hypervisor processes map the IPA to PA
in the same way that the AMP does it. This means that, there is an identity mapping
between the OS IPA addresses and the real physical addresses. In the latter case, the
resulting AP would be similar to the compared AMP system, since the vulnerability is
caused by the fixed identity mapping.

However, if the hypervisor implements a memory allocation mechanism the memory
map might not be fixed identically or even deterministically. In that case, it is harder
for the attacker to find the suitable PA in this partition to attack a specific WS. The
resulting AP for that case is shown in Table 6.13 and discussed afterwards.

Table 6.13 Hypothesised attack: OSguest disrupts adjacent OSguestÕs access to LLC.

Factor Level Value

Elapsed time Æ 3 Months 10
Expertise Expert 6
Knowledge of system Restricted 3
Window of opportunity Unnecessary/unlimited 0
Equipment Bespoke 7

AP: Beyond high 26

Rationale In the case when a non-deterministic memory allocation is using
applying the cache-thrashing, the AP higher compared to the AMP variant. As a
result, the likelihood of an attack is lower.

Elapsed time: The investigation and reconnaissance are expected to take
approximately three months. Following the levels estimated for the other factors,
it will take e�ort to gain knowledge of the internals of the caching infrastructure.

Expertise: A potential attacker needs to apply expert knowledge to mount the
attack. MPSoCs or generally the embedded area deals with highly customized
non-standardized architectures. Furthermore, a successful attack depend on the
implementation of the memory allocation of the hypervisor. The re-engineering
of concepts and designs is subject to rigid preparation since multiple system
levels are involved. In this case, it is the SoC, intermediate and software-stack.

6.3 Comparison to Hypervisor-based System Architectures 191

Knowledge of system: With a countermeasure applied, the attacker needs
to investigate and re-engineer on a deeper level of detail. Notably, that not all
information is publicly available.

Window of opportunity: This is considered to be unlimited since it was
assumed that the attacker already found its way into the system.

Equipment: DoS is expected to be caused in a state where the device operates
normally. The e�ects of an attack might be observable specialised measuring
software, which is needed by the attacker to verify a successful attack.

6.3.2 Attack Potential: Tamper with Memory of Adjacent
OS Guest

In this consideration, it is elaborated upon as to how the hypervisor solution relates
to the AMP system with regards to breaching the memory protection. Similar to
the previous consideration, the way in which the hypervisor implements the memory
mapping is key to this question. Assuming a memory allocator with non-predictable
memory mappings, it is generally more di�cult for the attacker to determine its target
memory area.

Table 6.14 Hypothesised attack: OSguest is tampered with by adjacent OSguest.

Factor Level Value

Elapsed time Æ 3 Months 10
Expertise Expert 6
Knowledge of system Restricted 3
Window of opportunity Unnecessary/unlimited 0
Equipment Specialized 4

AP: High 23

Rationale

Elapsed time: The investigation and reconnaissance are expected to take
approximately three months. Following the levels estimated for the other factors,
it will take e�ort to gain knowledge of the internals of the memory allocation
infrastructure.

192 Security Evaluation

Expertise: A potential attacker needs to apply expert knowledge to mount the
attack. MPSoCs or generally the embedded area deals with highly customized
non standardized architectures. The re-engineering of concepts and designs is
subject to rigid preparation. This remains unchanged.

Knowledge of system: With a countermeasure applied, the attacker needs
to investigate and re-engineer on a deeper level of detail. Notably, that not all
information for the hardware and software is publicly available. This is justified by
the fact that the industrial hypervisor derivations do not share the documentation
with the public domain. However, there are open-source derivations, which share
the documentation.

Window of opportunity: This is considered to be unlimited since it was
assumed that the attacker already found its way into the system. This remains
unchanged.

Equipment: DoS is expected to be caused in a state where the device operates
normally. The e�ects of an attack might be observable specialised measuring
software. Since some of the details are not considered to be documented, it is
considered that the adversary needs to conduct specialized equipment to reveal
the internals.

Potential Security Solutions

In a hypervisor driven environment, the feasibility to implement primary and secondary
countermeasures is potentially is higher. In a software-driven solution, including a
certain infrastructure (for example IPC, memory allocation, scheduling, etc.), the
realization of access controls, interception mechanisms and also obfuscation mechanisms
become handier. However, the introduction of security mechanisms always comes along
with new assets that need to be considered afterwards. Implementing protection
mechanisms in software is considered to be prone to errors and must be assured in a
rigid process [5].

6.4 Summary
This chapter described the results of the security evaluation process that have been
applied to the proposed countermeasures. Furthermore, it briefly compared the results
with a hypervisor-based system architecture.

6.4 Summary 193

For both countermeasures, a measurable decrease of the CVSS score as well as
the corresponding AP was identified. In the case of the countermeasure introducing
the domain-block mapping, the CVSS base score was reduced from Medium (5.3)
to Low (1.9). The evaluation of the PoC implementation revealed that the memory
mapping reduces the impact from ~133 cycles (arith. mean) down to ~9 cycles (arith.
mean). However, there is still a raise compared to the normal duty measurements
without the denial-of-service attack. In addition, the residual risk with regards to the
driver information system context was lowered from risk level 4 down to low (1). The
environmental score consideration did not a�ect the initial CVSS.

Referring to the memory-map shu�ing the Base Score of the CVSS was reduced
from 8.1 (High) down to 5 (Medium). The residual risk with regard to the case study
was lowered from medium (4) down to low (2).

The comparison to a Type-1 hypervisor system architecture has shown that the
AP and therefore the resulting attack likelihoods are higher, or lower respectively.
Attackers would have to spend more e�ort to mount comparable attacks.

7
Related Work

If I have seen further, it is by standing on the shoulders of giants.

Sir Isaac Newton

Contents
7.1 Security Requirements Engineering 196
7.2 Security Architectures of AMP-based Systems 198
7.3 O�ensive Methods and Attacks 198
7.4 Exploitation Prevention . 200
7.5 Summary . 202

196 Related Work

This chapter collects and aligns with research in relation with the key contributions
of this work. Since the contributions touch many di�erent areas, here the content is
structured in the respective disciplines.

7.1 Security Requirements Engineering
In [52], Glas et al. elaborate on the importance of the integration of safety and security
requirements processes.

"A security process needs to be ’Safety Aware’ and vice-a-versa." [52, p. 15]

They envisage the application of mechanisms, building blocks and patterns to achieve
safety and security goals. Nonetheless, safety is considered in the impact severity
category within this work. However, the e�ects on the safety integrity level (ASIL) is
out of scope and, therefore, has not been considered.

Haley et al. present in [60] a framework for security requirement elicitation and
analysis. The authors claim that adequate security requirements must satisfy three
criteria: definition, assumptions and satisfaction. An important aspect in their work
is:

"The system context is described using a problem-oriented notation, then
is validated against the security requirements through construction of a
satisfaction argument."[60, p. 1]

It is proposed to use an informal inner and a formal outer argument. Whereas the
latter aims to formalize premises and behaviour in a logical representation, the former,
which is the inner argument, seeks to give grounds and warrants to the premises of the
outer argument. This complies to the method proposed in the CC security evaluation
methodology [176].

In contrast to a formal definition and evaluation of security requirements, there
are e�orts to define security requirements which specify criteria that are evaluated.
For example, Firesmith et al. specify in [46] a process for identifying highly reusable
security requirements. The authors envisage an increase of the quality of systems by
providing requirement templates. These templates refer to a quality model, which
represents a hierarchical taxonomy of so-called quality sub-factors. A requirement
template itself contains information on the asset, threat, attacker type and situation.
In accordance with the security assessment process in this work, a target risk level
is assigned to the requirement. In this way, it can be defined and qualified what the

7.1 Security Requirements Engineering 197

predetermined acceptable risk level is. However, although the authors propose to apply
a cost-benefit analysis, it is left unclear as to how the quality measure is reusable for
other systems. In reference to this work, the di�erentiation between context-specific
and independent quantifications of security aspects is key to define reusable security
requirements.

In [38, 39] Elahi et al. conducted a survey on methods and frameworks for security
requirements engineering. They mention three types of frameworks which include:

Agent and goal-oriented requirements frameworks that model and analyse
security requirements based on the concept of trust, ownership, permission, and
delegation. These concepts are dealt within the normal functional requirements
model [51, 112].

Trust-based requirements frameworks that assert the relationship between
entities to formalize and map them into the system requirements for implementa-
tion [184].

Risk and threat-based requirements frameworks that analyse threats and
unwanted incidents for deriving security requirements [115, 116].

Elahi et al. furthermore give the Unified Modeling Language (UML) based on require-
ment frameworks in [38]. This is, however, considered to be the method for the notation
of security requirements and therefore disregarded as a requirements framework. This
work is conducted on the basis of a risk and threat-based requirements approach which
is motivated by the fact that the risk and its components are used as qualification
criteria to quantify the threats and countermeasures that are proposed throughout this
work. In addition, risk and threat-based frameworks are adopted in automotive best
practices [67, 81].

Related Protection Profiles

Separation kernels are widely accepted and discussed when it comes to the reliable and
secure isolation of software stacks [107, 140]. Therefore, separation kernels are suitable
to serve for an appropriate security problem definition. The EURO-MILS PP is taken
into account in order to define the security problem definition [50, 128].

198 Related Work

7.2 Security Architectures of AMP-based Systems

Numerous approaches exist for enforcing the separation of multiple logical domains
running on MPSoCs. With respect to the architectural system layers, the proposals
include solutions such as hypervisors, enhancements of the communication architecture
and dedicated hardware elements.

Software-based solutions include hypervisor approaches such as micro-kernels [64,
183], type-2 hypervisors such as [33, 77] and commercial solutions such as [3, 69, 157,
185]. Nonetheless, the mentioned approaches are sound, valid and extensively used in
the industry, and they are applied to the software-stack level of a system. Hence, they
do not apply to the original goal of this work to propose a solution on the intermediate
level.

Further research regards the CA of a MPSoC. Within the domain of NoC approaches
address the separation of logical systems as well. For example, Porquet et al. introduces
in [134] a lightweight architecture for embedded systems that allows multiple protection
domains (compartments) to share processing, memory and other system resources
securely. Furthermore, Inoue et al. show with VIRTUS: a new processor virtualisation
architecture for security-oriented next-generation mobile terminals in [80]. Further
examples found in [55, 141]. NoCs are an integral part of a MPSoC since they connect
all system elements to each other. Hence, it is a central point to enforce protection
policies.

Furthermore, some contributions focus on the introduction of additional hardware
components to a MPSoC system. For example, Tan et al. [166, 165] propose an
isolation unit that checks and maintains permissions at runtime.

7.3 O�ensive Methods and Attacks

Automotive Security Attack Research

In the public domain as well as in the research community, automotive security turns
increasingly into focus. As a result, potential adversaries will be able to attack remotely
without physical access to the car. The attack surface in the past years was considered
to be limited by the physical boundary of the vehicle. Plenty of researchers analysed
the automotive E/E architecture such as the vehicular networks and ECUs [102]. As
one of the first, Checkoway et al. analysed the attack surface of modern vehicles
comprehensively [25]. The authors argue that,

7.3 O�ensive Methods and Attacks 199

"[...] the associated threat model — requiring prior physical access — has
justifiably been viewed as unrealistic." [25, p. 1]

Consequently, the authors focus explicitly on externally accessible interfaces of the
vehicle to show an until then non-recognized attack surface. For example, Miller et al.
conducted a survey on automotive attack surface [121].

The research of Miller et al. [59, 122, 158] demonstrating a full breach of a Chrysler
Jeep Cheerokey completely from a remotely connected personal computer. This has
been the first time researchers were able to demonstrate a remote hack on a recently
available vehicle. The breach forced the carmaker to recall about 1.4 million vehicles
to fix the vulnerability [58]. As an e�ect of this, manufacturers increasingly became
aware that the development of vehicular software needs to be done with a sophisticated
security background.

Misuse of Shared Caches

The exploitation of shared LLC aiming for DoS attacks is rarely discussed in research.
This is motivated by one reason. AMP-based systems or even more virtualized systems
are not widespread in the automotive sector. So, there wasn’t a necessity to investigate
in such a direction, because technically the problem was solved by the application or
operating system level. Nevertheless, there is research dealing with the mechanics of
locating and filling designated way-sets. Osvik et al. discuss and formalises in [129]
two methods to mount cross-core measurements based on LLC: Prime+Probe and
Evict+Time. Essentially, the methods include an algorithm to fill a specific way-set in
LLC, which is either the Prime or Evict part of the methods. The vast majority of the
work deals with timing attacks on Advanced Encryption Standard (AES)

DMA based Attacks

Vulnerabilities and attack vectors on embedded multi-operating systems are rarely
available. Research on direct mapped devices comes close to the topic discussed in this
document. As an example, Lone Sang et al. [142] and Boileau [16] show exploitations
of vulnerabilities for DMA capable devices. Furthermore, this concept is also adopted
by other researchers. Danisevskis et al., for example show in their work a similar
approach which was conducted using a smartphone SoC [35].

200 Related Work

7.4 Exploitation Prevention
An appropriate solution to prevent the intrusion is to build an authentication mechanism
into the communication over the CSB. This aims at identifying and passing only
permitted accesses to memory. As an example, Porquet et al. proposes in [135]
an approach to enforce system isolation based on the extensions in the hardware
architecture. Furthermore, their advantages are introduced in NoC-MPE: a secure
architecture for flexible co-hosting on shared memory MPSoCs, and from Fiorin et
al. [45], who show secure memory accesses on NoC. Furthermore, in [29] Coburn
et al. demonstrate with SECA a security-enhanced communication architecture to
enforce system isolation during data transfer in systems utilizing AMBA-Protocols for
communication.
AMD [6], Intel [71] and ARM [120] introduced techniques to protect virtualized
environments against bus mastering devices that might be applicable in the AMP
based context. Nevertheless, these mechanisms need an adaptation of the hardware
layout and a common basis for the virtual address mappings.

Cache-Thrashing Mitigation

Concerning the issue of cache thrashing or contention, it is subject to a plethora of
research contributions. In the following, the key contributions are analysed. The
contributions are analysed concerning the approach to solve cache thrashing in general,
the area in which the approach is applied and the specific implementation.

Particularly, on software-stack (OS) has a high number of applications competing
for space in the cache. Accordingly, solutions to manage the cache allocation indirectly
are approached by many contributions [27, 94, 164]. Mostly, the applied method to
manage the cache is page colouring [113]. Furthermore, concepts and approaches to
manage the page colours during runtime are proposed [28, 92, 130, 136, 163, 191]. The
solutions are implemented into the memory allocation mechanism on OS level. As an
example, Ying et al. [189] encounter the issue of cache overcommitment caused by
dynamically occurring threats.

"(...) presents a memory management framework called COLORIS, which
provides support for both static and dynamic cache partitioning using page
colouring." [189, p. 1]

The intention in applying cache colouring is mostly to achieve real-time computing
goals, in order to increase the determinism of memory accesses.

7.4 Exploitation Prevention 201

Approaching the issue of cache thrashing in virtualized environments is conducted
by Chen et al. [89] and in Tam et al. [164]. The approaches aim to implement the
page colouring into a VMM or hypervisor.

Within the embedded research, Valsan et al. [181] analyse the issue of cache
contention of MSRH registers in the caches of COTS processors. The authors claim
that the isolation using page colouring techniques is not e�ective for real-time use
cases. Hence, a collaborative hardware and software approach has been proposed
and evaluated using a cycle accurate system simulator. On the contrary to previous
contributions, the authors analyse e�ects of shared hardware isolation beyond way-sets.

The state-of-the-art techniques reviewed here, show a wide field of solutions in cache
management. Most prominently, the approach of page/cache colouring is facilitated in
complex appliances. Accordingly, the concept of page colouring is a reasonable and
discussed approach for encountering shared cache contention. However, the approaches
are applied on SMP-based systems. Even the proposals aiming at VMM/hypervisor
level do not consider the characteristics of AMP-based systems.

Memory-Map Shu�ing

The idea of obfuscating addresses is not new in certain areas. On an application level,
address obfuscation is adopted by many operating systems. Particularly, in general
purpose operating systems such as Linux, Windows and Mac OSX this technique
is actually state-of-the art. As of today, this is said to be one of the most e�ective
countermeasures against memory exploits. Recent e�orts brought that technique down
to the system level, by randomizing the operating system’s kernel address space [37].
In Linux, for example, the developers aimed for a significant increase in system security
by making attacks into the monolithic kernel space less predictable for adversaries.

In [114], Gispert et al. analyse the e�ectiveness of 64bit ASLR in a Linux operating
system. Amongst a proof-of-concept attack to dramatically reduce the entropy of the
obfuscation method in the particular implementation, they introduce tree dimensions
of the e�ectiveness of ASLR. These includes: all areas of the memory layout must be
randomized to defeat attackers: the range of entropy must be as high as possible, the
relocation frequency is important to determine how much time an adversary has to
break a particular randomized memory layout. These aspects are taken into account
in the herein proposed memory-shu�ing.

In [13], Bhatkar et al. describe address obfuscation as an e�cient approach for
combating memory error exploits. The authors argue that these attacks require an
attacker to have an in-depth understanding of the internal details of a victim program,

202 Related Work

including the locations of critical data and/or code. Therefore, program obfuscation is
a general technique for securing programs by making it di�cult for attackers to acquire
such a detailed understanding. Kil et al. extend on [93] the idea of address space
layout permutation to enable a finer-grained randomization. Generally, they address
one of the biggest drawbacks of current address space randomization implementations,
namely the lack of a cryptographic secure entropy. Possible adversaries are able to
guess the locations statistically in a very short amount of time since the number of
bits used for randomization is very limited.

The permutation of address layouts facilitate to combat attacks using techniques
such as bu�er-overflows, format string attacks and code re-usage attacks like ROP. In
[178], Shuo et al. introduces a method to utilize hardware virtualization in order to
prevent ROP attacks within the kernel. In [139], Rushanan et al. elaborate on the
concept of malicious behavior based on DMA transfers. The attacks are implemented
using commodity desktop hardware. Although the implementation is not applicable to
embedded hardware, the DMA issue is transferable to the attack surface of embedded
SoC.

7.5 Summary
This chapter has shown the content and relationship to research the areas of security
requirements and o�ensive and defensive approaches. The vast majority of research
focuses on solutions to hypothetical treat and attack scenarios. These solutions are
presented as architectural improvements and mostly evaluated by conceptual analysis
and laboratory experiments. A crucial missing aspect is the structural evaluation of
security requirements and commonly accepted quantification models. In other words,
it is answered as to how feasible it is to implement the proposed solutions, rather than
to give a statement on its security impact.

8
Conclusion

Contents
8.1 Contents . 204
8.2 Contributions of this Research 206
8.3 Answers to the Research Questions 208

8.3.1 Research Question 1 . 208
8.3.2 Research Question 2 . 209

8.4 Limitations . 209
8.5 Future Work . 210
8.6 Summary . 211

204 Conclusion

"There are more things in heaven and earth, Horatio, than are
dreamt of in your philosophy."

William Shakespeare

This chapter concludes on the results of this work. Concerning the research
questions, the key contributions are elaborated upon. Furthermore, its limitations are
described. The chapter concludes with an overview of future work that is based on the
findings of this research.

8.1 Contents

Fundamental Concepts. An introduction of fundamental concepts profiled AMP
based systems. Furthermore, a security assessment and evaluation process has been
introduced. This chapter concludes with a description of the research methodology.
The following research questions are formulated due to the previous problem analysis
and foundation review. Furthermore, the research artefacts and methods are detailed.
Primarily, developmental methods are applied, including formulative and descriptive
methods. Accordingly, the research artefacts are descriptive and formulative models.
Case studies are conducted to show the applicability concerning two cases. The
evaluation of the resulting proof-of-concept implementation is conducted by observing
laboratory experiments.

Risk Assessment of a Driver Information System. The driver information
system implements an example throughout the thesis. The case study realizes the
approach of a mixed-criticality system in an automotive deployment. Functionally, it
consolidates two typical automotive functional domains. It includes a cluster instrument
domain, which operates a common display and the HMI to the driver. Furthermore,
there is also an infotainment domain which mainly operates media and connectivity
functions. These two domains run a common MPSoC Platform which facilitates the
AMP system utilization paradigm.

Furthermore, a comprehensive risk assessment of the previously described driver
information system is conducted. Threat and attack analysis input a set of attacks to
the assessment. It is considered that the motivation of an adversary is to control one
of the functional domains within the ToE. Furthermore, the disruption of a service
has been anticipated. The result of the assessment revealed two hypothesised attacks
that will be assessed in further detail in the following chapters.

8.1 Contents 205

Vulnerability Assessment. The vulnerability assessment conceptually analysed
the vulnerability and exploitation of the previously hypothesised attacks. First, the
disruption of the accesses to a shared last level cache was examined. Second, the
assessment on the tampering of memory by an adjacent processing element has been
conducted.

It has been shown a denial-of-service attack on shared cache setups of modern
processing element designs. The contention is caused by shared way-sets in k-way-set
associative caches. The concept shows how to provoke the contention by overcommitting
associated way-sets. As a result, the vulnerability is a non-controlled shared usage
of cache way-sets which enables an adversary to provoke cache-misses on memory
accesses.

The exploitation of the identified vulnerability has been conceptually and experi-
mentally approached. The assessment reveals that particular physical addresses can be
modified and cause the previously described e�ects. This is possible even though both
systems operate on separated memory partitions of asynchronous domains in an AMP
system. In a penetration test, the formerly conceptualized attack was experimentally
demonstrated.

The second assessment approached concepts of misusing a memory access capability
in heterogeneous MPSoC designs. DMA capable peripherals such as GPUs and co-
processors can be misused to exploit an insu�cient protection architecture within the
MPSoC. The conceptual exploitation has been analysed.

Experimentally, the exploitation of the identified vulnerability has been explored
and scored. The penetration test demonstrated a compromisation of a co-processor
firmware image to circumvent the memory protection of the main processors.

Both assessments were reflected in the third part. A general view of the given
vulnerabilities and assets is conducted. For that purpose, the concepts have been
generalized and reflected in the layer hierarchy of an AMP system. The results are
twofold. First, the systems should be analysed reflecting the distinct hierarchies of an
AMP system. This will reveal resource control and access violations. Furthermore,
the findings enable the defining of requirements for protection architectures such as
multi-layered systems. As a result, the security problem statement of the envisioned
security pattern have been analysed.

Risk Treatment. The treatment of risks that were identified in the previous work is
elaborated upon. It, therefore, completes the consideration of security patterns defined
throughout this work. For that purpose, here, exploitation prevention mechanisms and

206 Conclusion

a denial-of-service mitigation have been proposed. Based on the generalized findings of
the vulnerability assessment, the concept of di�erentiating countermeasures in primary
and secondary has been proposed. A primary countermeasure defeats a particular
vulnerability, whereas a secondary countermeasure aims at preventing from unknown
vulnerabilities or exploitation attempts. Along with the following countermeasures,
this chapter completes the security patterns with these security solutions.

Taking these concepts into account, a domain-block memory-mapping has been
introduced. This concept realizes an e�ective mitigation against denial-of-service
attacks against shared way-sets in a LLC. It realizes a primary countermeasure. By
applying the proposed mapping, ADs work on private memory-chunks (domain-blocks)
in the shared cache. An enforced eviction of cache-lines by an adversary is prevented
with this technique. A limitation of the approach is that the cache will be statically
divided between the ADs. For applications seeking for the best-e�ort performance,
this might have an impact.

Furthermore, in this chapter, a concept to mitigate the e�ects of breaching the
hardware memory protection is proposed. Here, a secondary countermeasure preventing
the exploitation has been designed. The obfuscation of the intermediate address
mapping is based on the introduction of random permutations of a normal, continuous
memory page arrangement. The so-called "memory-map shu�ing" increases the e�ort to
reinterpret the memory structures. The shu�ed-memory map is transparent to higher
layers in the system architecture. Revisiting the system properties of the experimental
platform, the proposed approach reaches 20 bits of entropy, which is comparable to
common ASLR implementations of 32-bit system architectures.

Security Evaluation The results of the security evaluation process that has been
applied to the proposed countermeasures. Furthermore, it briefly compared the results
with a hypervisor-based system architecture.

8.2 Contributions of this Research
Contributions are made concerning the research questions motivated in Section 2.3.
Hence, the main findings are structured into the two main questions of this work. Also,
results that surround the contributions as mentioned earlier are described.

Overview of the main contributions:

Security context profile of AMP-based systems: The profile defines all
important aspects of an AMP system in order to conduct a rigorous security

8.2 Contributions of this Research 207

assessment. For that purpose, it di�erentiates the logical aspects of such a class
of system. Furthermore, the key elements of the considered hardware architecture
are described. The profile makes the considered system analysable.

Conduction of a security assessment process to create and evaluate
novel security patterns. The process combines several security engineering
techniques, methods and tools in order to define security patterns for the in-
tended system. It takes hypothetical risk analysis methods into account and
combines it with technical vulnerability assessment methods. The qualification
and quantification are based on well-accepted metrics and provides by this token
comparability and transferability of results.

Conduction of a case study to apply the security context profile and
assessment process in an automotive scenario. This case study shows how
the context profile can be realized in an automotive scenario. Furthermore, the
application of mixed-criticality of asynchronous domains of an AMP system is
shown.

Assessment of vulnerabilities and their conceptual and practical ex-
ploitation. Here, the conceptual aspects of a vulnerability in the utilization of
shared k-way-set caches are assessed in detail. Furthermore, the tampering and
elevation of privilege by memory protection breaches are conceptualized. On
that basis, the conceptual exploitation is shown and derives the context-specific
exploitation factors. These factors are practically evaluated on the experimental
platform by conducting a penetration test. Both results contribute to the security
of future systems by providing a rigorous technical background as well as practical
evidence that those kinds of vulnerabilities are exploitable in real system setups.

Derivation of a generalized security problem pattern. Whereas, the
assessment of particular vulnerability instances shows a single problem, the
generalized vulnerability pattern presents a broader view. Here, it is shown
how the security problems evolve. This is important to state a holistic security
pattern.

Derivation of risk treatment strategies for the AMP specific intermedi-
ate level. Here, the concept of primary and secondary security countermeasures
is introduced. Using that definition, the necessity of a secondary countermeasure
on the intermediate level has been revealed. The strategy to use the memory-map
for both countermeasure types is conceptualized.

208 Conclusion

Conceptual analysis and security evaluation of a novel risk mitigation
mechanisms. The two major vulnerabilities are mitigated due to this contri-
bution. For the denial-of-service attack to the cache, the well-known concept of
cache colouring has been adopted and applied to create a memory-mapping that
prevents a shared usage of cache-way sets. For the second attack type, considering
the breach of memory protection mechanisms, the concept of obfuscation has
been adopted, conceptually analysed and applied to the context profile. Using
this method, the lack of secondary countermeasures on the intermediate level
can be solved.

8.3 Answers to the Research Questions

8.3.1 Research Question 1

Research Question 1: What is the pattern of DMA and cache-thrashing attacks
reflecting the particular AMP characteristics?

In the attack pattern, a malicious asynchronous domain seeks to slow down the
other target domain to cause availability issues. Through this, the concept shows how
to deliberately disrupt the memory access latency to a particular memory address.
The analysis indicates that due to the association of physical memory and way-sets
within the LLC, a so-called cache-thrashing e�ect is possible. This applies even if the
memory partitions are separated using appropriate hardware mechanisms such as the
MMU. The given approach might impact the availability and therefore the WCET of
applications running in the target domain. As a result, the vulnerability is the static
association of cache way-sets to the physical memory in conjunction with a continuous
memory mapping. The exploitation is fairly easy because it is executable just by
accessing private memory addresses. However, an important preliminary is that the
adversary knows the caching parameters as well as the exact physical address of its
target. The penetration test has shown that the memory access of a victim system can
significantly force a higher latency.

AMP-based systems foster the problem of inappropriate or erroneous hardware
design. In this work, it has been observed that this issue is twofold. First, since
the AMP-paradigm is quite new in MPSoC appliances, the hardware design su�ers
from inconsistent protection architectures. This can be shown by the possibility of
DMA-based attacks that are exploitable due to the lack of distributed access control

8.4 Limitations 209

mechanisms to each DMA-capable hardware element. The non-existence of a software-
based access control mechanism, for example in a hypervisor, emphasizes the fact that
total separation is not facilitated by all system layers. The second aspect is design
errors that weren’t anticipated during the development of the hardware. It could
always be the case that some of the protection mechanisms fail or can be circumvented
due to new techniques or simply due to errors in the implementation. As a result,
the vulnerability is an erroneous security protection architecture. The exploitation
relies on the low-level usage of hardware capabilities and reconnaissance of the system
internals.

8.3.2 Research Question 2

Research Question 2: How can one mitigate the risk of exploitation of the
previously identified vulnerabilities?

In general, by the utilization of memory-maps, the concepts of primary and sec-
ondary countermeasures are realizable. This is particularly true for the two counter-
measures proposed in this work.

The proposed security solution structures the system memory-map in a way to avoid
interference with concurrent asynchronous domains in the ToE. In this case, a primary
countermeasure is realized. It instantiates the risk treatment of the denial-of-service
attack against the shared way-sets in a cache. The surface of interference is removed
by the use of resource separation.

Furthermore, the memory-map shu�ing mitigates the risk of exploitation regarding
the memory access control breach. The concept proposes the obfuscation of the system
memory-map to increase the e�ort of memory-based attacks. This implements the
concept of a secondary countermeasure. Due to the precondition that the primary
countermeasures have already failed, the existence of an exploitation prevention mech-
anisms on the intermediate level is proposed. In a decent defence-in-depth security
architecture this adds another hurdle for potential adversaries.

8.4 Limitations
There is no total freedom of interference between the two domains, which is demon-
strated by the still measurable impact even with the applied domain-blocks applied.
Here, one of the limitations of the approach becomes visible. The mapping only controls
the separation of way-sets in a cache. If the cache implements shared interfaces to

210 Conclusion

transfer data between the cache levels, there is no possibility to control the competing
accesses with the proposed approach. Hence, this surface for interference depends
on the particular hardware implementation and has to be considered. A reasonable
consideration would be the WCET requirements of applications ran by the target. If
the worst-case is still acceptable, which means including the maximum impact, then
the solution is applicable. As a result, the measurements shows the worst-case scenario.

Furthermore, the introduction of the memory-map shu�e introduces a new asset
which is the translation table. Although, this doesn’t contradict well-accepted security
principles, such as Kerkho�s principle1, the protection of the translation table must be
taken into account during the design of a system.

8.5 Future Work

Among the contributions in this thesis, further directions for research have been
identified.

In this work, a single and particular layer was focussed. In future work, the question
could be raised on how: is it possible to define a rule-set which applies to all system
layers of any kind, which enables rigid isolation of logical entities? This rule is than
usable to check whether or not the architecture is vulnerable or in turn it could be
used as a guideline for the architectural design.

This work relied on well-accepted quantification methods to evaluate vulnerabili-
ties, exploitation and the e�ectiveness of countermeasures. The CVSS meaningfully
categorizes aspects of vulnerabilities and their exploitation. However, for a detailed
di�erentiation, the scales are sometimes too coarse. In order to incorporate this scoring
system in formalized security patterns a fine-grained scale for all aspects would sharpen
the impacts of certain properties of vulnerability. For example, in this work, so-called
exploitability factors have been introduced. The intention of these is to express the
exact impact of a particular attack. Therefore, context-dependent score factors that
can be incorporated in the CVSS are proposed for future work.

The security of a system is continuous and always changing target. It is always
about the identification and reaction to problems. Static system components often
make an adaption to new situations impossible. Therefore, future system designs

1A cryptosystem should be secure even if everything about the system, except the key, is public
knowledge.

8.6 Summary 211

should take this into account and put more e�ort into the full adaptivity of systems.
Even on the hardware layer, dynamic hardware elements, which can re-composite, for
example, the MPSoC architecture, would enable more degrees of freedom to realize
countermeasures.

The proposed memory-map shu�ing concept could be transferred to higher system
levels. For example, the MMUs utilized to manage the process space of applications are
suitable examples. This could be an alternative to the wide-spread ASLR mechanisms,
while having the advantage of totally obfuscating the memory structure, rather than
only adapting the relative distances. However, it needs to be investigated how linked
libraries, shared memory and other facilities relate to this concept. Furthermore, in the
proposed concept the Fisher-Yates algorithm has been adopted to shu�e the memory-
map entries. There are numerous other algorithms that are applicable. The here used
algorithm is handy and straight-forward in order to apply it in a PoC. However, other
algorithms might be even more e�cient for the intended purpose.

The PoC measurements of the domain-block concept revealed that there is still
a certain amount of interference when two domains are competing for a particular
way-set in the cache. The reasons for that could be subject to further investigation.
Here, the competing access to the interface which transfers the data from cache level
to cache level is a reasonable source for the measured impact. Diving deeper into the
architectural internals potentially reveal further attack surfaces or could increase the
e�ectiveness of the proposed concept to limit the impact of a DoS attack.

8.6 Summary

This chapter has concluded on the results of this thesis improving the security of
AMP-based systems in an automotive context. This was achieved by introducing
the concept of primary and secondary countermeasures by the utilisation of system
memory-maps. Former static and predictable system configurations are now backed by
secondary exploitation prevention mechanisms that apply when the primary protections
fail, or new vulnerabilities are exploited. This has been achieved by the analysis of two
known attack phenomena in the context of AMP-based systems. The findings of these
attacks have been generalised and made applicable to a broad range of systems applying
similar system paradigms. By the proposal and rigid application of the primary/sec-
ondary countermeasure approach, the concepts of domain-block memory-mapping for

212 Conclusion

cache-thrashing prevention and the memory-map shu�ing have been proposed. The
latter approach mitigates exploitations on the integrity of control flows and data within
the memory. Moreover, the former prevents denial-of-service attacks on shared last
level caches.

Facilitating systems employing the AMP-paradigm has its neat advantages from
an implementation point of view. Amongst others, an important advantage is the
minimal performance impact. However, by moving the separation capabilities into the
SoC-layer security issues might arise. There is no further line of defence left to fill
unknown future security gaps. Accordingly, the possibilities are limited to adapt to
threats or vulnerabilities that have been observed after the deployment. Particularly,
secondary countermeasures help to prevent the exploitation of compromised primary
measures.

9
Acronyms

ADAS Advanced Driver Assistant Systems

AD Asynchronous Domain

AES Advanced Encryption Standard

AL Attack Likelihood

AMBA Advanced Microcontroller Bus Architecture

AMP Asymmetric Multiprocessing

AP Attack Potential

ASIL Automotive Safety Integrity Levels

ASLR Address Space Layout Randomization

AXI Advanced eXtensible Interface

BCM Body Control Unit

BSP Board Support Package

CAN Controller Area Network

CAPEC Common Attack Pattern Enumeration and Classification

CoA Conceptual Analysis

CC Common Criteria

214 Acronyms

CE Consumer Electronics

CFI Control Flow Integrity

CI Communication Infrastructure

CIA Confidentiality Integrity Availability

CImpl Concept Implementation

CL Cache Line

COTS Commercial Of The Shelf

CPU Central Processing Unit

CS Case Stuy

CVE Common Vulnerabilities and Exposures

CVE Common Vulnerability Evaluation

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

CA Communication Architecture

CoPE Companion Processing Element

DCU Domain Control Unit

DDR Double Data Rate

DFD Data Flow Diagram

DI Driver Information

DMA Direct Memory Access

DSP Digital Stream Processor

DoS Denial of Service

E/E Electric/Electronic

EAL Evaluation Assurance Level

215

ECU Electronic Control Unit

EoP Elevation of Privilege

ELF Executable and Linking Format

ESP Electronic Stabilization Program

EVITA E-Safety Vehicle Intrusion Protected Applications

EVM Evaluation Module

FAIR Factor Analysis of Information Risk

FPGA Field Programmable Gate Array

GPOS General Purpose Operating System

GPU Graphical Processing Unit

HARA Hazard and Risk Assessment

HEAVENS HEAling Vulnerabilities to ENhance Software Security and Safety

HMI Human Machine Interface

IPA Intermediate Physical Address

IPC Inter Process Communication

IPU Image Processing Unit

IPL Initial Program Loader

IP Intellectual Property

IPMMU Intellectual Property Memory Management Unit

IoT Internet-of-Things

ISR Interrupt Service Routine

IVI In-Vehicle Infotainment

JTAG Joint Test Action Group

KASLR Kernel Address Space Layout Randomization

216 Acronyms

LE Laboratory Experiment

LIN Local Interconnect Network

LLC Last Level Cache

LPAE Large Physical Address Extension

LRU Least Recently Used

LTE Long Term Evolution

MA Memory Architecture

MB Memory Block

MC-system Mixed Criticality System

MCS Mixed-Criticality System

MC Mixed-Criticality

MESI Modified Exclusive Shared Invalid

MILS Multiple Independent Levels of Security

MIMD Multiple Instructions Multiple Data

ML Memory Line

MMU Memory Management Unit

MOST Media Oriented Systems Transport

MPSoC Multiprocessor System-on-Chip

MPU Memory Protection Unit

MSHR Miss Status Holding Registers

NIC Network Interface Controller

NIST National Institute of Standards and Technology

NUMA Non Uniform Memory Architecture

NVD National Vulnerability Database

217

NoC Network-on-Chip

ODB On Board Diagnostics

OEM Original Equipment Manufacturer

OS Operating System

OTA Over-the-Air

PA Physical Address

PE Processing Element

PLC Product Life Cycle

PP Protection Profile

PMCCNTR Performance Monitor Control Cycle Counter

PU Processing Unit

PoC Proof-of-Concept

RAM Random Access Memory

RISC Reduced Intruction Set Computer

RNG Random Number Generator

ROM Read Only Memory

ROP Return Oriented Programming

RTOS Real-time Operating System

SAR Security Assuarnce Requirement

SDRAM Synchronous Dynamic Random Access Memory

SFR Security Functional Requirement

SHM Shared Memory

SMP Symmetric Multi Processing

SMMU System Memory Management Unit

218 Acronyms

SPI Serial Peripheral Interface

STRIDE Spoofing, Tampering, Repudiation, Information Disclosure,
Denial-of-Service, Elevation of Privilege

ST Security Target

SoC System-on-Chip

SOP Start of Production

THROP Threat and Operability Analysis

TB Trust Boundary

TLB Translation Lookaside Bu�er

TSF Target Security Function

ToE Target of Evaluation

UMA Unified Memory Architecture

UML Unified Modeling Language

V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle

VA Virtual Address

VE Virtualization Extension

VMM Virtual Machine Monitor

VS Vulnerability Score

WCET Worst Case Execution Time

WiFi Wireless Local Area Networking

WS Way-Set

eCall Emergency Call Interfaces

eMMC Embedded Multi Media Card

219

mobileOS Mobile Operating System

multi-OS Multi Operating System

References

[1] IEEE standard test access port and boundary-scan architecture. Technical report,
2001. URL http://dx.doi.org/10.1109/ieeestd.2001.92950.

[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow
integrity principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC), 13(1):4–40, October 2009.

[3] SYSGO AG. PikeOS Hypervisor, 2017. URL https://www.sysgo.com/products/
pikeos-hypervisor/. [Accessed January 5st, 2018].

[4] J Alves-Foss, C Taylor, and P Oman. A multi-layered approach to security
in high assurance systems. In System Sciences, 2004. Proceedings of the 37th
Annual Hawaii International Conference on, page 10 pp. IEEE, 2004.

[5] J Alves-Foss, P W Oman, and C Taylor. The MILS architecture for high-assurance
embedded systems. . . . of embedded systems, 2006.

[6] I AMD. O virtualization technology (iommu) specification. AMD Pub, (34434),
2007.

[7] R.J. Anderson. Security Engineering: A Guide to Building Dependable Distributed
Systems. Wiley, 2010. ISBN 9781118008362. URL http://books.google.de/books?
id=eo4Otm_TcW8C.

[8] Birnie Andy and Timo van Roermund. A Multi-Layer Vehicle Security Framework.
pages 1–18, October 2016.

[9] ARM. Cortex-A15 Processor. Technical report, ARM Limited, 2011.

[10] ARM. ARM Architecture Reference Manual - ARMv7-A and ARMv7-R edition.
2012.

http://dx.doi.org/10.1109/ieeestd.2001.92950
https://www.sysgo.com/products/pikeos-hypervisor/
https://www.sysgo.com/products/pikeos-hypervisor/
http://books.google.de/books?id=eo4Otm_TcW8C
http://books.google.de/books?id=eo4Otm_TcW8C

222 References

[11] AMBA Arm. AXI Protocol Specification. Technical report, 2004.

[12] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, Maurizio
Peri, and Saverio Pezzini. Fault-tolerant platforms for automotive safety-critical
applications. In Proceedings of the 2003 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, CASES ’03, pages 170–177,
New York, NY, USA, 2003. ACM. ISBN 1-58113-676-5. doi: 10.1145/951710.
951734. URL http://doi.acm.org/10.1145/951710.951734.

[13] S Bhatkar, D C DuVarney, and R Sekar. Address Obfuscation: An E�cient
Approach to Combat a Broad Range of Memory Error Exploits. USENIX Security,
2003.

[14] H Bidgoli. Handbook of Information Security, Threats, Vulnerabilities, Prevention,
Detection, and Management. Handbook of Information Security. Wiley, 2006.

[15] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and practices
of Network-on-chip. ACM Computing Surveys, 38(1):1–es, June 2006.

[16] Adam Boileau. Hit by a Bus:Physical Access Attacks with Firewire. pages 1–36,
October 2006.

[17] Adam Boileau. Hit by a bus: Physical access attacks with firewire. Presenta-
tion, Ruxcon, page 3, 2006. URL https://www.security-assessment.com/files/
presentations/ab_firewire_rux2k6-final.pdf. [Accessed January 5st, 2018].

[18] Anton Bretting and Mei Ha. Vehicle control unit security using open source
autosar. 2015.

[19] Manfred Broy. Challenges in automotive software engineering. In Proceedings of
the 28th international conference on Software engineering, pages 33–42. ACM,
2006.

[20] Peter David Bruza, Th P van der Weide, and Theodorus Petrus Weide. The
Semantics of Data Flow Diagrams, 1989.

[21] Alan Burns and Robert Davis. Mixed criticality systems - a review. Department
of Computer Science, University of York, Tech. Rep, 2013.

[22] W. O. Cesario, D. Lyonnard, G. Nicolescu, Y. Paviot, Sungjoo Yoo, A. A. Jerraya,
L. Gauthier, and M. Diaz-Nava. Multiprocessor soc platforms: a component-
based design approach. IEEE Design Test of Computers, 19(6):52–63, Nov 2002.
ISSN 0740-7475. doi: 10.1109/MDT.2002.1047744.

[23] Mark Chang. Principles of Scientific Methods. CRC Press, Taylor & Francis
Group, LLC, CRC Press, Taylor & Francis Group, LLC, 2014.

http://doi.acm.org/10.1145/951710.951734
https://www.security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf
https://www.security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf

References 223

[24] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. Return-oriented programming without
returns. In Proceedings of the 17th ACM conference on Computer and communi-
cations security, pages 559–572. ACM, 2010.

[25] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Ta-
dayoshi Kohno, et al. Comprehensive experimental analyses of automotive attack
surfaces. In USENIX Security Symposium. San Francisco, 2011.

[26] Shuo Chen, Jun Xu, Emre C Sezer, Prachi Gauriar, and Ravishankar K Iyer.
Non-control-data attacks are realistic threats. In SSYM’05: Proceedings of the
14th conference on USENIX Security Symposium - Volume 14, pages 12–12.
North Carolina State University, USENIX Association, July 2005.

[27] Sangyeun Cho and Lei Jin. Managing distributed, shared l2 caches through
os-level page allocation. In IEEE/ACM INTERNATIONAL SYMPOSIUM ON
MICROARCHITECTURE, pages 455–468. IEEE Computer Society, 2006.

[28] Sangyeun Cho, Lei Jin, and Kiyeon Lee. Achieving Predictable Performance
with On-Chip Shared L2 Caches for Manycore-Based Real-Time Systems. In
13th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA 2007, pages 3–11. IEEE, 2007.

[29] Joel Coburn, Srivaths Ravi, Anand Raghunathan, and Srimat Chakradhar. SECA:
security-enhanced communication architecture. In CASES ’05: Proceedings of
the 2005 international conference on Compilers, architectures and synthesis for
embedded systems, pages 78–89, New York, New York, USA, September 2005.
ACM.

[30] Walls Colin. Asymmetric Multi-Processing (AMP) vs. Symmetric Multi-
Processing (SMP). Technical report. URL http://scitechconnect.elsevier.com/
asymmetric-multi-processing-amp-vs-symmetric-multi-processing-smp/.

[31] TIS Committee. Tool interface standard (tis) executable and linking format (elf)
specification. pages 1–37, 1995.

[32] NIST Computer Security Division CSD. NIST SP 800-126 Revision 2, The
Technical Specification for the Security Content Automation Protocol (SCAP):
SCAP Version 1.1. pages 1–58, September 2011.

[33] Christo�er Dall and Jason Nieh. Kvm/arm: the design and implementation of
the linux arm hypervisor. In Acm Sigplan Notices, volume 49, pages 333–348.
ACM, 2014.

[34] Martin Horn (eds.) Daniel Watzenig. Automated Driving: Safer and More
E�cient Future Driving. Springer International Publishing, 2017.

http://scitechconnect.elsevier.com/asymmetric-multi-processing-amp-vs-symmetric-multi-processing-smp/
http://scitechconnect.elsevier.com/asymmetric-multi-processing-amp-vs-symmetric-multi-processing-smp/

224 References

[35] Janis Danisevskis, Marta Piekarska, and Jean-Pierre Seifert. Dark side of
the shader: Mobile gpu-aided malware delivery. In Information Security and
Cryptology–ICISC 2013, pages 483–495. Springer, 2014.

[36] DENX. Das U-Boot – the Universal Boot Loader, 2013. URL http://www.denx.
de/wiki/U-Boot. [Accessed January 5st, 2018].

[37] Jake Edge. Kernel address space layout randomization. Linux Security Summit,
October 2013. URL http://lwn.net/Articles/569635/.

[38] Golnaz Elahi. Security requirements engineering: state of the art and practice
and challenges. Technical report, 2009.

[39] Golnaz Elahi, Eric Yu, Tong Li, and Lin Liu. Security Requirements Engineering
in the Wild: A Survey of Common Practices. In 2011 IEEE 35th Annual Computer
Software and Applications Conference - COMPSAC 2011, pages 314–319. IEEE,
2011.

[40] Jon Erickson. Hacking: The art of exploitation. No Starch Press, 2008.

[41] Dieter Ernst, Sheri Martin, and East-West Center. The Common Criteria for
Information Technology Security Evaluation, 2012.

[42] ETSI. ETSI TS 102 165-1. pages 1–79, March 2011.

[43] Germany Federal O�ce for Information Security. The PP/ST Guide August
2010 Version 2 Revision 0. pages 1–78, October 2010.

[44] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography engineering:
design principles and practical applications. John Wiley & Sons, 2011.

[45] L Fiorin, G Palermo, S Lukovic, V Catalano, and C Silvano. Secure Memory
Accesses on Networks-on-Chip. Computers, IEEE Transactions on, 57(9):1216–
1229, 2008.

[46] Donald Firesmith. Specifying Reusable Security Requirements. Journal of Object
Technology, 3(1):61, 2004.

[47] FIRST.Org, Inc. Common Vulnerability Scoring System v3.0. pages 1–15, July
2015.

[48] Ronald Aylmer Fisher, Frank Yates, et al. Statistical tables for biological,
agricultural and medical research. Statistical tables for biological, agricultural
and medical research., (Ed. 3.), 1949.

[49] Jack Freund and Jack Jones. Measuring and Managing Information Risk: A
FAIR Approach. Butterworth-Heinemann, 2014.

http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://lwn.net/Articles/569635/

References 225

[50] Igor Furgel and Iola Saftig. 2015-EURO-MILS-Protection-Profile-White-Paper-
V1.2. pages 1–66, March 2015.

[51] Paolo Giorgini, Fabio Massacci, John Mylopoulos, and Nicola Zannone. Modeling
Security Requirements Through Ownership, Permission and Delegation. RE,
2005.

[52] Benjamin Glas, Carsten Gebauer, Jochen Hänger, Andreas Heyl, Jürgen Klar-
mann, Stefan Kriso, Priyamvadha Vembar, and Philipp Wörz. Automotive Safety
and Security Integration Challenges. Automotive - Safety & Security, 2014.

[53] Robert L Glass, Iris Vessey, and Venkataraman Ramesh. Research in software
engineering: an analysis of the literature. Information & Software Technology (),
44(8):491–506, 2002.

[54] Robert L Glass, V Ramesh, and Iris Vessey. An analysis of research in computing
disciplines. Communications of the ACM, 47(6):89–94, June 2004.

[55] Kees Goossens, Martijn Koedam, Andrew Nelson, Shubhendu Sinha, Sven
Goossens, Yonghui Li, Gabriela Breaban, Reinier van Kampenhout, Rasool
Tavakoli, Juan Valencia, et al. Noc-based multiprocessor architecture for mixed-
time-criticality applications. Handbook of Hardware/Software Codesign, pages
491–530, 2017.

[56] Mel Gorman. Understanding The Linux Virtual Memory Manager. pages 1–731,
July 2007.

[57] D. Goswami, M. Lukasiewycz, R. Schneider, and S. Chakraborty. Time-triggered
implementations of mixed-criticality automotive software. In 2012 Design, Au-
tomation Test in Europe Conference Exhibition (DATE), pages 1227–1232, March
2012. doi: 10.1109/DATE.2012.6176680.

[58] Andy Greenberg. After Jeep Hack, Chrysler Recalls 1.4M Vehicles for Bug Fix.
July 2015.

[59] Andy Greenberg. Hackers Remotely Kill a Jeep on the High-
way—With Me in It, July 2015. URL https://www.wired.com/2015/07/
hackers-remotely-kill-jeep-highway/. [Accessed January 5st, 2018].

[60] C B Haley, R Laney, J D Mo�ett, and B Nuseibeh. Security Requirements
Engineering: A Framework for Representation and Analysis. IEEE Transactions
on Software Engineering, 34(1):133–153.

[61] Seth Hanford. Common Vulnerability Scoring System v3.0: Specification Docu-
ment. pages 1–21, July 2015.

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

226 References

[62] Allen Harper, Shon Harris, Jonathan Ness, Chris Eagle, Gideon Lenkey, and
Terron Williams. Gray Hat Hacking The Ethical Hackers Handbook. McGraw-Hill
Osborne Media, 2011.

[63] Gernot Heiser. Hypervisors for consumer electronics. In Consumer Communi-
cations and Networking Conference, 2009. CCNC 2009. 6th IEEE, pages 1–5.
IEEE, 2009.

[64] Gernot Heiser and Ben Leslie. The okl4 microvisor: Convergence point of
microkernels and hypervisors. In Proceedings of the first ACM asia-pacific
workshop on Workshop on systems, pages 19–24. ACM, 2010.

[65] John L Hennessy and David A Patterson. Computer architecture: a quantitative
approach. Elsevier, 2012.

[66] Olaf Henniger. E-Safety Vehicle Intrusion Protected Applications. pages 1–2,
April 2011.

[67] Olaf Henniger, Ludovic Apvrille, Andreas Fuchs, Yves Roudier, Alastair Ruddle,
and Benjamin Wey. Security requirements for automotive on-board networks.
IEEE, 2009.

[68] Shawn Hernan, Scott Lambert, Tomasz Ostwald, and Adam Shostack. Uncover
security design flaws using the stride approach. http://msdn.microsoft.com/en-
us/magazine/cc163519.aspx, 2006.

[69] Dan Hildebrand. An architectural overview of qnx. In USENIX Workshop on
Microkernels and Other Kernel Architectures, pages 113–126, 1992.

[70] Mark D Hill and Alan Jay Smith. Evaluating Associativity in CPU Caches.
IEEE Trans. Computers, 1989.

[71] R Hiremane. Intel virtualization technology for directed i/o (intel vt-d). Tech-
nology@ Intel Magazine, 4(10), 2007.

[72] Tobias Holstein and Joachim Wietzke. Contradiction of separation through
virtualization and inter virtual machine communication in automotive scenar-
ios. In Proceedings of the 2015 European Conference on Software Architecture
Workshops, page 4. ACM, 2015.

[73] Tobias Holstein and Joachim Wietzke. Towards an Architecture for an UI-
Compositor for Multi-OS Environments. In Software Architecture: 10th European
Conference, ECSA 2016, Copenhagen, Denmark, November 28–December 2, 2016,
Proceedings 10, pages 138–145. Springer International Publishing, 2016.

[74] Tobias Holstein, Markus Wallmyr, Joachim Wietzke, and Rikard Land. Current
challenges in compositing heterogeneous user interfaces for automotive purposes.

References 227

In International Conference on Human-Computer Interaction, pages 531–542.
Springer International Publishing, 2015.

[75] Michael Hübner and Jürgen Becker. Multiprocessor System-on-Chip - Hardware
Design and Tool Integration. Springer 2011, 2011.

[76] Ricky Hudi. Internationale herausforderungen in der automobilelektronik.
ATZelektronik, 10(7):16–19, 2015.

[77] Joo-Young Hwang, Sang-Bum Suh, Sung-Kwan Heo, Chan-Ju Park, Jae-Min Ryu,
Seong-Yeol Park, and Chul-Ryun Kim. Xen on arm: System virtualization using
xen hypervisor for arm-based secure mobile phones. In Consumer Communications
and Networking Conference, 2008. CCNC 2008. 5th IEEE, pages 257–261. IEEE,
2008.

[78] IBM. The CoreConnectTM Bus Architecture. pages 1–8, January 1999.

[79] Texas Instruments Incorporated. OMAP5432 EVM System Reference Guide
Reference Guide. pages 1–58, May 2013.

[80] H Inoue, A Ikeno, M Kondo, J Sakai, and M Edahiro. VIRTUS: a new processor
virtualization architecture for security-oriented next-generation mobile terminals.
In Design Automation Conference, 2006 43rd ACM/IEEE, pages 484–489. IEEE,
2006.

[81] SAE International. Sae j3061, cybersecurity guidebook for cyber-physical vehicle
systems. 2016.

[82] Asif Iqbal, Nayeema Sadeque, and Rafika Ida Mutia. An overview of microker-
nel, hypervisor and microvisor virtualization approaches for embedded systems.
Report, Department of Electrical and Information Technology, Lund University,
Sweden, 2110:15, 2009.

[83] ISO. Road vehicles – functional safety – part 3. ISO 26262-3:2011, International
Organization for Standardization, 2011.

[84] ISO ISO and IEC Std. ISO 15408-1: 2009. Information technology-Security
techniques-Evaluation criteria for IT security-Part, 1, 2009.

[85] ISO/IEC. ISO/IEC 25010 - Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) - System and software
quality models. Technical report, 2010.

[86] ISO/IEC. ISO/IEC 27000. ISO/IEC, February 2016.

[87] ITU-T. ITU-T Rec. X.1521 (04/2011) Common vulnerability scoring system,
March 2012.

228 References

[88] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking kernel address space layout
randomization with intel tsx. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’16, pages 380–392, New York,
NY, USA, 2016. ACM. ISBN 978-1-4503-4139-4. doi: 10.1145/2976749.2978321.
URL http://doi.acm.org/10.1145/2976749.2978321.

[89] X Jin, H Chen, X Wang, Z Wang, X Wen, Y Luo, and X Li. A Simple Cache
Partitioning Approach in a Virtualized Environment. In 2009 IEEE International
Symposium on Parallel and Distributed Processing with Applications, pages 519–
524, August 2009.

[90] Rainer Kallenbach. Trends in Automotive Electronics. In Steinbeis Symposium,
Stuttgart, 2008.

[91] Kernel.org. Remote processor framework, 2013. URL https://www.kernel.org/
doc/Documentation/remoteproc.txt. [Accessed January 5st, 2018].

[92] M Khare and A Kumar. Method and apparatus for preventing starvation in a
multi-node architecture. Technical report, 2002.

[93] Chongkyung Kil, Jinsuk Jim, C Bookholt, J Xu, and Peng Ning. Address Space
Layout Permutation (ASLP): Towards Fine-Grained Randomization of Com-
modity Software. 2006 22nd Annual Computer Security Applications Conference
(ACSAC’06), pages 339–348, December 2006.

[94] Seongbeom Kim, Dhruba Chandra, and Yan Solihin. Fair cache sharing and
partitioning in a chip multiprocessor architecture. In Proceedings of the 13th
International Conference on Parallel Architectures and Compilation Techniques,
PACT ’04, pages 111–122, Washington, DC, USA, 2004. IEEE Computer Society.
ISBN 0-7695-2229-7. doi: 10.1109/PACT.2004.15. URL http://dx.doi.org/10.
1109/PACT.2004.15.

[95] Seongbeom Kim, Dhruba Chandra, and Yan Solihin. Fair cache sharing and
partitioning in a chip multiprocessor architecture. In Proceedings of the 13th
International Conference on Parallel Architectures and Compilation Techniques,
pages 111–122. IEEE Computer Society, 2004.

[96] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory without
accessing them: An experimental study of dram disturbance errors. In ACM
SIGARCH Computer Architecture News, volume 42, pages 361–372. IEEE Press,
2014.

[97] DAN J KLINEDINST. Cvss and the internet of things, September 2015.
URL https://insights.sei.cmu.edu/cert/2015/09/cvss-and-the-internet-of-things.
html. [Accessed January 5st, 2018].

http://doi.acm.org/10.1145/2976749.2978321
https://www.kernel.org/doc/Documentation/remoteproc.txt
https://www.kernel.org/doc/Documentation/remoteproc.txt
http://dx.doi.org/10.1109/PACT.2004.15
http://dx.doi.org/10.1109/PACT.2004.15
https://insights.sei.cmu.edu/cert/2015/09/cvss-and-the-internet-of-things.html
https://insights.sei.cmu.edu/cert/2015/09/cvss-and-the-internet-of-things.html

References 229

[98] Andreas Knirsch, Pierre Schnarz, and Joachim Wietzke. Prioritized access
arbitration to shared resources on integrated software systems in multicore
environments. In Networked Embedded Systems for Every Application (NESEA),
2012 IEEE 3rd International Conference on, pages 1–8. IEEE, 2012.

[99] Andreas Knirsch, Pierre Schnarz, and Joachim Wietzke. Sharb: Shared resource
arbitration in partitioned multicore systems via library interposition. Interna-
tional Journal of Design, Analysis and Tools for Integrated Circuits and Systems,
4(2):18, 2013.

[100] Andreas Knirsch, Andreas Theis, Joachim Wietzke, and Ronald Moore. Composit-
ing User Interfaces in Partitioned In-Vehicle Infotainment. Mensch & Computer
Workshopband, 2013.

[101] Andreas Knirsch et al. Improved composability of software components through
parallel hardware platforms for in-car multimedia systems. 2015.

[102] P Kocher, R Lee, G McGraw, A Raghunathan, and S Ravi. Security as a new
dimension in embedded system design. In Design Automation Conference, 2004.
Proceedings. 41st, pages 753–760. IEEE, 2004.

[103] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
Spectre attacks: Exploiting speculative execution. ArXiv e-prints, January 2018.

[104] Anthony LaMarca and Richard E Ladner. The influence of caches on the
performance of sorting. Journal of Algorithms, 31(1):66–104, 1999.

[105] Butler W Lampson. A note on the confinement problem. Communications of
the ACM, 16(10):613–615, October 1973.

[106] Frédéric Leens. An introduction to i 2 c and spi protocols. IEEE Instrumentation
& Measurement Magazine, 12(1):8–13, 2009.

[107] Timothy E Levin, Cynthia E Irvine, Michael McEvilley, Thuy D Nguyen, et al.
Separation kernel protection profile revisited: Choices and rational. 2010.

[108] Ye Li, Richard West, and Eric Missimer. A virtualized separation kernel for
mixed criticality systems. In ACM SIGPLAN Notices, volume 49, pages 201–212.
ACM, 2014.

[109] ARM Limited. Arm cortex-a series. Technical report, 2014.

[110] ARM Limited. ARM System Memory Management Unit Architecture Specifica-
tion SMMU architecture version 2.0. pages 1–372, July 2016.

[111] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
Meltdown. ArXiv e-prints, January 2018.

230 References

[112] Lin Liu, Eric Yu, and John Mylopoulos. Analyzing security requirements as
relationships among strategic actors. In Submitted to the Symposium on Re-
quirements Engineering for Information Security (SREIS’02), Raleigh, North
Carolina, 2002.

[113] William L. Lynch, Brian K. Bray, and M. J. Flynn. The e�ect of page allocation
on caches. In Proceedings of the 25th Annual International Symposium on
Microarchitecture, MICRO 25, pages 222–225, Los Alamitos, CA, USA, 1992.
IEEE Computer Society Press. ISBN 0-8186-3175-9. URL http://dl.acm.org/
citation.cfm?id=144953.145814.

[114] I Ripoll In-depth Marco-Gisbert, H. On the E�ectiveness of Full-ASLR on 64-bit
Linux. cybersecurity.upv.es, 2014.

[115] Raimundas Matulevi�ius, Nicolas Mayer, Haralambos Mouratidis, Eric Dubois,
Patrick Heymans, and Nicolas Genon. Adapting Secure Tropos for Security Risk
Management in the Early Phases of Information Systems Development, pages
541–555. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-
69534-9. doi: 10.1007/978-3-540-69534-9_40. URL http://dx.doi.org/10.1007/
978-3-540-69534-9_40.

[116] Nicolas Mayer, André Rifaut, Eric Dubois, et al. Towards a risk-based security
requirements engineering framework. In Workshop on Requirements Engineering
for Software Quality. In Proc. of REFSQ, volume 5, 2005.

[117] Charlie McCarthy, Kevin Harnett, and Art Carter. Characterization of poten-
tial security threats in modern automobiles: A composite modeling approach.
Technical report, 2014.

[118] Rebecca T Mercuri and Peter G Neumann. Security by obscurity. Communica-
tions of the ACM, 46(11):160, 2003.

[119] Roberto Mijat and Andy Nightingale. Virtualization is Coming to a Platform
Near You. Technical report, ARM Limited, January 2011.

[120] Roberto Mijat and Andy Nightingale. Virtualization is coming to a platform
near you. ARM white paper, 20, 2011.

[121] Charlie Miller and Chris Valasek. A survey of remote automotive attack surfaces.
Black Hat USA, 2014.

[122] Charlie Miller and Chris Valasek. Remote Exploitation of an Unaltered Passenger
Vehicle. pages 1–91, August 2015.

[123] Milica MitiÊ and Mile Stoj�ev. An overview of on-chip buses. Facta universitatis
- series: Electronics and Energetics, 19(3):405–428, 2006.

http://dl.acm.org/citation.cfm?id=144953.145814
http://dl.acm.org/citation.cfm?id=144953.145814
http://dx.doi.org/10.1007/978-3-540-69534-9_40
http://dx.doi.org/10.1007/978-3-540-69534-9_40

References 231

[124] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The program
counter security model: automatic detection and removal of control-flow side
channel attacks. In ICISC’05: Proceedings of the 8th international conference
on Information Security and Cryptology, pages 156–168, Berlin, Heidelberg,
December 2005. Massachusetts Institute of Technology, Springer-Verlag.

[125] Siva RK Narla. The evolution of connected vehicle technology: From smart
drivers to smart cars to... self-driving cars. Institute of Transportation Engineers.
ITE Journal, 83(7):22, 2013.

[126] Nicolas Navet, Bertrand Delord, Markus Baumeister, et al. Virtualization in
automotive embedded systems: an outlook. In Seminar at RTS Embedded
Systems, 2010.

[127] NIST. National Vulnerability Database . URL https://nvd.nist.gov/. [Ac-
cessed January 5st, 2018].

[128] NSA. U.S. Government Protection Profile for Separation Kernels in Environments
Requiring High Robustness. pages 1–182, July 2007.

[129] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and Countermea-
sures - the Case of AES. IACR Cryptology ePrint Archive, 2005.

[130] S Park, C T Chou, and A Kumar. Fairness mechanism for starvation prevention
in directory-based cache coherence protocols. Technical report, 2012.

[131] Anup Patel, Mai Daftedar, Mohamed Shalan, and M Watheq El-Kharashi.
Embedded hypervisor xvisor: A comparative analysis. In Parallel, Distributed and
Network-Based Processing (PDP), 2015 23rd Euromicro International Conference
on, pages 682–691. IEEE, 2015.

[132] Nick L Petroni Jr and Michael Hicks. Automated detection of persistent kernel
control-flow attacks. In Proceedings of the 14th ACM conference on Computer
and communications security, pages 103–115. ACM, 2007.

[133] Nick Louis Petroni Jr. Property-based integrity monitoring of operating system
kernels. ProQuest, 2008.

[134] J. Porquet, C. Schwarz, and A. Greiner. Multi-compartment: A new architecture
for secure co-hosting on soc. In System-on-Chip, 2009. SOC 2009. International
Symposium on, pages 124–127, 2009. doi: 10.1109/SOCC.2009.5335664.

[135] J Porquet, A Greiner, and C Schwarz. NoC-MPU: A secure architecture for
flexible co-hosting on shared memory MPSoCs. In Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2011, pages 1–4. IEEE, 2011.

https://nvd.nist.gov/

232 References

[136] Seth H Pugsley, Josef B Spjut, David W Nellans, and Rajeev Balasubramonian.
SWEL: Hardware cache coherence protocols to map shared data onto shared
caches. In 2010 19th International Conference on Parallel Architectures and
Compilation Techniques (PACT, pages 465–475. IEEE, 2010.

[137] Patrick Pype, Gerardo Daalderop, Eva Schulz-Kamm, Eckhard Walters, and
Maximilian von Grafenstein. Privacy and security in autonomous vehicles. In
Automated Driving, pages 17–27. Springer, 2017.

[138] QNX Software Systems Limited. QNC Car Platform for Infotainment, 2015.
URL http://www.qnx.com/developers/docs/660/index.jsp?topic=%2Fcom.qnx.
doc.car.nav%2Ftopic%2Fbookset.html&cp=2. [Accessed January 5st, 2018].

[139] Michael Rushanan and Stephen Checkoway. Run-DMA. 9th USENIX - Workshop
on o�ensive technologies (WOOT), 2015.

[140] John Rushby. Kernels for safety. Safe and Secure Computing Systems, pages
210–220, 1989.

[141] Ahmed Saeed, Ali Ahmadinia, and Mike Just. Secure on-chip communication
architecture for reconfigurable multi-core systems. Journal of Circuits, Systems
and Computers, 25(08):1650089, 2016.

[142] F Lone Sang, Eric Lacombe, Vincent Nicomette, and Yves Deswarte. Exploiting
an i/ommu vulnerability. pages 7–14, 2010.

[143] Pierre Schnarz, Joachim Wietzke, and Ingo Stengel. Co-processor aided attack
on embedded multi-os environments. In IT Convergence and Security (ICITCS),
2013 International Conference on, pages 1–4. IEEE, 2013.

[144] Pierre Schnarz, Clemens Fischer, Joachim Wietzke, and Ingo Stengel. On a
domain block based mechanism to mitigate DoS attacks on shared caches in
asymmetric multiprocessing multi operating systems. In ISSA, 2014.

[145] Pierre Schnarz, Joachim Wietzke, and Ingo Stengel. Towards attacks on restricted
memory areas through co-processors in embedded multi-os environments via ma-
licious firmware injection. In Proceedings of the First Workshop on Cryptography
and Security in Computing Systems, pages 25–30. ACM, 2014.

[146] Pierre Schnarz, Joachim Wietzke, Ingo Stengel, and Clemens Fischer. Secure
separation of shared caches in amp-based mixed criticality systems. SAIEE
Africa Research Journal, 06/2015(106):93–104, June 2015.

[147] Pierre Schnarz, Andreas Rausch, and Joachim Wietzke. Memory-Map Shu�ing:
An Adaptive Security-Risk Mitigation. In ADAPTIVE 2017, pages 1–6, February
2017.

[148] Bruce Schneier. Attack trees. Dr. Dobb’s journal, 24(12):21–29, 1999.

http://www.qnx.com/developers/docs/660/index.jsp?topic=%2Fcom.qnx.doc.car.nav%2Ftopic%2Fbookset.html&cp=2
http://www.qnx.com/developers/docs/660/index.jsp?topic=%2Fcom.qnx.doc.car.nav%2Ftopic%2Fbookset.html&cp=2

References 233

[149] Markus Schumacher. LNCS 2754 - Security Engineering with Patterns. pages
1–215, December 2010.

[150] David Seal. ARM architecture reference manual. Pearson Education, 2001.

[151] Philips Semiconductors. The i2c-bus specification. Philips Semiconductors, 9397
(750):00954, 2000.

[152] Hovav Shacham, Matthew Page, Ben Pfa�, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. On the e�ectiveness of address-space randomization. In CCS
’04: Proceedings of the 11th ACM conference on Computer and communications
security, page 298, New York, New York, USA, October 2004. ACM Request
Permissions.

[153] Mary Shaw. What makes good research in software engineering? STTT, 2002.

[154] Adam Shostack. Threat modeling: Designing for security. John Wiley and Sons,
2014.

[155] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating system
concepts (9. ed.). Wiley, 9, 2013.

[156] N Smith. Methods and apparatus to perform secure boot. Technical report, 2008.

[157] Green Hills Software. Greenhills Integrity Multivisor, 2017. URL https://www.
ghs.com/products/rtos/integrity_virtualization.html. [Accessed January 5st,
2018].

[158] Dieter Spaar. Beemer, open thyself! - security vulnerabilities in bmw’s
connecteddrive, February 2015. URL http://www.heise.de/ct/artikel/
Beemer-Open-Thyself-Security-vulnerabilities-in-BMW-s-ConnectedDrive-2540957.
html. [Accessed January 5st, 2018].

[159] ARM AMBA Specification. Multi layer AHB Specification,(rev2. 0). Technical
report, 2001.

[160] W Stallings. Computer Organization and Architecture: Designing for Perfor-
mance. Prentice Hall, 2010.

[161] Ashley Stevens. Introduction to AMBA® 4 ACE™ and big.LITTLE™ Processing
Technology. Technical report, July 2013.

[162] Marius Strobl, Markus Kucera, Andrei Foeldi, Thomas Waas, Norbert Balbierer,
and Carolin Hilbert. Towards automotive virtualization. In Applied Electronics
(AE), 2013 International Conference on, pages 1–6. IEEE, 2013.

https://www.ghs.com/products/rtos/integrity_virtualization.html
https://www.ghs.com/products/rtos/integrity_virtualization.html
http://www.heise.de/ct/artikel/Beemer-Open-Thyself-Security-vulnerabilities-in-BMW-s-ConnectedDrive-2540957.html
http://www.heise.de/ct/artikel/Beemer-Open-Thyself-Security-vulnerabilities-in-BMW-s-ConnectedDrive-2540957.html
http://www.heise.de/ct/artikel/Beemer-Open-Thyself-Security-vulnerabilities-in-BMW-s-ConnectedDrive-2540957.html

234 References

[163] N. Suzuki, H. Kim, D. d. Niz, B. Andersson, L. Wrage, M. Klein, and R. Rajkumar.
Coordinated bank and cache coloring for temporal protection of memory accesses.
In 2013 IEEE 16th International Conference on Computational Science and
Engineering, pages 685–692, Dec 2013. doi: 10.1109/CSE.2013.106.

[164] David Tam, Reza Azimi, Livio Soares, and Michael Stumm. Managing shared
l2 caches on multicore systems in software. In In Proc. of the Workshop on the
Interaction between Operating Systems and Computer Architecture (WIOSCA,
2007.

[165] B. Tan, M. Biglari-Abhari, and Z. Salcic. A system-level security approach for
heterogeneous mpsocs. In 2016 Conference on Design and Architectures for
Signal and Image Processing (DASIP), pages 74–81, Oct 2016. doi: 10.1109/
DASIP.2016.7853800.

[166] Benjamin Tan, Morteza Biglari-Abhari, and Zoran Salcic. Towards decentralized
system-level security for mpsoc-based embedded applications. Journal of Systems
Architecture, 80(Supplement C):41 – 55, 2017. ISSN 1383-7621. doi: https:
//doi.org/10.1016/j.sysarc.2017.09.001. URL http://www.sciencedirect.com/
science/article/pii/S1383762117300322.

[167] Andrew S Tanenbaum and Albert S Woodhull. Operating systems: design and
implementation, 2014.

[168] PaX Team. Pax address space layout randomization (aslr), 2003. URL http:
//pax.grsecurity.net/docs/pax.txt. [Accessed January 5st, 2018].

[169] Texas Instruments. OMAP5432 Multimedia Device - Silicon Revision 2.0 Evalu-
ation Module. 2012.

[170] Texas Instruments Incorporated. OMAP5432 Processor-based EVM. URL http://
www.ti.com/diagrams/med_omap5432-evm_omap5432_evm_2.jpg. [Accessed
January 5st, 2018].

[171] Texas Instruments Incorporated. Software Development Kits (Evaluation-SW)
for OMAP5432 processor-based EVM, 2013. URL http://www.ti.com/tool/
omap5432-evm-eval-sw. [Accessed January 5st, 2018].

[172] The Common Criteria Recognition Agreement Members. Com-
mon Criteria for Information Technology Security Evaluation.
http://www.commoncriteriaportal.org/, September 2006. URL
http://www.commoncriteriaportal.org/.

[173] The Common Criteria Recognition Agreement Members. Common Cri-
teria for Information Technology Security Evaluation, Evaluation method-
ology. http://www.commoncriteriaportal.org/, 2017. URL http://www.
commoncriteriaportal.org/.

http://www.sciencedirect.com/science/article/pii/S1383762117300322
http://www.sciencedirect.com/science/article/pii/S1383762117300322
http://pax.grsecurity.net/docs/pax.txt
http://pax.grsecurity.net/docs/pax.txt
http://www.ti.com/diagrams/med_omap5432-evm_omap5432_evm_2.jpg
http://www.ti.com/diagrams/med_omap5432-evm_omap5432_evm_2.jpg
http://www.ti.com/tool/omap5432-evm-eval-sw
http://www.ti.com/tool/omap5432-evm-eval-sw
http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/

References 235

[174] The Common Criteria Recognition Agreement Members. Common Criteria
for Information Technology Security Evaluation, Part 3: Security assurance
components. http://www.commoncriteriaportal.org/, 2017. URL http://www.
commoncriteriaportal.org/.

[175] The Common Criteria Recognition Agreement Members. Common Criteria
for Information Technology Security Evaluation, Part 2: Security functional
components. http://www.commoncriteriaportal.org/, 2017. URL http://www.
commoncriteriaportal.org/.

[176] The Common Criteria Recognition Agreement Members. Common Criteria
for Information Technology Security Evaluation, Part 1: Introduction and
general model. http://www.commoncriteriaportal.org/, 2017. URL http:
//www.commoncriteriaportal.org/.

[177] TI, Android Open Source Project. OMAP5 development platform - git reposi-
tory, 2013. URL http://git.omapzoom.org/?p=device/ti/omap5sevm. [Accessed
January 5st, 2018].

[178] He Yeping Tian Shuo and Ding Baozeng. LNCS 7232 - Prevent Kernel Return-
Oriented Programming Attacks Using Hardware Virtualization. pages 1–12,
March 2012.

[179] Lionel Torres, Pascal Benoit, Gilles Sassatelli, Michel Robert, Fabien Clermidy,
and Diego Puschini. An Introduction to Multi-Core System on Chip – Trends
and Challenges. In Multiprocessor System-on-Chip, pages 1–21. Springer New
York, New York, NY, 2011.

[180] G M Uchenick and W M Vanfleet. Multiple independent levels of safety and se-
curity: high assurance architecture for MSLS/MLS. In Military Communications
Conference, 2005. MILCOM 2005. IEEE, pages 610–614. IEEE, 2005.

[181] Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. Taming non-blocking
caches to improve isolation in multicore real-time systems. In Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2016 IEEE, pages
1–12. IEEE, 2016.

[182] W Mark Vanfleet, R William Beckwith, Ben Calloni, Jahn A Luke, Carol
Taylor, and Gordon Uchenick. MILS:Architecture for High-Assurance Embedded
Computing. pages 1–5, July 2005.

[183] Prashant Varanasi and Gernot Heiser. Hardware-supported virtualization on
arm. In Proceedings of the Second Asia-Pacific Workshop on Systems, APSys ’11,
pages 11:1–11:5, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-1179-3. doi:
10.1145/2103799.2103813. URL http://doi.acm.org/10.1145/2103799.2103813.

http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/
http://git.omapzoom.org/?p=device/ti/omap5sevm
http://doi.acm.org/10.1145/2103799.2103813

236 References

[184] John Viega, Tadayoshi Kohno, and Bruce Potter. Trust (and mistrust) in secure
applications. Commun. ACM, 44(2):31–36, February 2001. ISSN 0001-0782. doi:
10.1145/359205.359223. URL http://doi.acm.org/10.1145/359205.359223.

[185] Wind River Systems, Inc. WindRiver Virtualization, 2017. URL https://www.
windriver.com/products/operating-systems/virtualization/. [Accessed January
5st, 2018].

[186] W Wolf, A A Jerraya, and G Martin. Multiprocessor System-on-Chip (MPSoC)
Technology. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 27(10):1701–1713, 2008.

[187] William Wulf, Ellis Cohen, William Corwin, Anita Jones, Roy Levin, Charles
Pierson, and Fred Pollack. Hydra: The kernel of a multiprocessor operating
system. Communications of the ACM, 17(6):337–345, 1974.

[188] Ben-Ami Yassour, Muli Ben-Yehuda, and Orit Wasserman. On the DMA mapping
problem in direct device assignment. the 3rd Annual Haifa Experimental Systems
Conference, page 18, May 2010.

[189] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. COLORIS - a dynamic
cache partitioning system using page coloring. PACT, 2014.

[190] R K Yin. Case Study Research: Design and Methods. SAGE Publications, 2013.

[191] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards practical page coloring-
based multicore cache management. In Proceedings of the 4th ACM European
Conference on Computer Systems, EuroSys ’09, pages 89–102, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-482-9. doi: 10.1145/1519065.1519076. URL
http://doi.acm.org/10.1145/1519065.1519076.

http://doi.acm.org/10.1145/359205.359223
https://www.windriver.com/products/operating-systems/virtualization/
https://www.windriver.com/products/operating-systems/virtualization/
http://doi.acm.org/10.1145/1519065.1519076

A

238 Technical Specification OMAP5

Technical Specification OMAP5

A.1 Schematics

Fig. A.1 TI OMAP5 IP-cores and Communication Architecture [170].

A.2 Features 239

A.2 Features

The Cortex-A15 subsystem [169, p. 292f]

• ARM Cortex-A15 MPCore

– Two central processing units (CPUs)

– ARM Version 7 ISA: Standard ARM instruction set plus Thumb®-2, Jazelle®
RCT Java™ accelerator, hardware virtualization support, and large physical
address extensions (LPAE)

– Neon™ SIMD coprocessor and VFPv4 per CPU

– Interrupt controller with up to 160 interrupt requests

– One general-purpose timer and one watchdog timer per CPU

– Debug and trace features

Cache Subsystem [169, p. 1058]

• 32-KiB L1 instruction (L1I) and 32-KiB L1 data (L1D) cache

– 64-byte line size

– 2-way set associative

• Shared 2-MiB level 2 (L2) cache

– unified (instructions and data)

– cache organized as 16 ways of 2048 sets of 64-byte

Memory management unit (MMU) [169, p. 1059]

• Two-level translation lookaside bu�er (TLB) organization

• Second level is a unified, 4-way associative, 512-entry main TLB

• First level is an 32-entry, fully associative micro-TLB implemented for each of
instruction fetch, load, and store.

• Supports hardware TLB table-walk for backward-compatible and new 64-bit
entry page table

• New page table format can produce 40-bit physical addresses

240 Technical Specification OMAP5

• Two-stage translation where first stage is HLOS-controlled and the second level
may be controlled by a hypervisor. Second stage always uses the new page table
format

A.2 Features 241

	Dissertation_Pierre_Schnarz.pdf
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation of This Research
	1.2 Research Goal
	1.3 Structure

	2 Fundamental Concepts
	2.1 Profile of Asymmetric Multiprocessing Systems
	2.1.1 Definitions and Terminology
	2.1.2 ToE Description
	2.1.3 Hardware Elements
	2.1.4 ToE MPSoC Components
	2.1.5 Security Problem Definition
	2.1.6 Security Objectives

	2.2 Security Engineering
	2.2.1 Introduction to Security Engineering
	2.2.2 Security Assessment Methodology

	2.3 Research Methodology
	2.4 Summary

	3 Risk Assessment: Driver Information System Case Study
	3.1 ToE- and Context Profiling
	3.1.1 Mixed-Criticality Systems: A Case for AMP
	3.1.2 System Decomposition
	3.1.3 Experimental Platform
	3.1.4 Threat Context Analysis

	3.2 Threat and Attack Analysis
	3.2.1 Threat Analysis
	3.2.2 Attack Analysis

	3.3 Risk Analysis
	3.3.1 Impact Analysis
	3.3.2 Attack Potential Analysis
	3.3.3 Risk Definition
	3.3.4 Hypothesised Attacks

	3.4 Summary

	4 Vulnerability Assessment
	4.1 Hyp-Attack1: PEi disrupts PEj access to LLC
	4.1.1 Vulnerability Analysis
	4.1.2 Penetration Test: Cache Thrashing

	4.2 Hyp-Attack2: PE's memory base is tampered with by adjacent PE
	4.2.1 Vulnerability Analysis
	4.2.2 Penetration Test: Co-Processor Exploit

	4.3 Generalized Vulnerability and Exploitation Pattern
	4.3.1 Modelling Protection Architectures
	4.3.2 Preliminaries of an AMP system
	4.3.3 Breach Access Controls on Intermediated Level
	4.3.4 Denial-of-Service a Shared Resource
	4.3.5 Identification of Attack Surfaces in AMP Systems
	4.3.6 Primary and Secondary Assets
	4.3.7 Attack Objectives and Scenarios

	4.4 Summary

	5 Risk Treatment
	5.1 Risk Treatment Strategy
	5.1.1 Target and Residual Attack Potential
	5.1.2 Exploitation Prevention on the Intermediate Layer
	5.1.3 Security Solution
	5.1.4 Primary and Secondary Countermeasures

	5.2 Countermeasure 1: Memory Domain-Blocks
	5.2.1 Effectiveness Requirements
	5.2.2 Mitigation Concept Analysis
	5.2.3 Proof-of-Concept Implementation

	5.3 Countermeasure 2: Memory-Map Shuffling
	5.3.1 Effectiveness Requirements
	5.3.2 Mitigation Concept Analysis
	5.3.3 Case Study

	5.4 Summary

	6 Security Evaluation
	6.1 Domain-Block Memory Mapping
	6.1.1 Effectiveness Assessment
	6.1.2 Evaluation of the PoC Implementation
	6.1.3 Residual Risk Analysis

	6.2 Memory-Map Shuffling
	6.2.1 Effectiveness Assessment
	6.2.2 Residual Risk Analysis

	6.3 Comparison to Hypervisor-based System Architectures
	6.3.1 Attack Potential: Cache-Thrashing
	6.3.2 Attack Potential: Tamper with Memory of Adjacent OS Guest

	6.4 Summary

	7 Related Work
	7.1 Security Requirements Engineering
	7.2 Security Architectures of AMP-based Systems
	7.3 Offensive Methods and Attacks
	7.4 Exploitation Prevention
	7.5 Summary

	8 Conclusion
	8.1 Contents
	8.2 Contributions of this Research
	8.3 Answers to the Research Questions
	8.3.1 Research Question 1
	8.3.2 Research Question 2

	8.4 Limitations
	8.5 Future Work
	8.6 Summary

	9 Acronyms
	References
	Appendix A Technical Specification OMAP5
	A.1 Schematics
	A.2 Features

