
Malte Mauritz
Engineering of Safe Autonomous Vehicles
through Seamless Integration of System
Development and System Operation

SSE-Dissertation 21

Department of Informatics
Chair of Prof. Dr. Andreas Rausch

Engineering of Safe Autonomous
Vehicles through Seamless Integration
of System Development and System

Operation

D o c t o r a l T h e s i s
(D i s s e r t a t i o n)

to be awarded the degree of
Doctor rerum naturalium

(Dr. rer. nat.)

submitted by

Malte Mauritz
from Braunschweig

approved by the Faculty of Mathematics/Computer Science
and Mechanical Engineering,

Clausthal University of Technology

Date of oral examination
28th of June 2019

Dean
Prof. Dr.-Ing. Volker Wesling

Chairperson of the Board of Examiners
Prof. Dr.-Ing. Michael Prilla

Supervising tutor
Prof. Dr. Andreas Rausch

2. Reviewer
Prof. Dr. Falk Howar

Dissertation Clausthal, SSE-Dissertation 21, 2019

Abstract
Autonomous vehicles will share the road with human drivers within the next couple of
years. This will revolutionize road traffic and provide a positive benefit for road safety,
traffic density, emissions, and demographic changes.
One of the significant open challenges is the lack of established and cost-efficient verifi-
cation and validation approaches for assuring the safety of autonomous vehicles. The
general public and product liability regulations impose high standards on manufacturers
regarding the safe operation of their autonomous vehicles. The vast number of real-
world traffic situations have to be considered in the verification and validation. Today’s
conventional engineering methods are not adequate for providing such guarantees for
autonomous vehicles in a cost-efficient way. One strategy for reducing the costs of quality
assurance is transferring a significant part of the verification and validation from road
tests to (system-level) simulations. The vast number and high complexity of real-world
situations complicate the exhaustive verification of autonomous vehicles in simulations.
It is not clear, how simulations address the vast number of real-world situations with
sufficient realism and how their results transfer to the real road.
Extensive coverage of real-world situations in simulations requires the integration of
development and operation. This thesis presents an engineering approach that integrates
the development and operation of autonomous vehicles seamlessly using runtime moni-
toring. The runtime monitoring verifies if autonomous vehicles satisfy their requirements
and operate within safe limits which have been verified in the simulations.
Safety of autonomous vehicles is subject to the scope of verified traffic situations in
simulations. Systematic and comprehensive simulations support the improvement of
autonomous vehicles and coverage of traffic situations. Results of the runtime monitoring
during operation are transferred to the development for the verification of autonomous
vehicles and their safe limits in simulations with additional traffic situations.
The incomplete verification of autonomous vehicles for the vast number of real-world
traffic situations in simulations requires the validation of simulation results and additional
monitoring in the real world. Results from simulations are transferred to the runtime
monitoring during operation in the real world for validating the realism of the simulations
and maintaining the vehicle safety in critical situations.
Vehicle data and real-world situations possess high complexities and, therefore, impact
the complexity and efficiency of the verification in simulations. The runtime monitoring
abstracts from internal data of autonomous vehicles and real-world situations in the
evaluation by introducing an abstract semantic representation from natural language
requirements.
A case study evaluates the engineering approach for an industrial lane change assistant
and real-world traffic data recorded in road tests on German highways.

iii

Acknowledgments
This thesis is the result of my research at the Institute for Applied Software System
Engineering (IPSSE), TU Clausthal. I thank my supervisor Prof. Dr. Andreas Rausch
for the opportunity to work at the IPSSE and mentoring me throughout this thesis. I
am grateful for the valuable experiences during my time at the IPSSE. I want to thank
Prof. Dr. Falk Howar for our collaboration in my research project, reviewing this thesis,
and the possibility to continue my research at the Fraunhofer Institute for Software
and Systems Engineering (ISST). The discussions and your feedback have significantly
contributed to this thesis. I thank Prof. Dr. Ursula Goltz for the opportunity to begin
my academic career at the Institute for Programming and Reactive System (IPS).
My years at the Institute for Applied Software System Engineering (IPSSE) have been an
interesting and enjoyable experience. The discussion, criticism, suggestions, and feedback
from my colleagues during this time have been a valuable input for me personally and
this thesis. Therefore, I want to thank all my colleagues; Henrik Peters, Arthur Strasser,
Peter Engel, Axel Grewe, Dr. Christoph Knieke, Benjamin Cool, Marco Körner, Dirk
Herrling, Christian Ristig, Martin Vogel, Simone Dahms, Fadi Jabbour, Phillip Wolter,
Steffen Kuepper, Adina Aniculaesei, Jörg Grieser, Leonard Scholz, Marco Kuhrmann,
Thorben Knust. I further thank Dr. Sascha Lity, Dr. Lukas Märtin, Stephan Mennicke,
Dr. Hauke Baller, Dr. Jens-Wolfhard Schicke-Uffmann, Benjamin Mensing, and Dr.
Matthias Hagner of the (former) Institute for Programming and Reactive System (IPS)
for two years with unforgettable memories. I also thank all members of the chair of
Software System Engineering (SSE), Clausthal.
This thesis originates from my research in the research project Dependability Advanced
Driver Assistant Systems (DADAS). I want to thank the project partners Volkswagen
AG, Institute of Control Engineering (IFR), and Institute of Software Engineering and
Automotive Informatics (ISF) of the TU Braunschweig for the fruitful collaboration. My
thanks go to Prof Dr.-Ing. Markus Maurer, Prof Dr.-Ing. Ina Schaefer, Dr. Arne Bartels,
Dr. Lutz Junge, Thomas Ruchatz, Jens Krause, Till Menzel, Dr. Fabian Schuldt, Dr.
Simon Ulbrich, and Benjamin Schmidt.
Finally, I thank my parents, Christina and Bernd, for providing me with the opportunity
and support to succeed through my years as a student and doctoral researcher. I also
want to thank my girlfriend, Andrea, for enduring the highs and lows throughout these
years and sacrificing on our shared time. I am grateful for all my friends who supported
me during the years of preparing this thesis.

Dortmund, October 24, 2019 Malte Mauritz

v

Contents

Acronyms xxi

1. Introduction 1
1.1. Motivation . 1
1.2. Thesis Contributions . 9
1.3. Outline . 11

2. Background 13
2.1. Autonomous Vehicle Systems . 13

2.1.1. Definition: System . 13
2.1.2. Definition: Autonomous System 14
2.1.3. Definition: Autonomous Vehicle System 17
2.1.4. Taxonomy of Autonomous Vehicle Systems 18

2.1.4.1. Activities in the Driving Tasks 18
2.1.4.2. Levels of Automation for Road Vehicles 21

2.1.5. Functional Architecture of Autonomous Vehicle Systems 24
2.1.5.1. Absolute Global Localization 27
2.1.5.2. External Data . 27
2.1.5.3. Environment-Perception and Self-Perception 28
2.1.5.4. Mission Accomplishment 29

2.2. Simulation-based Testing of Autonomous Vehicle Systems 30
2.2.1. Components of Simulation Frameworks 35

2.2.1.1. Environment . 37
2.2.1.1.1. Scenery . 38
2.2.1.1.2. Traffic . 39

2.2.1.2. Vehicle . 39
2.2.1.2.1. Vehicle Sensors 39
2.2.1.2.2. Vehicle Dynamics 40
2.2.1.2.3. Driver . 40

2.2.2. X-in-the-Loop Simulations . 41
2.2.2.1. Model-in-the-Loop Simulations 43
2.2.2.2. Software-in-the-Loop Simulations 43
2.2.2.3. Driver-in-the-loop simulations 43
2.2.2.4. Hardware-in-the-Loop Simulations 44
2.2.2.5. Vehicle-Hardware-in-the-Loop Simulations. 45
2.2.2.6. Vehicle-in-the-Loop Simulations 46

vii

Contents

2.2.2.7. Field Operational Tests 47
2.3. Runtime Verification . 48

2.3.1. Runtime Monitor . 49
2.3.1.1. Software Monitors . 51
2.3.1.2. Hardware Monitors . 51
2.3.1.3. Hybrid Monitors . 52

2.3.2. Property Specification . 52
2.4. Typed First-Order Logic . 53

2.4.1. Types . 53
2.4.2. Signature . 54
2.4.3. Terms and Formulas . 55
2.4.4. Semantics . 57

3. Problem Outline 61
3.1. Running Example: Lane Change Assistant 61

3.1.1. Basic Functionality of Lane Change Assistant 61
3.1.2. Development Activities . 62

3.2. Requirements Analysis . 65
3.2.1. Functionality . 66

3.2.1.1. Lane Changes between Highway Lanes 66
3.2.1.2. Entering and Exiting Highways 68
3.2.1.3. Environment Perception and Interaction 70
3.2.1.4. Maneuver Cancellation 72

3.2.2. Usability . 72
3.2.3. Reliability . 73
3.2.4. Development . 75

3.3. System Design . 76
3.3.1. Functional Architecture . 76

3.3.1.1. Environment Perception 77
3.3.1.1.1. Data Structure of the Scene 78

3.3.1.2. Situation Assessment . 83
3.3.1.2.1. Scene Augmentation 83
3.3.1.2.2. Data Structure of the Situation 84
3.3.1.2.3. Situation Assessment and Situation Prediction . 87

3.3.1.3. Behavior Planning . 90
3.3.2. Technical Architecture . 94

3.3.2.1. Sensor Configuration . 94
3.3.2.2. Execution Platform . 95

3.4. Safety Analysis . 98
3.4.1. Hazard Analysis and Risk Assessment 99
3.4.2. Functional and Technical Safety Requirements 100
3.4.3. Fault Tree Analysis . 101

3.4.3.1. Faults for the Perception of the Vehicle 102
3.4.3.2. Faults for the Planning of Lane Changes 103

viii

Contents

3.4.3.3. Faults for the Execution of Lane Changes 103
3.4.4. Result and Impact of the Safety Analysis 103

3.4.4.1. Impact on the System Requirements 104
3.4.4.1.1. Safety Invariants 104
3.4.4.1.2. Robustness of the Environment Perception . . . 105
3.4.4.1.3. Technical Abilities and Restrictions 106

3.4.4.2. Impact on the System Design 107
3.4.4.2.1. Impact on the Functional Architecture 107
3.4.4.2.2. Impact on the Technical Architecture 108

3.4.4.3. Impact on the System Implementation 110
3.4.4.3.1. Impact on the Software Implementation 110
3.4.4.3.2. Impact on the Hardware Implementation 110

3.4.4.4. Impact on the Verification and Validation 111
3.4.4.4.1. Verification . 111
3.4.4.4.2. Validation . 112
3.4.4.4.3. Safety Assessment 113

3.5. Implementation . 113
3.5.1. Implementation of the Functional Architecture 114

3.5.1.1. Implementation of Software Components 114
3.5.1.2. Rapid Prototyping . 115
3.5.1.3. Software Unit Tests . 115

3.5.2. Implementation of the Technical Architecture 116
3.5.2.1. Procurement of Hardware Components 116
3.5.2.2. Hardware Unit Tests . 117

3.6. System Integration and Verification . 118
3.6.1. Software Integration . 118
3.6.2. Software Integration Testing . 119
3.6.3. Integration of the Hardware / Software System 120
3.6.4. Verification of the Hardware / Software System 121

3.7. Validation in Field Tests . 122
3.8. Problem Analysis of the Development Methodology 123

3.8.1. Modeling the System Environment 123
3.8.2. Environment Perception and Interpretation 126
3.8.3. Decision Making in Indefinite Environments 127
3.8.4. Quantification of Correctness and Safety for Acceptability 128
3.8.5. Summary of Analysis Results . 129

4. Emerging Research Questions and Solution Concept 133
4.1. Related Work . 133

4.1.1. Testing of Autonomous Vehicle Systems 134
4.1.1.1. Real World Testing . 134
4.1.1.2. Simulation-based Testing 135

4.1.1.2.1. Mathematical Test Case Generation 137
4.1.1.2.2. Test Case Generation from Real World Data . . 139

ix

Contents

4.1.2. Vehicle Diagnosis and Runtime Monitoring 141
4.1.2.1. On-board diagnosis . 141
4.1.2.2. Runtime Monitoring . 142

4.1.2.2.1. Monitoring Architecture 143
4.1.2.3. Runtime Monitoring Properties 144
4.1.2.4. Comprehensive Safety Approaches 146

4.1.3. Synthesis of Verified Vehicle Controllers 147
4.1.4. Related Work from the Field of Avionics 148

4.2. Emerging Research Questions . 149
4.3. Seamless Development and Operation of Autonomous Vehicles by Quali-

tative and Quantitative Runtime Monitoring 152
4.3.1. Monitoring Architecture for Seamless Development and Operation 154
4.3.2. Monitor Engineering and Training in System Development 155
4.3.3. Operation Analysis and System Evolution for Dependability Im-

provement . 156

5. Monitoring Architecture 159
5.1. System Layer . 160
5.2. Simulation Layer . 162
5.3. Abstraction Layer . 164

5.3.1. System Interfaces . 166
5.3.2. Data Abstraction . 167

5.3.2.1. Input Abstraction . 168
5.3.2.2. Output Abstraction . 168

5.4. Qualitative Monitoring Layer . 169
5.4.1. Abstract Function . 169
5.4.2. Conformity Oracle . 170

5.5. Quantitative Monitoring Layer . 170
5.5.1. Situation Monitor and Situation Knowledge 171
5.5.2. Situation Oracle . 171

6. Monitor Engineering and Training 173
6.1. Formal Representation of the Runtime Monitoring 173

6.1.1. Domains . 174
6.1.2. Functions . 175
6.1.3. Correctness Condition . 177
6.1.4. Soundness property . 177

6.2. Development of Runtime Monitors . 178
6.2.1. Selection of Interface and Requirements 179
6.2.2. Formalization of Interfaces and Requirements 180

6.2.2.1. Pattern-based Analysis of System Requirements 181
6.2.2.1.1. State Condition Part 182
6.2.2.1.2. Action Part . 183

x

Contents

6.2.2.2. Definition of Typed first-order Logic 184
6.2.2.2.1. Types and Co-Domains 185
6.2.2.2.2. Domains and Type Hierarchies 187
6.2.2.2.3. Variables . 189
6.2.2.2.4. Function Symbols 190
6.2.2.2.5. Predicate Symbols 190
6.2.2.2.6. Formulas . 192

6.2.2.3. Semantic Interpretation of Logic by Implementation . . 193
6.2.2.3.1. Domain . 193
6.2.2.3.2. Typing Function 194
6.2.2.3.3. Interpretation of Functions and Predicates . . . 195

6.2.3. Implementation of Runtime Monitors 196
6.2.3.1. Implementation of Data Access 196
6.2.3.2. Implementation of Runtime Monitoring Domains 197
6.2.3.3. Transformations between Domains 198
6.2.3.4. Implementation Qualitative Monitoring 203

6.2.3.4.1. Abstract Function 203
6.2.3.4.2. Conformity Oracle 207

6.2.3.5. Implementation Quantitative Monitoring 208
6.2.3.5.1. Situation Recording 208
6.2.3.5.2. Situation Comparison 210

6.2.3.6. Implementation of Logging 211
6.3. Monitor Training in Simulations . 213

6.3.1. System Verification in Simulations 213
6.3.2. Qualitative Monitoring as Test Oracle 215
6.3.3. Training of Situation Monitor . 217

6.4. Impact and Limitations of the Runtime Monitoring Framework 218

7. Operation Analysis and System Evolution 221
7.1. Runtime Monitoring at Operation . 221

7.1.1. Qualitative Evaluation and Safety Enforcement 225
7.1.2. Quantitative Evaluation and Situation Recording 227

7.2. System Evolution . 229
7.2.1. Improvement by Situations with Incorrect System Behavior 230
7.2.2. Improvement by Unverified Situations 231
7.2.3. Definition of Test Scenarios and Test Cases from Runtime Data . 233

7.2.3.1. Identification of Situation Transitions 235
7.2.3.1.1. Changes of the Scenery 235
7.2.3.1.2. Behavior of Dynamic Objects 236
7.2.3.1.3. Introduction of Ghost Objects 240
7.2.3.1.4. Integration as Situation Graphs 242

7.2.3.2. Slicing of Test Scenarios 245
7.2.3.3. Parametrization by Test Cases 248

7.2.3.3.1. Intermediate Data Model 249

xi

Contents

7.2.3.3.2. Fuzzy Model Parameters 251
7.3. Assessment of System Evolution and Test Generation 253

8. Case Study 257
8.1. Evaluation Setup . 257

8.1.1. Highway Pilot with Lane Change Assistant 257
8.1.2. Runtime Monitoring Framework 258

8.1.2.1. Simulation Framework 258
8.1.2.2. Recordings from Real World Test Drives 259

8.2. Evaluation Results . 260
8.2.1. Experiment E1 . 261

8.2.1.1. System Verification with Manually modeled Test Cases . 261
8.2.1.1.1. Results of Manual Evaluation 261
8.2.1.1.2. Results of the Runtime Monitoring 263
8.2.1.1.3. Recording of Tested Situation Knowledge . . . 265

8.2.1.2. Runtime Monitoring at Operation in Simulations with
Random Traffic . 266

8.2.1.2.1. Results from the Quantitative Runtime Moni-
toring in Simulations 267

8.2.1.2.2. Results from the Qualitative Runtime Monitor-
ing in Simulations 268

8.2.1.3. Runtime Monitoring at Operation in Recordings from the
Real World . 269

8.2.1.3.1. Results from the Quantitative Runtime Moni-
toring in Recordings 270

8.2.1.3.2. Results from the Qualitative Runtime Monitor-
ing in Recordings 271

8.2.2. Experiment E2 . 272
8.2.2.1. Modeling of Test Cases from Runtime Monitoring Results

in Recordings . 272
8.2.2.2. Results from the System Verification with the Realistic

Test Cases . 273
8.2.2.3. Runtime Monitoring at Operation with knowledge of

Realistic Test Cases . 275
8.3. Summary and Assessment of the Case Study 276

9. Conclusion 279
9.1. Summary . 279
9.2. Discussion . 281
9.3. Future Work . 284

9.3.1. Automation of Engineering Approach 284
9.3.2. Extending the Scope of the Runtime Monitoring 285
9.3.3. Improving Verification and Validation 286
9.3.4. Comprehensive Safety Strategy 286

xii

Contents

9.3.5. Application in Rural and Urban Domains 287
9.3.6. Metric for Safety of Autonomous Vehicles 288
9.3.7. General Understanding about System Safety 288

A. Appendix 291
A.1. Data Structures in the Case Study . 291
A.2. Requirements-based Test Scenarios and Test Cases 293
A.3. Test Scenarios from Real World Recoding 301

Glossary 307

Bibliography 319

xiii

List of Figures

1.1. Overview about the content of this thesis. 11

2.1. Pictograph of the relation between real world and the system’s perceived
world. 16

2.2. Life cycle of vehicle and their system. 18
2.3. Three layer model for the driving task according to E. Donges 20
2.4. Automation levels by the SAE. 21
2.5. Closed-loop feedback control system. 24
2.6. Decomposition for the control system of autonomous robots. 25
2.7. Logical system architecture by Matthaei. 26
2.8. Control-loop for simulations of autonomous vehicle systems. 36
2.9. Realization of control loop elements in the XIL simulations. 41
2.10. Kiviat digram of MIL and SIL simulations. 43
2.11. Kiviat digram of DIL simulations. 44
2.12. Kiviat digram of HIL simulations. 45
2.13. Kiviat digram of VEHIL simulations. 46
2.14. Kiviat digram of VIL simulations. 47
2.15. Kiviat digram for real world testing. 47

3.1. Lane change assistant. 62
3.2. Activities in the development, verification and validation of the lane change

assistant. 63
3.3. Functional architecture for the processing of lane changes (level 1). . . . 77
3.4. Representation of a road junction as road graph. 78
3.5. Relationship between road, way, and lane. 79
3.6. Modeling of lanes segments, connectors, and boundaries. 80
3.7. UML class diagram of the Scene. 81
3.8. Coordinate system, reference points, and measurements for vehicle posi-

tioning. 82
3.9. UML class diagram of the situation. 84
3.10. Lane number in the scene. 85
3.11. Graph of a Dynamic Bayesian Network. 89
3.12. Policy tree of (predicted) state beliefs and actions. 92
3.13. UML class diagram of the target point. 93
3.14. Configuration of LIDAR Sensors for a 360◦ field of view. 94
3.15. Evolution of electrical and electronic (E/E) architectures. 96
3.16. Processing network of the prototype vehicle. 97

xv

List of Figures

3.17. Exemplary fault tree for collision with a vehicle in-front. 102
3.18. Extension of the functional architecture following the safety analysis. . . 108
3.19. Multi-sensor platform of the prototype vehicle. 109
3.20. Representations of a Volkswagen Golf MK4. 124
3.21. Safety critical but irrational traffic scenarios. 125
3.22. Relationship of system inputs and decision making. 127

4.1. Overview of the engineering approach. 153

5.1. Monitoring architecture for simulations at design time. 160
5.2. The segmentation of autonomous systems following the IPO model. . . . 161
5.3. Integration of autonomous vehicle system and simulation framework. . . 163
5.4. Configurations of system interfaces. 166

6.1. Generation of Runtime Monitoring Components. 173
6.2. Mathematical representation of the runtime monitoring. 174
6.3. Integration of the monitor development into the development of au-

tonomous vehicle functions. 179
6.4. Requirements pattern. 181
6.5. Application of the requirement pattern for Example 6.1. 183
6.6. Definition of abstract values for types. 186
6.7. Definition of domains DIA, DOA from the requirement pattern. 188
6.8. Exemplary type hierarchy. 189
6.9. Definition of abstract function fA from the requirement pattern. 191
6.10. Transformation between domains DIS and DIA. 199
6.11. Zoning as representation of vehicle positions in domain DIA. 200
6.12. Graphical visualization of an abstract situation. 212

7.1. Time duration until recordings are available for system evolution. 224
7.2. Impact by results of qualitative runtime monitoring. 230
7.3. Impact by results of quantitative runtime monitoring. 231
7.4. Clusters and traces of recorded abstract situations. 234
7.5. Example trace of recorded traffic situations. 235
7.6. Possible object maneuvers for changes between situations s0 and s1. . . . 236
7.7. 3D coordinate system for the movements of dynamic objects on roads. . . 237
7.8. Maneuver tree for the identification of transitions between subsequent

abstract situations. 239
7.9. Identification of actions for the automated ego vehicle. 241
7.10. Ghost objects for determination of objects actions. 242
7.11. A situation graph for the definition of test scenarios. 243
7.12. Slicing of traffic situation traces. 246
7.13. Prefixes and suffixes in slicing of situation traces. 247
7.14. Mapping of parameters between test scenarios, intermediate models, and

environment models. 250

xvi

List of Figures

8.1. Physical evaluation setup. 259
8.2. Virtual test tracks for the runtime monitoring during operation. 267
8.3. Distribution of frequencies and discovery of situations over time. 270
8.4. Coverage after training monitors with additional test cases generated from

observed situations. 274

A.1. Data structure of the abstract target. 291
A.2. Data structure of the abstract situation. 292

xvii

List of Tables

3.1. Requirements for the lane changing on highway. 67
3.2. Requirements for the benefit of lane changes. 68
3.3. Requirements for entering or leaving the highway. 69
3.4. Requirements considering traffic participants. 70
3.5. Requirements considering the road infrastructure. 71
3.6. Requirements considering the cancellation of intimated maneuvers. 72
3.7. Requirements addressing the interoperability with the passengers. 73
3.8. Requirements addressing the reliability. 74
3.9. Development Requirements. 75
3.10. Requirements for the environment perception. 105
3.11. Requirements concerning the ability restrictions. 106
3.12. Table for situation classification by autonomous vehicle systems. 113

6.1. Possible wording for relation in natural language requirements. 182

7.1. Implications for results from the qualitative runtime monitoring. 226
7.2. Implications for results from the quantitative runtime monitoring. 228

8.1. Result of the manual evaluation for the manually modeled test cases. . . 262
8.2. Result by the runtime monitoring for the initial set of test cases. 264
8.3. Test cases with abstract situation in the tested situation knowledge. . . . 266
8.4. Coverage of traffic situations after training the situation monitor. 268
8.5. Runtime Monitoring Result from real world test cases. 273

A.1. Test Scenario 1. 293
A.2. Test Scenario 2. 294
A.3. Test Scenario 3. 295
A.4. Test Scenario 4. 296
A.5. Test Scenario 5. 297
A.6. Test Scenario 6. 298
A.7. Test Scenario 7. 299
A.8. Test Scenario 8. 300
A.9. Real World Scenario 1. 301
A.10.Real World Scenario 2. 302
A.11.Real World Scenario 3. 303
A.12.Real World Scenario 4. 304
A.13.Real World Scenario 5. 304

xix

List of Tables

A.14.Real World Scenario 6. 305
A.15.Real World Scenario 7. 305

xx

Acronyms
ABS anti-lock braking system
ACC adaptive cruise control
ADAS advanced driver assistance systems
ADTF automotive data and time-triggered framework
ASIL automotive safety integrity level
ASML abstract state machine language

BASt Federal Highway Research Institute (Bundesanstalt
für Straßenwesen)

CAN Controller Area Network
CNN convolutional neural network
CPU central processing unit

DCU domain control unit
DGPS differential global positioning system
DIL driver-in-the-loop
DOF degree of freedom
DSL domain specific language

E/E electrical and electronic
EBA emergency brake assistant
ECU electronic control unit
ESC electronic stability control

FARS fatality analysis reporting system
FMEA failure mode and effect analysis
FPGA field programmable gate array
FTA fault tree analysis

GHG greenhouse gases
GNSS global navigation satellite system

xxi

Acronyms

GPS global positioning system

HAZOP hazard and operability study
HDD hard disk drive
HDL hardware description language
HIL hardware-in-the-loop
HMI human machine interface

IEEE Institute of Electrical and Electronics Engineers
IIHS Insurance Institute for Highway Safety
IPO input-processing-output

LCA lane change assistant
LHS left-hand side
LIDAR light detection and ranging
LKAS lane keeping assist system
LTL linear temporal logic

MDP Markov decision process
MIL model-in-the-loop
MLSL multi-lane spatial logic
MOST media oriented systems transport
MSC message sequence chart
MTL time metric temporal logic

NHTSA National Highway Traffic Safety Administration
NLP natural language processing

OS operating system

PIL processor-in-the-Loop
POMDP partially observable Markov decision process

QoS quality of service

RADAR radio detection and ranging
RAM random access memory
RHS right-hand side
RSS responsibility sensitive safety

xxii

Acronyms

SAA sense and avoid
SAE Society of Automotive Engineers
SAT propositional satisfiability
SIL software-in-the-loop
SoC system-on-chip
SOTIF safety of the intended functionality
SSTL signal spatio-temporal logic
STL signal temporal logic
SUT system under test

TCM transport class model
TCTL timed computation tree logic

UML unified modeling language
UTM universal transverse Mercator

V2I vehicle-to-infrastructure
V2V vehicle-to-vehicle
V2X vehicle-to-X
V&V verification and validation
VAAFO virtual assessment of automation in field operation
VDA German Association of the Automotive Industry
VEHIL vehicle-hardware-in-the-loop
VIL vehicle-in-the-loop
VTD Virtual Test Drive
VUT vehicle under test

XIL x-in-the-loop
XML extensible markup language

xxiii

1. Introduction
This thesis presents an engineering approach for autonomous vehicles as an extension of
the current development process in the automotive industry. The motivation for this
engineering approach and the contributions of this thesis are presented in this chapter.

1.1. Motivation
The road mobility sector is digitalized worldwide. While automation has been considered
in the industries of aviation,e.g., drones, marine, e.g., submarines, and even to space
exploration,e.g., Mars rovers, in the past decades, automation has been introduced to
products of the automotive sector just recently (cf.[NL14; Wei+14]). Automation for
the public road traffic is manifested as driver assistant systems, which support the
driver in his driving task or even absolve the driver from the vehicle control and replace
him [Fed17]. Today, advanced driver assistance systems (ADAS), e.g., adaptive cruise
control (ACC) or lane keeping assist system (LKAS), are already deployed in vehicles
(cf. Definition 2.5), but systems, which are able to accelerate resp. accelerated and steer
the vehicle without any human input, are still under development [Fed17]. ADAS and
systems for partial, high, and full automation of road vehicles are cumulated under the
term autonomous vehicle systems in this thesis (cf. Definition 2.6). Nevertheless, there is
a large gap between ADAS and full automated vehicles that are not recognized by the
general public [NL14].
The Society of Automotive Engineers (SAE) classifies the automation of road vehicles
into six levels— (0) no automation, (1) driver assistance, (2) partial automation, (3)
conditional automation, (4) high automation, and (5) full automation (cf. Fig. 2.4). The
capabilities of these systems to control longitudinal and lateral vehicle movement as well
as to execute safety measures in critical traffic situations or system faults increase with
each level of automation while the involvement of the human driver in the vehicle control
and the supervision of the vehicle decreases. At automation level (0) – (2), the driver
remains responsible for the monitoring of the vehicle’s environment and initiation of
necessary safety measure while autonomous vehicle systems with levels of automation
(3) – (5) have to monitor their environment independently and perform necessary safety
measure without input by the human driver. The common terms self-driving vehicles,
autonomous vehicles refer to automation level (4) high automation and (5) full automation
(cf. Section 2.1.4).
Highly and full automated vehicles have the potential to revolutionized road traffic
and are envisaged to provide a positive benefit for social, economic, and environmental
challenges (cf. [BR15; Fed17; NL14]):

1

1. Introduction

Road Safety Autonomous vehicle systems are envisaged to reduce road accidents and
fatalities on public roads and help to achieve the vision of “zero fatalities” (cf.
[Eur11], [WH06]), if the highest road safety is maintained. In the year 2016, 34.439
crashes with over 37.000 fatalities happen in the United States1 and 308.100 crashes
with personal injuries led to 3.206 fatalities in Germany [Rad17].
88.1% of road accidents with personal injuries on German roads are subject to
errors by human drivers [Rad17]. In the United States, it is estimated that around
93% or accidents are subject to human errors [NL14]. Drunk drivers account for
41% of all fatal crashes according to the NHTSA. Distracted drivers are responsible
for 41% of fatal crashes, and fatigue drivers account for 2% of all fatal crashes (cf.
[NL14]).
Autonomous vehicle systems are not subject to these human errors and, therefore,
can mitigate a majority of these road accidents. Furthermore, autonomous vehicle
systems might also outperform human driver in perception,e.g., blind spot detection,
decision making, e.g., more accurate planning of complex driving maneuvers, and
vehicle control, e.g., faster and precise steering and braking) in the majority of
traffic situations [KP16].
The Insurance Institute for Highway Safety (IIHS) estimates that nearly a third
of today’s road accidents could be prevented if all of today’s vehicles would be
equipped with ADAS, e.g., dynamic brake support, forward collision warning, lane
departure warning, and blind spot assists [NL14].
Road safety is the primary concern for autonomous vehicle and has to prioritized
above all other challenges [Aga+16; Fed17].

Traffic Density The total annual mileage on German roads by 2020 is envisaged to
increase by 21% in comparison to the annual mileage in the year 2002 [aca06]. The
most substantial increase in annual mileage is predicted for the cargo transportation
with 34%. The increasing road traffic volume will lead to more problems, e.g.,
traffic jams if the infrastructure is not extended. Autonomous vehicle systems can
help optimize the use of existing infrastructure by improving the overall traffic flow
and bypassing traffic jams on alternative routes resulting significant time savings
and increasing comfort for passengers (cf. [BR15; NL14]).

Emissions Autonomous vehicle systems can help to further decrease the emission of
carbon monoxide (CO), carbon dioxide (CO2), and other greenhouse gases (GHG)
and contribute to national and international climate strategies and targets (cf.
[Cap+13]). Today, automobiles account for 20% of the total GHG emissions [BR15].
Inefficiencies in the driving behavior of human drivers further account for a part
of this percentage in addition to the high emissions of combustion engines. The
reduction of traffic accidents and the improvement of traffic flow by autonomous
vehicle systems would directly impact the GHG emissions. Autonomous vehicle

1retrieved from the fatality analysis reporting system (FARS) of National Highway Traffic Safety
Administration (NHTSA): https://www-fars.nhtsa.dot.gov/Main/index.aspx (Accessed: 12/06/2018)

2

1.1. Motivation

systems with low automation level, e.g., ACC, can improve fuel economy by 4−10%
[NL14]. A higher saturation of road traffic by high automated vehicles would lead
to a further reduction of GHG emissions.

Demographic Change Most industrial countries face the challenge of an increasing
elderly society. Autonomous vehicle systems can help to support the mobility of
elderly and disabled people. Deficiencies of these groups, e.g., impaired perception,
can be compensated by autonomous vehicle systems. High automated vehicles
would enable participation of, e.g., blind and disabled people in public road traffic
because their high level of automation does not require any human control and
supervision (cf. [Fed17; NL14]). The individual mobility of elderly and disabled
people has a significant benefit for the integration of these people into society
[Fed17].

In addition to the social and political driver for automated driving, also the technical
components, e.g., sensor and actuator, as well as the necessary processing powers are
available in large quantities with sufficient qualities in order to realize autonomous vehicle
systems with increasing autonomy [BR15].
In recent years, major car manufacturers such as General Motors, Mercedes Benz, and
Audi, and tech companies like Google, Uber, and Apple, have been racing towards
autonomous road vehicles. The primary objective in this race seems to be the first to
deploy a full automated production vehicle on the road [SSS17]. Some car manufacturers
believe that full automated vehicles could exist by 2025 [NL14]. Towards full automated
vehicles, car manufacturers are going to introduce autonomous vehicle systems with
increasing levels of automation gradually over time [BR15]. The current generation of
autonomous vehicle systems includes highway pilots which autonomously follow traffic
on highways— including traffic jams. However, human drivers remain responsible for
the safety of the vehicles and have to supervise the system and its environment. In the
presence of critical situations, human drivers are required to intervene and mitigate the
emerging risks.
All major car manufacturers and tech companies which work on autonomous vehicles have
prototype vehicles with autonomous capabilities operating on public roads. Waymo has
accumulated over 8.0 million miles on public roads with their fleet of over 80 autonomous
prototype vehicles2. In the state California, United States, Waymo drove 352,544.6 miles
autonomously on public roads in the year 2017. This mileage is the most of all companies
to test autonomous vehicles on public roads, e.g., Bosch accumulated 6,305 autonomous
miles, General Motors Cruise drove 13,1677 miles autonomously, Nissan tested on 5007
miles, and Mercedes Benz accumulated 1088 miles. However, these companies may
accumulate additional test miles in tests in other states or countries. The mileage in
California are tracked by disengagement reports of the Department of Motor Vehicle of
the State California3.

2https://www.theverge.com/2018/7/20/17595968/waymo-self-driving-cars-8-million-miles-testing (Ac-
cessed: 12/06/2018)

3https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/disengagement_report_2017 (Accessed:
12/06/2018)

3

1. Introduction

Autonomous vehicle systems impose both enormous potential benefits and enormous
potential risks [KP16; Wei+14]. Autonomous vehicle systems are commonly classified
as safety-critical because their failures impose the possibility for death and injuries of
humans [BV10]. While car manufacturers and tech companies have made significant
progress in the development of the autonomous functionality for road vehicles, the risks
and potential faults of autonomous vehicle systems have not been equally addressed until
recently [NL14]. The disengagement reports of the Department of Motor Vehicle of the
State California disclose that all companies encountered critical and unsafe situations with
their autonomous prototype vehicles on public roads, i.e., Waymo, had 63 disengagements,
Bosch had 595 disengagements, GM Cruise accumulated 105 disengagements, Nissan
counted 24 disengagements, and Mercedes Benz had 840 disengagements in the year
2017.
Several prototype vehicles of different operators have been involved in accidents with
fatalities. In Mai 2016, a driver of a Tesla Model S has been killed when its car with
engaged autopilot system drove into the white truck trailer which was crossing the
highway4. In March 2018, a prototype vehicle of Uber operating in self-driving mode
killed a crossing pedestrian at night in Tempe, Arizona5. At the same time, a Tesla
Model X with engaged autopilot system drove into a concrete lane divider and burst into
flames6. The driver of the Tesla later died at the hospital.
Road safety is the primary concern for the introduction of autonomous vehicle systems
in road vehicles [Fed17]. Autonomous vehicle systems must be sufficiently safe. Car
manufacturers and tech companies must minimize any unintended consequences and
imminent risks of this technology, i.e., collisions, in order for autonomous vehicle systems
to have a positive impact on mobility, safety, and time consumption [NL14].
Nevertheless, vehicles with autonomous vehicle systems will still be involved in road
collisions. A 100% safety on roads is doubtful to be achieved even with autonomous vehicle
systems [SSS17; Sti13]. As collisions with autonomous vehicles cannot be completely ruled
out, residual risks for objects and persons in the vicinity of autonomous vehicle systems
are imminent. The safety risks of autonomous vehicle systems is particularly present in
traffic with different levels of automation, in combination with human controlled vehicles
and other traffic participants, i.e., bicycles and pedestrians, or extreme weather conditions
(cf. [Fed17]). In some of these situations, human drivers are challenged. Autonomous
vehicle systems might perform worse than human drivers [KP16].
Autonomous vehicle systems have to provide a balance of risks for the overall road
safety. The performance of autonomous vehicle systems has to least match the driving
performance of human drivers [BR15; Fed17]. In critical traffic situations, autonomous
vehicle systems must be able to mitigate the risks by autonomously performing emergency
maneuvers without input from the human driver [BR15]. Otherwise, this technology
will not be accepted by the general public [Fed17; NL14; SSS17]. The fatal collisions of

4https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-
musk (Accessed: 12/06/2018)

5https://www.theverge.com/2018/5/24/17388696/uber-self-driving-crash-ntsb-report (Accessed:
12/06/2018)

6https://www.wired.com/story/tesla-autopilot-self-driving-crash-california (accessed: 12/06/2018)

4

1.1. Motivation

autonomous prototype vehicles with fatalities have arisen first doubts about autonomous
technology in public road traffic.
The current approach to developed autonomous vehicle systems based on based geometric
signal data from sensor measurement lacks the interpretability and explainability of any
system actions (cf. [SSS17]). The general public expects non-technical explanations for
actions by autonomous vehicle systems leading to accidents. A formal semantic model
for the reasoning about behavior and safety of autonomous vehicle systems is required.
The planning of autonomous vehicle systems is unlike scale up exponentially with time
and number of dynamic object in their environments. Current development approaches
for autonomous vehicle systems— including the safety standard ISO 26262 —does not
provide any semantic model. [SSS17]
Questions about the liability for the operation of autonomous vehicle systems arise because
collisions cannot be completely mitigated. With increasing autonomy of autonomous
vehicle systems, the responsibility for the correctness and safety of these systems during
operation on public roads shifts from human drivers to car manufacturers and public
authorities. Without the human driver in supervision, the product and producer liability
(cf. ProdHaftG §1, BGB §823 I, BGB §433) define manufacturers to be liable for any
damage by their autonomous vehicle systems (cf. [Wei+14]). Car manufacturers, i.e.,
Daimler AG and Volkswagen AG, plan to maintain high safety standards for their
autonomous vehicle systems by introducing increasing automation capabilities for their
autonomous vehicle systems gradually over time [BR15].
Car manufacturers are obliged to ensure the safety of their autonomous vehicle systems
in the context of the current technology state by continuously monitoring, testing, and
optimizing their autonomous vehicle systems [Fed17; NL14; Sch12; Wei+14]. The safety
of autonomous vehicle systems consists of two essential aspects (cf. [Sti13; Wei+14]):

Loss of function: The loss of function can arise if technical components, i.e., electronic
control units (ECUs) or sensors, fail. Autonomous vehicle systems must be designed
redundantly with equivalent fall-back components in order to compensate such loss
of function. For full automated vehicles, the autonomous vehicle systems have to
transfer the vehicle into a safe state in which any danger is mitigated. For lower
levels of automation, autonomous vehicle systems can hand over the control of the
vehicle back to the human driver but must safely operate autonomously for the
time of the handover. [Sti13]

Loss of integrity: The loss of integrity may arise as a shortcoming by the nominal
functionality of autonomous vehicle systems even if no system fault is present.
For example, the perception of autonomous vehicle systems may fail to correctly
recognize a real-world object in the path of the vehicle. As a result, the decision by
the autonomous vehicle systems in this situation could be faulty and unsafe, i.e.,
driving onto this object—because the internal environment representation does
not correctly model the real world. [Sti13]

The loss of function is addressed by the safety standard ISO 26262 [Sti13]. The safety
standard ISO 26262 represents the specific interpretation of the common norm IEC 61508

5

1. Introduction

for functional safety for the automotive domain. The norm ISO 26262 defines a safety life
cycle for the functional safety of electrical and electronic (E/E) systems in automobiles up
to 3.5t. For the mitigation of potential loss of function due to faults of technical systems
components, methods, activities, and work items are defined throughout the development
and operation of E/E systems. Safety requirements define measures for the potential
loss of function of software and hardware components based on a risk assessment of
these components. These safety requirements have to be considered throughout the
development, verification, and validation of the vehicle and its systems. [Sti13; Wei+14]
With the increasing level of automation, the safety requirements for autonomous vehicle
systems have to be more restricting in order to maintain the acceptable measure of risks
[NL14].
However, the safety standard ISO 26262 is not sufficient for developing safe autonomous
vehicle systems because the safety standard ISO 26262 does not sufficiently address the
loss of integrity. For the safety standard ISO 26262, vehicle systems either meet their
requirements and any risks by the systems is excluded or the vehicle systems operate
outside their specifications due to failures of system components [Wei+14]. The safety
standard ISO 26262 does explicitly exclude the performance of the intended nominal
system functionality and considers the human driver as permanent fall-back [Sti13].
Autonomous vehicle systems are unlikely to be specified and tested to the extent that all
situation-critical maneuvers reside outside their specifications [Wei+14].
A new safety standard ISO/PRF PAS 21448—safety of the intended functionality
(SOTIF)— is currently under development in order to address the loss of integrity for
partially automated vehicles and complement the norm safety standard ISO 26262. The
norm SOTIF addresses the following aspects in the development of autonomous vehicle
systems up to partially automated vehicles:

• pattern for the system architecture of autonomous vehicle systems,

• evaluation of risks by the intended functionality, which is not addressed by the
safety standard ISO 26262,

• identification of scenarios and events and evaluation of emerging safety risks,

• verification, validation, and risks reduction for the intended functionality,

• definition of criteria for the approval of autonomous vehicle systems in production
vehicles.

The definition of the standard ISO/PRF PAS 21448—SOTIF—correlates to current
research projects, e.g., the PEGASUS project (cf. [Win+18]). The PEGASUS project
aims to research generally accepted quality criteria, tools, and methods which are
representative for the release of highly-automated vehicle functions. The quality criteria
include the investigation and definition of relevant and representative scenarios and
situations in which these functions have to operate safely.
The safety standard ISO/PRF PAS 21448 and the PEGASUS project try to address the
question; “When autonomous vehicle systems are sufficiently safe?”. Until today, neither

6

1.1. Motivation

car manufacturers, tech companies, nor public authorities have defined any measure for
the acceptable risks of the autonomous vehicle system in public road traffic. However,
a definition of the acceptable risks is inevitable because car manufacturers and tech
companies require legal certainty for their development of autonomous vehicle systems
[BR15; Sti13]. A common hypothesis is that the risk for fatalities by autonomous vehicle
system in public road traffic must not be greater than the risks for fatalities by human
drivers [Win15].
The approval of autonomous vehicle systems for the public road traffic resides with
public authorities, but car manufacturers have to provide sufficient evidence about the
safety of their autonomous vehicle systems [Fed17; Wei+14]. Car manufacturers and
tech companies have to verify and validate that their autonomous vehicle systems remain
within the accepted residual risks for a positive impact on public road traffic [Kna+17b;
NL14; Wei+14].
Besides uncertainties about the accepted residual risks of autonomous vehicle systems,
one other challenge in the development of autonomous vehicle systems is the current
lack of established and cost-efficient approaches for assuring the safety of autonomous
vehicle systems towards full automated driving [Den+14; Kna+17b; Sti13; Win15]. Until
today, no valid concept for verification and validation of autonomous vehicle systems is
known [Wei+14]. Today’s conventional engineering methods in the automotive domain
are incapable of providing such safety guarantees for autonomous vehicle systems.
The common practice for the safety verification and validation of E/E systems in the
automotive industry is the testing with prototype vehicles on public roads. The safety
of E/E system in these tests is quantified by the failure rates of these systems over
the driven mileage. This practice has been successfully applied for driver assistance
systems, e.g., the emergency brake assistant (EBA), but has little to no significance for
the autonomous vehicle system with environment perception and autonomous decision
making in public road traffic (cf. [SSS17; Win15]). The safety evaluation for the EBA
focused only on false positives but for autonomous vehicle systems also false negatives
have to be evaluated [Sti13]. Prof. Winner et al. estimate that the required mileage for
the verification and validation of autonomous vehicle systems on public roads succeeds
240m km [Win15]. The authors of [WW17] calculate a necessary mileage of 6.6 billion
kilometers while the authors of [KP16] estimate 8.8 billion miles. Such mileages are not
feasible for car manufactures and tech companies under reasonable time and costs [KP16;
Sti13; WW16]. Winner et al. call this problem the approval-trap (cf. [Win15; WW16]).
Car manufacturers and tech companies are required to reverify and revalidate the
performance of their autonomous vehicle systems for at least a third of the initial test
effort following each change of these systems [KP16; Win15]. The reproducibility of
real-world tests is limited— if not impossible—due to a large number of factors and
variations in public road traffic—some of them are not even unknown [GRS14; HK16].
The introduction of learning and self-learning algorithms for autonomous vehicle systems
impose another challenge for the verification and validation of autonomous vehicle
systems. Learning algorithms, e.g., object identification by convolutional neural networks
(CNNs), are trained in the development while self-learning algorithms, e.g., the automatic
adaption of vehicle dynamics, update their knowledge base continuously during operation

7

1. Introduction

[Fed17]. Even though CNNs commonly outperform human drivers in the perception
and classification of environment objects, the internal learning of these nets and its
semantics are not yet well understood (cf. [Mar18; NYC15]). Insufficiencies, i.e., adverse
side effects, rewards hacking, or sensitiveness to environment differences by learning and
self-learning algorithms impose a significant threat to the safety of autonomous vehicle
systems and have to be eliminated (cf. [Amo+16]). However, learning and self-learning
algorithms currently lack the necessary sound verification, and validation approaches
[Gha+18; GP17; Kna+17b]. A separation of self-learning systems and safety-critical
vehicle functions is not feasible (cf. [Fed17]). For example, the environment perception is
a fundamental and safety-critical component of autonomous vehicle systems and has a
direct impact on all other system functions, e.g., situation assessment, decision making,
and vehicle control.
New approaches for the verification, validation, and risk assessment of autonomous
vehicle systems have to be developed in order to ensure the safety and positive impact
of autonomous vehicle systems [Gas12; KP16; Sti13; Wei+14; Win15; WW16]. These
approaches have to consider with the vast quantity of diverge traffic situations and
the vast set of possible behaviors by the autonomous vehicle systems [Aga+16; BJ05;
Wei+14].
Critical traffic situations for the safety of autonomous vehicle systems are traffic situations
which have not been sufficiently considered in the development of the autonomous vehicle
systems— including traffic situations which are easily handled by human drivers (cf.
[Sti13]). Any approach must be able to identify and document these critical but seldom
traffic situations (cf. [Aga+16; BR15; Sti13]). However, no approach is currently able to
determine the theoretical completeness of critical traffic situations in order to guarantee
the safety of autonomous vehicle systems [Wei+14] soundly.
One strategy in the automotive domain for reducing the costs of quality assurance is
the application of the structured testing as well as transferring a significant part of the
testing effort from tests on public roads to (system-level) simulations [BR15; Kna+17a;
Kna+17b]. For these simulations, software and hardware components of the autonomous
vehicle systems are integrated into a simulation framework. The simulation frameworks
simulate virtual worlds and generate the test input data for the autonomous vehicle
systems. The behavior of the autonomous vehicle systems can be transferred back to
the simulation framework and impact the state of the virtual world. In comparison to
real-world testing, simulations offer an improved reproducibility, flexibility and reduction
of costs and time for the verification and validation of autonomous vehicle systems [HK16].
Nevertheless, simulations are unlikely to verify and validate all possible variants of traffic
situations and singlehandedly account for the necessary distance of million miles which
are statistically required for the approval of autonomous vehicle systems [Win15].
Simulations have to sufficiently cover relevant and realistic traffic situations for valid
statements about the safety of autonomous vehicle systems. Realistic traffic situations
represent real-world traffic situations which autonomous vehicle systems are likely to
encounter in the real world. A systematic approach for systematically identifying traffic
situations does not yet exist. (cf. [Sch+13]) The number of traffic situations in test sets
should be as minimal as possible in order to limit the costs of the safety assurance in

8

1.2. Thesis Contributions

general and in systems simulations particular. Neither car manufacturers nor public
and legal authorities have yet defined any requirements for a sufficient but minimal set
of traffic situations for the verification and validation of autonomous vehicle systems
[Aga+16; Wei+14; Win15]
Any results of the system simulations must be employable for the operation of autonomous
vehicle systems in public road traffic. The behavior of autonomous vehicle systems in
simulations and on the road in the real world have to be comparable. Otherwise, system
simulations no impact on the verification and validation of autonomous vehicle systems.
As system simulations will not verify and validate all possible real-world traffic situations
which autonomous vehicle systems may encounter in the real world, the impact for the
safety of autonomous vehicle systems by the system simulations should be quantified
(cf. [Wei+14]). However, until today no metric has been defined for the performance of
autonomous vehicle system based on the set of covered traffic situations (cf. [Win15]).
Nevertheless, intelligent distribution of the verification and validation between system
simulations and real-world tests will have a significant impact on the time-to-market of
safe autonomous vehicles [Sti13].
The introduction of autonomous vehicle systems towards full automated vehicles requires
a consistent understanding required vehicle functions of the different automation levels
as well as the solution of the social, legal, and technical challenges [BR15]. This work
is envisaged to provide contributions to the verification and validation of autonomous
vehicle systems by addressing the shortcomings in the identification of relevant and
realistic scenarios and the transferability of simulation results. The contributions of this
work are described in the following section.

1.2. Thesis Contributions
The research in this thesis makes the following contributions:
A thorough analysis of the current development process in the automotive
domain concerning the safety of autonomous vehicle systems.

In this thesis, the current development practice in the automotive domain for
autonomous vehicle systems is presented on the example of a highway pilot
with a lane change assistant— from requirements engineering to verification and
validation. This thesis analyses the development process and discloses its problems
regarding the safety of autonomous vehicle systems.

Improving the safety assurance in the development process of autonomous
vehicle systems by integrating runtime monitoring data in simulations and
during operation in the real world.

This thesis proposes an extension for the current development process in the
automotive domain by incorporating runtime monitoring into simulations of the
system verification and during operation in the real world in order to address
identified problems for the development of safe autonomous vehicle systems.
The proposed approach aims to improve the safety of these autonomous vehicle

9

1. Introduction

systems iteratively. The gap between simulations in the system verification and the
operation of autonomous vehicle systems in the real world is bridged by transferring
runtime monitoring results between the simulations and the operation.
Three additional contributions are aligned with the proposed engineering approach:

A component architecture for runtime monitoring of autonomous vehicle systems and
their environments at an abstract level.

A component architecture for the runtime monitoring of autonomous vehicle
systems is defined in this thesis which abstracts from the concrete signals of the
autonomous vehicle systems and monitors system properties on the abstract level
of the system requirements. The runtime monitoring verifies the correctness and
safety of autonomous vehicle systems in each encountered situation and records
resp. compares the encountered situation with the known situations from the
simulations of the system verification. The runtime monitoring accesses signal
values of the autonomous vehicle systems and transforms them into an abstract
representation of situations.

The definition of safety-relevant system properties from system requirements on an
abstract level.

For the runtime monitoring of autonomous vehicle systems, a pattern-based
approach is introduced in this thesis for the definition of system properties from
the requirements of the autonomous vehicle systems. The transformation by the
pattern-based approach results in a formal definition of an abstract representation
for the states of autonomous vehicle systems and their environment situations.
The runtime monitoring uses this abstract representation for the verification of
the autonomous vehicle systems and the recognition of environmental situations.

A framework for estimating and improvement of the impact and scope by the system
verification for the operation of autonomous vehicles systems during operation.

During operation in the real world, the runtime monitoring framework can identify
situations for which the autonomous vehicle systems have not been sufficiently
verified in simulations of the system verification. This information enables to
determine the impact and scope of the system verification based on the ration of
safe and critical situations during the operation of autonomous vehicles systems.
Critical situations which have been recorded during operation are used for the
improvement of the autonomous vehicle systems and the definition of additional
simulations in the system verification. Therefore, the proposed engineering ap-
proach continuously improves the impact and scope of the system verification as
well as the correctness and safety of autonomous vehicle systems.

The definition of test scenarios and test cases for the system verification
from runtime monitoring results during operation in the real world.

This thesis describes the process of defining new simulations for the system
verification from results of the runtime monitoring of autonomous vehicle systems

10

1.3. Outline

during operation in the real world. The runtime monitoring records environment
situations in which the autonomous vehicle systems violates the system properties
or which have not been encountered in the simulations of the system verification.
The recorded situations are analyzed, and test scenarios are defined based on
changes between recorded situations. These test scenarios describe changes
in the scenery and behavior of dynamic objects, e.g., vehicles, in the abstract
representation of the runtime monitoring. Concrete test cases finalize abstract
parameters of test scenarios for the simulations in the system verification of
autonomous vehicle systems.

The following section presents an outline of this thesis.

1.3. Outline

Problem Outline

Emerging Research Questions
and Solution Concept

Monitor
Engineering

and
Training

Monitoring
Architecture

Operation
Analysis

and
System

Evolution

Case Study

Conclusion AppendixBackgroundIntroduction

1 2 3

4

5 6 7

8

9 A

Figure 1.1.: Overview about the content of this thesis.

The remainder of this thesis is organized as shown in Fig. 1.1:

Chapter 1 (this chapter) gives an introduction to the problems for the verification and
validation of autonomous vehicle systems as well as the contributions of this work.

Chapter 2 summaries the necessary background and knowledge for the following chapters
of this thesis.

Chapter 3 presents the current development process in the automotive domain on a
highway pilot with integrated lane change assistant and discloses the problems of
this process for the development of autonomous vehicle systems.

Chapter 4 gives an overview over related academic and industrial work, the emerging
research questions, and the solution concept of this thesis. The solution concept

11

1. Introduction

constitutes a combination of runtime monitoring of autonomous vehicle system in
simulations of the system verification and during operation in the real world.

Chapter 5 describes the architecture of the runtime monitoring framework and its
integration with the autonomous vehicle systems.

Chapter 6 illustrates the definition and implementation of the runtime monitoring
framework based on requirements of autonomous vehicle systems and its training
in simulations of the system verification.

Chapter 7 describes the usage of runtime monitoring results during operation of au-
tonomous vehicle systems in the real world as well as the usage of results from the
runtime monitoring during operation for the improvement of the autonomous vehicle
systems and their verification in simulation in further development iterations.

Chapter 8 presents the evaluation of the proposed engineering approach for the lane
change assistant in chapter 3— including the result of the runtime monitoring
in simulations of the system verification and during operation for recordings of
real-world test drives.

Chapter 9 summarizes this thesis and concludes this thesis with a discussion of the
proposed engineering approach and an outlook on future work.

Appendix A provides additional information about data structures and test scenarios
which have been implemented within the evaluation of the engineering approach
on the lane change assistant.

12

2. Background
The following section introduces basic concepts about autonomous vehicle systems,
simulation-based testing, runtime monitoring, and typed first-order logic for the under-
standing of content in the following chapters.

2.1. Autonomous Vehicle Systems
The advent of autonomous systems in recent history started in 1940 when Norbert
Wiener reasoned about the similarity of intelligent behavior of servomechanisms for
anti-aircraft guns with the nominal and anomalous operation of biologic systems (cf.
[HB82]). Wiener’s work led to the formalization of a theory of feedback control and
its generalization to human biologic systems (cf. [WS05]). The first generation of
autonomous systems emerged from this work combining simple sensors and effectors with
analog control electronics.
The advent of digital control electronics in the 1970s and advances in automated perception
and cognition led to autonomous systems that could plan and execute complex operations
with minor to no human intervention. With increasing progress and reduction of costs
for sensors, actuators, and processors, more sophisticated autonomous systems emerged
in various domains, e.g., avionics, space, maritime, and automotive (cf. [WS05]).
Before the introduction and definition of autonomous vehicle systems in the automotive
domain, common terminology and definitions for (autonomous) systems, in general, are
introduced in the following sections.

2.1.1. Definition: System
Prior to the definition of autonomous vehicle systems (cf. Definition 2.6), basic termi-
nology has to be introduced. A system is universally defined as a group or collection
of interrelated entities, e.g.„ people or machines, for the accomplishment of a common
objective (cf. [Ban+05; LK97; Sha98]). An entity is an object of interest in a system.
Each entity has a set of attributes which characterize the properties of this entity [LK97].
A subsystem is a part of a system consisting of software components and hardware
components.

Definition 2.1 (System). “A system is defined as a group of objects that are joined
together in some regular interaction or interdependence toward the accomplishment
of some purpose”.[Ban+05]

13

2. Background

Systems are commonly categorized into two types; discrete or continuous systems. State
of systems are characterized by assignments to their state variables which are necessary
to describe the system concerning its objective. State variables of discrete systems change
instantaneously at specific discrete points in time, while state variable of continuous
systems changes overtime continuously (cf. [Ban+05; LK97]).
Events outside of the system often influence systems. “An event is defined as an
instantaneous occurrence that might change the state of the system” [Ban+05]. It
is essential to decide on the boundary of the system in order to distinguish between
endogenous events within the system and exogenous events occurring in the environment
of the system. The system boundary is individually defined in the system analysis for
each system under consideration of its context and purpose (mission) (cf. [Ban+05]).

2.1.2. Definition: Autonomous System
Autonomous systems tend to be more flexible than traditional systems because au-
tonomous systems commonly operate in dynamic and complex environments with a large
set of circumstances, of which some may be unknown at design time of these systems.
Autonomous systems must be able to adapt to these circumstances resulting in a much
more considerable variation of system behavior (cf. [BJ05]).
The necessity for autonomous systems, becomes obvious, when these systems (cf. [Den+14;
FDW13; HMA03])

• are deployed in remote environments where direct control is infeasible;

• are deployed in hostile environments where it is too dangerous for humans to assess
the possibilities;

• involve actions that are too lengthy or frequent for humans to conduct successfully;
or

• need to react more rapidly than humans can.

In such settings, longer periods without interventions of human operators are desirable
or inevitable (cf. [Den+14]).
Autonomous system offer benefits for the safety of human life and the mission of these
systems (cf Definition 2.2). Autonomy is an emergent system property and can enhance
the achievement of the mission, task, goals, as well their accuracy and repeatability
in time and space under the saving of time, space, and material (cf. [Con+06; Dur05;
HMA03]). It may be even cheaper to use autonomous systems in comparison to the
training, monitoring, safety, medical support, legal oversight which humans may require
for the same task (cf. [Den+14]).

Definition 2.2 (Safety). “The ability of a system not to cause danger to persons or
equipment or the environment” [Ise06b].

14

2.1. Autonomous Vehicle Systems

The term Autonomy is defined in the Merriam-Webster Dictionary as “the quality or
state of being self-governing”[Mer18] and by the Oxford dictionary as the “right or
condition of self-government”[Ste10]. However, in the field of autonomous vehicles
autonomy is commonly related to something more synonymous with “independence” or
“intelligence”[Con+06].
Stockton et al. propose the following definition for an autonomous system: “An au-
tonomous [(sub-)] system is one that makes and executes a decision to achieve a goal
without full, direct human control”[Con+06]. Watson and Scheidt call systems “au-
tonomous” if systems can change their behavior in response to unanticipated endogenous
and exogenous events during operation [WS05]. Schuhmann requires autonomous systems
to execute a number of necessary steps without human intervention in order to achieve a
given goal (cf. [SV06]).

Definition 2.3 (Autonomous System). “An autonomous [(sub-)] system is one
that makes and executes a decision to achieve a goal without full, direct human
control”[Con+06]

Another terminology used in conjunction with autonomous systems is automatic. The
distinction between automatic and autonomous systems is not commonly defined and
widely discussed in academic literature (cf. [Con+06]). Some publications distinct
autonomous and automatic system based on the decision inputs while other publications
distinguish them based on the possible decision state space. However, counterexamples
exists for either notion. Based on Definition 2.3, automatic systems are depicted as a
subset of autonomous systems in this thesis (cf. [Con+06]). This notion is consistent
with the definition of automation levels for autonomous vehicle systems by the SAE (cf.
Section 2.1.4).
In this thesis, autonomous systems only encompass systems which interact with an open
physical world— the real world— for the execution of their complex mission (cf. [WS05]).
Such open physical worlds are “highly” dynamic with a large number of interactions,
relationships, and moving objects. “Mobile” software entities, like viruses, daemons, or
agents, are not considered in this thesis, even though these entities may operate with
minor to no direct human interaction.
The complex behavior of autonomous systems is not a product of the complex sys-
tems themselves but rather the reflection of their complex environments (cf. [Bro86]).
Autonomous systems are widely expected to operate in the same physical world as
humans where they have to achieve multiple goals simultaneously—of which some may
be conflicting—with none to a limited number of interventions by human drivers. They
have tog. The systems are responsible for high-level goals, e.g., navigation, as well as
consider necessary low-level goals, e.g., collision-free movement. The relative importance
of concurrent goals is subject to the current system context.
For maintaining their high and low-level goals, autonomous systems are required to

• continuously perceive their environments and maintain an internal representation
of these environments (cf. [Bro86]), and

15

2. Background

World
Perceived

Environment
Autonomous

System
Sensor

Figure 2.1.: Pictograph of the relation between real world and the system’s perceived
world.

• adapt their behavior in reaction to perceived changes in their internal states and
the physical world (cf. [Con+06]).

For this behavior, decision making from the domain of artificial intelligence is combined
with the real-time control used in robotics within autonomous systems (cf. [Con+06]).
Environments which autonomous systems perceive represent only small portions of the
real world (cf. Fig. 2.1). Autonomous systems are unlikely to encounter all possible
traffic situations in the real world. Furthermore, novel situations emerge continuously as
new objects, e.g., vehicles, are continuously introduced. Therefore, a set of situations
which autonomous system encounter in the real world represents a subset of all possible
real-world situations.
Traditional systems have been designed and analyzed under the closed-world assumption;
that the complete system environments and the interactions of these systems with their
environments can be specified entirely in the system development (design time). The
closed-world assumption is not applicable to autonomous systems operating in open
physical worlds, like the real world, due to the complexity of these worlds. Some aspects
of the system environment are only known during operation (runtime). Autonomous
systems operating in open physical worlds have to be defined and analyzed under the
open-world assumption; that the environment of these autonomous systems cannot be
specified entirely in the developments.

Definition 2.4 (Open-World Assumption). The open-world assumption for the
development of (autonomous) systems assumes that the environment of these (au-
tonomous) systems cannot be specified entirely in the development (design time).
Some aspects of the system environment are only known during operation (runtime).
The open-world assumption represents the antonym to the closed-world assumption,
which assumes that environments of systems can be specified in their full extends in
the system development.

Autonomous systems have moved beyond the usage in industrial production and military,
and are being deployed in home, health-care scenarios, and in automated vehicles.
Autonomous systems for the autonomous driving of vehicles in public traffic without
human input are addressed in the following section.

16

2.1. Autonomous Vehicle Systems

2.1.3. Definition: Autonomous Vehicle System
In the automotive domain, autonomous systems have their origin in early driver assistance
systems, e.g., anti-lock braking system (ABS) and electronic stability control (ESC).
Bosch introduced ABS in 1978. These systems solely measure internal vehicle parameters,
e.g., difference between tire rotations, by proprioceptive sensors in order to support
the driver in the control vehicle. The traditional assistance systems have evolved into
ADAS. ADAS incorporate exteroceptive sensors, e.g., cameras and light detection and
ranging (LIDAR) sensors, for the perception of the vehicle environment (cf. [Don+07]).
Originating from ADAS, e.g., ACC, the ADAS have been further improved until today’s
system, e.g., the Audi AI traffic jam pilot (cf. [HBS18]), and will be further improved
near future towards the vision of fully autonomous vehicles. Autonomous vehicles have
been academically and industrially researched since the late 1980s.[Ben+14]

Definition 2.5 (Advanced Driver Assistance System). In contrast to traditional
driver assistance systems, like ABS and ESC, advanced driver assistance systems
incorporate signal data from exteroceptive sensors in addition to proprioceptive sensors
into the processing of complex maneuvers for the control of vehicles (cf. [Don+07]).

This thesis is particularly interested in ADAS and other vehicle systems which take over
the vehicle control from the human driver and autonomously operate in the real world
without or with minor input from the human driver. The vehicle control by these systems
can be limited in time and space as well as terminate by the human driver (cf. [Win15]).
These autonomous systems are cumulated in this thesis under the term autonomous
vehicle systems. The definition autonomous vehicle system in this thesis corresponds to
definition driving automation system by the SAE (cf. [SAE18]).

Definition 2.6 (Autonomous Vehicle System). The term “autonomous vehicle sys-
tem” describes the set of systems in road vehicles which either support the driver in
its task to control the vehicle in traffic or even replace him completely.

The highest degree of automation for road vehicles by autonomous vehicle systems results
in full automated vehicles or autonomous vehicles which can drive in any traffic conditions
on public roads without human intervention. Autonomous vehicles are also depicted
as autonomous mobile robots or autonomous driving robots. A detailed description of
automation levels for autonomous vehicle systems is given in Section 2.1.4.
Berns and Puttkamer define six essential features for autonomous mobile robots oper-
ating (moving) in open-physical worlds (cf. [BP09]). These features equally apply to
autonomous vehicle systems:

Mobility: The ability to move to specific positions in the world.

Adaptivity to Unknown Situations: The highly dynamic of open-physical worlds will
confront robots (vehicles) with situations which have not been specified in their
development. Therefore, adaptivity is a key feature.

17

2. Background

Time
Start of

Development
Start of

Production
(SOP)

End of
Production

(EOP)

End of
Service

ca. 3-5 years
Developement

ca. 7 years
Production

ca. 15 years
After SalesOEM

Costumer

Figure 2.2.: Life cycle of vehicle and their system [SZ13].

Perception of Environment: For navigation and the fulfillment of their mission, robots
(vehicles) have to retrieve information about their environments.

Knowledge Acquisition: The incomplete specified model of operational environment
requires robots (vehicles) to acquire new knowledge while operating.

Safety: Robots (vehicles) have to ensure the safety of themselves and their environments.
They must not damage themselves, any objects, or hurt any humans.

Real-Time: Robots (vehicles) must cope with hard real-time requirements.

These features have to be guaranteed for the complete life cycle of autonomous vehicle
systems beyond their development and production. The life cycle of autonomous vehicle
systems corresponds to the life cycle of vehicles which encompass up to or even over 20
years with the majority of time being the operation in production vehicles on public roads
(cf. Fig. 2.2). This life-span has to be considered in particular in the context of safety
analysis for autonomous vehicle systems. Car manufacturers are liable for any damage
or injuries by the autonomous operation of their autonomous vehicle systems. While
these systems operate in production vehicles, the possibilities for modifying systems and
resolving of emerging system failures are limited.
The following section introduces the taxonomy of autonomy in the automotive domain.

2.1.4. Taxonomy of Autonomous Vehicle Systems
The taxonomy of autonomous vehicle systems in this thesis has two dimensions. In
Section 2.1.4.1 introduces the three layers of the driving task by Donges et al. (cf.
[Don82]). The categorization of automation levels for autonomous vehicle systems is
introduced in Section 2.1.4.2.

2.1.4.1. Activities in the Driving Tasks

Tasks performed while driving road vehicles can be classified into one of three categories—
primary, secondary and tertiary (cf. [Bub02]):

• The primary driving task addresses the control of the vehicle in traffic and can be
separated into three actions—navigation, guidance, and stabilization.

18

2.1. Autonomous Vehicle Systems

• Secondary driving tasks encompasses all actions to configure the required operating
mode of the vehicle, e.g., gear selection, activation of direction indicators, or
windscreen wipers.

• Actions, which are related to modifying the inside ambient of vehicles, are summa-
rized as tertiary driving tasks.

The SAE defines the driving task as “all of the real-time operational and tactical functions
required to operate a vehicle in on-road traffic, excluding the strategic functions such
as trip scheduling and selection of destinations and waypoints.”[SAE14]. This definition
includes (cf. [SAE14]):

• Lateral motion control via steering (operational);

• Longitudinal motion control via acceleration and deceleration (operational);

• Monitoring the driving environment via object and event detection, recognition,
classification, and response preparation (operational and tactical);

• Object and event response execution (operational and tactical);

• Maneuver planning (tactical); and

• Enhancing conspicuity by lighting, signaling and gesturing. (tactical).

This definition by the SAE explicitly excludes the navigation—“trip scheduling and
selection of destinations and waypoints”— from the driving task (cf. [SAE14; SAE18]).
This thesis includes the navigation into the definition of the driving task and, therefore,
follows the definition by Donges et al. (cf. [Don82]); The driving task encompass all
activities related to the primary task of controlling the vehicle on public roads in traffic.

Definition 2.7 (Driving Task). The driving task encompass all activities related to
the primary task of controlling the vehicle on public roads in traffic. These activities
can be separated into a hierarchical model of three actions—navigation, guidance,
and stabilization.

Figure 2.3 displays the three layered model for the driving task by Donges [Don82].
The decomposition of the driving task into three hierarchical layers has been considered
in several system architectures for autonomous vehicle systems in the past years (cf
[Bau+12; Ber10; Bon+96; Mat15; Mau00a; Not14])
At the top layer, the navigation addresses the selection of an appropriate route, which
leads from the starting point to the desired goal destination. Navigation systems consider
the read network (cf. Fig. 2.3) for the calculation of the route under consideration of
constraints, e.g., shorted distance or smallest required time. Decisions made by the
navigation commonly have a long impact with a horizon of minutes up to hours (cf.
[Sch11b]).

19

2. Background

Driver Environment

Vehicle

Actual Velocity and Actual Driving Lane

Space of Safe Reference Signals

Alternative Route

Navigation

Stabilization
Longitudinal
and Lateral
Dynamics

Road
Surface

Driving Area
(Road and

Traffic)

Road
Network

Guidance

Selected Route,
Timing

Selected Reference Signals,
Target Lane,

Target Velocity

Figure 2.3.: Three layer model for the driving task according to E. Donges [Don82].

The dynamic process of driving road vehicle takes place on the two layers guidance and
stabilization [Don15]. The movement in the static environment with other objects in
motion results in a continuous change of the vehicle’s environment and of the input infor-
mation for the driver—especially the perspective representation of the three-dimensional
world in the eyes of the driver (cf. [Don82]).
The second layer— guidance—addresses a time horizon of the next seconds up to minutes
by deciding about reasonable and safe reference signals including the selected road lane
and target speed (cf. [Sch11b]). At the same time, the driver should proactively intervene
in order to create preconditions for minimal deviations of desired and actual reference
signals (cf. [Don15]). For this task, the environment of the vehicle— the driving area—
with the road, its lanes, and other vehicles are considered for generating the reference
signals about the safe driving space. The safety of the own and other traffic participants
on the road, e.g., other vehicles, is the crucial task of the guidance (cf. [Sch11b]).
These reference signals from the guidance are processed at the third layer— stabilization—
for the immediate stabilization of the vehicle on the road. The driver has to align the
vehicle motion with the reference signals by compensating emerging deviations in a
closed-loop control process of corrective motoric actions (cf. [Don82]). The stabilization
of the vehicle on different road surfaces is commonly supported by ADAS, e.g., ABS and
ESC. The time horizon of stability tasks is instantaneous and does only considerably less
than a few seconds. All decisions of the driver or ADAS are influenced by the longitudinal
and lateral dynamics of vehicles. The impact actions initiated by the stabilization may
differ on the real road from the anticipated impact in the processing of the stabilization.
Feedback about internal parameters of the vehicle, the real position of the vehicle on the

20

2.1. Autonomous Vehicle Systems

Figure 2.4.: Levels of driving automation by the SAE [SAE14].

road, and changes of the proximate vehicle environment have to be gathered for repeated
adjustment by the stabilization (cf. Fig. 2.3).

2.1.4.2. Levels of Automation for Road Vehicles

As shown in Fig. 2.4, the SAE defines six categories for the automation of vehicles on
public roads (cf. [SAE14; SAE18]). The authors reside with the initial version SAE
J3016-2014 ([SAE14]) from 2014 because the version SAE J3016-2018 ([SAE18]) has
become more technical. The basic definition of the automation level has not changed.
The reader is referred to [SAE18] for further information about the current revision of
these automation levels. Each automation level is explained in the following:

Level 0 - No Automation: At automation level 0, no automation function is present in
the vehicle. The driver is responsible for the monitoring of the vehicle’s environment
and the control of the longitudinal and lateral vehicle movement for the complete
driving duration. The driver is also the fallback for the driving task in the presence
of failures or critical situations. The driver has to react to emerging danger and
return the vehicle into a safe driving state.

Level 1 - Driver Assistance: At level 1—driver assistance—, systems support the
driver in the control of either the longitudinal or lateral vehicle motion. The driver

21

2. Background

is required to supervise the operation of the assistance systems permanently and
acts as a fallback in the presence of failures and critical situations.
Example for driver assistance systems of level 1 are ACC and LKAS (cf. [BR15]).

Level 2 - Partial Automation: At level 2—partial automation—, systems take control
of the longitudinal and lateral vehicle motion for given time durations in specific
situations. The driver is still required to monitor the behavior of the vehicle and
changes in its environment. At any time, the driver has to be prepared to take
back the control of the vehicle as safety fallback in the presence of system faults or
unsafe situations.
Examples of autonomous vehicle systems with level 2 automation are traffic jam
assistants and highway assistants (cf. [BR15; Gas+12; Gas12]).

Level 3 - Conditional Automation: Systems with conditional automation take over
the longitudinal and lateral control of the vehicle for given durations in specific
situations. Opposed to level 2—partial automation— , the human driver is not
required to monitor the behavior of the vehicle and its environment continuously.
The driver is allowed to occupy himself with other tasks. However, he remains the
fallback for the driving task if the system operates at resp. outside its intended
functionality and is unable to mitigate resulting risks. The driver can still intervene
and take over the vehicle control at any time.
The handover of the vehicle control from the system to the human driver in critical
situations has to be initiated by the system. The system has to identify its operation
at resp. outside its intended functionality and provide the human driver with a
sufficient duration for taking over the vehicle control. Throughout the handover
period, the system has to maintain its safety and remain operational. The duration
of this handover period is still subject to discussion and not yet generally defined
by any standard.
In case the human driver does not take over the vehicle control in time, the system
must perform appropriate safety maneuvers, e.g., an emergency stop, in order to
transfer the vehicle into a safe state. In the safe state, any risks for the safety of
passengers, other objects, and other persons have to be excluded. The identification
and selection of safe states for autonomous vehicle systems in specific situations
are currently subject to research (cf. [RM15]).

Definition 2.8 (Safe State). A safe state is defined as the state of the vehicle
in which any risks for the safety of vehicle’s passengers, other objects, and
persons is excluded.

An example of a system with conditional automation is a highway chauffeur (cf.
[BR15]). A similar improvement of the automation can be achieved for the traffic
jam assistant (cf. [Sch17]).

22

2.1. Autonomous Vehicle Systems

Level 4 - High Automation: At level 4—high automation—systems take over the
longitudinal and lateral control of the vehicle motion from the human drivers for
the complete operation in given driving modes, e.g., driving of highways. Human
drivers are not required to monitor the systems and their environments continuously
or to take over the vehicle control in the presence of unsafe situations or system
faults. Human drivers will have to act within a sufficient reaction time if the
driving mode ends in foreseeable future. In comparison to level 3—conditional
automation— , autonomous vehicle systems with level 4—high automation—act as
fallback solutions. These highly automated systems are responsible for maintaining
the safety of the vehicles in critical situations and the presence of system faults
instead of the human driver. They must be aware of all limits for their intended
functionality and be able to identify any violations of these limits in order to
transfer the vehicle into a safe state without human intervention.
An example of a system with high automation is a highway pilot (cf. [BR15]).

Level 5 - Full Automation: The highest level of automation for vehicle systems is full
automation. Systems of level 4—high automation—can handle specific driving
modes, e.g., driving on highways. However, systems with full automation must be
able to operate in all possible driving modes, e.g., driving on rural and urban roads
in addition to highways. These systems have to handle all situations—even in the
presence of critical situations and system faults—because a human driver is not
available as safety fallback. The operation of full automated vehicles must be able
without any driver (cf. [Sch17]).
Robot taxis are an example of vehicles with full automation (cf. [BR15]).

Other organizations, like Federal Highway Research Institute (Bundesanstalt für Straßen-
wesen) (BASt), NHTSA, and German Association of the Automotive Industry (VDA),
have defined their own taxonomies for the automation of vehicle systems (cf. [Gas+12;
Gas12; Nat13]). All these taxonomies can be aligned with the classification by the
SAE and are not further discussed here. The reader is referred to [BR15] for additional
information.
With an increasing level of automation, the driver loses responsibility for the vehicle
control and vehicle safety while the system gains responsibility for the vehicle control and
vehicle safety. For automation level 0—no automation—to level 2—partial automation—
, the driver remains responsible for the safety of the vehicle in public traffic and has
to continuously monitor the vehicle and its environment in order to interfere with the
vehicle control if required. Beginning with level 3—conditional automation—, the
system substitutes the driver in the task of monitoring of the environment and with level
4—high automation—as the safety fallback in the presence of critical situations and
system faults. This is especially important for the discourse about liability questions for
collisions involving automated vehicles.
The general public does not recognize the large gap between today’s available ADAS
and full automated vehicles [NL14]. Today, systems with level 2—partial automation—
are predominantly deployed in production vehicles and first systems with of level 3—

23

2. Background

Intended ouput
response Controller

Disturbance

Actuator
Process

(Plant / Vehicle)
Actual
ouput

Sensor

Measurement
noise

Error
+

+

Feedback outputMeasurement output

-
+

+

Figure 2.5.: Closed-loop feedback control system [DB10].

conditional automation—have been recently introduced to vehicles of the luxury segment,
e.g., the Audi AI traffic jam pilot in the Audi Q7 in 2017 (cf. [HBS18]). However,
terms autonomous vehicle of self-driving car are commonly used by the general public
when spoken about current and future automation of vehicles, but these terms refer to
automation levels 4—high automation—and level 5— full automation—by the SAE.
Design and implementation of autonomous vehicle systems have to be aligned with the
definition of the driving task and the level of automation. The following section describes
an underlying architecture for autonomous vehicle systems.

2.1.5. Functional Architecture of Autonomous Vehicle Systems
Autonomous vehicle systems are required to continuously monitor their environments via
sensors in order to react to changes and deviations in their environments in accordance
with its navigation goal. The real world continuously changes because its dynamic
objects, e.g., other vehicles or pedestrians, behave autonomously. These objects may
only react to decisions and actions of the automated vehicle but cannot be controlled by
autonomous vehicle systems. The number of dynamic objects in the real world and the
complexity of their behavior makes it unlikely for the autonomous vehicle systems to
correctly anticipated all movements and actions for all dynamic objects in their vicinities.
Autonomous vehicle systems are generally developed as component-based systems with
decision makers and closed-loop control systems (cf. [Den+14]). The decision makers
can be viewed as replacements for the human operators. A closed-loop control system
continuously corrects the output of a process via a feedback loop of relevant information
(cf. Fig. 2.5) (cf. [DB10]). A controller compares the sensors measurements about the
process from the sensors to the intended behavior of the process and corrects emerging
deviations via actuators on the process.
The autonomous vehicle system encapsulates the controller as well as the decision maker
while the vehicles and the real world represent the process. Vehicle sensors continuously
perceive the environment of the vehicles— the real world—and the autonomous vehicle
systems compare the sensor measurements with its internal environment representations.
Based on changes of the environment, autonomous vehicle systems process adequate
decisions on navigation and guidance level which are implemented as actions by the
components of stabilization as input for the vehicle actuators (cf. Fig. 2.4). The actuators
change the state of the vehicle and, therefore, the state of the vehicle’s environment. The

24

2.1. Autonomous Vehicle Systems

Sensors
pe

rc
ep

tio
n

m
od

el
lin

g
pl
an

ni
ng

ta
sk

ex
ec
ut
io
n

m
ot
or

co
nt
ro
l

Actuators

(a) Decomposition into functional modules.

reason about behavior of objects
plan changes to the world

identify objects
monitor changes

build map
explore
wander

avoid objects

Sensors Actuators

(b) Decomposition into behaviors.

Figure 2.6.: Decomposition for the control system of autonomous robots [Bro86].

control loop via the vehicle sensors forwards all these changes back to the autonomous
vehicle systems for additional correction to the vehicle behavior.
The data about the environment from the vehicle sensors are subject to measurement
noise leading to deviations between parameter values in the real world and the measured
parameters values, e.g., the object positions (cf. Fig. 2.5). Actuators, e.g., engine
or brakes, may introduce further deviations into the control loop because they might
be mechanically incapable of precisely implementing the actions from the system’s
stabilization. Imprecise sensor measurements and poor executions by actuators may
impact the real behavior of vehicles in the real world.
The architectures of autonomous vehicle systems have to be aligned with the systems’ level
of automation and the various levels of the driving task (cf. Section 2.1.4). Autonomous
vehicle systems can be decomposed in vertical and horizontal dimensions; alongside
different system functions for the driving task (vertical) or alongside function components
(horizontal) (cf. [Bro86]). The horizontal decomposition based on the information flow
within the system into a series of functional units is a common practice for control
systems (cf. Fig. 2.6a). These systems commonly consist of functional units for sensing,
modeling sensor data in a world representation, planning, task execution, and motor
control [Bro86].
In vertical dimension, autonomous vehicle systems can be decomposed alongside different
classes of desired system functions for the driving task (cf. Fig. 2.6b). These classes are
called levels of competence by Brooks (cf. [Bro86]). Each level of competence corresponds
to a layer in the layered architecture (cf. Fig. 2.6b). At level 0, behavior for the avoidance
of other objects is considered. More sophisticated levels of competence, e.g., reasoning
about changes in the environment, are build as additional layers on top of lower, existing
layers.
A complex system architecture, which considers vertical and horizontal decomposition,
has been proposed by Matthaei in [Mat15]. This architecture is considered as reference
in this thesis. Matthaei incorporates the localization of the vehicle and the three levels
of resolution—macro-scale, meso-scale, and micro-scale—proposed by Du et al. in
[DMB04]. Fig. 2.7). The three levels correspond to the three level for the driving task by
Donges (cf.[Don82]). Each level differs in its resolution, time and space accuracy, horizon,
considered features, and cycle times (cf. [Mat15]):

25

2. Background

Lo
ca
liz
at
io
n
Se
ns
or
s

Meso-Scale
Pose Estimation

Marco-Scale
Pose Estimation

Micro-Scale
Pose Estimation

Road-Level
World Modeling

Lane-Level
World Modeling

Quasi-Continuous
World Modeling

Road-Level
Environment Modeling

Context-/Scene Modeling

Feature Extraction and model-
based Filtering

Environmental
Sensors Vehicle Sensors

Navigation

Guidance

Stabilization

Actuators

C
om

m
un

ic
at
io
n

(X
M
I/
V
2X

)

Absolute Global
Localization

External
Data

Environment
Perception

Self-
Perception

Mission
Accomplishment

Vehicle in Relation to Environment

Environment in Relation to Vehicle

Figure 2.7.: Logical system architecture by Matthaei [Mat15].

Strategical (Navigation) level: The planning of routes at a macro-scale resolution on
the road network for the duration of the trip.

Tactical (Guidance) level: The decision making about specific vehicle maneuvers, e.g.,
passing or lane changing, at a meso-scale resolution in the setting of lanes and
vehicles for the next seconds to minutes.

Operational (Stabilization) level: The (reactive) stabilization of the vehicle as well as
the execution of maneuvers at a micro-scale resolution for a time horizon of a few
seconds and less.

The core of the functional system architecture— absolute global localization, external
data, environmental and self-perception ,(perception), and mission accomplishment (cf.
Fig. 2.7)—are surrounded by interfaces of the vehicle to the environment and driver—
sensors, actuators, and communication equipment.[Mat15]
The columns perception and mission accomplishment are part of the vehicle-referenced
view and have been addressed by previous publications (cf. [BD08; Dic07; Leo+08;
Mon+08]). The vehicle-referenced view describes the environment in relation to the
vehicle where a absolute global localization is not necessary. A environment-referenced
view of vehicle and environment is described by the columns absolute global localization
and external data. The environment is referenced in an absolute global reference frame
while the pose of the vehicle is determined in relation to the environment.[Mat15]
The columns of the functional architecture are described in more detail in the following
sections.

26

2.1. Autonomous Vehicle Systems

2.1.5.1. Absolute Global Localization

Absolute global localization is required for the processing of external data from other
traffic participants via vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) and
the stabilization of the vehicle in environments without any environmental features, e.g.,
deserts. Data is commonly received from global navigation satellite systems (GNSSs)
with varying level of accuracy. The data accuracy of data determines the usage of this
data throughout the levels— strategic, tactical, and operational—of autonomous vehicle
systems. Ordinary GNSSs receivers may have positioning errors up to 20m. Data from
these inaccurate receivers can only be incorporated on the strategical level (macro-scale)
for determining the macro-scale pose of the vehicle. For an application of this data on
tactical (meso-scale) or operation level (micro-scale), additional methods, e.g., differential
global positioning system (DGPS), for the improvement of the accuracy have to be
incorporated. GNSS are currently not able to guarantee a sufficient accuracy for the
micro-scale pose estimation future autonomous vehicle systems towards autonomous
driving. Therefore, a local reference frame without a direct GNSS support is required for
tasks of the stabilization.[Mat15]

2.1.5.2. External Data

External data encompasses all environmental data that has been perceived or generated
outside the vehicle and consists of (cf. Fig. 2.7).

• the global vehicle pose, which is required for vehicle-to-X (V2X) and map data,

• the stationary environment—the scenery (cf. [Gey+14])—,

• information about the dynamic environment, e.g., vehicles, traffic congestion, and
hazards, and

• information about the state of other traffic participants via V2X.

The accuracy, details and update times of the external data is determined by the
abstraction level of the architecture (cf. Fig. 2.7). For example, information about traffic
congestions is commonly part of the strategical and tactical level of the architecture
depending on the data’s level of detail. Information about traffic lights and their current
state require a more accurate level of detail in the model in order to associate the lights
to their corresponding lanes. Therefore, traffic lights are part of the tactical level model.
At the operational level, the model includes, e.g., the object lists of hypotheses about
other traffic participants perceived via V2I (cf.[HW11]). [Mat15]
The modules of the column external data (cf. Fig. 2.7) focus on two task; the preparation
of map data for the vehicle internal reference system and the fusion of data from multiple
external sources into one cohesive model. The vehicle reference system requires to
determine a map relative pose for the processing by the modules of the environmen-
tal perception which can be obtained by correspondent map-matching approaches (cf.
[QON07]).

27

2. Background

For the usage of data from multiple external sources in the autonomous vehicle systems,
environmental features from the different sources have to be correlated and aggregated
into one cohesive model. At strategical level, an abstract course of the road with its
topological information is stored in a history. For the tactical level, the history may
include the course of each lane with associated speed limits or driving directions. The
features addressed during operation level may be point landmarks (in an object-based
representation) or parts of a grid-based representation. [Mat15]
In case an absolute global position is not part of the ADAS, an exchange of local data
between traffic participants is not possible. The missing of a common reference frame from
the GNSSs prohibits to align the world representations of different traffic participants.
Without the exchange of data between traffic participants, each vehicle has to navigate
in its own perceived world. [Mat15]

2.1.5.3. Environment-Perception and Self-Perception

The perception, covering the environmental and self-perception (cf. Fig. 2.7), aggregates
and prepares all data from internal sensors and external sources about the vehicle’s state
and its surroundings for the later processing by the mission accomplishment. ADAS
are only able to safely operate and avoid hazardous decisions with precious knowledge
about the vehicle’s state. The own state encompasses information about, e.g., the states
of sensor and actuators, steering angle, wheel rotation rates, fuel, and battery states.
Data processed by the perception is not only transferred to the mission accomplishment
but also provided to external receivers via V2X in order to enable cooperation and
collaboration among traffic participants. [Mat15]
Analog to the representation of environmental features by the external data, the repre-
sentations of the vehicle’s environment within the perception is hierarchically organized
by the three abstraction levels— strategic, tactical, and operational— (cf. Fig. 2.7). At
operational level precise and quasi-continuous values are extracted from sensor data. The
environmental perception determines the features of objects, e.g., positions, postures,
and motions, in the surrounding of the vehicle while the self-perception assembles a
representation of the inner vehicle state. Features about, e.g., the vehicle state, weather
conditions, traffic lights, lane markings, the position, and movement of other traffic
participants (micro-scale representation) are independently processed by, e.g., object
and lane tracking or grid-based algorithms. The processed features are transferred from
the operational level to the higher tactic level and the mission accomplishment for a
high-frequent closed-loop. [Mat15]
The tactical level addresses the context resp. scene modeling. The independent environ-
mental features from the operational level are assembled into one associative context
encompassing semantic information besides geometric and topological information. The
scene (cf. Definition 2.25) combines features of the stationary environment— scenery (cf.
Definition 2.27)—with features of dynamic objects (cf. Definition 2.29), e.g., vehicles in
the environment of the vehicle (meso-scale representation). For the scenery, objects, e.g.,
traffic lights and other static objects (cf. Definition 2.28), are associated to road lanes.
[Mat15]

28

2.1. Autonomous Vehicle Systems

At strategical level, the environment of the vehicle is described for the route planning
by a macro-scale level representation of the road topology. The topology consists of the
high-level road network, and macroscopic traffic flows with the geometric and semantic
information still being present. [Mat15]

2.1.5.4. Mission Accomplishment

The processing of the mission accomplishment is partitioned following the same hierarchy
as the other columns (cf. Fig. 2.7):

• Navigation at strategical level, based on the road network and traffic flow processed
by the perception,

• guidance and decision making at tactical level based on the abstracted local scene,
which consists of features from the scenery and dynamic objects, and

• vehicle stabilization and execution of decisions at operational level based on exact
geometric values of dynamic and static objects.

The scale in the processing of the overall mission, e.g., the route to the target destination,
become more detailed with each lower level of abstraction (cf. Fig. 2.7). The stabilization
during operation level incorporate more detailed information about the environment from
the perception as the navigation at the operational level. The result of the processing by
the mission accomplishment is the adjustment of control values for the vehicle actuators.
[Mat15]
Following the route planning at strategical level, the next navigation point is forwarded
from the navigation at the strategic level to the vehicle guidance at the tactical level. At
tactical level, the abstract and application independent scene provided by the perception
is assessed for the next navigation point and application relevant features are extracted
based on mission-specific and permanent goals. The extracted features define the internal
situation which is analyzed to determine an appropriate driving maneuver. A situation
in the internal processing of autonomous vehicle systems is the subjective representation
of the entirety of circumstances, conditions, options and determinants from an element’s
point of view for the selection of an appropriate behavior pattern at a particular point of
time (cf. Definition 2.9). A detailed explanation and distinction of the terms scene and
situation can be found in [Ulb+15]. The selection of the driving maneuver is performed
by the guidance concerning traffic regulations and forwarded to the stabilization of the
operation level. [Mat15]

Definition 2.9 (Situation). A situation in the internal processing of autonomous
vehicle systems is the subjective representation of the entirety of circumstances,
conditions, options and determinants from an element’s point of view for the selection
of an appropriate behavior pattern at a particular point of time (cf. [Ulb+15]).

29

2. Background

The selected driving maneuver by the guidance at the tactical level is executed at
operational level by the vehicle stabilization. The operational level is characterized by its
closed-loop control of the vehicle based on direct feedback from internal and external
sensors. A trajectory with time- and space-based nominal positions for the vehicle
is calculated based on the extracted features from sensor data of the environmental
perception. A closed-loop controller calculates and manipulates the set values for the
actuators, e.g., engine, brakes, and steering, in order to align the real world position of
the vehicle with its nominal positions of the trajectory. [Mat15]
As shown in Fig. 2.7), results from the mission accomplishment are communicated
internally to the passengers resp. the driver and externally to other traffic participants
via

• the human machine interface (HMI),

• acoustic signals, e.g., horn and warning signals,

• optical signals, e.g., headlight, hazard lights, and turn indicators at the tactical
level or brake lights at the operational level, and

• V2V communication channels.

External communication is especially important in the presence of critical environmental
situations. An example of internal communication is the visualization of the processed
route to the target destination.
Passengers may instruct autonomous vehicle systems solely on the strategical level by
defining the target destination for their journey. For ADAS, additional possibilities of
interaction on lower levels may exist. For example, a driver may interact with an ACC
on the tactical level by adjusting the desired time gap to preceding vehicles. [Mat15]
The general hardware architecture of autonomous vehicle systems is investigated in the
analysis of the development process for autonomous vehicle systems in Section 3.3.2.
The following section gives an introduction to simulation-based testing as an important
verification technique for autonomous vehicle systems. Comprehensive verification and
validation of autonomous vehicle systems are essential for their deployment and operation
in production vehicles on public roads.

2.2. Simulation-based Testing of Autonomous Vehicle
Systems

According to the Institute of Electrical and Electronics Engineers (IEEE) [CS217], testing
is one of three traditional verification techniques and aggregates a wide field of diverse
but incomplete methods for finding bugs and errors in programs [Leu11; LS09]. Myers
defines testing as “the process of executing a program with the intent of finding errors”.
Testing as well as verification involves a system or model of the system M, a set of
(system) parameters P , a set of (system) inputs U , and a property ψ, which shall hold

30

2.2. Simulation-based Testing of Autonomous Vehicle Systems

for the system. Testing and verification activities are then defined in terms of system
behavior. The system behavior of systemM is denoted as Φ (M, p, u) with p ∈ P , u ∈ U ,
and u is a function of time. Φ (M, P, I) defines all possible behavior of systemM under
parameters in P and inputs in U . Testing is then formally defined as Φ

(
M, P̂ , Û

)
|= ψ

given finite set P̂ ∈ P of parameters, given finite set Û ∈ U of inputs and a given property
ψ which shall hold for the system. The sets P̂ and Û are finite. The finite set of (test)
input Û in the tests results finite space of tested (system) parameters P̂ for the system
M. [Kap+16]

Definition 2.10 (Testing). “Testing is the process of executing a program with the
intent of finding errors.” [MSB11]

Errors are commonly defined in the context of faults, failures, and system malfunctions
because a strong relationship exists between them. However,definitions for these terms
slightly vary throughout academic and industrial publications.
An error is defined in the safety standard ISO 26262 as “discrepancy between a computed,
observed or measured value or condition and the true, specified, or theoretically correct
value or condition” [Int09a] and by Liggesmeyer as a mistake by an engineer in the
(software) implementation of a system [Lig09]. Under specific runtime condition, errors
result in faults at execution.

Definition 2.11 (Error). “A discrepancy between a computed, observed, or measured
value or condition and the true, specified, or theoretically correct value or condition”
[Int09a].

A fault is defined in safety standard ISO 26262 as an “abnormal condition that can cause
an element or an item to fail” [Int09a] and by Isermann as “unpermitted deviation of
at least one characteristic property (feature) of the system from the acceptable, usual,
standard condition.”[Ise06b]. A fault represents an abnormal state within the system. A
fault can be dormant or active. While a dormant fault has no impact, an active fault
impacts the externally observable system functionality. Another term for fault is defect
(cf. [Lig09]).

Definition 2.12 (Fault). “An abnormal condition that can cause an element or an
item to fail” [Int09a].

An active fault results in a (system) failure. Failure is defined in safety standard
ISO 26262 as “termination of the ability of an element or an item to perform a function
as required”[Int09a] and by Isermann as “a permanent interruption of a system’s ability
to perform a required function under specified operating conditions” [Ise06b].

Definition 2.13 (Failure). “The termination of the ability of an element or an item
to perform a function as required” [Int09a].

31

2. Background

Isermann further defines the term malfunction as “an intermittent irregularity in the
fulfillment of a system’s desired function” [Ise06b]. The safety standard ISO 26262 defines
a malfunctioning behavior as “failure or unintended behavior of the item with respect to
the design intent for this item”.

Definition 2.14 (Malfunction). “An intermittent irregularity in the fulfillment of a
system’s desired function” [Ise06b].

A comprehensive taxonomy for failures and faults is given in [Avi+04]. However, Avizienis
et al. use a slightly divergent definition for error, fault, and failure. This thesis follows
the definition of the safety standard ISO 26262 for these terms.
System engineers use testing activities and other verification techniques to increase their
confidence that systems meet their requirements as well as relevant safety standards, e.g.,
the safety standard ISO 26262. Thus, testing and verification account for a significant por-
tion of effort in the development of autonomous vehicle systems. Simulation-based testing
approaches offer improved means of testing and verification for autonomous vehicle sys-
tems with a significant benefit for the overall development costs. Simulation-based testing
constitutes the testing of systems using models and simulations (cf. Definition 2.15).

Definition 2.15 (Simulation-based Testing). Simulation-based testing is testing of
systems using models and simulations.

The substantial difference between regular testing and simulation-based testing is the
system under test (SUT) (cf. Definition 2.16), whose behavior is analyzed and verified.
Testing executes the real systems and verifies actual instances of system behavior while
simulations predominantly verify models and their inherent approximations of the system
behavior (cf. [Kap+16]).

Definition 2.16 (System under Test). The target of testing and simulation is referred
to as system under test (SUT). Other terms used for the system under test (SUT)
are artifact under test or test object.[KKL13]

Simulations are applied in a variety of fields: manufacturing, construction engineering,
project Management, logistics, transportation, business processes, or health care [Ban+05].
Shannon defines simulation as “the process of design a model [(cf. Definition 2.19)]
of a real system [(cf. Definition 2.1)] and conducting experiments with this model for
the purpose of understanding the behavior of the system and/or evaluating various
strategies for the operation of the system”. The Association of German Engineers (VDI)
defines simulation as the implementation of a dynamic systems in a model suitable for
experiments to gain knowledge that can be transferred (back) to the reality (cf. [VDI14]).
Kapinski et al. formally define simulation analogous to testing and verification as the
process of obtaining a numerical estimation of system behavior Φ

(
M, P̂ , Û

)
for a specific

collection of operation conditions given by given finite set of parameters P̂ ∈ P and finite
set of inputs Û ∈ U .

32

2.2. Simulation-based Testing of Autonomous Vehicle Systems

Definition 2.17 (Simulation). The process of designing a model of a real system
and conducting experiments with this model to understand the behavior of the system
and evaluating various strategies for the operation of the system.[Sha98]

Simulations offer the possibility to analyze the existing system as well as predict the
performance of novel systems under development. As an analysis tool, simulations enable
to simulate changes of existing systems and analyze the impact on their system behavior.
As a design tool, simulations allow to simulated models of novel systems, which are in
the preliminary or planning stage of their development, and predict their performance
under diverse sets of conditions [Ban+05; Sha98].
Simulation has to be distinguished from emulation. Simulation describes a system as a
mathematical model, while emulation mimics the system and can be used as substitution
of the original system (cf. [Sch05]). The concrete definition by Schmitt is given in
Definition 2.18.

Definition 2.18 (Emulation). The replication of system hardware (components) and
its (their) behavior by other hardware (components) (cf. [Sch05]).

The scientific analysis of systems often requires sets of assumptions about their functional-
ity and behavior over time. These assumptions are expressed in models by mathematical,
logical, and symbolic relationships between entities and objects of the systems. These
models can be used in the system analyses for the representation of the system function-
ality (cf. [Ban+05; LK97]). Shannon defines a model as “a representation of a group of
objects or ideas in some form other than that of the entity itself”[Sha98]. The Association
of German Engineers (VDI) defines models as simplified representations of a planned or
existing real system in another conceptual or representational system (cf. [VDI14]).

Definition 2.19 (Model). “A representation of a group of objects or ideas in some
form other than that of the entity itself”.[Sha98]

Most analyses require to solely consider aspects of real systems for their models which
are relevant to the problem under investigation in the analysis (cf. [Ban+05; VDI14]).
Therefore, models are often simplifications of real systems but have to be sufficiently
detailed in order to permit valid conclusions about the real system (cf. [Ban+05]).
The definition of appropriate system modelsM is generally named modeling [Kap+16].
Different analyses might require different models of the same real systems (cf. [Ban+05]).
Many people associate the term model with physical models, e.g., clay cars in wind
tunnels, but those models are usually not the type of models which are considered in
system analyses of autonomous vehicle systems (cf. [LK97]). The second class of models
is mathematical models. Mathematical models represent the real system by symbolic
notations and mathematical equations that are manipulated in order to analyze the
reaction of these models and, therefore, to deduce the behavior of the real systems. This
deduction requires the mathematical model to sufficiently model relevant aspects of the

33

2. Background

real systems (cf. [LK97]). Simulation models used in simulations are a particular type of
mathematical model [Ban+05]
In case mathematical models are sufficiently simple, it is possible to solve these models
and get an exact analytical solution mathematically by using, e.g., differential calculus,
probability theory, algebraic methods, or other mathematical techniques (cf. [LK97]).
However, the complexity of many systems—especially systems operating in the real
world— is so high, that valid mathematical models of these systems exhibit such high
complexity, that an analytical solution of these complex models is virtually impossible.
In this case, models may be studied in computer-based simulations by imitating the
behavior of the systems over time. The models are "run" rather than solved; the inputs
of the simulation model are numerically exercised in order to evaluate their impact on
the model’s outputs. An artificial history of the system is generated, and observations
are collected in order to analyze and estimate the behavior of the real system.[Ban+05;
LK97]
Simulation models may be classified with respect to different properties [Ban+05; LK97]:

static vs. dynamic: A static simulation model, sometimes called a Monte Carlo simu-
lation (cf. [Moo97]), represents a system at a particular point in time. Dynamic
simulation models represent systems as they change over time.

deterministic vs. stochastic: Deterministic simulation models contain no random vari-
ables and have known sets of inputs and outputs. A stochastic simulation model has
at least one random variable as input. Random input variables lead to one or more
random outputs for models. Randomized model outputs can only be considered as
estimations for the characteristics of real systems.

discrete vs. continuous: Discrete and continuous models are defined analogous to dis-
crete and continuous systems (cf. Definition 2.1). Variables of discrete models
change instantaneously at specific discrete points in time, while state variables of
continuous models change continuously over time.

Discrete simulation models are not purely used to model discrete systems, nor are
continuous simulation models solely used to model continuous systems. In some
simulations, even mixed-discrete-continuous simulation models may be used. The
choice depends on the characteristics of the analyzed systems and the objects of
the analysis.

Law et al. correspondingly distinguish between discrete (event) simulations and continuous
simulations (cf. [LK97]).
For autonomous vehicle systems various elements of their control loops, like the vehicle’s
environment or the vehicle dynamics, have to modeled and simulated. The following
section describes the various models in simulation-based tests of the autonomous vehicle
systems.

34

2.2. Simulation-based Testing of Autonomous Vehicle Systems

2.2.1. Components of Simulation Frameworks
Testing of autonomous vehicle systems in simulations requires consideration of the
complete control loop between the autonomous vehicle system, vehicle, and vehicle
environment (cf. [Tel12]). Relevant aspects of systems and their environments, which
impact the behavior of these autonomous vehicle systems, have to be modeled in the
simulations. Formally, the autonomous vehicle systems and the models for relevant
aspects of the control loop represent the modelM (cf. Definition 2.10) [Kap+16].
A monolithic model for all relevant aspects is rarely defined. The complexity of a
monolithic model would be very high and would not allow the usage of these models
in x-in-the-loop (XIL) tests (cf. Section 2.2.2). Relevant aspects are individually
modeled without the coupled problem in mind. Depending on the level of detail by
the simulations, distinctive models are defined for relevant aspects, e.g., driver, vehicle
dynamics, vehicle sensors, roads, and other traffic participants (cf. Fig. 2.8). Persistent
interfaces allow defining models which precisely reproduce the corresponding entity with
limited complexity independent from the development state of other models (cf. [HK16]).
For example, the decisions of drivers can be modeled by stochastic models while the
vehicle dynamics is modeled deterministically by, e.g., differential equations.
The simulation has to verify the behavior of the SUT over time and, therefore, requires all
models to be dynamic. However, the cyclic data dependency between models themselves
as well as these models and the SUT prohibit the usage of continuous models. For
example, the model of the environment requires information from the model of the vehicle
dynamics which requires input from the autonomous vehicle system, which controls the
vehicle based on the current state of the environment model.
Models and the SUT are integrated into a co-simulation (cf. [Zel+10]). The control loop
of the simulation is processed in discrete time steps (cf. [Neu14]). The discrete models
are individually processed in a sequence of the control loop based on data from related
models and the SUT. The output of the SUT is considered for the simulation of its
environment in the current time step while the corresponding changes in the environment
model are processed by the SUT in the next processing cycle. Small cycle times allow for
nearly realistic and continuous simulations. The processing of models and the flow of
data within the simulation is controlled by the simulation framework (cf. [NDW09]).

Definition 2.20 (Simulation Framework). A simulation framework (also called
simulation environment) integrates an (autonomous vehicle) system under test (SUT)
into a co-simulation with various models for the different aspects of the system’s
environment.

In academic literature also the term simulation environment is used for simulation
frameworks. This thesis primarily uses simulation framework in order to distinguish it
from the real environment resp. the environment modeling and simulation within the
simulation framework.
Simulations are distinguished between open-loop simulations and closed-loop simulations
depending on the control loop in the simulations (cf.[Kap+16]):

35

2. Background

Simulation Vehicle System

Environment
Model

Image
Processing

Sensor
Fusion

Autonomous
Decision Making

(SUT)

Vehicle
Model

Virtual Camera

Sensor Models

Figure 2.8.: Control-loop for simulations of autonomous vehicle systems [BR15].

Open-Loop Simulation: In an open-loop simulation, the output of the SUT are not
considered for the simulation of the environment and inputs of the system under
test. The behavior of dynamic objects in the environment is entirely independent
of the behavior by the automated (ego) vehicle. The dynamic objects do not react
to any maneuvers by the automated (ego) vehicle.

Definition 2.21 (Open-loop Simulation). Outputs from the system under test
(SUT) are not considered for the simulation of the environment and inputs of
the SUT. The feedback loop between the SUT and environment is not closed.

Closed-loop simulation: In a closed-loop simulation, the feedback loop between the
SUT and the simulation of the environment is closed. Outputs by the system
are considered as input for the environment. Other (dynamic) objects in the
environment consider the behavior of the SUT for the processing of their behavior.
The system and the environment influence each other in either direction.

Definition 2.22 (Closed-Loop Simulation). Closed-loop simulations incor-
porate feedback loops to transfer the outputs of the system under test (SUT)
via the environment simulation back to the system under test as inputs. Other
(dynamic) objects in the environment react to the behavior of the SUT.

While open-loop simulations are easier to establish, closed-loop simulations offer a greater
realism because environment objects react to the behavior of the SUT.
Figure 2.8 (cf. [BR15]), depicts the components and data flow of a simulation framework
for system tests of autonomous vehicle systems. The left side of Fig. 2.8 shows the virtual
world with the virtual vehicle model for the longitudinal and lateral vehicle dynamics,
the virtual environment for the simulation of the road infrastructure and traffic, and the
sensor models for the perception of the virtual environment. The right side of Fig. 2.8

36

2.2. Simulation-based Testing of Autonomous Vehicle Systems

contains the components of the autonomous vehicle system for the processing of the
sensor data and the decision making as they are later used in the vehicle. [BR15]
The virtual images from the camera model are analyzed by the image processing and
integrated by the sensor fusion with the data from other sensor models, e.g., LIDAR and
radio detection and ranging (RADAR) (cf. [RG05]), into a cohesive representation of
the vehicle environment. This environment representation is used by the (autonomous)
decision making—the SUT—to process the trajectory for the automated (ego) vehicle.
The virtual vehicle dynamics process the input for the vehicle actuators, e.g., brakes,
engine, and steering, from the decision making. The model of the vehicle dynamics
changes the position and orientation of the automated (ego) vehicle in the virtual world.
In addition to the behavior of automated (ego) vehicle, other traffic participants in the
environment model move autonomously. Changes in the environment model influence
the input of the sensor models in the following processing cycle. [BR15]
Simulation models have to sufficiently represent the real world for valid and reliable
simulation results. Validation of these models is essential—especially for models of
physical vehicle components, e.g., sensors and dynamics. For example, the simulation
framework PRESCAN uses validated physical sensor models for RADAR, LIDAR, and
camera vision [Gie+06]. Model validation is distinguished into two types (cf. [Nat98]):

External validation is the comparison of model output with (operationally relevant)
observations from the real system. The addition of an uncertainty analysis helps to
identify model inadequacies which are responsible for differences between model
outputs and real observations. Uncertainty analysis examines the variability of the
model’s output in relation to the variability in the model’s inputs, [Nat98]

Sensitivity analysis is an analysis of the relationship magnitude between inputs and
outputs of models. A sensitivity analysis will indicate inadequacies in models if the
direction and magnitude of sensitivity of model outputs to various inputs do not
match the subject matter expertise.[Nat98]

The individual components and their models are described in the following sections in
more detail.

2.2.1.1. Environment

The vehicle environment is essential for the testing of autonomous vehicle system in
simulations (cf. Fig. 2.8). The environment model defines the virtual world as a
representation of the real world and contains all relevant objects O for the simulation
[Neu14]. It includes the road topologies, vehicles, and pedestrians as traffic, as well as the
automated (ego) vehicle. The automated (ego) vehicle moves through the virtual world
under consideration of the road infrastructure and other objects O. Neumann-Cosel
defines the environment to include all objects o ∈ O within a defined range rE ∈ R
around the automated (ego) vehicle (cf. Definition 2.24). This thesis considers the
environment model to contain all (relevant) objects within the maximal range rE ∈ R of
the vehicle sensors.

37

2. Background

Definition 2.23 (Object). An Object o ∈ O, is an atomic entity of the environment
or a combination of atomic entities. The atomicity of objects is subject to the level
of detail in the simulation.[Neu14]

Definition 2.24 (Environment). The (vehicle) environment Env is the set of all
objects o ∈ O, whose distances d(E, o) ∈ R to the automated (ego) vehicle E is
smaller than the defined range rE ∈ R:
EnvE = {o ∈ O | d (E, o) ≤ rE} (cf. [Neu14]).

The behavior of the automated (ego) vehicle and other traffic participants result in
changes for the environment model at specific points of time over the duration of the
simulation T : t0, . . . , ti, . . . , tn. Discrete simulations abstract from continuous changes
by evaluating the static representations of the environment at these specific points in time
ti. These static representations are denoted as scenes (cf. Definition 2.25) and represent
configurations of the vehicle’s environment as an spatial-temporal arrangement from an
observers point of view— including the scenery, dynamic objects, and self representation
(cf. [Mau00b]). The scene preserves the state z of each object o ∈ O in the environment
for a given point in time. The object state zo encapsulates all relevant information about
the object o ∈ O for simulation— including its position and orientation. Ulbrich et
al. enrich the scene with information about the actors’ and observers’ self-representations
(cf. [Ulb+15]).

Definition 2.25 (Scene). The configuration of the vehicle’s environment as a spatial-
temporal arrangement from an observers point of view— including the scenery, dy-
namic objects, and self-representation (cf. [Mau00b]).

Definition 2.26 (Object State). The object state zo encapsulates all relevant infor-
mation about an object o ∈ O, e.g., position and orientation.

The environment can be separated into two parts: static and dynamic environment. The
static environment is denoted as scenery and is presented in section Section 2.2.1.1.1.
The dynamic environment is describe in terms of traffic in Section 2.2.1.1.2.

2.2.1.1.1. Scenery

The scenery encompasses all geo-spatially stationary aspects of the scene and, therefore,
encapsulates all objects o ∈ O whose states zo do not change over time. This entails
information about roads, lanes, lane markings, road surfaces, or the roads’ domain
types as well as houses, fences, curbs, trees, traffic lights, or traffic signs (cf. [Ulb+15]).
Sceneries are modeled once before corresponding simulations and remain consistent
throughout these simulations.

38

2.2. Simulation-based Testing of Autonomous Vehicle Systems

Definition 2.27 (Scenery). The scenery S encapsulates the set of static objects
o ∈ O in the environment EnvE (cf. [Neu14]).

Definition 2.28 (Static Object). A static object o ∈ O does not change its state zo
throughout the complete simulation (cf. [Neu14]).

In addition to the static content of the environment, traffic has to be considered for
simulations as the environment’s dynamic objects.

2.2.1.1.2. Traffic

Autonomous vehicle systems require the simulation of the road traffic as dynamic part
of the environment. Dynamic objects, e.g., vehicles and pedestrians, have to perform
specific maneuvers in order to stimulate reactions by the SUT. A dynamic object is an
object ô ∈ O which changes its state zô over the duration T of simulations.

Definition 2.29 (Dynamic Object). A dynamic object is an object ô ∈ O which can
change its state zô for each time stamp ti ∈ T of simulations (cf. [Neu14])

Dynamic objects are placed in the environment model in relation to objects of the scenery,
e.g., roads and their lanes, with an initial state z0. The logic for the behavior of dynamic
objects defines changes of the object state zô over the duration T of the simulation for
each dynamic object ô ∈ O. For example, maneuvers are defined in conjunction with
velocities and accelerations for vehicles.
Traffic can be simulated with different levels of detail; as traffic flows with or without
individual vehicles, as individuals objects, as individual objects with individual subcom-
ponents. The reader is referred to [Sch17] for a detailed description of the different detail
levels for traffic simulations.

2.2.1.2. Vehicle

In addition to the SUT, the remainder of the vehicle which is not part of the SUT has to
be modeled. This may include vehicle sensors and vehicle dynamics (cf. Fig. 2.8). Models
of vehicle sensors address the perception of the virtual environment and its virtual objects
for input to the SUT. Sensor models are described in Section 2.2.1.2.1. The models of
the vehicle dynamics define how the output of the SUT changes the state of the vehicle
in the virtual world. Models of the vehicle dynamics are described in Section 2.2.1.2.2.

2.2.1.2.1. Vehicle Sensors

Autonomous vehicle systems require input from a perception of the virtual vehicle
environment in simulations (cf. Fig. 2.8). Real sensors are substituted by sensor models
which transfer the state of the environment at each time point ti ∈ T into valid inputs,

39

2. Background

e.g., object lists or points clouds, for the SUT (cf. [Tel12]). The input from sensor models
will have to be further processed by additional environment perception algorithms if these
algorithms are not part of the SUT (cf. image processing and senor fusion in Fig. 2.8).
Sensor models may have varying levels of detail ranging from perfect high-level to realistic
(low-level) sensor models. Idealized high-level sensor models provide the SUT with
the exact information, e.g., position and orientation, of relevant objects in the virtual
environment. Realistic low-level sensor models try to mimic real sensor hardware as
closely as possible. This imitation commonly includes the imitation of the physical
measurement principle of the real sensors in order to provide the SUT with realistic data
about the environment— including data jitter. For example, realistic RADAR models
may simulate the propagation of radio waves through the virtual environment. Realistic
low-level sensor models help to evaluate and improve the robustness of autonomous
vehicle systems to jittered input data. [Bel+12; Ste+15]

2.2.1.2.2. Vehicle Dynamics

While sensor models are concerned with the perception of the virtual environment in
simulations, models of the vehicle dynamics address changes of the automated (ego)
vehicle in the virtual world in response to the output of the SUT. The models of the
vehicle dynamics have to mimic the dynamic movement of the vehicle in the real world
depending on the level of realism in simulations. Specified models, e.g., the two-track
model [Gie+06], have to sufficiently consider the inherent inertia of the vehicle and
variances in forces by vehicle actuators, e.g., engine, brakes, and tires, for the longitudinal
and lateral movement of the vehicle.

2.2.1.2.3. Driver

Instead of deterministic logic for the behavior of traffic participants (cf. Section 2.2.1.1.2),
specific driver models can be introduced for vehicles in the virtual environment. These
driver models commonly represent the behavior of real drivers stochastically where each
possible driving maneuver is assigned with a possibility. In simulations, the vehicle
maneuvers are nondeterministically chosen under consideration of their possibility.
Stochastic driver models have the disadvantage that they impede the validation of simu-
lation results. Repetitions of simulation with stochastic driver models commonly result
in different results because the behavior of vehicle deviates due to the nondeterministic
decisions by these driver models.
Hochstaedter et al. separate the driver model into a decision model and an action model.
The decision model calculates a trajectory as action intention under consideration of the
environment, while the action model sets the setpoint values for the vehicle actuators,
e.g., engines and braking system, in order to follow the trajectory. The action model
interacts with the model of the vehicle dynamics for the correct execution of the setpoint
values. [HZB00]
In the automotive domain, the individual components are predominantly used for XIL
simulations. These tests are described in the following section in more detail.

40

2.2. Simulation-based Testing of Autonomous Vehicle Systems

to environment sensors

to vehicle state sensors

Vehicle System
(SUT)

Emulated
Real

Simulated

d

Vehicle
Actuators

Emulated
Real

Simulated

d

Vehicle
Dynamics

Emulated
Real

Simulated

d

Environment

Emulated
Real

Simulated

d

Traffic

Emulated
Real

Simulated

(Vehicle)
Perception

Emulated
Real

Simulated

d

Driver

Emulated
Real

Simulated

Figure 2.9.: Realization of control loop elements in XIL simulations (cf. [Gie+06]).

2.2.2. X-in-the-Loop Simulations
In the automotive domains, autonomous vehicle systems are predominately verified in
x-in-the-loop (XIL) simulations because they allow for an efficient and cost-effective
testing process (cf. [BNF16]). Autonomous vehicle systems can be systematically tested
without disturbances from other connected but unrelated systems.
XIL simulations incorporate simulation models and real system components in varying
degree in order to reproduce the control loop between SUT and their environments. As
shown in Fig. 2.9 (cf. [Gie+06]), each element of the control loop, e.g., driver, vehicle
system, vehicle dynamics, vehicle sensors, vehicle actuators, environment, and traffic,
are either represented by a simulation model, emulated by hardware, or implemented by
the real system component. Additional disturbances d can be injected for vehicle and
environment elements of the control loop. This controlled injection of disturbances d
allows verifying the dependability of the SUT (cf. [Gie+06]). The configuration of XIL
simulations depends on the SUT and the target of the tests (cf. [Neu14]).
In the following sections, the different types of XIL simulations are described and
classified in Kiviat diagrams (cf. [MR82]) based on the way elements of the control loop
are integrated in the simulations. The dimensions of the Kiviat diagram corresponds to
previously presented components of simulations (cf. Section 2.2.1): vehicle system, driver,
vehicle, dynamics, perception, traffic participants, and scenery (cf. [Sch17; Str12]). The
scale of all dimensions is three folded: (1) simulated by models, (2) emulated by hardware,
and (3) as real system component. Some approaches are able to provide multiple solutions
for the consideration of system components (dimensions). This is depict by solid areas in
the Kiviat diagrams. In addition to the XIL approaches, real-world testing is identically
classified for completeness.
The individual dimensions of the Kiviat diagrams are described in the following (cf.
[Sch17]):

Vehicle system: The vehicle system represents the SUT and encompasses function
components and the corresponding execution platform as the part of the vehicle,

41

2. Background

which is verified in the XIL simulation. In case of autonomous vehicle systems, this
can be a function on a real ECU, a function emulated by related hardware or a
pure software function without any execution hardware.

Driver: The dimension driver addresses the behavior of the driver and its interaction
with the vehicle via the HMI (cf. [Ina06]). The driver behavior can be subject to a
real driver, emulated by a driving robot, or simulated by virtual driver models.

Vehicle: The dimension vehicle describes the remainder of the vehicle which is not part
of the vehicle system. This may include vehicle components, e.g., the vehicle chassis.
XIL approaches may incorporate real vehicles for realistic results. Otherwise, the
vehicle can be emulated by similar vehicles or identical hardware. In software-in-
the-loop (SIL) tests, the interaction of vehicle system and the remainder of the
vehicle is commonly modeled by rest-bus simulations.

Dynamics: Dynamics describe the behavior of the vehicle on the road. In case of
XIL approach incorporate a real vehicle, the real vehicle dynamics are present.
Otherwise, a vehicle with similar dynamics can be used to emulate the dynamics of
the original target vehicle. A simulated vehicle dynamics uses a model to process
the motion of the vehicle in the virtual world. Thus, the vehicle behavior is not
implemented in the real world.

Perception: The dimension perception addresses the remainder of the vehicle’s perception
system which is not part of vehicle system. A real perception will be present if
environment perception is implemented on the later target platform. Otherwise, a
similar hardware platform can be used to emulate the vehicle perception. Artificial
generated object lists or sensor data as input to the vehicle system represent a
simulated perception.

Traffic participants: The dimension traffic participants addresses the realization of
other dynamic objects in the tests, e.g., vehicles, cyclists, and pedestrians. Traffic
participants can be real if the tests are performed in the real world on public
roads or testing grounds. The usage of crash targets or balloon vehicles represents
an emulation of traffic participants. Traffic participants will be present in the
simulation if they are modeled and implemented as software.

Scenery: The scenery describes the static environment of the vehicle system. Tests in
the real world commonly incorporate the real scenery. An emulation of the scenery
will be present if public roads are rebuilt at testing grounds by, e.g., artificial roads,
lanes, curbs, and vegetation. In case, scenery objects are part of the virtual world
which is generated by a simulation framework; a simulated scenery is present.

The various types of XIL simulations are described each in more detail in the following
sections.

42

2.2. Simulation-based Testing of Autonomous Vehicle Systems

2.2.2.1. Model-in-the-Loop Simulations

Model-in-the-loop (MIL) simulations allow the evaluation of initial system designs early
in the development process (cf. [BNF16]). A model of the system is integrated into a
control loop with models of vehicle dynamics, sensor, actuators, environment, and traffic
[GRS14; Ise06a]. As shown in Fig. 2.10, all dimensions of the simulation are modeled
and simulated. The model of the system represents the modelM in Definition 2.10.

Vehicle
system

Driver

Vehicle

Dynamics

Perception

Traffic par-
ticipants

Scenery

(1)
(2)

(3)

Figure 2.10.: Kiviat digram of MIL and SIL simulations [Sch17].

2.2.2.2. Software-in-the-Loop Simulations

Software-in-the-loop (SIL) simulations share extensive similarities to model-in-the-loop
(MIL) simulations. The model of the as SUT is substituted by its real software im-
plementation (cf. modelM in Definition 2.10) [GRS14; Ise06a; Kap+16]. As for the
MIL simulations all other entities of the control loop, e.g., vehicle dynamics, sensor,
actuators, environment, and traffic, are modeled and simulated (cf. Fig. 2.10) [Sch17].
Novel software implementation can be evaluated in SIL simulations without any real
hardware components.

2.2.2.3. Driver-in-the-loop simulations

Driver-in-the-loop (DIL) simulations focus on the behavior of the driver and his interaction
with the vehicle and its systems. Therefore, the model of the driver is substituted by
a real driver. Human drivers are seated in artificial vehicles on fixed-base (stationary)
or motion-based simulators with projections of the virtual environment and vehicle-like
controls (cf. [Sch17; Ste+15]).
Most dimensions of driver-in-the-loop (DIL) simulations are simulated—except for the
remainder of the vehicle and the vehicle dynamics (cf. 2.11):

• Vehicle dynamics are simulated in fixed-base simulators while a motion-based
simulator emulates the vehicle dynamics by a motion platform. This platform
reenacts the forces on the vehicle based on the simulation of the environment.

43

2. Background

Vehicle
system

Driver

Vehicle

Dynamics

Perception

Traffic par-
ticipants

Scenery

(1)
(2)

(3)

Figure 2.11.: Kiviat digram of DIL simulations [Sch17].

• The remainder of the vehicle is either emulated by, e.g., a dashboard with steering
wheels or a real vehicle is incorporated in these simulations.

Motion-based simulators exhibit different levels of fidelity (cf. [Slo08]). Immovable,
fixed-based simulators are categorized as low-level simulators. Mid-level simulators are
simulators which accelerated just in one degree of freedom (DOF), which is often y-sled,
x-sled or a yaw-table. Any force feedback is commonly applied to the steering wheel.
High-level driving simulators actuate the payload, e.g., a real vehicle, in at least six DOFs.
In many high-level simulators, the vehicle is surrounded by a dome for the projection of
the virtual vehicle environment.

2.2.2.4. Hardware-in-the-Loop Simulations

Hardware-in-the-loop (HIL) simulations verify and validate the functionality of the SUT
for hardware and software aspects [GRS14]. The real ECU with deployed software
implementation of the SUT are verified and validated (cf. modelM in Definition 2.10).
The focus of hardware-in-the-loop (HIL) simulations is on the interaction between the
SUT with the remaining vehicle components under real-time conditions.
For the interaction with the remainder of the vehicle, the ECU is verified in combination
with all connected ECUs or the connected ECUs are simulated by a rest-bus simulation
(cf. [Sch17]). The rest-bus simulation simulates any signals from connect ECUs and the
environment.
As system development and vehicle development progresses, HIL simulation setups can
be gradually extended to include further vehicle components (cf. [Gie+06]). Hardware
components of the vehicle, e.g., sensors and actuators, can also be integrated into HIL
simulations or emulated by similar hardware. As shown in Fig. 2.12, the real SUT is
verified as ECU in a simulated, emulated, or real vehicle environment. All other dimension
of the simulations are still simulated as in MIL and SIL simulations (cf. Sections 2.2.2.1
and 2.2.2.2). HIL simulations offer the flexibility of a MIL and SIL simulations with a
higher level of reliability by using the real target hardware (cf. [Gie+06]).

44

2.2. Simulation-based Testing of Autonomous Vehicle Systems

Vehicle
system

Driver

Vehicle

Dynamics

Perception

Traffic par-
ticipants

Scenery

(1)
(2)

(3)

Figure 2.12.: Kiviat digram of HIL simulations [Sch17].

SIL simulations leave the real-time capabilities of the SUT unaddressed because the
software implementation is not verified on its target hardware. HIL simulations allow
evaluating the real-time behavior of SUT in interaction with the remainder of the
vehicles. While SIL simulations can be executed faster or slower than real time, HIL
simulations have to be performed in real time because of the real ECUs— including their
inputs/outputs—solely operate in real-time. This real-time requirement may require
trade-offs for the accuracy and complexity of simulation models as well as specialized real-
time platforms for the simulation of the remaining vehicle and environment (cf. [Ise06a]).
For example, complex tire and hydraulic models may not be sufficiently calculated in
real-time (cf. [Ise06a]).
A variation of HIL simulations are processor-in-the-Loop (PIL) simulations [Neu14]. In
PIL simulations, the software implementation of the SUT is executed on a real-time
platform (cf. modelM in Definition 2.10). The real-time platform is connected to a
host computer which executes the remain models of the control loop in the simulations
(cf. Fig. 2.8). The SUT is not executed in real-time but is synchronized with the
simulation on the host computer. While HIL simulations use electronic signals for the
communication between the ECUs, PIL simulations use direct communication, e.g.,
Ethernet or Controller Area Network (CAN), for this communication of ECUs.[Kap+16]
Extensions of HIL simulations are vehicle-hardware-in-the-loop (VEHIL) simulations
which incorporate the complete vehicle into the simulation loop. VEHIL simulations are
described in the following section.

2.2.2.5. Vehicle-Hardware-in-the-Loop Simulations.

A solution for testing full-scale vehicles with all advantages of the previous approaches but
without most of their drawbacks is the vehicle-hardware-in-the-loop (VEHIL) simulation
(cf. [Gie+06; GRS14]). The complete vehicle with its actuators and sensors is placed
on a chassis-dynamometer and is integrated into the simulation (cf. model M in
Definition 2.10). The SUT is either simulated in tools, e.g., automotive data and time-

45

2. Background

triggered framework (ADTF) (cf. [Sch07]), emulated on real-time hardware, or execute
on the final ECUs within the vehicle. [Sch17; Ste+15]

Vehicle
system

Driver

Vehicle

Dynamics

Perception

Traffic par-
ticipants

Scenery

(1)
(2)

(3)

Figure 2.13.: Kiviat digram of VEHIL simulations (cf. [Sch17]).

The vehicle on the chassis-dynamometer is integrated with a simulation of its environ-
ment. The dynamometer emulates the vehicle dynamics by emulating the road specific
parameters, e.g., slope and friction (cf. Fig. 2.13). Traffic participants are simulated, and
their behavior emulated in the vicinity of the real vehicle by movable mobile platforms
(cf. [Gie+06; GRS14]). The mobile platform mimics the movement of traffic participants
relative to the vehicle on the dynamometer. In rare cases, real traffic participants are
integrated in VEHIL simulations (cf. [Sch17]).
The mobile platforms allow for realistic input to the real vehicle sensors which matches
the relative position and relative behavior of the corresponding virtual object in the
simulation of the environment. The scenery is also simulated and can be emulated.
VEHIL are performed in specialized indoor test facilities which allow the control of all
environmental parameters, e.g., humidity, ambient light, or temperature [GRS14]. This
practice ensures the repeatability of VEHIL simulations.

2.2.2.6. Vehicle-in-the-Loop Simulations

Vehicle-in-the-loop (VIL) simulations are performed with real vehicles on large open test
grounds. The vehicle-in-the-loop (VIL) simulation by [BMF07; Boc09] injects simulated
environment objects into the sensor perception of the system and project the same
objects into the view of the driver using augmented reality. The virtual objects can
be supplemented by real objects, e.g., trees or vehicles, as well as emulated objects,
e.g., crash targets. As shown in Fig. 2.14, the vehicle dynamics, the vehicle and the
driver are real elements. All other dimensions can either be simulated, emulated, or real
components.[Sch17]
XIL simulations allow safe, repeatable, and reliable tests of vehicle system under a variety
of operation conditions. However, these simulations are inefficient for the verification
and validation of interactions between multiple autonomous vehicle systems and the

46

2.2. Simulation-based Testing of Autonomous Vehicle Systems

Vehicle
system

Driver

Vehicle

Dynamics

Perception

Traffic par-
ticipants

Scenery

(1)
(2)

(3)

Figure 2.14.: Kiviat digram of VIL simulations [Sch17].

integration of these interactions into the vehicle systems. Therefore, in-vehicle tests in
the real world are inevitable. [GRS14]

2.2.2.7. Field Operational Tests

Field operational tests with prototype vehicles in real conditions of the real world are the
final activity in the validation chain for autonomous vehicle systems. Real world tests can
be distinguished into tests with rapid prototyping systems and on-board tests(cf. [SZ13]).
While rapid prototyping addresses the verification of the software implementation of the
SUT, on-board tests are concerned with the complete ECU (cf. [Sch17]). The SUT is
either simulation as software in tools, e.g., ADTF (cf. [Sch07]), is emulated on rapid
prototyping hardware, or the real ECU is tested in the field operation tests (cf. Fig. 2.15).

Vehicle
system

Driver

Vehicle

Dynamics

Perception

Traffic par-
ticipants

Scenery

(1)
(2)

(3)

Figure 2.15.: Kiviat digram for real world testing.

For real-world tests, we can distinguish between tests on closed test tracks and tests on
public roads. Test tracks allow the adjustment of most environmental conditions but
require large test infrastructures (cf. [GRS14]). Besides real objects, e.g., roads and
signs, scenery objects, as well as weather conditions, can be emulated. For example, real
roads can be rebuild at test grounds in order to safely verify the system behavior on

47

2. Background

these roads (cf. Fig. 2.15) [GRS14]. Traffic participants can be other real vehicles and
pedestrians or can be emulated by corresponding mock objects, e.g., crash targets. The
driver behavior of real vehicle can be emulated using driving robots (cf. [Sch+11]),
Field operational tests on public roads require no dedicated test infrastructure. All
encountered objects in the environment are real objects, vehicles, and drivers. However,
the reproducibility of field operation tests in public traffic is limited due to the uncon-
trollability of traffic and the lack of “ground truth” knowledge about the exact states of
vehicles in these tests (cf. [Gie+06; GRS14]).
Field operational tests on test tracks and public roads are costly and time-consuming.
Complete prototype vehicles with full sensor systems have to be constructed and config-
ured. This heavy engineering of prototype vehicles prohibits the use of field operational
tests early in the development cycle.[Gie+06; GRS14]

2.3. Runtime Verification
According to the IEEE [CS217], verification encompasses all techniques suitable to ensure
that a system satisfies its specification. Traditional verification techniques comprise
theorem proving [BC04], model checking [CGP99], and testing [MSB11]. Theorem
proving is mostly manually applied and enables the check of the program’s correctness as
a proof similar to proving the correctness of a theorem in mathematics. Model Checking
is an automatic verification technique which is primarily applied to finite-state systems.

Definition 2.30 (Verification). Verification is formally defined in terms of system
behavior as Φ (M, P, U) |= ψ for given systemM, given set P of parameters, given
set U of inputs and given property ψ which shall hold for the system.[Kap+16]

Runtime verification represents lightweight verification techniques which complement the
three traditional verification techniques [LS09].

Definition 2.31 (Runtime Verification). Runtime verification encompass verification
techniques that allow to check whether a run of a system satisfies or violates a given
correctness property (cf. [LS09]).

The main distinction between runtime verification and traditional verification techniques
is that runtime verification is predominantly performed at runtime. Executions are
the primary objects analyzed in the setting of runtime verification. While traditional
verification techniques investigate whether all runs of a system adhere to given correctness
properties, runtime verification works on finite (terminated) traces, finite but continuously
expanding traces, or on prefixes of infinite traces.[Leu11; LS09]
A trace describes a possibly infinite sequence of system’s states or system actions. System
states are formed by the current assignments to system variables or as a sequence of
system actions. A trace corresponds to a possibly infinite run of the system. Any

48

2.3. Runtime Verification

execution of the system is a finite trace and, therefore, is a finite prefix of a run.[Leu11;
LS09]

Definition 2.32 (Trace). A trace is a possibly infinite sequence of system’s states,
which are formed by the current assignments to system variables, or a possibly infinite
sequence of system actions [Leu11; LS09].

Runtime verification approaches vary in the part of a system run which is considered
for the verification of the system. Approaches analyze system properties based on the
input/output behavior of the system, its state sequences in executions, or based on a
sequence of generated events related to the system’s execution.[Leu11]
Diagnosis and reconfiguration capabilities can extend runtime verification systems in
order to react to property violations and mitigate corresponding system failures (cf.
[BLS06; LS09]).
Therefore, runtime verification approaches are distinguished whether they passively
observe the system’s execution and report failures, or whether their monitor verdicts are
used to actively modify the execution of the target system (cf. [Leu11]).
Runtime verification is closely related to the field of runtime monitoring. Monitors
evaluate at runtime if the execution of the target system meets a given property. The
foundations of runtime monitors are described in the following section.

2.3.1. Runtime Monitor
In runtime verification, runtime monitors are used to check whether an execution of a
system meets a given property φ [BLS11; Leu11; LS09]. In general, runtime monitors
are automatically generated from given property φ.
In mathematical sense, runtime verification checks if a execution w is an element of
JφK, where JφK denotes the set of valid execution for the property φ. Thus, runtime
verification answers the word problem, i.e., whether a given word is included in some
language.[Leu11]

Definition 2.33 (Runtime Monitor). A Runtime monitor observes an execution of
a program or system and evaluates predefined properties, conditions, or invariants
about the system behavior based on its observed runtime data (cf. [WH07]).

The execution trace of a system can be verified online or offline. The usage of monitors
to verify the current execution of a system is denoted as online monitoring while the
evaluation of recorded traces is defined as offline monitoring. Online monitoring has the
advantage that the critical system behavior can be corrected based on the verdict of the
runtime monitor.[LS09]
The complexity for generating the runtime monitors is often negligible because monitors
are typically only generated once. However, the complexity of runtime monitors regard-
ing memory and computation requirements are of vital interest because the monitor

49

2. Background

should not interfere with the functional and non-functional behavior of the monitored
systems.[BLS11]
As part of the trusted computing base, soundness, completeness, determinism, and
passivity of runtime monitors are of essential importance but are seldom defined and
documented in precise terms in the development of runtime monitors (cf. [Fra+17;
WH08]). Each characteristic is described in the following:

Soundness : Runtime monitors have to correctly monitor the target systems. Any
rejections raised by runtime monitors have to indeed be violations of monitored
properties for the target systems.

Completeness: Runtime monitors will sufficiently observe the execution behavior of
targets systems for completeness if they detect all system behavior violating
supervised properties for the target systems.

Determinism: Runtime monitors should yield to the same verification results for identical
observations from the execution of target systems.

Passsivity: Runtime monitors should not interfere with the execution of target systems.
Passivity is especially critical within embedded systems, where hardware resources
are limited.

For observations about the execution of the target systems, parts of the monitoring
systems have to be attached to the target systems in order to extract information about
the internal operation of these systems. These parts of the monitoring system are termed
probes or sensors (cf. [Sch95; WH07]). Probes (sensors) are further distinguished into
hardware probes and software probes. Hardware probes monitor internal physical system
signals. Software probes are added as additional monitoring code to the code base of the
target system in order to logical system signal in the code. The addition of monitoring
code to the code base of the target system is termed code instrumentation (cf. [RD04;
WH07]).

Definition 2.34 (Code Instrumentation). Code Instrumentation is the modification
of the monitored system by additional code that informs the runtime monitor about
events and data relevant for the monitored properties.

As code instrumentation may interfere with the system execution, runtime monitoring
approaches are distinguished in invasive and non-invasive monitoring [Leu11]:

Invasive monitoring: The runtime monitors of invasive monitoring approaches have an
impact on the execution of the systems. These are primarily approaches which use
code instrumentation or share the hardware resources with the target system.

Non-invasive monitoring: Non-invasive monitoring approaches segregate the target
system from the runtime monitors by using additional computation resources in
order to exclude any side effects by the runtime monitors on the execution of the
target system.

50

2.3. Runtime Verification

Other terms for invasive and non-invasive monitoring are intrusive and non-intrusive
monitoring (cf. [Sch95]).
Three types of runtime monitoring are distinguished; software, hardware, and hybrid
monitoring (cf. [WH07]). Each type is discussed in the following sections.

2.3.1.1. Software Monitors

Software monitoring requires the modification of the targeted systems. The primary
approach is the instrumentation of the system’s application code by additional code that
informs the runtime monitor about relevant events and data values. Further approaches
are the instrumentation of the operating systems or the usage of a dedicated monitor
process (cf.[HG08; WH07]).
Software monitoring can be used flexibly and does not require any additional hardware
(cf. [RD04; Sch95; Tha+03]). However, the integration of runtime monitoring code
into the target system may introduce side effects for the target system. The software
monitoring may introduce overhead on the system’s processing time and memory space
consumption. Such side effects can be unacceptable for many real-time systems. An
alternative approach is to introduce the instrumentation code permanently into the
system, but this may be difficult for an embedded system with strict costs restrictions.
[WH07]
Instead of introducing instrumentation code to the target system, additional hardware
components can be introduced for the runtime monitors. Hardware monitoring is
described in the following section.

2.3.1.2. Hardware Monitors

Hardware monitoring is machine dependent resp. processor architecture dependent. It
comprises the modification of the hardware platform on which the target program is
executed. Either internal signals of the target system are probed, or additional monitoring
hardware is introduced to the hardware platform. The monitoring hardware observes the
execution of the target program by, e.g., listening on the system bus. Instrumentation of
system code is not required for hardware monitoring. [Sch95; WH07]
The benefit of hardware monitoring is the non-intrusive access to information about the
target system. Therefore, hardware monitoring is most suitable for a system with strict
real-time constraints. [WH07]
The disadvantage of hardware monitoring is the increasing costs and inherent limitations
of monitoring hardware (cf. [Sch95; WH07]). Newer hardware platforms are less likely to
offer possibilities for physical probe points. System-on-chip (SoC) systems with on-chip
caching and complex processing and memory architectures have significantly reduced the
visibility of program execution for external hardware, e.g., runtime monitoring systems.
A solution to the reduced external observability of SoC systems are on-chip monitors (cf.
[El 02; WH07]).
Software and hardware monitoring can be combined with hybrid monitoring in order to
mitigate their disadvantages. Hybrid monitoring is described in the next section.

51

2. Background

2.3.1.3. Hybrid Monitors

Hybrid monitoring encapsulates monitoring approaches which combine software and
hardware monitoring. Hybrid monitoring tries to combine the advantages of each
approach by simultaneously mitigating their disadvantages. Code instrumentation of
the target system allows access to internal information about the system execution
by defining relevant events for the runtime monitoring within the code of the target
system. These events would not be accessible by hardware monitors. The instrumentation
code is executed as a part of the target system, and relevant events are transferred to
separate monitoring hardware for event detection and event processing The additional
instrumentation code may potentially affect the behavior and performance of the target
systems, but the usage of hardware probes reduces the amount of instrumentation code
which is required to monitor these systems sufficiently. As results, hybrid monitors are
less likely to interfere with the execution of the target system. [RD04; Sch95; Tha+03;
WH07]
Besides runtime verification, runtime monitoring is used in other contexts for various
system types, e.g., safety-critical and mission-critical systems, enterprise systems software,
autonomous systems, reactive control systems, health management systems, diagnosis
systems, and system security and privacy with various purposes, e.g., debugging, test-
ing, security, safety monitoring, verification, validation, faults protections, profiling, or
behavior modification.[RD04; Sch95]
For the monitoring and verification of systems at runtime, relevant system properties
have to be formally defined in the system development. The following section gives an
overview of the formal definition of such system properties.

2.3.2. Property Specification
Runtime Verification generally assumes a (formal) logic for the description of properties
which are expected to be satisfied by the monitored system [Fra+17]. Havelund and
Goldberg define in [HG08] four dimensions for the specification of the monitored system
behavior:

Location quantification: Location quantification addresses if a logic allows quantifying
over locations in the monitored systems. Runtime monitors evaluate when the
system reaches a specific system location during its execution. For online verification,
these locations contain the monitoring code itself. For offline verification, these
locations contain code which will generate events and forward them to the external
runtime monitor. An example of location quantification are system invariants, state
machine notations, and process algebras.[HG08]

Temporal quantification: Temporal quantification addresses if a logic allows for quan-
tification over time points. For example, whether open and close methods for access
to files are called in their respective order. Such logic can either state ordering
relationships over events and actions or reason about relative or absolutes time
values and duration for over events and system actions. Temporal logics, e.g.,

52

2.4. Typed First-Order Logic

linear temporal logic (LTL) [Pnu77], and temporal automata, like used in UPPAAL
[LPY97], exist specifically for the temporal quantification over system states.

Data quantification: Data quantification addresses whether a logic allows the binding
and referral to values across states in a forward or backward direction in time.
For example, the calling of open and close methods for the same file includes the
data binding over the file. Data quantification presumes temporal quantification.
Specific data logics are defined for data quantification. [HG08]

Abstract data specification: Abstract data specification consider logics which are able
to abstract concrete program states to abstract specification states. General purpose
specification languages, e.g., abstract state machine language (ASML) [Gri+01]
or Maude [Cla+99], exist which inherently support abstract data specification.
These languages commonly have executable subsets which resemble a functional or
state-based programming language.[HG08]

The expressiveness of logic is essential for runtime verification. Specification logics must
only define system properties which can be verified for the (finite) trace exhibit for the
execution of the system. Properties about multiple or infinite system executions are not
suitable for runtime verification.[Fra+17]
The following section introduces the formal logic which is used in this thesis for the
definition of monitored system properties.

2.4. Typed First-Order Logic
The definition of system properties for the runtime monitoring in this thesis uses a
typed first-order logic. The type restrictions of variables, functions, and predicates
reduce the processing complexity of the runtime monitoring. The evaluation of variable,
functions, and predictions by the runtime monitoring has exclusively considered objects
with matching types. All other objects can be neglected. The following sections introduce
the typing, syntax, and semantics of this typed first-order logic. The typed first-order
logic has been first introduced in [BHS07].

2.4.1. Types
The major difference between the typed first-order logic and traditional first-order logic
(cf. [Smu12]) is the explicit typing of objects, variables, functions, predicates. Typing
of first-order logic has been defined by Beckert et al. in [BHS07]. The typing allows to
reason about the domain of the runtime monitoring on the abstract level of types instead
of individual real world objects. Every object of the domain is assign to one type. Type is
defined as “a category of [. . .] things having common characteristics” [Ste10]. All types
for a particular problem domain are organized in a type hierarchy:

Definition 2.35. A type hierarchy is a quadruple T = 〈T , TD, TA,v〉 consisting of

53

2. Background

• a set of types T ,

• a subset of abstract types TA,

• a subset of dynamic types TD, and

• a relation v denoting the sub-type relationship between types.

It holds that TA ∪TD = T and TA ∩TD = ∅. The sub-type relation v is a reflexive partial
order on T (cf. [BHS07]). We say that type A is a subtype of B if A v B. Every abstract
type B ∈ TA \ {⊥} has a non-abstract subtype: A ∈ TD with A v B. There is an empty
type ⊥ ∈ TA and a universal type > ∈ TD with ⊥ v z v > for all z ∈ T (cf. [BHS07]).
The set without the empty type ⊥ is denoted by TQ := T \ {⊥}.

Typing also applies to variables, functions, and predicates of the typed first-order logic.
Variables and parameters of function and predicates can be restricted to specific types.
Objects will only be considered for a typed variable or parameters of typed functions
and typed predicates if the objects match the specific types or their sub-types.
The typing of the typed first-order logic is aligned with the implicit typing of requirements
and explicit typing of runtime data in autonomous vehicle systems. For the runtime
monitoring of autonomous vehicles, requirements are transformed into typed first-order
logic, and the types in these requirements build the type hierarchy T of the typed first-order
logic. The typed first-order logic is then evaluated at runtime on the provided typed data
from the autonomous vehicle systems.
The definition of variables, functions, and predicates by the signature of the typed
first-order logic is described in the following section.

2.4.2. Signature
The typed first-order logic has the signature Σ = 〈V, F, P, α〉 with a set of variable symbols
V , a set of function symbols F , a set of predicate symbols P with an arity of n > 0, and
a typing function α (cf. [BHS07]). Variables enable to consider different objects and
entities of the autonomous vehicle systems and their environments while functions and
predicates reason about particular properties of these objects and parameters and their
relations.

Definition 2.36. The signature Σ for a given type hierarchy T = 〈T , TD, TA,v〉 is
quadruple Σ = 〈V, F, P, α〉 of

• a set of variable symbols V ,

• a set of function symbols F with an arity of n ≥ 0,

• a set of predicate symbols P with an arity of n > 0, and

• a typing function α.

54

2.4. Typed First-Order Logic

We denote the arity k of a function with fk and for predicate with pk. A function with
an arity of 0 is also called a constant. Logical symbols, like ∧,∨,=, 6=,∀, ∃ are defined as
usual

Definition 2.37. The symbol α denotes the typing function that assigns every symbol of
V , F , and P a corresponding type. Therefore, variables, functions, and predicates are
only applicable for this particular type (cf. [BHS07]):

α (x) ∈ TQ for all x ∈ V
α (f) ∈ T ∗Q × TQ for all f ∈ F
α (p) ∈ T ∗Q for all p ∈ P
with TQ := T \ {⊥} .

Consider: We require all parameters of functions and predicate to be from TQ and therefore
exclude the empty type ⊥.

There exist predicate symbol α (=̇) = (>,>) for the type equality and predicate symbol
∃z ∈ P , which is called type predicate for type z, with typing α (∃z) = (>) for any
z ∈ T . A function symbol (z) represents the type cast of the static type of an expression
α ((z)) = ((>) , z) for each z ∈ Tq. The dynamic type of the expression remains unchanged.
The type cast enables the usage of sub-types as arguments for functions and predicates.
The following notions are defined (cf. [BHS07]):

v :z for α(v) = z with v ∈ V, z ∈ TQ
f :z1, . . . , zn → z for α (f) = ((z1, . . . , zn) , z) for zi, z ∈ T
p :z1, . . . , zn for α (p) = (z1, . . . , zn) for zi ∈ T

2.4.3. Terms and Formulas
The expression of requirement conditions in the typed first-order logic requires the
definition of terms and formulae over the variables, function, and predicate symbols.

Definition 2.38. Based on the signature Σ = 〈V, F, P, α〉 we can inductively define the
set of terms Termz for each type z ∈ T (cf. [BHS07]):

• x ∈ Termz for any variable x :z ∈ V ,

• f (t1, . . . , tn) ∈ Termz for any function symbol f (z1, . . . , zn) → z ∈ F and terms
ti ∈ Termz

′
i
with z′

i v zi for 1 ≤ i ≤ n

All entities built in the described way are terms and no others. The static type for any
term t ∈ Termz is written as σ (t) := z. The set of terms TermT over the signature
Σ = 〈V, F, P, α〉 and a set of Types T is then denoted by TermT := ⋃

z∈T Termz. A term
without any variables is called a ground term.

55

2. Background

Conditions of requirements which are considered for the runtime monitoring can be
formally expressed as first-order formulae.

Definition 2.39. The set of first-order formulae Fml over the signature Σ = 〈V, F, P, α〉
are defined as followed:

• True, False ∈ Fml are formulae.

• p (t1, . . . , tn) ∈ Fml for a predicate symbol p (z1, . . . , zn) and terms ti ∈ Termz
′
i

with z′
i v zi for all 1 ≤ i ≤ n is a formula.

• Let t1 and t2 are terms, then (t1=̇t2) is an (atomic) formula.

• Let φ and ψ be formulae, then ¬φ, φ ∧ ψ, φ ∨ ψ, φ→ ψ are formulae.

• Let φ be a formula and v ∈ V a variable, then ∃v.φ,∀v.φ are formulae.

We call φ the scope of the variable v ∈ V and say that v is bound by the quantifiers
∀, ∃ in the formulae ∀v.α resp. ∃v.α. For syntax sugaring we write t ∃z instead of ∃z (t)
with z ∈ T t ∈ TermT as well as t1=̇t2 instead of =̇ (t1, t2) for ti ∈ TermT . The usual
parentheses and precedence rules apply.

The quantifiers ∀ (universal) and ∃ (existential) bind all occurrences of variable x in
the sub-formula φ. The formula φ is also called the scope of the quantified variable x.
Occurrences of variables which are not bound by any quantifier are called free. A formula
ψ without any free variables is called a closed formula

Definition 2.40. The set of free variable FV(t) for a term t is defined by

• FV (t) = {v} for v ∈ V , and

• FV (f (t1, . . . , tn)) = ⋃
i=1,...,n

FV(ti).

The set of free variables for a formula is then defined by

• FV (p (t1, . . . , tn)) = ⋃
i=1,...,n

FV(ti),

• FV (t1 =̇ t2) = FV (t1) ∪ FV (t2),

• FV (true) = FV (false) = ∅,

• FV (¬φ) = FV (φ),

• FV (φ ∧ ψ) = FV (φ ∨ ψ) = FV (φ→ ψ) = FV (φ) ∪ FV (ψ), and

• FV (∀x.φ) = FV (∃x.φ) = FV (φ) r {x}.

A formula φ is then called closed iff FV (φ) = ∅.

The definition of terms and formulae solely address the syntax of the typed first-order
logic but not their interpretation. The interpretation of terms and formulae by the
semantics of the typed first-order logic is described in the following section.

56

2.4. Typed First-Order Logic

2.4.4. Semantics
First-order logics have to be evaluated based on modelsM (also called structure) which
encompass the concrete objects, functions, and predicates over which the terms and
formulae are evaluated (cf. [BHS07]).

Definition 2.41. The model for a typed first-order logic with the types system T and
signature Σ = 〈V, F, P, α〉 is defined asM = 〈D, δ, I〉 with

• the domain D,

• the dynamic typing function δ, and

• the interpretation of functions and predicates I.

We further define Dz := {d ∈ D | δ (d) v z, z ∈ T } as the set of parameters and objects
of type z ∈ T . Opposed to [BHS07], this thesis does not require the set Dz to be a
non-empty set for all z ∈ TD because there might exits no objects for some types in the
runtime monitoring. For example, there might be no other vehicles in the environment
of autonomous vehicle systems. Therefore, the objects set for the type vehicle would be
empty—considering that the automated ego vehicle is a distinctive type.
The typing function δ : D− > TD assigns every object of domain D a dynamic type TD.
In case no particular type has yet been defined for a domain object because it has not yet
been known, the typing function δ : D− > TD assigns the universal type > to this object.

Definition 2.42. The interpretation I assigns every function symbol f ∈ F and predicate
symbol p ∈ P a concrete function resp. predicate over the parameters and objects with
the correct typing z ∈ T . It holds that;

• for any f : z1, . . . , zn → z ∈ F , I yields a function I(f) : Dz1 × · · · × Dzn → Dz

with z, zi ∈ T , i ∈ N

• for any p :z1, . . . , zn ∈ P , I yields a subset I(p) ⊆ Dz1×· · ·×Dzn with zi ∈ T , i ∈ N

• for type casts, I ((z)) (x) = x if δ (x) v z, otherwise I ((z)) (x) is an arbitrary but
fixed element of Dz.

• for equality I (=̇) = {(d, d) | d ∈ D},

• for type predicates, I (∃z) = Dz with z ∈ T .

A modelM is not sufficient to completely reason about arbitrary terms and formulae
because the model does not address the variables of the typed first-order logic. Therefore,
the notion of variable assignments are introduced:

Definition 2.43. For a model M = 〈D, δ, I〉, a variable assignment is a function
β : V → D, such that

β (x) ∈ Dz for all x :z ∈ V.

57

2. Background

The modification βdx of a variable assignment β for any variable x : z and any element
d ∈ Dz of the domain with type z ∈ T is defined as

βdx (y) :=

d, if y = x

β(y), otherwise

The definitions of model M and variable assignment β enable to formally define the
semantics of terms. A evaluation function valM is introduced for the interpretation of
terms.

Definition 2.44. For a modelM = 〈D, δ, I〉, and a variable assignment β, the valuation
function valM can be inductively defined by

• valM,β (x) = β (x) for any variable x ∈ V .

• valM,β (f (t1, . . . , tn)) = I (f) (valM,β (t1) , . . . , valM,β (tn)) with terms t1, tn.

For a ground term t, one can simply write valM (t), because valM,β (t) is independent of
β

The semantics of formulae is defined by their validity. The validity of a formula for a
given modelM and a given variable assignment β is determined by the validity relation
|=.

Definition 2.45. The validity relation |= is inductively defined for a given modelM =
〈D, δ, I〉, and a variable assignment β by

• M, β |= p (t1; . . . , tn) iff (valM,β (t1) , . . . , valM,β (t1)) ∈ I (p).

• M, β |= true

• M, β 6|= false

• M, β |= ¬φ iffM, β 6|= φ

• M, β |= φ ∧ ψ iffM, β |= φ andM, β |= ψ

• M, β |= φ ∨ ψ iffM, β |= φ orM, β |= ψ, or both

• M, β |= φ→ ψ iffM, β |= φ then alsoM, β |= ψ

• M, β |= ∀x.φ (for a variable x :z) iffM, βdx |= φ for every d ∈ Dz

• M, β |= ∃x.φ (for a variable x :z) iff there exists some d ∈ Dz such that
M, βdx |= φ

If M, β |= φ, we say that φ is valid in the model M under the variable assignment β.
For a closed formula φ, we writeM |= φ, since β is then irrelevant.

58

2.4. Typed First-Order Logic

The validity of formulae can be generalized as a general property of formulae concerning
arbitrary models and arbitrary variable assignments.

Definition 2.46. Under a fixed but arbitrary type hierarchy T, and signature Σ,

• A formula φ is logically valid if M, β |= φ for any model T and any variable
assignment β.

• A formula φ is satisfiable if M, β |= φ for some model T and some variable
assignment β.

• A formula φ is unsatisfiable if it is not satisfiable— ifM, β 6|= φ for any model T
and any variable assignment β.

The following chapter presents and analyzes the current development process for au-
tonomous vehicle systems in the automotive domain. The typed first-order logic is
considered in the definition and implementation of the runtime monitoring framework in
Chapter 6.

59

3. Problem Outline
This chapter presents the current development practice for autonomous vehicle systems
in the automotive domain on the example of an industrial lane change assistant. An
overview of the functionality of the lane change assistant and its development process
is given in Section 3.1. The individual activities in the development of the lane change
assistant are described in more detail Sections 3.2 to 3.7. The chapter ends with an
assessment of limitations for the current development practice in Section 3.8

3.1. Running Example: Lane Change Assistant
In this work, we examine a lane change assistant as a running example. The lane change
assistant is part of an industrial highway pilot, which is widely considered the next
development iteration of autonomous vehicle systems towards full automated vehicles
(cf. Fig. 2.4). Vehicles with activated highway pilot will autonomously drive in traffic
on highways towards their assigned destination. The vehicle automation includes the
autonomous execution of lane changes.

3.1.1. Basic Functionality of Lane Change Assistant
Lane change assistants address the guidance of the vehicle on tactical level (cf. Fig. 2.3).
The main functionality of a lane change assistant is to perform lane changes to the left
or right adjacent neighbor lane under consideration of the current traffic situation. The
lane changing includes changes between lanes on multi-lane highways as well as changes
to on- and from off-ramps in order to enter resp. exit highways. Another functionality
is the safe merging in weaving areas of interchanges or front of road constrictions. The
lane change assistant has to evaluate if lane changes can be safely executed and if they
are beneficial for the progress of the trip in all these use cases. There exist many reasons
for the execution of lane changes. Some lane changes are beneficial, e.g., overtaking
slower vehicles, (cf. Fig. 3.1 [BMW18]), while other lane changes might be inevitable.
For example, a lane change will be inevitable if the current route requires the vehicle to
leave or change the highway.
In summary, a lane change assistant has to perform safe lane changes autonomously.
The safety of lane changes for the automated ego vehicle, its passengers and other traffic
participants is essential. Any risks for any traffic participants have to be excluded. For
the execution of lane changes, the lane change assistant has to consider national traffic
codes and the traffic situations in its vicinity. The assistant has to perceive the road
infrastructure, e.g., road lanes and their markings, as well as other traffic participants, e.g.,

61

3. Problem Outline

Figure 3.1.: Lane Change Assistant [BMW18].

other vehicles or pedestrians. Based on the relative positions and velocities of other traffic
participants, the lane change assistant determines if a lane change to the left resp. right
adjacent neighbor lane is possible without endangering other traffic participants. Other
traffic participants should not be forced to brake hard or to perform emergency maneuvers.
Additionally, the lane change assistant has to obey national traffic codes, e.g., signs or
road markings prohibiting lane changes, in order to avoid any maneuvers which would
be unexpected or irrational for other traffic participants.
Passengers expect the lane change assistant to inform them about all its decisions and
considered information about the vehicle and its vicinity. HMIs have to present this
information in a clear and understandable manner without overstraining drivers. Human
drivers expect to be able to take over the vehicle control at any time—especially in
critical situations which the lane change assistant misinterpreted. Therefore, the driver
must be able to overrule the decisions made by the lane change assistant.
As part of the highway pilot, the lane change assistant is only developed for highways.
Rural and urban roads are not yet considered for the functionality of the lane change
assistant due to their increased situational complexity (cf. [CC04]). Further improvements
of the lane change assistant may lead to its application to these domains.
The following section gives an overview of the development activities for the lane change
assistant, as they were performed in the case study (cf. Chapter 8).

3.1.2. Development Activities
In the automotive domain, the basic development process follows the V-model consisting
of a design and implementation part and a verification and validation part (cf. [RB08]).

62

3.1. Running Example: Lane Change Assistant

Requirements
Analysis

System
Design

Verification
Test & Simulation

Validation
Field Test

Implementation

Safety Analysis

Figure 3.2.: Activities in the development, verification and validation of the lane change
assistant.

The activities for the development of the lane change assistant follow this development
process (cf. Fig. 3.2). Sections 3.2 to 3.7 describe each development activity in more
detail.
As shown in Fig. 3.2, the first activity in the development process of the lane change
assistant is the requirements analysis. in the requirement analysis, requirements from
relevant stakeholders are elected for the system specification of the lane change assistant
(cf. Definition 3.2) . The specification is the first documented definition of the lane
change assistant’s functionality and restrictions. The majority of requirements for the
lane change assistant emerge from the development of the superior highway pilot.
In the system design (cf. Fig. 3.2), the lane change assistant is designed based on
the requirements in the system specification by defining an architecture of functional
components. Each component addresses one or more basic functions required by the
system specification of the lane change assistant. In the course of the development, the
system specification is further detailed for its subsystems. A technical concept defines
each component, the algorithms and communication techniques used for realizing the
components’ functionality. The lane change assistant is divided into the processing of sen-
sor data for the scene representation, the situation assessment of the scene representation
and the behavior planning for lane changes. Additional to the functional architecture, a
hardware architecture is defined incorporation a network of ECUs for the execution of
the functional components as well as sensor and actuator hardware components for the
perception and interaction with the vehicle’s environment.
The system specification and system architecture allow analyzing the proposed system
under safety aspects. The safety analysis as third activity in the development process
(cf. Fig. 3.2) evaluates the concept of the lane change assistant from the system design
in different operation modes. A operation mode encompasses the states of software
functions, hardware components, and the environment of the system—the real world.
Critical operational modes are identified in which the behavior of the lane change assistant

63

3. Problem Outline

impose a potential safety risks for its passengers, other vehicles, and their passengers.
For each critical operation mode, safety measures are defined (cf. Definition 3.1). The
safety measures are intended to mitigate the safety risks of the lane change assistant in
the operation mode. These measures are incorporated into the system development as
additional requirements. These safety requirements are added to the system specification
resulting in a revision of the system design and its components. The correct and effective
implementation of all identified safety requirements, including their measures, have to
be addressed in the verification and validation. In the automotive domain, the safety
analysis commonly proceeds following the ISO 26262 [Int09d].

Definition 3.1 (Safety Measure). “The activity or technical solution to avoid or
control systematic failures and to detect random hardware failures or control random
hardware failures, or mitigate their harmful effects” [Int09a].

Following the revision of requirements and system design, the lane change assistant is
implemented. In the implementation activity (cf. Fig. 3.2), the functionality and safety
measures of each functional component are primarily realized in software and in minor
cases solely as hardware. For the lane change assistant, the atomic functional components—
the lowest components in the hierarchy of the functional system architecture—are
refined as software-components and implemented as C/C++ code. The code is written
manually or generated from models, e.g., signal flow diagrams using modeling tools e.g.,
Matlab/Simulink (cf. [Bis96]) or Ascet (cf. [Lef+97]). The correct implementation of each
atomic functional component is addressed in unit tests. Each implementation artifact of
a atomic component—e.g., its classes and functions— is independently stimulated by the
test inputs of corresponding test cases in order to reveal bugs and faults (cf. Section 2.2).
The response of the implementation artifact— its output data— is compared with the
envisaged response of the executed test case. Additional hardware required for the
functional components, e.g., sensors or ECUs, are realized and tested simultaneously.
Following the system architecture, atomic implementation artifacts are integrated into
compositional components. Compositional components might be further integrated
with other atomic or compositional components. This way larger parts of the system
are realized. The integration of functional components may lead to the emergence of
more complex functionality. For example, the combination of sensor preprocessing and
modeling enables the system to generate an internal representation of the current vehicle
environment.
In the verification activity (cf. Fig. 3.2), the functional correctness of composite com-
ponents is verified in integration tests with regard to the requirements of the system
specification. Integration tests presume the correct implementation of each subordi-
nate component—as it is verified in unit tests for atomic functional components—and
therefore focus on the communication and interaction between subordinate components
and emerging functionalities. For the lane change assistant, simulations are used for
integration testing— from MIL, SIL, HIL to VIL (cf. Section 2.2.2). These simulation
methods are differentiated based on the SUT—e.g., if it is a model, implementation,
or the real system or functions—and the incorporation of the target hardware. For all

64

3.2. Requirements Analysis

simulation methods, test cases resp. test scenarios define a set of stimuli for which the
compositions are verified. The responses of compositions to these stimuli are compared
to the expected response in the test case. At the end of the hierarchical integration, the
complete lane change assistant is assembled and verified. The integration tests of the
assembled system are also referred to as system test.
Additional to the verification in tests and simulations, formal verification methods, e.g.,
model checking or static code analysis (cf. [Alu15]), are adopted at times.
Besides the verification of the lane change assistant in system tests, the system has to be
validated. The validation activity is the last development activity for the lane change
assistant before its deployment and commercialization. For validation, stakeholders test
the system for the satisfaction of their requirements. The validation also addresses implicit
requirements, which have not yet been identified and documented in the requirements
analysis. Tests performed by stakeholders are also referred to as acceptance tests. These
acceptance tests are commonly performed with prototype vehicles in the real world to
mimic the experience of later customers.
In the following sections, each development activity is described in the context of the
case study—the development of the lane change assistant (cf . Chapter 8).

3.2. Requirements Analysis
The basic functionality of the lane change assistant, which has been described in Sec-
tion 3.1.1, yields from requirements of involving stakeholders (cf. Definition 3.2). These
requirements are gathered and improved in interviews with each stakeholder in the
requirements analysis (cf. Section 3.1.2) . The analysis addresses the unambiguousness,
quantification, and completeness of these requirements.

Definition 3.2 (Requirement). “A statement that identifies a necessary attribute,
capability, characteristic, or quality of a system in order for it to have value and
utility to a user” [You01].

All requirements gathered in the requirements analysis are documented in the system
specification (cf. Definition 3.3). The requirements are commonly described in natural
language and are hierarchically structured where each subordinate requirement further
refines its superordinate requirements. Requirements addressing similar concerns are
grouped. For the lane change assistant, the system specification has been provided by a
project partner.

Definition 3.3 (System Specification). A documented set of mandatory requirements
for a system [Int17].

The system specification for the lane change assistant and its requirements are presented
in the following sections under consideration of the international standard ISO/IEC
25010:2011 [Int11b]. The standard ISO/IEC 25010:2011 defines a quality model for

65

3. Problem Outline

software products with eight categories: functionality, reliability, usability, efficiency,
maintainability, compatibility, security, and portability. We use these categories as
guidance for the presentation of the provided requirements in the following sections.

3.2.1. Functionality
As described in Section 3.1.1, the basic functionality of the lane change assistant is to
perform lane change on highways. In its current development state, rural and urban
roads are not considered for the lane change assistant due to differences in the complexity
of environment situations (cf). Lane changes on highways can be further subdivided
into two use cases; lane changes between ongoing highway lanes and lane changes from
on-ramps resp. to off-ramps in order to enter resp. exit highways. Additional functional
requirements exist for the lane change assistant. These requirements are applicable for
either use case. The functional requirements for the lane change assistant are presented
in more detail in the following sections.

3.2.1.1. Lane Changes between Highway Lanes

The major use case for the lane change assistant is the changing between lanes on
multi-lane highways (cf. FR_1_1 in Table 3.1). For this use case, the assistant has
to determine the current driving domain (FR_1). The lane change assistant is only
developed for highways as part of a highway pilot and is currently unable to safely cope
with the complexity of traffic in other domains, e.g., rural and urban roads.
On highways, the lane change assistant has to independently change from the velocity
and available gap sizes between vehicles. The assistant has to perform lane changes
in traffic jams with small gaps between vehicles and at slow velocities (FR_1_2) as
well as in normal traffic with high differences in their velocities but large gaps between
vehicles (FR_1_1). In normal traffic, the automated vehicle must drive faster than
10 m/s (FR_2_1). Otherwise, the overtaking would take too much time and compromise
other traffic participants. Additionally, a lane change is not supposed to be executed in
curves with a curvature less than 125 m because actuators might not be able to execute
lane changes safely (cf. [Vis+08]). The automated vehicle would leave the target lane
(FR_2_2). Before every lane change, the automated vehicle has to be properly aligned
inside its current lane in order to guarantee the correct and safe execution of the lane
changes. A lane change is not supposed to be executed if the position of the automated
ego vehicle deviates more than 0.4 m from the center of its current lane (FR_2_3).
A special case for lane changes on multi-lane highways is the merging with other traffic
participants in front of constrictions. In general, the traffic in front of constrictions is
slow and dense because the traffic of two or more lanes has to be condensed to fewer
lanes. A lane change is inevitable for the automated vehicle if it drives on a lane with the
constriction. As stated in requirement FR_4 (cf. Table 3.1), the automated vehicle must
be able to perform alternate merging starting less than 100 m in front of the constriction.
The constrictions limit the time and space available for the lane change.

66

3.2. Requirements Analysis

Table 3.1.: Requirements for the lane changing on highway.
ID Description
FR_1 The system shall be able to detect if the current domain is a

highway.
FR_1_1 The system shall be able to perform lane changes on multi-lane

highways.
FR_1_2 The system shall be able to change lanes in a traffic jam with

a traffic flow velocity of less than 5 m/s and gaps of less than
10 m between vehicles.

FR_2 The system has to prevent unsafe lane changes.
FR_2_1 The system shall be able to prevent lane changes if the ego

velocity is less than 10 m/s.
FR_2_2 The system shall be able to prevent lane changes if the curva-

ture of the ego lane is less than 125 m.
FR_2_3 The system shall be able to prevent lane changes if the lateral

offset to the center of the current lane is more than 0.4 m.
FR_3 The system shall be able to adjust the vehicle longitudinally

towards a suitable gap in a search range of 100 m to the front
and 100 m to the rear of the vehicle in order to prepare a lane
change.

FR_4 The system shall be able to perform lane changes with less
than 100 m in front of constrictions following the alternate
merging.

Lane changes in dense traffic require a high degree of cooperation between traffic partici-
pants because there might be small to no gaps between vehicles for a lane change. For
safe lane changes in dense traffic, the lane change assistant has to find an appropriate
gap between vehicles on the target lane and position itself next to this gap in order to
demand the cooperation of other traffic participants (FR_3). This requirement does
not only apply to the merging in front of constriction but also to lane changes between
highway lanes in dense traffic and to entering and leaving of highways—especially in
weaving areas of interchanges (cf. Section 3.2.1.2).

Lane changes on highways are supposed to improve or sustain the progress of the
automated ego vehicle towards its target destination. Therefore, each lane change
has to be evaluated under consideration of its benefit for the overall progress of the
vehicle’s journey (cf. FR_5_1 in Table 3.2). The evaluation of each lane changes has to
consider the cost and distance ratio towards the target destination (FR_5_1_1) under
consideration of dynamic traffic (FR_5_1_2) and timing restriction from prior events
(FR_5_1_3). In front of constrictions, a benefit estimation is not necessary because a
lane change is inevitable for the progress.

67

3. Problem Outline

Table 3.2.: Requirements for the benefit of lane changes.
ID Description
FR_5 The system must decide if a lane change is beneficial.
FR_5_1 In case, the system is in the automated driving mode, the

system has to determine if a lane change is beneficial based
on the current traffic situation.

FR_5_1_1 The system shall be able to determine whether a lane change
is beneficial based on a cost / distance metric to follow the
route towards the navigation destination.

FR_5_1_2 The system shall be able to assess the dynamic traffic situation
whether changing the lanes would result in a dynamic benefit.

FR_5_1_3 The system shall be able to assess, whether a lane change is
beneficial based on timing restrictions regarding prior driving
events.

Lane changes may have a short-term benefit but may result in a disadvantage in the
mid or long-term run. For example, overtaking slower vehicles may lead to a short time
advantage, but the traffic situation could later prohibit the automated vehicle to take its
intended exit ramp. The short-term benefit for the overtaking has been negated by its
mid- or long-term disadvantages resulting in an overall disadvantage.
Besides lane changes between highway lanes, the lane change assistant has to cope with
lane changes to off-ramps and from on-ramps in order to enter and exit highways. The
corresponding requirements for these use cases are presented in the following sections.

3.2.1.2. Entering and Exiting Highways

Besides lane changes between highway lanes, the lane change assistant has to au-
tonomously change from on-ramps to the ongoing highway lanes in order to drive
onto highways or change to off-ramps in order to leave highways (cf. FR_6 in Table 3.3).
Entering highways differs from lanes changes between highway lanes (cf. Table 3.1) in
the way, that limited to none knowledge about the current situation on the highway is
available for the lane change assistant. Furthermore, the distance and time available for
a lane change to the ongoing lanes are limited by the length of the on-ramps. The lane
change assistant has to consider these time and space limitations as well as other traffic
participants while entering highways.
The contrary use case to entering highways is the exiting of highways. The lane change
assistant must be able to change to off-ramps in order to exit highways. Analog to
entering highways, lane changes to off-ramps cannot be postponed indefinitely. The
length of off-ramps defines the space and time available for the automated ego vehicle
to perform its lane change to the off-ramps. These space and time limitations require
the vehicle to swiftly arrange itself with other traffic participants in order to leave the
highway in less than 100 m after the off-ramp begins (cf. FR_6_1 in Table 3.3). In dense

68

3.2. Requirements Analysis

Table 3.3.: Requirements for entering or leaving the highway.
ID Description
FR_6 The system shall be able to perform lane changes to enter a

highway on an on-ramp.
FR_6_1 The system shall be able to perform lane changes in onto

off-ramps less than 100 m after the off-ramp started.
FR_6_2 The system shall be able to perform lane changes in weaving

areas of highway interchanges with a length of less than 200 m.
FR_6_3 The system shall prevent lane changes towards areas with an

adjacent highway on-ramp.

traffic, this often requires the cooperation of other traffic participants. For example, the
automated ego vehicle drives on the mid lane while a convoy of vehicles drives on the
right lane. For the automated vehicle to successfully take the exit ramp, it would have
to position itself adjacent to an available gap between the vehicles of the convey and to
rely on the cooperation of trailing vehicles in convoy.
Highway interchanges, e.g., cloverleaf interchanges, present a special case for entering
resp. leaving highways. In cloverleaves, on-ramps and off-ramps overlap. Traffic leaving
the highway has to merge with traffic entering the highways. The lane change assistant
has to be able to perform lane change in these weaving areas of highway interchanges
with a length less than 200 m (cf. FR_6_2 in Table 3.3). This requirement applies to
entering the highway and to exiting the highway (see above). Lane changes in weaving
areas require the cooperation of other traffic participants. The automated vehicle must
be able to position itself adjacent to an appropriate gap between vehicles on the target
lane without interrupting the traffic flow.
Opposite to lane changes between highway lanes, estimations about benefits of lane
changes to off-ramp and from on-ramps are not necessary. These lane changes are
inevitable in order to proceed with the optimal route towards the final destination as
planned by the navigation (cf. Fig. 2.7). In case of entering and leaving highways,
lane changes can only vary in certain distance resp. timing windows. These windows
correspond to the length of the on- resp. off-ramps (see above).
On-ramps also impact normal lane changes between ongoing lanes of highways. For safety
reasons, lane changes towards merging areas for the rightmost lane and on-ramps should
be avoided (cf. FR_6_3 in Table 3.3). Lane changes to such merging areas impose the
risks of collisions with oncoming traffic. Vehicles entering the highways on on-ramps are
forced to change to the ongoing lanes of the highway. Even though entering vehicles have
to give priority to vehicles on the ongoing lane of the highway, entering vehicles are less
likely to consider vehicle on lanes other than the rightmost highway lane. In the worst
case, a collision will be inevitable if a vehicle from these ongoing lanes and an oncoming
vehicle simultaneously change towards the merging area on the rightmost lane.

69

3. Problem Outline

Table 3.4.: Requirements considering traffic participants.
ID Description
FR_7 The system must decide if a lane change is possible in a given

traffic situation.
FR_7_1 The system has to assess the traffic situation based on what is

relevant for the decision making.
FR_7_1_1 The system has to evaluate whether a lane change to a neighbor

lane is possible based on objects on that neighbor lane behind
itself.

FR_7_1_2 The system has to evaluate whether a lane change to a neighbor
lane is possible based on objects on that neighbor lane in front
of itself.

FR_7_1_3 The system has to evaluate whether a lane change to a neighbor
lane is possible based on objects on its current lane in front
itself.

FR_7_1_4 The system shall evaluate whether a lane change is possible
based on approaching objects on the ego lane behind itself.

FR_7_1_5 The system shall be able to consider objects directly next to
it with a relative velocity of less than 5 m/s.

FR_8 The system shall take care of flashing the indicator before
initiating a lane change at least 1 s before it starts to impose
a lateral displacement.

There exist more requirements which are valid for lane changes between highway lanes
as well as for the changes to on- resp. from off-ramps. These functional requirements
address the perception of the vehicle’s environment and the cancellation of initiated lane
changes. These requirements are presented in the following sections.

3.2.1.3. Environment Perception and Interaction

The safety of lane changes significantly depends on the perception of the vehicle’s
environment and interaction with objects in this environment. This is mandatory for lane
change between highway lanes as well as lane changes for entering and leaving highways.
The lane change assistant has to consider other traffic participants in its vicinity for the
planning and execution of lane changes. Based on traffic participants on the adjacent
neighbor lanes and the lane on which the automated ego vehicle is driving the possibility
of (safe) lane changes has to be evaluated. No lane change must endanger any other
traffic participant.
The Table 3.4 presents requirements which define restrictions for lane changes under
consideration of other traffic participants. All restrictions are valid for the previously
presented use cases (cf. Sections 3.2.1.1 and 3.2.1.2). Important cases are approaching
vehicles from behind and slower vehicles in front of the automated vehicle (FR_7_1_1

70

3.2. Requirements Analysis

Table 3.5.: Requirements considering the road infrastructure.
ID Description
FR_9 The system has to evaluate whether a lane change is possible

based on the current infrastructure.
FR_9_1 The system has to evaluate whether a lane change is possi-

ble based on the lane marking type of the appropriate lane
boundary.

FR_9_2 The system has to evaluate whether a lane change is possible
(necessary) based on the type of the ego and neighbor lanes.

to FR_7_1_4). Faster vehicles behind the automated ego vehicle might drive onto the
automated ego vehicle if the automated ego vehicle changes to the lane of the approaching
vehicles. Vehicles in front of the automated vehicles on the same lane might impose the
possibility that the automated ego vehicle will drive onto these vehicles while changing
the lane if the distance to these vehicles is insufficient. Vehicles next to the automated
vehicle on either neighbor lane must be perceived even though their relative velocity
might be very low (FR_7_1_5).
Traffic participants require automated vehicles to behave plausible and predictable. The
lane change assistant has to activate corresponding direction indicators before all lane
changes (FR_8) in order to inform other traffic participants about its intention and to
give them sufficient time to react.
Additional to traffic participants, the lane change assistant has to consider the highway
infrastructure, e.g., road lanes and their markings, in its planning and execution of lane
changes (cf. FR_9 in Table 3.5). The lane change assistant must not violate national
traffic codes, e.g., by changing lanes in areas where lane markings or signs prohibit lane
changes (FR_9_1). Each highway lane commonly has a type assigned which defines if
the automated ego vehicle is allowed to drive on this lane resp. change to this lane. For
example, emergency lanes, dedicated bus lanes, on- and exit ramps are some particular
lane types on which a vehicle is only allowed to drive on in exceptional cases, e.g.,
emergencies or to leave the highway. The lane change assistant has to detect and evaluate
the type of lanes and restrict the possibilities of lane changes accordingly. In case a
highway lane does not exist, or its type is not valid, a lane change to this lane is not
possible. In case the current driving lane is invalid a lane change has to performed
immediately (FR_9_2).
The perception and interaction with the automated vehicle’s environment are not the
sole requirements which are mandatory for the lane change assistant in all its use cases.
The lane change assistant must be able to cancel initiated maneuvers in all situations
based on more recent information about the system, vehicle, and its environment. The
requirements addressing the cancellation of maneuvers are discussed in the following
section.

71

3. Problem Outline

Table 3.6.: Requirements considering the cancellation of intimated maneuvers.
ID Description
FR_10 The system shall be able to overturn a previously made deci-

sions based on more recent information.
FR_10_1 The system shall be able to abort flashing the indicators.
FR_10_2 The system shall be able to abort already initiated lane

changes.

3.2.1.4. Maneuver Cancellation

Decision made by the lane change assistant cannot be permanent. Made decisions must
be reversible because the environment autonomously changes and is not controlled by the
lane change assistant. Decisions about lane changes are made based on the perception
of the current environmental situation and assumptions about future traffic situations.
Decisions about lane changes will have to be reverted based on more recent information
if the traffic has been evolved differently than anticipated (cf. FR_9 in Table 3.6).
This requirement includes canceling intended lane changes— indicated by flashing of
the direction indicator— (FR_10_1) as well as aborting already initiated lane changes
(FR_10_2) and returning to a safe position within the origin lane.
Besides the presented functional requirements for the lane change assistant, additional
non-functional requirements addressing the quality of the lane change assistant in terms
usability, reliability, performance, efficiency, maintainability, compatibility, security, and
portability. Corresponding requirements are described in the following sections.

3.2.2. Usability

The general acceptance of the lane change assistant requires the requirements analysis
to explicitly consider the interaction between assistant and passengers (cf. Table 3.7).
Not only should the driver initiate a lane change on its own—e.g., if the vehicle has
a semi-automated driving mode—but also to override any decision made by the lane
change assistant and take over the control of the vehicle at any time (UR_2). This
requirement especially applies to critical traffic situations which have been misinterpreted
by the lane change assistant.
The driver can overrule the lane change assistant and take control of the vehicle by either
holding or turning the steering wheel (UR_2_1 and UR_2_2). Level 3—conditional
automation—requires such an intervention in order for the human driver to meet his
role as supervisor and safety fallback (cf. Fig. 2.4).
Besides taking over the vehicle control, passengers require to be informed about the
decision making by the lane change assistant. A (graphical) HMI has to inform passengers
about the system’s current situational knowledge and its intentions—especially about
the initiation and execution of lane changes (UR_3). Besides the graphical visualization

72

3.2. Requirements Analysis

Table 3.7.: Requirements addressing the interoperability with the passengers.
ID Description
UR_1 The system must be able to determine if the driver wishes to

change the lane.
UR_2 The driver must be able to override the system at all times.
UR_2_1 The driver has to be able to prevent the vehicle from executing

a lane change by holding the steering wheel.
UR_2_2 The driver has to be able to execute a lane change by turning

the steering wheel.
UR_3 The system has to inform the passengers about its status and

intentions at all times.
UR_4 Passengers shall see on a visually appealing GUI if a lane

change is about to be executed and hear the indicator flashing
sound.

of lane changes, existing HMI elements, e.g., direction indicator signals should be
incorporated into the passenger interaction (UR_4).

3.2.3. Reliability
The reliability of the lane change assistant addresses the ability of the lane change
assistant to provide its intended functionality correctly in specific environmental situations.
Stakeholders, as well as passengers, expect the lane change assistant to perform safe and
correct lane changes. Unsafe lane changes which impose danger for its passenger and
other traffic participants have to be limited to a sufficient minimum. Safety standards,
e.g., the safety standard ISO 26262 [Int09b], define thresholds for the rate of errors which
systems have to meet in order to be judged as safe. For the lane change assistant (cf.
Table 3.8), the rate of false estimation of the possibility of safe lane changes has to be
less than 1.0× 10−9 times per hour of driving time (RR_1). Furthermore, the benefit
estimation of lane changes must not exceed 2.0× 10−8 false estimations in one hour of
driving time (RR_2).
The environment measurements of sensors are subject to uncertainty. Following the
requirements of Table 3.8, the lane change assistant has to cope with temporarily
incorrect or uncertain measurement data and still be able to process safe lane changes
(RR_3). Uncertainties have to be considered for all measured values about objects
in the automated ego vehicle’s vicinity, e.g., position and velocities of other vehicles
(RR_3_1). Furthermore, the rate of incorrect data and their continuous duration should
be monitored and evaluated (RR_3_2).
Long durations with incorrect measurement values from sensors may prohibit the process-
ing of safe lane changes because the current belief about the environment does not match
the real environmental situation. The last available accurate measurements of the sensors
which the lane change assistant could use to mitigate the inaccurate measurements are

73

3. Problem Outline

Table 3.8.: Requirements addressing the reliability.
ID Description
RR_1 The system must decide if a lane change in a given traffic

situation is possible with an error rate of less than 1.0× 10−9

errors per hour of driving time.
RR_2 The system must decide if a lane change is beneficial based

on the current traffic situation with an error rate of less than
2.0× 10−8 errors per hour of driving time.

RR_3 The system has to be able to handle uncertain and/or tem-
porarily incorrect measurement data.

RR_3_1 The system shall be able to consider measurement uncertainties
of object positions, velocities, accelerations and their existence
on a particular lane.

RR_3_2 A metric shall quantify temporary incorrect measurements and
cover the duration of the deviation from the correct value.

RR_3_3 The system may not base its current decision on sensor data
older than 100 ms if newer data is available

RR_4 The system shall provide consistent driving orders. It shall
overturn less than 3.0× 10−7 decisions per hour of driving
time.

RR_4_1 The system shall abort flashing the direction indicators less
than 2.0× 10−7 times per hour of driving time.

RR_4_2 The system shall abort a initiated lane change less than
1.0× 10−7 times per hour of driving time.

too old. The lane change assistant has to use the most recent data for its processing of
lane changes in order to process lane changes appropriate for the current environment
situation. Measurements older than 100 ms must not be incorporated into the processing
of lane changes if more recent data is available (RR_3_3).

Even though the lane change assistant shall be able to cancel already initiated maneuvers
based on more recent information about its state and the state of its environment, these
cancellations should not occur too frequently. The overall behavior of the lane change
assistant has to be consistent (cf. in Table 3.8). Frequent cancellation of maneuvers
indicates that the implementation of the lane change assistant does not sufficiently
incorporate the possible future behavior of other traffic participants in the planning
of lane changes. The lane change assistant shall not overturn previous decisions more
than 3.0× 10−7 times per hour of driving time (RR_4). Flashing of the direction
indicators shall be canceled statistically less than 2.5× 10−7 times per hour of driving
time (RR_4_1) while initiated lane changes should be reverted less than 1.0× 10−7

times per hour of driving time (RR_4_2).

74

3.2. Requirements Analysis

Table 3.9.: Development Requirements.
ID Description
DR_1 The system may not use more than 10 % of the computation

time of a quad-core desktop computer.
DR_2 The system may not use more than 4 GB of RAM if executed

on a desktop computer.
DR_3 A developer shall be able to understand and contribute the

lane change module in less than one year.
DR_3_1 Each class and each function shall have documentation in the

productive code.
DR_4 A developer shall be able to log the state of the system, the

system input data and the system outputs.

The reliability and safety are significant factors in the development of automotive systems
because they are related to product liability (cf. ProdHaftG §1, BGB §823 I, BGB §433).
An unreliable system causing accidents with casualties or even fatalities may result in
high recourse claims against its producer. Therefore, additional analysis is performed to
estimate, enhance, and maintain the reliability and safety of such systems. For the lane
change assistant, such a safety analysis is presented in Section 3.4.
Requirements which are mainly related to the development of the lane change assistant
are present in the following section.

3.2.4. Development
The Table 3.9 presents requirements particular related for the development of the lane
change assistant. We aggregate here the requirements from the categories efficiency, main-
tainability, compatibility, and portability from the quality standard ISO-IEC 25010:2011
[Int11b]. The provided system specification for the lane change assistant does not
extensively address these categories in order to address each category on its own.
As minimal performance requirements for the system development, the implementation
of lane change assistant must not use more than 10 % of computation time available on
a quad-core desktop computer (DR_1) and less then 4 GB of random access memory
(RAM) (DR_2). These requirements address the efficiency and portability as the system
must not only operate in the automated ego vehicle but also be executed and simulated
in the development on common desktop computers.
The maintainability of the lane change assistant requires novel developers to understand
the implementation of systems efficiently. They only should require at most one year to
understand the internal structure and functionality of the lane change assistant (DR_3).
Therefore, the functionality of each class and function has to be sufficiently documented
in the productive code (DR_3_1). Furthermore, developers must be able to log the
system inputs, state, and outputs at runtime in tests and productive environments in
order to understand the system behavior and identify faulty system behavior (DR_4).

75

3. Problem Outline

Security has not been addressed by any requirement for the lane change assistant.
From the set of requirements, an initial concept of the lane change assistant is designed.
This system design is described in the following section.

3.3. System Design
The requirements gathered in the requirements analysis (cf. Section 3.2) represent the
exterior functionality of the system. The system design addresses the internal structure of
the system—how the system functionality is separated into smaller functional components
and hardware components. A decomposition into system parts with clearly defined
interfaces serves the implementation of the system in multiple ways; system parts can be
developed, modified, extended, and tested independently from other system parts.
From the system specification of the lane change assistant (see the previous section), a
concept of the system is designed (cf. Fig. 3.2). The concept incorporates functional and
technical architectures. The functional architecture partitions the system into a hierarchy
of functional components. It is described in more detail in Section 3.3.1. The technical
architecture, which is described in Section 3.3.2, defines a set of hardware components
and their connections within the vehicle.

3.3.1. Functional Architecture
In the functional architecture, the system is partitioned into a hierarchy of functional
components. The top hierarchy level represents the lane change assistant in its entirety.
Each functional component can be decomposed into a set of subordinated functional
components from which each implements a part of the functionality of the superordinate
component (cf. Fig. 3.3). Inputs of the superordinate components are processed by the set
of subordinate components resulting in outputs of the superordinate components. For all
leaves of the component hierarchy—the atomic functional components—algorithms, com-
munication, and data concepts are defined and documented by corresponding component
specifications.
Components are self-contained units which only interact with their environments—other
components—via defined interfaces (cf. Definition 3.4). Interfaces define the functional-
ity which components offer their environments—other components—by defining the
data that can be exchanged via these interfaces. Each functional component can be
implemented and tested against its interfaces. This partition enables the implementation
and verification of each functional components independently from other components of
the same hierarchy level. Components can be used in different contexts (environments)
if the interfaces remain consistent.

Definition 3.4 (Component). A [software] component is a unit of composition with
contractually specified interfaces and explicit context dependencies only [CDS02].

76

3.3. System Design

Scene
Modeling

Lidar Signal Processing

GPS Processing

Lo
ca
liz
at
io
n

Lidar

GPS

Map

Environment Perception

Fu
nc
tio

n
Sp

ec
ifi
c

Sc
en
e
A
ug

m
en
ta
tio

n

Situation Assessment &
Situation Prediction

Sit. Ass. & Sit. Pred.
(Adaptive Cruise Control)

Sit. Ass. & Sit. Pred.
(Lane Keeping Assistant)

...

Situation
Assessment

Lane Change Assistant

Adaptive Cruise Control

Lane Keeping Assistant

...

A
gg
re
ga
tio

n

Behavior Planning

Tr
aj
ec
to
ry

Pl
an

ni
ng

(S
ta
bi
liz
at
io
n)

Scene

Si
tu
at
io
n

Target
Point

Figure 3.3.: Functional architecture for the processing of lane changes (level 1).

At hierarchy level 1 of the functional architecture, the lane change assistant consists of
three functional components— environment perception, situation assessment, and behav-
ior planning. This processing chain from sensors to the trajectory planning (stabilization)
is presented in Fig. 3.3.
The environment perception address the perception of the vehicle’s environment by sensors,
the processing of sensor data, and the generation of a comprehensive representation of
the vehicle’s current environment— the scene (cf. Definition 2.25). This scene is assessed
by the situation assessment to provide the planning of lane changes with a minimal
but sufficient environment description—the situation (cf. Definition 2.9). A detailed
explanation and distinction of the terms scene and situation can be found in [Ulb+15].
Possibilities and benefits of lane changes in the current situation are evaluated by the
behavior planning of the lane change assistant. The behavior planning of lane changes
is performed on tactical level (guidance) parallel to the behavior of other ADAS, e.g.,
ACC or LKAS (cf. Fig. 3.3). Each function outputs a corresponding target point. All
target points are compared and evaluated. As result, one final target point is elected and
passed to the stabilization level (cf. Fig. 2.3). From the final target point, the trajectory
planning processes the new trajectory for the vehicle (cf. Fig. 3.3). Each high-level
component is described in the following sections.

3.3.1.1. Environment Perception

The behavior planning of lane changes requires a representation of the current state
of the vehicle’s environment. This environment state has to include the scenery—the
static environment and objects, e.g., roads and buildings—as well as dynamic objects
in the vehicle’s vicinity, e.g., vehicles and pedestrians (cf. Section 2.2.1.1). The lane
change assistant has to perceive its environment with sensors because the system does
not control the environment. The perception component (cf. Fig. 3.3) incorporates a
LIDAR sensor to perceive the real environment (cf. [GG14]). There exist LIDAR sensors
which provide 360◦ views around the automated ego vehicle with multiple scanning
distances (cf. [Sch10]). The physical signals from the LIDAR sensor, the reflection points
of emitted laser beams, are processed into a comprehensive representation of the vehicle’s
environment—the scene (cf. Definition 2.25).
Reflection points of emitted laser beams are preprocessed by transforming these physical
signals into a hypothesis about objects in the vehicle’s environment. Furthermore, global

77

3. Problem Outline

Figure 3.4.: Representation of a road junction as road graph1.

positioning system (GPS) signals and high accurate road maps are incorporated by the
localization into the perception in order to enable the self-estimations of the vehicle’s
position and pose in the world. The module scene modeling models a comprehensive
representation of the vehicle’s environment based on the list of objects from the LIDAR
sensor and the self-estimation of the automated ego vehicle. The self-estimation allows
positioning all detected objects in relation to the automated ego vehicle. The resulting
environment model is commonly referred to as scene (cf. [Ulb+15]). It serves as the
interface between the environment perception and the situation assessment.

3.3.1.1.1. Data Structure of the Scene

The scene represents the configuration of the vehicle’s environment as an spatial-temporal
arrangement from an observers point of view for one particular time stamp— including
the scenery, dynamic objects, and self representation (cf. Definition 2.25). The scene
continuously evolves resulting in a sequence of scenes. Each object in the scene is defined
by its type and a set of corresponding properties, e.g., the width, length, velocity, and
acceleration of a vehicle. Additional, relationships between environment objects are
documented in the scene. For example, vehicles are related to the lanes of the road on
which they drive.
The scene integrates information about the road network extracted from digital maps with
information about the vehicle’s current environment provided by exteroceptive sensors (cf.
Fig. 3.3). Maps describe the static scenery of the road network while the sensors provide
up-to-date information about the current traffic situation including dynamic objects and
changes of road elements which have not yet been documented in maps. As shown in
Fig. 3.5, normal roads consist of two ways with an arbitrary set of lanes for each way.

1Scenery taken from Google Maps on 10.4.2017

78

3.3. System Design

road

way

lane

Figure 3.5.: Relationship between road, way, and lane.

Rural roads mostly have one lane per way while highways have two or more lanes per
way.
The road network in the scene is implemented by a directed road graph. The road
graph include information about road lanes, road intersection and static road elements,
like traffic sings, speed limits, or traffic lights (cf. [KH10]). As shown in Fig. 3.4, the
real roads and junctions are defined by their set of lanes in the road graph. Lanes are
represented in Fig. 3.4 as yellow and orange lines representing the two driving directions.
Ongoing lanes of each direction are drawn bold. On multi-lane roads, e.g., highways,
multiple ongoing lines would exist side by side for each direction. All remaining lines in
Fig. 3.4 represent the possible turns which vehicle may take within the junction. The
benefit of describing the roads and junctions on lane level is the possibility to model
permitted directions in intersections explicitly.
In the road graph, road lanes are represented by lane segments and lane segment connec-
tions (cf. Fig. 3.6 [Ulb+14]). The lane segment connectors correspond to vertices in a
directed graph while the lane segments represent the graph’s edges. Lane segments sub-
divide each road lane into smaller parts allowing to address variations of lane properties,
e.g., markings or curvature. Lane segments start and end at lane segment connectors.
The direction of lane segment is inherently defined by its direction in the graph and cor-
responds with the driving direction of vehicles on the corresponding real lane. Each lane
segment commonly has a left and right lane boundary which represent the corresponding
lane markings. Adjacent lane segments share one common lane boundary. Lanes and
roads are composed of sequences of lane segment connectors and sets of adjacent lane
segments. The graph-based model can not only be used for the guidance but also the
navigation of the automated ego vehicle (cf. Section 2.1.4.1).
In the data structure for the scene, the road network (cf. Fig. 3.7) is represented by the
classes lane segment, lane segment connectors, and intersections. Each lane segment has
a set of attributes to describe its properties. The identifier id of each lane segment is a
concatenation of the identifiers for the corresponding road, way, and the number of the
lane (cf. Fig. 3.5). This concatenation enables to explicitly identify a lane segment in the
road graph. Each lane segment has a type which defines if vehicles are allowed to drive
on this lane segment. Types of lane segments range from NormalLane, ForbiddenLane to
EmergencyLane. The position of each lane segment in the world is defined by its start
(startPosition) and end points (endPosition). Any position of objects in the scene are

79

3. Problem Outline

La
ne

Bo
un

da
ry

La
ne

Se
gm

en
t

La
ne

Bo
un

da
ry

La
ne

Se
gm

en
t

La
ne

Bo
un

da
ry

LaneSegmentConnector

LaneSegmentConnector

... ...

StartConnector StartConnector

EndConnector EndConnector

EndConnector EndConnector
R
ig
ht
Bo

un
da

ry

Le
ftB

ou
nd

ar
y

R
ig
ht
Bo

un
da

ry

Le
ftB

ou
nd

ar
y

Figure 3.6.: Modeling of lanes segments, connectors, and boundaries.

defined in the world-centered coordinate system—universal transverse Mercator (UTM)
(cf. [Chr02]). The class LaneBoundary represents the left and right boundaries of each
lane. Each lane boundary has a type that corresponds to its lane marking. Possible types
for the lane boundary are solid, dashed, and unknown. Further properties address the
width, curvature, and the envisaged offset of vehicles on this lane. [Ulb+14]

The data element intersection models all permitted driving directions within road inter-
sections. Besides ongoing lanes within the intersection (bold lines in Fig. 3.4), additional
edges model turning lanes by connecting lane segment connectors of approaching lanes to
connectors of leaving lanes within the intersection (thin lines in Fig. 3.4). One incoming
lane segment may connect to several outgoing lane segments. Each extra edge represents
one turning lane with its corresponding rule of priority—e.g., left-before-right or traffic
light controlled. These edges solely define the possibility of turning but no concrete path
which vehicles have to follow while turning. The automated ego vehicle itself has to
determine its trajectory on these turning lanes without explicit paths under consideration
of national traffic codes.

However, large intersections may require the explicit modeling of turning lanes and their
paths. The model of lane segments and lane boundaries from Fig. 3.6 can be reused to
describe turning lanes and their characteristics, e.g., curvature and length. The lane
segments and boundaries enable to model the correct driving corridor for turning lanes
within intersections. Turning lanes with varying curvatures can be modeled by multiple

80

3.3. System Design

Scene

RoadSideDescription:AbstractElement

+start: UTM
+end: UTM
+obj: T

T

LaneSegmentConnector:
AbstractElement

*

1

*

1

*1

+rightBoundary
0..1

0..1

+leftBoundary
0..1

0..1

+startConnector

1 *

+endConnector

1 *

*

1

*

0..1

T->Sign
«bind»

Object:AbstractElement

+type: eObjectType
+position: UTM
+length: float
+width: float
+height: float
+refFrontBumper: float
+refRearBumper: float
+velocity: Vector2d
+acceleration: Vector2d
+jerk: Vector2d

SpeedLimit:AbstractElement

+velocity: int

TrafficLight:AbstractElement

+position: UTM
+status: int

Sign::AbstractElement

+position: UTM

SpeedLimitSign

+velocity: float

DirectionSign

+direciton: string

t->Speelimit
«bind» +T->Traffic Light

«bind»

T->Object
«bind»

AbstractElement

+timeStamp: TimeStamp
+quality: float
+age: float

UTM: Universal
Transverse Mercator

LaneSegment:AbstractElement

+laneId: int
+type: eLaneSegmentType
+startPosition: UTM
+endPosition: UTM
+width: float
+curvature: float
+offset: float

LaneBoundary:AbstractElement

+type: eLaneBoundaryType

RoadGraph:AbstractElement

Intersection:AbstractElement

+rule: eIntersectionRule

Model::Main

Figure 3.7.: UML class diagram of the Scene.

connected lane segments with individual but constant curvatures. The connections of
these individual lane segments incorporate lane segment connectors.
Objects, e.g., signs, vehicles, pedestrians, traffic lights, perceived by the vehicle’s sensors
have their position in world coordinates (UTM) but are also matched to corresponding
lanes segments by the template class RoadSideDescription (cf. [KH10]). For example, the
matching of signs and vehicles to lane segment will increase the efficiency of the situation
processing (cf. Section 3.3.1.2). The positions of objects on lane segments are defined by
a start and end point. The speed limit (cf. Fig. 3.7) is the only object in the scene that
has no position attribute. The speed limit defines a sector with limited velocity. This
sector can be defined based on the start and end point of the class RoadSideDescription.
Every class in the scene can have its own set of attributes. For example, traffic lights
can have their status as attributes—e.g., green, red or yellow—while traffic sings have
parameters based on their type. A direction sign will have a description while a speed
limit sign has the maximum velocity as an attribute. The set of objects displayed in
Fig. 3.7 for the scene is an example and does not intended to be complete. Additional
object types can be defined and added to the scene, e.g., parking prohibition zones or
stop signs at intersections.
Dynamic objects, e.g., vehicles, trucks, or pedestrians, are represented in the scene by
the class Object. The type of an object is defined by the enumeration eObjectType and
includes types for e.g., vehicles— including the automated vehicle itself—or pedestrians
(cf. Fig. 3.7). The position of each object is given in UTM and matched to the
corresponding lane by the class RoadSideDescription. Opposed to static objects, e.g.,
signs or traffic lights, dynamic objects autonomously change their position and orientation.
The movement of dynamic objects is described by the attributes velocity, acceleration

81

3. Problem Outline

x

z

y

origin of
ordinates

length

width

refToRearBumper refToFrontBumper

Figure 3.8.: Coordinate system, reference points, and measurements for vehicle position-
ing.

, and jerk. Each attribute is direction dependent and defined as a vector. As shown
in Fig. 3.8, the size of an object is denoted by its length, width, and height, while the
parameters refToFrontBumper and refToRearBumper define the distance of the front
resp. rear bumper to vehicle’s origin of ordinates. The origin of ordinates for vehicles
commonly resides in the center of the rear axle. Distances between environment objects
are measured between their respective origins of ordinates. Objects, e.g., pedestrians or
bicycles, may be modeled as distinctive subtypes with more specific attributes.
All elements of the scene inherit from the class AbstractElement. The class AbstractEle-
ment defines the attributes timeStamp, quality, and age. The attributes quantify the
adequacy of scene elements for representing their corresponding real-world objects be-
cause objects’ parameters in the scene are subject to uncertainty. The uncertainty of
parameters resides from the uncertainty in the perception of real-world objects by the
vehicle sensors. The attribute quality represents the confidence of the perception to have
correctly captured the real world object and its properties. The attribute timeStamp
addresses the age of scene elements with respect to its processing in the lane change
assistant by storing the time of the element’s last update. The attribute age addresses the
confidence for the element to correctly represent its real-world object based on the time
the element has been known. These attributes enable to reasoning about the validity of
stored information in the scene for the current real-world situation. New objects, objects
with lagging updates, or objects with low quality might not sufficiently correlate to their
corresponding real-world objects and have large deviations for the attribute values. In
the worst case, such parameter deviations might lead to collisions with other traffic
participants. Subsequent modules in the processing chain of the lane change assistant
incorporate this adequacy information about the scene in their decision making.
The scene holds a vast scope about the automated ego vehicle’s environment which might
not be required in full extension for the lane change assistant. Processing this unnecessary
data for each function would be inefficient. Objects and information with no impact on
the decision making of functions would have to be processed. For example, an ACC does

82

3.3. System Design

not require the processing of information about the traffic next and behind the automated
ego vehicle. Therefore, the scene is augmented by the situation assessment in order to
reduce the complexity of the environment representation to a level which is sufficient for
the behavior planning by the lane change assistant to process. The augmentation of the
scene by the situation assessment is described in the following section.

3.3.1.2. Situation Assessment

The situations assessment consists of two processing stages (cf. Fig. 3.3). First, the
goal- and value-independent scenes from the perception are transformed into function-
specific representations for each ADAS function. Afterward, these function-specific
representations are further assessed and augmented for the behavior planning. The
assessment and augmentation for each function includes the estimation of relevant
parameters that are not directly measured within the scene or are subject to uncertainty.

3.3.1.2.1. Scene Augmentation

The component for the function specific scene augmentation augments goal- and value-
independent scenes with function-specific and permanents goals of the vehicle and its
functions (cf. component function specific scene augmentation in Fig. 3.3). The result
is a function specific representation of the environment and vehicle itself. This specific
representation is denoted as situation and is specifically tailored for each particular
function. A situation encapsulates all necessary but sufficient information for the behavior
planning for one particular ADAS function (cf. Definition 2.9). Relevant elements of
the scene may be augmented with additional symbolic information resp. actions aspects
related to the particular function while irrelevant elements are omitted from the situation
(cf. [PD02; Sch11b]). This approach limits the complexity of the environment description
to a level that is necessary but sufficient for corresponding ADAS functions to process their
actions. The same scene may evolve into different situations based on the information
requirements of each function [Ulb+15].
As the scene encapsulates more information than lane change assistant requires for its
decision making, irrelevant scene elements are omitted from situations for the lane change
assistant (cf. Fig. 3.9). The lane change assistant requires only information of, e.g.,
position and type of the ego (same lane as the automated ego vehicle) and both adjacent
neighbor lanes as well as positions and movements of dynamic objects, e.g., other vehicles,
driving on these lanes inside the sensor ranges. For example, vehicles driving on distant
lanes are excluded from the situation because they cannot intervene with the lane changes
of the automated ego vehicle. Scenery elements other than the road and its lanes, e.g.,
trees or house, are not transferred into the situation. Even road signs may be excluded
from the situation if they are irrelevant for the lane change planning. Signs forbidding
lane changes are included in the situation while signs for priority rules or direction signs
are excluded (cf. Fig. 3.9).

83

3. Problem Outline

Situation

Lane:AbstractElement

+type: eLaneSegmentType
+fronEnd: float
+rearEnd: float
+width: float
+curvature: float
+offset: float

+rightBoundary0..1

0..1

+leftBoundary 0..1

0..1

LaneBoundary:AbstractElement

+type: eLaneBoundaryType

+lanes 1..3

1

+laneNumber

SpeedLimitSign

+velocity: float

AbstractElement

+timeStamp: TimeStamp
+quality: float
+age: float

FunctionState

+functionState: boolean
+functionRequirement: boolean
+averageDelay: float

VehicleState

+averageSensorRange: float
+averageLaneAge: float

«enumeration»
eEnvironment

SpeedLimit:AbstractElement

+velocity: int

Sign::AbstractElement

+position: Vector2D

1

1

1

1

+environment 1

1

Situation

Object:AbstractElement

+type: eObjectType
+position: Vector2D
+length: float
+width: float
+height: float
+refFrontBumper: float
+refRearBumper: float
+velocity: Vector2d
+acceleration: Vector2d
+jerk: Vector2d

*1

1

+ego

1

0..1

+objects

*

1 1

*1

Model::Main

Figure 3.9.: UML class diagram of the situation.

3.3.1.2.2. Data Structure of the Situation

Figure 3.9 displays the data structure of the situation as a unified modeling language
(UML) class diagram (cf. [OB12]). The situation is a partial mapping of the scene
with a narrow scope. Elements of the data structure for the scene are adopted for the
data structure of the situation (cf. Fig. 3.9). These elements are the lane segments,
the lane boundaries and relevant objects for the lane change assistant, e.g., vehicles or
signs. Other road graph elements, e.g., the lane segment connector and intersection, are
excluded from situations. With the transformation from scene to situation, the reference
point for the positioning of all objects changes from a world-coordinate system (UTM)
to positioning relative to the automated ego vehicle. In the situation, the positions of
all objects are stored as vectors relative to the origin of ordinates of the automated ego
vehicle (cf. Fig. 3.8).
Situations encapsulate all objects which are necessary for the representation of system
state and environment state at a certain time stamp (cf. Fig. 3.9). A situation contains
information about the automated ego vehicle (cf. Definition 3.5), a list of all vehicles in
the vicinity of the ego vehicle— objects—, a list of road lanes— lanes. Compared to the
scene (cf. Fig. 3.7), objects are directly associated to their corresponding lanes and not
via the template class RoadSideDescription (cf. Fig. 3.9). All object properties stored in

84

3.3. System Design

0
1
2

Left Neighbor Lane

Ego Lane

Right Neighbor Lane

IDDescription

Figure 3.10.: Lane number in the scene.

the situation still posses the uncertainty introduced by the imperfect vehicle sensors. The
reader is referred to [Ulb+15] for more detailed descriptions of terms scene and situation.

Definition 3.5 (Ego Vehicle). The term ego vehicle denotes the automated ego
vehicle which is (partially) controlled by the considered autonomous vehicle system.

In the situation for the lane change assistant, the road is represented as a set of three
lanes (cf. Fig. 3.7). Each lane is defined by the class Lane. For the lane change assistant,
the lane on which the automated ego vehicle is driving and its left and right neighbor
lanes are of interest (cf. Fig. 3.10). All other lanes are omitted in the situation for the
lane change assistant. Each of the three lanes has a fixed lane number. Each lane can be
directly referenced by its respective lane number. The lane numbers are assigned to the
three lanes in ascending order starting with the left lane. The ego lane always has the
lane number one. Therefore, the labeling of each lane does change with lane changes.
In case the automated vehicle performs a lane change to its left neighbor lane, the ego
lane of the initial situation before the lane change becomes the right neighbor lane and
obtains the lane number 2 while the left target lane of the lane changes becomes the new
ego lane with lane number 1 in the situation after the lane change. Each lane has a type
which will define if vehicles are allowed to drive on this lane. The possible lane types
correspond to the types used for lane segments in the scene. All three lanes—the ego
and the two adjacent neighbor lanes (cf. Fig. 3.10)—are always present in the situation
even though a lane might not exist—e.g., on two-lane highways. In case a lane does not
exist, the type of this lane is non-existing.
The lane parameters width, curvature, and offset are adopted from the scene (cf. Fig. 3.7).
Lane markings are of additional importance for lane changes because the markings can
constraint the lane changes. For example, a solid lane marking prohibit a lane change
past this lane marking. Each lane in the situation has a left (leftBoundary) and a right
(rightBoundary) marking. These markings corresponds the lane boundaries of the scene
(cf. Fig. 3.7). The type of each marking is defined by the enumeration eBoundaryType
and can be one of three types; solid, dashed, or unknown. The type unknown is used
for missing, unrecognized, not clearly visible, or unknown patterns of lane markings.
Opposed to the scene, a lane does not have a start and end position in world-system
coordinates but two attributes frontEnd and rearEnd. The attributes frontEnd and

85

3. Problem Outline

rearEnd define the length of each lane in relation to the position of the automated ego
vehicle. The lengths of lanes are limited by the maximum ranges of the vehicle sensors.
Elements from the scene which are relevant for planning lane changes, e.g., objects,
signs, and speed limits, are adopted in the situation. Relevant elements are directly
associated to their corresponding lanes and not via the RoadSideDescription as used
in the scene (cf. Fig. 3.7). A special case is the speed limit because only one possible
speed limit can be associated with each lane in the situation. Only the speed limit at the
current longitudinal position of the automated ego vehicle is considered for each lane.
All Elements in the situation which have been adopted from the scene still have the
information about their time of the last update, their age, and their quality introduced
by the class AbstractElement (cf. Fig. 3.9).
In addition to the road and its lanes, the lane change planning depends on objects in the
automated vehicle’s vicinity. These objects are represented by the class Object in the
situation (cf. Fig. 3.9). The objects in the scene adopt the information about position,
dimensions, velocity, acceleration, and jerk amongst other parameters of the dynamic
objects from the scene (cf. Fig. 3.7). Values for the attributes position are transformed
from the world-coordinate system (UTM) in the scene into the coordinate system relative
to the automated vehicle for the situation. Each object is assigned to one of the three
existing lanes in the situation—the ego and each adjacent neighbor lane. Objects on any
other lane than the ego or two adjacent neighbor lanes are omitted from the situation.
The assignments to lanes and the dimension parameters of objects enable the lane change
assistant to estimate the free driving and occupied areas of the road. The different types
of objects are defined by the attribute type and its enumeration eObjectType similar to
the scene. One of the possible types is the type vehicle. In the situation, the class object
with the type vehicle is identically used to define the automated ego vehicle as well as
other vehicles in its vicinity.
The situation can be seen as the compilation of relevant scene data and its interpretation
from a function-centric perspective (cf.[Rei+10]). Besides encapsulating relevant elements
from the scene, the situation assessment augments elements with additional symbolic
information resp. situational and functional aspects. This augmentation enables the
behavior planning to process appropriate maneuvers for the automated ego vehicle in the
current traffic situation. In the situation (cf. Fig. 3.9), special classes are introduced
for the representation of information about the vehicle state (VehicleState) and the
modules of the environment perception (FunctionState). Furthermore, the enumeration
eEnvironment reflects the current road domain in which the automated vehicle is currently
driving; possible values are highway, rural, and urban. The domain is derived from
information about the configuration of lanes, occurrence of special signs, and speed limits
in the situation. For example, highway signs directly indicate the start of the highway
domain whereas speed limits of less than 50 km

h are more likely to reflect urban areas.
The information about the current domain is necessary in order to restrict the activation
of the lane change assistant to highways.
The class FunctionState addresses the requirements which ADAS functions impose on the
correct processing by the environment perception. Each function defines its requirements
for the correct processing of perception modules, e.g., localization and scene modeling.

86

3.3. System Design

These requirements are stored in an array with fixed positions for each module in the
attribute functionRequirement. The actual state of each perception module is defined in
the attribute functionState. A comparison of the attributes in functionRequirement and
functionState will determine for a time stamp if all requirements of an ADAS function
are met by the environment perception and the data stored in corresponding situations.
Based on the time stamps of all objects from the scene, the average delay of elements in
the situation since their last update can be calculated and estimated. The average delay
enables to evaluate if a situation still corresponds to the current real world. The average
delay of situation elements is stored in the attribute averageDelay of FunctionState.

The class VehicleState is introduced to the situation in order to address the capabilities
and restriction of the vehicle and its hardware systems, e.g., sensors. VehicleState
encapsulates information about the quality of the perception hardware system including
the current average ranges of sensors and the average time which environment objects
have been tracked without any loss or interruption. The average sensor range is defined
in the attribute averageSensorRange. Information about the sensor ranges is necessary
for the estimations about the correctness and safety of the behavior planning. In case,
the sensor ranges are limited due to, e.g., fog or snow, the vehicle might be unable to
provide sufficient information about critical environment objects, e.g., hidden vehicles.
These objects could potentially interfere with lane changes of the automated ego vehicle.
In the worst case, the automated ego vehicle performs an unsafe lane change resulting
in a collision with fatalities. Furthermore, sensors can break or be covered by, e.g.,
dirt, resulting in faulty sensor data which must be ignored by ADAS functions for their
behavior planning. The attribute averageAge aggregates the age of relevant objects, e.g.,
vehicles, signs, and lanes (cf. class AbstractElement) in order to efficiently reason about
the consistency of their object tracking.

3.3.1.2.3. Situation Assessment and Situation Prediction

The planning of lane changes requires the assessment of the vehicle and its environment
as one comprehensive state— in following denoted as system state. Some aspects of this
system state can be directly observed from situations, e.g., distances and velocities of
surrounding vehicles, while other aspects have to be estimated or derived from these
observations. Unobservable aspects are commonly modeled as hidden (state) variables
(cf. [UM15a]). As the measurements included in the situations, the assessment of
the system state is subject to uncertainty that has been introduced by the sensor
perception. The component situation assessment and situation prediction transfers
measurement information, e.g., distances and velocities of vehicles, from the situation
into an aggregated belief about the system state. The belief about a system state
corresponds to the probability that a specific configuration of the situation is valid for
the current time step.

87

3. Problem Outline

Definition 3.6 (System State). The system state encompasses the internal state
of the autonomous vehicle system and the state of the system’s environment. The
internal state of autonomous vehicle systems is represented by the current values of
its internal parameters, and the state of the system environment is defined by the
positional and behavioral parameters of static and dynamic objects in the vicinity of
the autonomous vehicle systems.

For the planning of lane changes, Ulbrich and Maurer introduce two high-level parameters
which estimate the possibility and benefit for changes to the left resp. right neighbor
lane [UM15a]. The two parameters are independently evaluated for lane changes to the
left neighbor lane and lane changes to the right neighbor lane. Following the system’s
requirements (cf. Section 3.2), additional hidden parameters have to be calculated in
order to estimate these high level parameters [UM15a]:

Lane Change Possible Estimation: The estimation about the possibility of lane changes
has to consider the dynamic traffic situations, the infrastructure, and restrictions
by the system’s abilities (cf. the requirements in Section 3.2). Based on the relative
position of each object, objects have to identified that might interfere with a lane
change.
Besides the dynamic traffic also the infrastructure has to allow for lane changes. The
type of the Lane (cf. eLaneType in Fig. 3.7) must not restrict the automated vehicle
from driving on this lane e.g., emergency lanes. Additionally the corresponding
lane marking—the left marking for a lane change to the left neighbor lane (cf.
leftMarking in Fig. 3.7) and the right lane marking for a lane change to the right
neighbor lane (cf. rightMarking Fig. 3.7) must allow lane changes to these lanes,
e.g., the marking type dashed.
In dense traffic, lane changes might require the automated ego vehicle to position
itself adjacent to the most appropriate gap between vehicles on the target lane.
Therefore, positions of surrounding vehicles are compared with each other in
order to estimate gaps between them. The automated ego vehicle has to position
itself adjacent to an appropriate gap before its lane change. This relates to the
requirement FR_3 in Section 3.2.1.1.
Furthermore, permanent and temporal limitations of the vehicle, e.g., limited
perception ranges of sensors, have to be considered. Vehicles and the road itself
might obstruct the viewing range of sensors and prohibit the detection of vehicles
which could interfere with a safe lane change.[UM15a]

Lane Change Beneficial Estimation Advantages of lane changes have to be evaluated
based on the potential relative velocity gains in different regions around the ego
vehicle. The flow of the traffic and the resulting velocity and time gains have to
be estimated for each lane. A lane change to a neighbor lane which traffic flow is
overall slower might not be more beneficial as remaining on the current lane behind
a slow vehicle.[UM15a]

88

3.3. System Design

Measurements from observable Variables
(Situation)

Time step: t− 1

Measurements from observable Variables
(Situation)

Time step: t

Hidden State Variable St−1 Hidden State Variable St

Figure 3.11.: Graph of a Dynamic Bayesian Network.

All beneficial estimations have to be performed under consideration of long-time
disadvantages resulting from immediate behavior changes. Lane changes might be
beneficial in all situations even though they might be possible. For example, if
the automated ego vehicle passes a slower vehicle only to later miss its intended
highway exit due to dense traffic, the initial benefit of the lane change will be
mitigated and results in an overall disadvantage. Such a lane change would neglect
the route processed by modules of the navigation layer (cf. Fig. 2.7) and result in
a less efficient alternative route. [UM15a]

All estimations about the possibility and benefit of lane changes have to consider the
inherent uncertainty in the situation explicitly (cf. Section 3.3.1.1). The processing chain
of the lane change assistant might accumulate uncertainties and deviations in its data
leading to potential misinterpretation of the current environmental situation. In the
worst case, improper lane changes for the current real-world situation might threaten the
life of the vehicle’s passengers, other vehicles, and their passenger.
Bayesian networks [FGG97] are able to explicitly consider the uncertainty of situation
data in the estimation of the system state (cf. [UM15a]). While some state parameters
are directly measurable, e.g., the vehicle’s velocity, other parameters are hidden. These
non-measurable state parameters are described as hidden state variables by the Bayesian
networks. Hidden state variables are estimated from the other hidden state variables
and measurements by conditional probability. Bayesian networks can be represented
as directed acyclic graph where each node represents a hidden state variable and edges
between these nodes depict their dependencies (cf. Fig. 3.11).[UM15a]
The situation assessment and situation prediction for the lane change assistant uses a
dynamic Bayesian network for the processing of an aggregated belief about the system
state (cf. [DGH92]). A dynamic Bayesian network extends a regular Bayesian network
by introducing temporal dependencies among nodes (cf. Fig. 3.11). Arbitrary many
previous values of a hidden state variable can be incorporated into the estimation of
this variable for the current time step. For the lane change planning, the last value
of a variable is considered. The value of state variable St at time step t is estimated
based on the value of that particular state variable St−1 at the previous time step t− 1

89

3. Problem Outline

and the latest measurements Vt = {Vt (Oi) | Oi ∈ O, 1 < i < n} of the observable state
variables O = {O1, . . . , On}, e.g., object distances (cf. Fig. 3.11 [UM15a]). The result
of the dynamic Bayesian network for the lane change assistant is the aggregated belief
about the current system state. [UM15a]
Measurements of the lane change assistant system include continuous (e.g., the vehicle
velocity) and discrete parameters (e.g., the possibility of a lane change). Dynamic
Bayesian networks usually consider only discrete random variables. For the lane change
assistant, continuous and discrete state variables have to be considered. It is not possible
to explicitly define the conditional probability of dependencies to other variables for
continuous state variables. Continuous state variables have to be represented by finite
values ranges under the usage of a probability density function (cf. [Par62]). A sigmoid
function and the cumulative distribution function of the normal distribution are used for
the lane change assistant.[UM15a]

3.3.1.3. Behavior Planning

The behavior planning uses the believes about system states from the situation assessment
to derive behavior decisions (cf. Fig. 3.3). Under the complexity of the real world and
the uncertainty from imperfect sensors, the behavior planning of the lane change assistant
has to be predictive, consistent, deterministic, and punctual (cf. [UM13]). Therefore, the
behavior planning has not only to consider the current and past system states but also
predict future system states and estimate the benefit of possible actions for future states
under real-time constraints. In [UM15b], Ulbrich et al. propose a planning framework
which allows the behavior planning of lane changes in uncertain, mixed-integer state
spaces by using partially observable Markov decision process (POMDP) (cf. [KLC98]).
A reward model determines a reward for each possible action in a given system state
while a prediction model predicts future system states based on the application of these
actions on the given system state. As a result, an optimal tactical action for current and
future system states is assessed and commanded to the trajectory planning module of
the stabilization.
Markov decision processs (MDPs) are a general model for planning and decision making
problems under uncertainty (cf. [Bel57]). The planning incorporates the modeling of
rewards r ∈ R for the application of actions u ∈ U in a state x ∈ X and a prediction
model which predicts the state xi+1 for the application of action u in state xi. The
goal is to find an optimal sequence of actions RT = E

[∑T
T =0 γ

T ∗ rT
]
which maximizes

the expected reward rT with a discount factor γT for the time horizon T . Therefore,
MDPs can be applied to the planning of lane changes but extensions for predictability
and real-time computation are necessary. Not all true states of the system are directly
observable (cf. Section 3.3.1.2). POMDPs address this issue by introducing the belief
bel (xt) about the state x ∈ X in which the system resides at time t. POMDPs model
the sets of states X, actions U , and observations Z as value-discrete. For the lane change
assistant, the state and observation have to be high-dimensional, mixed-integer spaces
with uncertainties as they occur in the real world. Only the set of actions R remains
value-discrete as discrete choices of actions. [UM13]

90

3.3. System Design

POMDPs have a high computational complexity which generally impedes their usage
in real-time control applications [UM15b]. For the lane change assistant, the efficiency
of action selection by POMDP can be improved by incorporating knowledge about the
domain. Following [UM15b], this domain knowledge encapsulates:

1. A high planning accuracy is only evident for the immediate future. Long-time
predictions or even infinite planning horizons are not necessary because the envi-
ronment autonomously changes without any control of the automated ego vehicle.
For the lane change assistant, the planning horizon for lane changes ranges between
100 ms and 30 s [UM15b].

2. The set of action alternatives for the automated ego vehicle is finite. There are
many variations of the same maneuver but only a few mutually exclusive, discrete
action alternatives exist. For the lane change assistant, the set of actions U is finite
and contains 13 discrete action alternative (cf. [UM15b]). These action alternatives
are lane change (LC), FinishLc, PrepareLc, IndicateLc and AbortLc to the left and
right lane as well as NormalDriving, AbortLcIndication and AbortLcPreparation.
Preparation describes all activities before a lane change including, e.g., the proper
positioning in the current lane and Indicate the activation of the direction indicators.

3. A subset of system states Xc ⊂ X is free of uncertainty. These states significantly
reduce the complexity of the model and even rule out some action alternatives.

4. The planning accuracy becomes less important for future states because only the
immediate, next action will be commanded to the trajectory planning module.
Detailed plans for the future are not necessary as they will be recalculated in the
next time step.

Tree-based policy evaluation is used for the planning of lane changes under the consider-
ation of the available domain knowledge. The tree-based policy evaluation understands
the state space as a tree of beliefs bel (x) over states x ∈ X and actions u ∈ U . Such a
tree of beliefs is presented in Fig. 3.12 (cf. [UM15b]). The figure abstracts that one action
might result in multiple state beliefs. The maximal height of the belief tree corresponds
to the finite planning horizon T . [UM15b]
The root of this tree is the belief about the current system state bel (x0) which has been
provided by the situation assessment (cf. Section 3.3.1.2.
Each sequential layer represents the possible beliefs bel (xt+τ) about states xt+τ for
the next time stamp t + τ which result from the application of actions ui ∈ U . The
application of an action ui ∈ U for a state belief bel (xt) results in a reward r (bel (xt) , ui).
In contrast to the single value prediction in classical POMDP (cf. [KLC98]), the reward
r for behavior planning aggregates the lane change possibility, benefit, and gap selection
dimensions in one single vector. This vector representation allows the estimation of each
dimension’s impact on the total reward. Various aspects of the system’s state belief
bel (xt) are maintained by a decision hysteresis.[UM15b]
Actions resulting in unreasonable policies (sequence of actions), violating, e.g., require-
ments or national traffic codes, can be ruled out immediately. In Fig. 3.12, the actions

91

3. Problem Outline

bel (x0)

bel (x3
1)bel (x2

1)bel (x1
1) bel (x4

1) bel (xn1)

u1: LC left

u2: Idicator left u4: LC right

u3: Idicator right
u5: Normal

. . .

...

bel
(
x1
T−1

)
bel

(
xnT−1

)
bel

(
xn−1
T−1

)

u1: LC left
u3: Normalu2: Indicator left

. . .

bel (x2
T)bel (x1

T) bel (x3
T)

u6: Abort LC
u1: LC left u7: Finish LC

bel
(
xn−1
T

)
bel (xnT)

u6: Abort LC u6: Abort LC

. . .

R1 = −500 R2 = +100 R3 = +150 Rn−1 = +40 Rn = ±0

t0: Current time step

t1: Planned ahead
for one time step

tT−1: Planned ahead
for T-1 time steps

tT : Planned ahead
for T time steps

Figure 3.12.: Policy tree of (predicted) state beliefs and actions [UM13].

u1 and u4 for the current state belief bel (x0) are ruled out because lane changes must
not be performed without its previous indications by flashing the direction indicators
(action u2 and u3). This significantly reduces the complexity of the belief tree and its
evaluation. [UM15b]
The prediction of future beliefs about system state can be depict as a function p :
bel (xt+τ) = p (bel (xt) , ui) based on the current state belief bel (xt) and an action ui. The
prediction has to incorporate various situations aspects, including, e.g., objects movements,
vehicle interactions, and vehicle behavior. All these aspects have to represented by
models that offer sufficient accuracy in reasonable time. For the lane change assistant,
an improved version of the intelligent driver model of Shen et al. (cf. [SJ12]) has
been used. The model estimates the movement and position changes of vehicles in the
longitudinal direction by predicting their longitudinal acceleration and velocities. For
lateral movement, the prediction model assumes vehicles to maintain their lateral offset
towards their current lanes. [UM15b]
The finite planning horizon T for the lane changes assistant bounds the depth of the
belief tree. For further reduction of the computational requirements, the size of time
steps within the belief tree progressively increases with each step until the planning
horizon T is reached. If n = 1, . . . , n is the number of time steps for the planning horizon
T and δt the initial time step, then 〈τ1 = 1 · ∆t, τ2 = 2 · ∆t, . . . , τn = n · ∆t〉. This
multi-resolution approach to the behavior planning allows to reduce the computational
complexity further.[UM15b]
The selection of the action ui ∈ U for the current time step t is based on the past with the
highest total reward throughout the belief tree. The total reward Rj is calculated for each

92

3.3. System Design

Figure 3.13.: UML class diagram of the target point.

path through the belief tree from the root to the fringe nodes 〈(x0) , . . . , bel (xm)〉 where
m corresponds the planning horizon T (cf. Fig. 3.12). From all paths, the path with the
highest total reward is selected and its action ui for the time step t = 0 is transformed
into a target point—a geo-spatial point in front of the vehicle (cf. Definition 3.7). A
target point in the ego lane or no target point at all indicate that no lane change is
envisaged by the behavior planning while a target point in one of the neighbor lanes
indicate a lane change to that particular lane.

Definition 3.7 (Target Point). A target point is a geospatial point in front of
the vehicle and represents the target destination for the trajectory planning by the
stabilization.

As shown in Fig. 3.13, geo-spatial position of a target point is enriched by further
information about envisaged velocity, acceleration, and its type. The attributes velocity
and acceleration enable ADAS functions to pass a target velocity and target acceleration
to the trajectory planning of the stabilization (cf. Fig. 5.1). These parameters are
essential for the ACC but are also used for lane changes by the lane change assistant.
The type of a target point defines how the ADAS function envisages the stabilization
modules to process the target point. The enumeration eTargetpointType defines the
possible types for target points and includes e.g., following behind other vehicles (Follow),
drive at desired velocity (Velocity), and drive to a defined position (Position) on the
ego lane. For lane changes to right resp. left neighbor lane, two identical sets of types
are defined (LaneChangeLeft and LaneChangeRight). Each set encapsulates a Follow,
Velocity, and Position type. While the Velocity type correlates to lane changes with
defined velocities, the Follow and Position types relate to lane change with respect to a
defined object resp. position on the particular neighbor lane.
As shown in Fig. 3.3, multiple ADASs are simultaneously executed in an automated
vehicle. For the highway pilot, functions, e.g., ACC and LKAS are deployed alongside the
lane change assistant in order to autonomously drive behind other vehicles in the current
lane. Each function independently processes a specific action for the current situation
and outputs a corresponding target point. From the set of target points one final target
point is processed and commanded to the trajectory planning of the stabilization (cf.

93

3. Problem Outline

(a) Single LIDAR sensor. (b) Multiple limited LIDAR sensors.

Figure 3.14.: Configuration of LIDAR Sensors for a 360◦ field of view.

selection in Fig. 3.3). The trajectory planning processes the trajectory for the automated
ego vehicle from the final target point. The final trajectory might not incorporate a
lane change to a neighbor lane even though the lane change assistant has planed a lane
change. [Ulb+16]

3.3.2. Technical Architecture
Beside the functional architecture, a technical architecture is specified in the system
design. The technical architecture defines a set of hardware components, e.g., sensors,
actuators, and ECUs, which are required for the execution of the functional components.
The technical architecture of the lane change assistant integrates a sensor configuration
(cf. Section 3.3.2.1) with a execution platform for the system’s functional components
(cf. Section 3.3.2.2).

3.3.2.1. Sensor Configuration

The lane change assistant has to sufficiently perceive the vehicle’s environment in order
to make safe decisions about lane changes. While an ACC solely considers preceding
vehicles in the same lane, the lane change assistant has to consider vehicles positioned
all around the automated ego vehicle in near and far distances.
Following the functional architecture (cf. Fig. 3.3), one sensor might be sufficient to
fully perceive the automated vehicle’s environment. LIDAR sensors exist, e.g., Velodyne
HDL-64E (cf. [MS11]), which are able to provide a 360◦ horizontal view around the
automated vehicle (cf. Fig. 3.14a). In Fig. 3.14, each sensor unit is represented as
a rectangle or circle for its position in the vehicle and its occupancy of the vehicle’s
environment— range of view—is depicted as a colored cone. Cones of multiple sensors
may overlap representing the overlapping of their perception fields. The view around the
vehicle is only limited in the vertical direction by the aperture of these sensors. For the

94

3.3. System Design

Velodyne HDL-64E sensor the vertical field of view ranges from +2◦ to −24.9◦. Such
sensors can detect all vehicles in the vehicle’s vicinity.
Another approach for perceiving the environment of the vehicle is the installation of
multiple sensor modules around the vehicle with limited fields of view (cf. Fig. 3.14b).
A single sensor module with limit fields of view is incapable of perceiving the complete
vicinity of the automated ego vehicle. An aggregation of data from limited sensor modules
all around the vehicle enables the generation of a complete view of the vehicle environment.
The aggregation of data from multiple sensor modules requires to identify and relate the
incidences of environmental objects in the fields of view of multiple sensors—especially
for sensors with overlapping fields of view (cf. Fig. 3.14b). LIDAR sensors are not only
able to detect large dynamic objects, e.g., other vehicles, but also smaller objects, e.g.,
road markings. Therefore, LIDAR sensors allow the detection of the road and its driving
lanes (cf. [Zei13]) necessary for the planning of lane changes. Other prevalent sensors for
the perception of the vehicle environment are RADAR, ultrasonics, and camera sensors.
The data generated by sensors for a 360◦ view around the automated ego vehicle is
enormous. With the increasing level of automation (cf. Fig. 2.4), more diverse sets of
sensors have to be deployed in order to perceive the complete vicinity of automated ego
vehicles consistently. Additional ECUs have to be introduced in automated vehicles for
processing requirements of the increasing sensor data (cf. environment perception in
Fig. 3.3) and their complex analyses by automation functions. The following section
describes the architecture of such an execution platform for automated vehicles.

3.3.2.2. Execution Platform

Prior to ADAS, E/E architectures of vehicles were subject to different vehicle subsystems
(domains), e.g., powertrain, bodywork, chassis, or HMI (cf. [SZ13]). Each subsystem has
been developed independently from the other subsystems. These architecture emerged
with the introduction of stabilization functions, e.g., ABS and ESC. These E/E archi-
tectures distributed the vehicle functions over more than 80 ECUs in vehicles. ECUs
are robust processing units for embedded systems which withstand large temperature
differences but offer only limited processing and data storage capabilities. The vehicle
functions are common their ECUs are highly optimized in order to save costs. For the
exchange of data, ECUs of subsystems are connected with each other by communication
bus systems (cf.[Bro03]), e.g., CAN, media oriented systems transport (MOST), or
FlexRay (cf. [Fle05]). Gateways, which can be seen as specialized ECUs, interconnect
the different subsystems and organize the message transfer between of their sub-networks
(cf. [Kim+08]).
Figure 3.15a (cf. [SZ13]) shows the basic structure of such E/E architectures. Blocks
denote hardware components, e.g., ECU or sensor units, while lines between blocks
represent physical connections between hardware components. We do not restrict the
data flow directions between hardware components over physical connections and do not
differentiate the type of physical connections— if they are proprietary direct connections
or standard bus systems, e.g., CAN or MOST. In case the type of physical connection is
defined and important, we label the corresponding connection with its type. In reality,

95

3. Problem Outline

Powertrain Bodywork Chassis HMI

Central
Gateway

Powertrain
DCU

ECU

ECU ECU

ECU

Bodywork
DCU

ECUl

ECU ECU

ECU

Chassis
DCU

ECU

ECU ECU

ECU

ECU

ECU

ECU ECU

ECU

(a) Execution platform aligned by vehicle subsystems.

Powertrain Bodywork Chassis HMI

External
Gateway

Powertrain
DCU

ECU

ECU ECU

ECU

Bodywork
DCU

ECU

ECU ECU

ECU

Chassis
DCU

ECU

ECU ECU

ECU

HMI
DCU

ECU

ECU ECU

ECU

Backbone Bus

(b) Execution platform with domain controller units.

Figure 3.15.: Evolution of E/E architectures.

E/E architectures vary between car manufacturers and are more complex then presented
in Fig. 3.15a (cf. [Wed16]).
The lane change assistant is more processing-intensive than vehicle functions for the vehicle
stabilization, e.g., ABS and ESC, and require information from all vehicle subsystems
and even external sources, e.g., road infrastructure or Internet services (cf. [Ben+14;
Ger+14]). Recent E/E architectures in the automotive domain introduce domain control
units (DCUs) in subsystems for the execution of today’s and future complex vehicle
functions, e.g., the lane change assistant (LCA) (cf. Fig. 3.15b) (cf. [Som+13]) DCUs
address the requirements for high computational power and large storage capabilities
under reasonable costs by incorporating hardware components from customer electronics,
e.g., ARM central processing units (CPUs) or Ethernet networks.
Each DCU is connected to the existing ECUs and sensors of its subsystem via the existing
bus networks. The DCU acts as the master of its subsystem and gathers, e.g., sensor
data, and forwards this data to other functions within its subsystem or other subsystems.
The DCUs of different subsystems exchange their data via a high speed backbone, e.g.,
Ethernet (cf. Fig. 3.15b). The lane change assistant is executed on the DCU in the
chassis resp. safety subsystem but has access to all required data for the processing of its
environment representation and decision making (cf. Fig. 3.3). The result of its decision
making is transmitted for execution to the other subsystems via the high-speed network.
The idea of centralization within automotive E/E architectures can be evolved to the
integration of multiple subsystems on one single DCU or to an architecture with only one
large vehicle control unit which integrates and processes all complex and cross-cutting

96

3.3. System Design

PC 1

PC 2

Engine
Control

Stereo
Camera

E
th

ern
et

Gateway

Figure 3.16.: Processing network of the prototype vehicle.

functions of one vehicle. Furthermore, functions are envisaged to communicate and share
data with Internet services outside the vehicles (cf. [Ger+14]).
None of the prototype vehicles (cf. Fig. 3.16) in the case study incorporate one of the
presented E/E architectures (cf. Fig. 3.15). Instead, the original hardware equipment
of a production vehicle is extended by two customer computers, a gateway computer,
and an Ethernet bus. The original hardware components of the production vehicle, e.g.,
ECUs and CAN buses, process the original vehicle functions of the prototype vehicle,
like ESC or automatic parking assistant. The two customer computers are introduced as
the execution platform for the software implementation of the highway pilot and lane
change assistant (cf. Fig. 3.16). The environment perception of the lane change assistant
is executed on the first computer while the situation assessment and behavior planning
of the lane change assistant and other ADAS, e.g., ACC and LKAS, are executed on the
second computer (cf. PC 1 and PC 2 of Fig. 3.16).
The two computers are connected via an Ethernet network with each other for the
exchange of function internal data, e.g., the scene, and with the gateway computer for
the communication with vehicle sensors and actuators, e.g., ultrasonic sensor, steering,
brakes, and engine (cf. Fig. 3.16). The gateway connects the execution platform of the
lane change assistant with the existing communication systems of the vehicle, e.g., CAN
and FlexRay. Sensors, which have been installed particularly for the lane change assistant,
are also connected to the gateway computer. Sensor data is received from the vehicle
sensor and converted by the gateway into the appropriate data format for the processing
of environment perception. Actions by the lane change assistant are transferred via the
gateway to the vehicle actuators as their inputs.
The execution platform of the prototype vehicle for the lane change assistant does not
focus on sustainability but adaptability and changeability in order to enable efficient
evaluation, adaption, and improvement of the system and its algorithms early in the
development. The customer computers allow fast development iterations of the lane
change assistant without flashing its software code for every new version. Flashing ECUs
is a time consuming and costly task—especially under consideration of the typical high
frequency of changes to functional components in the early stages of system development.
As the necessity for changes of the lane change assistant decreases in later stages of the

97

3. Problem Outline

development, the hardware platform of the new prototype vehicles may converge to the
final hardware used in production vehicles.
The interaction of the lane change assistant with its environment imposes potential risks
for itself, its passenger, and all objects and persons in its vicinity. Therefore, it is necessary
to address the correct implementation of safe system behavior in order to mitigate these
risks. The presented lane change assistant has been straightforwardly designed. The
presented sensor configuration and execution platform are not applicable for automated
driving under consideration of safety aspects (cf Definition 2.2). Especially for higher
level of automation (cf. Fig. 2.4), a single sensor configuration (cf. Fig. 3.14a) would
represents a single point of failure for a complete loss of the environment perception.
Potential failures and risks have to be identified and mitigated for the lane change
assistant in order to ensure the safety of the lane change assistant during operation in
the real world (cf Definition 2.2). The safety analysis is exemplarily performed in the
following section on the presented system design concept for the lane change assistant.

3.4. Safety Analysis

The lane change assistant is a safety-critical system which makes mission- and safety-
critical decisions on behalf of humans while driving through traffic. These decisions may
potentially threaten the safety of other vehicles, objects, and persons by contributing
to accidents [Bei12]. For the operation in public traffic, all decisions of the automated
vehicle must be safe in all common and critical situations as well as in the presence of
internal system faults and loss of hardware components. System faults must not lead to
critical situations in which any person or object is harmed (cf. Definition 2.12).
An established safety principle for safety-critical systems, like the lane change assistant, is
the assumption that these systems are unsafe unless convincingly argued otherwise [KW16].
The safety of these systems has to be shown and not to be assumed. Therefore, product
liability, as well as the functional safety, has vital importance for car manufacturers.
National authorities—at least in Germany— force car manufacturers to sufficiently prove
and document the safety of their vehicles and systems before their commercialization.
The safety analysis uses established methods, e.g., hazard and operability study (HAZOP),
fault tree analysis (FTA), and failure mode and effect analysis (FMEA) among others
(cf. [Ise11]), in order to systematically identify, analyze, and classify hazards for these
investigated systems. A hazard is a system state or event which impose potential harm
for objects and persons (cf. [Int09a]) and generally corresponds to a malfunction of the
system (cf. Definition 2.141). For example, the malfunction of vehicle brakes imposes
potential harm for the vehicle’s passengers as well as other vehicles, their passengers,
and pedestrians in the vicinity of the malfunctioning vehicle due to the increased risks of
collisions. For each hazard, a least one corresponding safety measure has to be defined
which reduce the increased risks by the hazardous system to an acceptable level in order
to maintain the system safety (cf. [SZ13]). Otherwise, the lane change assistant is unable
to meet the legislative standards concerning, e.g., producer and product liability.

98

3.4. Safety Analysis

Definition 3.8 (Hazard). A Hazard is a system state or event which impose potential
harm for objects and persons (cf. [Int09a])

In the automotive domain, the safety standard ISO 26262 is the predominant safety
standard for the engineering of safety-critical systems— include their safety analysis
(cf. [Int09c]). National authorities widely accept results from a safety analysis following
the safety standard ISO 26262 as evidence for the overall safety of vehicles and their
systems. The safety standard ISO 26262 standardizes a safety lifecycle which addresses
the systems’ functional safety by systematically construct arguments for the absence of
unreasonable risk due to hazards caused by malfunctioning behavior of E/E systems
for automobiles up to 3.5 t. Such an argumentation is denoted as safety case by safety
standard ISO 26262 (cf. Definition 3.9).

Definition 3.9 (Safety Case). “An argument that the safety goals for an item [, the
system (part) under investigation,] are complete and satisfied by evidence compiled
from work products of the safety activities during development” [Int09a].

Any safety analysis commences with the definition of the system under investigation
(named item in the safety standard ISO 26262) including the definition of system parts,
environment situations, and events which are explicitly excluded from the analysis. Here,
the system under investigation is the automated vehicle with the focus on the lane change
assistant as the subsystem. The lane change assistant as the item under investigation
is analyzed in the hazard identification and risk assessment for the identification of
safety-critical hazards and the definition of corresponding safety measures (cf. [Bir+13]).
In the following sections, the hazard analysis and risk assessment exemplary performed.
An exemplary FTA is created for the lane change assistant on the example of a collision
with a vehicle in front while changing the lane.

3.4.1. Hazard Analysis and Risk Assessment
The hazard identification by the hazard identification and risk assessment requires
experts to define potential operational situations and operating modes for the lane
change assistant. Operation situations and operation modes are aggregate in hazardous
scenarios (cf. Definition 3.10). The behavior of the lane change assistant is analyzed for
the hazardous scenarios in order to identify hazardous events. A Hazardous event is a
combination of a system hazard and operational situation [Int09a].

Definition 3.10 (Hazardous Event). A Hazardous event is a combination of a
system hazard and operational situation [Int09a].

Each identified hazardous event is evaluated and classified based on its severity— ranging
from no injuries to life-threatening injuries—, probability—ranging from incredible
to highly probable—, and controllability—ranging from controllable in general to

99

3. Problem Outline

uncontrollable. The classifications for severity, probability, and controllability result in
the joint classification as automotive safety integrity level (ASIL) for the hazardous event
(cf. [Int09a; Int09c]). In conjunction with the ASIL classification, a high-level safety
goal is defined for each hazardous event from the hazard analysis and risk assessment. A
safety goal represents a top-level safety requirement which defines functional objectives
required to mitigate the corresponding hazard and its risks (cf. Definition 3.11). However,
the technical implementation of necessary safety measures is not addressed by safety
goals (cf. [Int09c]). All safety goals are documented in the system’s safety concept. One
safety goal may address more than one hazardous event but can only have one ASIL
assigned. Therefore, the most severe ASIL is selected from the set of possible ASIL.

Definition 3.11 (Safety Goal). A safety goal represents a top-level safety requirement
which defines functional objectives required to mitigate the corresponding hazards
and risks but does not address the technological implementation of necessary safety
measure (cf. [Int09a]).

For the lane change assistant, hazardous scenarios include collisions with other traffic par-
ticipants or infrastructure objects resulting in casualties or even fatalities. While changing
lanes on highways, the automated vehicle has to consider other traffic participants, e.g.,
vehicles driving in front of the automated ego vehicle, next to it, or approaching from
behind, and objects and must not collide with them. Each of these dangerous scenarios
can be investigated independently but lead to similar high-level safety goals— exclude
any collision with other traffic participants. In all these scenarios, a collision imposes
the risks for potential fatalities. The ASIL classification for these hazardous events are
predominantly ASIL D (cf. [Int09c]). This classification especially applies to higher levels
of automation in which the driver is not available to take over the control of the vehicle
and mitigate the hazardous event (cf. Fig. 2.4).
Safety goals define top-level functional objectives for the mitigation of hazards but do not
define necessary safety measures in terms of technological solutions. The safety standard
ISO 26262 introduces functional and technical safety requirements for the refinement
of safety-goals and allocation of necessary safety measures to (sub) components of the
system. Functional and technical safety requirements are described in the following
section.

3.4.2. Functional and Technical Safety Requirements
The safety standard ISO 26262 introduces functional and technical safety requirements for
the refinement of safety-goals and allocation of necessary safety measures to (sub) com-
ponents of the system. Functional safety requirements specify necessary safety measures
independent of their technical implementation (cf Definition 3.1). Each functional safety
requirements is allocated to one or more functional components of the system’s architec-
ture. The set of allocated functional safety requirements for one functional component
defines the safety measures which this component has to implement. All functional safety
requirements are documented in the functional safety concept (cf. [Int09c]).

100

3.4. Safety Analysis

Definition 3.12 (Functional Safety Requirement). “The specification of implemen-
tation-independent safety behavior, or implementation-independent safety measure,
including its safety-related attributes” [Int09a].

In the development, functional components are designed and implemented as software
and hardware components (cf. Section 3.5). Therefore, functional safety requirements
are further transformed into technical safety requirements which are allocated to the
software and hardware components of the system. Technical safety requirements refine the
functional safety requirements by describing a concrete technical implementation of the
corresponding safety measures under the usage of technological solutions, e.g., diagnosis
functions or hardware redundancy. All technical safety requirements are first documented
in the technical safety concept and later by the corresponding software and hardware
safety requirements specifications. These specifications contain the information about the
verification and validation of safety requirements and the corresponding implementation
(cf. [Int09e] and [Int09f]). Safety requirements resemble additional requirements for
the system that have to be considered in the design, implementation, verification, and
validation of the lane change assistant (cf. [HRS98]).

Definition 3.13 (Technical Safety Requirement). “The requirements derived from the
associated functional safety requirements to provide their technical implementations”
[Int09a].

A suitable approach for the refinement of safety goals to (sub) components among others
is the FTAs. The FTA enables to refine the safety goal—not collide with other vehicles—
to functional and technical safety requirements and allocate them to components of the
lane change assistant. In the following section, a FTA is presented for the hazardous
event of a collision with a preceding vehicle while changing the lane.

3.4.3. Fault Tree Analysis
FTA is a deductive failure analysis method which uses binary logic to analyze how low-
level fault events of the system components contribute to hazardous events of the overall
system (cf. [Lee+85]). Subordinate Faults are related via AND or OR gates with their
superordinate fault. Subordinate faults lead to the superordinate fault independently
(OR) or have to occur concurrently (AND). Therefore, the FTA considers single point of
failure as well as combinations of faults—multiple points of failure—that may result in
hazards.
For the lane change assistant, a scenario is exemplarily analyzed. The scenario examines
the collision of the automated vehicle with a preceding vehicle driving in front while
it is changing the lane. Figure 3.17 presents the example FTA for this scenario. The
top-level event is the collision with the vehicle driving in front which corresponds to the
negation of the safety goal; the automated vehicle must not collide with other vehicles
while changing the lane.

101

3. Problem Outline

Collision

Vehicle
not detected

Sensor Error

Broken
Sensor

Polluted
Sensor

Perception Error

Insufficient
Sensor Input

Wrong Object
Classifiation

Perpcetion ECU
Break Down

Faulty Planning of
Lane Change
Trajectory

Vehicle ignored No Adjustment of
Lane Change Planning

ADAS ECU
Break Down

Lane Change
Planed

Incorrect
Trajectory Execution

Engine Over-
Torque Brake Failure

Legend:

Event

Basic Event

OR Gate

AND Gate

Figure 3.17.: Exemplary fault tree for collision with a vehicle in-front.

As shown in Fig. 3.17, the FTA for the lane change assistant commence with a top-level
fault event—the negation of the safety goal—and decompose this top-level event into
tree of minor fault events (cf. [Eri05]). The leaves of the faults tree represent basic,
external, and undeveloped fault events. Basic fault events are allocated to components of
the system and, therefore, represent faults of these components (cf. Definition 2.12). The
identification of component faults enables the definition of appropriate safety measures
for these components. Safety measures may include methods, e.g., fault detection and
failure mitigation, fault tolerance methods, as well as the transition to safe states among
other solutions (cf. [Ise11]). A safe state is a state of the system in which any risks for
the system and its environment is excluded (cf. Definition 2.8).
The presented FTA in Fig. 3.17 is an example and is not supposed to complete. Other
faults may be relevant for the lane change assistant. Nevertheless, the minor faults of
the FTA for the collision with a preceding vehicle while performing a lane change are
described in the following sections.

3.4.3.1. Faults for the Perception of the Vehicle

As depict by the most left subtree of the example FTA in Fig. 3.17, faults prohibiting
the detection of objects and vehicles could be an error of the sensor hardware or of the
perception functions (cf. Fig. 3.3). A sensor may break down and provide no data at all,
or a sensor may be polluted and only provide partially valid sensor data. The system
would not be able to sufficiently monitor its vicinity considering the system architecture of
the lane change assistant (cf. Fig. 3.3). Besides faults of the sensor hardware, perception
functions may faulty processes correct data from the sensor. The provided data by a
polluted sensor might not provide sufficient correct representation for the real world for
the correct identification of the preceding vehicle by the perception functions. Another
fault for the perception could be the wrong classification of the preceding vehicle. This
could lead the function specific scene augmentation to ignoring the vehicle in front in
situation (cf. Fig. 3.3). The third fault for the perception is the break down of the
corresponding ECU (cf. Fig. 3.17). The loss of the ECU would prohibit any processing of
sensor data. All described faults result in no or an incorrect representation of the current
real environment for the situation assessment of the lane change assistant (cf. Fig. 3.3).

102

3.4. Safety Analysis

3.4.3.2. Faults for the Planning of Lane Changes

Besides the environment perception, also the situation assessment and behavior planning
can introduce faults (cf. mid subtree of Fig. 3.17). One fault could be that a vehicle in
front is omitted from the situation and the planning falsely assumes the space this vehicle
occupies to be free. This fault corresponds to the fault of the perception concerning the
misclassification of the preceding vehicle. Another fault for the lane change planning is the
omitted any adaption of currently executed lane changes even though newer information
about the changed environment situation is available. In the normal case the lane change
assistant will adjust its planned lane change to the new environmental information but
if the ADAS ECU is broken down the trajectory executed by the stabilization cannot
be adjusted. In contrast to all other faults in Fig. 3.17, the subordinate faults for no
adjustment of lane change planning are joined by an AND gate. The break down of the
ECU has to occur when a lane change is already planned. For all other cases, OR gates
are used as these faults lead to the top-level fault event— the collision— independently
from other faults.

3.4.3.3. Faults for the Execution of Lane Changes

Even though the vicinity of the automated vehicle has been correctly perceived and the
lane change assistant has correctly planed the lane change, collisions may still occur due
to faults of actuators. As described by the right subtree in Fig. 3.17, the engine could get
stuck and generate excessive torque or brakes fail and not produce the necessary brake
force. Even if the lane change assistant has planed a collision-free trajectory, both faults
will result in the automated vehicle driving too fast resp. not sufficiently decelerating in
time in order to avoid the collision with the preceding vehicle.
All identified faults in Fig. 3.17 can be allocated to one of the high level components
of the lane change assistant— environment perception, situation assessment, behavior
planning, or stabilization (cf. Fig. 3.3). Based on the FTA, safety measures are defined
that mitigate one or more faults and reduce the probability of the hazardous event— the
collision— in order to increase the overall safety of the system. We omit the explicit
definition of functional and technical safety requirements and their respective concepts,
but we describe the impact of this safety analysis on the requirements analysis, system
design, implementation, verification, and validation for the lane change assistant in the
following section.

3.4.4. Result and Impact of the Safety Analysis
Under consideration of potential system and component faults (cf. FTA for the lane
change assistant in Fig. 3.17), the processing chain for the decision making of the lane
change assistant is not able to provide the sufficient safety guarantees that are required
for such autonomous systems. For example, a sudden break down of a ECU or LIDAR
sensor could lead to the complete loss of the lane change assistant’s functionality while
performing a lane change. This loss would impose potential harm for all objects and

103

3. Problem Outline

persons in the vicinity of the automated vehicle. Until now, faulty system components
had to be transferred to a safe state (cf. Definition 2.8), which prevents these components
from further interaction with the remaining system. As the driver has been responsible
for the vehicle control at all time, car manufacturers could still rely on the driver as the
final safety instance to mitigate any hazardous situations. This safety approach is called
fail-safe.
With higher levels of automation (cf. Fig. 2.4), the driver is not required to control
and supervise the vehicle permanently. Vehicle systems have to ensure their safety and
remain operational—even in the presence of system and component faults. At least one
alternative processing path has to be introduced for these systems, which can take over
the control of the vehicle in case the original function fails. For example, this can be a
second version of the original function on its hardware platform or a safety function that
provides sufficient but degenerated functionality, e.g., changing to the emergency lane.
Safety functions with degenerate functionality must safely transfer the system into a safe
state where any harm for persons and objects are excluded. This level of required system
safety is called fail-operational.
In the following sections, the impacts of the safety analysis on the development activities
for the lane change assistant are described.

3.4.4.1. Impact on the System Requirements

The safety analysis results in definition of the functional and technical safety concept
with the identified functional and technical safety requirements among other results, e.g.,
verification, validation, integration, or testing plan. All requirements from the safety
analysis can be considered as additional safety requirements which have to be added to
the set of initial requirements from the requirements analysis (cf. Section 3.2). For the
lane change assistant, safety invariants are defined along the functional and technical
safety requirements. The safety invariants correspond to the high-level safety goals for
the lane change assistant and represent requirements which the lane change assistant has
to satisfy at all times. The following sections describe the additional safety requirements
for the lane change assistant in more detail.

3.4.4.1.1. Safety Invariants

The safety goals identified in the hazard analysis and risk assessment (cf. Section 3.4.1)
relate to system invariants which have to be satisfied by the lane change assistant at all
times. In some cases, safety goals can be represented by a smaller number of high-level
safety related invariants. Two main invariants can be defined for the lane change assistant:

• The lane change must not actively collide with other traffic participants while
changing to another lane.

• If no lane change is performed, the driver or other assistance systems, e.g., ACC,
will be responsible for the overall safety of the vehicle.

104

3.4. Safety Analysis

Table 3.10.: Requirements for the environment perception.
ID Description
FR_11 The system has to monitor the quality and availability of all

its input data.
FR_11_1 The system has to monitor the observability of the 360◦ field

of view around the vehicle by sensor systems at all times.
FR_11_2 The system shall monitor and detect faults of not redundant

sensors at all times.
FR_11_3 The system shall be able to detect delayed, distorted or faulty

sensor data at all times.

While the first invariant addresses the safety of the lane change assistant and its decisions,
the second invariant defines the scope of the safety assessment for the lane change assistant
and redirects the safety responsibility to other systems or the driver. These invariants for
the lane change assistant are exemplarily defined for the lane change assistant and are
not supposed to be complete. In reality, a more diverse set of safety goals resp. invariants
would result from the hazard analysis and risk assessment (cf. Section 3.4.1).
The safety goals resp. invariants address the external perceptible functionality of the
lane change assistant but are not applicable to the definition of the internal structure of
the system. For the system design and implementation, functional and technical safety
requirements have to be defined. These safety requirements are added to the initial set of
requirements from the requirements analysis.

3.4.4.1.2. Robustness of the Environment Perception

The lane change assistant makes safety-critical decisions on behalf of human drivers.
These decisions may potentially harm other objects and persons. Therefore, the lane
change assistant has to monitor itself and detect faults by its components in order to
autonomously adapt in order to continuously ensure the safety for itself, objects, and
persons in its vicinity. All decisions about lane changes by the lane change assistant rely
on the sufficient perception of the vehicle’s vicinity.
As shown in Table 3.10, the lane change assistant has to monitor its environment
perception (cf. Fig. 3.3) in order to detect if sensors or perception modules are unable to
provide an accurate 360◦ representation of the vehicle’s vicinity (FR_11_1). Furthermore,
the lane change assistant has to monitor the quality and availability of data for all
sensors (FR_11) in order to detect delayed, distorted, faulty, or unavailable sensor data
(FR_11_2). Component redundancy is particularly important for the sensors which
perceive parts of the vehicle’s vicinity that are not perceived by any other sensor. In
case such sensor fails, the lane changes assistant is unable to detect any objects within
this part of vehicle’s vicinity (FR_11_3).

105

3. Problem Outline

Table 3.11.: Requirements concerning the ability restrictions.
ID Description
FR_12 The system has to monitor its functional skills and abilities at

all times with an error rate of less than x errors per hour of
the driving time.

FR_12_1 The system shall be able to detect whether a lane change is
possible when there is no speed limit, and there is no object
on the neighbor lane.

FR_12_2 The system shall monitor its object perception viewing range
in its ego and immediate neighbor lanes.

FR_12_3 The system shall monitor its lane perception viewing range in
its ego and immediate neighbor lanes.

FR_12_4 The system shall known the adjusting ranges of actuators for
planning its maneuvers.

3.4.4.1.3. Technical Abilities and Restrictions

The lane change assistant has not only to consider the quality and availability of data
provided by the vehicle’s sensors but incorporates its technical limitations and restriction,
e.g., sensor ranges and actuator adjusting ranges, in its decision making (cf. FR_12 in
Table 3.11).
The lane change assistant has to consider the range of its sensors in all decisions about
lane changes. Sensor ranges, which are insufficient for expected velocity differences
between the automated ego vehicle and other vehicles on the road, impose the possibility
of collision while changing lanes (FR_12_1). Very fast or very slow vehicles outside
the sensor ranges might be perceived too late by the automated vehicle resulting in
insufficient time to avoid collisions by sufficient deceleration.
Sensor ranges can be reduced by near objects that block the detection of lane sections
and corresponding objects behind the objects (FR_12_2 and FR_12_3). These hidden
lanes section and objects would be relevant for lane change decisions if the lane change
assistant knows about these lane sections and objects. For example, a vehicle on the
same lane behind the automated vehicle might block a fast approaching vehicle on the
left lane. The execution of a lane change by the automated vehicle to the left lane in
this situation would result in a collision with the approaching vehicle.
The executions of lane changes impose further restrictions for the lane change assistant.
Maneuvers, e.g., changing the lane or braking, must not require actions of actuators that
are beyond their adjusting range or impose excessive g-forces for passengers (FR_12_4).
The weather, e.g., snow, can further influence and limit the safe adjusting ranges of
actuators.
The functional and technical safety requirements extend the set of requirements from
the requirements analysis (cf. Section 3.2) and have to be considered in all development
activities for the lane change assistant (cf. Section 3.1.2). The design of the lane

106

3.4. Safety Analysis

change assistant (cf. Section 3.3) has to be extended in order to incorporate these safety
requirements. The following section presents the changes for the functional and technical
architectures.

3.4.4.2. Impact on the System Design

The additional safety requirements identified in the safety analyses have to be considered
in the system design of the lane change assistant. Functional safety requirements impact
the functional architecture of the lane change assistant while technical requirements
impact the technical design of the system in terms of hardware. Therefore, the functional
and technical architectures of the lane change assistant have to be adapted and extended
to meet these additional safety requirements. As described in the following, this may
incorporate additional ECUs, sensors, and software functions.

3.4.4.2.1. Impact on the Functional Architecture

For the safety of the lane change assistant, its intended functionality and its functionality
in the presences of component faults and system failure has to be considered. The
disabling of faulty components is not possible in all situations. In some situations,
e.g., on the leftmost lane of a highway, a disabling of the powertrain impose the risks
for collision with following vehicles. A second independent processing path has to be
introduced for the lane change assistant in order to remain operational in case of system
faults and in order to transfer the automated vehicle into a safe state (cf. Definition 2.8).
One solution is the duplication of the lane change assistant. The second instance of
the system would be available to take over the control of the vehicle if the primary
instance fails. The functionality of the lane change assistant remains available in its full
extent until another system or component fault occur for the second instance of the lane
change assistant. Another solution is to introduce dedicated safety functions which offer
a degraded functionality of the lane change assistant. The safety function will transfer
the vehicle into a safe state if the lane change assistant fails. An example of such a safety
function with degraded functionality would be the changing to the emergency lane of a
highway.
One of the additional safety requirements requires a permanent and accurate 360◦ field
of view around the automated vehicle (cf. FR_11_1 in Table 3.10). The initial sensor
configuration for the lane change assistant (cf. Fig. 3.14) is not able to meet this
requirement. However, this requirement is essential for the safety of the lane change
assistant. In case a non-redundant sensor breaks down the complete or a part of the
vehicle vicinity—depending on the sensor configuration—cannot be accurately perceived.
Therefore the sensor setup has to be extended by additional sensors in order to achieve
complete coverage of the vehicle’s environment by redundant sensors. Even if one sensor
fails, another sensor will remain available to perceive the corresponding part of the
vehicle’s vicinity.
The introduction of additional sensors requires an extension of the functional architecture.
The data from each sensor has to be individually preprocessed because each sensor

107

3. Problem Outline

Scene
Modeling

Lidar Signal Processing

Video Signal Processing

Radar Signal Processing

Ultrasonic Signal Processing

GPS Processing

O
bj
ec
t

Fu
sio

n
G
rid

Fu
sio

n
Lo

ca
liz
at
io
n

Lidar

Camera

Radar

Ultrasonic

GPS

Map

Environment Perception

Fu
nc
tio

n
Sp

ec
ifi
c

Sc
en
e
A
ug

m
en
ta
tio

n Situation Assessment &
Situation Prediction

Sit. Ass. & Sit. Pred.
(Adaptive Cruise Control)

Sit. Ass. & Sit. Pred.
(Lane Keeping Assistant)

...

Situation
Assessment

Lane Change Assistant

Adaptive Cruise Control

Lane Keeping Assistant

...

A
gg
re
ga
tio

n

Behavior Planning

Tr
aj
ec
to
ry

Pl
an

ni
ng

(S
ta
bi
liz
at
io
n)

Scene

Si
tu
at
io
n

Target
Point

Figure 3.18.: Extension of the functional architecture following the safety analysis.

types requires different algorithms for its preprocessing. As shown in Fig. 3.18, a setup
with multiple sensors of different types extends the environment perception by one
preprocessing path per sensor types.
In the extended functional architecture (cf. Fig. 3.18), special processing steps are
introduced for the detection of objects and the grid of free space around the vehicle (cf.
[KH10]) before the information are incorporated in the scene. For the fusion of objects
and grid, the position of each sensor in the vehicle has to be known in order to determine
the positions of detected objects and free space correctly. The position of objects and
the free space are determined in relation to the position of the automated vehicle in the
map based on the vehicle’s current GPS position.
With the scene as single interface between the environment perception and the situation
assessment (cf. Fig. 3.18), the remaining parts of the lane change assistant— situation
assessment, behavior planning, and stabilization—are not affected by the changes to a
multi-sensor platform. Today’s common architectures for autonomous vehicle systems
towards automated driving are the result of year-long evolution, and the presented
improvement of the architecture for the lane change assistant can be seen as one step in
this evolution.

3.4.4.2.2. Impact on the Technical Architecture

As mentioned for the functional architecture, the safety requirements require a permanent
and accurate 360◦ field of view around the automated vehicle (cf. FR_11_1 in Table 3.10).
The resulting multi-sensor platform has to ensure that at least two sensors perceive every
point in the vehicle’s vicinity with overlapping fields of view in order to ensure that the
vehicle’s vicinity is accurately perceived even in case one sensor fails.
The multi-sensor platform of the prototype vehicles which recorded the evaluation data
for the case study (cf. Chapter 8), incorporate LIDAR, RADAR, ultrasonic sensors,
and stereo cameras. Figure 3.19 shows the configuration of this sensor set and its
coverage of the vehicle’s vicinity. The RADAR sensors are placed around the complete
vehicle. Together with ultrasonic sensors, the RADAR sensors guarantee the exhaustive
environment perception all around the vehicle. While the RADAR sensors are specifically
installed for the lane change assistant, the ultrasonic sensors have been part of the
original production vehicle as parking sensors. A large number of diverse sensors—

108

3.4. Safety Analysis

Mid-Range
Radar

Front
Camera

Front
LIDAR

Long-Range
Radar

Ultrasonic

Figure 3.19.: Multi-sensor platform of the prototype vehicle.

LIDAR sensors, long-range RADAR sensors, stereo camera, and ultrasonic sensors— is
used for the perception of the road ahead. This configuration results in a highly redundant
perception of the vehicle’s environment in front by a diverse set of sensor types. Even if
one sensor fails, the sensor setup of the prototype vehicle will ensure the accurate 360◦
view around the automated vehicle due to the overlapping occupation of the vehicle’s
vicinity by different sensors. Two or more sensor faults are required in this configuration
for a partially insufficient perception of the vehicle environment.
Multi-sensor platforms enhance the general robustness of the environment perception.
Each sensor type measures the world by a different type of physical magnitude. Stereo
cameras passively use the ambient lighting to create an image of the environment while
RADAR and LIDAR sensors actively use radio resp. laser waves to detect objects in
the vehicle’s vicinity. All sensor systems are subject to deviations and uncertainty (cf.
[Ulb+15]), but each sensor type has specific deficiencies perceiving objects in certain
environmental situations due to their psychical principles. Cameras might not be able to
perceive and distinct objects correctly which have the same coloring or shading. In some
case, dynamic objects may blend in with their environment2. RADAR sensors sometimes
have difficulties to detect pedestrians correctly (cf. [Pat+17]). The multi-sensor platform
enables to compare data from sensors of different types about the same area of the
vehicle’s environment with each other and to detect and purge perception errors of each
sensor type. This comparison results in an environment representation with enhanced
accuracy.
Additional to the extension of the sensor configuration, the execution platform of ECUs
for the processing of functional (software) components has to be adapted.
Safety functions must not be executed on the same hardware components as the su-
pervised functional components. Otherwise, a fault of relevant hardware components
may compromise the original functions of the lane change assistant, and its safety fall-

2https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-
musk (Accessed: 12/06/2018)

109

https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk
https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk

3. Problem Outline

back. The safety fallback—the second instances—would be incapable of providing
their necessary safety functionality in order to retain the vehicle’s safety. Therefore, the
functional components of the primary lane change assistant (cf. Fig. 3.18) and its safety
fallbacks have to distributed over the existing hardware platform In case a sufficient
separation of system functions and safety functions cannot be achieved on the existing
hardware platform of lane change assistant, additional hardware components, e.g., ECUs
and communication buses, have to be introduced to the hardware platform. A direct
approach to ensure the separation between nominal functionality and safety function
is the introduction of dedicated hardware components for the safety functions, like the
duplicated lane change assistant or the safety functions.
The next activity for the development of the lane change assistant after the safety require-
ments have been considered in the overhauled system design is the system implementation.
The system implementation has to consider the extensions to the functional and technical
system design for the safety requirements from the safety analysis. The impact of the
safety analysis on the system implementation is described in the following.

3.4.4.3. Impact on the System Implementation

Following the extended system design, components of the functional architectures are im-
plemented mainly as software components while components of the technical architecture
are developed as hardware, e.g., sensors or ECUs. In either case, the measures defined
by the safety analysis have to be considered in order to detect and mitigate systematic
failures in the software implementation as well as random faults within the hardware
components. A detailed description of the implementation is given in Section 3.5.

3.4.4.3.1. Impact on the Software Implementation

Each component of the functional architecture (cf. Fig. 3.18) is further refined and
implemented as software components. Technical safety requirements assign to these
functional components have to equally refined as software safety requirements to these
software components. Besides the nominal functionality, each software component has to
implement the safety measures defined by its assigned safety requirements.
The ISO 26262 recommends for each ASIL a set of recommended development methods,
practices, and principles for the system design and its implementation. These methods
have to be considered in the development of the lane change assistant and include, e.g.,
formal notations for system architecture and components, programming guidelines, like
non-dynamic objects or limited use of pointers, and the application of documentation,
modeling, and software tools (cf. [Int09f]).

3.4.4.3.2. Impact on the Hardware Implementation

Similar to the implementation of the functional architecture, the implementation of the
technical architecture has to incorporate the safety measure defined by the assigned
technical safety requirements. The safety standard ISO 26262 describes possible fault
detection mechanisms, e.g., self-testing, checksums and signatures, and code protection

110

3.4. Safety Analysis

(cf. [Int09e]). In case the original hardware architecture is incapable of satisfying the
technical safety requirements, the hardware architecture has to be extended by an
additional hardware component, e.g., additional sensors or ECUs.
Its verification and validation follow the implementation of the lane change assistant. In
the verification and validation (V&V), the correctness of the software and hardware is
verified considering the extended set of requirements— including the safety requirements
from the safety analysis. The impact of the safety analysis on the verification and
validation is discussed in the following section.

3.4.4.4. Impact on the Verification and Validation

In the safety analysis, plans for the verification, validation and the assessment of the lane
change assistant and its safety are defined in the safety analysis in addition to to the
safety goals, requirements, and safety measures for functional and technical components
(cf. [Int09d]). The plans define strategies for the verification, validation, and assessment
of all development artifacts of the lane change assistant to evaluate their correctness
and safety. These plans define all V&V activities throughout the development and their
specific requirements, e.g., the documentation of V&V results. In general, results from
these verification, validation, and assessment activities are documented in reports. These
reports are the foundation for the argumentation in the certification process of the lane
change assistant. The following section examines the impact of the safety analysis on the
verification, validation, and safety assessment in more detail.

3.4.4.4.1. Verification

The verification for the lane change assistant defines the time of verification activities in
the development process and their scope. The safety standard ISO 26262 defines various
verification methods in dependency the ASIL of development artifacts. Examples of
possible verification methods are designed verification, safety analyses as well as hardware,
software, and item integration testing. Each of these activities addresses a different
development artifact. While the design verification evaluates the functional and technical
architectures from the system design, software, hardware, and integration test address
the different implementation artifacts of the lane change assistant. Nevertheless, all
activities will evaluate if the corresponding development artifacts meet their respective
specifications and requirements. For the lane change assistant, we only considered the
verification of the system design by reviews and the verification of implementation
artifacts by reviews and tests.
The correct implementation of the lane changes assistant requires the system design to
sufficiently consider all necessary functionalities which are required for the safe operation
of the lane change assistant in the real world. Reviews verify the functional and technical
architectures. In reviews, multiple engineers assess and evaluate the architectures in order
to detect missing functionalities or insufficiently considered requirements. A particular
focus is on the safety requirements obtained from the safety analysis (cf. Section 3.4).

111

3. Problem Outline

The safety requirements from the safety analysis not only have to be considered in
the functional and technical architectures but have to be correctly implemented. In
implementation reviews, at least two engineers informally evaluate the design and
implementation of software and hardware components for the lane change assistant. These
reviews will determine if all components from the functional and technical architecture
and their corresponding requirements have sufficiently considered in the implementation.
The software components of the lane change assistant are primarily verified in software
tests—unit tests, integration tests, and system tests (cf. [Int09f]). For each software
artifact, a set of test cases is defined. These test cases verify the functionality of
each artifacts in regard to its requirements (cf. Section 2.2.2.7). The test cases have
to sufficiently consider the additional safety requirements and safety measures from
the safety analysis. In case the initial set of test cases does not sufficiently address
the additional safety requirements for the corresponding artifact, new test cases have
to be defined. Fault injecting methods (cf. [Ise11]) can be incorporated in tests to
trigger relevant components faults and verify the implementation of corresponding safety
functions.
The safety standard ISO 26262 suggests design inspection, design walkthroughs, emula-
tion, simulation, and development of prototype hardware as verification techniques for
hardware components (cf. [Int09e]). Furthermore, metrics have to be used for hardware
components which enable to assess the effectiveness of the technical components to cope
with the random hardware faults (cf. Definition 2.13). For example, a quantified FTA
can determine the probabilities that hardware components fail (cf. [DT16]). These
probabilities have to meet the target values of the safety goals (cf. [Int09e]).
The verification of the lane change assistant is described in more detail in Section 3.6.
In addition to the verification, the system analysis impacts the validation of the lane
change assistant.

3.4.4.4.2. Validation

Additional to the verification activities also a validation for the integrated system has
to be performed (cf. [Int09d]). This validation evaluates the appropriateness of the
lane change assistant for its intended use and the adequacy of defined and implemented
safety measures. Any unintended activations in a safe situation (false positive) and any
absented activations in critical situations (false negative) have to be excluded for the
safety mechanisms of the lane change assistant. Table 3.12 display relation between the
classification of situations by the autonomous vehicle systems and the actual criticality
of the real situation.
The validation plan defines the time, place, configuration, and execution of all validation
activities for the lane change assistant. The validation of the lane change assistant has
been performed in the prototype vehicle in tests on public roads and test centers. The
validation plan incorporates the configuration of the lane change assistant, necessary
equipment, environmental conditions, test procedures, test cases— including driving
maneuvers—, and acceptance criteria for these tests.

112

3.5. Implementation

Table 3.12.: Table for situation classification by autonomous vehicle systems.
System Classification
Critical Non-Critical

R
ea
lit
y Critical True

Positive
False

Positive
Non-Critical False

Positive
True

Negative

The final impact of the safety analysis is on the safety assessment. In the safety
assessment, independent assessors have to inspect and evaluate the safety argumentation
by car manufacturers for their systems. The impact of the safety analysis on the safety
assessment for the lane change assistant is described in the following.

3.4.4.4.3. Safety Assessment

For the lane change assistant, the safety assessment has not yet been done because the
system is still in development. A safety assessment is commonly performed at near the
end of the system development when most of the verification and validation activities have
provided sufficient safety-related results. The safety standard ISO 26262 expects a safety
assessment for systems and their parts with a classification of ASIL B or higher. The
safety assessment must justify that the achieved level of functional safety for these systems
is sufficient for the operation of these systems in the real world (cf. [Bir+13]). The
safety assessment evaluates all activities and their results in the development of systems
and results in the definition of safety cases. Safety cases document the complete and
sufficient consideration of safety requirements throughout all safety-related development
activities for the system. This safety argumentation supports the certification process of
the systems by national authorities.

Definition 3.14 (Safety Assessment). In a safety assessment, independent assessors
inspect and evaluate the argumentation for the safety of systems (cf. [Bir+13]).

The following sections give a more detailed description of the implementation, verification,
and validation of the lane change assistant.

3.5. Implementation
After the addition of requirements from the safety analysis (cf. Section 3.4) and the
revision of the system design, the revised functionality of the lane change assistant
and additional safety measures are implemented (cf. Fig. 3.2). Furthermore, hardware
components have to be selected and implemented. Finally, all implementation artifacts
are verified. Following the system design, the implementation of the lane change assistant

113

3. Problem Outline

separates itself in the implementation of the functional architecture and the implementa-
tion of the technical architecture. Both implementations are described in the following
section in more detail.

3.5.1. Implementation of the Functional Architecture
The implementation of the functional architecture focuses on the implementation of
the specified functionality for the lane change assistant. Functional components are
commonly implemented as software components and are implemented only in exceptional
case as hardware components, e.g., in field programmable gate arrays (FPGAs). The
behavior emerging from software components are validated by engineers using rapid
prototyping and verified in software unit tests.

3.5.1.1. Implementation of Software Components

For the implementation of the lane change assistant, the atomic functional components
of the functional architecture (cf. Section 3.3.1) are refined and implemented as software
components. The refinement also applies to the specification of atomic functional
components; each requirement of a functional component is refined and allocated to the
different software components, which implement the complete or a part of the required
functionality. As a result, an architecture of software components is defined for each
atomic functional component.
Each software componento f the software architecture is implemented in C/C++ source
code and consists of several classes with multiple C/C++ functions. Each function imple-
ments an algorithm as part of the overall functionality of the functional component. The
source code of software components is either manually written by engineers or generated
from models, e.g., signal flow graphs (cf. [FPE14]) or statecharts (cf. [Har87]). In the
Automotive Domain, commercial tools, e.g., ASCET (cf. [Lef+97]) and MatLab/Simulink
(cf. [Bis96]), are used for the model-based implementation of software components. The
code generators of these commercial tools allow generating the necessary C/C++ source
code from signal flow graphs resp. statecharts. For the deployment of software implemen-
tations on ECUs of the technical hardware architecture, the source code of all software
components for a system is compiled and linked with necessary libraries as executables
(cf. [Ste14]).
The functionality of the lane change assistant is implemented in ADTF. ADTF is
a commercial framework for the development and execution of ADAS functions (cf.
[Sch07]). The implementation of ADAS in ADTF follows the pipes-and-filters pattern
(cf. [Mon+97]). (Sub) functions which are defined in the architecture of the lane change
assistant (cf. Fig. 3.18) are implemented as filters. A filter in ADTF consists of one ore
more C/C++ classes that implemented the functionality of corresponding component
and the necessary framework related elements, e.g., ports. In a filter graph, all filters
for the lane change assistant are connected and with the input and outputs filters for
sensors and actuators. At runtime, ADTF provides itself as a runtime environment that
manages the control and data flow between filters in the filter graph.

114

3.5. Implementation

3.5.1.2. Rapid Prototyping

This implementation of the software for the lane change assistant also includes rapid
prototyping. Rapid prototyping allows engineers to validate and adapt their algorithms at
early stages of the implementation. Algorithms are deployed as source code or models on
special rapid prototyping hardware, e.g., the MicroAutoBox3. The prototyping hardware
is then either deployed in simulations or prototype vehicles. Simulations are the cost
and time efficient rapid prototyping environment, while prototype vehicles offer a more
realistic validation in the real world. As rapid prototyping is employed from the early
stages of the implementation, not all components and functions of the lane change
assistant might already be implemented. Therefore, prototype systems offer to simulate
the behavior of missing system parts by corresponding models (cf. Section 2.2).
For the lane change assistant, the software implementation in ADTF can be used for
rapid prototyping identically in simulations and prototype vehicles. Changes to the
implementation are not necessary because ADTF already manages the control and data
flow within the lane changes assistant, with other vehicle systems, and with simulation
frameworks. The prototype vehicle in the case study was equipped with customer
electronic components in order to allow rapid prototyping with ADTF (cf. Section 3.3.2).
Nevertheless, rapid prototyping does not address the verification or validation of the
lane change assistant regarding its safety assessment. The verification of lane change
assistant, commence with unit tests for individual software components. Software unit
testing is described in the next section in more detail.

3.5.1.3. Software Unit Tests

A common method for the verification of implementation artifacts in the automotive
domain is testing (cf. Section 2.2. Other occasionally used methods include, e.g., static
code analysis and code reviews (cf. [Lig09]). In unit tests, each software component of
the lane change assistant is verified in isolation— independent from other related and
connected software components. Unit tests will evaluate if the implemented behavior of
classes, functions, and algorithms are consistent with the specification and requirements
of the software components. All software components, which interact with the software
component under test, are replaced by mock objects (cf. [TH02]) or completely omitted
from the tests in order to avoid any side effects on the artifact under test. Mock objects
model the external behavior of the mocked implementation artifact. The substitution of
related and connect components ensures a consistent interaction for the artifact under
test with its environment for reproducible tests.
The classes and functions of each software component are verified for a set of test cases.
The test cases are derived from the component’s specification and requirements. A test
case consists of the input data for the artifact under test, the response of mock objects in
the communication with the artifact, and the expected response (output) of the artifact.
All test cases for a artifact under test are combined in a test suite. In unit tests, artifacts

3MicroAutoBox: https://www.dspace.com/de/gmb/home/products/hw/micautob/microautobox2.cfm
(accessed: 11/22/2018)

115

3. Problem Outline

under test are triggered by the input data of the test cases, and a test oracle evaluates
the response of the artifacts (cf. [Lig09]). Artifact responses have to match the expected
result defined by the test cases. Metrics, e.g., statement coverage or decision coverage (cf.
[Lig09]), quantify the coverage of artifact’s source code by its test suite. All necessary
activities and responsibilities for the unit testing of software components are documented
in a test plan. This plan includes the definition of the test cases, the setup of the test
environment, the execution of the tests, and the evaluation of test results (cf. [Lig09]).
For the lane change assistant, the unit tests of ADTF filter implementations utilize special
test filters or the C-unit testing framework4. The test filters trigger the filter under test
via its input ports with manually defined input data. The output of the filter under test
is evaluated in comparison to predefined expected results for the test case by the test
filter. Test filter and the filter under test are integrated into one filter graph isolated from
other ADTF filters of the lane change assistant. In this configuration, the filter behavior
including the correct implementation of interfaces to the ADTF runtime environment is
verified. C-Unit tests do not verify the ADTF filter, but the implementation of algorithms
in term of classes and C/C++ functions. For each C/C++ function, a set of test cases
is defined. Each test case defines the input values for the function under test and the
expected response by the function as assertions. In the execution of c-unit test suites, the
input values stimulate the function under test, and the assertions assess the function’s
outputs. Mock objects replace function called within the function under tests in order to
enable testing in isolation and avoiding side effects.
Beside the functional architecture also the technical architecture has to be implemented.
Car manufacturers do not implement hardware components themselves (cf. Section 3.3.2)
but commonly acquire the components from various suppliers. The implementation of
the technical architecture for the lane change assistant is described in the following.

3.5.2. Implementation of the Technical Architecture
Besides the functional architecture also the technical architecture has to be implemented.
However, hardware components are not constructed and implemented by car manufac-
turers but are acquired from multiple vendors. These vendors also verify the resilience
and robustness of these hardware components. Car manufactures only integrate the
third-party hardware components into their execution platform and deploy the execution
platform in their vehicles (cf. Section 3.6.3).

3.5.2.1. Procurement of Hardware Components

As described in Section 3.3.2.2, the execution platform for the prototype vehicle uses
two customer computer, a gateway, and Ethernet bus in order to enable the efficient
development of the lane change assistant. The hardware components, e.g., sensor,
actuators, ECUs, and communication buses, used in the technical architecture (cf.
Section 3.3.2), are acquired from suppliers and are integrated into the execution platform.

4C-unit testing framework: http://cunit.sourceforge.net/ (accessed: 11/22/2018)

116

3.5. Implementation

The execution of the software components on each ECU and their access to the hardware
components, e.g., communication bus or CPU, require the configuration of an operating
system (OS) and its services. Similar to hardware components, services of the OS are
obtained as off-the-shelf components from suppliers (cf. [SZ13]).
The standard AUTOSAR (cf. [Für+09]) defines an architecture for ECUs with stan-
dardized interfaces between application software, e.g., the lane change assistant, and
services of the OS—named basis software in the standard. The standardized interfaces
of the AUTOSAR architecture enable the application software to access basis software
components without any knowledge about the possible diverse implementations from
various suppliers. A configuration of the operating system for the lane change assistant
is not necessary. The customer computers run a standard Linux OS that inherently
provides all necessary services for the processing of data and the access to the Ethernet
bus.
The result of the safety analysis for the environment perception (cf. Fig. 3.19) require
the deployment of a multi-sensor platform for prototype vehicles. Therefore, existing
sensors of the prototype vehicle are complemented by additional sensors, e.g., the side
and rear RADAR sensors in Fig. 3.19. These additional sensors are installed in the
prototype vehicle for the lane change assistant and the highway pilot. The sensors are
connected with the execution platform for the lane change assistant via the gateway
in order to guarantee a redundant 360◦ view around the prototype vehicle for the lane
change assistant (cf Fig. 3.16).
Sensors, actuators, and their corresponding software components often require calibrations.
The correct perception of sensors, e.g., stereo cameras, LIDAR, and RADAR sensors,
depending on the correct calibration for their mounting location inside the vehicle. For
example, a false exit angle of radio waves or LIDAR beams can lead to false reflection
points at a position where no object is present resp. to missing reflection points for
existing objects. For stereo cameras, the calibration is essential in order to estimate the
distances of objects correctly. Car manufacturers have to calibrate sensors themselves or
provide sensor suppliers with these parameters in order for the suppliers to calibrate the
sensors for them. The same applies to actuators whose ranges of set values have to be
calibrated. For example, the possible turn angle has to be calibrated for an electrical
steering system.

3.5.2.2. Hardware Unit Tests

Car manufacturers do not perform the verification of hardware components themselves but
require suppliers to verify the sustainability and resilience of hardware components in their
development process. Failures rates of hardware components have to be sufficiently low
and comply with relevant standards, like the safety standard ISO 26262 (cf. [Int09e]). The
resilience and robustness of hardware components is commonly evaluated in endurance
run using HIL tests or prototype vehicle (cf. Sections 2.2.2 and 2.2.2.7).
However, car manufacturers may randomly test a limited number of provided hardware
components in order to ratify the suppliers’ statements about the component’s sustain-
ability, resilience, and correct calibration. For example, image-based sensor, e.g., stereo

117

3. Problem Outline

cameras, can be verified in simulations. Traffic situations are generated in simulations
and projected onto a screen from which the camera perceives these situations. The
identified objects by the camera are compared to the objects used in the simulation. The
displayed traffic situations have to be sufficiently realistic for valid verification results.
For the prototype vehicle, no dedicated verification for the sustainability of the computer
hardware, gateway, and Ethernet network has been performed. The necessary evidence
about the sustainability and resilience of hardware components by legal authorities and
safety standards, e.g., the safety standard ISO 26262, only apply to production vehicles
but not to the prototype vehicles. The hardware configuration of the prototype vehicle
is used for the development, prototyping, and testing of the lane change assistant and is
not supposed to be used in production vehicles. However, the original components of the
initial production vehicle have already been verified in their development processes and
have proven themselves in usage by customers in public traffic.
The software and hardware components, which have already been verified in isolation,
have to be integrated in order to complete the system. This integration requires additional
verification and validation activities. The following sections describe the right side of the
v-model development process (cf. Fig. 3.2) addressing the integration, verification, and
validation of the lane change assistant.

3.6. System Integration and Verification
After the implementation and unit testing of all software and hardware components,
the development of the lane change assistant proceeds with the integration of these
components to larger system parts until the complete lane change assistant is integrated.
The integration reverses the decomposition of the lane change assistant in the system
design and implementation (cf. Sections 3.3 and 3.5). All compositions of components
introduce new functionalities which have not yet been verified by the unit test of the
software components (cf. Section 3.5.2). Additional verification is required for composite
components in order to guarantee the correctness and safety of the complete lane change
assistant. The following section describes the integration and verification of the software
for the lane change assistant.

3.6.1. Software Integration
Following the functional architecture (cf. Section 3.3.1), implemented (atomic) software
components are integrated with each other to form composite components which are further
integrated with other components—composite and atomic software components—to
form even larger composite components. This integration continues until the lane change
assistant and all its functional components, like the environment perception, situation
assessment, and behavior planning are implemented (cf. Fig. 3.3). Every composite
component introduces novel functionalities which emerge from the intercommunication of
its internal components. None of the inherent components has exhibited these emerging
functionalities in the isolation of the unit tests (cf. Section 3.5.1.3). For example, the

118

3.6. System Integration and Verification

detection and classification of environment objects are only possible because individual
components for the object detection and object classification are integrated with the
vehicle sensors.
Safety measures defined in the safety analysis (cf. Section 3.4) can be implemented as
dedicated software components independently from the original functions of the lane
change assistant. In the integration, the components for the safety measures and the
component for the original function are integrated into composite components. The
composites exhibit the original functionality as long as no faults are present. Safety
measure will only intervene with the original functionality if an identified fault from the
safety analysis is present.

3.6.2. Software Integration Testing
The emerging behavior of composite components has not yet been verified because the
interaction between components has been excluded from unit tests (cf. Section 3.5.1.3).
All composites have to be verified in integration tests in order to ensure the correctness
and safety of emerging functionalities. Similar to unit test (cf. Section 3.5.1.3), sets of
test cases verify the behavior of composites components. Test cases define the test input
for composite components and the expected behavior for these components based on
specifications and requirements.
Integration tests of composite components include the verification of safety measures
which have been defined for these components in the safety analysis (cf. Section 3.4). The
verification of safety measures might require the definition of additional specialized test
cases. These tests do not have to verify the correct functionalities of original functions
but to verify the detection and mitigation of faults by safety measures. Integration tests
of safety measures may incorporate fault injection methods in order to stimulate the
emergence of faults (cf. [Ise11]).
For the lane change assistant, the ADTF filter as implementation of software components
are integrated in an ADTF filter graph and verified by the simulation framework Virtual
Test Drive (VTD) (cf. [Neu14]) in closed-loop simulations (cf. Section 2.2). The
framework VTD simulates the environment of the vehicle— the virtual world—with its
scenery and dynamic objects, e.g., vehicle and pedestrians. The simulation interacts with
the ADTF implementation of composite components by their external interfaces. All
remaining components of the lane change assistant, e.g., sensors and actuators, have to
be simulated by the simulation framework.
The simulation framework VTD allows the verification of the lane change assistant for a
set of defined test cases. Test cases represent concrete parametrization of a test scenarios.
A test scenario models the environment by defining the scenery— the static objects of the
environment, e.g., road, markings, and sign, as well as the behavior of dynamic objects,
e.g., maneuvers of vehicles and paths of pedestrians (cf. Section 7.2.2). A test case will
be passed if the engineer or an oracle evaluate the behavior of the lane change assistant
in the corresponding simulations as compliant with the intended behavior defined by the
test case.

119

3. Problem Outline

The execution of a test case in the simulation framework results in a sequence of
environmental situations. These situations are used as input for the lane change assistant.
Objects from situations are either directly fed into the scene modeling as input for the lane
change assistant or they are processed by sensor models to incorporate the uncertainty
of real sensors into the input for the lane change assistant (cf. Fig. 3.3). The outputs of
the lane change assistant are fed back into the simulations in order to update the state
of the simulated world and generate new inputs for the lane change assistant in the next
processing cycle (cf. Section 2.2). The changes of objects in the simulated world can
occur autonomously or as a direct reaction to the output of the lane change assistant.
The overall correctness and safety of the lane change assistant depend on the correctness
and safety of its software and hardware. Therefore, the integration of hardware and
software has to be verified. The hardware platform must not alter the verified behavior
and functionalities of the software. The integration of software and hardware as E/E
system and the verification of the system integration are described in the following
section.

3.6.3. Integration of the Hardware / Software System
Car manufacturers obtain hardware components from multiple supplier and integrate
these components for the E/E architecture of production vehicles (cf. Section 3.5.2.1).
The integration includes the connection of ECUs and DCUs to communication systems,
e.g., CAN or FlexRay buses, and the power supply of the vehicles.
After the integration and deployment of the E/E architecture, software components are
deployed on the ECUs and DCUs. The software deployment includes the definition of
timing and scheduling of software components on ECUs and DCUs and of messages on
communication buses. For each communication bus, a communication matrices defines
the content of all messages of the specific bus and their routing between connected ECUs.
The scheduling for each ECU defines the execution order and execution duration of
deployed software components and their functions.
For the hardware platform of the prototype vehicles, the two customer computers have
been installed in the trunks. The computers are connected and the gateway via an
Ethernet bus (cf. Fig. 3.16). The gateway connects the computers to the additionally
installed sensors and existing communication buses of the prototype vehicles.
The software of the highway pilot is deployed and executed on the two customer computers
as ADTF filters in two distributed ADTF instances. The environment perception of the
lane change assistant is deployed on the first computer while the situation assessment,
decision making, and other ADAS functions are installed on the second computer (cf.
Fig. 3.16). The communication between the distributed ADTF instances and with
the gateway is implemented by predefined messages in ADTF and organized by the
Ethernet controllers and OS services of the two computers without any predefined
message scheduling. The gateway connects the lane change assistant with original
sensors and actuators of the prototype vehicles by transforming messages of the original
communication buses to and from ADTF messages of the Ethernet network.

120

3.6. System Integration and Verification

3.6.4. Verification of the Hardware / Software System

The hardware platform has not been systematically verified because the hardware used
in the simulations of the lane change assistant and the prototype vehicle is similar.
Knowledge about the hardware setup obtained in simulations of the system verification
can be directly transferred to the setup of the prototype vehicles. Nevertheless, the original
hardware components of the production vehicles have been verified in the development
processes of these vehicles. The only unverified part of this setup is the connection
of the gateway to the original vehicle hardware and additional installed sensors. The
connectivity of the gateway has been randomly checked at its deployment but has not
been systematically verified by a defined set of test cases.
The integration of hardware components, e.g., ECUs, sensor, actuators, and communica-
tion buses, is generally verified in HIL tests for production vehicles (cf. Section 2.2.2.4).
Hardware components or subsystems are integrated into simulations of their real environ-
ments. All connect hardware components are modeled and simulated by the simulation
frameworks. For a test of, e.g., an exhaust system, the complete exhaust system is
integrated and verified in HIL tests. The control of the exhaust system, as well as the
real world, are simulated. The stimuli for each HIL test are defined in test cases along
with the expected behavior of the verified hardware components resp. subsystem as
acceptance criteria in these tests. The resilience and robustness of hardware components
and subsystems can be evaluated in endurance runs (cf. Section 3.5.2.2).
The integration of software and hardware is also verified in HIL tests (cf. Section 2.2.2.4).
Therefore, software components are deployed on the corresponding ECUs, sensors, and
actuators. Even though the software components have been verified in isolation and as
composites (cf. Section 3.6.2), the integration of software and hardware components can
reveal faults which have not yet been encountered. These faults are primarily timing and
scheduling faults due to the limited resources of ECUs and communication buses. Test
cases from software integration tests can be reused to verified the integration of software
and hardware (cf. Section 3.6.2). The software-hardware-integration has to exhibit the
identical functionality as in MIL and MIL tests of the software (cf. Section 3.6.2).
Tests of fully integrated systems, e.g., the complete highway pilot, are denoted as system
tests. These system tests have to be performed with the highway pilot installed in a
prototype vehicle because the lane change assistant and other ADAS of the highway pilot
require the perception of the vehicle’s real environment. Engineers verify the system on
test tracks and public roads and evaluate if the system meets all requirements in the
specification of the highway pilot. The complexity of the real world makes it challenging
to define comprehensive sets of realistic test cases. Test cases would have to be costly
build on test tracks with real vehicles and dummy objects. The system tests of the lane
change assistant has been solely performed as unsystematic test drives on public roads.
The verification in test drives correlates with the validation of the lane change assistant.
The trade-off between verification and validation impacts the efficiency and costs of the
system development (cf. [TMJ12; Zha16]). The validation of the lane change assistant is
described in the following section.

121

3. Problem Outline

3.7. Validation in Field Tests

The last development activity for the lane change assistant is its validation (cf. Sec-
tion 3.1.2). While the verification evaluates if the implementation of components and
(sub) systems meet their specifications and requirements, the validation addresses the
implementation of the correct and appropriate product. The lane change assistant must
satisfy the documented requirements of involved stakeholders—the explicit require-
ments—as well as the implicit requirements of these stakeholders which have not been
considered in the requirements analysis. For example, customers might expect smooth
dynamics of lane change maneuvers with low g-forces at higher velocities.
For the validation, engineers and stakeholders have to experience the systems in their
real environments. In the automotive domain, field operational tests on test tracks and
public roads used to be the prevailing method for the validation of vehicles and their
systems. In field operaitonal tests on public roads, prototype and production vehicles
are driven for million kilometers at different locations in the world (cf. [KW16; Sti13]).
The lane change assistant is deployed for its validation as ADTF filter graph on the
customer computers in the trunk of the prototype vehicles. The prototype vehicles are
driven autonomously on public highways while engineers supervise and validate the lane
change maneuvers for their safety, smoothness, and adequacy. The evaluation results are
considered for further optimization and calibration of the lane change assistant in order
to align the system behavior with the general preferences of customers.
The engineers also act as safety fallbacks in field operational tests. In case maneuvers by
the lane change assistant result in critical and unsafe situations, these engineers have to
take over the vehicle control in order to maintain the overall safety.
A common metric for the system quality in V&V is the number of interventionss by
engineers and occurring system faults over the total driving distance. The numbers are
statistically generalized as the mean time between interventions resp. system faults. The
mean time between interventions resp. system faults is used as measures in function
safety assessment for the admission of the systems by national authorities (cf. [Int09b]).
For example, the California Department of Motor Vehicle oblige car manufacturers to
report all interventions (disengagements) for their autonomous prototype vehicles which
operate on public roads5.
The metric has not yet been applied to the lane change assistant because the current
development state of the lane change assistant and of the prototype vehicles do not allow
for feasible results. The metric will only lead to feasible results if the field operational
tests of the validation are performed with large fleets of prototype vehicles for longer
distances (cf. [KP16; Win15; WW17]). E/E architectures of these prototype vehicles
have to correspond to the final setup production vehicles.
The previous sections have exemplary presented the development of autonomous vehicle
systems in the automotive domain— from their requirements analysis to their validation—
on the example of a lane change assistant. The following sections analyze the shortcomings

5https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/testing/

122

3.8. Problem Analysis of the Development Methodology

of this development practice in the foresight of increasing complexity and autonomy for
future systems towards highly automatic driving (cf. Fig. 2.4).

3.8. Problem Analysis of the Development Methodology
The lane change assistant has to meet high safety standards in order to enhance the
overall road safety and reduce the number of accidents and casualties in public traffic.
Even in the presence of system failures, the lane change assistant is expected to operate
in the complex environment of the real world safely.
The systematic engineering of the lane change assistant in the presented development
process aims to satisfy these high safety standards for the lane change assistant. The
development activities (cf. Section 3.1.2) complement each other in order to realize the
necessary functionality of the lane change assistant under consideration of potential
failures and risks. Nevertheless, safety issues remain for the operation of the lane change
assistant in the real world. The main categories of these safety issues are described in
more detail in the following sections.

3.8.1. Modeling the System Environment
The system environments have to be explicitly considered in the systems development
of the lane change assistant because the environments have a significant impact on the
system behavior. The environments of earlier E/E system, e.g., ESC, could be completely
specified and modeled because these systems did not autonomously operate in the real
world (cf. [Ben+14]). ESC could be developed under the closed-world assumption because
the system solely interacts with components within its functional domain inside vehicles
(cf. Definition 2.4). Values and semantics of signals and message data from other internal
components are available at design time. The closed-world assumption is not applicable
for the lane change assistant because the assistant has to operate in the real world
autonomously. The real world continuously changes, and the lane change assistant does
not control these changes— they occur autonomously and unpredictable (cf. [FGT11]).
The environment of the lane change assistant—the real world— is considered in its
development as environment models. This does especially apply to the requirements
analysis, safety analysis, and verification of the lane change assistant in simulations (cf.
Sections 3.2, 3.4 and 3.6). Engineers and stakeholders implicitly assume a model of
the real world for the definition of requirements in the requirements analysis and the
identification of risks in safety analysis (cf. Sections 3.2 and 3.4). In the verification (cf.
Section 3.6), models of traffic situations and included objects are explicitly defined.
All models have inherent artificial natures and are abstractions of the real world. However,
environment models still have to sufficiently represent the real environment of the
lane change assistant for feasible results in requirements analysis, safety analysis and
verification(cf. Sections 3.2, 3.4 and 3.6). Environment models must not impose more
restriction than are present in the real world. All real-world objects which have an
impact on the behavior of the lane change assistant, have to to be modeled in sufficient

123

3. Problem Outline

(a) A model of a Volkswagen Golf MK4. (b) A real Volkswagen Golf MK4.

Figure 3.20.: Representations of a Volkswagen Golf MK4.

detail. The modeling of these objects includes positions, movements, and characteristics
of real-world objects, e.g., cars, pedestrians, roads, or signs. Otherwise, all development
results will not be applicable for the later operation of lane change assistant. Insufficient
modeling of the environment in requirement analysis and safety analysis will impact all
further development activities (cf. Section 3.1.2). Insufficient results from simulations
of the verification cannot be assumed as safety evidence for the operation of in the real
world.
The number and variations of objects which have an impact on the behavior of the lane
change assistant are vast— if not infinite. This enormous complexity of the real world
makes it difficult to specify fully and model the environment of the lane change assistant
and imposes a significant threat to the safety of the lane change assistant. The lane
change assistant has to be developed under the open-world assumption (cf. [BNG06]).
The open-world assumption assumes that possible interactions of the system with its
environment in the vast environmental situations cannot be fully considered at design
time (cf. Definition 2.4). Any logic for the open-world problem include some assumptions
about the real world which reduce its complexity (cf. [JBS13; NM08; Str16]). Traffic
situations will remain in which the behavior of the lane change assistant has not been
specified nor verified. This underspecification introduces uncertainty about the lane
change assistant and its operation in the real world which has to be considered throughout
the whole development process (cf. Section 3.1.2).
Real world objects are represented in environment models by corresponding object models.
Each object model reduces the corresponding real object to a set of defined characteristics.
No object model will ever wholly represent all physical characteristics and their small
deviations of corresponding real-world objects in all situations. Nevertheless, the object
models have to sufficiently represent all characteristic of real-world objects which have
an impact on the functionality of the lane change assistant.
For example, vehicles of the type Golf MK4 (cf. Fig. 3.20b6) may slightly deviate from
each other in their appearances due to scratches and paint quality. The insufficient

6taken from: https://upload.wikimedia.org/wikipedia/commons/f/f7/VW_Golf_IV_front_20071205.jpg
(accessed: 28.6.2017)

124

3.8. Problem Analysis of the Development Methodology

(a) Scenario 1: Wrong-way driver on the left
lane.

(b) Scenario 2: Motor boat on the road.

Figure 3.21.: Safety critical but irrational traffic scenarios.

consideration of reflection properties for vehicles by sensor models in simulations might
result in behavior by the lane change assistant in simulations which diverge from the
behavior of the lane change assistant in the real world (cf. Fig. 3.20).

The traffic situations which the lane change assistant may encounter during operation
in the real world, are vast— if not infinite—and challenging— if not impossible— for
engineers and stakeholders to envisage in the requirements and safety analysis (cf.
Sections 3.2 and 3.4) as well as to be verified and validated in the simulations and field
operational tests (cf. Section 3.6). Even if we assume, that the system specification has
fully captured all possible situations at one point in time, the evolution of the real world
will lead to new entities, objects, and situations which have not yet been considered at
some point in the future (cf. [FGT11]).

For the lane change assistant, traffic scenarios can be constructed which are less likely
to be anticipated in the requirements and safety analysis (cf. Sections 3.2 and 3.4) but
which are still critical for the overall safety of the lane change assistant. Both scenarios
of Fig. 3.21 describe unusual situations which the lane change assistant might encounter
in the real world but are less likely to be anticipated for its environment modeling. In the
first scenario (cf. Fig. 3.21a), a wrong-way driver is driving towards the automated vehicle
on the left lane. A lane change to the left lane would result in a collision of both vehicles.
In the second scenario (cf. Fig. 3.21b), a boat resides on the road. The automated vehicle
has to identify this boat and avoid it. For the safe behavior of the lane change assistant in
either scenario, the object models with appropriate characteristics have to be considered
in the development of the lane change assistant. For the second, a boat model has to be
explicitly defined and included in the development. For the wrong-way driver, vehicle
models have considered the possibility to drive against the intended driving direction. If
the directions of vehicles have been restricted in environment models for the lane change
assistant to match the way of highways, then the wrong-way driver of Fig. 3.21a) would
not have been considered in the development of the lane change assistant.

The following section discusses the shortcomings of the development activities for the
lane change assistant from the system point of view. It addresses problems for the
environment perception and discusses the decision making and its shortcomings.

125

3. Problem Outline

3.8.2. Environment Perception and Interpretation
One prerequisite for the correct and safe behavior of the lane change assistant is a reliable
the environment perception (cf. Fig. 3.18). The lane change assistant has to correctly
perceive the complete vehicle environment at all times—even in the presence of system
and sensor faults. The environment perception of ADAS utilizes sensors of various types
(cf. Section 3.3.2). Each sensor type perceives the environment by a different physical
measuring principle, like e.ge radio waves or light beams. Each physical measuring
principle has its particular advantages and shortcomings. For example, the perception
range of cameras may be limited by fog while radio waves have difficulties to detect
pedestrians correctly (cf. [Pat+17]).
In the safety analysis, the initial sensor setup for the prototype vehicle (cf. Fig. 3.14)
has been identified as a single point of failure (cf. Section 3.4). It is inevitable for the
lane change assistant to integrate multiple different types of sensors into a multi-sensor
platform in order to address the shortcomings of different sensor types and their potential
failures. The comparison of data from different sensors and the detection of faulty sensor
inputs by such a multi-sensor platform enables a reliable perception of the environment
in the presence of independent sensor component failures (cf. Section 3.4.4.2).
For the decision making of the lane change assistant, data about the environment from
different sensors has to be integrated into an internal representation of the environment.
This internal environment representation is a model and has the same inadequacies as the
models in Section 3.8.1. The internal environment model has to sufficiently represent all
relevant object of the real world in a level of detail which corresponds to the functionality
of the lane change assistant. Objects and actions which have not been considered in the
definition of the internal environment representation cannot be considered in the decision
making of the lane change assistant.
The physical measurement principle underlying each sensor leads to small deviations
(noise) in the sensor data. For example, the propagation times of radio waves slightly
vary from the real distances in the world. Algorithms using this sensor data, e.g., object
detection and object tracking may accumulate the uncertainties in the data from multiple
sensors within their output data. The processing chain of lane change assistant may
accumulate large uncertainties in its data. The uncertainty in data has to be explicitly
considered in the decision making of the lane change assistant. Small deviations in the
environment perception data can lead to unsafe decisions of the lane change assistant
because the internal representation represents a different situation for the decision making
as currently present in the real world.
The verification of the lane change assistant in simulations requires sensors to be substi-
tuted by sensor models. Similar to environment models, sensor models are an abstraction
of real sensors. The physical measurement principles of sensors are highly complex in
order to model them in all detail efficiently. For radio waves and laser beams, processing-
intensive techniques like ray tracing (cf. [GGD12]) would have to be incorporated in
the simulations. Nevertheless, the sensor models have to represent the processing of real
sensors sufficiently including the uncertainty which the real sensors introduce to their
data. Sensor models in simulations have to provide sufficiently similar sensor data for

126

3.8. Problem Analysis of the Development Methodology

Unconsidered System Inputs

Verified
Inputs

System Decisions

Unexpected Behavior

Expected Behavior

Unexpected Behavior

Verified Behavior

Figure 3.22.: Relationship of system inputs and decision making.

traffic situations as the real sensors would provide in the real world for these situations.
Therefore, the performance of sensor models has to be verified and validated with regard
to the performance of the real sensors. Otherwise, results from the simulations are not
representative of the operation of the lane change assistant in the real world.
Even with perfect environment perception, the behavior of the lane change assistant can
be unsafe and faulty. We discuss the shortcomings in the current development practice
for the lane change assistant concerning its decision making in the following section.

3.8.3. Decision Making in Indefinite Environments

The reliable set of sensors and the redundancy of hardware components, e.g., ECUs,
does not guarantee safe operation of the lane change assistant in all situations of the real
world. Even if the input from the environment perception correctly represents the real
world, the decisions making of the lane change assistant could still process in appropriate
maneuvers for the current environment situation (cf. Fig. 3.18). A reason for wrong
decisions in the presence of correct environment representations is the underspecification
of the system environment and system functionality for the lane change assistant.
In the development of the lane change assistant, engineers anticipate the situations
which the lane change assistant may receive as input in the real world and verify its
corresponding decisions (cf. Sections 3.2 and 3.4). Under consideration of the open-world
assumption, engineers are unable to specify, verify, and validate the lane change assistant
completely in all situations which the lane change assistant may encounter in the real
world at design time (cf. Section 3.8.1).
The underspecification of the real world in the development can result in the neglect
of side effects which impact on the decision making of the lane change assistant. The
internal state of the lane change assistant may diverge between verification in simulations
and during operation in the real world due to diverging sequences of prior situations and
actions. The minor deviations of physical configurations between different vehicle types
and the minor but consistent behavioral deviations of physical components, e.g., sensor,
actuators, or ECUs, can have an impact on the behavior of the lane changes assistant.

127

3. Problem Outline

All these side effects may lead to a nondeterministic system behavior (cf. Fig. 3.22)
resulting in maneuver decisions which diverge from the anticipated maneuvers by engineers.
This imprecision also applies to situations which have been verified in simulations. Some
decisions may be consistent with the expectation of engineers in one situation (cf. blue
arrow in Fig. 3.22) while others decisions of the lane change assistant may diverge from
the expected system behavior in the same situation (cf. red arrows in Fig. 3.22).
As a result of the underspecification, decisions processed by the lane change assistant
in the simulations cannot wholly predict the decision making in the real world. In
situations, which have not been yet considered in the development of the lane change
assistant, the lane change assistant may process incorrect and unsafe maneuvers for
correctly perceived traffic situations due to insufficient system functionality. Additional
decisions and maneuvers would have to be considered and implemented for the lane
change assistant. Additional measures are required which can guarantee the correctness
and safety of the lane change assistant during operation in the real world—even for
situations which have not yet been considered. These safety measures have to supervise
the vehicle and its environment during operation in the real world and identify situations
in which the safety of the lane change assistant is compromised. In case the safety of the
vehicle is compromised, actions have to be initiated in order to transfer the vehicle into
a safe state and to mitigate any emerging risks for the vehicle, its passengers, and any
object and person in its vicinity (cf. Definition 2.8).
The deployment of a second instance for lane change assistant is not a solution to this
problem. Even in the absence of system faults, both instances would always process the
same decisions prohibiting any comparison and plausibility checking of these decisions.
The redundancy solely enables the detection of random hardware faults but not the
detection of systematic faults in the software implementation. Insight from the field
of avionics (cf. [BT93; ELS10; LH94]) indicate the necessity for more complex system
architectures.
The described problems in the development of the lane change assistant expose that
result of the V&V of the lane change assistant are only partially representative for the
operation of the lane change assistant in the real world. Situations will remain in which
the functionality of the lane change assistant has not yet been verified and validated. In
the following section, we discuss the necessity for a metric which quantifies the residual
risks for the operation of the lane change assistant in the real world.

3.8.4. Quantification of Correctness and Safety for Acceptability
The general public expects the lane change assistant to behave safe and correct in
situations with other automated vehicles, human-operated vehicles, and pedestrians. The
lane change assistant must not impose higher risks for the safety of objects and humans
in its vicinity than today’s human driver [BR15; Fed17]. Car manufacturers are required
to provide sound proofs about the positive impact of the autonomous vehicle systems for
the acceptance of their autonomous vehicle systems by the general public. The number
of saved human lives by these systems must exceed the numbers of lives threatened by
them.

128

3.8. Problem Analysis of the Development Methodology

National authorities address the public expectation for safe vehicles by requiring car
manufacturers to provide a safety assessment of vehicle systems within the certification
process of production vehicles. Car manufacturers used to obtain these safety arguments
from the statistical quantification of system faults over the mileage in field operational
tests. This approach has been suitable for E/E systems under the closed-world assumption
but is not feasible for the lane change assistant under reasonable costs (cf. [KP16; Win15;
WW17]). Following the open-world assumption, there will remain situations which have
not been encountered for even this huge test distances.
Simulations, field operational tests (cf. Sections 3.6 and 3.7), and formal verification
methods (cf. [CW96]) used in the development of the lane change assistant are unable
to provide sound proofs about the complete correctness and safety of the lane change
assistant. These methods are not able to fully verify and validate the lane change assistant
for the vast— if not infinite—number of situations the system will encounter in the real
world. Environment models and system models, which are required for formal verification
and simulations, are subject to the problems discussed in Section 3.8.1. The required
state space of these models would have to be very large— if not infinite— in order to
sufficiently represent the real world. Unverified situations and system behavior remain
for which the risks of the lane change assistant for objects and persons in its vicinity are
unknown.
The infeasibility to provide sufficient proof of the complete correctness and safety of
lane change assistant requires the quantification of the residual risks by the lane change
assistant during operation in the real world. Otherwise, the positive impact by the lane
change assistant cannot be demonstrated to national authorities and the general public.
Novel metrics have to be introduced for the quantification of residual risks by autonomous
vehicle systems operating in the real world. These metrics have to explicitly consider
the infinite space of situations in the real world and the uncertainty in the coverage of
real-world situations. For simulations as well as field operational tests, metrics have
to determine the coverage of traffic situations by test scenarios and test cases. Such
metrics would enable the estimation of the quality of test suites in relation to the covered
real-world situations.
The problems in the development of the lane change assistant can be generalized to all
autonomous vehicle systems which autonomously operate in the real world. The following
section summarizes the problems for the development of autonomous vehicle systems.

3.8.5. Summary of Analysis Results
The previous sections have revealed problems of the current development practice for the
development of the lane change assistant. From this analysis, the following shortcomings
are derived for the development of all autonomous vehicle systems—especially for higher
levels of automation (cf. Fig. 2.4):

• Models used as a representation of the real world in the development of autonomous
vehicle systems are always an abstraction of objects, situations, and their charac-
teristics in the real world. Objects and situations remain which are not sufficiently

129

3. Problem Outline

represented or are not considered at all by the environment models. In the worst
case, environment models define limitations for objects and their behaviors which do
not correspond to the limitations of corresponding real-world objects. Autonomous
vehicle systems are likely to exhibit unsafe behavior in situations with objects,
whose behaviors reside beyond the limitation of the environment models.

• The environment perception of ADAS is an interpretation of the real world obtained
by sensors. These sensors and corresponding algorithms introduce uncertainty for
the values of object and situation parameters in the internal environment represen-
tation. This discrepancy may impact the complete functionality of autonomous
vehicle systems. The uncertainty of parameters may lead to internal interpreta-
tions of the real-world which do not correctly represent the analogous real-world
situations. Furthermore, results obtained in simulations will not be applicable for
the operation of ADAS in the real world, if models substituting hardware sensors
in simulations do not sufficiently represent characteristics of the real sensors.

• The decision making of ADAS may be subject to wrong decisions, even if envi-
ronmental situations have been correctly perceived. The implementation of the
decision making relies on assumptions about the system itself and its environment.
Unknown side effects, like deviations of physical components, may have an impact
on the decision making of autonomous vehicle systems and may lead to unexpected
decisions—even for situations which have been verified in simulations. These unex-
pected decisions may be unsafe and potentially threatening the safety of objects and
humans. Diverging and unverified decisions have to be identified and supervised in
order to maintain the safety of the autonomous vehicle systems.

• Complete correctness and safety of autonomous vehicle systems cannot be proven in
their developments. Residual risks for objects and human remain for the operation
of autonomous vehicle systems in the real world. These residual risks have to be
determined and quantified in order to gain the acceptance of the general public
and national authorities for these systems. The vast— if not infinite—number of
real-world situations has to be considered for the qualification of residual risks and
the coverage of real-world situations in simulations and field operational tests.

The development of autonomous vehicle systems requires novel engineering approaches
which explicitly consider the implication of the real world throughout all development
activities. The uncertainty introduced by the interpretation of the real world has to be
considered in the design and implementation of the environment perception and decision
making. The V&V of autonomous vehicle systems have to assure realistic modeling of
the real world and determine the residual risks of autonomous vehicle systems during
operation in the real world as an indicator for their safety and benefits.
All development activities only consider a partial representation of the real world. Future
engineering approaches have to incorporate an iterative improvement of autonomous
vehicle systems in order to extend the knowledge about the system environment in the
development of the novel and previously unknown information about the real world.

130

3.8. Problem Analysis of the Development Methodology

The following chapter presents the concept for the improved development of autonomous
systems in dynamic, multitudinous environmentss.

131

4. Emerging Research Questions and
Solution Concept

This chapter introduces in Section 4.3 the solution concept of this thesis which addresses
the identified shortcomings of the current development process for autonomous vehicle
systems in the automotive domain (cf. Section 3.8). Before the solution concept, existing
related work is presented in Section 4.1 and the research goal and research questions of
this thesis are introduced in Section 4.2.

4.1. Related Work
The analysis in Chapter 3 has disclosed four significant shortcomings for the current devel-
opment practice for autonomous vehicle systems. Related research for the development,
verification, and validation of autonomous vehicle systems is presented in the following.
Several authors have identified similar problems for the development of autonomous
vehicle systems.
Aniculaesei et al. identify three challenges for the development of autonomous systems
(cf. [Ani+18b]); (1) uncertain and unknown environments, (2) adaptive and self-learning
systems, (3) open and incomplete artifacts. Their challenges match the identified
shortcomings. They also identify the difficulty to completely verify the vast environmental
situations of the real world and demand additional safety feature for the operation of
autonomous systems in the real world.
The authors of [GRS14; HK16; SSS17; Sti13; WW16] all outline the insufficiency of
traditional V&V methods for autonomous vehicle systems and campaign for novel
approaches in order to optimize for the safety assurance of autonomous vehicle systems.
The mileage, which is required to verify the safety of autonomous vehicle systems in
real-world tests, is not feasible for car manufacturers under reasonable time and costs.
Most current engineering approaches for autonomous vehicle systems embrace the im-
provement of computing performance, high-definition world maps, or high-quality sensor
perception. The manifest of all these improvements in the near or mead-term future
might be plausible but has a low probability (cf. [SSS17]). Shalev-Shwartz et al. call for
an abstract domain interpretation of road traffic in the safety assurance of autonomous
vehicle systems.
Weitzel and Geyer address in [Wei+14] the representativity of system requirements
in the evolution of autonomous vehicle systems. Comprehensive statistical data with
an arbitrary level of detail would be required for system requirements which precisely
represent the real world.

133

4. Emerging Research Questions and Solution Concept

A significant focus of current research for autonomous vehicle systems is on V&V
techniques which ensure high standards of safety for the operation of autonomous vehicle
systems in public traffic.
An early idea of the presented V&V approach in this thesis (cf. Section 4.3) has been first
presented in [MRS14] and further refined in [MHR15; MHR16]. [MHR15] introduces the
architecture of the runtime monitoring (cf. Section 4.3.1). [MHR16] presents the basic
concepts of the runtime monitor engineering in a case study on an industrial ADAS—a
lane change assistant. Chapter 6 and Chapter 8 describe the engineering of runtime
monitors resp. the setup and results of the evaluation on the lane change assistant in
more detail.
The following section gives an overview of other related V&V approaches for autonomous
vehicle systems.

4.1.1. Testing of Autonomous Vehicle Systems
The verification and validation have a crucial role in the development of safe autonomous
vehicles. Tests are performed in the virtual environments of simulations or the real
world within field operational tests. A taxonomy for testing approaches of ADAS and
autonomous vehicles are given in [Ste+15]. Stellet et al. investigate testing approaches
for four methodological challenges; test criteria, test scenarios, metric, and ground truth
reference.

4.1.1.1. Real World Testing

Field operational tests are an integral activity in the verification and validation of
autonomous vehicle systems (cf. [Bar+16; BC10]). Even though, the verification and
validation solely in field operational tests are not feasible for autonomous vehicle systems
field operational tests are still beneficial for the development of autonomous vehicle
systems due to their inherent realism (cf. [KW16]).
Currently, mainly statistical quality assurance techniques are used to guarantee the safety
of vehicle systems. The vehicle systems are observed along large numbers of driven
test miles. The safety of these systems is judged based on the rate of faults during
these test miles [SZ13; Wei+14]. Nevertheless, real-world tests still offer possibilities for
efficiency improvements. Glauner et al. analyze relevant events in field operational tests
and aggregate performance coefficient for each road in these tests. These coefficients
depict the impact of specific roads in these tests and enable the planning of more efficient
field operation tests (cf. [GBH12]).
Critical traffic situations such as collisions are hard to evaluate in field operational tests
without high risks for drivers and vehicles. Therefore, researchers have incorporated
simulations techniques into real world tests. Bock et al. use augmented reality for the
injection of virtual obstacles into the fields of view of human drivers (cf. [Boc09]).
However, this approach is not applicable to autonomous vehicle systems because the
driver is substitute by the autonomous vehicle system. Sefati et al. introduce virtual
objects into the object recognition of automated driving functions in [SSW13] in order to

134

4.1. Related Work

verify an emergency evasion functionality. Evasive maneuvers are identically performed in
the simulation and the real world. Both approaches do no benefit from the performance
and reproducibility of simulations.
The virtual assessment of automation in field operation (VAAFO) approach in [WW15] can
be seen an evolution of the approach by Sefati et al. Automation systems are deployed
alongside the VAAFO system in an open-loop in real vehicles (cf. Definition 2.21).
However, the automation systems do not interfere with vehicles’ real behavior. Human
drivers still control the vehicles. The automation system drives the vehicle in a simulation
of the real world. The simulations are generated by the VAAFO based on an additional
real sensor perception system. The trajectories of the automation systems in the virtual
worlds are compared to the trajectories of the real vehicles in the real world.
The VAAFO approach is similar to the shadow mode by Tesla Motors (cf. [Kal17]). Tesla
Motors equips their production vehicles with new versions of their autopilot in shadow
mode. The autopilot system reacts to the data from the real vehicle sensors, but its
actions are not considered for the vehicle control. The behavior of autopilot systems is
evaluated in traffic situations in comparison to the drivers’ actions and recorded for later
analysis and improvements. A simulation of the vehicle’s environment, like the one in the
VAAFO approach, is not incorporated in the shadow mode. The recording of data about
the vehicles and their environments by the shadow mode is similar to the recording of
system behavior and traffic situations during operation in the real world in this thesis
(cf. Section 4.3).
The extensions of field-operational tests by all these approaches do not significantly
address the requirement to drive millions to billions of test miles in order to soundly
verify the objects or extension to production vehicles. Prototype vehicles with the
VAAFO system still have to accumulate this enormous mileage on public roads. An
alternative approach to the verification and validation of autonomous vehicle systems is
simulation-based testing.

4.1.1.2. Simulation-based Testing

Simulation-based testing is currently the most promising approach for an efficient V&V of
autonomous vehicle systems. However, simulations will not entirely replace field operation
tests. This raises the question for the ratio of simulation-based tests and field operational
tests in the verification and validation of autonomous vehicle systems. In [Böd+18], Böde
et al. probabilistically calculate an optimal trade-off between simulation-based tests and
real-world tests. The trade-off considers the individual costs for simulations and field
operational tests, the accuracy of virtual models for the prediction of real-world behavior,
and the compliance of the autonomous vehicle systems to their requirements.
Several frameworks have been introduced for the simulations of autonomous vehicle
systems and their environments. The off-line simulation tool PRE-crash Scenario AN-
alyzer (PRESCAN) offers an integrated solution for reliable simulation of intelligent
vehicles, their dynamics, sensors, and environments based on multi-agent real-time simu-
lation [Gie+04]. After successfully passing PRESCAN, the test scenarios can be used in
VEHIL tests (cf.[HPT10]).

135

4. Emerging Research Questions and Solution Concept

Neumann-Cosel et al. present in [NDW09] the modular simulation platform Virtual Test
Drive (VTD) for the simulation of vehicle environments, their infrastructure objects
and other dynamic objects (cf. Section 2.2.1). Parameterized sensor models gather
information about the virtual vehicle environment. The information about the vehicle
environment is processed by software models of the autonomies vehicle systems, electronic
control units, or driving simulators [Neu14]. The VTD simulation system can be built into
cars to access the vehicle’s powertrain, steering, and communication channels [Las+10].
Gruyer et al. propose the simulation environment Pro_SiVIC in [Gru+10]. Pro_SiViC
focuses on physical sensor capabilities but also supports vehicle dynamics, traffic genera-
tion, and driving assistance. The simulator offers a graphical environment and can be
coupled with other tools for the usage of their control algorithms.
All these simulation frameworks can be incorporated into various XIL tests in order to
improve time and costs of testing autonomous vehicle systems (cf. Section 2.2.2)
In [Ulb+16], Ulbrich et al. discuss and compare advantages and limitations of in situation-
based open-loop tests and scenario-based closed-loop tests for testing and validating
algorithms of the tactical behavior planning in a lane change assistant.
In this thesis, the simulation environment VTD is used in the case study on a lane
change assistant because it has had already been applied in ongoing research of the
project partners (cf. Chapter 8). Nevertheless, other simulation environments could be
used within the holistic engineering approach(cf. Section 4.3). Standard file formats,
e.g., OpenSCENARIO (cf. [Dup16]), enable simulations in all supporting simulation
frameworks by defining a standard specification of scenarios, sceneries, and dynamic
objects.
For the verification and validation of sensors and the analysis of their impact on vehicle
functions, sensors are modeled in simulations in various degrees of precision—ranging
from perfect sensor models to highly realistic models with jitter in their sensor data.
In [PGV12], Pechberti et al. present their sensor model for the RADAR simulation
in Pro_SiVIC. The model reproduces the physical characteristics and uncertainties of
the antenna hardware as well as the propagation of radio waves in the real world and
provides the simulations with realistic sensor data about the simulated virtual worlds.
The RADAR model allows analyzing the robustness of autonomous vehicle systems for
realistic RADAR sensor data in simulations.
All physical sensor models, e.g., LIDAR, RADAR, cameras, and ultrasonic sensors have
to be validated for their accurate representation of the real world in simulations. The
approaches for validation of perception sensor models by [Rot+11; Sch+17] use test
drives in the real world to gather realistic sensor data. The real world data from the
real sensors is compared with the synthetical data of the sensor models in equivalent
simulations. Schaermann et al. extend the validation approach of Roth et al. by explicitly
considering the raw data and object list data from sensors and sensor models in the
evaluation.
Gruyer et al. validate their camera sensor models for Pro_SiVIC in [GGD12] based on
two types of test targets: dot charts and retro-lighting charts. The camera models are
designed for varying real-world camera system using their real-world calibration data.

136

4.1. Related Work

Images as outputs of the camera sensor models are recorded and compared to images of
the real camera systems for the validation.
In [Ver+00; VVP02] HIL tests are extended to a full VEHIL tests allowing the incorpo-
rating of the real vehicle sensors, actuators, and vehicle dynamics into simulations. The
environment of the vehicle under test (VUT) is simulated for test scenarios as relative
motions of other traffic participants are imitated in the real world by dedicated hardware
objects relative to the VUT on the test bench.
The impact of simulation-based testing for autonomous vehicle systems is subject to the
quality of modeling the vast number of real-world situations in test scenarios and test
case (cf. Section 3.8.1). Approaches for the generation of test scenarios and test cases
can be distinguished into mathematical/combinatoric approaches and real-world data
approaches (cf. [Aga+16]).
Simulation-based tests are a promising approach to the accumulation of millions to
billions of test miles for the safety assurance of autonomous vehicle systems (cf. [KP16;
Sti13; WW16]). However, the impacts of simulation-based tests depend on the scope
and realism of simulated test scenarios and test cases.
The VEHIL approach seems to be especially promising in addressing the significant
shortcomings of simulations and real-world tests— insufficient realism of simulations and
costs and time of real-world tests. The VEHIL approach is very close to real-world testing
by incorporating the real physics of real sensors and actuators. The complete processing
chain of autonomous vehicle systems with sensors and actuators can be verified in VEHIL
tests. However, the impact of the VEHIL approach is still subject to the scope and
realism of test scenarios and test case. The VUT is only verified for a defined set of test
scenarios and test cases, but their realism is not validated. An approach like the one in
this thesis can help to gather real-world data for the definition of realistic test scenarios
and test cases.
The following sections elaborate on methods for the generation of test scenarios and test
cases.

4.1.1.2.1. Mathematical Test Case Generation

One approach for the generation of test cases is the use of mathematical and combinatoric
techniques to define new test cases for autonomous vehicle systems systematically. Inputs
and outputs of autonomous vehicle systems are analyzed and combinatorially combined
as test cases which cover a large quantity of the problem space for autonomous vehicle
systems.
Schuldt et al. present in [Sch+13] a modularized virtual test tooling kit for the generic
generation of test scenarios for simulation-based verification. The tooling kit outlines the
process from the verified ADAS over the identification and analysis of relevant parameters,
definition of test scenarios, verification in XIL tests, and evaluation of test results by
metrics. The tooling kit further defines a four-layer model for the flexible combination of
the underlying road topologies, obstacles, traffic situations, and weather conditions in
test scenarios.

137

4. Emerging Research Questions and Solution Concept

In [Ber10], Berger models test scenarios from system requirements and metrics from
customers’ acceptance criteria for automatic acceptance testing of autonomous vehicle
systems in simulations. The test scenarios are defined in a domain specific language
(DSL) called ScenarioDSL.
Some approaches generate tests scenarios by classifying traffic situations. Saust et
al. define in [Sau+09] an approach for the test case generation based on the classification
of critical traffic situations from crash data databases. Sippl et al. derive test cases
from probabilistic environment-sensitive behavior simulations data (cf [Sip+16]). The
simulation data is filtered for relevant situations in which other traffic participants impact
the behavior of the automated ego vehicle. The remaining situations are rated based
on developer specified factors and stored in a situation catalog. Test scenarios for are
defined in a textual DSL from the situations in this situation catalog.
Berger et al. address in [Ber+14; Ber+15] the systematic generation of EuroNCAP
conform test scenarios1 for simulation-based verification of active safety systems under
the consideration of tolerance ranges for a specific system and environment parameters.
Possible variances of parameters over time are modeled as a graph. Trajectories are
derived from the graph as test cases for the simulations. The authors enhance the
evaluation of test results by introducing tolerance ranges in [Ber+14].
The authors of [Gäf+08; Tat15; TMJ12] present a tool-based generation of test cases
for simulation-based testing of autonomous vehicle systems. The tool TestWeaver
uses intelligent search in order to automatically analyze and classify the behavior of
autonomous vehicle systems in simulations for the automatic generation of different
test scenarios. TestWeaver controls specified parameters and inputs of the system and
monitors the system behavior in simulations on system requirements and quality criteria.
Khastgir et al. present in [Kha+17] an automated constrained randomized approach for
the definition test scenarios and test cases using the tool Vitaq2. The approach applies
randomization to test scenarios and test cases for the variation of vehicle trajectories,
environment, and traffic in the simulations by intervening the real-time communication
between simulation and SUT. Constrained randomization enables the intelligent explo-
ration of the problem space in simulations in order to find the corner cases for which an
ADAS and automated systems are likely to fail.
Aniculaesei et al. present in [Ani+18a] an automatic requirements-based test-case genera-
tion for an adaptive cruise control system. Natural language requirements are formalized
in LTL. The LTL formulas are negated as trap properties under consideration of code
coverage metrics. A formal system model is used by the model checking tool NuSMV to
generate counterexamples for the trap properties (cf. [Cim+02]). The counterexamples
represent traces through the system model which allow the derivation of test cases. The
test cases verify the system requirement for different mutants of the initial system.
The authors of [Bau+07; Bau+08; Sie+11] introduce usage models for the risk- and
model-based testing of software-based (embedded) systems. Annotated UML diagrams
from the requirements analysis enable the definition of state-based usage models. These

1https://www.euroncap.com/en/for-engineers/protocols/ (Accessed 12/05/2018)
2http://www.vertizan.com/methodology; (Accessed: 10/03/2018)

138

https://www.euroncap.com/en/for-engineers/protocols/
http://www.vertizan.com/methodology;

4.1. Related Work

usage models represent the risk profile of each SUT. Transitions in the usage models
are annotated with the corresponding risks. Test cases for the SUT are derived from
valid paths through these usage models. For risk-based testing, generated test cases are
prioritized in risk-based test plans based on the accumulated risks by all transitions in
each test case’s path.
In [Oli+16], Olivares et al. use Markov Chain and Markov Chain Monte Carlo methods
to generate road topologies for test scenarios. Essential road parameters, e.g., geometry,
type, and the number of lanes are deduced from OpenStreetMap (cf. [HW08]). All
relevant road parameters are repented in a stochastic model by probability density
functions and conditional probabilities. This stochastic model allows generating test
scenario with critical combinations of road parameters which have a high possibility to
reveal unsafe system behavior.
Zhao et al. introduce in [Zha16] an approach to accelerate the evaluation of automated
vehicles by eliminating repeating and uncritical parts in naturalistic driving data for
simulations. Stochastic models for the behavior of traffic participants are derived from
real-world naturalistic driving data and optimized by reducing its non-safety-critical
portion. Monte Carlo simulations (cf. [Moo97]) use the optimized models in order to
evaluate interactions between the automated ego vehicle and other traffic participants
with higher criticality. Results from the Monte Carlo simulations help to understand
the performance of the automated ego vehicle under naturalistic driving conditions. In
[HLZ17], Huang et al. incorporate the Kriging model as statistic models for the behavior
of traffic participants.
Mathematical and combinatorial approaches for the generation of test scenarios and
test cases in simulation-based tests are used to cover large scopes of the input/output
space of systems whose input space has been completely specified. Autonomous vehicle
systems incorporate inputs with complex data, e.g., object-oriented description of the
systems’ environments, that makes it difficult— if not impossible—to fully cover the
input/output space of autonomous vehicle systems by mathematical and combinatorial
techniques. It remains questionable if mathematical and combinatorial techniques able
to generate test scenarios and test cases that sufficiently model relevant and critical
real-world traffic situations.
Nevertheless, general aspects of these approaches, e.g., the layered model for scenarios
in [Sch+13], can be incorporated by more-elaborated approaches. This thesis considers
the layered model for test scenarios in [Sch+13] for the definition of test scenarios (cf.
Section 7.2.3).

4.1.1.2.2. Test Case Generation from Real World Data

Complementary approaches for the generation of test scenarios and test cases incorporate
data from real-world test drives.
The test scenario and test case generation by mathematical and combinatoric approaches
can verify the behavior of autonomous vehicle systems in a vast variation of traffic
situations, but some modeled traffic situations might not be representative for the
operation of the autonomous vehicle system in the real world or be completely unrealistic.

139

4. Emerging Research Questions and Solution Concept

Other approaches incorporate data from real-world driving for the generation of test
scenarios and test cases.
In [PHK17], critical situations are identified in data from naturalistic driving studies
based on their occurrences in crash databases. The critical situations are stored with
their parameters in a situation catalog. Scenarios are defined from the situations in
the situation catalog for the qualitative and quantitative evaluation of vehicle safety
functions.
Lages et al. briefly describe in [LSK13] the definition of test scenarios from real-world
data of reference sensor system. Zofka et al. use in [Zof+15] real-world data for the
creation of critical traffic scenarios. The real world data is recorded in test drives by a
reference sensor system. The road layouts and trajectories of traffic participants from
the real world test drives are recreated in the test scenarios. Spatial and temporal
modifications of the recorded trajectories enable the creation of additional test scenarios.
The approach is limited by the fixed, derived, and parametrized vehicle maneuvers and
allows only for open-loop testing (cf. Definition 2.21).
Peters et al. analyze in [PHR16] recordings from real-world test drives to represent the
specific states and transitions in these test drives as automaton models. Segments of
consistent behavior are identified in the recorded data and classified to known segments in
a knowledge base. The sequence of classified segments is transformed into an automaton
model. Classified segments represent the states of the automaton model. Transitions
between classified segments in the test drives are mapped to transition in the automaton
model. The model is annotated with additional information about the number of instances
for each segment and each transition as well as the average duration of each segment.
Bach et al. describe in [Bac+15; Bac+17a; Bac+17b] a reactive replay approach for
utilizing recorded test data during in the virtual verification of ADAS. The reactive replay
approach identifies casual dependencies of inputs for ADAS in order to identify system
inputs which can be represented by conventional plant model and system inputs which
have to be stimulated by data from conditioned data records. Coherent and reactive
stimuli for the SUT are enabled by changing the inadequate domains of recorded data to
match the input domains of the plant model.
Driving scenarios are specified by a domain model which abstracts from the real world
and characterizes temporal and spatial information on a logical level in an omniscient
view composed of sequential different acts and maneuvers (cf. [BOS16]). Graph-based
rule models ensure the consistency of specified scenarios.
In [Bac+17c], Bach at al. present a two-step approach for the selection of test scenarios in
verification of ADAS with the reactive replay approach. The two-step approach consists
of a specification-based classification and a data-driven reduction. Available real-world
scenarios are categorized based on criteria and properties from system-level requirements
for an initial scenario selection. The initial set of scenarios is further reduced based
on their cross-parameter coverage of system inputs and outputs to minimal scenario
subsets with significant diversity under avoidance of repetitive situations. The usage of
the reactive replay approach limits the combinations of parameters in the selection of
scenarios to recorded real-world driving data.

140

4.1. Related Work

In [Luc+16], Lucchetti et al. automatically identify most common driving scenarios in
data from on-road experiments based on spatial relations of vehicles in relation to the
ego-vehicle in recorded situations.
The approaches in [Bac+15; Bac+17a; Luc+16; Zof+15] are similar to the engineering
approach presented in this thesis (cf. Section 4.3). The approaches use data from
real-world drives for the definition of simulation-based tests. However, none of these
approaches validates the verification results from simulations in the real world.
The approaches of [Bac+15; Bac+17a; Zof+15] vary recorded system parameters for simu-
lations and do not create an abstract representation of the system state and environment
state for universal usage in various simulation frameworks. The approach of [Luc+16]
incorporates a description of the environment similar to the environment description for
the lane change assistant in the case study (cf. Chapter 8). They require the modeling
of reference scenarios before the analysis for their identification in real-world test drives.
Their approach does not address an iterative extension of these reference scenarios.
Simulation-based tests are an efficient approach to verify and validate autonomous vehicle
systems in many variations of traffic situations under reasonable costs. However, it is
unlikely that simulation-based tests will verify autonomous vehicle systems and their
decision making for all possible real-world situations (cf. Section 3.8.3). The following
section presents related work for the verification of autonomous vehicle systems during
operation.

4.1.2. Vehicle Diagnosis and Runtime Monitoring
Simulation-based testing is unlikely to verify all real-world traffic situations. The behavior
of autonomous vehicle systems during operation has to be monitored and supervised on
in addition to the verification in the system development and in order to identify unsafe
system behavior and mitigate emerging safety risks. The following sections present related
work in the field of (on-board) diagnosis and runtime monitoring for the verification of
autonomous vehicle systems during operation.

4.1.2.1. On-board diagnosis

Onboard diagnosis has been widely used in the automotive domain for monitoring the
correctness and reliability of physical components. The field of onboard diagnostics
mainly uses supervision, fault detection, and fault management techniques based on
single physical system parameters and mathematical models of the system’s physical
behavior in order to detect, record, and resolve deviations and faults in the controller’s
behavior (cf. [Ise05; Ise11; Ise97; Mar+13; MFG11; SZ13; Wei+14]). The recording of
deviations and faults enables later off-board diagnosis in, e.g., workshops (cf. [SZ13]).
The impact of faulty system behavior has to be mitigated by, e.g., deactivation of faulty
components or reduced functionality until the deviations and faults are resolved in, e.g.,
workshops.
Redundancy is a common approach for fault-tolerant sensor systems and control systems
in the automotive domain. It is commonly distinguished into physical, dynamic, and

141

4. Emerging Research Questions and Solution Concept

analytical redundancy (cf. [Wei+14]). For physical reduced multiple identical or diverse
components are deployed for the identical system functionality. A voter validates
the output signals of all components and select the correct output signals for the
remaining system components based on the majority of identical output signals. Dynamic
redundancy employs multiple components. In addition to the original system component,
a standby-component is deployed. The standby-component remains inactive until the
original system component produces faults. In the presence of faults by the nominal
component, the standby-component takes over the processing, and the original component
is deactivated. Analytical redundancy incorporates analytical models to calculate a part
of the complete measurement signals of the original system component. A comparison of
signals by the original components and the analytical models by, e.g., correlation analysis,
spectral analysis, or wavelet analysis enable the identification of component faults (cf.
[Wei+14]).
The sensor perception of autonomous vehicles is commonly designed that perception
components validate each other. Failure models are incorporate to evaluate and determine
the quality of sensor data (cf. [Wei+14]). This information can be considered by
components of the situation assessment and behavior planning for more accurate and
safe maneuver processing (cf. Fig. 3.3).
The standardized E-Gas monitoring concept [EGA13] is widely used in the automotive
industry for the diagnosis of EGAS systems. The E-Gas monitoring concept has three
layers; layer 1 refers to the standard engine control function, layer two refers to the
functional monitoring, and the third layer is responsible for the controller monitoring.
The functional monitoring compares the actual engine torque with a calculated “permissi-
ble engine-torque” and the current acceleration with a separately calculated “permissible
vehicle acceleration”. The “permissible engine-torque” is calculated based on the setpoint
value of the gas pedal and any external torque requests while the “permissible vehicle
acceleration” is processed from the gas pedal set point, torque requests, current vehicle
speed, and engine speed. The controller monitoring supervises the hardware which
executes the EGAS functionality. Functional and controller monitoring initiate a fault
reaction in the presence of a system fault in order to maintain a safe operating state.
The monitoring of systems’ internal processing by onboard diagnostic systems is not
sufficient for autonomous vehicle systems. Onboard diagnostic systems are not sufficiently
considering the complex external traffic situations in which autonomous vehicle systems
have to operate. Even in the absence of component faults, the nominal functionality of
autonomous vehicle systems may result in unsafe system behavior.

4.1.2.2. Runtime Monitoring

Runtime monitoring approaches have to monitor the complete behavior of autonomous
vehicle systems in the fast variations of traffic situations. Runtime monitors distinguish
themselves in their description of the monitored properties and their integration with the
monitored system (cf. [Hav11]). A good overview of basic runtime monitoring approaches
is given in [GP10]. The following section presents runtime monitoring approaches which
are related to the runtime monitoring concept in this thesis.

142

4.1. Related Work

4.1.2.2.1. Monitoring Architecture

The following related work addresses the integration of runtime monitors and monitored
system. In [RD04], Ricardo et al. present a runtime monitoring framework for systems
with identical functionality but slightly varying implementations operating on similar
hardware. The runtime monitoring framework equally monitors system functionality and
hardware while hardware information collectors monitor individual hardware components.
The system functionality is intrusively monitored by events from so-called sensors in the
system implementation. A runtime checker evaluates based on the events and information
about the hardware if the system execution matches the system requirements.
The publications [Ack+08; Ray+09] assess the instrumentation-based verification in the
design of a body electronics application. Monitor models are integrated into system
models in Matlab/Simulink (cf. [Bis96]) for the runtime monitoring of the modeled
system functionality. The monitor models monitor the data flow in the system models
in order to detect violations of the requirements. Each requirement is encoded by its
monitor model. For the evaluation of system models, test data is automatically generated
based on predefined test coverage criteria.
The authors of [Ors+02] use software tomography for a continuous, minimally intrusive
runtime monitoring. They divide the monitoring task into smaller monitoring task and
assign these small monitor subtasks to different instances of the monitored systems in
order to reduce the side-effects from the instrumentation on the performance of the
system. The partial information from the subtask is integrated and used for modifying
and updating the system.
All previous approaches use code instrumentation for access to information about the
execution of the monitored systems. Code instrumentation is not suitable for autonomous
vehicle systems in general because the code changes may impact on the system functional-
ity on the embedded hardware components. The versions of autonomous vehicle systems
verified and validated in the development should match the versions in production vehicle
for customers in order for the verification results applying to the operation of these
systems on public roads. For the engineering approach in this thesis, code instrumentation
is disqualified because the same version of autonomous vehicle systems must be used
in the simulations of the system verification and during operation in the real world.
Runtime monitoring approaches with non-intrusive access to system data are presented
in the following.
Nelissen et al. propose in [NPP15] a new reference architecture for inline runtime
monitoring using buffers for monitored system events. These buffers decouple the
runtime monitor and the monitored system that the monitored system must not have
any knowledge about the runtime monitoring. Relevant events of the system are stored
in individual buffers for each event. The runtime monitor is periodically executed
independently from the monitored system and synchronously accessed by the runtime
monitoring for the evaluation of the system behavior.
Nguyen et al. present in [Jak+15; Ngu+16] a framework for assertion-based monitoring
of automotive systems-of-systems with mixed criticality. The framework uses qualitative
and quantitative interpretations of signal temporal logic (STL) assertions over mixed-

143

4. Emerging Research Questions and Solution Concept

analog signals to automatically synthesized hardware monitors. These monitors can
be implemented directly from hardware description language (HDL) code in FPGA
hardware.
In [Kan+15; Kan15; KFK14], Kane et al. use a passive network monitor to monitor
high-level system properties from the observed network state for autonomous vehicles.
The network state is acquired by passive observation of the system’s broadcast buses and
mapped to propositions of discrete temporal logic for the evaluation of system properties
about the correct and safe system behavior. The usage of hardware monitoring has the
benefit of non-intrusive access to data of the monitored systems.

4.1.2.3. Runtime Monitoring Properties

Runtime monitoring approaches commonly require the definition of system properties
about the correct system behavior. Most runtime monitoring approaches define safety
and liveness properties in formal logic or model correct resp. incorrect reference system
behavior within automata.
Kane et al. map observation of the system’s broadcast buses to propositions of discrete
time metric temporal logic (MTL) (cf. [Kan+15; Kan15; KFK14]). These propositions
are derived from relevant safety requirements and invariants for autonomous vehicles
using specification design patterns and semi-formal techniques. The eager algorithm of
the runtime monitoring periodically evaluates the requirements and invariants based on
the propositions each and enables the earlier detection of property violations providing
the system more time to attempt a recovery.
Cimatti et al. present in [Cim+08; Cim+10] their property-based methodology and
techniques for the formalization and validation of high-level requirements for safety-
critical applications. Requirements are specified in first-order temporal logic after an
informal analysis. Consistency and entailment of required properties, as well as the
possibility to model desirable scenarios, are evaluated for the formalized requirements by
automatic but incomplete checks using model checking techniques
Schamai uses in [Sch13] simulation models for the design verification. The simulation
models include formalized natural-language requirements and allow to monitor require-
ment violations by requirement violation monitors in simulations of design models with
OpenModelica (cf. [Fri+06]). Scenarios models create test inputs for the design models
in the simulations. The language ModelicaML is introduced for the formalization of
requirements by the simulation models using UML and Modelica (cf. [FE98]).
Kneer et al. propose in [KK15] an approach for generation of requirements monitors in
self-adaptive systems from a requirements specification (cf. [Bru+09]). The requirements
monitor consists of a rule engine and an impact analyzer which process a suitable
configuration of the self-adaptive system in changing situations. The rule engine monitors
assertions based on runtime data from probes in the self-adaptive systems. The impact
analyzer estimates the impact of broken rules using a goal model. The system requirements
are defined in a semi-formal requirements language for the generation of probes, assertions,
and the goal model.

144

4.1. Related Work

In [HMF14], Heffernan and et al. use the ISO 26262 for the definition of monitored
properties for automotive embedded systems. Functional safety requirements from the
safety analysis of ISO 26262 are expressed as formulae in past time LTL and evaluated
at runtime by a non-invasive runtime monitor listing on microcomputer’s system bus.
Past time LTL is a variation of the LTL (cf. [Pnu77]).
Reinbacher et al. also use in [Rei+11] past time LTL to monitor system requirements
but they implement an intrusive runtime monitor by instrumenting the application code.
The authors of [Ani+16] use model checking to verify assumptions of autonomous
systems about their environments at development and runtime monitors to supervise
these assumptions during operation in the real world. Timed automata model the
behavior of systems and their environments. System safety properties are defined as
a formula in timed computation tree logic (TCTL). The correctness of these models
concerning this property is verified at design time. Runtime monitors are derived from
the models for supervising the safety properties during operation in the real world.
Nenzi et al. introduce a topological spatial surround operator for signal spatio-temporal
logic (SSTL) with a qualitative and quantitative semantics. Monitoring of spatial modali-
ties requires different monitoring algorithms than for timed modalities. Efficient runtime
monitoring algorithms are introduced for monitoring the spatial-temporal behavior by
complex systems with qualitative and quantitative semantics. For the quantitative
semantic of the surround operator, a novel fixed-point algorithm is introduced.
Machin et al. describe in [Mac+14; Mac+18] the runtime monitoring of autonomous
systems based om safety rules. Safety rules are automatically synthesized based on the
concept of safety margins. Safety rules describe system behavior in the presence of poten-
tial hazards by defining necessary interventions for violation of safety invariants. Safety
invariants are formally expressed as predicates over system variables from the margin
analysis. The margin analysis splits domains of the system variables into discretized
intervals or sets. All safety rules for a safety invariant are accumulated into a safety
strategy. A safety monitor implements all safety strategies for a system. The safety
monitor evaluates and ensures the safety of the autonomous systems during operation.
Krüger et al. use [KMM07] aspect-oriented development techniques for runtime monitoring
of distributed systems. They model the communication of distributed system components
in message sequence charts (MSCs) for the generation of runtime monitors. The code
of the distributed system is instrumented for the runtime data by using aspect-oriented
techniques.
Ahluwalia et al. present a similar model-based approach for the runtime monitoring
of end-to-end quality of service (QoS) properties in [Ahl+05]. Interactions between
system functions and corresponding QoS properties— sets of real-time constraints—are
modeled in extended MSCs. The QoS properties are deployed to all system components
and monitored by a so-called component monitor (CMonitor) based on the real-time
constraints.
The authors of [Fea+98] use runtime monitoring of system requirements for the selection
and initiation of self-adaption tactics. The system requirements are defined by the KAOS
goal-driven specification methodology (cf. [VDM95]). Goals are formally defined as
assertions in real-temporal logic (cf. [Koy92]). These assertions are mapped to sequences

145

4. Emerging Research Questions and Solution Concept

of events in the FLEA monitoring system (cf. [Coh+97]) and evaluated for events from
the monitored system.
Another approach using goal-driven specification for runtime monitoring is the approach
in [Wan+07]. Requirements are defined as annotated goal model and transformed into
propositional formulas for their evaluation in the propositional satisfiability (SAT) solvers
SAT4J (cf. [LP10]). SAT4J evaluates the propositional formulas offline on program
execution traces. The program execution traces are gathered by instrumenting the code
of the system with probes and stored in compact propositional encoding.
All runtime monitoring approaches evaluate the system behavior during operation, but
none of the presented publications integrates their runtime monitoring approach in the
context of the system development processes. The majority of approaches manually
derives the monitored system properties from system requirements or defines these
properties on the signals of the monitored system. As a result, the system behavior is
monitored on the system level without any abstraction. Therefore, the investigation of
emerging faults and insufficient system behavior for the improvement of systems requires
system experts.
The work in [Kan+15; Kan15; KFK14] incorporates a similar pattern-based analysis
for the definition of the monitored properties from system requirements. However, the
properties are defined in propositional logic. Proportional logic is insufficient for reasoning
about the environments of autonomous vehicle systems because propositional logic cannot
reason over objects in the environment (cf [HR04]). The implementation of runtime
monitoring as a passive monitor on communication buses in [Kan+15; Kan15] could be
used as a reference for the implementation of this thesis’ runtime monitoring framework
on embedded hardware in production vehicles (cf Chapter 5).
Multiple approaches [Ahl+05; Kan+15; Kan15; KFK14; Rei+11] incorporate temporal
logics, e.g., LTL, for the definition and evaluation of temporal requirements, like durations
between system events. The runtime monitoring framework in this thesis does not yet
consider the temporal requirements but would require a temporal first-order logic similar
to[Cim+08; Cim+10] in order to consider the temporal requirements over the objects of
the environment.

4.1.2.4. Comprehensive Safety Approaches

Several works integrate runtime monitoring into more comprehensive safety approaches
that not only identify faulty system behavior but take corresponding actions in order to
mitigate the faulty system behavior.
In [Hör11], Hörwick presents a functional safety concept that combines the monitoring of
highly automated ADAS and the transfer of these systems into safe states in the presences
of critical and unsafe traffic situations. The safety concept incorporates the monitoring
of internal system faults, functional system boundaries, and the human driver. Internal
system faults are detected by watchdogs and analyzed for their impact on the system
functionality. Functional boundaries of ADAS are derived from their specifications and
monitored as constraints on traffic situation parameters. Action plans define the transfer
of these systems to a safe state in the presence of possible constraint violations.

146

4.1. Related Work

Heckmann et al. present in [Hec+11] adaptive software safety cages as a safety-oriented
reference architecture for vehicle systems. The safety cage architecture consists of func-
tional safety cages and actuator safety cages. Functional safety cages cover a single control
system functions while actuator safety cages focus on safety-related actuators. Safety
cages monitor the plausibility of function outputs in the current driving situation and
restrict or block these function outputs accordingly. The driving situation is determined
based on information such as vehicle speed, driving dynamics, or GPS location. Once a
failure is detected, the safety cage invokes an appropriate action in order to transfer the
system into a safe state.
The authors of [Ani+18b] propose a similar functional safety architecture. Their depend-
ability cages examine and evaluate the internal behavior of systems and the external
behavior of the system environments at runtime based on constraints which have been
defined and verified in the system development. Individual dependability cages are
compositionally applied to control functions, machine learning functions, subsystems,
the complete autonomous vehicle system, and the system environment. Dependability
cages record unknown situations for further system improvement and allow to intervene
with the system behavior and configuration of the system similar to functional safety
cages in [Hec+11].
Wu et al. describe in [Wu+17] the synthesis of safety guards which monitor the input-
output behavior of systems and correct any property violation instantaneously. In the
presence of property validations, the safety guards process sound and safe system output
as a substitution of the violating system output under minimizing the deviation between
the two outputs.
The runtime monitoring architecture in this thesis can be used as dependability cages
resp. functional safety cages for complex and learning vehicle functions. The overall
engineering approach in [Ani+18b] closely matches the holistic engineering approach of
this thesis (cf. Section 4.3). Their work has pre-published contents from this thesis.

4.1.3. Synthesis of Verified Vehicle Controllers
Another research direction is the synthesis of a vehicle controller with verified and soundly
bounded system behavior. Verification techniques are applied to ensure the safety of the
system behavior and exclude any safety risks from the controllers.
Shalev-Shwartz et al. introduce the notion of responsibility sensitive safety (RSS) as global
safety model for the behavior of autonomous agents, e.g., autonomous vehicles. RSS
formalized the notion of “accident blame”. Autonomous agents play a non-symmetrical
role in accidents where one single agent can be “blamed” for the responsibility of the
accident. The RSS model includes a formal treatment of “cautious driving” under limited
sensing conditions in order to guarantee that no autonomous agent will ever cause an
accident of its “blame”. This notion of “cautious driving” is incorporated as constraints
for the possible actions into the driving policies of autonomous vehicle systems.
Shalev-Shwartz et al. further define in [SSS17] a formal semantic language that aggregates
units, measurements, and action space, into an abstract specification for consideration in
the planning of autonomous agents. Such a semantic model is crucial as the computational

147

4. Emerging Research Questions and Solution Concept

complexity of the planning by autonomous vehicle agents does increase exponentially
with time and number of agents. The formal semantic language by Shalev-Shwartz
is similar to the abstract representation of real-world traffic situations by the runtime
monitoring in this thesis.
In [LMT15], Larsen et al. use the tool Uppaal Stratego for automatic synthesis of optimal
and safe ACC controller. They model the ego vehicle and a leading vehicle in weighted
and stochastic timed automata and let them play a game in simulations. Safety properties
can be defined and evaluated by querying these games. Therefore, optimal strategies
under consideration of safety properties can be derived from these simulations and used
for the controller.
Hilscher et al. present in [Hil+11] an approach to prove the safety of multi-lane motorway
traffic with lane-change maneuvers by introducing multi-lane spatial logic (MLSL). MLSL
allows for purely spatial reasoning about traffic safety on highways by defining an abstract
model of multi-lane highway traffic based on spatial properties of local views of cars. This
logic allows specifying the space which individual vehicles reserved. Hilscher et al. model
corresponding vehicle controllers and show that cars with these controllers occupy and
reserve disjoint spaces. In [HLO13], Hilscher et al. extend their work to rural roads.
All three approaches integrate limitations of the system behavior, which are commonly
supervised and enforced by runtime monitors, directly into vehicle controllers. These
approaches technically ensure that the behavior of systems remains in their safe limits
rendering runtime monitoring obsolete. All three approaches manually model the behavior
of traffic participants and abstract from real-world behavior. The correctness and safety
of the controller are verified in all approaches under the fundamental assumption that
the models fully model the real world. However, it is not clear that this assumption holds
and the verification results transfer to the real roads because the models have never been
validated in the real world.

4.1.4. Related Work from the Field of Avionics
In the avionics domain, autonomous systems have been in operation for some time
now. Therefore, verification and validation of autonomous systems have been extensively
studied and applied in this domain. The following publications give an overview of similar
work in the avionics domain.
Zou et al. combine in [ZAM14] multi-agent simulations and evolutionary search for a
safety validation of sense and avoid (SAA) algorithms aboard Unmanned Aerial Vehicles
(UAVs). The evolutionary search explores the input space for SAA algorithms and guides
the simulation towards challenging situations. The difference to the automotive domain
in the autonomous control systems is the increased degree of freedom as an airplane can
rise and fall.
The authors of [DG15; Gia+14] present a test environment for the AutoResolver system
(cf. [ELC12]). The test environment incorporates a variety of tools, e.g., TestGen
and JDart (cf. [HGR13]), to model, simulate, and evaluate scenarios for the loss of
separation in air traffic. A loss of separation conflict will be present if two aircraft fly
through the same point at the same time. Scenarios for these conflicts are defined by

148

4.2. Emerging Research Questions

selecting a point in 3-dimensional space and fly the two conflicting aircrafts backward
for a given duration of time. Thus, the individual trajectories for the conflicting aircraft
are created. The trajectories are given to the AutoResolver system as test input for
finding a resolution of conflict by changing the trajectory for one of the aircraft. The
resolution of the AutoResolver system in these tests is monitored for the creation of
test cases for secondary conflicts. For the test of a secondary conflict, a point on the
resolution trajectory is selected, and a trajectory of another (secondary) aircraft is defined
based on this point. In the tests, runtime monitors verify system requirements of the
AutoResolver system and log several aspects about the system for later analysis. The
monitors are implemented in AspectJ (cf. [Kis02]) in order to prevent any interference
with the system’s source code.
Brat et al. present in [Bra+15] an extensive case study on a Matlab/Simulink model of a
twin-engine aircraft simulation named transport class model (TCM). Requirements from
a Boeing 737 (B737) automatic flight systems are used as references for the model. These
requirements specified in natural language assumptions about the airplane’s control system
and its physics on high abstraction level. The Matlab/Simulink model is transformed into
a Lustre model (cf. [Cas+87]) while the requirements are decomposed into requirements
on the signals of the TCM model and implemented as synchronous observers (cf. [HLR94])
on the TCM model for verification. The proof of some requirements requires the use of
compositional verification.
The research in the field of avionics matches the research in the automotive domain.
Similar problems are addressed in both domains. These similarities indicate that various
domains encounter similar challenges in the development, verification, and validation of
autonomous systems. However, neither domains have yet introduced a holistic approach
for the development, verification, validation, and operation of autonomous systems
which sufficiently addresses the challenges of autonomous systems in unconstrained
environments. The engineering approach in this thesis has the potential to be applied in
other domains, e.g., avionics or logistics.
The research goal and research questions related to the engineering approach in this
thesis are introduced in the following section. The engineering approach itself is present
in Section 4.3.

4.2. Emerging Research Questions
The previous section has presented a large variety of related work. This related work
addresses partial aspects of shortcomings and problems for the current development
process of autonomous vehicle systems in the automotive domain (cf. Section 3.8). Formal
proof methods, e.g., model-checking (cf. [Chr08]), do not scale to analyze complete
autonomous vehicle systems in their highly dynamic environments, and manual test
automation does not scale to the vast number of relevant traffic situation for autonomous
vehicle systems (cf. [TMJ12]). Approaches for automatic test generation from real-world
data are not sufficiently integrated into the system development and do not sufficiently
validate their simulations results in the real world. Most runtime monitoring approach

149

4. Emerging Research Questions and Solution Concept

reason directly on the signals of autonomous vehicle systems without any semantic
abstraction and consideration of the system environment— the real world. This low-level
monitoring is incapable to thoroughly verify and validate autonomous vehicle systems
operating in the real world with a high number of diverse traffic situations.
Essential criteria in the development of autonomous vehicle systems are the correctness
and safety—especially for the operation in the real world. In current development
practice (cf. Chapter 3), the correctness and safety of autonomous vehicle systems
are expressed by corresponding correctness and safety conditions. Autonomous vehicle
systems have to satisfy these conditions in order to be judged as correct and safe. This
thesis refers to correctness and safety conditions as qualitative properties because any of
these conditions is either satisfied or violated. Probabilistic estimations of correctness
and safety are not part of this work.

Definition 4.1 (Qualitative Properties). Qualitative properties for autonomous
vehicle systems are conditions which these systems have to permanently meet in order
to be judged as correct and safe.

Statements about the correctness and safety of autonomous vehicle systems are only
valid in specific contexts, e.g., traffic situations, in which the ground truth has been
proven. In the current development practice, qualitative properties are only verified for a
finite set of contexts and not for the vast— if not infinite—contexts, which autonomous
vehicle systems may encounter during operation in the real world. In open contexts
such as the real world, valid statements about the correctness and safety of autonomous
vehicle systems require the quantification of their contexts. Therefore, we refer in this
work to the scope of valid contexts by safety and correctness arguments as quantitative
scope. For autonomous vehicle functions operation in the real world, we also denote their
context as environment situations.

Definition 4.2 (Quantitative Scope). The quantitative scope is defined as the con-
texts of systems under which statements about the system’s correctness and safety
have been established.

The semantic of quantitative in this thesis differs its semantic in other publications. Nenzi
et al. define in [Nen+15] a quantitative semantic for the satisfaction of spatiotemporal
properties.
Several publications have addressed an improved verification and validation of autonomous
vehicle systems (cf. Section 4.1), but none has yet presented any comprehensive en-
gineering approach. None of the published approaches addresses the qualitative and
quantitative capabilities for autonomous vehicle systems throughout their complete life-
cycle under the consideration of complexity and uncertainty of the real world. The lack
of any holistic engineering approach leads to the main research goal of this thesis:

Research Goal: Enhancement of the current development practice for autonomous
vehicle systems into a holistic engineering approach supporting the qualitative and quanti-

150

4.2. Emerging Research Questions

tative supervision and estimation of correctness and safety by the seamless integration of
system development and system operation.
The research goal imposes the general necessity for a holistic engineering approach in
order to sufficiently estimate the correctness and safety of autonomous vehicle systems
operating in the real world. This estimation requires any engineering approaches to
determine the contexts (quantitative) in which the correctness and safety of the systems
have been evaluated (qualitative). The integration of system development and operation
imposes more specific concerns for the autonomous vehicle systems and the engineering
approach itself. Further research questions address these concerns.

Research Question 1: Which are the necessary (technical) foundations for the in-
tegration of system development and system operation in order to qualitatively and
quantitatively supervise and estimate the safety of autonomous system operating in the
real world?
The development of autonomous vehicle systems will only benefit from the integration
of system development and system operation if the commonalities and variations of
the autonomous vehicle systems are sufficiently considered. The development approach
has to be applicable throughout the complete life-cycle of autonomous vehicle systems.
Furthermore, the integration of development and operation for autonomous vehicle
systems requires solutions for the definition, evaluation, and estimation of qualitative
properties and their quantitative scopes.

Research Question 2: How to identify and define qualitative properties for each
autonomous vehicle system that sufficiently represent its correctness and safety?
The correctness and safety of autonomous vehicle systems correspond to a set of qualitative
properties. A violation of any property indicates an incorrect and unsafe system behavior.
Even if engineers assess the correctness and safety of autonomous vehicle systems
themselves, they will implicitly assume qualitative properties for their evaluation of
the system behavior. For the automatic supervision of qualitative properties, relevant
qualitative properties have to be explicitly defined and implemented. The set of properties
for each system has to sufficiently represent the different entities and their relations to
the system and their environments, e.g., other dynamic objects, that have an impact
on the correctness and safety of autonomous vehicle systems. The following research
question addresses the automated evaluation for qualitative properties.

Research Question 3: How to monitor the qualitative properties and their scopes
throughout the complete life-cycle of autonomous vehicle systems— from system specifica-
tion, design, implementation, and verification to operation in the real world?
For the automatic supervision of the correctness and safety of autonomous vehicle
systems, the qualitative properties are commonly implemented as monitors and deployed
alongside systems. For autonomous vehicles, these monitors have to automatically
evaluate the qualitative properties and their scope based on the available system data.
Throughout the complete life-cycle of autonomous vehicle systems, monitors have to

151

4. Emerging Research Questions and Solution Concept

record any violations of qualitative properties and their contexts. Qualitative properties
are commonly expressed as system requirements in natural language (cf. [Cle07]) and
have to be formalized for the implementation as monitors.

Research Question 4: How to estimate the residual risks of autonomous vehicle
systems during operation in the real world based on the qualitative and quantitative
knowledge from their development?

The correctness and safety of autonomous vehicle systems are unlikely to be verified and
validated during their development for the vast— if not infinite—number of environ-
mental situations which these systems may encounter during their operation in the real
world (cf Section 3.8.1); residual risks will remain for the operation of autonomous vehicle
systems. The runtime monitoring can support the mitigation of risks from autonomous
vehicle systems by identifying critical environment situations and unsafe system behavior
based on violations of qualitative properties and their scopes.

Research Question 5: How to record violations of qualitative properties and their
scopes during operation in the real world for further analysis and system improvements?

The improvement of autonomous vehicle systems by any holistic engineering approach
requires the recording of any qualitative and quantitative violations. These qualitative
and quantitative runtime monitoring results provide knowledge about insufficient system
behavior and its contexts. The knowledge about faulty system behavior in the system
evolution supports the identification of corresponding insufficiencies within the systems
and their improvement. Possible improvements address elements in the specification,
design, implementation, and verification of autonomous vehicle systems.
The following section introduced the holistic engineering approach for the seamless
development and operation of autonomous vehicle systems as the solution for the research
goal and research questions.

4.3. Seamless Development and Operation of
Autonomous Vehicles by Qualitative and
Quantitative Runtime Monitoring

Concerning the research goal (cf. research goal), a holistic engineering approach for
the seamless development and operation of autonomous vehicle systems is introduced
(cf. Fig. 4.1). The holistic engineering approach addresses the correctness and safety of
autonomous vehicle systems by bridging the gap between currently applied development,
verification and validation techniques for autonomous vehicle systems and their operation
in the real world. The approach enables the verification of simulation results and the
gathering of additional data for system improvement. Runtime monitoring techniques
are used to supervise and the decision making of these systems and record environmental
situations.

152

4.3. Seamless Development and Operation of Autonomous Vehicles

Real Situations

Simulated
Situations

Observed
Situations

Operation Quantitative Monitoring

Simulation Quantitative Monitoring

Real Situations
Simulated
Situations

Simulation Framework

Application and Operation

Operation Qualitative
Monitoring

System
under Operation

System under Test

Design and Simulation

Abstract Function

Abstract Function

Test Scenario

Simulated World

Real World

Simulation Qualitative
Monitoring

Monitor Engineering and
Training in System Development

Monitoring Architecture for Seamless
Development and Operation

Operation Analysis and System Evolution
for Dependability Improvement

Figure 4.1.: Overview of the engineering approach.

The engineering approach is divided into two parts; a development part (design time)
with the design, implementation, and verification of autonomous vehicle systems (cf. left
side of Fig. 4.1) and a operation part (runtime) with the application of autonomous
vehicle systems in vehicles and their operation in the real world (cf. right side of
Fig. 4.1). The approach is not intended to replace the current engineering process in
the automotive domain but to extend the current development practice (cf. Chapter 3)
by incorporating data from the operation into the system development. Our approach
extends the current practice by transferring knowledge about systems and their contexts,
e.g., traffic situations, from development to operation and from operation back to the
development for further system improvements. Over the complete life cycle of autonomous
vehicle systems— from specification, design, implementation, verification to the operation
on public roads—the approach enables the continuous improvement of autonomous
vehicle systems with particular focus on their correctness and safety. Knowledge from the
engineering approach can be used for the estimation of residual risks for the operation of
autonomous vehicle systems in the real world.

A key feature of the approach is the usage of runtime monitors for the seamless integration
of development and operation. Runtime monitors observe a system (part) via defined
interfaces and evaluate predefined conditions and invariants about the system behavior
based on data from these interfaces (cf. Definition 2.33).

153

4. Emerging Research Questions and Solution Concept

Information about the autonomous vehicle systems and their contexts are gathered in
the specification, safety analysis, system design, implementation, and verification. The
runtime monitors use this information for the supervision of autonomous vehicle systems
during operation in the real world. Novel information about the systems and their
contexts from the runtime monitoring during operation in the real world are transferred
back to the development for further improvement of specification, design, implementation,
and verification of the autonomous vehicle systems. This process enables the iterative
improvement of autonomous vehicle systems, their correctness and their safety over
multiple system generations.
The engineering approach focuses on the externally observable behavior of autonomous
vehicle systems. This external observable behavior is implemented as software components
and emerges from the execution of these software components on the systems’ hardware
components, e.g., ECUs. Hardware related characteristics, e.g., utilization, timing
behavior, or performance of bus communication systems and processors, are not explicitly
targeted by the approach. Nevertheless, these characteristics have an impact on the
correct and safe system behavior and may be incidentally detected by the runtime
monitoring. For example, delayed responses within the processing chain of autonomous
vehicle systems may lead to unsafe system behavior. Autonomous vehicle systems have
to process their response in time before the real world has evolved into another situation
in which the system response is inappropriate.
The holistic engineering approach can be segmented into three subprocesses; the definition
of the functional architecture for the runtime monitoring, the definition, implementation,
and training of the runtime monitors in the system development, and the analysis of
the system operation for system evolution (cf. Fig. 4.1). Each subprocess is briefly
described in the following sections Sections 4.3.1 to 4.3.3 and in more detail in the
chapters Chapters 5 to 7.

4.3.1. Monitoring Architecture for Seamless Development and
Operation

Essential for the seamless integration of system development and system operation is a
consistent architecture of the autonomous vehicle system and the runtime monitoring
framework throughout the complete life-cycle— from the system verified in simulations to
the validation during operation in the real world. The vehicle system has to provide the
runtime monitoring framework with consistent interfaces for the access of necessary system
data. These interfaces also define the specific part of the system which is supervised by
the runtime monitoring.
The runtime monitoring abstracts from the data of the autonomous vehicle systems (cf.
[LF96]). The data accessed by the runtime monitors via the consistent interfaces of
the autonomous vehicle system is transformed into an abstract representation. During
development and operation of autonomous vehicle systems, the behavior of the super-
vised system part is qualitatively and quantitatively monitored based on the abstract
representation:

154

4.3. Seamless Development and Operation of Autonomous Vehicles

Qualitative Monitoring: An abstract function supervises the behavior of systems by
implementing and evaluating the systems’ qualitative properties (cf. Simulation
Qualitative Monitoring and Operation Qualitative Monitoring in Fig. 4.1).

Quantitative Monitoring : The runtime monitoring framework determines if encoun-
tered instances of the abstract representation have already been considered and
verified in the system development (cf. Simulation Situation Monitoring and
Operation Situation Monitoring in Fig. 4.1).

Definition 4.3 (Abstract Representation). The abstract representation represents
the abstract data model used by the runtime monitoring framework for the abstraction
of the operational data of autonomous vehicle systems. Elements of the abstract
representation are derived for each autonomous vehicle system from its specification,
requirements, and safety criteria.

The architecture of the runtime monitoring framework and its integration with the
autonomous vehicle systems are described in more detail in Chapter 5.

4.3.2. Monitor Engineering and Training in System Development
While the architecture defines the components of the runtime monitoring framework, the
abstract representation and properties for correct and safe system behavior are subject
to each particular system (part) under monitoring. The abstract representation and
qualitative properties are individually defined for each system (part). Besides other
specialized (safety) documents (cf. [Int09c]), system specifications commonly aggregate
requirements which define the correct and safe behavior of the system.
Requirements are commonly described in natural language. Types and relations used by
the requirements to describe correct and safe system behavior have to be formalized for
their usage in the runtime monitoring. The types represent the abstract representation
while the relations constitute the properties for the runtime monitoring. The logic
forms the foundation for the implementation of abstraction, qualitative motoring, and
quantitative runtime monitoring in the runtime monitoring framework (cf. Chapter 6).
All requirements are required to be defined in a predefined sentence structure. This
sentence structure allows defining the relations between data types of autonomous vehicle
systems and elements of the logic. These relations are implemented by the runtime
monitoring framework for the automated transformation of system data into the abstract
representations. The defined sentence structure also helps to mitigate the ambiguity of
natural language in the definition and selection of requirements.
For the system verification in the system development, the autonomous vehicle system and
the runtime monitoring framework are integrated into simulations (cf. left side of Fig. 4.1).
In these simulations, autonomous vehicle systems are verified for a set of defined test cases
(cf. Section 3.6). The runtime monitoring framework is deployed in these simulations
alongside the autonomous vehicle systems (cf. Fig. 4.1) and accesses at each processing
cycle the real data of a monitored system part via defined interfaces. The system data is

155

4. Emerging Research Questions and Solution Concept

transformed into an instance of the abstract representation. In the course of this work,
we denote an instance of abstract representation for the state of autonomous vehicle
systems and their environments as abstract situation. The qualitative properties are
evaluated on each abstract situation by the abstract function (cf. simulation qualitative
monitoring in Fig. 4.1) in order to evaluate the correctness and safety of the system
part under monitoring. The quantitative runtime monitoring records all encountered
abstract situations in the test cases. This set of simulated situations represents only a
subset of situations which autonomous vehicle systems may encounter in the real world
(cf. Fig. 4.1).

Definition 4.4 (Abstract Situation / Abstract Representation). Abstract situation
defines an instance of the abstract representation for the state of the system and its
environment in the runtime monitoring framework.

The definition of the runtime monitoring framework from the system specification and
its application in the system simulations of the system verification are described in more
detail in Chapter 6.

4.3.3. Operation Analysis and System Evolution for Dependability
Improvement

Besides the verification of the autonomous vehicle system in simulations, the runtime
monitoring is also used during the validation of autonomous vehicle systems in the real
world (cf. right side of Fig. 4.1). Similar to the system verification in simulations, the
runtime monitoring framework access the system data via the identical data interfaces as
in the simulations and processes an abstract representation for each processing cycle of
the system. The abstract function evaluates the correctness of the system part under
monitoring based on the identical properties as they have been used in the simulations
(cf. operation qualitative monitoring in Fig. 4.1). The qualitative runtime monitoring
during operation enables the identification and mitigation of faulty system behavior
during operation—even in situations which have not been considered and verified in the
development of the system. The quantitative runtime monitoring uses the set of simulated
situations as the reference set for the monitoring of situations during operation in the
real world. During operation, the reference set is compared to the encountered abstract
situations and any abstract situations which have not yet been considered in the system
development are recorded (cf. operation quantitative monitoring in Fig. 4.1). Neither
the set of simulated situations nor the set of encountered situations during operation will
fully include all situations which are possible in the real world (cf. Section 3.8.1).
The knowledge about unconsidered abstract situations and faulty system behavior can be
used for the improvements of the specification, design, implementation, and verification
for autonomous vehicle systems in further developments. An extensive V&V represents
a key factor for the successful development of correct and safe autonomous vehicle
systems. Our engineering approach supports the testing of autonomous vehicle systems

156

4.3. Seamless Development and Operation of Autonomous Vehicles

in simulations by enabling the definition of new test scenario and test cases from the
recorded abstract situations during operation in the real world. The new test scenarios
and test case are envisaged to increase the test coverage of the autonomous vehicle
systems by verifying the behavior of these systems in the unknown traffic situations.
Test scenarios describe timed sequences of scenery changes and maneuvers by dynamic
objects in the environment of the autonomous vehicle system. These sequences are
identified in the recorded traces of abstract situations from the runtime monitoring of
the autonomous vehicle system during operation in the real world.

Definition 4.5 (Test Scenario). A test scenario defines a timed sequence of scenery
changes and maneuvers by dynamic objects in the vicinity of the system under test
(SUT) for simulation-based tests.

Test cases are derived from test scenarios by parametrization. Parameters of a test
scenario still correspond to the abstract situations and do not correlate to the required
concrete parameters of simulation frameworkssimulation framework. For example, abstract
situations may only reason about the relative velocity between two vehicles whereas
the simulation framework requires the actual velocity of each vehicle for its simulations
(cf. Chapter 8). The parametrization estimates missing concrete parameters for the
simulations from the available parameters of abstract situations in the test scenarios.
Novel abstract situations in the simulations of these new test cases extend the reference
set for the runtime monitoring of autonomous vehicle system during operation in the
real world.

Definition 4.6 (Test Case). A test case represents the parametrization of a test
scenario in which all necessary parameters for the simulation have been defined.

The analysis of the operation of autonomous vehicle systems in the real world with by
the runtime monitoring framework and the usage of runtime monitoring results for the
evolution of autonomous vehicle systems are described in more detail in Chapter 7.

157

5. Monitoring Architecture

Runtime monitors represent the crucial part of the holistic engineering approach for
autonomous vehicle systems (cf. Section 4.3). The runtime monitoring framework
enables to qualitatively and quantitatively evaluate the behavior of autonomous vehicle
systems and to record corresponding data for the seamless transfer between system
development and system operation. Nevertheless, the seamless transfer of operational
data requires a consistent architecture of the autonomous vehicle systems and the runtime
monitoring framework throughout the complete system life-cycle. The architecture of
the corresponding runtime monitoring framework consists of five layers (cf. Fig. 5.1).The
two bottom layers address the basic structure of autonomous vehicle systems and their
integration into simulation frameworks for their verification (cf. Section 3.6). The upper
three layers represent the runtime monitoring framework.
Many runtime monitoring techniques exists with their individual benefits and drawbacks
(cf. Section 2.3). The runtime monitoring framework in this work represents an external
runtime monitoring, that does not require any instrumentation of the systems’ source
codes. The framework non-intrusively monitors the behavior of the autonomous vehicle
systems solely based on the operational data that is available by defined interfaces
from these systems. The autonomous vehicle systems present themselves as black-boxes
to the runtime monitoring framework—no knowledge about the internal structure
of these systems nor any internal data and control flows is available for the runtime
monitoring framework. Autonomous vehicle systems have to provide the interfaces
consistently throughout the complete life-cycle (cf. Fig. 2.2) in order to enable the
runtime monitoring framework to access the systems’ runtime data persistently. The
correctness and safety of autonomous vehicle systems are qualitatively and quantitatively
evaluated by the runtime monitoring framework based on the abstraction of the provided
runtime data (cf. Fig. 5.1). In the following sections, we will describe each layer of the
runtime monitoring architecture in more detail. We commence with the description of
the system layer.
The runtime monitoring is executed alongside the autonomous vehicle systems (cf.
Fig. 5.1). Runtime monitoring and systems may share the same hardware components,
like processors, memory, and bus communication systems. For the validity of the runtime
monitoring, the runtime monitors must not interfere with the operation of the autonomous
vehicle systems. Otherwise, the behavior of the monitored autonomous vehicle systems
may diverge from the behavior these systems will exhibit during operation without
the runtime monitoring. In such a case, results from the runtime monitoring are not
applicable to the general operation of these systems without the runtime monitoring.
Following [GP10], four properties are defined for the runtime monitoring framework:

159

5. Monitoring Architecture

Situation
Monitor

Input
Abstraction

Output
Abstraction

Oracle
Abstract
Function

Tested Situation
Knowledge

Oracle

System
Layer

Qualitative
Monitoring

Layer

Quantitative
Monitoring

Layer
Situation
Monitor

Simulation
Layer Simulation Framework

Simulated World

Conform /Unconform

Tested / Untested

Abstraction
Layer

Log

Unconform Situation
Knowledge

Preprocessing Function Postprocessing

World World

Untested Situation
Knowledge

LogSituation
Oracle

Conformity
Oracle

Figure 5.1.: Monitoring architecture for simulations at design time.

Dependability The dependability of the autonomous vehicle system is equal or greater
compared to the dependability of the systems alone. The runtime monitoring must
not introduce any faults that will diminish the overall dependability.

Functionality The runtime monitoring must not introduce, change, or remove any
functionality of the monitored autonomous vehicle systems.

Schedulability The runtime monitoring must not lead to violations of real-time guaran-
tees for the monitored systems.

Certifiability The runtime monitoring does not require instrumentation or other modifi-
cation for the source code of the autonomous vehicle systems.

The only context in which the runtime monitoring is allowed to violate these properties
is a specification violation by the monitored autonomous vehicle systems. In case the
runtime monitoring detects incorrect and unsafe system behavior, safety measures have
to be initiated in order to reduce the emerging safety risks by the faulty system. As the
original behavior of the system is already compromised, the transfer of the corrupted
systems into a safe state with acceptable risk has the highest priority (cf. Definition 2.8)
Safety measures are considered in this thesis as part of the runtime monitoring, but
their selection and execution are not explicitly addressed. The selection and execution
of appropriated safety measures in critical situations are too complicated in order to
sufficiently address it in this work. The reader is referred to other work in this field, i.e.,
[Hör11; RM15].

5.1. System Layer
The system layer represents the basic structure of the autonomous vehicle systems (cf.
Section 2.1.3). As control systems, autonomous vehicle systems have to continuously

160

5.1. System Layer

Process Output

System Boundary

Actuator

ActuatorFunction Postprocessor

Postprocessor

PostprocessorFunction

FunctionPreprocessor

PreprocessorPreprocessorSensor

Sensor

Input

World

Figure 5.2.: The segmentation of autonomous systems following the IPO model.

adapt the behavior of in reaction to changes by the ego vehicle and the world, e.g., other
dynamic vehicles (cf. Fig. 5.2). Feedback loops allow these systems to consider changes
of other vehicles in the environment in their processing (cf. Section 2.1.5). Autonomous
vehicle systems manipulate the position and pose of vehicles in the world based on
information about the environment from the vehicle sensors. Changes of the autonomous
vehicle systems for the position and pose of the vehicles in the environment are executed
by the vehicles’ actuators, e.g., brakes, steering, and engine. Sensors and actuators
represent the interfaces between the physical world and the digital systems. As shown in
Fig. 5.2, autonomous vehicle systems can be split into three segments— the input, process,
and output segment. This segmentation originates from the input-processing-output
(IPO) model (cf. [Goe10]) correlates to the architecture of control systems (cf. Fig. 2.5).
The input segment addresses the perception of the own vehicle and the real world by
proprioceptive and exteroceptive sensors. The perception includes the preprocessing of
sensor data into a comprehensive representation which acts as the input to the process
segment. For the lane change assistant (cf. Section 3.1), the input segment correlates to
the environment perception (cf. Section 3.3.1.1).
The process segment resembles the main control algorithms for the behavior planning
and decision making of the autonomous vehicle systems. Based on the input from the
input segment, changes for the behavior of the vehicle are processed and forwarded to
the output segment. For the lane change assistant, the process segment correlates to the
situation assessment (cf. Section 3.3.1.2) and behavior planning (cf. Section 3.3.1.3).
The output segment addresses the execution of planned behavior by vehicle actuators.
The intended behavior from the process segment is preprocessed into inputs for the
different actuators, e.g., brakes, gearbox. The execution of actuators leads to a change of
the vehicle state in detail and the world state in general— including states of surrounding
dynamic objects. These state changes require the autonomous vehicle systems to revise
their assumptions about the world state reiteratively and to adapt the vehicles’ behaviors.
For the lane change assistant, the output segment correlates to the modules of the
vehicle stabilization and hardware actuators (cf. the postprocessing of target points in
Section 3.3.1.3).
Though the segmentation of autonomous vehicle systems may vary between different
system instances (cf. Fig. 5.2), the three segments— input, process, and output—will
exists for any autonomous vehicle system. Sensors— input—and actuators— output—

161

5. Monitoring Architecture

are mandatory for the interaction of the systems with the real world. For the vehicle
control, a function— process—has to process targets for the vehicle actuators based on
the inputs from the vehicle sensors.
Autonomous vehicle systems consist of multiple software and hardware components
(cf. Fig. 2.7). Each component implements a portion of the system’s functionalities.
Components integrated with each other into a component hierarchy for the autonomous
vehicle systems (cf. Section 3.3). Hardware parts, e.g., ECUs, are assembled from
multiple other hardware parts, e.g., CPU and memory (cf. Section 3.3.2). Software
components are either atomic or composites of other interacting software components (cf.
Section 3.3.1). Each component of autonomous vehicle systems can be assign to one of
the three segments— input, process, and output.
The following section describes the simulation layer and its substitutions in the verification
of autonomous vehicle systems.

5.2. Simulation Layer
The simulation layer addresses the integration of autonomous vehicle systems into
simulations. Software-based system simulations are used in the automotive domain
for the verification of autonomous vehicles systems. Simulation frameworks imitate
the environments of these systems—the world—including their sceneries and dynamic
objects (cf. Section 2.2).
The integration into the simulation segments the autonomous vehicle systems into three
parts (cf. Fig. 5.3); the part of the original system whose functionality is verified in the
simulation and two parts of the system that are simulated by the simulation framework.
The segmentation depends on the system functionality which is verified. The verified
system part is also denoted as system under test (SUT) (cf. Definition 2.16). All system
parts which are simulated by the simulation framework, e.g., sensors and actuators, have
to be verified and validated by other V&V methods.
The segmentation of the autonomous vehicle system in the simulation defines the input
and output interfaces for the interaction between system and simulation framework. For
tests, the SUT is stimulated by input data from the current state of the virtual world.
The output of the SUT is manually and automatically evaluated for a verdict about the
system’s correctness (cf Section 2.2). In closed-loop simulations, the state of the virtual
world is also adapted to the output of the SUT. The interfaces between the system part
and simulation framework define the maximal extension of the system segment that can
be monitored by the runtime monitoring (cf. Fig. 5.3).
The integration of autonomous vehicle systems and the virtual world requires simulation
frameworks to substitute and simulate systems components by models (cf. Fig. 5.3). The
extent of simulated components depends on the segmentation of the autonomous vehicle
system in the simulation. Simulations impose different requirements for the availability
of real software and hardware components (cf. Section 2.2). Models substitute sensor
and actuator components in software-based simulations because they rely on hardware

162

5.2. Simulation Layer

Process

Function Function

Function

Process Output

System Boundary

Actuator

ActuatorFunction Postprocessor

Postprocessor

PostprocessorFunction

FunctionPreprocessor

PreprocessorPreprocessorSensor

Sensor

Input

Simulation Framework

(Virtual) World

Sensor
(Model)

Sensor
(Model)

Preprocessor

Actuator
(Model)

Actuator
(Model)

Postprocessor

OutputInput

Postprocessor

PostprocessorPreprocessor

Preprocessor

World

Figure 5.3.: Integration of autonomous vehicle system and simulation framework.

and real-world objects. Hardware components are commonly verified independently in
HIL tests (cf. Section 2.2.2.4).
Sensors, e.g., RADAR and LIDAR sensors, require the reflection of real-world objects for
their physical measurements. However, objects in software-based system simulations are
mostly virtual (cf. Section 2.2). The real propagation of radio waves and light beams is
impossible to be included in these simulations. These sensors have to be simulated by
corresponding sensor models. Sensor models with different degrees of accuracy can be
included in simulations (cf. Section 2.2.1.2). Perfect sensor models use the parameters of
objects in the virtual world as outputs of the sensor components and direct input for
the SUT. Intermediate sensor models introduce measurement noise for the parameters of
the virtual objects in the input for the SUT. Complex models may use techniques, e.g.,
ray-tracing (cf. [GGD12]), to model the propagation of radio waves and light beams in
the virtual world.
The integration of actuators, e.g., brakes and engines, into software-based simulations,
require extensive hardware setups. In closed-loop simulations, the physical behavior
of actuators has to be interwoven with the virtual behavior of the vehicles in these
simulations. Additional hardware has to physically represent the virtual world of the
simulation frameworks to these actuators. For example, virtual road parameters, e.g.,
slope, would have to be applied as resistance on the crankshaft of the real engine for a
realistic engine behavior. Virtual parameters of objects in the simulations have to be
incorporated into the physical behavior of real hardware components. The costs for such
complex hardware setups would neglect the benefit of software-based system simulations
in comparison to real-world tests. Therefore, models substitute the real sensors, actuators,
vehicle dynamics, and road characteristics in software-based simulations.
Inaccurate simulations restrict the validity of their results for the operation of autonomous
vehicle systems in the real world. The system behavior in the real world has to match

163

5. Monitoring Architecture

the behavior of autonomous vehicle systems in simulations. The overall accuracies of
simulations predominantly depend on the accuracy of the simulation models to represent
the physical properties of real-world objects and real-world processes in the simulations.
The output of simulation models must not significantly diverge from the output of the
components during operation in the real world (cf. [HK16; Ste+15]). The accuracy of
simulation models has to be verified by comparing the outputs of the models with their
corresponding real components for the same real-world inputs.
The impact of insufficient simulation accuracy for the engineering approach is limited.
The approach expects engineers to evaluate the results of the simulations before the
knowledge from these simulations is used in the runtime monitoring. In case, simulations
have not been accurate for the real world, or the behavior of autonomous vehicle systems
has not been correct and safe, data from these simulations must not be used as knowledge
for the runtime monitoring during operation. The qualitative runtime monitoring can be
used as test oracle in simulations without any concurrent evaluation engineers as long as
the monitors have been successfully verified.
The following sections describe the layers of the runtime monitoring framework in detail.
We commence with the abstraction layer as the interface of the runtime monitoring to
the autonomous vehicle systems.

5.3. Abstraction Layer
The qualitative and quantitative monitoring of autonomous vehicle systems require the
consistent access of system data throughout system development and system operation.
The abstraction layer (cf. Fig. 5.1) depicts the interface between the autonomous vehicle
systems and the runtime monitoring framework. The layer consists of two components—
the input abstraction and output abstraction. These components access the runtime data
of the autonomous vehicle systems via defined interfaces and transform the runtime
data into the abstract representations of the runtime monitoring. Types and values of
the abstract representation are defined from the specification, requirements, and safety
criteria of the autonomous vehicle systems (cf. Chapter 6). The correctness and safety of
autonomous vehicle systems is evaluated by the qualitative and quantitative monitoring
layers based on this abstract representation (cf. Fig. 5.1).
The part of the autonomous vehicle systems which is supervised by the runtime monitoring
framework is denoted as function (cf. Fig. 5.1) or as system (part) under monitoring.
Engineers define the function during the system development in relation to a specific
system functionality. The function need not correlate with the process of autonomous
vehicle systems (cf. Section 5.1) and, therefore, may vary between different autonomous
vehicle systems. For one system, the function may incorporate components of the system’s
input and output parts while the runtime monitoring of another system solely focuses on
a subset of components within this process par as the function.
The runtime monitoring framework depicts the function and its components as a black-box .
The function is solely monitored based on its external observable behavior without any
consideration of its internal structure. The hierarchical architectures of autonomous

164

5.3. Abstraction Layer

vehicle systems have no impact on the runtime monitoring as long as the required input
and output interfaces of the respective function are provided.
The processing of autonomous vehicle systems before the function is depicted as prepro-
cessing and mostly consists of the sensor perception and the processing of the physical
sensor data. The system components in the system’s processing chain following the
function is encompassed by the postprocessing. The postprocessing addresses the execution
of the function’s output by actuators in the real world. The correctness and safety of
any component within the preprocessing and postprocessing are not addressed by the
runtime monitoring (cf. Fig. 5.1). Components of the preprocessing and postprocessing,
e.g., sensors and actuators, have to be verified and validated by other methods.
Qualitative and quantitative statements by the runtime monitoring are only valid for
the function. For the transfer of monitoring results between system development and
operation, the function has to remain consistent. The same set of system components
has to be encapsulated by the function throughout system development and operation.
Otherwise, any statements about the systems’ correctness and safety from simulations
are not applicable during the operation of autonomous vehicle systems in the real world.
Situations recorded in simulations cannot be used as reference knowledge in the runtime
monitoring during operation because the behavior of the system version during operation
has not been verified. Without the runtime monitoring, it will be impossible to determine
if two different versions of an autonomous vehicle system are behaviorally equivalent.
The abstraction layer impacts the implementation of the runtime monitoring properties—
dependability, functionality, schedulability, and certifiability. The runtime monitoring
framework does not affect the functionality of autonomous vehicle systems because the
data access via interfaces separates the concerns of autonomous vehicle systems and
runtime monitoring framework. The system interfaces for the runtime monitoring are
the only connections between the systems and the runtime monitoring framework. No
functionality is added, changed, or removed to/from the autonomous vehicle systems by
the application of the runtime monitoring as long as the provision of data for the runtime
monitoring within autonomous vehicle systems has no impact on their functionality. The
non-intrusive data access via the interfaces also addresses the certifiability. In case the
source code of autonomous vehicle systems has been certified, the application of the
runtime monitoring must not require a full re-evaluation of the compound system of the
autonomous vehicle system and runtime monitoring framework (cf. [GP10]).
The overall dependability of autonomous vehicle systems requires their functional integrity
(functionality) and their integrity of the timing behavior (schedulability). The deployment
of the runtime monitoring framework along autonomous vehicle systems has to ensure the
schedulability. The processing and communication of the runtime monitoring framework
have to be integrated into the scheduling of the systems’ processors and bus communication
systems without any violations of systems’ real-time requirements. One solution would
be the deployment of the runtime monitoring framework and the autonomous vehicle
systems on separate processors or separate ECUs with dedicated communication between
them. A solution for shared processors and bus communication systems would be to
restrict the computation by the runtime monitoring framework to idle segments in the
scheduling of the autonomous vehicle systems.

165

5. Monitoring Architecture

ProcessInput Output

Autonomous Vehicle System

Simulation
Interface

Simulation
Interface

Input
Abstraction
Interface

Ouput
Abstraction
Interface

(a) Correct configuration of interfaces.

ProcessInput Output

Autonomous Vehicle System

Simulation
Interface

Simulation
Interface

Input
Abstraction
Interface

Ouput
Abstraction
Interface

(b) Incorrect configuration of interfaces.

Figure 5.4.: Configurations of system interfaces.

The interfaces of autonomous vehicle systems for the runtime monitoring are discussed
in more detail in the following section.

5.3.1. System Interfaces

The function has to be encompassed by consistent interfaces. As shown in Fig. 5.4a,
input and output interfaces for the runtime monitoring in an autonomous vehicle system
have to reside within the interfaces of the system to the simulation framework. The
extent of autonomous vehicle systems, which is present in simulations in original form,
limits the maximal possible size for the function.
In case runtime monitoring interfaces reside outside the valid system extend, additional
interfaces between the runtime monitoring framework and the simulation frameworks have
to be introduced. These interfaces have to provide the runtime monitoring framework with
the identical data as corresponding system components would provide during operation
(cf. Fig. 5.4b). Models in the simulations substitute the original components of the
system outside the monitored system part. These simulation models may miss the
necessary granularity by their processing in order to provide the runtime monitoring
framework with the required data quality and granularity. For example, the relation
between vehicle actuators, vehicle dynamics, and road conditions for the vehicle behavior
and their impact on the virtual world may all be simulated by one single model.
In the automotive domain, the reduction of costs is an essential objective in the de-
velopment and production of vehicles and their systems (cf. [SZ13]). Hardware costs
represent a large quantity of the overall costs of vehicles. For the usage of less expensive
hardware components, e.g., ECUs or wiring harness, the performance of vehicle sys-
tems—timing behavior, memory, and energy consumption— is highly optimized. These
optimized vehicle systems offer little to no additional resources for the generation of
additional monitoring data. Unless the intrusive data generation has been explicitly
considered in the system development, any intrusive alteration of autonomous vehicle
systems for the generation of runtime monitoring data, e.g., source code instrumentation
(cf. Section 2.3.1), is not applicable. The memory and processor consumption of code
instrumentation would interfere with the functionality of the autonomous vehicle systems.

166

5.3. Abstraction Layer

The runtime monitoring depicts the function as black-box and only evaluates its external
observable behavior. The input abstraction and output abstraction access the system data
via defined interfaces of the autonomous vehicle systems. No code-instrumentation is
required for the access to the system data. The interfaces for the input and output data
have to be defined in the development of autonomous vehicle systems explicitly for the
runtime monitoring or already exist within the systems’ architectures. Technically, these
interfaces can be implemented by e.g., shared memory or access to bus communication
and may incorporate frameworks, e.g., ADTF (cf. Section 2.3.1).
The data abstraction is the central functionality of the runtime monitoring and is
described in more detail in the following sections.

5.3.2. Data Abstraction

The data abstraction aims to enhance the runtime monitoring and its evaluation of
qualitative invariants by reducing the complexity of data. For each autonomous vehicle
system, the abstract representation is defined from the system’s specifications, require-
ments, and safety criteria— their entities, objects, measures, and units (cf. Chapter 6).
The input abstraction and output abstraction reduce the high-dimensional data space of
the function to the abstraction level used in the system requirements and safety criteria.
The runtime monitoring framework evaluates the correctness and safety of autonomous
vehicle systems on the same abstraction level that engineers have been using for reasoning
about the correct and safe behavior of autonomous vehicle systems in the requirements
analysis and safety analysis (cf. Sections 3.2 and 3.4).
The evaluation of qualitative invariants by the runtime monitoring requires the accessible
data of autonomous vehicle systems to sufficiently represent the current system state (cf.
[KFK14]). The architecture of the runtime monitoring framework addresses this issue by
its abstraction of system data (cf. Fig. 5.1). Parameters of the abstract representation
do not have to identically exist in the accessible system data. Each abstract parameter
can be calculated in the abstraction from available interface data of the function. These
calculations might only be able to model real processing of these hidden state variables
in autonomous vehicle systems (cf. Section 3.3.1.2.3).
The abstraction of the runtime monitoring must be deterministic and sound. It has to
preserve the distinction between safe and unsafe system behavior. Only safety unrelated
information may be discarded from the input space of the function. The abstraction
has to deterministically and soundly abstract all safety-related elements in the system
data. Each element must always be abstracted to the identical abstract parameters in
the abstract representation of the runtime monitoring framework. Entities in the system
data, which relate to different system behavior—safe and unsafe system behavior—,
must not be identically classified into the same abstract parameter.
The abstraction layer consists of two components—the input abstraction and output
abstraction. Each component is described in more detail in the following sections.

167

5. Monitoring Architecture

5.3.2.1. Input Abstraction

The component input abstraction of the abstraction layer encapsulates the transformation
between the input data of the function and the abstract representation used for qualitative
and quantitative runtime monitoring (cf. Fig. 5.1). As described in detail later in
Chapter 6, data types, and values of the abstract representation are derived from the
system requirements and safety criteria.
An abstraction formula is defined for each data type of the abstract representation. The
abstraction formula defines the calculation of an abstract data type from the input data
of the function. In every processing cycle, all abstraction formulas of the input abstraction
are processed in order to update the values for the abstract representation from the
current data of the function’s input interface— the statestate of the autonomous vehicle
system and its environment. The output of the input abstraction—an instance of the
abstract representation— is used by the abstract function of the qualitative monitoring
layer to process the set of safe system action. The current instance of the abstract
representation is compared by the situation monitoring with its knowledge of known and
verified abstract situations.
The abstraction of system data for the output of the function is described in the following
sections.

5.3.2.2. Output Abstraction

Similar to the input abstraction, the output abstraction process an abstract representation
of the function’s output (cf. Fig. 5.1). The abstract representation for the output
abstraction is derived from the same requirements and safety criteria as used for the
input abstraction. The abstract representation of the function’s output is also denoted
as abstract action or abstract behavior . For each processing cycle, the intended system
behavior as output of the function is processed into the abstract representation. The
intended system behavior has to be represented on the same abstraction level as the
abstract representation of the input abstraction. For the qualitative runtime monitoring
(cf. Section 5.4), the abstract action of the function is compared by the conformity
oracle to the output of the abstract function—the set of safe abstract behavior by the
autonomous vehicle system (cf. Fig. 5.1).

Definition 5.1 (Abstract Action / Abstract Behavior). Abstract action or abstract
behavior defines an instance of the abstract representation in the runtime monitoring
framework for the output of the function resp. the behavior of the autonomous vehicle
system.

The structure of the qualitative and quantitative runtime monitoring layers and their
usages of the abstract representations are described in the following sections.

168

5.4. Qualitative Monitoring Layer

5.4. Qualitative Monitoring Layer

The qualitative runtime monitoring evaluates the correctness and safety of the function
on an abstract level. It consists of the abstract function and the conformity oracle (cf.
Fig. 5.1). The abstract function processes a set of correct and safe actions for the function
in the current abstract situation. The conformity oracle compares the abstracted output
from the function with the set of correct and safe abstract actions from the abstract
function.
The components of the qualitative monitoring layer are identically used in simulations
in simulations of the system verification and during operation of autonomous vehicle
systems in the real world. In simulations, the abstract function and conformity oracle
are used as test oracles. They automatically evaluate the behavior of the functions in
these simulations (cf. Section 6.2.3.4.2). In the early stages of the application in the
simulations, results of qualitative runtime monitoring should be validated by engineers
in order to ensure the correct implementation of the abstraction, abstract function, and
conformity oracle. During operation in the real world, the qualitative runtime monitoring
acts as a safety monitor (cf. Section 7.1.1). In case the qualitative runtime monitoring
detects any unsafe behavior of the function, safety measures can be initiated and the
system state of system and environment can be logged for later analysis.
The components of the qualitative monitoring layer — abstract function and conformity
oracle—are described in more detail in the following sections.

5.4.1. Abstract Function

The abstract function represents a second instance of the system’s function, which reasons
about the function’s behavior on the abstraction level (cf. Fig. 5.1). Opposed to the
function of the autonomous vehicle system, the abstract function does not process one
single action for the system but determines a set of correct and safe actions based on the
current abstract situation. The abstract situation is processed by the input abstraction
(cf. Section 5.3.2.1).
The abstract function is defined based on the qualitative invariants contained in the spec-
ification, requirements, and safety criteria of autonomous vehicle systems (cf. Chapter 6).
While the entities of the requirements and safety criteria are used to define the data
types and their values for the input abstraction and output abstraction, the qualitative
invariants over these data types are implemented by the abstract function. The evaluation
of the qualitative invariants by the abstract function leads to the exclusion of incorrect
and unsafe actions for the function. The output of the abstract function is the set of
correct and safe abstract actions for the function. The output of the abstract function is
used by the conformity oracle to evaluate the actual output action of the function. The
conformity oracle is described in the following section.

169

5. Monitoring Architecture

5.4.2. Conformity Oracle

The conformity oracle evaluates the correctness and safety of the function by comparing
the actual output of the function with the output of the abstract function (cf. Fig. 5.1).
The oracle will evaluate the behavior of the function as correct and safe, if the abstracted
output action from the function resides within the set of safe and correct abstract actions
processed by the abstract function. The comparison of the conformity oracle includes the
check of abstract actions from the abstract function and output abstraction for equivalence.
Some use cases may require to consider probability distributions in the comparison by
the conformity oracle instead of object equivalence. Before this comparison, the actual
output action of the function is preprocessed by the output abstraction.
In case, the behavior of the function has been judged as unsafe by the conformity oracle,
the abstract action and corresponding abstract situations are logged for further analysis
(cf. Fig. 5.1). The verdict of the conformity oracle is further used during operation
for the initiation of safety measures in order to reduce the emerging risks of unsafe
function behavior. The selection and execution of appropriate safety measures for a
critical situation can become very complex. For this reason, selection and execution of
safety measures are beyond the scope of this thesis.
In addition to the qualitative monitoring of the correctness and safety, the runtime moni-
toring framework also monitors the encountered abstract situations in order to quantify
the scope of its qualitative monitoring statements. The structure of the quantitative
runtime monitoring are described in the following section.

5.5. Quantitative Monitoring Layer

The quantitative monitoring layer assesses the scope of qualitative statements about
autonomous vehicle systems. Qualitative statements can either be obtained automatically
by the quantitative runtime monitoring or manually evaluated by engineers during
simulations of the system verification. Qualitative statements will be assumed as reliable
and sound for real-world situations if the behavior of autonomous vehicle systems has
been verified and validated in these situations.
The application of qualitative statements to the unknown real world is not sound.
Autonomous vehicle systems may exhibit diverging and unsafe behavior in real-world
situations even if similar situations have been verified in the simulations of the system
verification. The autonomous vehicle system has to be verified in these particular systems.
During operation in the real world, the scopes of qualitative statements have to be
evaluated in all encountered situations in order to ensure the safety of the autonomous
vehicle systems. The quantitative monitoring layer establishes the tested situation
knowledge with known and verified abstract situations (cf. Fig. 5.1). The validity
of qualitative statements for the autonomous vehicle systems have been verified and
validated in these known and verified abstract situations in simulations of the system
verification (cf. Section 3.6). The tested situation knowledge can be used during operation

170

5.5. Quantitative Monitoring Layer

in the real world to evaluate the scope of qualitative statements for the autonomous
vehicle systems.
The components situation monitor and situation oracle compare and record the abstract
situations which are processed by the input abstraction (cf. Fig. 5.1). During operation,
encountered abstract situations are compared with the knowledge of known and verified
abstract situations from the simulations. Unknown abstract situations are recorded in
order to address these situations by additional improvements of the autonomous vehicle
systems.

5.5.1. Situation Monitor and Situation Knowledge
The situation monitor is responsible for the data flow within the quantitative monitoring
layer and the tested situation knoweldge(cf. Fig. 5.1). At initialization time, the situation
monitor ensures that the tested situation knoweldge contains solely unique abstract
situations and discards any duplicated situations. The current abstract situation from
the input abstraction and the abstract situations of the tested situation knowledge are
provided to situation oracle for comparison. The situation oraclei is described in the
following section.

5.5.2. Situation Oracle
The situation oracle compares each abstract situation from the input abstraction with
the known and verified abstract situations in the tested situation knowledge (cf. Fig. 5.1).
Any encountered unknown abstract situations are logged for further analysis in the system
evolution (cf. Section 3.1.2). Similar to the conformity oracle (cf. Section 5.4.2), the
comparison results of the situation oracle can be used to initiate safety measures and
to immediately mitigate the emerging increased risks in the unknown and unverified
situations.
The comparison of abstract situations by the situation oracle commonly requires the
explicit implementation of the equivalence functions. Common equivalence functions,
e.g., for integer or float arithmetics, are not applicable for the complex data types of the
abstract representation (cf Section 6.2.2.2.1). For each complex data type of the abstract
representation, a corresponding equivalence function has to be implemented. In some use
cases, the implementation may incorporate probability distributions under consideration
of uncertainties.
The definition and implementation of the runtime monitoring framework and its compo-
nents are presented in the following chapter. Chapter 6 also describes the application of
the qualitative runtime monitoring as oracle and the training of the tested situation know-
eldge in simulations of the system verification. The runtime monitoring of autonomous
vehicle systems during operation in the real world is present in Chapter 7.

171

6. Monitor Engineering and Training
The components of the runtime monitoring framework (cf. Chapter 5) are implemented
based on artifacts from the development of autonomous vehicle systems. The qualitative
runtime monitoring depends on the requirements and specifications of autonomous vehicle
systems while the quantitative runtime monitoring depends on the test scenarios and
test cases for the system verification in simulations. As shown in Fig. 6.1, requirements
from the system specification are used to define the input abstraction, output abstraction,
abstract function, and conformity oracle in order to verify the safe and correct behavior
of autonomous vehicle systems. For the quantitative runtime monitoring, the recorded
abstract situations from the execution of test cases in simulations are used as knowledge
for the runtime monitoring of autonomous vehicle systems during operation in the real
world.

World

Situation
Monitor

Input
Abstraction

Output
Abstraction

Oracle
Abstract
Function

Tested Situation
Knowledge

Oracle

System
Layer

Qualitative
Monitoring

Layer

Quantitative
Monitoring

Layer
Situation
Monitor

Simulation
LayerSimulation Framework

Simulated World

Conform /Unconform

Tested / Untested

Abstraction
Layer

Log

Unconform Situation
Knowledge

Preprocessing Function Postprocessing

World

Untested Situation
Knowledge

LogSituation
Oracle

Conformity
Oracle

Design and Test

Test Scenarios

Requirements

Figure 6.1.: Generation of Runtime Monitoring Components.

The development of runtime monitoring components is described in Section 6.2. In
Section 6.3, the usage of runtime monitoring framework in simulations is presented. In
the next section, the formal foundation of the runtime monitoring is introduced.

6.1. Formal Representation of the Runtime Monitoring
The formal representation defines the common core functions and characteristic properties
of the runtime monitoring framework, its components, and its interfaces allowing the
implementation of the runtime monitoring framework for different autonomous vehicle

173

6. Monitor Engineering and Training

Situation
Monitor

Input
Abstraction

Output
Abstraction

Oracle
Abstract
Function

Tested Situation
Knowledge

Oracle

System
Layer

Qualitative
Monitoring

Layer

Quantitative
Monitoring

Layer
Situation
Monitor

Simulation
Layer Simulation Framework

Simulated World

Conform /Unconform

Tested / Untested

Abstraction
Layer

Log

Unconform Situation
Knowledge

Preprocessing Function Postprocessing

World World

Untested Situation
Knowledge

LogSituation
Oracle

Conformity
Oracle

DIS

DIA

DOS

DOA

fI

fS

fO

fA

Figure 6.2.: Mathematical representation of the runtime monitoring.

systems. As shown in Fig. 6.2, the formal representation defines runtime monitoring
framework by its domains and its functions. The functions fI , fS, fO, and A correspond
to the components input abstraction, function, output abstract, and abstract function
in the architecture of the runtime monitoring framework (cf. Fig. 5.1). The domains
represent sets of data objects which are used by the runtime monitoring framework for
the reasoning about the qualitative properties of autonomous vehicle systems and their
quantitative scopes. The definition of the monitoring domains is described inSection 6.1.1
and the monitoring functions is presented in Section 6.1.2.
The formal representation enables the definition of a correctness condition for the system
behavior and a soundness property for the runtime monitoring framework based on the
functions and independent from the concrete autonomous vehicle systems (cf. Fig. 6.2).
Any implementation of the runtime monitoring framework has to satisfy these properties.
Violations of these properties compromise the overall validity of the runtime monitoring
and its results. The correctness condition is presented in Section 6.1.3 while the soundness
property is described in Section 6.1.4

6.1.1. Domains
Four domains DIS, DOS , DIA, DOA are defined for the runtime monitoring (cf. Fig. 6.2).
The four domains are defined as followed:
DIS depicts the input domain for the function of the autonomous vehicle system (cf.

Fig. 5.1). The domain DIS is induced by the data types, their properties, and
associations between them which are used by the autonomous vehicle system to
describe and reason about itself and the vehicle’s environment. The input domain
DIS for the lane change assistant is shown in Fig. 3.9.

DOS is the output domain of the function (cf. Fig. 5.1). It represents the set of actions
which the monitored function may process as output. The output domain DOS for
the lane change assistant is depict by Fig. 3.13.

174

6.1. Formal Representation of the Runtime Monitoring

DIA depicts the input domain of the runtime monitoring framework. As co-domain of the
abstraction (cf. Fig. 5.1), DIA represents the abstract representation of the domain
DIS. The domain DIA is defined by a typed first-order logic (cf. Section 2.4) from
the requirements of each particular autonomous vehicle system. The definition
of domain DIA is described in Section 6.2.2.2. For the lane change assistant, the
abstract state of the autonomous vehicle systems and their environments (abstract
situation) is represented by the domain DIA (cf. Fig. A.2).

DOA depicts the abstract representation of all possible outputs of the function (cf. Fig. 5.1)
and the co-domain of the abstract function and output abstraction. The domain
encompasses all actions for an autonomous vehicle system which are considered by
the system’s requirements. Similar to the domain DIA, the domain DOA is defined by
a typed first-order logic from the system requirements (cf. Section 6.2.2.2). For the
lane change assistant, the possible target lanes for lane changes define the domain
DOA .

The domains DIS, DOS ⊆ DS are given by the autonomous vehicle systems. Domain DS
encapsulates all objects for the data types of the autonomous vehicle systems. The
domains DIA,DOA ⊆ DA have to be defined for the runtime monitoring based on the
requirements of each particular autonomous vehicle system. Similar to DS, the domain
DA encapsulates all data objects used by the runtime monitoring of an autonomous
vehicle system.
The domains DIS,DOS ⊆ DS represent the interfaces between the runtime monitoring
framework and autonomous vehicle systems. Both domains have to be selected and
formalized in conjunction with the definition of the domains DIA,DOA ⊆ DA. The system
data is subject to the development of the autonomous vehicle system, but multiple data
interfaces within autonomous vehicle systems can be selected and aggregated to represent
the domains DS. The overall set of data elements by these interfaces has to be adequate
for the input abstraction and output abstraction to process all necessary data elements
for the domains DA. Otherwise, not all data elements of the abstract representations
DA can be processed in order to evaluate the requirements of the autonomous vehicle
systems entirely.
Besides the four domains for the runtime monitoring framework, four functions are
included in the formalization of runtime monitoring (cf. Fig. 6.2). The four functions are
described in the following section.

6.1.2. Functions
For the qualitative runtime monitoring , three functions are defined (cf. Fig. 6.2). These
three functions fI , fA, and fO correspond to the components of the framework (cf.
Fig. 5.1); function fI represents the input abstraction, function fA corresponds to the
abstract function, and function fO represents the output abstraction. Additional to these
three functions for the runtime monitoring framework, the function fS represents the
original function of the autonomous vehicle system (cf. Fig. 5.1). The functions are
defined as followed:

175

6. Monitor Engineering and Training

fI : DIS → DIA (6.1)
fA : DIA → 2DO

A (6.2)
fO : DOS → DOA (6.3)
fS : DIS → DOS (6.4)

The abstract function fA differentiates from the other functions fI , fO, and fS. The
output of abstract function fA is a set of elements from domain DOA —the safe actions
for the autonomous vehicle systems in the (current) abstract situation from domain DIA.
In general, none of the functions is injective (cf. Eqs. (6.1) to (6.4)). The functions
fI and fO are abstractions; multiple elements of their input domains DIS resp. DOS are
mapped to identical elements of their output domains DIA resp. DOA . Functions fA and
fS process identical system actions for different inputs from the domains DIS resp. DIA.
For example, the lane change assistant (fS) initiates lane changes to the left neighbor
lane (output in DOS) in various different traffic situations (inputs from DIS). The identical
applies to the abstract function fA. The abstract function just processes the set of actions
from DOA identically for various abstract situations from domain DIA.
Ideally, all functions Eqs. (6.1) to (6.4) are surjective. Every element of the functions’
co-domains can be processed. However, cases arise in which the functions Eqs. (6.1)
to (6.4) will not be surjective. Requirements may define unrealistic objects leading to
the fuzzy definition of functions’ co-domains. Functions are unlikely to process these
fuzzy objects b based on realistic input from the autonomous vehicle system. Other cases
are insufficient interfaces to the autonomous vehicle systems. The available data by the
autonomous vehicle systems may be insufficient to process the complete co-domains.
Implementations of functions Eqs. (6.1) and (6.3) for the abstraction of system input and
system output need not to be deterministic. Each processing cycle, the functions fI and
fO transform an element from the input domain into an element of the output domain.
For the lane change assistant, identical situation representations from the autonomous
vehicle system (DIS) have to be transformed by the input abstraction (function fI) to the
same abstract situation (DIA). These transformations are independent of the history of
the system inputs (DIS). However, internal states within transformations may vary for
identical inputs in different processing cycles leading to nondeterministic transformations
(cf. [Flo67]). The same applies to the output abstraction (function fO). For the runtime
monitoring, the data history during operation is given by the sequence of states in the
domain DIA.
The system function fS is nondeterministic. Different system actions may be selected
for identical inputs. The selection of system actions in the behavior planning requires
non-deterministic choices if the reward for multiple paths in the belief tree is the same
(cf. Section 3.3.1.3).
Opposed to the system function fS, the abstract function fA of the runtime monitoring
framework does not process one final system action but a set of correct and safe system
actions 2DO

A . The processing of the abstract function fA can be nondeterministic. The

176

6.1. Formal Representation of the Runtime Monitoring

internal states of the abstract function fA may be inconsistent for identical input situations
in different processing cycles even though the abstract function fA processes identical sets
of system actions for identical input situations. The abstract function fA can even process
diverging outputs for identical input situations if its internal states rely on information
from the infinite history of inputs.
In addition to the definition of the domains and functions, a condition for correct and
safe system behavior is defined. This correctness condition is presented in the following
section.

6.1.3. Correctness Condition
The processing of system function fS will be safe and correct if the Eq. (6.5) is satisfied.
The processing of inputs about the system and environment state x ∈ DIS by the system
function fS and output abstraction fO have to match the results of the processing by
input abstraction fI and abstract function fA for identical inputs x. The evaluation
of Eq. (6.5) is subject to each autonomous vehicle system and is implemented by the
conformity oracle.

∀x ∈ DIS : fO (fS (x)) ∈ fA (fI (x)) (6.5)

The conformity oracle is implemented as a function over DOA . It evaluates if the output
by the output abstraction fO is included in the power set of the abstract function fA (cf.
Eq. (6.6)). The output of the conformity oracle resides in {True,False} and indicates
the compliance of the system function fS to its qualitative properties. In Fig. 6.2, the
conformity oracle is omitted for simplicity reasons.

fC : DOA × 2DO
A → {True,False} (6.6)

All statements by the runtime monitoring framework about correct and safe system
behavior require the runtime monitoring to be sound. The following section introduces
a soundness property for the runtime monitoring framework. This soundness property
addresses the semantic identity of the semantic interpretations in the system domains
and the runtime monitoring domains. Otherwise, the validity of statements about correct
and safe system behavior cannot be guaranteed.

6.1.4. Soundness property
The abstraction by the runtime monitoring framework has a significant impact on the
validity of statements about the correctness and safety for autonomous vehicle systems.
Interpretations in the semantic domain S have to be maintained. The semantic domain
S can be infinite.
Two functions cS and cA can be defined; function cS maps elements from the domain DIS
to the semantic domain S and cA maps elements from the domain DIA to the semantic
domain S.

177

6. Monitor Engineering and Training

cS : DIS → S (6.7)
cA : DIA → S (6.8)

An example of a semantic domain is the safety of autonomous vehicle systems in traffic
situations. The behavior of autonomous vehicle systems can be judged as safe or unsafe
for encountered real-world traffic situations (cf. Section 3.8.1). In this example, the
interpretations of the semantic domain S are S = {Safe,Unsafe}.
Functions cS and cA need not to be injective nor subjective. The interpretations in the
semantic domain S can be vast or even infinite but not all interpretations have to be
considered by functions cS and cA. Multiple objects of domains DIS resp. DIA may have
identical semantic interpretations in S.
The validities of statements require the abstraction by functions fI and fO to maintain
the same interpretation in the semantic domain S. The functions fI and fO must not
abstract two different elements from DIS resp. DOS which relate to different elements in the
semantic domain S into objects in the domains DIA resp. DOA with identical interpretation
in S. The same applies to the opposite case—two elements from DIS resp. DOS with
identical interpretation in S must not have diverging interpretations after application
of fI resp. fO. The Eq. (6.9) defines the consistency of the semantic interpretation for
f ∈ {fI , fO}. It must hold for fI and fO at all times.

∀s1, s2 ∈ DIS s.t. a1 = f (s1) ∧ a2 = f (s2) ∧ cA (a1) = cA (a2)⇔ cS (s1) = cS (s2) (6.9)

For the quantitative runtime monitoring, no further functions or domains have to be
defined. The quantitative runtime monitoring solely records and compares instances of
the abstract representation DI

A. Therefore, only the relation to the comparison of abstract
representations has to be defined. The implementation of the recording is described in
Section 6.2.3.5.
The formalization of the runtime monitoring forms the foundation for the implementation
of the runtime monitoring framework. Domains and functions of the runtime monitoring
framework have to be defined based on the requirements for the autonomous vehicle
systems. The development process of the runtime monitoring framework is described in
the following section

6.2. Development of Runtime Monitors
The development of the runtime monitoring framework is performed concurrently to the
development of autonomous vehicle systems because the runtime monitoring framework
depends on interfaces and requirements of each particular autonomous vehicle system.
These requirements have to describe correct and safe resp. incorrect and unsafe system
behavior sufficiently.

178

6.2. Development of Runtime Monitors

Requirements
Analysis

System
Design

Validation
Field Tests

Interface
Formalization

Verification,
Test & Simulation

Requirements
Selection

Interface
Selection

Monitor
Implementation

Implementation

Function
Development

Monitor
Development

Monitor
Formalization

Figure 6.3.: Integration of the monitor development into the development of autonomous
vehicle functions.

As shown in Fig. 6.3, the development of runtime monitors starts with the selection
of system interfaces and requirements in collaboration with requirements analysis for
autonomous vehicle systems. These requirements are commonly defined in natural
language and have to be analyzed and formalized as formal logic in order to define the
domains DIA, DOA and functions fI , fA, fO of the runtime monitoring. As result of the
monitor formalization, each considered requirement is expressed by one or more formulas.
These formulas are implemented as runtime monitors (cf. Section 2.3.1). Sections 6.2.1
to 6.2.3 describe the development activities for runtime monitoring framework in more
detail.

6.2.1. Selection of Interface and Requirements
Relevant requirements for the runtime monitoring are selected by domain and safety
experts from the overall set of requirements for autonomous vehicle systems in the
requirements analysis (cf. Section 3.2). These requirements have to describe the correct
and safe resp. incorrect and unsafe system behavior of autonomous vehicle systems which
shall be supervised by the runtime monitoring framework sufficiently.
Safety-related requirements are of special interested for the runtime monitoring. Safety
requirements define constraints on the basic functionality in order to maintain the
system’s resp. function’s correctness and safety (cf. Sections 3.2.1 and 3.2.3). Compared
to traditional E/E systems in the automotive domain, requirements for autonomous
vehicle systems have to address the common internal properties and conditions of these
systems and their environments. Following the open-world assumption, the requirements

179

6. Monitor Engineering and Training

inherent an uncertainty to sufficiently represent the complex nature of the real world
and all its objects and properties (cf. Section 3.8.1).
Additional to the selection of relevant safety requirements, interfaces of autonomous
vehicle systems are identified and selected as data sources for the runtime monitoring. A
sufficient definition of these interfaces in the early stages of the development supports
the independence between the further development of the autonomous vehicle systems
and the runtime monitoring framework. In an ideal case, this dependency reaches till
their integration of implementations with each other for verification in simulation and
validation during operation in the real world (cf. Fig. 6.3).
However, all development decisions regarding requirements, system behavior, and in-
terfaces in the further development phase of autonomous vehicle systems have to be
considered in the development of the runtime monitoring framework.
For the implementation of the runtime monitoring framework, interfaces between system
and framework as well as the monitoring components have to be formalized. This
formalization is described in Section 6.2.2. The implementation of each monitoring
component is presented in Section 6.2.3.

6.2.2. Formalization of Interfaces and Requirements
The definition of domains and functions for the runtime monitoring framework (cf.
Fig. 6.2) requires the identification of objects, types, and their relations which are
present in considered requirements of the autonomous vehicle systems. Requirements
are commonly formulated in natural language leading to the possibility of ambiguous
formulations. Such ambiguous formulations make it difficult to correctly identify contained
objects, types, and their relations (cf. [Ber10; Kan15]). The implementation of the
runtime monitoring framework requires requirements to sufficiently describe relevant
conditions for the behavior of autonomous vehicle systems. Domain experts are required
to analyze requirements and to enrich them with information which have been omitted
in the requirements analysis but which are necessary for the runtime monitoring. This
analysis includes implicit domain knowledge which engineers assume in the requirements
engineering but do not explicitly express in the requirements.
For the definition of interfaces and runtime monitors, a formalization process is applied
to requirements which are considered for the runtime monitoring. Other formalization
approaches can be found in [Bec+14; Ber10; Cim+10; Kan15]. In this monitor formal-
ization, requirements in natural language are transformed into typed first-order logic
(cf. Section 2.4) based on the result from a pattern-based analysis. The pattern-based
analysis helps engineers to explicitly formulate previous implicit domain knowledge in
the requirements (cf. [ADT14]). The typed first-order logic can be directly implemented
as software runtime monitors.
As a result of the monitor formalization, each safety requirement is expressed by a
formula in typed first-order logic. These formulas define the types, objects, and relations
which constitute the domains DIA, DOA and functions fI , fA, fO. Types and objects define
the domains of the runtime monitoring DIA, DOA while the abstract function fA evaluates

180

6.2. Development of Runtime Monitors

action part condition state condition part

restriction system action condition subject property activity relation object/value property conjunction

Figure 6.4.: Requirements pattern.

predicates over the elements of these domains in order to reason about the correctness
and safety of the system behavior.

Example 6.1. The system shall be able to consider fast objects on the neighbor lane
approaching the ego vehicle from behind with at least 5 m/s relative velocity for a lane
change to the left neighbor lane.

Example 6.1 displays an extended version of a requirement from the lane change assistant
(cf. Section 3.2. In the following sections, Example 6.1 is used as the running example
for the description of monitor formalization.
The pattern and its application in the monitor formalization is described in Section 6.2.2.1.
Section 6.2.2.2 presents the definition of types, variables, functions, predicates, and
formulas of the typed first-order logic from the analyzed requirements.

6.2.2.1. Pattern-based Analysis of System Requirements

For valid and comprehensive results of the runtime monitoring framework, system
requirements for autonomous vehicle systems have to describe these systems as well as
their environments sufficiently precise. Nevertheless, engineers often implicitly assume
domain knowledge for the definition of requirements in the requirement engineering. Any
implicitly assumed domain knowledge is difficult— if not impossible—to be correctly
implemented by the algorithms of the runtime monitoring framework.
A pattern-based approach similar to [Bit01; Kan15; Mac+14] is used for the formalization
and structuring of requirements in order to address the problem of imprecise and
ambiguous requirements. The requirements pattern (cf. Fig. 6.4) requires engineers to
explicitly expressed all necessary domain knowledge in the requirements for the runtime
monitoring. For example, properties of objects such as distance or position are seldom
explicitly mentioned in requirements but assumed from the contexts of these requirements.
Therefore, the requirements pattern reduces the potential ambiguity of requirements
and failures in the implementation of the runtime monitoring framework. Requirements
considered for the runtime monitoring have to formulated that their phrases match the
categories of the pattern in order to define objects, types, and their relations for the
domains and functions of the runtime monitoring. This restriction for the formulation
of sentences leads to the consideration of pattern-based formalization approaches as
restricted natural language (cf. [THH06]).
The high level structure of the requirement pattern reflects the relationship of system
inputs and outputs which the runtime monitor framework is supervising. The pattern
format consists of a condition about the current state of the system and its environment
(state condition part) and a corresponding implication of a system action (action part).

181

6. Monitor Engineering and Training

Table 6.1.: Possible wording for relation in natural language requirements.
on next behind before parallel
less (than) more (than) equal to within / in

In formal logic, this would relate to statecondition → action. In Fig. 6.4, the action
part corresponds to the part of the requirement prior to the condition (cf. “No lane
change” in Example 6.1). The state condition part corresponds to the remain part of
the requirement and is introduced by the condition if. The if-condition separates state
condition part and action part and implicitly represents the implication between them.
The state condition part and action part of the requirement pattern is described in more
detail in the following sections.

6.2.2.1.1. State Condition Part

The state condition part commence with an object (the condition’s subject) and its
property. The object can be the system, a single real-world object, e.g., a bicycle, but
also a variable for a set of real-world elements, like, e.g., vehicles. The property defines a
particular property of these objects about which is reasoned in the condition.
The activity follows the object property. The activity refers to the verb of the requirement
which commonly describes an action or state of the subject. For example, the description
of the object’s property’s current state (to be) is a fundamental activity element. Other
activities include, e.g., to move, to drive, or to overturn.
The activity is followed by a condition in relation to another object, in relation to a
explicit property value, or a relation to an explicit property value of another object.
A incomplete list of possible relations is presented in Table 6.1. The related object is
represented in Fig. 6.4 by the object category while or the concrete property value of the
subject is depict by the data type value category in Fig. 6.4.
The application of the pattern from Fig. 6.4) for Example 6.1 is shown in Fig. 6.5.
It is apparent that several modifications have been necessary. The pattern defines
one condition for one particular property of an object (subject). Requirements, like
Example 6.1, may include conditions for multiple object properties. Each property
condition in a requirement has to be separately expressed in order to reason about
the object properties in the formal logic without any ambiguity and side effects. All
distinctive conditions are aggregated in the state condition part by conjunctions in order
to correctly represent the initial requirement.
The Example 6.1 contains two conditions. The first two conditions in Fig. 6.5 reason
about a object property (vehicle position) in relation to other objects. The first condition
reasons about the position of a vehicle in relation (on) to the road lane (left neighbor lane)
while the second conditions reasons about the position of the vehicle in relation (behind)
to the automated ego vehicle. The third condition evaluates a the object property
(vehicle relative velocity) in relation to a defined property value (5 m s−1) (cf. third line
of Fig. 6.5).

182

6.2. Development of Runtime Monitors

No

Restriction

lane change to the left lane

system action
if

condition

vehicle

subject

position

property

is

activity

on

relation

the left neighbor lane

object (place)

and

conjunction

No

Restriction

lane change to the left lane

system action
if

condition

vehicle

subject

position

property

is

activity
behind

relation

the ego vehicle

object (place)

and

conjunction

No

Restriction

lane change to the left lane

system action
if

condition

vehicle

subject

relative velocity

property

is

activity
more than

relation

5 m/s.

data type value

Figure 6.5.: Application of the requirement pattern for Example 6.1.

The second category property has been omitted for (cf. Example 6.1 because the position
and relative velocity of the vehicle are evaluate in relation to other objects and not the
objects’ properties (cf. Fig. 6.5).
Relations in requirements can not only relate to one object but also a list of objects. Our
requirements pattern can address this description in natural language requirements by
transforming conditions with sets of related objects into multiple atomic conditions with
each just having one related object. These atomic conditions are combined by and or or
to represent the identical state condition. This way the number of atomic conditions for
a state condition part increases but each atomic condition has only one relation between
two objects and their properties (data values). Multiple different state conditions can be
combined if they relate to the same set of actions. For example, in the second line of
Fig. 6.5 the action part is grayed while an and-conjunction is added to the first part.
For the results displayed in Fig. 6.5, additional changes have been introduced in order to
further reduce the ambiguity of the requirement (cf. Example 6.1). The activity verb
of the requirement has been changed from “to consider” to “to be” has been added as
corresponding system action in order to avoid the ambiguity of “to consider”. The atomic
condition addressing the “relative velocity” has been reordered and “relative velocity” has
been explicitly defined as object property rather than as data type in order to properly
fit the pattern.
The second part of the pattern about required or restricted system actions is described
in the following section.

6.2.2.1.2. Action Part

The action part of the pattern primarily consists of the system actions which refer to
the possible output of the system function fS (cf. Fig. 6.4) . As the runtime monitoring
focuses on safety related requirements, the action part may require mandatory actions or
restrict the execution of actions by the system function fS under the specific conditions
of the state condition part. The pattern introduces the optional element restriction in the
action part for the restriction of system actions (cf. Fig. 6.4). Multiple system actions
considered with one state condition part can be conjuncted by and or or —similar to the
conjunction used for multiple atomic conditions. More complex system actions have to
be analyzed and formalized in the same way as the state condition part.

183

6. Monitor Engineering and Training

In the application of the pattern to Example 6.1 (cf. Fig. 6.5), the initial term “to
consider” from Example 6.1 is substituted by the restriction of an lane change (“No
lane change”). The action part of the pattern has to relate to actions or behavior of
the system. The initial term “to consider” in Example 6.1 is ambiguous and does not
relate to any action by the lane change assistant. The action “lane change” represent the
implicit meaning of the term “to consider” in Example 6.1; to check the conditions for
the vehicle environment prior to changing to the left lane. As the Example 6.1 represents
an exclusion of a lane change in the specific conditions, the system action has to also be
restricted (“No lane change to the left lane”).
The categorization of requirements by the pattern (cf. Fig. 6.4) enables the representation
of requirements in formal logic. Objects, types, and relation defining the domains DIA,
and DOA can be identified. Relations between objects and types are used in the definition
of functions fI , fA, and fO. The definition of requirements in formal logic for the runtime
monitoring of autonomous vehicle systems is described in the following section.

6.2.2.2. Definition of Typed first-order Logic

For the definition of domains DIA, DOA and functions fI , fA, fO, all patterned requirements
(cf. Fig. 6.4) are transformed into typed first-order logic (cf. Section 2.4). The formal
description as formulas enables the identification of types, objects, and relations defining
these domains and functions for the runtime monitoring framework. The typed first-order
logic has been introduced first in [BHS07]. A type hierarchy is defined which allows the
binding of variables, functions, and relations to specific types (cf. Section 2.4.1). The
type hierarchy is similar to the data structures in [Cim+10; Kan15]. Further details
about this typed first-order logic are given in Section 2.4.
First-Order logic is necessary because runtime monitoring of autonomous vehicle systems
requires the reasoning about multiple (all) objects of a particular type. Considering the
open-world assumption (cf. Section 3.8.1), the quantification over objects is essential in
order to correctly address the infinite sets of objects in systems’ real-world environments.
For example, the safety of the lane change assistant depends on the positioning of all
vehicles in the vicinity of the autonomous vehicle. Propositional logic cannot reason
about individual objects, sets of objects, and relations among them in sufficient detail for
the runtime monitoring (cf. [BHS07; BKV13]). Propositional logic could only evaluate if
specific zones in the vicinity of the automated ego vehicle are occupied but would not allow
any reasoning about the individual behavior of traffic participants. Knowledge about
interactions between other traffic participants and the autonomous vehicle systems is vital
for the improvement of autonomous vehicle systems based on the runtime monitoring
results. The modeling of world traffic situations in test scenarios and test cases requires
the explicit description of individual real-world objects in the runtime monitoring results
(cf. Section 7.2.2.
The following sections describe the definition of types, variables, functions, predicates,
and formulas of the typed first-order logic for the runtime monitoring from patterned
requirements (cf. Section 2.4).

184

6.2. Development of Runtime Monitors

6.2.2.2.1. Types and Co-Domains

For the typed first-order logic of the runtime monitoring, types have to be identified for
the objects in the requirements in order to reason about the real world on an abstract
level. A type defines a class of real-world objects which share the similar properties
(cf. Section 6.2.2.2.1). The definition of types includes the definition of their value
ranges—the set of abstract values which objects of this type can adopt in the formal
logic. The types identified in the requirements define the domains DIA and DOA for the
runtime monitoring framework (cf. Fig. 6.2).
Each requirement commonly defines multiple types for the typed first-order logic. As
shown in Fig. 6.4, types are defined for each element of the pattern categories subject,
object, as well as their properties. Example 6.1) defines the types vehicle, lane, relative
velocity, (lane) position, and (relative) position (cf. Fig. 6.5). Any type may occur in
multiple requirements.
Types define ranges of possible values. For the runtime monitoring framework, ranges of
values for types of the domains DIA and DOA are defined by the objects and data values
within predicates of the requirements (cf. Section 2.4.2). Complex objects and data types
have to be distinguished for the typing of the first-order logic. Complex objects refer to
real-world objects while data values which define limits on measurable types. An order
relation commonly sorts the values of a data type. The order relation is not mandatory
for complex objects which represent real-world objects. Sets of complex objects and value
ranges of data types need not to be finite and denumerable. Standard data types with
infinite domains are, e.g., integer, float, and real. For the lane change assistant, the set
of possible objects for the type vehicle is infinite but denumerable.
Objects in predicates (cf. category object in Fig. 6.4) refer to explicit object instances.
An object instances represents one particular object in the set of possible object for the
particular type. In Fig. 6.5, the terms left neighbor lane and ego vehicle in the category
object refer to real world objects; left neighbor lane refers to a specific real world lane
and ego vehicle refers to the automated (ego) vehicle. Each object instance is denoted
by unique identifier or uniquely descriptive adjectives, e.g., left lane or right lane (cf.
Fig. 6.5).
In the first-order logic, each specific object is represented as constant—a nullary function
symbol. For the runtime monitoring framework, these object instances represent a subset
of possible values for the corresponding type. There may not exist any universally defined
order relation for objects of such types.
For the lane change assistant, the ego vehicle is an explicit object instance for the type
Vehicle but there is a infinite number of other vehicles which have to be considered for the
runtime monitoring. The type lane only considers the relevant lanes for intimidate lane
changes, the left and right adjacent lanes, and the (ego) lane on which the automated
vehicle drives as object instances: DLane = {Left,Ego,Right}. The three lanes define the
complete range of values for the type lane while the object ego vehicle represents a subset
of the possible values for the type vehicle.
For the runtime monitoring, additional types are introduced alongside existing primitive
data types, e.g., integer, float, or real, in order to describe abstract value ranges of object

185

6. Monitor Engineering and Training

Interval 1 Interval 2
Value Range

Limit

(a) Definition of abstract values for a single
limit.

Interval 1 Interval 2 Interval 3 Interval 4
Value Range

Limit 1 Limit 2 Limit 3

(b) Definition of abstract values for mutiple
limits.

Figure 6.6.: Definition of abstract values for types.

properties. Value limits of predicates commonly refer to number-valued types which can
be measured by the autonomous vehicle system (cf. relative velocity in Example 6.1).
These types commonly define an order relation on their values, e.g., integer, float, or real.
Such order relations allow the definition of abstract intervals from the number-valued
types as abstract values for the corresponding types in DIA resp. DOA . For each limit, two
intervals are defined: one interval matching the limit of the predicate and one interval
violating the predicates limit (cf. Fig. 6.6a). Each interval is denoted in the runtime
monitoring framework as a unique object by its unique identifier. In the case predicates
define various limits for the same number-valued type, multiple abstract values are
defined for this type in DIA resp. DOA in order to correctly represent the intersection of to
match the intersection of intervals over the limits (cf. Fig. 6.6b).
Equation (6.11) shows the definition of abstract values for the relative velocity in
Example 6.1). For the predicate “more than 5 m/s” of Example 6.1) (cf. Fig. 6.5),
one interval LOWER is defined for values lower than 5 m/s and one interval HIGHER
is defined for values equal or higher than 5 m/s. Values for the relative velocity are
transformed accordingly to the abstract values LOWER resp. HIGHER (cf. function
fV elI in Eq. (6.11)).

DRelativeV elocity = {LOWER,HIGHER} (6.10)
fV elI : R→ DRelativeV elocity (6.11)

fV elI (−0.2) = LOWER (6.12)
fV elI (4.1) = LOWER (6.13)
fV elI (5.0) = HIGHER (6.14)

fV elI (120.0) = HIGHER (6.15)

For the evaluation of predicates (cf. Section 2.4.2) by the runtime monitoring framework,
the order relation for number-valued types from the domains DS has to be maintained
for the range of abstract values of corresponding types in DA. The order relation on
the abstract values of DA enables to referencing of subsets of valid values in predicates.
Otherwise, predicates referring to value limits cannot be easily evaluated for types with
sets of abstract values of 3 or more elements. Otherwise, each abstract value which meets
the limit, e.g., 5 m/s, would have to be independently compared to the current abstract
value of the evaluated object property.

186

6.2. Development of Runtime Monitors

In case, an additional requirement introduces another limit for the relative velocity, the
set of abstract values has to be extended by refinement of affected intervals. Let’s say the
additional requirement defines the condition “equal or higher than 10 m/s”, the abstract
value HIGHER has to be refined. As shown in Eq. (6.17), the domain DRelativeV elocity

is extended by the abstract value MID to represent concrete values between 5 m/s
and 10 m/s. The order relation on these abstract values—LOWER<MID<HIGHER—
ensures that the requirements can efficiently evaluated in the implementation. All abstract
values larger or equal MID satisfy the condition “equal or higher than 5 m/s”. Abstract
values lower and equal MID violate the condition “equal or higher than 5 m/s”.

D′

RelativeV elocity = {LOWER,MID,HIGHER} (6.16)
F V el
I : R→ D′

RelativeV elocity (6.17)
F V el
I (−0.2) = LOWER (6.18)
F V el
I (4.1) = LOWER (6.19)
F V el
I (5.0) = MID (6.20)

F V el
I (120.0) = HIGHER (6.21)

Requirements may be an underspecification of the real world. In the real world, objects
may occur in the real world situations which do not match any defined type of the
requirements resp. the runtime mounting framework. As consequence, an out-of-range
element is introduced for each type. As processing result of the input abstraction fI or
output abstraction fO, a type-specific out-of-range element indicates a processing error
or the insufficient consideration of the real world by the requirements. The domain for
the relative velocity (cf. Eq. (6.11)) would be extended by its type-specific out-of-range
element OOR to

D∗RelativeV elocity = {LOWER,HIGHER,OOR} . (6.22)

However, the out-of-range element OOR need not be utilized for all types. Function
fV elI (cf. Eq. (6.11)) never processes the element OOR by function fV elI as abstract value
for the relative velocity. The abstract values LOWER and HIGHER correspond to two
continuous open intervals over the complete real domain R of the relative velocity.
All identified types for the definition of domains DIA and DOA are structured in a correspond-
ing type hierarchy for each domain. The type hierarchies are essential for typing entities
of the typed first-order logic, e.g., variables, functions, and predicates (cf. Section 2.4).
The definition of type hierarchies is described in the following section.

6.2.2.2.2. Domains and Type Hierarchies

For the runtime monitoring, types which have been identified in the requirements are
organized in type hierarchies for the domains DIA and DOA (cf. Fig. 6.2). A type hierarchy
represents an inheritance hierarchy of types. Each type which has been identified by the
pattern-based analysis is encapsulated in the type hierarchies of domains DIA resp. DOA .

187

6. Monitor Engineering and Training

action part condition state condition part

DIS

DIA

DOS

DOA
fI

fS

fO

fA

restriction system action condition subject property activity relation object/value conjunction

Figure 6.7.: Definition of domains DIA, DOA from the requirement pattern.

As shown in Fig. 6.7, the type hierarchy of domain DIA contains types which are defined
in the state conditional parts of the requirements while the type hierarchy of domain DOA
encapsulates types from the action parts of these requirements.

Definition 6.1 (Type Hierarchy). A type hierarchy represents an inheritance hier-
archy of (data) types.

The root of any type hierarchy is always the universal type > ∈ TD (cf. Section 2.4.1).
All other types inherent from the universal type >. Types which have been deduced from
requirements for the runtime monitoring framework are dynamic types TD. Any object
process by the input abstractions fI or the output abstract fO, can only have a dynamic
type t ∈ TD. The type hierarchy can be extended by abstract types TA but no runtime
object can have abstract types as their original type (cf. Section 2.4.1). Abstract types
group similar types in order to defined more general formulas reasoning about this groups
of similar types. For example, the abstract type traffic participant would summarize
vehicles, trucks, bicycles, and pedestrians. The type hierarchy is complemented by the
empty type ⊥ ∈ TA which is a subtype of all other types in the hierarchy (cf. [BHS07]).
Types from domain DIA can be reused for the definition of the domain DOA . Requirements
for autonomous vehicle system may incorporate identical objects in the description of
the system actions and corresponding state conditions. The domain DOA will be a subset
of domain DIA if all types of domain DOA are contained in domain DIA: DOA ⊆ DIA.
For the lane change assistant, the domain DOA is a real subset of domain DIA. Lane
changes are interpreted in the abstract domains DA based on their target lanes. The
corresponding type lane in the action part (lane change to the left lane) (DOA) is identically
contained in the state condition part (DIA) for the position of other vehicles on the road
(the left lane) (cf. Fig. 6.5). For complex description of system actions, a pattern-based
analysis of the action part may lead to more elaborated type hierarchies.
Figure 6.8 displays an exemplary type hierarchy which has been defined based on the
results of the pattern-based analysis of Example 6.1 (cf. Fig. 6.5). The root type of the

188

6.2. Development of Runtime Monitors

>

Object

Vehicle Truck Bicylce Pedestrian

Road Lane

⊥

Figure 6.8.: Exemplary type hierarchy.

hierarchy is the universal type >. The type object, road, and lane inherent from the
universal type. While types road and lanes are dynamic types {Road,Lane} ∈ TD, the
type object is an abstract type {Object} ∈ TA and can only be used in the formulas for
safety requirements but can not be assigned to real world objects (cf. Section 2.4.1).
The abstract type Object encapsulates all types addressing objects that may appear
in the vicinity of the automated vehicle. These objects—Vehicle, Truck, Bicycle, and
Pedestrian—are subtypes of the type Object. The types Vehicle, Truck, Bicycle, and
Pedestrian are all dynamic types {Vehicle,Truck,Bycicle,Pedestrian} ∈ TD. The final
subtype of the hierarchy is the empty type ⊥.
The typing of the first-order logic (cf. Section 2.4) enables the restriction of variables,
function symbols, and predicates symbols to objects of certain types and to reduces the
complexity in the implementation of the runtime monitoring framework. For typing of
variables functions, and predicates the typing function α is introduced (cf. Section 2.4.2).
The typing function α assign a type to every symbol of V , F , and P and each of their
parameters. Variables, function, and predicates are introduced in the following sections.

6.2.2.2.3. Variables

Requirements do not only evaluate properties for single object instances but also reason
about properties of sets of objects with identical type. In typed first-order logic, a variable
v ∈ V (cf. Definition 2.36) is defined for each requirements’ element of the category
object (cf. Fig. 6.4), which represents a set of objects of a certain type. In first-order
logic, quantifiers ∀v and ∃v are introduced in order to evaluate requirements over all
objects of the set v (cf. Section 2.4). The variable v is bind to the particular type of the
objects by the typing function α.
For the type of variable as well as parameters of functions and predicates the typing
function α is introduced.
In the state conditional part of the Example 6.1, the element vehicle as subject of
the requirement is not an identifier for any explicit object—a constant. The example
requirement reasons about the set of all vehicles in the perceived environment of the lane
change assistant. A variable y ∈ V is introduced in order to evaluate the requirement for

189

6. Monitor Engineering and Training

perceived vehicles. Additional to the variable for the vehicle, the Example 6.1 requires
the definition of a variable x ∈ V in order to correctly describe the target lane of the
lane change in the action part and the state conditional part.

6.2.2.2.4. Function Symbols

Unless, primitive data types, e.g., integer, float, and real, types hold a set of properties.
For example, the type vehicle has properties e.g., position and relative velocity, in order
to describe their position and behavior. Every property represents a type which has to
be considered in the domains DA (cf. Fig. 6.7).
The pattern (cf. Fig. 6.4) defines the class property to explicitly express the property of
requirements’ subjects. Some requirements reason about relations between the properties
of objects. Therefore, the pattern also introduces a second property category related
to the object in the requirement’s predicate (cf. Fig. 6.4). for Example 6.1, the second
property is committed because the subject properties relate to other objects but not
their properties (cf. Fig. 6.5). Elements of requirements for both property categories
have to be considered in the typed first-order logic.
In first-order logic, properties are represented by a set of function symbols F . The number
of parameters for the function symbol f ∈ F depends on the number of related objects.
Properties relating to single objects of particular type, e.g., position and dimensions
for vehicles, can be denoted by unary functions f ∈ F . For an object of type z1, the
function f (z1)→ z process an object of type z as value for the corresponding property (cf.
Definition 2.36). For example, a function pos (xveh) = ypos;α (xveh) = Vehicle, α (ypos) =
R3 would return the current position vector of a vehicle.
Properties which are measured in relation to other objects are denoted by n-ary functions
where n corresponds to the number of objects in relation. For example, the property
relative velocity of the Example 6.1 describes the velocity of an vehicle in relation to
the ego vehicle with the lane change assistant and can be defined as binary function
rV el (xveh, ego) = yvel;α (xveh) = Vehicle, α (yvel) = DRelativeVelocity. The constant ego
describes the ego vehicle with the lane change assistant.
The typing of the first-order logic (cf. Section 2.4), allows to restrict the function pa-
rameters to defined types zi. Opposed to untyped first-order logic, functions are solely
evaluated for terms of types ti ∈ Termz

′
i
which meet the type of corresponding function

parameters z′
i v zi and not for all elements of the domain (cf. Definition 2.39). This re-

striction corresponds to the implementation in object-oriented language (cf. Section 6.2.3)
and reduced the complexity for the implementation of the runtime monitoring framework.

6.2.2.2.5. Predicate Symbols

Requirements define predicates. Predicates relate subjects’ properties to other objects,
their properties or criteria. The requirements patterns identifies these relations by the
category relation (cf. Fig. 6.4). A list of possible expressions which describe such relations
in requirements is given in Table 6.1.

190

6.2. Development of Runtime Monitors

action part condition state condition part

DIS

DIA

DOS

DOA
fI

fS

fO

fA

restriction system action condition subject property activity relation object/value conjunction

Figure 6.9.: Definition of abstract function fA from the requirement pattern.

In first-order logic, predicates are denoted by predicate symbols p (z1, . . . , zn) ∈ P (cf.
Definition 2.39). The number of parameter corresponds to the number of related objects,
object properties, and constants. Results of predicates reside within {true, false} ∈
Boolean. Similar to functions, the parameters of predicates are restricted to specific types
in order to reduce the complexity of the monitoring algorithm and its implementation.
For each parameter a type zi is defined. Any term ti ∈ Termz

′
i
as parameter has to meet

z
′
i v zi (cf. Definition 2.39).

The state conditional part of the example requirement Example 6.1 contains two predicates.
The predicate “on” reasons about the position of vehicles in regard to a particular
neighbor lane. The relation “more than 5 m/s” will evaluate if the velocity of an vehicle
relative to the ego vehicle is equal or larger to the defined value (here 5 m/s). In
first-order logic, the relation on about the vehicle position on a lane can be denoted
by a binary predicate on (xpos, ylaney), where both parameters have the type Lane;
α (xpos) = Lane, α (ylane) = Lane.
The relation more than for the relative velocity can be denoted by a predicate >
(xvel,Higher) , α (xvel) = RelativeVelocity. The predicate > takes the abstract value for
the current relative velocity of a vehicle as first parameter xvel and compares it to the
abstract constant Higher. The abstract constant Higher encapsulates all values for the
relative velocity which are larger as 5 m/s. In case of the lane change assistant, a check
for equivalence for the relative velocity is sufficient. Efficient evaluations of predicates
require types to define an order relation for their abstract values (cf. Section 6.2.2.2.1.
The action part of Example 6.1 is also transformed into a predicate. The predicate
LC (xLane) (short for lane change) describes the possibility of a lane change to a given
lane. The concrete target lane for the lane change assistant is denoted by the variable
xLane ∈ V for the example requirement (cf. Eq. (6.23)). For the Example 6.1, The
predicate LC (Left) has to be evaluated with the left lane Left as target. Lane changes
cannot be expressed by a function because valid statements in first-order logic have to
include at least one predicate (cf. Section 2.4.3).

191

6. Monitor Engineering and Training

As shown in Fig. 6.9, the predicates of action part and the state condition part are
considered in the definition of the abstract function fA as part of the formulas which
represent the overall structure of the requirements. The abstract function fA evaluates
objects and their properties based on the predicates from state condition part and
determines correct and safe actions for the autonomous vehicle system based on the
predicates of the action part. The condition part of the pattern (cf. Fig. 6.4) is considered
in the formulas of typed first-order logic to represent the inherent implication between
state condition part and action part. Formulas of typed first-order logic are described in
the following section.

6.2.2.2.6. Formulas

A formula consists of at least one predicate with an arbitrary number of terms (cf.
Definition 2.39). A formula with one single predicate is also called atomic formula. The
evaluation result of any formula resides within {true, false} ∈ Boolean.
Requirements may include multiple predicates (cf. example requirement Example 6.1).
Requirements with multiple conditions require the conjunction of atomic formulas in order
to correctly replicate such requirements in typed first-order logic. first-order logic defines
the logical operators ¬φ, φ ∧ ψ, φ ∨ ψ, φ→ ψ with φ, ψ being formulas. In the context of
the runtime monitoring, the operator ∧ is primarily applied for the conjunction of atomic
formulas as state conditional parts. Conditions which are combined by ∨ can be separated
into individual requirements. These requirements are evaluated independently from each
other. The logical operator → is primarily used for the representation of implications
between state conditions and system actions in requirements (cf. Section 6.2.1).
For the runtime monitoring, requirements are expressed by formulas in first-order logic.
Formulas maintain the high level structure “state condition→ action” of requirements—
the relationship between state condition and system action (cf. Section 6.2.1)—which is
essential for the evaluation of correct and safe system behavior by the abstract function fA
(cf. Fig. 6.9). Beside predicates, the remaining categories of the requirements pattern—
restriction, condition, and conjunction—are considered for the definition of formulas
which are evaluated by the abstract function fA (cf. Fig. 6.9).
Besides logical operators, first-order logic defines quantifiers ∀x and ∃x in order to
quantify over variables (cf. Section 6.2.2.2.3). Quantifiers and variables enable the
evaluation of predicates and requirements for a set of objects of a particular type. The
Example 6.1 requires that the lane position and relative velocity be evaluated for all
vehicles and lanes in the vicinity of the system. In first-order logic, a quantification ∀x
over all lanes α (x) = Lane and a quantification ∃y over all vehicles α (y) = V ehicle
are defined for the Example 6.1. The predicates within Example 6.1 are evaluated for
each combination of vehicle and lane. A lane change must not be performed to the
corresponding lane if a vehicle violates one of the given predicates.
Equation (6.23) displays the complete formula of the Example 6.1 in typed first-order
logic. The index of objects, functions, and variables (e.g., xLane, yV ehicle, EGOV ehicle,
posLane, rV elR) denotes their types.

192

6.2. Development of Runtime Monitors

∀xLane(∃yV ehicle(On (posLane (yV ehicle) , xLane)∧
>
(
rV elRelativeV elocity (yV ehicle, EGOV ehicle) ,HigherRelativeV elocity

)
)

→ ¬LC (xLane))
(6.23)

Types, variables, functions, predicates, and formulas which have been identified in the
pattern-based analysis represent the syntactic elements of the typed first-order logic for
the runtime monitoring of autonomous vehicle systems. For the semantic interpretation,
each element of the typed first-order logic has to be evaluated based on a model M.
Such model defines the domain of actual objects, their typing for the interpretation of
variable assignments, function symbols and predicate symbols (cf. Section 2.4.4). In the
next section, the semantic interpretation of the presented typed first-order logic by the
implementation of the runtime monitoring functions (cf. Eqs. (6.1) to (6.4)) is described.

6.2.2.3. Semantic Interpretation of Logic by Implementation

Section 6.2.2.3 has presented the syntactic of the typed first-order logic for the runtime
monitoring of autonomous vehicle systems. The syntactic elements—types, variables,
function symbols, predicate symbols, and formulas—hold no semantic interpretation.
They have to be interpreted about a domain of (real world) objects by evaluating the
variables, function, and predicates symbols in formulas, e.g., Eq. (6.23), are substitute by
matching domain objects (cf. Section 2.4.4.
For semantic interpretation of the typed first-order logic a modelM has to be defined
(cf. Section 2.4.4). The modelM = 〈D, δ, I〉 encapsulates the domain D of real world
objects, a typing function δ, and the interpretation of functions and predicates I. For the
runtime monitoring framework, its implementation of types, functions, and predicates
represents the semantic interpretation of of the typed first-order logic.

6.2.2.3.1. Domain

In the real world, the domain of possible objects Dreal is infinite even though the set
of types which has been derived from requirements is finite. Following the open-world
assumption (cf. Section 3.8.1), the real-world as the domain of autonomous vehicle
systems has infinite many arbitrary objects or finite but continuously increasing object
sets for some types. The set of vehicles in the real world is a finite domain but increases
continuously while the number of real traffic situations is infinite. Furthermore, the real
word is subject to continuous change because many real-world objects, e.g., vehicles or
pedestrians, operate autonomously.
The runtime monitoring evaluates autonomous vehicle systems and their environments at
concrete time stamps ti ∈ T—T denotes the time domain—based on runtime data from
the preprocessing of the autonomous vehicle systems about the system state (cf. Fig. 5.1).
The system state encapsulates the internal state of the autonomous vehicle system and

193

6. Monitor Engineering and Training

the state of its environment (cf. Definition 3.6). The time stamps of the runtime
monitoring commonly correspond to the processing cycles of the autonomous vehicle
systems. Autonomous vehicle systems sense their environment and process corresponding
decisions in predefined cycles, e.g., all 10 ms.
The elements in the domain D for the system state are finite in each processing cycle.
Even though the number of objects in the real world is theoretically infinite only a
finite number of the number of objects with fixed types can be present in the system’s
environment for each processing cycle. The values of the internal system parameters are
also known and fixed. It yields D ⊂ Dreal. As a result, the runtime monitoring always
evaluates a known and finite number of objects and parameters for the system state.
As the real world continuously changes over time, the number of objects in the system’s
environment and the values of the internal system parameter change between two
processing cycles of the autonomous vehicle systems. For example, vehicles enter or leave
the perception range of the automated ego vehicles’ sensors. The domain D of the system
state for two subsequent processing cycles t1 and t2 need not to be identical.
Over time, a trace of system states emerges (cf. Definition 2.32). For the autonomous
vehicle systems, system states are formed by the values of all internal system parameters
and the positions and behaviors of objects in the systems’ environments as a representative
within domain DIS. The runtime monitoring also encounters traces of abstract situations
as abstract representations of these system states within domain DIA.
A trace of system states is defined by D = D1D2, . . . with Di denoting the system state
at time stamp ti. All timestamps t1 < t2 < . . . are timely ordered. At a time stamp only
one domain D can exist but any domain D can be present at multiple time stamps ti.
While domains DIS and DOS (cf. Fig. 6.2) are realized in the development of autonomous
vehicles systems and are provided for the implementation of the runtime monitoring
framework, domains DIA and DOA (cf. Fig. 6.2) are subject to the development of the
runtime monitoring framework. The implementation of types from DIA and DOA in
object-oriented programming languages by the runtime monitoring framework inherently
provides their semantic interpretation.
The implicit typing of object-oriented programming languages is beneficial for the typing
of objects by the typing function δ. The typing function δ is described in the following
section.

6.2.2.3.2. Typing Function

The typing function δ : D→ TD of the modelM is implicitly implemented by the explicit
typing of object-oriented programming languages, e.g., C++ and Java. As the types of
input data for the runtime monitoring framework—the data elements of domains DIS and
DOS —are given by the implementation of the autonomous vehicle systems, the typing
of data elements for domains DIA and DOA results from the application of the runtime
monitoring functions fI and fO to this input data.
In case no special type has yet been defined for a domain object because it has not
yet been known, the typing function δ assigns the empty type ⊥ to this object. In
programming languages, e.g., C++ and Java, these objects are denoted by null. However

194

6.2. Development of Runtime Monitors

these unknown objects should have been detected as failure by the perception of the
autonomous vehicle systems (cf. preprocessing in Fig. 5.1).
The distinction of dynamic and abstract typing (cf. Section 6.2.2.2.2) has a minor
relevance for the implementation of the runtime monitoring framework. Dynamic and
abstract types have to be identically considered in the data structure of domains DIA
and DOA . Nevertheless, objects as resulting from the input abstraction fI and output
abstraction fO can only be of dynamic types and never of abstract types (cf. Section 2.4.1).
Abstract types are not defined by requirements but are manually added in order to be
used in the implementation of functions, predicates, and formulas, for optimizations (cf.
Section 6.2.2.2.2).

6.2.2.3.3. Interpretation of Functions and Predicates

The interpretation function I of the modelM assigns particular functions or predicates
to the function symbols and predicate symbols of the typed first-order logic. Methods
represent these particular functions or predicates in the software implementation of the
runtime monitoring framework. The signature of these methods matches the signature—
identical number and typing of parameters—of corresponding function symbols and
predicate symbols of the typed first-order logic. While the numbers and types of concrete
objects of domains DIS, DOS , DIA, and DOA are know at runtime, the interpretation of
functions and predicates can be defined at design time.
The function symbols of the typed first-order logic are mapped to properties of types from
domain DIA and DOA . The implementations of input abstraction fI and output abstraction
fO process the property values for types in the domains DIA and DOA based on the objects
and their properties in the domains DIS and DOS . The processed function values are saved
as abstract values in struct variables resp. class attributes for the corresponding objects
in domains DIA and DOA . The types of struct variables resp. class attributes match the
return types of corresponding function symbols.
In the evaluations of formulas by the abstract function, the abstract values of properties
can directly be accessed via the struct variables resp. class attributes. The method
implementations of the functions do not have to be revised. Get-methods can be
introduced for the access of struct variables resp. class attributes in order to maintain
the operational aspect of functions in the evaluation by the abstract function fA.
Predicates are not part of the abstraction fI , and fO but are evaluated by the abstract
function fA. Therefore, predicates are implemented as methods with identical signature
as the corresponding predicate symbols of the typed first-order logic. In general, the
value for this predicate is processed by its implementation each time the abstract function
requires the value of this predicate for the evaluation of formulas. Nevertheless, results
for each predicate in conjunction with the passed objects can be saved in variables in
order to avoid repeated processing of identical system data. The variables have to match
the return type of the corresponding predicate symbols.
The implementation of functions fI , fO, and fA of the runtime monitoring framework is
described in more detail in the following section.

195

6. Monitor Engineering and Training

6.2.3. Implementation of Runtime Monitors

The evaluation of autonomous vehicle systems in simulations and during operation requires
the implementation of runtime monitors. Runtime monitors (cf. Section 2.3.1) implement
the domain, variables, functions, predicates, formulas of the system requirements and
evaluate them on available data from the autonomous vehicle systems.
In comparison to the terminology of [LS09], the runtime monitoring framework depicts
a monitoring approach which monitors conditions online and offline. The runtime
monitoring can be used online—during operation of the autonomous vehicle system—
for the enforcement of the system’s safety (cf. Section 7.1.1). Offline, engineers analyze
recorded traces of abstract situations for the improvement of the autonomous vehicle
system and the definition of new test cases.
Runtime monitors can be implemented in software, hardware or in both as hybrid
monitors (cf. Section 2.3.1). The implementation of runtime monitors as software has
the advantage that the software monitors can be used in throughout all activities in the
development of autonomous vehicle systems without the costly assembly and integration
of hardware components, e.g., FPGAs (cf. Section 3.1.2). This advantage is especially
relevant for software-based simulations in the system verification (cf. Section 3.6.2).
For the lane change assistant, the runtime monitoring framework is implemented in the
object-oriented programming language C/C++.
Runtime monitors have to access the runtime data of the autonomous vehicle system via
defined interfaces for the runtime monitoring. These interfaces by the system have to
provide sufficient data about the inputs and outputs of the monitored system function
(cf. Section 6.2.1). The following section discusses the implementation of the data access
for the runtime monitoring of autonomous vehicle systems.

6.2.3.1. Implementation of Data Access

Car manufacturers do not widely recognize the benefits of additional runtime monitoring
capabilities. Software and hardware of embedded systems in the automotive domain are
highly optimized (cf. Section 2.3). ECUs currently offer only limited to none capacity
for additional data processing other than planned vehicle’s control software. Additional
software on these ECUs would have an immediate safety-critical impact on the processing
of the autonomous vehicle system. The implementation of the runtime monitoring
framework has to cope with the limited resources of these embedded systems as long
as no additional data storage, and processing capabilities are provided for the runtime
monitoring.
The autonomous vehicle system in the simulations and during operation in the real world
have to be identically. Otherwise, results from the runtime monitoring of the autonomous
vehicle system in simulations of the system verification are not applicable to the operation
of autonomous vehicle systems in the real world. The exclusive usage of specialized
hardware and code instrumentation of the autonomous vehicle system for the runtime
monitoring in the system verification is not possible. The data access, processing—

196

6.2. Development of Runtime Monitors

including the timing behavior—of the runtime monitoring must not interfere with the
processing of the autonomous vehicle systems.
As shown by Definition 2.32, the autonomous vehicle system, and its environment are
evaluated by the runtime monitoring framework at concrete timestamps. The content
of domains DIA and DOA has to sufficiently match the state of the autonomous vehicle
system and the state of its environment at each time stamp. Otherwise, the results from
the runtime monitoring framework are not sound. The input data from the autonomous
vehicle system—domains DIS and DOS —are updated in defined progressing cycles. The
processing of the runtime monitoring framework has to be aligned with the processing of
autonomous vehicle systems. For many autonomous vehicle systems, the processing cycle
of the runtime monitoring framework matches the processing cycle of the autonomous
vehicle system.
The processing cycle of the runtime monitoring framework can be a multiple of the
autonomous vehicle system in order to reduce the computational requirements of the
runtime monitoring. The processing of the runtime monitoring has to be integrated
into the scheduling of the autonomous vehicle system without any side effects to the
processing of the autonomous vehicle system. In cases, the processing of the runtime
monitoring framework must neither interfere with processing of the autonomous vehicle
system nor miss safety-critical behavior of the autonomous vehicle system.
In case an autonomous vehicle system has multiple processing cycles, e.g., the updates of
the system behavior due to different cycles of sensor information, the greatest common
divisor for all system cycles could be used. However, this approach has the disadvantage
of unnecessary processing on already evaluated system data. Another approach is to have
multiple cycles for the runtime monitoring with each cycle being aligned to one system
processing cycle. This approach avoids any unnecessary processing but might introduce
more complexity in the scheduling of the runtime monitoring within the autonomous
vehicle system.
The implementation of the qualitative runtime monitoring separates itself in the definition
of domains DIA and DOA and the implementation of functions fI , fA, and fO (cf. Fig. 6.2).
For the quantitative runtime monitoring, the recording and comparison of abstract
situations from the input abstraction fI has to realized.

6.2.3.2. Implementation of Runtime Monitoring Domains

The explicit typing of object-oriented programming languages, e.g., C++ and Java, is
beneficial for the implementation of domains DIA and DOA . In the implementation of these
domains, two types have to be differentiated; types are describing complex real-world
objects and types which describe ranges of possible values.
Types describing complex real-world objects can be directly implemented as structs or
classes in object-oriented programming languages, e.g., C++ or Java. The inheritance
between classes allows to identically rebuild the type hierarchy of these domains in the
software. Structs or classes allow encapsulating properties of objects as struct variables
resp. class attributes.

197

6. Monitor Engineering and Training

Types defining abstract value ranges, e.g., the position of vehicle relative to the ego
vehicle (before,next, behind), are implemented as enumerations. Each concrete object
defined for these types in the typed first-order logic is implemented as a corresponding
element in the enumeration and extends by the element OOR for out-of-range values.
For the domains DIA and DOA an additional struct resp. class is added in order to store
the current state and objects for each domain. For this container class, the set of current
objects Dz for each type is saved in an individual struct variable resp. class attribute
(cf. Section 2.4.4). These struct variables resp. class attributes allow the evaluation
of variables in formulas by iterating over the set of objects of the specific type in the
corresponding struct variable resp. class attribute. For the lane change assistant, one
single domain has been implemented because the output domain is a subset of the input
domain.
For the runtime monitoring framework, the functions fI , fA, and fO of the qualitative
runtime monitoring have to be implemented (cf. Fig. 6.2). The input and output
abstraction uses functions of the typed first-order logic to process the properties of
abstract types. Predicates of the typed first-order logic are used by the abstract function
to process correct and safe system actions. The implementation of the input abstraction
fI and output abstraction fO is described Section 6.2.3.3 while the implementation of the
qualitative runtime monitoring with the abstract function is presented in Section 6.2.3.4.
Additional to the qualitative runtime monitoring, the quantitative runtime monitoring is
described in Section 6.2.3.5.

6.2.3.3. Transformations between Domains

The runtime monitoring framework depicts the function as a black-box and requires the
autonomous vehicle systems to provide the domains DIS and DIS as interfaces for the access
of the function’s inputs reps. outputs. The input abstraction fI and output abstraction fO
have to process the current abstract representation of the current system and environment
state from the currently available data at the interfaces of the autonomous vehicle systems.
Data objects forming the domains DIS resp. DOS of the autonomous vehicle systems have to
be transformed into objects of domainsDIA resp.DOA for the runtime monitoring framework.
The provision of system data for the input abstraction fI and output abstraction fO by
the autonomous vehicle systems via the interfaces will not require any instrumentation
of source code (cf Section 2.3.1) if these interfaces haven been considered in the design
and implementation of the autonomous vehicle systems.
The input abstraction fI and output abstraction fO represent model-to-model transforma-
tion (cf. [CH03]) between the corresponding domains DIS and DIA resp. DOS and DOA . For
input abstraction fI and output abstraction fO a set of transformation rules are defined.
These transformation rules define how objects of domains DIA resp. DOA are processed
from the current objects available in domains DIS and DOS of the autonomous vehicle
system. Figure 6.10 displays the transformation of the input abstraction fI between
domains DIS and DIA. The objects of domains DIS and DIA are the only elements of the
input abstraction fI which are solely known at runtime. All other elements—types,
transformation, and transformation rules—of the abstraction are defined at development

198

6.2. Development of Runtime Monitors

Abstraction

Abstract Function

Abstract Output

Data Flow

Transformation

Types

Types

Domain DIA

Domain DIS

Requirements

Interface
Definition

Formulae
contains

include

contains

include

defines

defines

Input
at Operation dynamic at operation

static at operation

Figure 6.10.: Transformation between domains DIS and DIA.

time because they do not change at runtime. The same applies to the output abstraction
fO.
Transformation rules commonly consist of two parts; a left-hand side (LHS) and a
right-hand side (RHS) (cf. [CH03]). The LHS accesses the input model (here, domains
DIS or DOS) and the RHS interferes with the target model (here, domains DIA or DOA)
(cf. [CH03]). For the LHS, the numbers and types of objects from the input model are
defined for the transformation. The RHS defines the numbers and types of objects in the
target model which are created or adapted by the transformation rule. Transformation
rules define the mapping and calculation between properties of objects from the LHS to
properties of objects in the RHS. Property values of objects in the RHS are calculated
based on the values of a set of properties from the objects of the LHS. For example, the
relative velocity of a vehicle for the domain DIA is calculated based on the velocities of
this vehicle and the automated ego vehicle in the domain DIS.
The calculations of object properties for the target model (RHS) match the functions
of the typed first-order logic for the corresponding object type. Unlike the typed first-
order logic, the calculations of object properties in the input abstraction fI and output
abstraction fO take objects from the input domains DIS resp. DOS as inputs and not from
the target domains DIA or DOA . The results of transformation rule for object properties
match the envisaged results of functions symbols of the first-order logic.
For the lane change assistant, the input abstraction fI transforms vehicles from the
domain DIS to the domain DIA. For an object of the type vehicle in the domain DIS, a
transformation rule creates a object of type vehicle in the domain DIA. Additional to
basic information about vehicle objects, e.g., identifiers, the transformation rule processes
properties lane position, relative position, and relative velocity for type vehicle:

Lane position The property lane position of a vehicle object in the domain DIA is
calculated by comparing the real world position (R) of the vehicle with the dimen-
sions of lanes in domain DIS. The result of this transformation is LanePosition ∈

199

6. Monitor Engineering and Training

Behind Next In Front
Left Neighbor

Ego
Right Neighbor

Right Neighbor

Figure 6.11.: Zoning as representation of vehicle positions in domain DIA.

{Left,Ego,Right} where Ego denotes the lane the automated vehicle is currently
driving and Left resp. Right represent the left resp. right neighbor lane.

Relative Position The relative position of a vehicle object in the domain DIA is calculated
by comparing the vehicle’s position in driving direction with the position and
dimension— front and rear end (cf. Fig. 3.8)—of the automated vehicle. The
relative position in domain DIA is categorized into behind the automated vehicle,
next to the automated vehicle, and before the automated vehicle; RelPosition ∈
{Next,Before,Behind}.

Relative Velocity The property relative velocity of a vehicle object is calculated based
on the velocity difference between this vehicle and the automated vehicle. For the
abstract representation in domain DIA, the relative velocity is categorized in regard
to the predefined criteria reps. limits of predicates about the relative velocity
for the lane change assistant, the type for the relative velocity has the domain
RelVelocityin {LOWER,HIGHER,OOR} (cf. Section 6.2.2.2.1)

For the transformation of vehicle objects, the LHS of the transformation rule takes
objects of types Vehicle and Lane from domain DIS —precisely the examined vehicle,
the automated vehicle, and the driving lane of the examined vehicle. As result of the
transformation, the RHS creates an abstract object of type Vehicle and it properties in
domain DIA. The data structure of the abstract situation (DIA) in the context of the lane
change assistant is described in the appendix by Fig. 7.7.
For the lane change assistant, the position of vehicles in the the domain DIA by its lane
position and relative position can depict as zones. As shown by Fig. 6.11, seven zones
are located around the automated ego vehicle with the zone in which the automated
vehicle (red vehicle) is located is being omitted. No other vehicle can drive within the
zone of the automated ego vehicle unless a collision has occurred. In driving direction
of the automated vehicle, the zones refer to— from front to back— before, next, behind.
The zones in lateral direction to the automated vehicle relate to the driving lane of
vehicle— left, ego, right. In the front and back the extension of the zones is limited by
the sensor perception range, while the zones in the lateral direction are limited by the
size of the three considered lanes. All zones are relative to the automated ego vehicle
and change with the behavior of the automated ego vehicle. For example, the lanes
are moved in the direction of any lane change by the automated ego vehicle. A special
case are lanes which do not exist because, e.g., the highway only has two lanes or the

200

6.2. Development of Runtime Monitors

automated vehicle drives on the leftmost lane of a highway. The type of such lanes is
non-existing and the zones for these lanes are omitted (cf. Section 3.3.1.2).
Each abstraction of the runtime monitoring framework is defined by a set of transformation
rules. For the runtime monitoring framework, the transformation rules within input
abstraction fI and output abstraction fO are unidirectional— rules only process from
the domains of the autonomous vehicle system towards the domains of the runtime
monitoring framework but not the other way around. The set of transformation rules
is sequentially applied at all objects of the abstraction’s input domain DIn. The input
domain DIn corresponds to the domains of the autonomous vehicle system DIS for the input
abstraction resp. DOS and for the output abstraction. Algorithm 1 displays the algorithm
for abstractions between complex domains of input abstraction fI and output abstraction
fO. Each processing cycle, the algorithm commences by initializing the container object
for the model of output domain DOut. The output domain DOut corresponds to the DIA
for the input abstraction resp. DOA and for the output abstraction. The Initialization of
the container object includes creating a new object or resetting the existing container
object.

Algorithm 1: Basic implementation of input abstraction fI and output abstraction
fO.
Data: Instance dIn of input domain DIn
Result: Instance dOut of output domain DOut

1 initialize dOut;
2 foreach Object oIn of type tIn in DIn do
3 foreach Rule R (. . .) applicable for type tIn do
4 OOut ← R (oIn) ;
5 dOut ← OOut;
6 end
7 end

The algorithm iterates over the objects OIn of the input domain DIn (Line 2). For each
object oIn ∈ OIn of type tIn, the set of applicable transformation rules is determined.
Each rule is applied to the object oin (Line 3). The transformation rule creates new
objects OOut of types tOut for the output domain DOut which are related to type tIn by
the transformation rule. Subsequently, the transformation rule calculates properties for
the create objects OOut (Line 4). Even though, rules are selected for one domain object
oIn, transformation rules may incorporate multiple objects from the input domain DIn
in the processing of properties for output objects OOut.
The new objects OOut are added to the model of the output domain DOut (Line 5).
After all rules for one object oIn have been processed, the algorithm continues with the
remaining objects of the input domain DIn until all of the objects have been processed.
For the correctness and soundness of input abstraction fI and output abstraction fO, all
transformation rules have to be independent from each other and only create new objects
for the output domain DOut. Otherwise, existing objects may be altered or updated

201

6. Monitor Engineering and Training

by multiple transformation rules leading to a potential contradictory transformation
of domain objects. For transformations which update identical domain objects, the
order of execution is important for these rules. Otherwise, transformation rules may be
executed which require objects for updating which have not yet been created by another
transformation rule.
The algorithm Algorithm 1 is nondeterministic. For the same set of input objects
of the domain DIn the algorithm processes the same output model for domain DOut.
However, the order of transformation rules which are applied to an object oIn is arbitrary.
Intermediate states of the output models may vary even though the final output model is
identical. The termination of algorithm Algorithm 1 is subject to the maximum number
of objects possible for the input domain DIn. Algorithm Algorithm 1 may not terminate
if the maximum number of objects for any type of input domain DIn is infinite.
In the worst case, the algorithm Algorithm 1 has a complexity of O (n2)—where n
denotes the number of object for the input domain DIn. The algorithm iterates over the
n objects of the input domain DIn and applies all transformation rules to each element.
Each of these transformation rules may also iterate over the complete set of n input
objects from DIn in order to correctly process the new objects and their properties for
the output domain DOut.
The resource consumption of Algorithm 1 is subject to the number of objects in domain
DIn at runtime. As long as DIn has a upper bound for the number of objects in domain
DIn at runtime, the worst case resource consumption of Algorithm 1 can be estimated at
design time. Otherwise, the resource consumption of Algorithm 1 has to be monitored
at runtime in order to exclude any impact on the processing of the autonomous vehicle
system.
For many autonomous vehicle systems, the function (cf. Fig. 5.1) solely process as output
one single action. For single value function outputs, the output abstraction fO does not
require algorithm as complex as Algorithm 1. A single transformation rule is sufficient.
The lane change assistant processes a single target point as output (cf. Fig. 3.13).
This target point is abstracted by the output abstraction fO to a target lane Target ∈
{Left, Ego,Right} of type Lane by comparing the position of the target point to the
boundaries of each lane. This simplification reduces the complexity of the output
abstraction fO to O (1). The data structure of the domain DOA in context of the lane
change assistant is shown in Fig. A.1.
The technical implementation of the abstractions depends on the deployment of the
runtime monitoring framework. In case the framework is deployed on the same ECU as
the autonomous vehicle system, shared variables can be used for the storage and access
to the system data. A shared variable is created for each data item of the interface
between the runtime monitoring framework and the autonomous vehicle system. The
autonomous vehicle systems updates these shared variables with the system data of the
current processing cycle. The runtime monitoring framework reads the data from these
shared variables but does not update the shared variables. The transfer of data from the
runtime monitoring framework to the autonomous vehicle system requires the addition
of shared variables.

202

6.2. Development of Runtime Monitors

In case the runtime monitoring framework and the autonomous vehicle system are
separated on different ECUs, the autonomous vehicle system has to publish the necessary
system data for the runtime monitoring on communication networks, e.g., CAN or FlexRay,
which connect both ECUs. In case the existing hardware platform (cf. Section 3.3.2.2) is
incapable of providing the system data, additional messages have to be added for the
communication networks, or additional communication connection have to be added
between unconnected ECUs.
As shown in Fig. 6.10 results of the input abstraction—the abstract representational of
the current state of autonomous vehicle system and its environment—are evaluated by
the abstract function fA. The implementation of the qualitative runtime monitoring is
described in the following section.

6.2.3.4. Implementation Qualitative Monitoring

The implementation of the qualitative runtime monitoring (cf. Section 5.4), is concerned
with the realization of abstract function and conformity oracle. For later improvement of
the autonomous system, the qualitative runtime monitoring has to consider the logging
of abstract situations with critical and unsafe behavior of autonomous vehicle systems.
The implementation of the abstract function fA and conformity oracle are described in
the following sections. The logging is presented in Section 6.2.3.6,

6.2.3.4.1. Abstract Function

The abstract function fA evaluates the behavior of the autonomous vehicle system with
regard to its requirements. While types, domains, and functions are considered in the
input abstraction and output abstraction, predicates and formulas are incorporated in
the evaluation of the abstract function. Each processing cycle, formulas and predicates
are evaluated based on the current abstract representation from the input abstraction fI .
All predicates of a formula’s state condition part are individually evaluated based on the
current objects in the abstract representation. In most cases, the evaluation of predicates
comes down to the comparison of objects for equivalence because predicates and their
criteria have already been considered in the definition of the domain DIA.
The result of formula’s state condition part yields from the evaluation results of all its
predicates. A valid state condition part implicates the application of the formula’s action
part. Abstract actions are either included in or excluded from the set of correct and safe
actions for the autonomous vehicle system. The set of correct and safe actions for the
autonomous vehicle system represents the output and result of the abstract function.
The finiteness of the action set for the autonomous vehicle system impacts the implemen-
tation of the abstract function fA:

Infinite set of actions: The infinite set of abstract actions for an autonomous vehicle
system cannot be comprehensively considered in the implementation of the abstract
function fA. As result, a set of required abstract actions and a set of invalid
abstract actions have to be considered in the implementation (cf. Algorithm 2).

203

6. Monitor Engineering and Training

Finite set of actions: A finite set of abstract actions for an autonomous vehicle system
can be used in the implementation of abstract function fA as an initial reference
set from which abstract actions are removed based on the evaluation of formulas
from the typed first-order logic.

Both implementations of abstract function fA are presented in the following.
An infinite number of abstract system actions for the autonomous vehicle system requires
the abstract functions fA to explicitly consider a set for necessary actions and a set for
invalid actions. Algorithm 2 displays the implementation for the abstraction function fA
for a infinite set of abstract system actions. Other monitoring algorithms are investigated
in [PDE11].

Algorithm 2: Function implementation of the abstract function fA.
Data: Instance dA of Domain DIA
Data: Set F of first-order formulas
Result: Set l of system actions

1 initialize set l;
2 foreach Formula f ∈ F with f : af ← cf do
3 if state conditional part cf is valid then

/* For the set of required abstract actions, the addition of
actions to set l may throw an error */

4 l← actions A ∈ af ;
5 end
6 end
7 return l;

The formulas F of the typed first-order logic (cf. Section 6.2.2.2.6) are separated into two
different sets Freq and Finv based on their restriction of system actions. The restriction
of system actions corresponds to the optional category negation of the analysis pattern
(cf. Fig. 6.4). Finv encompass all formulas whose action parts contain negations—
restrictions on the execution of corresponding abstract actions for the state condition.
Freq denotes all formulas which contain no negations in their action parts. Formulas in
Freq require abstract actions to be explicitly performed by the autonomous vehicle system
in situations matching the corresponding state conditions. In this work, it is assumed
that all formulas contain sets of solely negated actions or solely unnegated actions
in order to evaluate each requirements in specific functions without any adaptations.
Formulas containing both negated actions and unnegated actions are excluded. It yields
Freq ∪ Finv = F ∧ Freq ∩ Finv = ∅.
The implementation of the abstract function fA for autonomous vehicle systems with
infinite set of abstract actions is separated into two functions. These functions process
the set of required abstract actions and the set of invalid abstract function independently
of each other by evaluating the corresponding set of formulas Freq and Finv. However,
the implementation of both functions is similar and primarily differentiates in the sets

204

6.2. Development of Runtime Monitors

Freq and Finv. Algorithm 2 represents the template for both function implementations
with F = Freq resp. F = Finv.
Both functions receive the current state representation from the input abstraction fI
and formula set Freq resp. Finv as arguments. The algorithm iterates over all formulas
of these sets (Line 2) and evaluates their state condition parts cf (Line 3). In case the
condition part is valid, the actions from the action part of the formulas is added to set l.
Set l represents the output of the function. Results from both functions—sets lreq and
linv—are forwarded to the conformity oracle in order to evaluate the correctness and
safety of the real action by the autonomous vehicle system (cf Section 6.2.3.4.2).
In case the condition parts of formulas from Finv have been evaluated as valid (true), the
invalid abstract actions in the action parts A ∈ af can be directly added to the result set
linv (cf. l in Line 4). Invalid abstract actions represent alternatives because each action
describes a reduction of the space in which the autonomous vehicle may safely operate.
Therefore, the connection of invalid abstract actions by conjunction (∧) or disjunctions
(∨) has no impact on the result set linv for the abstract function fA.
In comparison to invalid abstract actions, the addition of mandatory abstract actions
to set lreq of mandatory actions (cf. l in Line 4) is restricted and may lead to irrational
results. In an abstract situation, requirements may not require more than one abstract
action to be performed. Required abstract actions in an abstract situation are only allowed
to be connected by a disjunction (∨) but never by a conjunction (∧). Requirements may
define alternatives of abstract actions in their action parts of whom one abstract action
must be performed by the function.
When adding a set of alternative abstract actions ladd to the set lreq, the intersection of set
lreq and ladd is stored as new set l∗req unless set lreq is empty; l∗req = lreq ∩ ladd. An empty
result set l∗req indicates inconsistencies in the formulas of the typed first-order logic and
in the corresponding requirements. For example, formulas for the lane change assistant
require two different sets of abstract actions, e.g., l1req = {LCleft} and l2req = {LCright}
in one single abstract situation. The intersection l1req ∩ andl1req for the set of required
action results in an empty set l∗req because no abstract action is contained in both sets.
No unique action can be identified for the system in this abstract situation.
A finite set of all abstract actions can be used as the initial reference set for the evaluation
of correct and safe system behavior by the abstract functions fA. Invalid actions are
removed by abstract function fA from the reference set of all abstract actions until all
formulas of the typed first-order logic have been evaluated and the set of safe and correct
actions remains. The lane change assistant is a concrete example of an autonomous
vehicle system with a finite set of system actions. Neglecting the parametrization by
velocity and type of the target point (cf. Fig. 3.13), the lane change assistant can either
decide to remain on its current lane or to change to the left resp. right neighbor lane.
As displayed by Algorithm 3, the set of abstract actions for the lane change assistant is
used in the implementation of the abstract function fA as initial reference set (Line 1).
Formulas of the typed first-order logic are successively evaluated by the abstract function
fA. In case the state conditions part of a formula is valid (true) for the current abstract
situation (Line 3), the actions of the formula’s action part are removed from the reference
set (Line 4). The consideration of required actions is not necessary for the lane change

205

6. Monitor Engineering and Training

assistant because all requirements for the lane change assistant only define restrictions on
the execution of lane changes. There exist no requirement for the lane change assistant
which requires the execution of actions for a specific (abstract) situation. As result of
the abstract function fA for the lane change assistant, the set of correct and safe actions
remains.

Algorithm 3: Implementation of abstract function fA for the lane change assistant.
Data: Instance dA of Domain DIA
Result: Set lO of correct and safe system actions

1 initialize lO with the complete set of possible actions;
2 foreach Formula F : aF ← cF do
3 if state conditional part cF is valid then
4 remove action aF from lO;
5 end
6 end
7 return lO;

In case a formula of the typed first-order logic requires the autonomous vehicle system
to execute a specific action, all other actions have to be removed from the reference set
of abstract actions. The require abstract action is the only action that remains as the
result of the abstract function fA. The soundness of abstract function fA requires the
typed first-order logic to contain no contradicting formulas. Otherwise, multiple actions
could be required for a single abstract situation or an abstract action for a single abstract
situation could be required by formula while another formula evaluates the action as
invalid.
The time and space complexity of the abstract function fA is subject to the size of the
formula set and the number of predicates contained by these formulas. The iteration
over predicates is not explicitly displayed in Algorithm 2 and in Algorithm 3 but has
to be included for the evolution of the state conditional parts. In the worst case, the
abstract function has a complexity of O (n ·m) where n denotes the number of formulas
and m the maximum number of predicates of these formulas.
In the worst case, the memory consumption of abstraction function fA requires one data
object for each predicate in each formula, for each formula result, and each system action
in the result set l.
In case the input history is not considered by the abstract function fA, Algorithm 2 is
determined but not deterministic. For the same input the abstract function fA provides
the same result because the output solely depends on the input situation. The order in
which formulas and predicates are evaluated is not defined and may change leading to
varying internal states of result sets lreq and linv for repeated evaluations. In case the
input history is considered by the abstract function fA, Algorithm 2 is nondeterministic.
The result sets lreq and linv are subject to the history of input abstract situations which
is difficult if not impossible to be fully defined for the abstract function fA.

206

6.2. Development of Runtime Monitors

The result from the abstract function fA are compared by the conformity oracle with the
actual abstract action processed by the autonomous vehicle systems (cf. Section 5.4.2).
The implementation of the conformity oracle is described in the following section.

6.2.3.4.2. Conformity Oracle

The conformity oracle takes the sets of required and invalid system actions from the
abstract function fA and the abstracted output action from the output abstraction fO
as input. Each processing cycle, the oracle evaluates the correctness and safety of the
autonomous vehicle system by evaluating if the action from the autonomous vehicle
system meets the abstract actions from the abstract function fA.
The implementation of the conformity oracle is impact by the finiteness of abstract action
set for the autonomous vehicle system in domain DOA (cf. Section 6.2.3.4.1). In case the
abstract function fA provides the conformity oracle with two sets— the set of required
actions lreq and the set of invalid actions linv—(cf. Section 6.2.3.4), the conformity oracle
compares the abstract system action from the output abstraction fO with both sets lreq
and linv. The behavior of the autonomous vehicle system is evaluated as correct and safe
by the conformity oracle if
• the set lreq of required actions from the output abstraction fO is not empty and the

abstract action from the output abstraction fO is included in lreq, or

• the set lreq is empty and the abstract action from the output abstraction fO is not
included in the set linv of invalid actions from the output abstraction fO.

In any other case, the correctness and safety of the system behavior cannot be guaranteed.
Besides the evaluation by in-set relations, the comparison by the conformity oracle can
be implemented as probability-based classification (cf. [Agg14; MPB09]).
The qualitative runtime monitoring must be able to identify contradicting statements in
formulas of the typed first-order logic in order to ensure the validity of its results. The
complexity of the real world may make it difficult— if not impossible— to identify all
contradicting statements in requirements at design time completely. In every processing
cycle, the conformity oracle has to cross-check items of sets lreq and linv with each other
in order to ensure that no action is included in both sets. A necessary but invalid system
action would indicate an inconsistency in the requirements of the autonomous vehicle
system.
For the lane change assistant, the abstract function fA provides the conformity oracle
with a single set of valid abstract actions. The conformity oracle checks if the abstract
action from the output abstraction fO is included in this set of valid actions. In case the
abstract action from the output abstraction fO is not included in the set, correct and
safe behavior of the lane change assistant cannot be guaranteed.
For further improvements of autonomous vehicle systems, encountered system faults and
corresponding information like critical situations and internal processing results have to
be stored for later analysis. The logging of faulty system behavior and corresponding
situation data is described in the Section 6.2.3.6. First, the implementation of quantitative
runtime monitoring is presented in the next section.

207

6. Monitor Engineering and Training

6.2.3.5. Implementation Quantitative Monitoring

The quantitative runtime monitoring evaluates if encountered situations have already
been known and verified in the development of the autonomous vehicle system. En-
countered unknown situations are recorded for further improvements of autonomous
vehicle systems. For this purpose, the quantitative runtime monitoring has two operating
modes— recording state and comparison state:

Recording State: The recording state is primarily used in the verification of autonomous
vehicle systems in order to record verified situations in system simulations as tested
situation knowledge.

Comparison State: The comparison state is primarily used during operation of au-
tonomous vehicle systems in the real world. The situation oracle compares encoun-
tered situations with the knowledge of verified situations. Unknown and unverified
situations are identified and recorded because these unknown and unverified situa-
tions impose the potential danger for unsafe behavior by the autonomous vehicle
systems.

The following sections describe the implementation of the situation recording for the
recording state and the situation comparison for the comparison state in more detail.

6.2.3.5.1. Situation Recording

In the situation recording, the quantitative runtime monitoring accumulates the tested
situation knowledge. Each processing cycle, the situation monitor receives the abstract
representations of domain DIA from the input abstraction fI . In the recording state, the
abstract representation are recorded and added to the tested situation knowledge (cf.
Fig. 5.1).
The two major decisions in the implementation of the situation recording for the recording
state are storage and encoding:

Storage: Files and databases are two prevailing options for storage of the tested situation
knowledge. Abstract representations from the input abstract fI are either parsed
into (text) files on the local hard drive or locally saved in a specialized situation
database.
The segmentation of the storage space is another factor which has to be considered
in the implementation of the situation recording. Files and databases can be
instantiated to record abstract situations for multiple autonomous vehicle systems,
for a single autonomous vehicle system, or a single session, e.g., a test suite or test
case, with1 an autonomous vehicle system.
Available wireless network connections would allow storing files and database
remotely, but a local cache would still be required in order to maintain the data
integrity even for high latency and unreliable wireless connections.

208

6.2. Development of Runtime Monitors

Encoding: The encoding of the abstract representation in text files and databases may
range from human readable, e.g., specific language, logic, or extensible markup
language (XML), to unreadable formats, e.g., bytecode. Human readable formats
support the manual analysis and validation of situation recordings but require
larger disk space than unreadable formats.
Hashing could be used for a hybrid encoding approach which reduces the memory
consumption. Instead of storing the complete data objects for each recorded
situation, these situations are hashed, and their hash is stored. This way, the data
of any recorded situation is only stored once and for any duplicates only the hash
is stored repeatedly. The mapping of hashes to situations is stored in a central
lookup file. This lookup file allows the manual analysis of the situation recordings.

For the lane change assistant, abstract situations from the input abstraction fI are parsed
into a XML file per test case using the BOOST serialization library (cf. [Sch11a]). The
structure of the XML follows types and properties of the domain DIA. The XML files
are readable and analyzable by engineers. These XML files and their knowledge can be
individually combined as tested situation knowledge for the situation comparison during
operation in the real world.
Abstract situation representations may occur multiple processing cycles in a single
simulation. Duplicate of situation representations do not improve the tested situations
knowledge or the analysis of system behavior but increase the memory consumption of
the quantitative runtime monitoring. For this reason, one single instance of each abstract
situation is stored in the tested situation knowledge.
Every abstract representation from the input abstract fI is compared to the existing
situations in the tested situation knowledge and any duplicates are dismissed. Another
check for duplicates will be performed in the situation comparison (see next section) if
multiple files or databases are combined as tested situation knowledge.
The holistic engineering approach (cf. Section 4.3) requires all abstract situations of the
tested situation knowledge to originate from simulations of successful and valid test cases.
Otherwise, the correctness and safety of autonomous vehicle systems are evaluated by the
quantitative runtime monitoring on critical and unsafe situations. For the tested situation
knowledge, only abstract situations from successful and valid test cases are considered. In
the case of failed test cases, autonomous vehicle systems and the test cases are improved
until these test cases pass successfully.
The recording state of the quantitative runtime monitoring could be used during operation
in the real world in order to gather realistic situations as input for the generation of the
initial test scenarios and test cases for the autonomous vehicle systems. However, it is
more appropriate to record these situations during operation in the real world in the
comparison state with an empty tested situation knowledge. The quantitative runtime
monitoring records all encountered situations because all situations are evaluated as
unknown due to the empty set of abstract situations for the tested situation knowledge.
Abstract situations recorded in the comparison state can directly be incorporated into
the generation of new test scenarios and test cases (cf. Section 7.2.3). The format for the
situation recording in the recording state and for the situation logging in the comparison

209

6. Monitor Engineering and Training

state must not match each other. However, the generation of test scenarios and test cases
is tailored to the situation logging used in the comparison state. The implementation of
the situation comparison of the quantitative runtime monitoring in the comparison state
is described in the following section

6.2.3.5.2. Situation Comparison

In the comparison state, abstract representations from the input abstraction fI are
received by the situation monitoring in each processing cycle and forwarded to the
situation oracle (cf. Fig. 5.1). The situation oracle compares the abstract representations
with the tested situation knowledge. Abstract representations which are contained in
the tested situation knowledge have already been considered in the verification of the
autonomous vehicle system in simulations.
Unknown and unverified abstract representations which are not included in the tested
situation knowledge are logged for the further improvement of the autonomous vehicle
system.
In general, the tested situation knowledge for the comparison state has to be imported
from potential multiple sources—files or databases (cf. Section 6.2.3.5.1). Known and
verified situations may be stored in multiple text files or databases which have to be
integrated for the tested situation knowledge. This segmentation allows to freely combine
situation data from different simulation-based tests as tested situation knowledge. This
way the tested situation knowledge can be optimized for the envisaged operation in the
real world.
Wireless connections allow to import tested situation knowledge from external sources
during operation. Bandwidth fluctuations of the wireless connections still require the
local storage of the tested situation knowledge within the vehicle in order to avoid the
time-consuming communication with external sources for the comparison of encountered
abstract situations.
The import of the tested situation knowledge from multiple sources—text files and
databases—may introduce duplicated abstract situations. These duplicates of abstract
situations are eliminated in the import process of the tested situation knowledge. Du-
plicates offer no benefit for the quantitative runtime monitoring For the lane change
assistant, the tested situation knowledge are imported from multiple XML files. In this
import process, any duplicated abstract situations are removed.
The situation oracle compares each encountered abstract representation from the input
abstraction fI with the set of known and verified situations contained in the tested
situation knowledge. The basic implementation evaluates at each processing cycle the
equivalence of the encountered abstract situation and the tested situation knowledge.
All properties values of each object from the encountered abstract representation are
compared with corresponding objects in each abstract situations from the tested situation
knowledge. For the lane change assistant, abstract situations are evaluated by the situation
oracle for equivalence to the abstract situations in the tested situation knowledge. Other
implementations may categorize encountered abstract situations based on probabilities (cf.
[Agg14; MPB09]). Abstract situations which are not matched to any abstract situations

210

6.2. Development of Runtime Monitors

in the tested situation knowledge are judged as critical and potentially unsafe. These
situations have to be analyzed and considered for further improvements of autonomous
vehicle systems.
The quantitative runtime monitoring has a complexity O (n ·m) for the equivalence
comparison of abstract situations where 0 < n < ∞ denotes the number of abstract
representations contained in the tested situation knowledge and 0 < m < ∞ depicts
the maximum number of objects per abstract situation which have to be compared for
equivalence. The lower bound of n and m is 0 because negative numbers for situations
in the tested situation knowledge and for objects in the abstract situation are impossible.
Theoretically, there exist no upper limit for n and m. The numbers of objects in the
vicinity of the autonomous vehicle system in the real world and numbers of situations
in the tested situation knowledge are unlimited. In reality, the number of situations in
the tested situation knowledge is limited by the available space on the data storage, e.g.,
the local hard drive. The number of objects in the vicinity of the automated ego vehicle
is physically limited in the real world by the real dimensions in real dynamic objects
and the maximum number of their instances within the sensor range of the autonomous
vehicle system.
The comparison state of the quantitative runtime monitoring can be applied to the
verification of autonomous vehicle systems in simulations. Based on the abstract situations
from previous simulations as tested situation knowledge, the impact of new test cases can
be evaluated. As a result, the previously unknown abstract situations which have yet
been verified by the new test cases are highlighted.
The quantitative runtime monitoring, as well as the qualitative runtime monitoring,
require the logging of abstract situations in case of hazardous situations reps. system
behavior for further analysis and the improvement of autonomous vehicle systems. The
implementation of the logging is described in the following section.

6.2.3.6. Implementation of Logging

For improvements of autonomous vehicle systems (cf. Section 4.3), the qualitative and
quantitative runtime monitoring have to log information about the state of autonomous
vehicle systems and their environments. The qualitative runtime monitoring logs abstract
situations with incorrect and unsafe system behavior while the quantitative runtime
monitoring logs abstract situations which have not yet been known and verified. Abstract
representations of the domain DIA contain all necessary information about states of
autonomous vehicle systems and their environments for the analysis of unsafe or faulty
system behavior by engineers. The abstraction level of abstract situations matches the
level of detail on which engineers intuitively reason about the behavior of autonomous
system because the domain for the abstract situations are derived from requirements of
the autonomous vehicle systems.
The single event in which incorrect and unsafe system behavior emerged is not sufficient
for analysis of faults for autonomous vehicle systems. An abstract situation describes
a single instance of the system state in which incorrect and unsafe system behavior
emerged (cf. Definition 4.4). Engineers are interested in the sequence of events leading

211

6. Monitor Engineering and Training

Figure 6.12.: Graphical visualization of an abstract situation.

up to this event. The sequence of events leading to the incorrect and unsafe behavior
of autonomous vehicle systems has to be recorded as a viable counter example of the
systems’ correctness and safety. This history of abstract situations allows engineers to
analyze the emergence of potential unsafe system behavior, localization of system faults,
and the definition of new test cases (cf. Section 7.2.3).
The runtime monitoring framework implements a ring buffer in the situation monitor in
order to record the history of abstract situations. The size of the ring buffer limits the
maximum length of this history. Every processing cycle, the new abstract representation
from the input abstraction fI is appended to the ring buffer. In case the ring buffer is
filled the oldest abstract situations is discarded.
The qualitative and quantitative runtime monitoring equally use the ring buffer of the
situation monitor in the logging of critical abstract situations. In case the quantitative
runtime monitoring encounters an unknown and unverified situation or the qualitative
runtime monitoring detects incorrect and unsafe system behavior, the abstract situation
and the content of the ring buffer are logged with a description about the detected fault as
a counterexample in a log file. The formats of log files are subject to the implementation
and may be human readable or not. Non-readable log files require additional tools for
their analysis. For example, tools with a graphical visualization of abstract situations are
beneficial for the analysis of either log files (cf. Fig. 6.12).
Log files are commonly stored locally on hard disks inside the vehicle. For analysis,
engineers have to manually transfer the logs to the development computer at the garage
by a portable hard disk or exchanging the hard disk in the vehicle. Vehicles equipped

212

6.3. Monitor Training in Simulations

with wireless network connections offer the possibility to transfer the log information
directly to external storage.
The complexity of the data logging in the presence of a system failure or unknown
situation has the complexity of O (n ·m). The complexity results from the length of the
situation history n and the maximum number of objects m in all abstract situations of the
history. In reality, the data encoding and the write speed of the hard disk drive (HDD)
have a significant impact on the performance of the data logging. Complex encodings of
the situations, e.g., human-readable formats, introduce additional data which has to be
written to the HDD.
The qualitative runtime monitoring and quantitative runtime monitoring are deployed
alongside autonomous vehicle systems in simulation-based verification and during op-
eration in the real world. The application of the runtime monitoring framework in
simulations of the system verification is described in the following section. The usage of
the runtime monitoring framework during the operation of autonomous vehicles in the
real world is presented in Chapter 7.

6.3. Monitor Training in Simulations
System simulations are used in the automotive domain for the verification of autonomous
vehicle systems (cf. Section 3.6). As described in Section 5.2, autonomous vehicle systems
are integrated into a simulation framework for verification. In the simulations, autonomous
vehicle systems are evaluated for a defined set of test cases. System simulations offer
the possibilities of faster development and verification cycles without having to costly
setup prototype vehicles. In the holistic engineering approach for autonomous vehicle
systems, the runtime monitoring framework is deployed alongside the autonomous vehicle
systems in these simulation in order to evaluate the behavior of these systems (cf.
Section 6.3.2) and to collect verified abstract situations for the tested situation knowledge
(cf. Section 6.3.3).
The following sections address the utilization of the runtime monitoring framework in
simulations. In Section 6.3.1, the definition, and execution of test cases in simulations for
the verification of autonomous vehicle systems are described. Section 6.2.3.4.2, presents
the utilization of the qualitative runtime monitoring as test oracle in the simulations. The
accumulation of the tested situation knowledge in simulations is described in Section 6.3.3.

6.3.1. System Verification in Simulations
Autonomous vehicle systems are verified in system simulations based on models of their
environment (cf. Section 3.6). Following the architecture from Section 5.2, informa-
tion from these environment models is processed by sensor models and the system’s
preprocessing as test inputs for the verified function. Environment models and have to
sufficiently represent traffic situations which autonomous vehicle systems will encounter
during operation in the real world. This representation includes the scenery of the static
elements, e.g., roads, signs, and buildings, as well as dynamic objects, e.g., vehicles and

213

6. Monitor Engineering and Training

pedestrians. Any sparse representations of real-world situations diminish the validity of
corresponding verification results for the operation of autonomous vehicle systems in
the real world. Following the open-world assumption, the real world is impossible to be
comprehensively modeled and by a single environment.

Definition 6.2 (Environment Model). An environment model represents the real
world in a simulation. The model includes the scenery of static objects, e.g., roads,
signs, as well as dynamic objects, like vehicles and pedestrians and their behavior.

Abstract modeling of the environment is necessary for system simulations in order to
sufficiently generate realistic test inputs for the autonomous vehicle system. Modeling
of the vehicle’s environment as an environment model is vital in order to generate test
inputs for the autonomous vehicle system sufficiently. The behavior of autonomous
vehicle systems may slightly deviate in repeated executions of tests. Each test would
require slightly different test inputs. The usage of recorded system signals directly as
test inputs for the autonomous vehicle systems without any abstraction would not be
able to provide these slightly deviating test inputs.
In system verification (cf. Section 3.6), system parts or complete autonomous vehicle
systems are evaluated for a set of simulation-based tests (cf. Section 2.2). Simulation-
based tests are defined in a two-stage process as test scenarios and test cases. Test
scenarios define static elements of the scenery and the behavior of dynamic objects in
the simulated world for a limited duration. For the scenery, the course of the road
including its lanes and markings are defined. Additional beautifications like vegetation
or building can be added to the scenery. Dynamic vehicles, e.g., vehicles and pedestrians,
are positioned in the world based on the course of the road and their behavior is defined.
For the ego vehicle, test scenarios define a target destination which the ego vehicle has
to reach at the end of the scenario. Positions of static and dynamic objects as well as
behaviors of dynamic objects are modeled to cause the anticipated behavior, e.g., lane
changes, by the autonomous vehicle systems on its way towards its target destination.
Test scenarios do not define all parameters which are required by the simulation. Some
parameters are not yet explicitly defined in test scenarios and offer the possible for
parameter fuzzing (cf. [Ana+13; Bac+17c; MP+07]). For example, the scenario for a
lane change can be tested for different velocities of the ego vehicle.
Test cases extend test scenarios by defining explicit values for the free parameters of
test scenarios, e.g., velocities and acceleration of vehicles. With the specification of free
parameters, the expected behavior of the autonomous vehicle systems for the test cases
is defined. Multiple test cases can be defined for one single test scenarios. Each test case
may expect different behavior from the autonomous vehicle system under test. All test
cases for the verification of an autonomous vehicle system are aggregated to a test suite.
Test scenarios and test case are implemented as environment models. These environment
models are either manually modeled by engineers from the system’s requirements or
derived from recorded traffic situations during operation (cf. Section 7.2.3). Static and
dynamic objects are positioned in a virtual world, and their behavior and parameters are
configured according to the test cases.

214

6.3. Monitor Training in Simulations

The case study (cf. Chapter 8) has shown that engineers tend to model the most
straightforward scenarios for the verification of particular system behavior, e.g., a lane
change, but these scenarios occur in limited quantities in the real world. For example,
one single vehicle is modeled in front of the autonomous vehicle in order to trigger a
lane change by automated ego vehicle. Scenarios in the real world tend to be far more
complex. Larger quantities of vehicles drive alongside the autonomous vehicle on public
roads than anticipated by engineers. The holistic engineering approach addresses this
issues by transferring information from the real world back to the development for the
definition of realistic test scenarios and test cases (cf Section 7.2.3).
The simulation framework successively executes the test suite for an autonomous vehicle
system. Each test case commences with the configuration of internal system parameters
and initialization of the environment model. In the execution of these simulation-based
tests, dynamic objects of the environment models perform their assigned behaviors. The
autonomous vehicle system operates in this virtual environment based on the inputs
about the virtual world from sensor models and system preprocessing. The system
processes maneuvers for its immediate and future driving direction towards its assigned
destination (cf. Section 3.3.1.3). The output of the system function—the driving
maneuver— is considered by the simulation framework to change the position and pose of
the autonomous vehicle in the simulated world. Depending on the type of the simulation,
other dynamic objects are influenced by the behavior of the autonomous vehicle (closed-
loop simulation) or operate independently— solely based on the defined behavior by the
test case (open-loop simulation).
For the lane change assistant, eight test scenarios have been modeled based on the
requirements for the lane change assistant (cf. Section 3.2). Each test scenario has been
parameterized by at least two test cases (cf. Appendix A.2). The environment model for
each test cases has been modeled in VTD by manually defining the road structure, road
topology and placing necessary dynamic vehicles on the road (cf. [Oli+16; Ulb+16]).
The behavior of these vehicles has been defined considering the expected behavior of
the lane change assistant for the test case. Overall 24 test cases have been manually
designed (cf. Chapter 8). For further information about configuration, execution, and
results of the simulations for the verification of the lane change assistant can be found in
(cf. Chapter 8).
The correctness and safety of emerging system behavior in the simulations are evaluated
manually by engineers or automatically by a test oracle in regard to the expected behavior
for the autonomous vehicle systems by the test cases. Maneuvers performed by the
automated ego vehicle have to correspond to the maneuvers which have been anticipated
by the test cases. Test oracles evaluate the behavior of autonomous vehicle systems based
on a set of given criteria and conditions. As shown in the following Section 6.3.2, the
runtime monitoring framework can be used in simulation as test oracle.

6.3.2. Qualitative Monitoring as Test Oracle
The qualitative runtime monitoring can be used as test oracle (cf. [Bar+15]) in simulations
in order to support the verification of autonomous vehicle systems. As test oracle, the

215

6. Monitor Engineering and Training

qualitative runtime monitoring evaluates the correctness and safety of the system’s
behavior concerning conditions which are defined by the system requirements. However,
the correct execution of maneuvers by the autonomous vehicle system in comparison to
the anticipated behavior by the test cases is not assessed by the qualitative monitoring.
For example, a test case for a lane change may be evaluated as correct and safe by the
qualitative runtime monitoring even though the automated ego vehicle remains within
its current driving lane without performing the anticipated lane change. Engineers have
to manually evaluate the actual system behavior under consideration of the intended
behavior for the autonomous vehicle system in the test case.
A test case for the verification of autonomous vehicle systems will be judged correct and
safe if the conformity oracle evaluates the abstracted action of the autonomous vehicle
system as correct and safe for each (abstract) situation emerging in the simulation of the
test case. A simulation can be seen as a trace of (abstract) situations (cf. Definition 2.32).
Each processing cycle, the conformity oracle compares the abstracted action of the
autonomous vehicle system with the sets of abstract actions from the abstract function
fA (cf. Section 6.2.3.4). Equation (6.5) must yield.
As a result, a test case for the autonomous vehicle system will be successful if the qualitative
runtime monitoring and the test engineer evaluate the behavior of the autonomous vehicle
system in the simulation as correct and safe. The manual and automatic evaluation of
the test case represents the ground truth for the usage of any results from the simulation
(cf. Section 6.3.3) as references for the evaluation of the autonomous vehicle system
during operation in the real world. Any malicious test case requires the manual validation
and analysis of engineers. Engineers have to determine if the faulty test case has been
raised by faults of the autonomous vehicle systems, faulty test cases, or faults within the
qualitative runtime monitoring.
For the soundness of the qualitative runtime monitoring, the qualitative runtime mon-
itoring and its verdicts have to be validated. Input abstraction fI , output abstraction
fO, abstract function fA, and conformity oracle are implemented based on the typed
first-order logic (cf. Section 6.2.3.4) and may include implementation faults. For example,
Eq. (6.9) could be violated for the input abstraction fI and output abstraction fO. Under
the assumption that the autonomous vehicle system has been correctly implemented
and the manual verdicts by engineers are sound, simulations offer the possibility to
validate the qualitative runtime monitoring by comparing its verdicts to the manual
evaluation of the system’s behavior by engineers in each situation. System requirements
have to be faulty and have to be revised if the deviating verdicts do not originate from
implementation faults.
For the lane change assistant, success and failure of test cases in the system verification
have been determined manually by test engineers. The qualitative runtime monitoring has
been implemented based on the requirements for the lane change assistant (cf. Section 3.2)
and has been used in the simulations of the system verification as an additional evaluator.
This approach allowed to validate the verdicts of the qualitative runtime monitoring for
test cases based on the manual verdicts by engineers for these tests. The qualitative
runtime monitoring evaluated two test cases for the lane change assistant as correct and
safe even though the automated ego vehicle did not excerpt the anticipated behavior for

216

6.3. Monitor Training in Simulations

these test cases. These two test cases were manually evaluated as unsuccessful. More
details about the application of the qualitative runtime monitoring in simulations for the
lane change assistant are given in Chapter 8.
While the qualitative runtime monitoring as a test oracle evaluates the correctness and
safety of the autonomous vehicle system in the simulations, the quantitative runtime
monitoring uses the simulations for the recording of its tested situation knowledge for later
use during the operation of the autonomous vehicle system in the real world. The usage
of quantitative runtime monitoring in the verification of autonomous vehicle systems is
described in the following section.

6.3.3. Training of Situation Monitor
In simulations, the quantitative runtime monitoring is used to gather the tested situation
knowledge. The execution of test cases in simulations results in a trace of situations where
each situation describes a concrete configuration of the virtual world at a given point in
time (cf. Definition 2.32). The quantitative runtime monitoring records each abstract
situation from the input abstraction fI . Encountered abstract situations are stored either
in a file or a database (cf. Section 6.2.3.5). Any duplicates of encountered abstract
situations are dismissed leaving a set of unique abstract situations (cf. Definition 6.3).
For the recording of situations, the quantitative runtime monitoring has to operate in
the recording state (cf. Section 6.2.3.5).

Definition 6.3 (Unique Abstract Situation). A unique abstract situation is a abstract
situation in a set of abstract situations which has no duplicates within this set.

All recorded abstract situation compose the tested situation knowledge which only contains
verified abstract situations. It is assumed that all test cases for an autonomous vehicle
system are successful and can be used in the recording of the tested situation knowledge.
The manual evaluation by engineers and the automatic evaluation by the qualitative
runtime monitoring of test cases (cf. Section 6.3.2) represents the ground truth for the
correctness and safety of the recorded abstract situation. Any unsuccessful test case would
require the analysis and improvement of the test case or autonomous vehicle system
until the test case has been successfully executed. The abstract situations of the tested
situation knowledge are used as the reference set for the quantitative runtime monitoring
of the autonomous vehicle system during operation in the real world (cf. Chapter 7).
The recording of abstract situations by the quantitative runtime monitoring enables
statements about the impact of individual test case for tested situation knowledge. The
number of unique abstract situations for a test case can be used as an indicator of its
complexity. The comparison of the set of recorded abstract situations for a test case
with the set of abstract situation in tested situation knowledge describes the impact of
individual test cases for the quantitative runtime monitoring The knowledge about the
impact of individual test cases in term of unique abstract situations can support the
definition of a reduced but impactful subset of test cases for an autonomous vehicle
system in order to optimize its verification. For example, a subset could be defined

217

6. Monitor Engineering and Training

which engineers should initially use for the verification and validation of their system
improvements.
The runtime monitoring has recorded 734 abstract situations have been recorded for
the 24 initial test cases in XML files in the case study on the lane change assistant.
The XML files of the 22 valid test cases are imported as tested situation knowledge
for the quantitative runtime monitoring of the lane change assistant during operation
(cf.Section 7.1.2). The recordings from the two unsuccessful test cases are omitted in the
tested situation knowledge. The statistics about recorded abstract situations for individual
test cases have also been evaluated and are presented in Chapter 8.
The quantitative runtime monitoring during operation in the real world is described in
Chapter 7.
First, the impact and limitations of the runtime monitoring framework are discussed in
the next section.

6.4. Impact and Limitations of the Runtime Monitoring
Framework

The exclusive runtime verification of system properties is not sufficient for the reasoning
about the correctness and safety of autonomous vehicle systems in the real world.
As described in Section 3.8.1, the real world is too complex to fully specify and to
verify all possible input situations for the function of the autonomous vehicle system.
The qualitative runtime monitoring only verifies the relationship between the input
situations and the output action of the function but not the validity of input situations
themselves. Therefore, input situations may occur which have not yet been considered in
the implementation of the function and are outside its definition range. The processing
of the output action by the function might still be correct and valid but not be valid and
safe for the situation in the real world. Therefore, it is necessary to monitor and verify
the environment situations. The quantitative runtime monitoring addresses this issue by
recording the unknown situations in order to verify the behavior of autonomous vehicle
systems for the situations in simulations. Revising the runtime monitoring in the real
world and simulation as proposed by the engineering approach of this work, the set of
verified and safe situations for the autonomous vehicle system continuously increases.
A fully verified and functional runtime monitoring framework should not have any false
negative in regard to the system requirements (cf. Table 3.12). False negatives for the
runtime monitoring are critical situations or critical system behavior which are not
recognized by the runtime monitoring framework. However, this restriction does only
apply to considered requirements. Manual evaluations of simulations and test drives
in the real world may reveal false negative which are subject to the underspecification
of the requirements and which cannot be detected by the runtime monitoring. The
completeness of the requirements is essential for the quality of the runtime monitoring.
The runtime monitoring framework does record false positives (cf. Table 3.12). The
quantitative runtime monitoring may encounter situations during operation in the real

218

6.4. Impact and Limitations of the Runtime Monitoring Framework

world which it classifies as unknown and unverified but in which the behavior of the
autonomous vehicle system in simulation is correct and safe. Under the assumption that
the input abstraction fI , output abstraction fO, abstract function fA, and conformity
oracle are implemented correctly, false positives for the qualitative runtime monitoring
indicate inadequacies in the system requirements.
The validity of the runtime monitoring framework is restricted by the considered require-
ments and the soundness of input abstraction fI and output abstraction fO. The scope of
considered requirements directly defines the scope of the runtime monitoring framework.
Even though results from the runtime monitoring framework can be used to enhance
the specification (cf. Section 4.3.3), the runtime monitoring is only able to consider
objects and properties of systems and their environments in its abstract situations which
are defined in the requirements for the autonomous vehicle systems. Other objects
and properties are omitted from the abstract situations and are not considered by the
qualitative and quantitative runtime monitoring.
As described in Section 6.1.4, the input abstraction fI and output abstraction must not
process situations identically for which the autonomous vehicle systems exhibit different
behaviors. Otherwise, any result from the runtime monitoring framework is assumed to
be incorrect. For this reason, the implementation of the runtime monitoring framework
and its results have to be validated within the system verification by test engineers based
on their manual evaluation of test cases. The runtime monitoring framework should
only be used unsupervised as test oracle in simulations if the soundness of the runtime
monitoring framework has been sufficiently validated.
Data abstractions have a long history in model checking and verification [CGL94].
Nevertheless, abstractions are considered by other approaches (cf. [Kan15; KK15]) but
are not explicitly defined and emphasized in the same way as in this work. These
approaches (cf. [Kan15; KK15]) monitor the correctness of systems by conditions which
are defined directly for the data objects and signals of monitored systems. Such a limited
level of abstraction only allows highly technical engineers the analysis of monitoring
results. The abstraction of the runtime monitoring framework reduces the overall data
complexity by its discretization of the real world. The real world and its complexity
require the abstraction not to be too coarse and not to be too detailed (cf. [Den+14]).
The consideration of requirements for the definition of input abstraction fI and output
abstraction fO result in an overall abstraction by the runtime monitoring framework on the
level of the system specification. Correctness and safety of autonomous vehicle systems
have not to be monitored directly on system objects and system signals but are evaluated
on abstract data which matches the level of abstraction on which engineers reason
about the system behavior. This abstraction supports the manual analysis of runtime
monitoring results and the identification of faults for the autonomous vehicle systems.
The complexity of the runtime monitoring can be further improved by considering domain
knowledge, e.g., the limited range of sensors (cf. [Bar+09]), for the domains of objects
and values in the abstract representation.
The quantitative runtime monitoring enables the reasoning about the correctness and
safety of autonomous vehicle systems based on the number and type of encountered and
verified situations. This information can be integrated in metrics for the correctness and

219

6. Monitor Engineering and Training

safety of autonomous vehicle system (cf. Section 3.8.4). Such metrics would be more
expressive and sound than current metrics for autonomous vehicle systems. Current
metrics solely evaluate their safety based on the number of faults over the total driving
distance of autonomous vehicle systems. Existing metrics judge autonomous vehicle
systems as correct and safe for all possible environment situations even if systems have
just been driven and verified on a straight rural road with limited traffic. Metrics
incorporating numbers and types of situations would explicitly consider and address the
diversity of real-world situations.
While Chapter 6 presented the implementation of the runtime monitoring framework
and its usage in the system verification, Chapter 7 addresses the operation analysis
by applying the runtime monitoring framework to the operation of the autonomous
vehicle systems in the real world. The results from the runtime monitoring during
operation enable the system evolution and definition of test scenarios and test cases for
dependability improvements of autonomous vehicle systems (cf Section 4.3.3).

220

7. Operation Analysis and System
Evolution

While Chapter 5 addressed the architecture of the runtime monitoring framework and
Chapter 6 presented the conception, implementation, and training of the runtime mon-
itoring framework, this chapter describes the application of the runtime monitoring
framework during operation of autonomous vehicle systems in the real world as well as
the usage of its results for improvements of autonomous vehicle systems. As shown in
Fig. 4.1, the application of the runtime monitoring framework during operation is the
third part of the engineering approach. The runtime monitoring during operation con-
cerns questions about the validity and soundness of verification results during operation
in the real world and the improvement of autonomous vehicle systems by the result of
the runtime monitoring during operation.
As in the simulations of the system verification (cf. Section 6.3), the runtime monitoring
framework is deployed alongside the autonomous vehicle system inside the vehicle. Results
from the runtime monitoring during operation in the real world can be used in order
to support the safety of the autonomous vehicle systems during operation and for the
improvement of these systems in additional development cycles. The runtime monitoring
and safety enforcement during operation are described in Section 7.1. The improvement
of autonomous vehicle systems based on the runtime monitoring results is described
in Section 7.2. Section 7.2.3 addresses the generation of new test cases from recorded
abstract situations.

7.1. Runtime Monitoring at Operation
The runtime monitoring framework and its components (cf. Fig. 5.1) are identically
used for runtime monitoring of autonomous vehicle systems during operation in the
real world as they are used in simulations of the system verification (cf. Section 6.3).
The qualitative runtime monitoring assesses the system behavior of autonomous vehicle
systems based on the systems’ requirements while the quantitative runtime monitoring
evaluates encountered real-world situations. The main differences in the usage of the
runtime monitoring framework in simulations of the system verification and during
operation in the real world are

• the change from sensor and actuator models to real sensors and actuators, and

• the usage of verified abstract situations from simulations of the system verification
as tested situation knowledge.

221

7. Operation Analysis and System Evolution

In comparison to the modeled world in simulations, the real world is far more complex
with an uncountable number of possible traffic situations. All possible traffic situations
can never be fully simulated (cf. Section 2.2). All dynamic objects in the real world
act as autonomous agents (cf. [FG96]). Though dynamic objects might react to the
behavior of the automated ego vehicle, their actions and reactions are not predefined
nor are they deterministic. Neither the autonomous vehicle system nor system engineers
have control over the behavior of other objects in the real world. An autonomous vehicle
system requires physical sensors for the perception of its environment. Sensors are
crucial for autonomous vehicle systems, because communication service networks for the
communication with vehicles and infrastructure, e.g., V2X, are not extensively available
and are not support by all environmental objects, e.g., houses, tree, or animals.
For the perception of objects in the real world, the autonomous vehicle system and
the runtime monitoring framework have to be installed in real vehicles alongside real
sensors and actuators. For the runtime monitoring of autonomous vehicle systems during
operation in the real world, two use cases can be distinguished :

Field tests In the development of the autonomous vehicle systems, prototype vehicles are
used in field operational tests to verify and validate the behavior of these systems.
The focus of field testing is on the validation of the system implementation and its
final configuration for production vehicles. Field testing is the last activity in the
development process of autonomous vehicle systems in which car manufacturers
can identify and resolve system failures before the autonomous vehicle systems are
installed in production vehicles and are used by customers (cf. Fig. 3.2).
Field tests may take place on test tracks or public roads. On test tracks, safety and
performance are tested by prototype vehicles in critical traffic situations without
any danger for other traffic participants1. Field tests on public roads are used for
the testing of the system’s behavior in realistic environments to gain an outlook on
the system behavior during operation by customers.

Operation by customers production vehicles as the final product are bought and op-
erated by customers in their day-to-day lives. Customers are less sophisticated
with the capabilities and limitations of autonomous vehicle systems than test
engineers. Production vehicles and their autonomous vehicle systems have to be
sufficiently verified and validated in the vehicle’s development before the usage
by costumers. Customers use production vehicles more frequently and extensively
than test engineers in field operational tests. Therefore, customers achieve higher
mileage and encounter a more extensive variety of traffic situations.
The larger mileage by customers would enable car manufacturers to gather larger
quantities of realistic data about the systems’ behavior and real traffic situations by
the runtime monitoring. The high amount of traffic situations would be beneficial
for the development of existing and future autonomous vehicle systems. However,

1https://eu.usatoday.com/story/tech/2017/10/31/waymo-self-driving-cars-go-school-
here/815627001/ (accessed: 12/02/2018)

222

7.1. Runtime Monitoring at Operation

data from production vehicles is insufficiently considered by the car manufactures
for the development of autonomous vehicle systems. Nowadays, only Tesla Motors
is known for recording massive amounts of real-world data from its autopilots in
production vehicles 2.

Autonomous vehicle systems in prototype vehicles and production vehicles primarily
deviate from systems in simulations of the system verification in the usage of physical
sensor and actuators instead of sensor and actuator models. As shown in Fig. 5.1,
the change to physical sensor and actuators results in changes for the preprocessing
resp. postprocessing.
Physical sensors are prone to provide sensor data with jitter that may lead to the potential
faulty mapping of real-world objects in the internal representation of the real world
(cf. Section 3.8.1). Physical sensors, actuators, and their corresponding processing have
to be additionally verified by complementary V&V methods. The runtime monitoring
framework does not address the verification and validation of system components other
than components which are contained within the function (cf. Fig. 5.1).
The use cases—prototype vehicle and production vehicle—have an impact on the quality
and quantity of generated runtime monitoring data as well as the availability of recorded
data for analysis and system improvement. As shown in Fig. 7.1, fields tests allow
engineers to access the recorded data within minutes, hours, or days. However, the
quality and quantity of the data are limited due to the shorter distances driven in field
operational tests.
The operation by customers leads to larger amounts of realistic data, but this data can
only be accessed in a workshop during vehicle maintenance. The regular intervals for
maintenance range from month to years (cf. Fig. 7.1).
Wireless connections can enhance the access to runtime monitoring data in production
vehicles. These wireless connections allow car manufacturers to access the data in
production vehicles directly and to transfer them to their data storages. Until recently,
neither car manufacturers nor customers have been willing to pay for the additional costs
for wireless connections in production vehicles. An exception is Tesla Motors. Tesla
Motors exhaustively use wireless connections to gather data from production vehicles in
public traffic as well as update the vehicles’ software3. The following sections describe
the runtime monitoring during operation in the real world in general—applicable to
both field operational tests and the operation by customers.
The runtime monitoring framework (cf. Fig. 5.1) can be used identically in prototype
vehicles and production vehicles during operation in the real world as it has been used in
the simulation of the system verification (cf. Section 6.3) however, the function must not
change between system verification and operation in the real world. Valid argumentations
about the correctness and the safety of the function require runtime monitoring results
from simulations of the system verification and monitoring results from the operation
in the real world to target the same function. The ground truth for the correctness

2https://electrek.co/2017/05/06/tesla-data-sharing-policy-collecting-video-self-driving/ (accessed:
12/01/2018)

3http://fortune.com/2015/10/16/how-tesla-autopilot-learns/ (accessed: 12/02/2018)

223

7. Operation Analysis and System Evolution

Implementierung

System
Design

Verification
Test &

Simulation

Requirements
Analysis

Validation
Field TestSafety Analysis

Operation & Maintenance

hours to weeks

months to years

Figure 7.1.: Time duration until recordings are available for system evolution.

and safety of autonomous vehicle systems from the simulations will not be valid for
operation in the real world if two different functions are monitored in simulations and
during operation. The behavior of the function during operation in the real world has
not yet been verified in simulations for any traffic situations.
The defined data interfaces have to remain unchanged and accessible by the runtime
monitoring framework (cf. Section 5.3.1). However, the technical realization of these
interfaces inside prototype vehicles and production vehicles may change from, e.g.,
communication via shared memory in simulations to message passing via vehicles’ CAN
buses.
Besides physical sensors and actuators, the operation mode of the quantitative runtime
monitoring and its usage of the tested situation knowledge is the second main difference
between the runtime monitoring framework in simulations of the system verification
and during operation in the real world. During operation, the quantitative runtime
monitoring operates in the comparison state. Verified and known abstract situation from
the simulation are used as tested situation knowledge for the evaluation of encountered
abstract situation (cf. Section 6.2.3.5). Unlike in simulations of the system verification,
no new traffic situations are recorded for the tested situation knowledge. The quantitative
runtime monitoring during operation in the real world is described in more detail in
Section 7.1.2.
The autonomous vehicle systems during operation in the real world will be judged as safe
for the current traffic situation by the runtime monitoring framework if the qualitative
runtime monitoring evaluates the system behavior in the current traffic situation as
safe and the quantitative runtime monitoring evaluate the current situations as known

224

7.1. Runtime Monitoring at Operation

and verified. The qualitative runtime monitoring must not recognize any unsafe action
by the function. The quantitative runtime monitoring must find the current traffic
situation within its tested situation knowledge. In any other case, the runtime monitoring
framework cannot guarantee the correctness and safety of autonomous vehicle systems.
Nevertheless, the autonomous vehicle system may behave safely in traffic situations that
have not yet been known and verified.
The runtime monitoring framework only identifies traffic situations which have not yet
been verified and in which the autonomous vehicle system behaves unsafe. These verdicts
of the qualitative and quantitative runtime monitoring can be used during operation in
the real world for the initiation of safety measures in order to maintain the vehicle’s
safety in critical situations. However, the selection and execution of safety measures in
the presence of unsafe traffic situations are not addressed by the runtime monitoring
framework. The selection and execution of safety measures is a complex problem (cf.
[Hör11; RM15]). Multiple safety measures can be applied in a single critical situation.
Possible safety measures may include but are not limited to

• transferring the vehicle control back to the driver in reasonable time,

• activating fall-back components in order to replace malicious parts of the au-
tonomous vehicle system, or

• activating a fall-back routine with reduced safety functionality in order to take over
the vehicle control and transfer the automated ego vehicle into a safe state. Such
fall-back routines may include e.g.
– an immediate full stop, or
– the change to the emergency lane for a safety stop.

One of the most intuitive safety measures would be the initiation of a full stop. However,
a full stop on highways is potentially hazardous. In situations where the automated ego
vehicle is followed by another vehicle in short distance at high speed on a highway, a
full-stop could potentially lead to a collision with the following vehicle. The following
vehicle might be unable to react timely in order to avoid the collision. Therefore, the
selection and execution of safety measure is not part of this work. The reader is referred
to other work in this field, e.g., [Hör11; RM15].
The following sections give a more detailed description about the qualitative and quanti-
tative runtime monitoring during operation in the real world. The qualitative runtime
monitoring is described in Section 7.1.1. Section 7.1.2 describes the quantitative runtime
monitoring during operation in the real world.

7.1.1. Qualitative Evaluation and Safety Enforcement
The qualitative runtime monitoring during operation supervises the behavior of the au-
tonomous vehicle systems by evaluating the processing of the system’s function regarding
its requirements.

225

7. Operation Analysis and System Evolution

Table 7.1.: Implications for results from the qualitative runtime monitoring.
Dependable Erroneous

Timing Conclusion

Function Beh.
≡
Defined Beh.

Function Beh.
6=
Defined Beh.

Online ⇒ Initiate Safety Measure

Offline ⇒ Revise implementation

The conformity oracle will evaluate—as already shown for the simulation of the system
verification (cf. Section 6.3.2))— the behavior of the function for the current traffic
situation as correct and safe if the abstract action from the output abstraction fO matches
the set of abstract actions by the abstract function fA (cf. Table 7.1). Equation (6.5) has
to yield. The abstract function fA processes a set of correct and safe abstract actions
resp. a set of illegal actions based on the abstract representation from the input abstraction
fI (cf. Section 6.2.3.4.1) in each processing cycle.
The behavior of the complete autonomous vehicle system can be judged as correct
and safe during operation in the real world if all other parts of these systems which
are not supervised by the runtime monitoring framework operate correctly and safely.
As described in Section 5.2, these remaining parts have to be verified, validated, and
monitored by other V&V methods.
The correctness and safety of the autonomous vehicle system will not be guaranteed by
the runtime monitoring framework, if the abstract action from the output abstraction
fO does not match the abstract actions by the abstract function fA. Misbehavior of the
autonomous vehicle system imposes a danger for the safety of the automated ego vehicle,
its passengers, and all objects and people in the vehicle’s vicinity. As shown in Table 7.1,
safety measures have to be initiated in the presence of incorrect system behavior in order
to mitigate the safety risks by the malicious autonomous vehicle system online during
operation in the real world. As mentioned in the previous section the selection and
execution of the correct safety measure are beyond the scope of this thesis.
The resolution of faulty system behavior requires the improvement of the autonomous
vehicle system offline by further development activities (cf. Section 3.1.2). For the
analysis, identification, and improvement of incorrect system behavior, the abstract
situations in which the malicious system behavior emerged are recorded in log files (cf.
Fig. 5.1). The log files about incorrect system behavior include the type of malicious
system behavior, the current abstract situation and the history of previous abstract
situation. Depending on the use case—prototype vehicle or production vehicles—, the
availability may range from days and weeks to month and years (cf. Fig. 7.1). A more
detailed description of the system evolution is given in section Section 7.2.
The abstract function fA and the conformity oracle fC use the identical implementation
in the simulations of the system verification and during the real world operation (cf.
Section 6.2.3.4). This implementation does not include the selection and execution of
safety measures in present of faulty system behavior. In the presence of faulty system

226

7.1. Runtime Monitoring at Operation

behavior, information about faulty system behavior, corresponding abstract situations,
and the history of previous abstract situation are recorded in human-readable text files.
The log files contain sequences of abstract situations with quite identical histories of
previous abstract situation. These log files are essential for the improvement and evolution
of the lane change assistant (cf. Section 7.2).
The qualitative runtime monitoring recorded estimated 29 unique abstract situation with
incorrect and unsafe system behavior in field operational tests with a prototype vehicle
on the German highway A2 (2.7% of 1078 unique situations) and estimated 19 unique
abstract situation for the test drive on the German highway A39 (1,98% of 974 unique
situations). The detailed statistic is clarified in Chapter 8.
Alongside the qualitative runtime monitoring of autonomous vehicle systems, encountered
situations are evaluated by the quantitative runtime monitoring during operation in the
real world. The quantitative runtime monitoring during operation in the real world is
described in the following section.

7.1.2. Quantitative Evaluation and Situation Recording
The quantitative runtime monitoring during operation in the real world does not record
encountered abstract situation for the tested situation knowledge but compares encoun-
tered abstract situation with the abstract situation in tested situation knowledge (cf.
Section 6.2.3.5). The components used for the quantitative runtime monitoring during
operation in the real world are identical to the components used for the qualitative
runtime monitoring in simulations of the system verification. However, the functionality
of the quantitative runtime monitoring deviates. During operation in the real world, the
quantitative runtime monitoring operates in the comparison state.
At startup, abstract situations which have been previously recorded in simulations of
the system verification are imported from files or databases for the tested situation
knowledge during operation. The tested situation knowledge only contains unique abstract
situations because all duplicates of abstract situations are eliminated in the import process.
All abstract situations of the tested situation knowledge must originate from successful
simulations with correct and safety system behavior by the autonomous vehicle systems.
The correct verification of the autonomous vehicle systems in the simulation represents
the ground truth for the runtime monitoring for these systems during operation in the
real world.
During operation in the real world, each encountered traffic situation is transformed
into an abstract situationby the input abstraction fI . The situation monitor receives the
abstract situation and adds it to its history of abstract situations. The abstract function
fA forwards the abstract situations to the situation oracle. The situation oracle compares
the abstract situation with the situations contained in the tested situation knowledge.
In case the encountered abstract situationis not contained in the tested situation knowledge,
the autonomous vehicle system has not yet been verified for this situation, and the
correctness and safety of the autonomous vehicle system cannot be guaranteed—even
if the qualitative runtime monitoring evaluates the behavior of the autonomous vehicle
system as correct and safe.

227

7. Operation Analysis and System Evolution

Table 7.2.: Implications for results from the quantitative runtime monitoring.
Dependable Erroneous

Timing Conclusion

Situation
∈
Sit. Knowledge

Situation
6∈
Sit. Knowledge

Online ⇒ Initiate Safety Measure

Offline ⇒ Revise Test Cases

The safety argumentation for the operation of autonomous vehicle systems in the situation
is incomplete because the ground truth from the simulations of the system verification is
missing in the situation. The autonomous vehicle system might operate differently in
unknown traffic situations than engineers would expect these systems to do. The actual
behavior of autonomous vehicle systems need not be safety-critical. For example, the
lane change assistant could follow a preceding slower vehicle on a multi-lane road instead
performing a lane change for advantageous overtaking of the preceding vehicle.
While the qualitative runtime monitoring reveals safety critical system behavior with
immediate danger for the vehicle, its passengers, and all objects and passenger in the
vehicle’s vicinity, the autonomous vehicle system may still operate correctly and safely
in the presence of unknown and unverified traffic situations. The autonomous vehicle
system need not impose a safety threat for the vehicle, its passengers and other objects
and person in the vehicle’s vicinity.
As for the quantitative runtime monitoring safety measures should be initiated during
operation in the real world in order to avoid any potential danger if unknown traffic
situations emerge. However, the criticality in an unknown and unverified traffic situation
might not be as high as for malicious system behavior. It might be sufficient to alert
the driver to monitor and evaluated the current traffic situations and to intervene if
necessary. Other safety measures may still be applied.
Abstract situations which have not yet been known and verified are recorded for the ex-
tension of the ground truth in additional simulations and the improvement of autonomous
vehicle systems. Each unknown abstract situationis stored in a log file or database with
the history of previous abstract situation and additional meta information, e.g., time (cf.
Section 6.2.3.5). In case a wireless connection is available, the data can immediately be
transferred to remote storages.
Even though histories of previous abstract situation for successive unknown abstract
situation contain large numbers of identical abstract situation; these histories are all
stored individually in the log file. The primary usage of these log files in the engineering
approach is the definition of additional test scenarios and test cases for the simulations
of the system verification in further system development (cf. Table 7.2). The additional
tests help to reveal additional faults for autonomous vehicle systems and to extend the
scope of traffic situations with ground truth.
The recording of abstract situations by the quantitative runtime monitoring during
operation in the real world enables statements about the impact of tests on a test track

228

7.2. System Evolution

or in public traffic. The number of unknown abstract situation which are not contained
in the tested situation knowledge is an indicator of the impact of each test drive. Tests
with higher amounts of unknown abstract situation are more likely to reveal previously
unknown faulty system behavior and therefore are more likely to enhance the safety of
the autonomous vehicle system. The information about the impact of test drives can
be used to support test engineers to perform the validation of the autonomous vehicle
system in the real world more effectively.
For the lane change assistant, the 77 recorded situations from successful simulations of 22
test cases in system verification are aggregated for the tested situation knowledge during
operation in the real world. In test drives (cf. Chapter 8), each encountered abstract
situation is compared to the abstract situation of the tested situation knowledge and
unknown and unverified abstract situation are recorded with their histories of previous
abstract situations in human-readable text files individually for each test drive.
As shown in Chapter 8, less than 1.6% of encountered abstract situations in the recordings
of test drives on the German highways A2 and A39 have been tested in the simulations
of the manually modeled test cases. This low percentage of coverage indicates insufficient
modeling of the real world by the initial set of test cases for the lane change assistant. A
detail statistic is given in Chapter 8.
The recorded abstract situations by the qualitative and quantitative runtime monitoring
of autonomous vehicle systems during operation in the real world can be used for
improvements of autonomous vehicle systems and extensions of system verification by
additional simulations. This system evolution based on the runtime monitoring results
enables car manufacturers to increase the safety of their autonomous vehicle systems
iteratively. The following section describes the improvement of autonomous vehicle
systems and the extensions of the simulations in the system verification in more detail.

7.2. System Evolution

The holistic engineering approach (cf. Fig. 4.1) envisages a iterative cycle of system
development at design time and assessment during operation. Results from the runtime
monitoring of autonomous vehicle systems during operation have to be transferred back
into the system development in order to identify and resolve previously unknown faulty
system behavior and extend the scope of the system verification by additional simulations.
The log files of recorded abstract situations from the runtime monitoring of autonomous
vehicle systems during operation (cf. Section 7.1) have to be analyzed in order to identify
the origin of faulty system behavior. The impact of the runtime monitoring results on
the development of autonomous vehicle systems is two-fold:

• Abstract situations which exhibit incorrect and unsafe system behavior indicate
faults in the specification, design, and implementation of the autonomous vehicle
systems (cf. Section 7.2.1).

229

7. Operation Analysis and System Evolution

Test Scenario
Definition

Test Case
Refinement

Specification

T
e

stin
g

Simulation Framework

Design and Test

Test CasesTest Cases

Operation and
Monitoring

Log of
Incorrect

Behavior Situations

ImplementationSystem Design
System

under Test

Figure 7.2.: Impact by results of qualitative runtime monitoring.

• Unverified abstract situation primarily indicate missing or faulty test scenarios (cf.
Definition 4.5) and test cases (cf. Definition 4.6) in the test suites for the system
verification of the autonomous vehicle systems (cf Section 7.2.2).

The impacts of the qualitative and quantitative runtime monitoring during operation
of autonomous vehicle systems for the system evolution is described in the following
sections individually.

7.2.1. Improvement by Situations with Incorrect System Behavior
Log files from the qualitative runtime monitoring of autonomous vehicle systems dur-
ing operation in the real world contain sequences of abstract situation in which the
autonomous vehicle systems operated incorrectly and unsafe—violating system require-
ments. These abstract situations are essential for the improvement of the autonomous
vehicle systems. As shown in Fig. 7.2, the results from the qualitative runtime monitoring
during operation of the real world primarily impact the requirements analysis, system
design, and implementation of autonomous vehicle systems.
The histories of previous abstract situation which are recorded with each critical abstract
situationsupport engineers in the manual localization, analysis, and improvement of
system faults. This may include the review of requirements, system design, and im-
plementation in order to find the origin of the faulty system behavior. Based on the
identified system fault, engineers have to revise all depending development artifacts.
Faults in requirements require the revision of the requirements, system design, safety
analysis, and system implementation while implementation faults only influence the
implementation and do not require changes of requirements, safety analysis, or system
design. As results of system improvements, a version of the autonomous vehicle system
is developed which is supposed to operate correctly and safely in all known abstract
situations.
The improved versions of the autonomous vehicle systems are verified again in simulations
of the system verification for existing and additionally created test scenarios and test
cases. Additional test scenarios and test cases are defined based on the recorded abstract
situations with faulty system behavior and their histories. The improved versions
of the autonomous vehicle systems must operate correctly and safely in all abstract
situations in which the previous system version exhibited an incorrect and unsafe system

230

7.2. System Evolution

Test Scenario
Definition

Test Case
Refinement

System Design Implementation
Specification

T
e

stin
g

Simulation Framework

System
under Test

Operation and
Monitoring

Log of
Untested
Situations

Design and Test

Test Cases

Figure 7.3.: Impact by results of quantitative runtime monitoring.

behavior. The verification for existing test scenarios and test cases ensures that no system
improvements have altered the previously correct system behavior. The test scenarios
and test cases which are derived from the results of the qualitative runtime monitoring
can be added to the system test suite in addition to test scenarios and test cases from
the quantitative runtime monitoring. For efficient verification of autonomous vehicles
systems in simulation, the test suite should be a comprehensive set of diverse test cases
which evaluates a large number of situations with a minimal number of test cases (cf.
[Bac+17c]). Metrics for situation coverage can help to define such an efficient and diverse
test suite (cf. [AHR15]).
The lane change assistant was provided for the case study as a binary software package
without any source codes (cf. Chapter 8). The missing source code prohibited any
improvement of the lane change assistant based on the recording of the qualitative
runtime monitoring. Therefore, the case study focuses on completing the round-trip of
the engineering approach by defining test scenarios and test cases from recordings of
the quantitative runtime monitoring during operation (cf. Fig. 5.1). The next section
describes the definition of test scenarios and test cases from recorded abstract situation
by the quantitative runtime motoring in more detail.

7.2.2. Improvement by Unverified Situations
Log files from the quantitative runtime monitoring contain abstract situations from the
operation of autonomous vehicle systems in the real world. These abstract situations
have not yet been verified in simulations of the system verification. The correctness and
safety of the autonomous vehicle systems in these abstract situations is unknown unless
the qualitative runtime monitoring has recorded the identical abstract situation. Abstract
situations from the quantitative runtime monitoring are not suitable for the identification,
location, and correction of system faults but are beneficial for the definition of additional
tests for the system verification (cf. Fig. 7.3).
For the extension of the simulation-based tests, abstract situation in the log files of
the qualitative and quantitative runtime monitoring are transformed into test scenarios
(cf. Definition 4.5) and test cases (cf. Definition 4.6). Test scenarios are defined from
coherent traces of recorded abstract situations in the log files (cf. Definition 2.32) based
on changes of the scenery, the behavior of the automated ego vehicle, and the behavior
of all other dynamic objects in the vicinity of the automated ego vehicle. Each test

231

7. Operation Analysis and System Evolution

scenario defines a ordered trace of scenery changes and actions by dynamic objects
(cf. Section 2.2.1). Changes of static objects in the scenery between two subsequent
abstract situation are unambiguous and are directly adopted into the test scenario. The
behavior of the automated ego vehicle the dynamic objects are more complex. Multiple
combinations of actions by different dynamic objects can lead to identical changes of
dynamic objects between two subsequent abstract situation. One combination of object
actions is selected for each transition between subsequent abstract situations in the test
scenarios.
Each test scenario describes the behavior of the automated ego vehicle and dynamic objects
in its vicinity on an abstract level and, therefore, abstracts from concrete simulation
parameters of simulation frameworks. The abstraction level of the test scenarios matches
the abstraction level of the considered system requirements. For the lane change assistant,
the velocities of vehicles have been recorded in relation to the automated ego vehicle,
but VTD requires each vehicle’s absolute velocity for the simulation.
The modeling of static and dynamic objects in environment models of simulations
frameworks require a different level of abstraction (cf. Definition 6.2). The environment
models of simulation framework describe the positioning and behavior of environment
objects by the International System of Units (SI) (cf. [PM06]).
Test scenarios are parametrized by a set of test cases. The abstract description of test
scenarios are transformed into test cases in order to match the level of abstraction which
is required by the simulation frameworks. Each test case augments missing concrete
parameters for the environment model in the simulation. The missing concrete parameters
are derived from the abstract parameters in the test scenario by parameters fuzzing
using combinatorics and parametrization algorithms, e.g., equivalence class partitioning
and boundary value analysis (cf. [Ana+13; Bac+17c; Kha+17; Sip+16]). This way, a
single test scenario can be verified in the simulations of the system verification for a vast
number of concrete parameter constellations.
The test cases which have been defined from the results of the quantitative runtime
monitoring during operation are added to the test suite of the system verification. The
quantity of new test scenarios and test cases from real-world data is proportional to the
amount of real-world data. The more data has been recorded, the more test scenarios and
test case can be defined. Massive fleets are more likely to generate excessive real-world
data and extend the scope of verified traffic situations for the autonomous vehicle systems
in a shorter duration.
The quantitative runtime monitoring of autonomous vehicle systems during operation in
the real world does not only enable the definition of additional test scenarios and test
cases but also the definition of the initial test suite for the autonomous vehicle systems.
Manually modeled test cases tend to represent more straightforward traffic scenarios
with limited realism (cf. Chapter 8).
For the definition of an initial test suite from real-world data, the tested situation
knowledge contains no abstract situations. Therefore, all encountered abstract situations
during operation in the real world are recorded and can be used for the definition of the
initial test scenarios and test cases. These test cases constitute a realistic initial test
suite. The test scenarios and test cases can be reused for multiple autonomous vehicle

232

7.2. System Evolution

systems as long as the runtime monitoring framework remains consistent among these
systems.
The improved versions of autonomous vehicle systems are verified in the system verification
for all new and existing test cases. The new system versions must not exhibit any faulty
behavior in the system verification for any of the new test cases. Otherwise, specification,
design, and implementation for the autonomous vehicle systems have to be revised until
all—new and existing—test cases are successfully passed. The improved version of the
autonomous vehicle system is not suited for the operation in the real world until all test
cases have successfully been passed.
The quantitative runtime monitoring of the lane change assistant during operation
has been performed on recordings of test drives on public roads because a prototype
vehicle has not been available for the case study (cf. Chapter 8). 1071 unknown and
unverified abstract situations have been recorded by quantitative runtime monitoring
for the test drive on the German highway A2. In the recording of the test drive on
the German highway A39, the quantitative runtime monitoring recorded 959 unknown
abstract situation.
Seven additional test scenarios and seven corresponding test cases have been modeled
and verified in simulations with VTD based on the recorded unknown and unverified
abstract situation in the recording on the German highway A2. The test scenarios and
test cases were manually selected and modeled from logged traces of abstract situations.
The coverage of the encountered abstract situations by all test cases—the manually
modeled test cases and the seven additional realistic test cases— increased for the test
drive on the German highway A2 to over 10%. A detailed statistic is given in Chapter 8.
The following section describes the definition of test scenarios and test cases from
recordings of abstract situation by the runtime monitoring during operation in the real
world in more detail.

7.2.3. Definition of Test Scenarios and Test Cases from Runtime
Data

For the extension of the simulation-based tests in the system verification by realistic test
cases, log files from the qualitative and quantitative runtime monitoring during operation
in the real world are transformed into test scenarios (cf. Definition 4.5) and test cases
(cf. Definition 4.6).
Log files contain a trace of unverified abstract situations and their histories of preceding
abstract situations. The lists of unverified abstract situations contain clusters of abstract
situations which have been subsequently recorded in cohesive time frames. Each cluster
represents a trace of subsequent abstract situation (cf. Definition 2.32) which have not
yet been considered in the simulations of the system verification (cf. Fig. 7.4).

Definition 7.1 (Cluster). A cluster in a log of the runtime monitoring framework
describes a trace of subsequent abstract situations which have been recorded in a
cohesive time frame. Any cluster corresponds to a trace of abstract situations.

233

7. Operation Analysis and System Evolution

Sit16+Hist.

Sit17+Hist.

Sit18+Hist.
...

Cluster C1

...

Sit34+Hist.

Sit35+Hist.

Sit36+Hist.
...

Cluster C2

...

Sit60+Hist.

Sit61+Hist.

Sit62+Hist.
...
...

Cluster C3

t16

t24

t34

t48

t60

t72

...

Log File

. . . Sit14, , Sit15 , Sit16 , Sit17 , Sit18 , . . . Trace T1
t8 t24

. . . Sit32, , Sit33 , Sit34 , Sit35 , Sit36 , . . . Trace T2
t29 t48

. . . Sit58, , Sit59 , Sit60 , Sit61 , Sit62 , . . . Trace T3
t52 t72

Figure 7.4.: Clusters and traces of recorded abstract situations.

Abstract situations in these clusters share similar histories of preceding abstract situations.
The histories of two subsequent abstract situation in these clusters vary only in one
situation because the recent unknown and unverified abstract situationis added to the
history while the eldest entry of the history is discarded.
Cluster may even contain sequences of identical abstract situation. A situation may occur
for multiple processing cycles and, therefore, is recorded multiple times. For the efficiency
of the simulation in the system verification, any subsequent duplicates of an abstract
situation are discarded in the aggregation. The timing of environment activities is not
considered for test scenarios.
In the rare case that a cluster only contains a single unknown and unverified situation. The
related history of preceding abstract situations should contain enough abstract situations
to model a sufficient input trace for the definition of test scenarios and corresponding
test cases. An exception would be the start of the runtime monitoring during operation.
The encountered abstract situations at the beginning of the runtime monitoring might
not sufficiently fill the history in order to model valuable test scenarios.
The definition of test scenarios and test cases from traces of recorded abstract situations
is divided into three tasks:

1. The identification and definition of transitions from analysis of possible actions of
dynamic objects between subsequent abstract situation (cf. Section 7.2.3.1).

2. The slicing of test scenarios (cf. Section 7.2.3.2).

234

7.2. System Evolution

Time tt0 t1 t2 t3 t4

s0 s1 s2 s3 s4

Figure 7.5.: Example trace of recorded traffic situations.

3. The parametrization of test scenarios as test cases by deriving parameters of the
environment models from parameters of abstract situation in the test scenarios (cf.
Section 7.2.3.3).

The following sections describes each task in more detail.

7.2.3.1. Identification of Situation Transitions

Abstract situations solely describe the states of the autonomous vehicle systems and their
environments at certain timestamps on the abstraction level of the system requirements
(cf. Fig. 7.5). However, simulations frameworks require the definition of actions for
all dynamic objects in environment models. The automatic randomization of roads,
scenery, and traffic in simulations is no solution for the remodeling of recorded abstract
situation traces by the runtime monitoring framework (cf. Chapter 8). For the definition
of test scenarios from recorded traces of abstract situations, the actions of dynamic
objects (cf. Definition 2.29) and the changes of the scenery—the road and other static
objects—(cf. Definition 2.27) between all subsequent abstract situation of the traces
have to be identified. The following sections provide more detail descriptions about the
identification of changes and dynamic objects and the scenery.

7.2.3.1.1. Changes of the Scenery

The changes in the scenery between subsequent abstract situations can be defined based on
the changes of individual situation parameters for its static objects. Situation parameters
corresponds to the types in the abstract representation of the situation (cf. Definition 4.4)
in the runtime monitoring framework. The changes of static objects entirely define the
changes in the scenery between subsequent abstract situation. Unlike dynamic objects (cf
Section 7.2.3.1.2), combinations of different scenery changes have not to be considered
because static objects are not able to switch their positions with other dynamic or static
objects. Otherwise static objects would be dynamic objects.

235

7. Operation Analysis and System Evolution

(a) One vehicle leaves the
zone while another vehicle
changes into the zone.

(b) Vehicle remains in zone
with different velocity while
an other vehicle leaves the
zone.

Figure 7.6.: Possible object maneuvers for changes between situations s0 and s1.

Definition 7.2 (Situation Parameter). A situation parameter corresponds to one spe-
cific type in the type hierarchy for the the abstract representation of traffic situations
and system states (cf. Definition 4.4) in the runtime monitoring framework.

Changes of static objects, e.g., roads, their lanes, their markings, house, and trees, can
be individually assessed and documented. For example, road markings can either remain
solid or dashed or change from solid to dashed or vice versa between two subsequent
abstract situations. Static objects and their changes are later considered in the definition
of the test cases (cf. Section 7.2.3.3).

7.2.3.1.2. Behavior of Dynamic Objects

The identification of actions by dynamic objects between two subsequent abstract situation
is more complicated than changes in the scenery. The number of combinations of actions
for the dynamic objects in the initial abstract situation leading to subsequent abstract
situation can be vast (cf. Fig. 7.6).
While the vehicles in the top right zones in Fig. 7.6a and Fig. 7.6b remain in the same
zones over both abstract situations, the positioning of the lower two vehicles offers multiple
possibilities for combinations of maneuver by these two vehicles. The initial positions of
the vehicles behind the automated ego vehicle is displayed in Fig. 7.6a and Fig. 7.6b by
the dark green car while the final position is displayed by the light green car.

236

7.2. System Evolution

x

y

z

Figure 7.7.: 3D coordinate system for the movements of dynamic objects on roads.

In Fig. 7.6a, the vehicle initially in the left rear falls out of the zone while rear vehicle in
the mid-rear zone changes to the left neighbor lane.
In Fig. 7.6b, the vehicle behind the automated ego vehicle on the left lane accelerates
and remains in the zone while the vehicle behind the automated ego vehicle decelerates
and falls out of the zone.
In both examples, the final abstract situation has one vehicle on the right lane in front of
the automated ego vehicle and one vehicle on the left neighbor lane behind the automated
ego vehicle. For useful simulations, all possible combinations of actions by different
dynamic objects should be considered in the definition of test scenarios.
For each type of dynamic objects in abstraction situation (cf. Fig. A.2), the set of possible
action has to be defined. In the 3D space, the ISO 8855 (cf. [Int11a]) defines the x-axis
in driving direction of the vehicle, the y-axis perpendicular to the x-axis pointing to
the left, and the z-axis pointing upwards (cf. Fig. 7.7). The position and orientation of
objects can be changed in translational and rotational directions for each of the three
axes (cf. [Lee82]). These possibilities will result in 12 possible movements if the negative
and positive movement for translations and rotations are considered separately.
Traffic is commonly analyses and simulated in the 2D space with road being the base
plane (cf. Section 2.2.1.1.2). Traffic objects, e.g., vehicles, move only in the 2D space of
the road (cf. [Bar10]). Translations in the vertical direction of z-axis are commonly not
possible in this view and, therefore, are not considered by autonomous vehicle systems.
The restriction of movement in the direction of the z-axis reduces the number of possible
movements to 10. In case, the slope of roads and vehicle traction control systems are not
regarded, the number of possible movement can be reduced to 6 because any rotations
around the plane axis—x-axis and y-axis—can be omitted (cf. Fig. 7.7). The view of
traffic in the 2D plane is the lowest possible level of abstraction. Actions of dynamic
objects can be described at least described by translations and rotations in the 2D plane.
For most use cases, it is beneficial to describe actions by dynamic objects on a high level
of abstraction. For vehicles, Nagel et al. have defined in [NE91] a set of 17 maneuvers.
In this thesis, the term maneuver are generalized to all dynamic objects. Therefore, A
maneuver is any action performed by any dynamic object. Therefore, the terms action
and maneuver are used interchangeably in this thesis. Bajcsy et al. extended this list by
the maneuver standing (cf. [BN96]). The 18 maneuvers are

237

7. Operation Analysis and System Evolution

1. start and continue,

2. follow lane,

3. cross intersection,

4. merge to the left/right lane,

5. u-turn to the left/right,

6. slowdown to right road edge and stop,

7. back up,

8. turn left/right,

9. reverse direction,

10. approach obstacle ahead,

11. overtake,

12. stop in front of an obstacle,

13. pass obstacle to the left/right,

14. start after preceding car,

15. follow a preceding car,

16. enter parking slot,

17. leave parking slot, and

18. standing.

Tölle later reduced in [Töl96] the number from 17 maneuvers to 9 maneuvers. The
maneuvers can be used as basic maneuverer set for the identification of vehicles actions
between subsequent abstract situations. Maneuvers can be further characterized by
additional parameters, e.g., velocity or acceleration, or combined to form complex
maneuvers. For other types of dynamic objects, similar sets of basic actions (maneuvers)
have to be defined.

Definition 7.3 (Maneuver). A maneuver is any action performed by any dynamic
objects, e.g., vehicles. A maneuver can be instantaneous or have some arbitrary
duration. If not defined otherwise, maneuvers can be combined to form more complex
maneuvers.

For the engineering approach, maneuvers by dynamic objects have to interpret over the
abstract situations. Each basic maneuver corresponds to specific value changes by a
fixed set of parameters in the abstract representation, e.g., the position of the dynamic
objects (cf. Fig. A.2). Therefore, the maneuvers of dynamic objects for test scenarios
are derived from the set of situation parameter changes between two abstract situation
(cf. Definition 7.2). All identified maneuvers between abstract situations have to account
precisely for all changes of relevant situation parameters between these abstract situations.
For the lane change assistant, the basic maneuvers of dynamic objects have been inter-
preted based on the relative positioning of these objects in relation to the automated ego
vehicle and their position on lanes. The positioning by lane and relative distance enables
the categorization of the automated vehicle’s vicinity into zones (cf. Fig. 6.11). Possible
maneuvers of dynamic objects in the abstract representations of situations for the lane
change assistant are:

1. drive into zone,

2. fall out of zone,

3. change into zone from left / right,

4. leave zone to the left / right,

238

7.2. System Evolution

Ego
Vehicle

Object 1

Object 2

Object m-1

Object m

Sinit

SEgo2 SEgo3SEgo1 SEgon
. . .

aEgo
1 aEgo

2 aEgo
3 aEgo

n

S1
2 S1

3S1
1 S1

n
. . .

a1
1 a1

2 a1
3 a1

n

S1
x+1S1

x S1
x+2 S1

x+n. . .

a1
1 a1

2 a1
3 a1

n

S2
2S2

1 S2
n

. . .

a2
1 a2

2 a2
n

S2
x+1S2

x S2
x+n. . .

a2
1 a2

2 a2
n

Sm−1
i Sm−1

j

Sm2 SsubSsub Ssub. . .

am
1 am

2 am
3 am

n

SsubSsub Ssub. . .

am
1 am

2 am
n

T1 T2 Tk Tk+y Tk+y+1 Tk+y+z

Figure 7.8.: Maneuver tree for the identification of transitions between subsequent ab-
stract situations.

5. change to front zone,

6. change to rear zone,

7. change to left zone,

8. change to right zone

The interpretation of object maneuvers over parameters of abstract situations enables the
identification of transitions between subsequent abstract situations. Transitions between
subsequent abstract situations correspond to valid combinations of object maneuvers
between subsequent abstract situations. Valid combinations of object maneuvers are
processed from the initial abstract situation Sinit by iteratively applying maneuvers to
the dynamic objects of the abstract situation Sinit and comparing the resulting abstract
situations to the original subsequent abstract situation Ssub from the situation trace.
As shown in Fig. 7.8, the processing of maneuver combinations results in a maneuver
tree. For all dynamic objects O in the initial abstract situation Sinit—including the
automated vehicle itself—all possible maneuvers aok

i ∈ Aok are successively applied to
the dynamic object ok in the initial abstract situation Sinit. The application of object
maneuvers aok

i ∈ Aok to the initial abstract situation ok result each in an intermediate
abstract situation Skj .
Maneuvers by dynamic objects may be restricted by static objects of the scenery, e.g.,
the road, its lanes, and their markings. For example, a solid lane marking between
two adjacent lanes prohibits any lane change by any vehicle between these two lanes.

239

7. Operation Analysis and System Evolution

These maneuvers must be excluded from the analysis (cf. maneuver ao1
3 for object 1 in

Fig. 7.8). Each valid maneuver aok
i for a dynamic object ok results in an intermediate

abstract representation Sok
i . An intermediate abstract situation will be valid if it partially

matches the original subsequent abstract situation Ssub. Otherwise the intermediate
abstract situation is discarded (cf. abstract situation S2

x and Sm2 in Fig. 7.8).
Maneuvers aok+1

i ∈ Aok+1 of the remaining dynamic objects in the initial situation
ok+1 ∈ O are subsequently applied to valid intermediate abstract situation Skj from the
maneuvers of dynamic object ok. After all dynamic objects have been processed abstract
situation Smi remain which must match the targeted subsequent abstract situation Ssub.
The automated ego vehicle (Ego Vehicle) is supposed to be the first analyzed object
in the identification of combinations of object maneuvers because its maneuver may
impact the maneuvers of all dynamic objects. In the ego-centric view of the abstract
situation, maneuvers by the automated ego vehicle are not directly apparent because the
automated ego vehicle always remains at the same position.
Maneuvers of the automated ego vehicle are identified based on joint actions by all static
and dynamic objects in its vicinity. As shown in Fig. 7.9, the action by the automated
vehicle—a lane change in positive direction of the y-axis (left)— is represent in the
abstract situation by inverted movements of all other objects in negative direction of the
y-axis (right) (cf. Fig. 7.7).
As for situation s6 in Fig. 7.9, new vehicles may be introduced (cf. rear right green car)
and lane properties e.g., markings change. Lanes in the abstract situation will be omitted
if the automated ego vehicle changes to the rightmost resp. leftmost lane. The omitted
lanes have the type non-existing (cf. Fig. 3.9). In the abstract representation of the
runtime monitoring, the automated vehicle can perform the following maneuvers:

• accelerate,

• decelerate,

• change to the left neighbor lane, and

• change to the right neighbor lane.

Any maneuverer by the automated ego vehicle has a significant impact on the position
of static and dynamic objects in its vicinity. After the maneuver by the automated
ego vehicle, the actions of dynamic objects in the initial abstract situation Sinit are
successively evaluated.

7.2.3.1.3. Introduction of Ghost Objects

For some situation transitions, it might be necessary to consider dynamic objects which
are not contained in the initial abstract situation Sinit but could drive into the range of the
sensor perception for the subsequent abstract situation Ssub. These dynamic objects have
to be considered as so-called ghost objects in the identification of maneuver combinations
for each type of dynamic objects as in the data structure of the abstract situation (cf.
Definition 7.4).

240

7.2. System Evolution

Time tt0 t1 t2

s5 s6 s7

Figure 7.9.: Identification of actions for the automated ego vehicle.

Definition 7.4 (Ghost Object). A ghost object represents a dynamic object of a
specific type which maneuvers would allow the object to appear in the subsequent
abstract situation though the object has not been present in the initial abstract
situation.

As shown in Fig. 7.10a, ghost objects are virtual dynamic objects which are positioned
around the boundary of the abstract situation. Ghost objects are defined based on relevant
parameters of the abstract situation. The position of ghost objects are determined for each
type of dynamic objects based on the inversion of their maneuvers resp. the reversion of
the corresponding parameter changes in the abstract representation of situations from a
valid position for objects of this type within the abstract situations. For example, the
position for a ghost vehicle would be determined by applying a lane change to the right
lane to the position of vehicles in the front right zone. The lane change to the right lane
is the inversion of a lane change to the left lane for the ghost object positioned adjacent
right to the front right zone (cf. Fig. 7.10a). The inversion of maneuvers is trivial in most
cases as long as the level of abstract is sufficient. The directional maneuvers of vehicles
can all be inverted by inverting their changes of situation parameters. For the lane
change assistant, the list of maneuvers for a dynamic object already contains all pairs of
original and inverse maneuvers— lane change to the left/right and accelerate/decelerate.
Ghost objects are only considered at positions which reside outside the boundary of the
abstract situation. It is possible that multiple inverted maneuvers applied to a different
valid position within the abstract situations result in the identical position for a ghost
object.
The positioning of ghost objects can be restricted by situation parameters and static
object of the abstract situation. Inverse maneuvers must consider the restrictions of their

241

7. Operation Analysis and System Evolution

(a) General positioning of ghost objects. (b) Restriction on ghost objects.

Figure 7.10.: Ghost objects for determination of objects actions.

original maneuvers. Any inverse maneuver which violates a restriction of the original
maneuvers in its application to a position within the abstract situation must be excluded
from the positioning of ghost objects. As shown in Fig. 7.10b, a solid lane marking on the
left neighbor lane would prohibit any lane changes from ghost objects adjacent to the left
of this left neighbor lane. For the lane change assistant, ghost objects are restricted based
on the type of the lane marking (solid marking) and the lane itself (non-existing lane).
Paths from the root to valid leafs of the maneuver tree represent accurate combinations of
object maneuvers between the two subsequent abstract situation Sinit and Ssub from the
input trace. Valid combinations of object maneuvers for the maneuver tree in Fig. 7.8 are
e.g., Eq. (7.1) and Eq. (7.2). Each path denotes a valid transition between the subsequent
abstract situation Sinit and Ssub.

T1 : Sinit
aEgo

1−−→ SEgo1
a1

2−→ S1
2

a2
n−→ S2

n
...−→ Sm−1

i

am
1−→ Ssub (7.1)

Tk+y+z : Sinit
aEgo

1−−→ SEgo1
a1

2−→ S1
2

a2
n−→ S2

n
...−→ Sm−1

j

am
n−→ Ssub (7.2)

7.2.3.1.4. Integration as Situation Graphs

For the definition of test scenarios, input traces of abstract situation and all identified
transitions between two subsequent abstract situation of these traces can be integrated
into a situation graph (cf. Definition 7.5). As shown in Fig. 7.11, the situation graph is a
directed graph G = (V,E) where the set of nodes V denotes the abstract situation and
the set of edges E corresponds to the identified transitions between two abstract situation.
Abstract situations occurring in multiple input traces are represented by a single node
in the situation graph. The input trace of abstract situation Ini for the extract of a
situation graph by Fig. 7.11 are defined by Eqs. (7.3) to (7.6).

242

7.2. System Evolution

S0 S4 S5 S8

S13 S14

T3

T5
T4

T2
T1

T2
T3

T1

T4

T3

T2

T1

T1

T2

T1 Scenario 1
Scenario 2

S9

S10 S11

T2
T3

T1

T2

T4
T3

T1

T2

T1 Scenario 3
Scenario 4

S6 S7

S2

S3

T2T3

T1

T3

T5
T4

T2
T1

T1T2

T2T1

T2T3T1

Scenario 5 Scenario 6

S1

S12

T3

T2

T1

T3

T5
T4

T2
T1

T′1T′2

T1

T3

T2
Scenario 7

T′2
T′1

Figure 7.11.: A situation graph for the definition of test scenarios.

Definition 7.5 (Situation Graph). A situation graph G = (V,E) represents traces
of abstract situation with the identified transitions between two abstract situation.
The set of nodes V represents the set of abstract situations, and the set of edges E
corresponds to the transitions between two abstract situations.

In1 : S0 → S4 → S5 → S8 → S13 → S14 → . . . (7.3)
In2 : S0 → S4 → S5 → S8 → S9 → S10 → S11 → . . . (7.4)
In3 : S0 → S1 → S2 → S5 → S8 → S12 → . . . (7.5)
In4 : S0 → S6 → S7 → S5 → S2 → S3 → . . . (7.6)

The situation graph may contain cycles because the sequence in which situations may
occur in the real world is arbitrary. Even self-cycles from and to the same abstract
situationare possible. Unless time or subsequent occurrences of a situation are essential for
the environment modeling in simulations, the situation graph should be free of self-cycles.
Multiple subsequent occurrences of identical abstract situation are eliminated in the
prepossessing of the input trace for the dentition of the test cases.
Transitions between abstract situation in the situation graph are directed edges. The
maneuvers of dynamic objects in a transition Ti are only valid for the given direction
between two abstract situation Si and Si+1. An inversion does not exist for all transition
Ti. For example, a lane marking might allow lane changes in one driving direction but
does not allow lane changes in the opposite driving direction.
A possible inversion of any transition should only be included in the situation graph if
there has been an input trace with reversed order of abstract situations and the inversion

243

7. Operation Analysis and System Evolution

of object maneuvers has been identified in the corresponding analysis. This practice
enables the situation graph to record the order in which abstract situations have occurred
in the real world and use this knowledge for further analysis.
Test scenarios are defined based on paths through the situation graph by selecting one
transition Ti for each pair of subsequent abstract situation Si and Si+1. Even though,
cycles in the situation graph allow to model infinite test scenarios, defined test scenarios
should be finite in order provide result in reasonable time. For the situation graph
Fig. 7.11, seven test scenarios have been exemplary defined.
The test scenarios 1 and 2 represent two test scenarios for the same input trace of abstract
situations In1. The sequence of abstract situations of both test scenarios are identical,
but the transitions between two subsequent abstract situations vary.

Scenario 1 : S0
T5−→ S4

T1−→ S5
T3−→ S8

T1−→ S13
T1−→ S14 → . . . (7.7)

Scenario 2 : S0
T2−→ S4

T1−→ S5
T4−→ S8

T1−→ S13
T2−→ S14 → . . . (7.8)

Scenario 3 and scenario 4 are two test scenarios defined for the input trace of abstract
situation In2 (cf. Eq. (7.9)). These two test scenarios differentiate themselves by
transitions between S8 and S10. The test scenario 4 models a transition from S8 directly
to S10 while scenario 3 models an additional abstract situation S9 and corresponding
transitions. However, the simulation of scenario 4 will produce a trace of abstract situation
similar to scenario 3— including abstract situation S9. The absence of abstract situation
S9 in test scenario 4 may originate from a short appearance of abstract situation S9 in
the real world within two processing cycle of the runtime monitoring framework.

Scenario 3 : S4
T3−→ S5

T1−→ S8
T3−→ S9

T3−→ S10
T1−→ S11 → . . . (7.9)

Scenario 4 : S4
T3−→ S5

T1−→ S8
T′

2−→ S10
T2−→ S11 → . . . (7.10)

Scenario 5 models a test scenario for the input trace In4 (cf. Eq. (7.11)). The input
trace In4 shares the abstract situation S5 with input traces In1 and In2.
Intersections and overlapping of traces enable to combine sub-paths from different input
traces into a novel test scenario. The test scenario 6 consists of the sub-path S0

T3−→
S6

T4−→ S7
T1−→ S5 from input traces In1 resp. In2 and the sub-path S5

T2−→ S2
T1−→ S3

from the input trace In4 (cf. Eq. (7.12)).

Scenario 5 : S0
T3−→ S6

T4−→ S7
T1−→ S5

T2−→ S2
T1−→ S3 → . . . (7.11)

Scenario 6 : S0
T3−→ S4

T2−→ S5
T1−→ S2

T2−→ S3 → . . . (7.12)

The test scenario 7 models the possibility of transitions in different directions between
two abstract situation (cf. Eq. (7.13)). While input trace In4 contains a transition from
abstract situation S5 to abstract situation S2, the input trace In3 includes a transition in
reverse direction— from abstract situation S2 to abstract situation S5. Scenario 7 defines
a test scenario for this reversed direction between abstract situation S2 and S5.

244

7.2. System Evolution

Scenario 7 : S0
T2−→ S1

T4−→ S2
T′

2−→ S5
T2−→ S8

T1−→ S12 → . . . (7.13)

For the lane change assistant, seven test scenarios have been manually defined from
recordings of the runtime monitoring in test drives on German highways A2 (cf. Ap-
pendix A.3). Seven coherent sequences of abstract situations have been selected from
its log file. One test scenario has been defined for each sequence. The sets of object
maneuvers and scenery changes between abstract situations of these sequences have been
manually defined. A maneuver tree or a situation graph have not been used for the
identification of transitions between subsequent abstract situations. The test scenarios
have been further parametrized by test cases for simulations in VTD (cf. Section 7.2.3.3).
Even though all recorded situation traces by the runtime monitoring of autonomous
vehicle systems during operation in the real world should be integrated into a situation
graph, not all possible test scenarios within the situation graph should be used in the
system verification of the autonomous vehicle systems. A large number of test scenarios
would have little to no impact for the system verification because they would contain
scenarios and situations which have already been considered by other test scenarios.
As indicated by Fig. 7.11, situation graphs may result in long and complex test scenarios.
With the increasing complexity of test scenarios, it becomes more difficult to precisely
define corresponding environment models for simulations. The following section introduces
the slicing of test scenarios in order to limit the content of test scenarios to relevant
changes in the scenery and core movements of dynamic objects.

7.2.3.2. Slicing of Test Scenarios

Test scenarios identified in the situation graph tend to be very long— if not infinite—
and contain a vast number of vehicle maneuvers and environment changes. Long test
scenarios are difficult to model in simulation frameworks, e.g., VTD. Maneuvers by
dynamic objects and scenery changes in environment models have to be correctly aligned
in the environment models in order for simulations to correctly represent these test
scenarios.
This alignment becomes more difficult with increasing duration of test scenarios because
the likelihood for deviating behavior of the automated ego vehicle and other dynamic
objects increases with the duration of the simulations resp. test scenarios. The complexity
of dependencies between dynamic objects themselves and the automated ego vehicle
increases with the length of test scenarios. This complexity increases the difficulty to
cause the envisaged behavior of the autonomous vehicle systems in later stages of the test
scenarios. Small modeling faults in earlier stages of test scenarios may significantly impact
later stages of the test scenarios. For example, a vehicle which has previously change the
lane and has been overtaken by the automated ego vehicle might not accelerate in time
to overtake the automated ego vehicle in later stages of the test scenarios. Incorrectly
aligned simulations will not represent their corresponding test scenarios correctly.
Slicing of test scenarios which have been identified in the situation graph is introduced in
order to mitigate the difficulties in the alignment of scenery changes and maneuvers by

245

7. Operation Analysis and System Evolution

Time tt0 t1 t2 t3 t4

s0 s1 s2 s3 s4

Slice 1

Time tt0 t1 t2 t3

s0 s1 s2 s3

Slice 2

Time tt0 t1t2 t3 t4

s0 s1s2 s3 s4

Slicing

Figure 7.12.: Slicing of traffic situation traces.

dynamic objects in long test scenarios. As shown in Fig. 7.12, long test scenarios are sliced
in to a set of multiple shorter test scenarios. These short test scenarios have a limited
focus. For example, a scenario could evaluate the lane changing by the automated ego
vehicle while another scenario evaluates the subsequent driving behind a preceding vehicle.
The slices substitute the initial long test scenarios and represent the new test scenarios.
The behaviors of dynamic objects in the simulations of these short test scenarios are less
likely to diverge from the intended behavior for these objects by the test scenarios than
for the extended test scenario.

Definition 7.6 (Slicing). The partition of long test scenarios into specialized sub-
scenarios with smaller durations.

Different strategies can be applied for the slicing of test scenarios. All slicing strategies
have to result in slices S with sufficient prefixes Spre and suffixes Ssuff in addition to the
critical behavior of the autonomous vehicle systems.
Prefixes Spre are sub-scenarios at the beginning of a slice S = SpreS

′ where S ′ denotes
the remain part of the slice. There exist no situations or object maneuvers before a
prefix in a slice. Prefixes are required in order to analyze the behavior of the autonomous
vehicle systems and all objects in its environment that lead to emerging critical action
by the autonomous vehicle systems. Otherwise, the reason for a critical system action
cannot be identified because the test scenarios directly start with the critical action for
the autonomous vehicle system in the first abstract situation.
Suffixes Ssuff denotes sub-scenarios at the end of a slice S = S

′
Ssuff with no situation

or object maneuver existing in the slices after the suffixes. Suffixes are necessary for the
evaluation of system behavior after the occurrence of a potential critical action by the
autonomous vehicle systems. A sufficient long suffix of situations has to pass after any

246

7.2. System Evolution

. . .Trace S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 . . .S7 S15

Slice 1 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12S7

Slice 2 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20S15

Figure 7.13.: Prefixes and suffixes in slicing of situation traces.

maneuver by the automated vehicle or any dynamic object in order to soundly evaluate
if the autonomous vehicle systems have reached a safe system state.
One slicing strategy is to use the set of maneuvers for the automated ego vehicle as a
reference (cf. Section 7.2.3.1). Long test scenarios can be sliced based on the maneuvers
by the automated ego vehicle, e.g., lane changing, overtaking, or decelerating. The length
of corresponding slices is determined based on prefixes and suffixes of similar maneuver
instances in other test scenarios. The approach learns the necessary length of prefixes
and suffixes for the sound evaluation of each maneuver in the simulation of the slices.
The conservative approach is to use the maximum prefix and maximum suffix for each
maneuver by the autonomous vehicle in the slicing of test scenarios.
The slicing strategy based on maneuvers of the automated vehicle requires the presence
of a sufficient extensive situation graph for the identification of prefixes and suffixes.
Multiple slices can be identified for a single long test scenario from the situations graph (cf.
Fig. 7.12). These slices will include identical situations and maneuvers by dynamic objects
if the prefixes and suffixes of slices overlap within the long test scenario (cf. Fig. 7.13).
In Fig. 7.13 the black situation contain the ego maneuvers of the automated ego vehicle
The corresponding prefixes and suffices for each ego meanuver lead the corresponding
slices. Other slicing strategies are possible. For example, data analysis techniques, e.g.,
Sequential Pattern Mining (cf. [AS95; ME10; Szl18]), could be incorporated.
The slicing of long test scenarios from the situation graph simplifies the evaluation of
long test scenarios by identifying for new test scenarios from short slices. In general,
short test scenarios are evaluated more efficiently than the initial long test scenarios.
Especially for manual valuation, test engineers do not have to assess long stretches of
unimportant system behavior and environment changes until the interesting critical
system behavior emerges. Short test scenarios directly lead to critical system behavior.
In case of faulty system behavior, short test scenarios take less time to reevaluate the
improved autonomous vehicle systems.
For a comprehensive verification of autonomous vehicle systems also complex scenarios
with multiple maneuvers by the automated ego vehicle have to be evaluated. The short
test scenarios (slices) can be combined to form longer, unknown and more complex
test scenarios in order to evaluate the behavior of the autonomous vehicle system for
an unknown sequence of maneuvers. Opposed to the long scenarios directly from the

247

7. Operation Analysis and System Evolution

situation graph, short test scenarios offer the possibility to combine test scenarios to test
scenarios which have not yet been considered in the situation graph.
As a result of the slicing, a set of short test scenarios for the system verification is
determined. These short test scenarios describe the state and changes of the scenarios,
maneuvers of the automated ego vehicle and dynamic objects in its vicinity on an
abstract level of detail. However, the level detail required by simulation frameworks may
be more detailed—requiring data which is not defined by the parameters of the test
scenarios. Therefore, the test scenarios are parametrized as test cases for their usage
in the simulation frameworks. This parametrization by test cases is described in the
following section.

7.2.3.3. Parametrization by Test Cases

Test scenarios describe changes in the scenery and the behavior of dynamic objects on
an abstract level and abstract from physical parameters of the real world. The abstrac-
tion level of test scenarios is inherited from the abstraction of the runtime monitoring
framework. The value ranges for these abstract parameters represents a classification
of real-world parameters concerning predefined constraints of the requirements (cf. Sec-
tion 6.2.2.2.1).
For example, the runtime monitoring of the lane change assistant only recorded relative
velocities between dynamic objects and the automated ego vehicle. The possible values
for the relative velocity are defined in comparison to a predefined limit. The absolute
velocities of each dynamic objects are not recorded by the runtime monitoring framework
and resulting test scenarios for the lane change assistant.
Simulation frameworks require a more detailed description of the environment. Environ-
ment models describe the scenery and dynamic objects on a level of abstraction which
is similar to the physical parameters of the real world (cf. Definition 6.2). In these
environment models, static and dynamic objects are initially placed in a virtual world at
specific positions and with specific orientations.
Environment models have to sufficiently model the scenery with roads and relevant static
objects present in the test scenarios. Roads in these environment models have to match
the road layout with its number of lanes and types of road markings in the test scenarios.
Roads are the foundation for the placement and orientation of all static and dynamic
objects in the environment models— including the automated ego vehicle. Roads are
complemented by relevant static objects from the test scenarios, e.g., parking cars or
construction sides. While dynamic objects change their positions over time, static objects
remain static at their global position in the virtual world. However, their position may
change over time in relation to the behavior of the automated ego vehicle.
For dynamic objects in test scenarios, e.g., other vehicles, their behavior over time has to
be specified by corresponding environment models. Time-dependent parameters specify
the behavior of dynamic objects. For example, VTD requires the absolute velocity and
acceleration for each dynamic object in order to model its driving behavior. Dynamic
objects are position in the virtual world of the environment models with specific velocity
and acceleration. Over time, parameters of dynamic objects change inherently, like the

248

7.2. System Evolution

position due to the velocity, or parameters change at specific time stamps or even at
specific positions by so-called triggers in VTD.
Relations between dynamic objects as well as between dynamic and static objects in
the test scenarios have to preserved by the environment models of the simulations. The
positioning of static and dynamic objects and the behavior of dynamic objects have to be
aligned over time. For example, an additional lane, like an on-ramp, has to be assumed
adjacent to the rightmost lane and the corresponding lane marking between these lanes
has to be dashed if a vehicle is supposed to change onto the rightmost lane in the test
scenario. Furthermore, the behavior of dynamic objects in the simulations must maintain
all relations and restrictions on the behavior of dynamic objects in the test scenarios.
For example, the estimated velocities for dynamic objects in the environment models
still have to preserve the relative velocities by the corresponding test scenarios.

7.2.3.3.1. Intermediate Data Model

Test scenarios abstract completely from parameters or define different domains for
identical semantic parameters which are required by the simulation frameworks for the
environment modeling. Parameters describing the scenery, its roads, static objects,
and dynamic objects in the environment models may not sufficiently be represented in
the required detail by the test scenarios. For example, the runtime monitoring of the
lane change assistant has not recorded the curvature of the street because the runtime
monitoring perceives the road as straight segment without any curvature. For dynamic
objects, the runtime monitoring only recorded their relative velocities to the automated
ego vehicle and not their absolute velocities which are required for the environment
modeling by the simulation framework VTD.
Nevertheless, the environment models of simulation frameworks have to sufficiently model
the sceneries and dynamic objects of the corresponding test scenarios in order to enable
to verify and validate the autonomous vehicle systems in the system verification for
simulations of these test scenarios. Missing but required parameters for the modeling for
scenery, static objects, and dynamic objects in environment models have to be calculated
from available abstract parameters of the test scenarios.
Insufficient or missing parameters for the definition of roads in the environment models
can be resolved by modeling different road topologies and attach the behavior. These road
topologies have different values for the required parameters which are not represented in
the test scenarios (cf. [Oli+16; Zof+15]). National and international standards can be
considered to limit the range of values for these parameters in order to model realistic and
relevant road topologies. For example, the curvature of German highways is limited by
280m [For08; Ric16]. The real roads in the corresponding test drive for the test scenarios
can only be modeled if all required parameters, e.g., the curvature, are captured in the
test scenarios.
Parameters for the behavior of dynamic objects in the environment models cannot be
resolved by modeling predefined all possible behavior for all combinations of dynamic
objects in the abstract representation of the test scenarios in advance. The combinatoric

249

7. Operation Analysis and System Evolution

SI0 SI1 SI2 SI3 SI4 SI5 SI6 SI7 SI8 SI9 SI10 SI11 SI12 SI13 SI14 SI15 SI16 SI17 SI18 SI19SI0 SI1 SI2 SI3 SI4 SI5 SI7 SI8 SI9 SI13 SI16 SI17 SI18 SI19SI0 SI1 SI2 SI3 SI4 SI5 SI7 SI9 SI11 SI13 SI14 SI16

ST0 ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8 ST9

SI0 SI1 SI2 SI3 SI4 SI5 SI6 SI7 SI8 SI9 SI10 SI11 SI12 SI13 SI14 SI15 SI16 SI17 SI18 SI19

SS0 SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9 SS10 SS11 SS12 SS13

Parameters of Test Scenarios

Parameters of Intermediate Models

Parameters of Environment Models

Figure 7.14.: Mapping of parameters between test scenarios, intermediate models, and
environment models.

possibilities are too vast—especially if the number of possible dynamic objects in the
abstract representation of the test scenarios is not limited.
The parameters of the environment models for the behavior of dynamic objects have
to be calculated from available parameters of the test scenarios or estimated based on
additional heuristics, e.g., risk-based heuristics (cf. [MG14]). In the case study on the
lane change assistant, VTD requires absolute velocities for the modeling of vehicles. The
absolute velocities of vehicles are calculated for the simulations from the recorded relative
velocity of the automated ego vehicle and the relative velocity of each vehicle.
For the calculation of values for missing parameters and parameters with mismatching
value domains in the environment model, the parameters from the test scenarios have to
be mapped to the required parameters of the environment models for each simulation
framework. The calculations may include simple inversions of the calculation from
input abstraction of the runtime monitoring framework (cf. Section 6.1.1) or complex
estimations based on physical models, e.g., vehicle dynamics.
An approach to address the mapping of parameters between test scenarios and envi-
ronment models is the introduction of an intermediate model (cf. Fig. 7.14). This
intermediate model aggregates all predictable parameters which environment models
of any simulation framework might require. Therefore, the set of parameters in the
intermediate model contains more parameters than any individual simulation frameworks
requires for the environment modeling. The intermediate model may contain multiple
parameters for one real-world property but each parameter with different value domain.
One example of such parameters would be the different definition of object position and
object orientations in diverging coordinate systems.
The intermediate model decouples the refinement of test scenarios from their modeling
in specific simulation frameworks (cf. Fig. 7.14). Different simulation frameworks can
be used for the simulation of test scenarios without adapting the calculations in the
refinement of test scenarios. Fixed mappings are defined between the parameters of the
intermediate model and the environment model parameters of each simulation framework.
Parameters which required by the environment models of each simulation framework
are individually mapped to the intermediate model. Each parameter of the simulation
framework is represented by exactly one parameter in the intermediate model but not

250

7.2. System Evolution

each parameter of the intermediate model has to be mapped to a parameter of the
simulation framework.
The transformation from test scenarios to the intermediate model can be defined inde-
pendently from their modeling as environment models in simulation frameworks. As
shown in Fig. 7.14, the relation between parameters of test scenarios and the intermediate
model is n:n. One parameter of the test scenarios can be used in calculations for multiple
parameters of the intermediate models and parameters of the intermediate model may re-
quire the consideration of multiple parameters from the test scenarios. Nevertheless, The
calculation in the transformation of parameters from test scenarios to the intermediate
model remain fixed as long as the intermediate model is not changed.
The possible expressiveness of simulations can be estimated before the transformation
from test scenarios based on the parameters of the intermediate model. Parameters of
the intermediate model which can be processed from the test scenarios can be compared
to the parameters of the intermediate model which are required for simulations by the
simulation framework. Different types of simulations may require different information
to be recorded by the test scenarios.
For example, weather can only be simulated if the runtime monitoring and test scenarios
have recorded any information about the current weather. Another example would be
the recording by surrounding traffic on neighbor lanes. While the recording of preceding
objects in the current lane would be sufficient for an ACC, this information would not
be sufficient for the testing of a lane change assistant in simulations.
The transformation of parameters from the test scenarios into parameters of the interme-
diate model may result in fuzzy parameters for the intermediate model. The next section
describes the resolution of fuzzy parameters for the intermediate model in order to use
these parameters in the environment models of the different simulations frameworks.

7.2.3.3.2. Fuzzy Model Parameters

The transformation of parameters with abstract domains from the test scenarios into
parameters of the intermediate model may result in fuzzy parameters for the intermediate
model which cannot directly be incorporate in the environment models of the simulation
frameworks. Fuzzy parameters contain intervals of values but not single absolute values.
The input abstraction of the runtime monitoring framework processes multiple physical
values for data parameters of the autonomous vehicle systems to identical abstract values
of corresponding parameters in the abstract situation. The inherent abstraction of the
abstract situation is responsible for the intervals for fuzzy parameters in the intermediate
model in the test scenarios. In the case study on the lane change assistant, the position
of dynamic objects is defined by their position on lanes and relative to the automated
ego vehicle and not as absolute coordinates in the global system of VTD.

Definition 7.7 (Fuzzy Parameter). A fuzzy Parameter is a parameter which does
not contain a single absolute value but an interval of possible values. In the case
of the runtime monitoring, this interval resides from the inherent abstraction of the
runtime monitoring framework.

251

7. Operation Analysis and System Evolution

Simulation frameworks require for each parameter of their environment models exactly
one single absolute parameter value. For any fuzzy parameter of the intermediate model
which are required by the simulation framework, reasonable candidates have to be chosen
from the interval of abstract values. These candidates can be determined from the
abstract value intervals arbitrarily or structured by, e.g., equivalence partitioning under
consideration of value limits or heuristics—e.g., risk-based heuristics (cf. [Agg14; MG14;
MPB09; Sch+14]). As a result, a set of concrete values is determined as candidates for
each fuzzy parameter.

The resolution of fuzzy parameters substitutes the intermediate model with the fuzzy
parameters by a new set of intermediate models which solely contain concrete values
for all parameters (cf. Fig. 7.14). Each intermediate model of this set represents a
combination of a single candidate for each fuzzy parameter. The non-fuzzy parameters
are identically used in all intermediate models. These intermediate models describe the
same abstract test scenario but with different values for parameters which have not
been recorded by the runtime monitoring framework. These parameterizations of a test
scenario are called test cases. A test case can directly be transformed into an environment
model for simulation in the system verification. Multiple test case can be defined for one
test scenario.

For the lane change assistant, test cases were manually defined for each of the seven test
scenarios. A basic set of road layouts has been defined which could be used to model the
changes in the scenery in the test scenarios. These layouts consist of multi-lane highways
with different patterns of lanes and different markings types. The main road layout for
the modeling of new test cases from the recordings has been a highway with three lanes
and standard markings (solid at the sides and dashed between the lanes).

Fuzzy parameters in the abstract situations from the runtime monitoring of the lane change
assistant have been resolved for the modeling of the test scenarios in VTD by manually
selecting one parametrization for each test scenarios from all possible combinations of
candidate values for fuzzy parameters in the test scenarios. For example, the runtime
monitoring framework has only recorded velocities of dynamic objects relative to the
automated ego vehicle, but VTD requires absolute velocities for each dynamic object.
An intermediate model has not been defined in the case study (cf. Chapter 8). The
selected test cases have been manually modeled as environment models for simulations
in VTD. Results from the verification of the lane change assistant in these simulations
are presented in Chapter 8.

The following section assesses the evolution of autonomous vehicle systems and the
generation of test scenarios and test cases based on results by the runtime monitoring
during operation in the real world.

252

7.3. Assessment of System Evolution and Test Generation

7.3. Assessment of System Evolution and Test
Generation

The runtime monitoring of autonomous vehicle systems during operation in the real world
contributes to the safety of these systems. The initiation of safety measure for unsafe
system behavior and unknown traffic situations ensures the safety of autonomous vehicle
systems during operation. The recordings of unsafe system behavior and unknown traffic
situations enable the persistent improvement of autonomous vehicle systems. System
faults and risky behavior are resolved in further development iterations. System limits
are elaborated in extensive simulations. Despite these benefits also limitations have to
be considered for conclusions on the safety of autonomous vehicle systems from results
of the runtime monitoring during operation.
Prerequisites for accurate runtime monitoring results are the correct abstractions of
system inputs and outputs by the runtime monitoring framework (cf. Section 6.4). Results
about the correctness from operation in the real world and verification in simulations of
autonomous vehicle systems can be compared to validate the correctness of the input
abstraction. All abstract situation of the tested situation knoweldge must be verified in the
simulations of the system verification and therefore have exhibit correct system behavior.
Any encountered incorrect but tested abstract situation indicates a faulty implementation
of the input abstraction or abstract function. The situation has been differently verified
in the simulations by the same runtime monitoring framework as during operation in the
real world. Therefore, a 0 percentage of incorrect and tested indicates the correctness of
the implemented abstraction of traffic situations.
The complexity of test scenarios and test cases for the verification of autonomous vehicle
systems is subject to the complexity in the definition of abstract situations from the
specifications of these systems. Test scenarios and test cases can only model real-world
objects which have been considered by the runtime monitoring and specifications of the
autonomous vehicle systems. Undefined real-world objects, which are not reflected in
the recordings of abstract situations by the runtime monitoring, are hidden from the
test scenarios. The completeness of the system specification is essential for the validity
of runtime monitoring results and test scenarios for the real world. The specification
of autonomous vehicle systems has to be extended by encountered unknown objects in
order to consider these objects in abstract situations and test scenarios.
Conclusion about the safety of autonomous vehicle system from these runtime monitoring
results for the complete the real world have to consider the distribution of traffic situations
in the corresponding test drives. The engineering approach can only define test scenarios
for situations which have been monitored and recorded during operation in the real world.
The occurrence of traffic situations in the real world follows a normal distribution. The
runtime monitoring is likely to encounter the same traffic situations frequently during
the operation in the real world. Everyday traffic situations are frequently encountered
and recorded by the runtime monitoring during operation in the real world. Critical
situations are less common in the real world and, therefore, less frequently recorded.
The distribution of traffic situations during operation in the real world reflects itself in

253

7. Operation Analysis and System Evolution

the generated test scenarios for the verification of autonomous vehicle systems in the
real world. Though critical situations provide the most impact for the verification and
validation of autonomous vehicle systems the autonomous vehicle systems are more likely
to be quickly improved and verified for everyday traffic situations than critical situations.
Statistically, the total number of critical situations increases with the number of driven test
miles. Considerable test mileage is required to encounter and record sufficient numbers of
critical situations. Large fleets of prototype vehicles may help to accumulate large mileages
in short duration of time but would diminish the costs benefits of simulations in comparison
to field operational tests for the verification of autonomous vehicle systems. The operation
in the real world has to be systematically planned to increase the probability of encounter
with less frequent but safety-critical traffic situations. The runtime monitoring can
support this systematic planning by classifying the impact of individual roads for the
safety verification of autonomous vehicle systems. Test drives can be planned to include
a broad distribution of traffic situations.
The identification of test scenarios from traces of recorded abstract situations and the
fuzzing of test scenarios by test cases can address the limitations of test scenarios due
to the distribution of traffic situation. The test suite should comprehensibly verify the
behavior of autonomous vehicle systems in a vast number of everyday and critical traffic
situations with a small number of test cases in order to have a significant impact on
the scope and validity of the system verification. Otherwise, the costs and time for
the verification of autonomous vehicle would diminish the benefits of simulations in
comparison to field operational tests.
The situation graph can help to create additional tests scenarios by combining previously
unrelated sequences of abstract situations. Segments from different traces of abstract
situations can be combined to form new traces and test scenarios. However, these new
test scenarios may model unrealistic behavior by dynamic objects and unrealistic changes
in the scenery because they have not been monitored and recorded in the real world.
Checks for the realism of test scenarios have to be introduced in order to ensure the
realism, validity, and efficiency of the system verification.
An impact on an efficient verification of autonomous vehicle systems has the fuzzing.
Fuzzing of abstract parameters in test scenarios by combinations of concrete parameters
in the test case enables to systematically and effectively explore the concrete parameter
space for the system limits. Concrete parameter combinations have to be selected
intelligently as candidates for the definition of test cases in order to sufficiently cover the
parameter space of autonomous vehicle systems and their environments with a limited
number of test cases.
Without proper realism checks and intelligent fuzzing, a large number of traffic cases,
vast numbers of test scenarios and test cases would be created for the verification of
autonomous vehicle systems. Would verify The behavior of autonomous vehicle systems
would be verified for similar everyday traffic situations for long durations of time with
little to none benefit for the safety assurance of these systems. Novel metrics have to be
introduced to quantify and rate the impact of individual test scenarios and test cases for
an impactful but efficient test suite.

254

7.3. Assessment of System Evolution and Test Generation

Engineers manually implement the suggested improvements for autonomous vehicles
systems based on the result of the runtime monitoring and system verification. Any system
improvements can introduce new faults to the specification, design, and implementation
of the autonomous vehicle systems. A systematic improvement process could support the
correct implementation of system improvement and reduce the possibility of new system
faults. The verification of the autonomous vehicle systems for existing and new test cases
from the runtime monitoring results is inevitable. The test cases have to comprehensively
verify the improvements of system faults and unsafe system behavior for autonomous
vehicle systems under preservation of already correct and safe functionalities.
The following section presents the case study for the presented engineering approach on
an industrial lane change assistant.

255

8. Case Study
The engineering approach (cf. Section 4.3) has been evaluated on a lane change assistant
(cf. Section 3.1) in a project with academic and industrial partners. The setup and
results from this evaluation are presented in the following sections.

8.1. Evaluation Setup
For the evaluation of the engineering approach (cf. Section 4.3), one of the project
partners provided us with an industrial prototype of highway pilot. This highway pilot
includes a lane change assistant (cf. Section 3.1) which has been used for this evaluation.
In the course of this evaluation, two configurations are used. The first configuration
utilizes the simulation framework VTD in order to simulate a virtual world in which
the highway pilot operates (cf. Chapter 5). The second configuration substitutes the
simulation framework with recordings of real-world tests drives. The simulation framework
executed the lane change assistant in an closed-loop while the recordings only allowed an
evaluation of the lane change assistant in an open-loop (cf. Section 2.1.5). The following
sections describe each configuration in more detail.

8.1.1. Highway Pilot with Lane Change Assistant
Our project partner provided us with the software components and the software execution
platform of a highway pilot as well as recordings from test drives with prototype vehicles
on public roads. The highway pilot has included a lane change assistant alongside other
vehicle functions, e.g., ACC or LKAS. Recordings of real test drives were used in the case
study because prototype vehicles were not available for the evaluation of the operational
part of the engineering approach (cf. Section 4.3).
The provided software of the highway pilot consists of all necessary functional components
for the environment perception and decision making (cf. Fig. 3.3). Our project partners
had implemented each component as ADTF filters. ADTF filters are essentially C/C++
dynamic libraries. We were unable to introduce any adjustments or changes to these
software components of the lane change assistant because the project partners only had
provided us with the binaries files of the ADTF filters but not with the corresponding
sources.
The provided software of the highway pilot was envisaged for its usage in the simulation
framework VTD and missed sensor, actuators, and components for the processing of the
sensor and actuator data. The perfect object data from the simulations substitute the
sensors and their preprocessing of sensor data while data for the vehicle actuators are

257

8. Case Study

directly forwarded to the vehicle model of the simulations (cf. Fig. 5.3). Nevertheless, all
provided software components of the highway pilot can be assigned to one of the three
segments of the system layer — preprocessing, function, and postprocessing (cf. Fig. 5.1).

8.1.2. Runtime Monitoring Framework
The runtime monitoring framework (cf. Fig. 5.1) for the monitoring of the lane change
assistant in simulations and during operation implements the requirements of the lane
change assistant (cf. Section 3.2). Each requirement was transfered into a typed
first-order logic formula (cf. Section 6.2.2.2.6). Based on these formulas, the input
abstraction, output abstraction, abstract function, situation monitoring, conformity oracle,
and situation oracle have been manually implemented as individual ADTF filters (cf.
Section 6.2). The data structure of the abstract situation for the lane change assistant is
presented in Fig. A.2. Figure A.1 shows the data structure of the abstract target in this
case study.
The scope of the runtime monitoring in the evaluation was on thelane change assistant.
Other functions of the highway pilot, e.g., ACC or LKAS, were not monitored in the
evaluation. Two interfaces between runtime monitoring framework and highway pilot
were defined for the access of the pilot’s runtime data:

Input of the lane change assistant: The input abstraction receives the situation (cf.
Fig. 3.9) at the interface between the components function specific scene augmenta-
tion and situation assessment & situation predication of the lane change assistant
(cf. Fig. 3.3).

Output of the lane change assistant: The output abstraction is attached to the inter-
face between the components lane change assistant and aggregation (cf. Fig. 3.3
in order to receive the processed target point by the lane change assistant (cf.
Fig. 3.13).

In each processing cycle, runtime data via these two interfaces is forwarded to the
input abstraction resp. output abstraction for the qualitative and quantitative runtime
monitoring (cf. Section 6.2.3.4 and Section 6.2.3.5). The runtime monitoring framework
evaluates the lane change assistant based on the provided runtime data and recorded
faulty behavior of the lane change assistant and unknown abstract situation in log files
(cf. Section 6.2.3.6).

8.1.2.1. Simulation Framework

The simulation framework VTD was employed in the evaluation for system verification
of the lane change assistant (cf. Section 8.2.1.1) and for the imitation of the system’s
operation in the real world on test tracks in random traffic (cf. Section 8.2.2) The technical
configuration of the simulation consisted of two separated computers (cf. Fig. 8.1).
Computer 1 executed the highway pilot in ADTF and the simulation framework VTD

258

8.1. Evaluation Setup

Runtime Monitoring Output
(ADTF)

Highway Pilot
(ADTF)

Simulation Framework
(VTD)

Computer 1

Runtime Monitoring Framework
(ADTF)

Computer 2

Ethernet

Figure 8.1.: Physical evaluation setup.

while Computer 2 executed the runtime monitoring framework in ADTF. Both computers
were connected via a Ethernet network.
For the runtime monitoring of the lane change assistant, two components of the runtime
monitoring framework (cf. runtime monitoring output in Fig. 8.1) were integrated into
the ADTF instance of the highway pilot on Computer 1. In each processing cycle, these
components collect the runtime data at the two interfaces and transfer the collected data
via the Ethernet connection to the runtime monitoring framework on Computer 2. The
runtime monitoring framework on Computer 2 evaluates the behavior of the lane change
assistant based on the provided data and records faulty behavior and unknown abstract
situation.
The closed loop between the simulation in VTD and the highway pilot was established
on Computer 1 (cf. Section 2.1.5). In each processing cycle, the highway pilot receives
the current environmental situation from the simulation and processes corresponding
maneuvers to safely drive the automated ego vehicle in the simulation. Instead of fuzzy
sensor data, exact positions of static and dynamic objects in the simulation are used
as inputs for scene modeling of the highway pilot. The final maneuver as the output of
component aggregation is transferred via the model of the vehicle dynamics back into
the simulation. The vehicle dynamics model substitutes the real actuators of the vehicle
in the simulations.

8.1.2.2. Recordings from Real World Test Drives

Recordings from test drives with prototypes vehicles on German highways A 2 and A39
were used in addition to the simulation framework VTD because no prototype vehicle
was available for the deployment of the runtime monitoring framework and its operation
in the real world. The recordings had been recorded prior by one of the project partners
before the case study. Even though the runtime monitoring framework could not be
evaluated inside a real vehicle while operating in the real world, these recordings have
enabled a more realistic evaluation of the runtime monitoring during operation than the
simulations on virtual test tracks with random traffic.
The prototype vehicle which was used for the recording had two standard computers in
the trunk for the processing of the highway pilot (cf. Fig. 3.16). The highway pilot in

259

8. Case Study

the prototype vehicle was implemented as ADTF filters in the same version as used in
the VTD simulations. The usage of ADTF enabled to replay of any recorded signal data
of the highway pilot in the case study.
In the experiments with the recordings, the highway pilot was evaluated in an open-loop
(cf. Definition 2.21) because the simulation framework VTD was substituted by the
recordings. Recorded sensor data from the real sensors were used as input to the scene
modeling of the highway pilot (cf. Fig. 3.3).
The output of the highway pilot— the final target point by the component aggregation
(cf. Fig. 3.3)—remained unused for the recordings. The recordings did not offer the
possibility to change a virtual environment in reaction to the behavior of the vehicle
resp. the highway pilot. However, the behavior of the highway pilot in this experiment was
consistent in its behavior in the prototype vehicle because the versions in the prototype
vehicle and the simulations were identical.

8.2. Evaluation Results
In the course of this thesis, three conjectures have been revealed for the engineering
approach (cf. Section 4.3). These conjectures have been addressed by the result of the
case study on the lane change assistant. The three conjectures are:

C1. Inadequacies by the inherent abstraction of the runtime monitoring framework will
reveal themselves in results of the runtime monitoring.

C2. Manually modeled traffic scenarios, and randomized simulations lack necessary
realism, not for the validation of autonomous vehicle systems.

C3. Tests based on runtime monitoring results in realistic traffic allow achieving a
satisfiable coverage of real-world situations.

Two experiments were executed on the lane change assistant for the investigation of
these three conjectures. These two experiments represent the workflow of the engineering
approach (cf. Fig. 4.1) and distinguish themselves into runtime monitoring within the
system verification of the lane change assistant and runtime monitoring of the lane change
assistant during operation. For the evaluation, the runtime monitoring of the lane change
assistant during operation, simulations of randomized traffic in VTD and recordings from
real-world test drives on Germany Highways were introduced.
The experiments in this evaluation are:

Experiment E1. Verification of lane change assistant by the runtime monitoring frame-
work and recording of the tested situation knowledge in simulations of 22 manually
modeled test case as well as runtime monitoring of the lane change assistant with
the tested situation knowledge in simulations with randomized traffic and recordings
from real-world test drives.

260

8.2. Evaluation Results

Experiment E2. Training of the runtime monitoring framework in simulations of seven
“real worlds” test cases and runtime monitoring of the lane change assistant in the
recordings with the extensive tested situation knowledge by the seven additional
test cases.

The results from these experiments are presented in the following sections.

8.2.1. Experiment E1
The first experiment E1 used manually modeled test cases to verify the lane change
assistant for simulations in VTD and to record encountered abstract situations as tested
situation knowledge for the runtime monitoring of the lane change assistant during
operation. As no prototype vehicle had been available for the deployment of the runtime
monitoring framework and its application in the real world, simulations in VTD on virtual
tracks with randomized traffic and recordings from test drives on German highways were
used. Experiment E1 has addressed the conjunctures C1 and C2.

8.2.1.1. System Verification with Manually modeled Test Cases

Experiment E1 commenced with the training of the runtime monitoring framework for a
set of manually modeled test cases. One of the project partners manually modeled eight
test scenarios based on the requirements of the lane change assistant from Section 3.2.
Each test scenario defined the basic road layout, the number of dynamic objects, and
their basic behavior. An overview of the eight test scenarios for the lane change assistant
is given in Appendix A.2.
For the system verification of the lane change assistant, the eight test scenarios were
refined and parameterized by 24 test cases (cf. Section 7.2.3.3). Each test case finalizes
the road layout and behavior of dynamic objects by defining mutable physical parameters,
e.g., the curvature of the road or the velocity of dynamic objects (cf. Appendix A.2). In
addition to the definition of road layout and object behaviors, the expected behavior for
the lane change assistant is defined in each test case.
The lane change assistant was verified for each test case by a simulation in VTD. A
environment model defined for each test case the virtual world in the corresponding
simulation (cf. Section 6.3.1). The duration of the test cases resided under 60 seconds—
with one exception—accumulating to a total test duration of 14 minutes and 48 seconds.
The behavior of the lane change assistant in these simulations has been evaluated in two
ways—manually and by the runtime monitoring framework. The evaluation results are
presented in the following sections.

8.2.1.1.1. Results of Manual Evaluation

The exhibited behavior by the lane change assistant in the simulations of each test case
has been manually evaluated by one of the project partners in comparison to the expected
behavior of each test case. As shown in Table 8.2, 22 test cases from the 24 defined test
cases have been evaluated as successful.

261

8. Case Study

Table 8.1.: Result of the manual evaluation for the manually modeled test cases.
Test Case Test Scenario Duration Manual

Verdict
Test Case 1 Scenario 1 50.115 sec Success
Test Case 2 Scenario 1 61.175 sec Success
Test Case 3 Scenario 1 50.715 sec Success
Test Case 4 Scenario 2 40.135 sec Success
Test Case 5 Scenario 2 40.175 sec Success
Test Case 6 Scenario 2 40.115 sec Success
Test Case 7 Scenario 3 40.175 sec Success
Test Case 8 Scenario 3 40.115 sec Success
Test Case 9 Scenario 3 40.115 sec Success
Test Case 10 Scenario 3 40.115 sec Success
Test Case 11 Scenario 4 40.115 sec Success
Test Case 12 Scenario 4 40.115 sec Success
Test Case 13 Scenario 4 40.115 sec Failure
Test Case 14 Scenario 5 21.335 sec Success
Test Case 15 Scenario 5 25.735 sec Success
Test Case 16 Scenario 5 27.995 sec Success
Test Case 17 Scenario 5 28.475 sec Success
Test Case 18 Scenario 6 24.315 sec Success
Test Case 19 Scenario 6 28.335 sec Success
Test Case 20 Scenario 7 27.475 sec Success
Test Case 21 Scenario 7 38.715 sec Success
Test Case 22 Scenario 7 28.835 sec Success
Test Case 23 Scenario 8 40.175 sec Failure
Test Case 24 Scenario 8 33.755 sec Success

Total Test Duration 14 min 48 sec

The lane change assistant failed to exhibit the anticipated behavior in 2 of the 24 test
cases. For the third test case of test scenario 4 (cf Table A.7), the highway pilot was
not able to establish the initial position of the test case by positioning and driving the
automated ego vehicle with a predefined offset to its lane center. Changes to the source
code of the highway pilot would have been necessary. The first test case of scenario
8 (cf. Table A.8) has been evaluated as unsuccessful by project partners, because the
lane change assistant failed to change its lane onto an off-ramp from the mid lane of a
three-lane highway through a convoy of vehicles driving on the right highway lane with
short gaps between the vehicles. This fault was communicated to the developers of the
lane change assistant and resolved in a later version of the system.

262

8.2. Evaluation Results

8.2.1.1.2. Results of the Runtime Monitoring

In addition to the manual evaluation by project partner, the runtime monitoring frame-
work has evaluated the correctness and safety of the lane change assistant (cf. Section 5.4)
in the simulations for the 24 test cases. The foundation for this evaluation were the
requirements for the lane change assistant from Section 3.2.
In each processing cycle of the lane change assistant, the runtime monitoring framework
processed the current abstract situation and evaluated all conditions in the system
requirements for this abstract situation. A test case has been evaluated as a failure by
the runtime monitoring framework if a condition in any abstract situation was violated.
The results of the runtime monitoring in the simulations of the manually modeled test
cases are presented in Table 8.2. In addition to the verdict of the runtime monitoring
framework, Table 8.2 also shows the numbers of encountered, unique, recorded, and
faulty abstract situations for each test case. The numbers of recorded abstract situations
represent the amount of abstract situation which have been recorded by the runtime
monitoring for the tested situation knowledge in each test case (cf. Section 8.2.1.1.3). The
test cases have encountered in average approx. 1, 678 total situations per minute, approx.
20.78 unique situations per minute, and recorded approx. 18.58 situation per minute for
the tested situation knowledge. The test cases have verified the lane change assistant
in simulations for a total duration of 14 minutes and 48 seconds and have accumulated
25,155 abstract situations in total and 301 total unique abstract situations—including
duplicated abstract situations (cf. Table 8.2).
The runtime monitoring framework has evaluated the behavior of the lane change assistant
in the simulations with regard to its requirements (cf. Section 3.2) for 8 test cases as
unsafe and 16 test cases as safe and correct. Three main reasons can be identified for the
eight failed test cases. Real faults in the execution of lane changes represent the first
reason. The behavior of lane change assistant in test cases 7, 8, and 10 have violated
in more than 100 situations at least one requirement of the lane change assistant (cf.
Section 3.2).
The second reason for failed test cases was the missing information about positions
of on-ramps and off-ramps. The lane change assistant did not provide the runtime
monitoring framework with sufficient data about the position and length of on-ramp
and off-ramps. This missing information prohibited any evaluation of test cases with
the restriction on lane changes in proximity of these ramps. The runtime monitoring
framework evaluated the behavior of the lane change assistant in test cases 15, 16, and
17 for 64 to 85 abstract situations as unsafe. This inadequacy also has affected successful
test cases. Even though on-ramps were not correctly recognized for test cases 20, 21, and
22, the behavior by the lane change assistant in these test cases complied with its system
requirements (cf. Table 8.2).
The third reason for failed test cases is a diverging interpretation of lane markings.
The lane change assistant has interpreted unknown markings as non-existing and has
allowed lane change between lanes over these unknown markings. The runtime monitoring
framework evaluated unknown markings as restricted markings and denied any lane
changes between lanes with unknown markings between them. As result, all lane changes

263

8. Case Study

Table 8.2.: Result by the runtime monitoring for the initial set of test cases.
Test Case Result Situations Remarks

Total Unique Faulty Recorded
Test Case 1 Success 1233 15 0 14
Test Case 2 Success 1411 6 0 4
Test Case 3 Success 1438 19 0 17
Test Case 4 Success 1201 14 0 13
Test Case 5 Success 1152 12 0 11
Test Case 6 Success 1360 4 0 4
Test Case 7 Failure 1360 16 103 14 failure while

lane changing
Test Case 8 Failure 1341 15 107 13 failure while

lane changing
Test Case 9 Success 1315 16 0 11
Test Case 10 Failure 1111 11 110 10 failure while

lane changing
Test Case 11 Success 1152 14 0 12
Test Case 12 Success 1353 20 0 16
Test Case 13 Success 1155 14 0 12
Test Case 14 Success 476 5 0 4
Test Case 15 Failure 593 8 82 8 off-ramp not

recognized
Test Case 16 Failure 734 14 84 13 off-ramp not

recognized
Test Case 17 Failure 728 16 57 16 off-ramp not

recognized
Test Case 18 Failure 584 9 95 9 unknown mark-

ing interpreted
as restricted

Test Case 19 Failure 763 17 96 17 unknown mark-
ing interpreted
as restricted

Test Case 20 Success 638 5 0 5 on-ramp not
recognized

Test Case 21 Success 1366 14 0 7 on-ramp not
recognized

Test Case 22 Success 663 10 0 10 on-ramp not
recognized

Test Case 23 Success 1270 25 0 24
Test Case 24 Success 771 2 0 2

Total numbers 25,155 301 266 734 (incl. dupli-
cates)

264

8.2. Evaluation Results

across unknown markings have been evaluated as unsafe by the runtime monitoring
framework (cf. test cases 18 and 19 in Table 8.2). In test cases 18 and 19, 93 resp. 95
abstract situations have been evaluated as unsafe by the runtime monitoring framework.
The evaluation of the lane change assistant has revealed the importance of precise
requirements. Misinterpretation and imprecision of requirements have to lead to the
most failures of test cases for the lane change assistant in addition to the real failures in
the execution of lane changes. Two test cases have been evaluated as a failure due to the
diverging interpretation of unknown lane markings.
The runtime monitoring framework initially evaluated all lane changes— including correct
and safe ones—as unsafe due to a misinterpretation of FR_2_3. The requirement
FR_2_3 had initially required that the lane change assistant would have to prevent
lane changes if the vehicle deviates more than 0.4 m from the center of its current lane.
However, any lane change by the vehicle between two lanes inherently deviates more than
0.4m from the center of the current driving lane. As a result, the runtime monitoring
framework evaluated the requirement FR_2_3 to be violated each time a lane change
was performed. For further evaluation, requirement FR_2_3 has been redefined to not
apply to lane changes which are in execution.
In addition to the qualitative evaluation of the behavior by the lane change assistant
in the 22 test cases, the quantitative runtime monitoring also recorded the encountered
abstract situations for later usage as tested situation knowledge in the runtime monitoring
during operation.

8.2.1.1.3. Recording of Tested Situation Knowledge

In addition to the qualitative runtime monitoring of the lane change assistant, the runtime
monitoring framework recorded the encountered abstract situations in each test for the
usage as tested situation knowledge during operation in simulations with random traffic
and real world recordings (cf. Section 8.2.1.2 and Section 8.2.1.3). In the simulation
of the test cases, the runtime monitoring framework operated in the recording state (cf.
Section 6.3.3) and has recorded in average approx. 28.88 abstract situations per second
(approx. 0.81 unique abstract situation per second). The exact numbers of encountered
and recorded abstract situations for each test cases are presented in Table 8.2.
As apparent from the total number of abstract situation and number of unique abstract
situations, single abstract situations occurred multiple times in the simulation of each
test case. Only the unique abstract situations are of interest for the tested situation
knowledge. Duplicated abstract situations have no benefit for the runtime monitoring
during operation and can increase the processing time of the runtime monitoring due
to longer searches for abstract situations in the tested situation knowledge. Therefore,
duplicated abstract situations were eliminated from the set of rerecorded abstract situation.
The remaining unique abstract situations were serialized and stored in an individual XML
file for each test case (cf. Section 6.3.3).
The results in Table 8.2 show that not all unique abstract situations were recorded by
the runtime monitoring framework. This problem is related to the implementation of
the runtime monitoring framework, timing and processing shortcomings of ADTF, and

265

8. Case Study

Table 8.3.: Test cases with abstract situations in the tested situation knowledge.
Test Case 1 Test Case 2 Test Case 3 Test Case 4 Test Case 5
Test Case 6 Test Case 9 Test Case 11 Test Case 12 Test Case 13
Test Case 14 Test Case 20 Test Case 21 Test Case 22 Test Case 23
Test Case 24

the utilization of the computational resources. In particular, the serializing of abstract
situation to XML files represented a bottleneck in comparison to the rate the runtime
monitoring framework received data from the lane change assistant.
As described in Section 7.1.2, the quantitative runtime monitoring during operation
requires the tested situation knowledge to contain solely abstract situations from test
cases which have been evaluated as successful. As any improvement of the lane change
assistant was impossible due to missing source files, only abstract situations, which had
been recorded in successful test cases, were used as tested situation knowledge for the
runtime monitoring during operation. Table 8.3 lists the 16 test cases whose abstract
situations were used for the quantitative runtime monitoring of the lane change assistant
during operation in simulations of VTD and recordings from real world test drives (cf.
Section 8.2.1.2 and Section 8.2.1.3).
The decision about the use of test cases and their abstract situations for the tested
situation knowledge was solely made based on the assessment by the qualitative runtime
monitoring in these test cases. The manual verdict was not considered for the selection
of test cases. Therefore, the abstract situations of Test Case 24 were included in the
tested situation knowledge for the operation.
The tested situation knowledge for the quantitative runtime monitoring of the lane change
system during operation in simulations and recordings of real-world test drives consisted
of 77 abstract situations. This number does not match the sum of recorded abstract
situations for all considered test cases. Even though duplicates are not recorded in the
simulations of the initial test cases, the combination of recording abstract situations from
different test cases for the tested situation knowledge can still include identical abstract
situations. These abstract situations are identified and filtered in the import process
of the XML files. As a result, only one instance of each recorded abstract situation is
included in the tested situation knowledge.
The results from the quantitative runtime monitoring of the lane change assistant during
operation are presented in the next sections.

8.2.1.2. Runtime Monitoring at Operation in Simulations with Random Traffic

For the runtime monitoring of the lane change assistant during operation, the simulation
framework VTD was used to model virtual test tracks and to generate random traffic.
Two cyclic highways have been modeled as test tracks. Test track I (cf. Fig. 8.2a)
represents cyclic test track with two lanes but only in one direction. The test track II
(cf. Fig. 8.2b) is provided with VTD and represents a city with junctions, lights, and a

266

8.2. Evaluation Results

(a) Simulation Test track 1. (b) Simulation Test track 2.

Figure 8.2.: Virtual test tracks for the runtime monitoring during operation.

complete highway ring. The evaluation on the second test track was solely performed on
the highway ring. The highway of the first test track is one directional and has two lanes
which are interrupted by one lane segments. The highway ring of the second test track
has permanently two lanes in both driving directions.
Vehicles were randomly spawned 200 units in front and behind the automated ego vehicle
for the evaluation of the lane change assistant on these two virtual test tracks. Up to
20 vehicles were present in the vicinity of the automated ego vehicle as random traffic.
Every new vehicle was spawned with randomized vehicle parameters, e.g., velocity and
acceleration, for every vehicle leaving the corridor of 200 units in front and behind the
automated ego vehicle. The vehicle parameters were not changed in the course of the
simulations. Vehicles leaving this corridor were removed from the simulations. The
random traffic required the lane change assistant to overtake random slower vehicles by
autonomously executing lane changes arbitrarily.
The lane change assistant was evaluated for each virtual test track two times for a
duration of approx. 10 minutes and has accumulated in average 18,365 abstract situations
of whom 549 abstract situations were unique (cf. Table 8.4). Each simulation itself
was unique due to the randomization of traffic. Therefore, the results from different
simulations on the same virtual test track are not comparable with each other.
While the lane change assistant autonomously drove in the randomized traffic, the runtime
monitoring framework evaluated the behavior of the lane change assistant regarding its
requirements (cf. Section 3.2) and assessed the encountered abstract situation in relation
to the recorded abstract situation in the tested situation knowledge. The results from the
runtime monitoring of the lane change assistant in the simulations on virtual test tracks
are presented in Table 8.4. The following sections discuss the results in more detail.

8.2.1.2.1. Results from the Quantitative Runtime Monitoring in Simulations

For the quantitative runtime monitoring in the simulations on the two virtual test tracks,
the runtime monitoring framework operated in the comparison state. The situation
monitor would evaluate if encountered abstract situations had been verified based on the

267

8. Case Study

Table 8.4.: Coverage of traffic situations after training the situation monitor.
Measurement Duration Situations [#] Tested [%] Not Tested [%]

[Min:Sec] Sum Unique Correct Incorrect Correct Incorrect

Track I (1) 10:37 18,419 567 14.92 0.0 85.07 0.01
Track I (2) 10:30 18,484 624 12.19 0.0 87.81 0.00
Track II (1) 10:48 18,679 488 15.58 0.0 82.25 2.17
Track II (2) 10:38 17,879 518 16.74 0.0 82.63 0.63

A2 5:53 7,078 1,078 0.68 0.0 96.62 2.70
A39 6:34 7,885 974 1.57 0.0 96.45 1.98

tested situation knowledge of 77 abstract situations from the simulation of the manually
modeled test cases (cf. Section 8.2.1.1.3).
The results of the quantitative runtime monitoring of the lane change assistant during
operation in simulations on the two virtual test tracks are shown Table 8.4. The
percentages of abstract situations in these simulations are given by the total numbers in
the columns Tested and Not Tested. From approx. 18, 365 encountered abstract situations
(approx. 549 unique abstract situations) in the simulations on the virtual test tracks
with randomized traffic within approx. 10 minutes only 12.19 % to 15.58 % of abstract
situations have been previously verified (Tested) in the simulations of the initial set of
test cases. The percentage of encountered abstract situations which are not contained in
the tested situation knowledge resides above 83 %. In comparison, the initial set of test
cases accumulated 25, 155 abstract situations (301 unique abstract situations) overall in a
total test duration of 14 minutes and 48 seconds (cf. Table 8.2 and Table 8.2). With the
initial set of test cases, at least 10 % of abstract situations in the simulations on the two
virtual test tracks have been verified.

8.2.1.2.2. Results from the Qualitative Runtime Monitoring in Simulations

As in the simulations for the initial set of the manually modeled test case, the runtime
monitoring framework evaluated the correct behavior of the lane change assistant in the
simulations on the two virtual test tracks with random traffic regarding its requirements
(cf. Section 7.1.1). Any abstract situations in which the runtime monitoring framework
logged wrong and unsafe behavior of the lane change assistant.
Table 8.4 displays the percentage of encountered abstract situations with correct and
safe system behavior (Correct) resp. critical and incorrect system behavior (Incorrect) in
relation to the percentage of tested resp. not tested abstract situations by the quantitative
runtime monitoring (cf. Section 8.2.1.2.1).
For the total number of Correct resp. Incorrect abstract situations in each simulation, the
corresponding sub-columns in the Tested and Not Tested columns have to be accumulated.
The percentage for correct abstract situations has resided above 97.83 %. Less than 2.17 %
of abstract situations which had not yet been tested have been evaluated as incorrect
and unsafe by the runtime monitoring framework for all simulations on the virtual test
tracks with random traffic.

268

8.2. Evaluation Results

The percentage of incorrect abstract situations in the set of tested abstract situations is an
important indicator for conjecture C1.—the soundness of the implemented abstraction
in the runtime monitoring framework (cf. Section 5.3). There must not exist any incorrect
but tested abstract situations.

Conjecture C1. Any inadequacies by the inherent abstraction of the runtime moni-
toring framework will reveal themselves in results of the runtime monitoring.
The number of incorrect but tested abstract situations is an indicator for inadequacies
of the abstraction in the runtime monitoring framework. In any tested abstract situa-
tions, the behaviors of the autonomous vehicle systems have to match their previous
correct and safe behavior in the simulations of the system verification. Inadequate
implementations of the abstractions in the runtime monitoring framework allow for
different system behavior to emerge in the same abstract situations. In the presence
of any incorrect but tested abstract situation, the runtime monitoring framework and
its inherent abstraction have to be revised.
The 0 % of incorrect and tested abstract situation in the case study of the lane change
assistant have indicated that an adequate abstraction had been implemented.

The significance of these simulations for the evaluation of the engineering approach is
limited. Simulations on virtual test tracks with randomized traffic lack the necessary
realism to sufficiently exhibit the extraordinary characteristic of the real word. For
example, ideal sensor models, which were used in these simulations, do not sufficiently
reflect the unique characteristic of real sensors and corresponding perception problems in
the real world. Furthermore, simulations are unlikely to sufficiently considered all types
of dynamic objects which autonomous vehicle systems encounter in the real world.
For the evaluation of the presented engineering approach, the unique characteristic of
the real world and their impact on the autonomous vehicle systems are of particular
interest. The engineering approach is envisaged to address the gap between realism and
replicability between the virtual world and the real world. Recordings from real-world
test drives on German highways were introduced in addition to the simulation on test
tracks. The recordings addressed the extraordinary characteristic of the real world. The
results from the runtime monitoring of the lane change assistant during operation in
these recording are presented in the following section.

8.2.1.3. Runtime Monitoring at Operation in Recordings from the Real World

In addition to the simulations on virtual test tracks with randomized traffic, two recordings
from test drives in prototypes vehicles on the German highways A2 and A39 were used
for the evaluation of the lane change assistant during operation. The configuration for the
usage of real-world recordings are documented in Section 8.1.2.2. All internal data signals
of the highway pilot had been recorded in the test drives and were replayed in ADTF for
the evaluation of the lane change assistant by the runtime monitoring framework in the
case study.

269

8. Case Study

0 180 360 540 720

0

200

400

600

800

1,000

Time [s]

U
ni
qu

e
Si
tu
at
io
ns

[#
]

A39
A2

Sim. Track 1
Sim. Track 2

(a) New situations over time.

1 10 100 1,000

1

10

100

1,000

Situations [−]

O
cc
ur
en
ce
s

[#
]

A39
A2

Sim. Track 1
Sim. Track 2

(b) Distribution of frequencies.

Figure 8.3.: Distribution of frequencies and discovery of situations over time.

The two recordings from the test drives on the German highways A2 and A39 provide
a more realistic environment for the operation of the lane change assistant than the
simulations in VTD:

Highway A2 consists of three lanes in each driving direction and is subject to a high
volume of road traffic.

Highway A3 consists of two lanes per direction hand is subject to mostly moderate road
traffic.

The configurations of the highway pilot and the runtime monitoring framework in the two
recordings were identical to the configurations in the simulations on virtual test tracks
with randomized traffic. As in the simulations, 77 abstract situations from simulations of
the manually modeled test cases were initially used as tested situation knowledge for the
quantitative runtime monitoring of the lane change assistant in both recordings.
The recording on the highway A2 had a duration of 5 minutes and 53 seconds and
has accumulated 7, 078 abstract situations in total (1, 078 unique abstract situations).
The recording from the A39 accumulated 7, 885 abstract situations in total (974 unique
abstract situations) in 6 minutes and 34 seconds. The results for the runtime monitoring
of the lane change assistant in both recordings are shown in Table 8.4. The following
section discusses the results in more detail.

8.2.1.3.1. Results from the Quantitative Runtime Monitoring in Recordings

The runtime monitoring framework has recorded in the recordings A2 and A39 significant
more unique abstract situations than in the previous simulations on virtual test racks with
randomized traffic, even though the duration of the recordings was significantly shorter.
As shown in Fig. 8.3a, new unique abstract situations are encountered significantly faster
in both recordings than in the simulations. The simulations contained higher quantities

270

8.2. Evaluation Results

of single abstract situations than abstract situations in the recordings on the two highways
(cf. Fig. 8.3b).
In addition to the increased discovery of abstract situations, the coverage of the 77
abstract situations by the tested situation knowledge has significantly dropped from at
least 12.18 % in the simulations to 1.57 % for the recording A39 resp. 0.68 % for the
recording A2 (cf. Table 8.4). The total numbers of encountered abstract situations in
the two recordings (approx. 7481.5 abstract situations in average) resided below half of
the numbers encountered in the simulation on virtual test tracks with random traffic
(approx. 18, 365 encountered abstract situations). The more substantial reduction for
the recording on the highway A2 is subject to the number of lanes for this highway. All
initial test cases model only two lanes. Recorded abstract situations in the simulations of
these test cases are more likely to occur in the recording on the A39 than in the recording
on the A2.

8.2.1.3.2. Results from the Qualitative Runtime Monitoring in Recordings

In addition to the reduced coverage of the tested situation knowledge in the recordings,
the larger numbers and variations of abstract stations in both recordings lead to an
increased percentage of incorrect abstract situations (cf. Table 8.4). The percentage of
incorrect abstract situations has increased to 1.98 % for recording A39 resp. 2.70 % for
recording A2. These percentages have been a significant increase considering the lower
number of total abstract situations in both recordings in comparison the numbers of
abstract situations in the simulations on virtual test tracks with random traffic. In both
recordings, there are no abstract situations which have been evaluated as incorrect but
had been successfully tested in the simulations of the initial test cases.
The results of the runtime monitoring in the two recordings with the tested situation
knowledge from the manually modeled test cases outline the conjecture C2.

Conjecture C2. Randomly simulated and manually modeled traffic scenarios lack
necessary realism not for the validation of autonomous vehicle systems.
The results for the qualitative and quantitative runtime monitoring of the lane change
assistant in the recordings of test drives on the German highways A2 and A39 show
that manually modeled test cases are not able to sufficiently represent real-world
traffic. The results of the runtime monitoring significantly diminish from simulations
on test tracks to recordings from real-world test drives (cf. Table 8.4).

The difference in the complexity of the manually modeled test scenarios and the complexity
in the real world is the reason for the shortcomings by the manually modeled test scenarios
and test cases for the coverage of abstract situations in the recordings of real-world test
drives on highways A2 and A39. Test engineers commonly verify the system for its
requirements in scenario-based testing by defining test scenarios with the lowest necessary
complexity (cf. Section 8.2.1.1.2). These scenarios are less likely to occur in the real
world.

271

8. Case Study

The coverage reduction for the tested situation knowledge and the increase of faulty
abstract situation in the recordings on the German highways have encouraged the definition
of additional test scenarios and test cases with realistic traffic from the log files of the
runtime monitoring framework for these recordings. The next section presents the second
experiment in which the lane change assistant was evaluated for seven additional test
scenarios and test cases.

8.2.2. Experiment E2
The runtime monitoring of the lane change assistant during operation for the two
recordings on the Germany highways A2 and A39 has disclosed that manually modeled
test case based on system requirements do not sufficiently represent traffic situations in the
real world. As a consequence of this result, seven additional test case were modeled based
on the logs of the runtime monitoring framework in the recording on the highway A2 (cf.
Section 8.2.2.1). The modeling of test cases from the results of the runtime monitoring
during operation concludes the round-trip of the presented engineering approach (cf.
Section 4.3.3).
Finally, the lane change assistant was verified in simulations of these seven test cases.
The encountered abstract situations in these simulations were recorded by the runtime
monitoring framework for the tested situation knowledge (cf. Section 8.2.2.2). The
runtime monitoring framework supervised the operation of the lane change assistant in
the recording on the highway A2 with the extended tested situation knowledge by the
recorded abstract situations from the additional test cases (cf. Section 8.2.2.3).

8.2.2.1. Modeling of Test Cases from Runtime Monitoring Results in Recordings

Seven test cases were defined based on the observed but untested abstract situations in
the recording from the highway A2. The recording from the A39 was not considered
for the modeling of test cases. The modeling of these realistic test cases was manually
performed similarly to the approach in Section 7.2.3. First, seven adjoint test scenarios
were identified in the log data in the recording A2. Each test scenario was refined by one
test case with one arbitrary parametrization of situation parameters (cf. Section 7.2.3.3).
The definition of the test scenarios commenced with the analysis of the log file from
the runtime monitoring of the lane change assistant during operation in the recording
on the highway A2. In the lists of abstract situations in this log file, changes of the
scenery as well as the behavior of dynamic objects were analyzed. For the scenery, one
fixed road layout—a highway with three lanes per direction—was defined for all seven
test scenarios. The behavior of dynamic objects was defined by manually identifying
all maneuvers of dynamic objects between two abstract situations. Multiple possible
sequences of abstract situations and maneuvers by dynamic objects were identified from
the log files (cf. Section 7.2.3.1). One of these sequences was arbitrarily selected for each
test scenario. A situation graph was not created in this analysis (cf. Section 7.2.3.1), but
ghosting objects were taken into account (cf. Section 7.2.3.1.3).

272

8.2. Evaluation Results

Table 8.5.: Runtime Monitoring Result from real world test cases.
Test Case Situations

Total Unique Faulty Recorded
Test Case 1 5675 69 0 57
Test Case 2 4582 125 0 113
Test Case 3 4771 65 0 59
Test Case 4 6926 43 0 27
Test Case 5 2757 31 105 27
Test Case 6 3878 37 110 33
Test Case 7 2550 53 217 40

The length of the test scenarios was manually decided based on the consistency of
behaviors by dynamic objects throughout the abstract situations. The test scenarios
were sliced at transitions between abstract situations where an abnormal behavior by a
dynamic object was identified.
Appendix A.3 presents detailed information about the seven additional test scenarios.
Each test scenarios contains in average ten dynamic objects in addition to the automated
ego vehicle. These dynamic objects perform more than ten maneuvers in each test
scenario. This practice ensures a consistent and realistic behavior of dynamic objects
throughout all seven test scenarios.
The seven test scenarios do not define all necessary parameters for simulations in
VTD. The missing parameters for modeling environment models in VTD were manually
interfered and defined by one test case for each test scenario (cf. Section 7.2.3.3). The
simulations of the seven test cases exhibited a significantly increased complexity in
comparison to the initial set of manually modeled test cases.
The results of the runtime monitoring framework in the simulation of the seven test cases
in VTD are presented in the next section.

8.2.2.2. Results from the System Verification with the Realistic Test Cases

The results from the runtime monitoring of the lane change assistant in the simulations
of the seven test cases are presented in Table 8.5. The seven test cases encountered in
average 4448 abstract situations. The numbers of unique abstract situations range from
31 up to 125. The reduction of recorded abstract situations is subject to the same timing
problems and resource limitation by ADTF as for the initial set of manually modeled
test cases (cf. Section 8.2.1.1.3).
For three of the seven test cases, the lane change assistant exhibited an incorrect behavior.
The runtime monitoring recorded at least 110 faulty abstract situations in the simulation
of test cases 5, 6, and 7. The missing source files of the lane change assistant made it
impossible to resolve this faulty behavior. The small number of additional test cases
required the usage of recorded situations from faulty test cases for the runtime monitoring
during operation (cf. Fig. 8.4a).

273

8. Case Study

Ba
se

TC
1
TC

2
TC

3
TC

4
TC

5
TC

6
TC

7

100

200

300

400

500

U
ni
qu

e
Si
tu
at
io
ns

[#
]

Trained Sit. (Cum.)
Trained Sit. (Base + TC)

(a) Simulated unique abstract situations.

Ba
se

TC
1
TC

2
TC

3
TC

4
TC

5
TC

6
TC

7
0

5

10

15

20

Te
st
ed

Si
tu
at
io
ns

[%
]

Tested Sit. (Cum.)
Tested Sit. (Base + TC)

(b) Coverage of observed situations.

Figure 8.4.: Coverage after training monitors with additional test cases generated from
observed situations.

Figure 8.4a compares the cumulative increase of recorded abstract situations (line) with
the increase of recorded abstract situations achieved by individual test cases (circles) for
the re-training of the tested situation knowledge in simulations of test cases (TC1 –TC7).

The numbers of recorded abstract situations per test case (circles) contains the previous
number of 77 abstract situations from the initial test cases (cf. Section 8.2.1.1.3) and the
additional abstract situations from each new test case. While the runtime monitoring
has recorded significant more abstract situations for test cases TC 1 and TC2 than the
base number from the initial set of test case, test cases TC4 and TC5 have added only
small numbers of new abstract situations.

The accumulated number of recorded abstract situation for the tested situation knowledge
(line) significantly increases from initial 77 abstract situations to 369 situations with
addition of the seven realistic test cases (cf. Fig. 8.4a). The cumulated number (line)
for each test case (TC1 –TC7) contains the recorded abstract situations of all previous
test cases— including the base number from the initial set of manually modeled test
cases—under elimination of duplicated abstract situations. The encountered abstract
situations in independent simulations of each test case correlate with the increase of the
tested situation knowledge of all test cases accumulated (cf. Fig. 8.4a).

The seven additional test cases significantly increase the number of verified abstract
situations. These abstract situations were are used as tested situation knowledge for the
runtime monitoring of the lane change assistant during operation. The next section
describes the runtime monitoring of the lane change assistant during operation in the
same recording on the highway A2 with the increased tested situation knowledge of 369
abstract situations.

274

8.2. Evaluation Results

8.2.2.3. Runtime Monitoring at Operation with knowledge of Realistic Test Cases

For the impact of realistic test cases, the lane change assistant was reevaluated for the
recordings A2 with the addition of the 369 recorded abstract situations from the seven
additional test cases. Simulations on the virtual test track with random traffic were not
considered for this re-evaluation due to their limited realism.
The small number of modeled realistic test cases required the consideration of abstract
situations from failed test case for tested situation knowledge in this experiment (cf.
Table 8.5). Therefore, the number of situations in the tested situation knowledge has
increased from 77 to 369 abstract situations with the seven realistic test cases— including
the faulty test cases 5, 6, and 7.
The results from the re-evaluation of the lane change assistant in the recording on the
German highway A2 with the seven additional test cases is shown in Fig. 8.4b. The
graph compares the cumulative percentage of tested abstract situations (line) with the
changes of tested abstract situations by individual test cases (circles). The set of 369
abstract situations in the tested situation knowledge increased the coverage of abstract
situations from 0.68% by the initial test cases to 10.37%.
The coverage of abstract situations in the recording A2 by individual test cases does
not directly reflect in the cumulated coverage(cf. Fig. 8.4b). Test case 3 (TC3) has
an average coverage of abstract situations in the recording but impacts the cumulate
coverage significantly more than the other test cases. Test case 5 (TC5) has a very
high percentage of tested abstract situations but the cumulated percentage does not
significantly increase with the addition of test case 5. While any previous test cases, i.e.,
test cases 1 and 2, have not encountered the abstract situations from test case 3 (TC3),
the predecessors of test case 5 (TC5) almost completely covered its abstract situations.
The number of faulty abstract situations for the re-valuation of the lane change assistant
in the recording A2 for the seven realistic test cases has not changed in comparison to
the initial evaluation with the initial set of manually modeled test cases. The percentage
of faulty abstract situations has remained at 2.70% (cf. Section 8.2.1.3.1).
The result of experiment E2 (cf. Fig. 8.4) show that the runtime monitoring of autonomous
vehicle systems allows for more realistic and efficient simulations in the system verification
of autonomous vehicle systems. Test scenarios and test cases model real-world situations
more accurate if they defined based on the results of the runtime monitoring during
operation.

Conjecture C3. Tests based on runtime monitoring results in realistic traffic allow
to achieve a satisfiable coverage of real-world situations.
The runtime monitoring of autonomous vehicle systems in the real world provides
data for the definition of test scenarios and test cases. These test scenarios and
test cases model real-world situations more accurate than requirements based test
scenarios and test cases. The impact of the more realistic test scenarios and test
cases have been reflected by the increased coverage of encountered traffic situations
for the recording on the German highway A2 in the case study (cf. Fig. 8.4).

275

8. Case Study

The histogram in Fig. 8.4a suggests that a satisfiable coverage of real-world situations
can be achieved by system verification in realistic simulations because the occurrence
rate of new unique situations in the histogram slows down over time. However, this
may only be valid for driving on highways. The number of possible situations in the
real world is vast— if not infinite— (cf. Section 3.8.1) and other domains, e.g., urban
roads, are likely to introduce new unknown traffic situations. For efficient verification
and validation, these crucial and unknown situations have to be identified. There
runtime monitoring in simulations of the system verification and during operation
can help to find and verify these crucial situations more efficient than requirements
based tests.

The results of the case study are summarized and assessed in the following section.

8.3. Summary and Assessment of the Case Study
The case study on a lane change assistant as part of a highway pilot (cf. Chapter 8)
supports the validity and impact of the proposed engineering approach for the development
and operation of autonomous vehicle systems. A complete round-trip has been exemplarily
performed in the case study The round-trip includes (cf. Section 4.3):

• the verification of the lane change assistant in simulations based on manually
modeled test cases,

• the runtime monitoring during operation in simulations of virtual traffic and
recordings of real-world test drives, and

• the definition and evaluation of additional realistic test scenarios and test cases
from recordings by the runtime monitoring in the recordings of real-world test
drives.

The evaluation of the runtime monitoring results in simulations and for the recordings
of test drives in the case study feature the possibility to evaluate the correctness of the
abstractions in the runtime monitoring framework (cf. Conjecture C1). The correctness
of the input abstraction of the runtime monitoring framework can be estimated based
on the percentage of tested and incorrect abstract situations. Any percentage of tested
and incorrect abstract situations than 0% indicates faults in the definition and/or
implementation of the runtime monitoring framework.
The first experiment in the case study discloses that manually modeled test cases
from system requirements are unlikely to realistically model the traffic situations which
autonomous vehicle systems will encounter in the real world (cf. Conjecture C2). Test
engineers tend to model the most straightforward test scenarios and test cases for the
verification of the addressed system requirements but do not incorporate real-world traffic.
The test scenarios and test cases modeled from the recording of abstract situation by the
runtime monitoring in the recording of the real world test drive of the first experiment
lead to significantly increased coverage of situations in these recordings.

276

8.3. Summary and Assessment of the Case Study

Statistics about the encountered situations from these experiments disclose that au-
tonomous vehicle systems encounter traffic situations in different quantities in the real
world and that rate at which new situations are encountered reduces with the number of
known traffic Situations. These statistics let suspect that a large number of real-world
situations for the operation on highways can be verified in the system verification (cf.
Conjecture C3).
The efficiency of the verification and validation in simulations is subject to the composition
of test scenarios and test cases. First, crucial and impactful situations and scenarios have
to be identified. The runtime monitoring of this work and large fleets of prototype vehicle
can help to increase corresponding data and identity such situations faster significantly.
Subsequently, identified situations and scenarios have to be efficiently combined.
The test suite should consist of a sufficient diverge set of test cases that cover a large
space of real-world situations with a low number of tests case. Not all test cases may
be as impactful in composition with other tests cases om the test suite as they are
individually (cf. TC5 in Fig. 8.4b). The result of the runtime monitoring in simulations
can be used as an indicator for the efficiency of the selected test suite.
The scope of this case study has been limited with its 24 initial and 7 additional test
cases, and two recordings from the real-world test drives. Unfortunately, the project in
which this case study has been performed was restricted by its duration and available
funds. An extensive case study with a large fleet of prototype vehicles would be desirable
to accumulate large quantities of real-world data for an exhaustive evaluation of the
engineering approach and to confirm the results of this case study. Furthermore, the real
prototype vehicle would enable to consider the implementation of the runtime monitoring
framework in real embedded systems without the usage of ADTF.
Nevertheless, the evaluation results of this case study indicate that tests in current state-
of-the-art simulation frameworks (at least in this evaluation) do not provide operation
condition to sufficiently resemble real worlds conditions on the roads for the verification of
autonomous vehicle systems. The realism in the simulations has to significantly converge
towards the real world in order for their results self-evidently transfer to the operation of
autonomous vehicle systems in the real world.
Amongst other things, the results of this evaluation are taken into account in the
discussion of the engineering approach and the assessment of the engineering approach
in the following section.

277

9. Conclusion
The previous chapters have extensively described the proposed engineering approach
for the integration of system development and system operation of autonomous vehicle
systems. This chapter summarizes the content of this thesis, discuss the engineering
approach and provides an outlook on future work.

9.1. Summary
Autonomous vehicle systems introduce new challenges for the development process in
the automotive domain. The analysis in Chapter 3 discloses several shortcomings in
the current development process for the environment perception and modeling, decision
making, and verification and validation of autonomous vehicle systems.
This thesis proposes an engineering approach as an extension of the current development
process by integrating runtime monitoring of autonomous vehicle systems in simulations
of the system verification and during operation in the real world in order to continuously
improve the safety of autonomous vehicle systems (cf. Chapter 4). A runtime monitoring
framework verifies the correctness and safety of the autonomous vehicle systems and
evaluates if encountered traffic situations have been verified in simulations of the system
verification. Traffic situations with incorrect and unsafe system behavior and unknown
and unverified traffic situations are recorded for system improvements.
A architecture is defined for the runtime monitoring consisting of 5 layers (cf. Chapter 5).
The system layer partitions the autonomous vehicle system into preprocessing, the
monitored function, and postprocessing. The interfaces between these parts are used by
the runtime monitoring to access the input and output data of the function.
In simulations, the preprocessing and postprocessing of autonomous vehicle systems are
partially or fully substituted by simulation frameworks. The runtime data from the
autonomous vehicle systems is abstracted by the input abstraction and output abstraction
of the abstraction layer. Traffic situations as input for the function are transformed
into abstract situations. Based on these abstract situations, the abstract function and
conformity oracle of the qualitative monitoring layer verify the correctness and safety of
the autonomous vehicle systems and situation monitor and tested situation knoweldge of
the quantitative monitoring layer evaluate the previous verification of abstract situations
in simulations.
The abstraction of the runtime monitoring framework is individually defined based
on the requirements of each autonomous vehicle system (cf. Chapter 6). The system
requirements are transformed into a typed first-order logic in a pattern-based analysis.
The wording of requirements in the specific pattern allows the identification of objects,

279

9. Conclusion

functions, and predicates for the typed first-order logic. The typed first-order logic
is considered in the definition and implementation of runtime monitoring components.
Object, functions, and predicates are included in the definition and implementation of
the abstraction layer. Predicates and formulas are considered for the implementation of
the qualitative monitoring layer.
The engineering approach uses the runtime monitoring framework identically in simula-
tions of the system verification and during operation of autonomous vehicle systems in
the real world. In simulations of the system verification (cf. Chapter 6), the qualitative
monitoring layer evaluates the behavior of the autonomous vehicle systems as test oracle
in addition to the manual evaluation by test engineers. The quantitative monitoring layer
records all encountered abstract situation in these simulations.
During operation in the real world, the qualitative monitoring layer evaluates the behavior
of the autonomous vehicle systems as in the simulations of the system verification. The
quantitative monitoring layer compares encountered abstract situation during operation
with the abstract situation from the simulations in the tested situation knowledge in order
to evaluate if the autonomous vehicle system has already been verified in the encountered
situations. The runtime monitoring during operation allows to initiate safety measures
in unknown situations and situations with incorrect and unsafe system behavior (cf.
Section 7.1.1) and to record these situations for improvement of the autonomous vehicle
systems and their simulations (cf. Section 7.1.2). This thesis has not addressed the
selection and execution.
Recorded abstract situation enable system engineers to analyze and improve autonomous
vehicle systems in additional development iterations by locating and resolving insufficient
system functionality. Test scenarios and test cases are defined for the system verification
based on the recorded situations. Test scenarios model the behavior of dynamic objects
and changes of the scenery on the abstract level of the system requirements. For
simulations in the system verification, test scenarios are transformed into test cases. These
test cases define concrete candidates for abstract parameters of the test scenarios. The
integration of simulations and operation in the real world by runtime monitoring enable
to iteratively extend the scope of safety assurance in the development of autonomous
vehicle systems.
The engineering approach has been evaluated in a case study on a lane change assistant
of an industrial highway pilot (cf. Chapter 8). In a first experiment, the lane change
assistant has been evaluated for a set of test cases which have been manually modeled
based on the requirements of the lane change assistant. Afterward, the behavior of
the lane change assistant has been monitored in simulations of virtual test tracks with
random traffic and recordings from real-world test drives with the recorded situations
from the simulations of the manually modeled test cases. The results by the runtime
monitoring in this first experiment show that the manually modeled test cases fail to
sufficiently address traffic situations in the real world.
As a consequence of the first experiment, seven additional test cases have been manually
modeled and simulated based on the runtime monitoring results from the recordings
of the real world test drives. In the reevaluation of the runtime monitoring results for
these real-world recordings, the tested situation knowledge from the seven additional

280

9.2. Discussion

real-world test cases significantly improved the coverage of encountered traffic situations
in comparison to the initial manually modeled test cases.
The following section discusses the impact of the proposed engineering approach for the
development of autonomous vehicle systems in more detail.

9.2. Discussion

The proposed engineering approach and runtime monitoring framework are envisaged to
support the development of safe autonomous vehicles. The following discussion assesses
the impact of the engineering approach for the development of autonomous vehicle
systems.

Research Goal: Enhancement of the current development practice for autonomous
vehicle systems into a holistic engineering approach supporting the qualitative and
quantitative supervision and estimation of correctness and safety by the seamless
integration of system development and system operation.
The research goal of this thesis is addressed by the proposed engineering approach
and its runtime monitoring in simulations and during operation in the real world.

The engineering approach is the first approach to integrate runtime monitoring in simu-
lations and during operation in the real world into a holistic approach (cf. research goal).
This holistic engineering approach enables more efficient development of autonomous ve-
hicle systems with an increased level of safety. Other approaches (cf. [Bac+15; Bac+17a;
Bac+17b; Zof+15]) only envisage the use of runtime monitoring from the operation in
the real world for simulations of the system verification but do not address the validation
of simulation results in the real world.
Car manufacturers require no significant changes to their current development process
for the application of the engineering approach in the development of autonomous vehicle
systems because the engineering approach is an extension of the currently prevailing
development process—the v-model (cf. [SZ13])— in the automotive domain. The
complete development of autonomous vehicle systems can benefit from recorded real-
world data by the runtime monitoring during operation. The most significant impact by
the engineering approach is on the system verification, validation, and operation in the
real world.
A runtime monitoring framework is introduced whose architecture enables the evaluation
of system behavior and its safe limits for autonomous vehicle systems in simulations and
during operation in the real world (cf. Chapter 5). Data about system behavior and
traffic situations can be transferred between system development and system operation
if the autonomous vehicle systems and their data interfaces to the runtime monitoring
framework remain unchanged between simulations and operation in the real world (cf.
research question 1).

281

9. Conclusion

Research question 1: Which are the necessary (technical) foundations for the
integration of system development and system operation in order to qualitatively and
quantitatively supervise and estimate the safety of autonomous system operating in
the real world?
The technical foundation for the integration of system development and system oper-
ation is directly addressed by the architecture of the runtime monitoring framework
(cf. Chapter 5). System layer and simulation layer define the integration of runtime
monitoring framework and autonomous vehicle systems in simulation and during
operation in the real world.

The runtime monitoring evaluates autonomous vehicle systems, their behavior, and their
safe limits in traffic situations on an abstract semantic level. This semantic level abstracts
from the characteristics of the internal data in autonomous vehicle systems and the real
world. The abstract semantic interpretation consists of qualitative properties which are
systemically derived from system requirements (cf. research question 2). In contrast to
most other runtime monitoring approaches, the semantic interpretation of the runtime
monitoring explicitly considers and monitors environmental situations.

Research question 2: How to identify and define qualitative properties for each
autonomous vehicle system that sufficiently represent its correctness and safety?
In the proposed engineering approach, qualitative properties for the runtime moni-
toring of autonomous vehicle systems are defined based on the system requirements
of these systems. The usage of system requirements for the definition of qualitative
properties enables the runtime monitoring in simulations and during operation in
the real world to monitor the behavior of autonomous vehicle systems and their
environments on an abstract semantic level instead of internal system signals.
The runtime monitoring is only able to verify the behavior of autonomous vehicle
systems for traffic situations which are sufficiently defined in the system requirements.
The complete and accurate description of system behavior and analogous traffic
situations by the requirements of autonomous vehicle systems are subject to the
result of the requirements engineering in the development of these systems.

The inherent semantic abstraction of the runtime monitoring is related to the way
engineers as well as the general public think about the behavior of autonomous vehicle
systems. Therefore, the runtime monitoring could be able to help engineers and non-
technical person to understand better the behavior of autonomous vehicle system in
order to raise the general acceptance of this technology (cf. [SSS17]).
The runtime monitoring in simulations and during operation in the real world enables
the transfer of data about the system behavior and environment to be shared between
simulations and operation in the real world. The qualitative properties of autonomous
vehicle systems can be monitored through their complete life-cycles— from requirements
analysis to system operation in the real world (cf. research question 3)

282

9.2. Discussion

Research question 3: How to monitor the qualitative properties and their scopes
throughout the complete life-cycle of autonomous vehicle systems— from system
specification, design, implementation, and verification to operation in the real world?
The integration of system development and system operation by the engineering
approach enables the qualitative and quantitative runtime monitoring to trace and
evaluate qualitative properties and their quantitative scopes through all activities of
the system life cycle. The considerations of qualitative properties throughout the
system development manifest themselves in the system implementation. Therefore, it
is sufficient to monitor the qualitative properties and their quantitative scopes for the
system implementation in simulations of the system verification and during operation
in the real world.

Runtime monitoring results from simulations of the system verification are incorporated
in the runtime monitoring of autonomous vehicle systems during operation in the real
world. The transfer of runtime monitoring results enables estimations about the realism
of simulations and the validity of their results for operation in the real world as well as
the identification and evaluation of verified limits for safe behavior of autonomous vehicle
systems during operation in the real world (cf. [Kna+17a]).
The distinction between safe and critical traffic situations by the quantitative runtime
monitoring during operation allows for estimations about the residual risks by autonomous
vehicle systems during operation in the real world (cf. research question 4). Traffic
situations which have not been verified in the simulation or which exhibit faulty system
behavior are identified and record by the runtime monitoring framework for analysis
in further development iterations of the autonomous vehicle systems (cf. research
question 5).

Research question 4: How to estimate the residual risks of autonomous vehicle
systems during operation in the real world based on the qualitative and quantitative
knowledge from their development?
The transfers of qualitative properties and their quantitative scopes from simulations
of the system verification to the runtime monitoring during operation in the real
world enables the runtime monitoring during operation to identify residual risks for
autonomous vehicle systems during operation in the real world based on unknown
and unsafe abstract situation. Safety measures can be initiated upon identification of
residual risks online during operation in order to immediately mitigate these emerging
residual risks.

The consideration of runtime monitoring results from the operation in the real world in
the system development impacts The quality of autonomous vehicle systems and the
efficiency of their development. Results of the runtime monitoring in simulations of the
system verification are used by the runtime monitoring of autonomous vehicle system
during operation in the real world in order to record solely critical traffic situations and
dismiss known and verified traffic situations. This selective recording during operation
leads to significantly more efficient identification and improvement of system faults and
insufficient system behavior in the following development iteration of autonomous vehicle

283

9. Conclusion

systems. System engineers are not required to identify and extract incorrect system
behavior and critical traffic situations from log files of arbitrary real-world data which
include safe and unsafe system behavior in mixed-critical situations.

Research question 5: How to record violations of qualitative properties and their
scopes during operation in the real world for further analysis and system improve-
ments?
The knowledge of verified abstract situation from simulations in the system verification
enables the runtime monitoring during operation in the real world to record abstract
situation which have not yet been verified or which exhibit unsafe system behavior.
The recordings are used in additional development iterations for improvements of
autonomous vehicle systems.

The runtime monitoring data from the operation in the real world further allow the
extension of safe limits for autonomous vehicle system in simulations of the system
verification. Additional test scenarios and test cases can be systematically defined from
recorded real-world traffic situations. These test scenarios and test cases model the real
world and their traffic situations more precisely. In the case study on a lane change
assistant (cf. Chapter 8), test scenarios and test cases from real-world recordings increase
the coverage of encountered traffic situations to 10.37% from prior 0.68% by the manually
modeled test scenarios and test cases from the system requirements of the lane change
assistant (cf. Section 8.2.2).
The engineering approach represents an improvement for the current development practice
of autonomous vehicle systems. Nevertheless, the approach still provides possibilities for
future improvements and additional research. The following section gives an outlook on
possible future research.

9.3. Future Work
The previous discussion has outlined the positive impact of the engineering approach for
the development of safe autonomous vehicles. Nevertheless, the engineering approach
and its implementation still offer possibilities for extensions in future work.

9.3.1. Automation of Engineering Approach
The engineering approach will only be applicable in an industrial context if a high level
of automation can be achieved. The engineering approach must seamlessly integrate
with the current development processes of car manufacturers and tech companies for
their autonomous vehicle systems. These companies must not be forced to implement
significant adjustments to their current development process for the application of the
engineering approach.
The implementation of the runtime monitoring framework requires automation of the
formalization of system requirements and the generation of monitoring code for various
target hardware platforms. The requirement formalization could be supported by DSLs

284

9.3. Future Work

(cf. [Mar10; VKV00]) and natural language processing (NLP) (cf. [Cho05; RP92])
while the monitor implementation could benefit from template-based code generation (cf.
[Bud+96; SLS18]). Even machine learning approaches could be utilized for the automatic
derivation of the abstraction in the runtime monitoring framework (cf. [LF97; Sun+15]).
The code generation of the runtime monitors has to explicitly consider the embedded
vehicle hardware in production vehicles, e.g., ECUs and communication buses, and
the restriction of their limited resources. It might be beneficial to introduce dedicated
hardware for the runtime monitoring as off-the-shelf-solution for the runtime monitoring
in prototype vehicles without possible side effects on the autonomous vehicle systems.
Future work should investigate the use of different variants of an autonomous vehicle
system as well as entirely different autonomous vehicle systems throughout the engineering
approach— in simulations and during operation in the real world as well as over multiple
iterations.
The definition of test scenarios and test cases for simulation of the system verification
requires the automation of the definition of test scenarios from logged traces of abstract
situation, the derivation of test cases, and the modeling and execution of test cases in
various simulation frameworks. For realistic and efficient test cases, the derivation of
test cases from test scenarios should incorporate automatic fuzzing of abstract situation
parameters (cf. [Ana+13; Bac+17c; Kha+17; Sip+16]).

9.3.2. Extending the Scope of the Runtime Monitoring
The modularity of the runtime monitoring framework allows for several extensions.
In the automotive domain, system requirements for vehicle systems frequently incorporate
timing-related properties in requirements, e.g., the duration between system events or
environments changes. However, the runtime monitoring in the engineering approach
only monitors the autonomous vehicle systems based on system states and states of the
environment at specific time stamps. Future work should incorporate timing-related
properties into the runtime monitoring by using, e.g., temporal logics in the definition and
implementation of runtime monitors (cf. [BKM10; Cim+10; KM08]). The consideration
of time-related properties in the runtime monitoring would enable the monitoring to
evaluate the behavior of autonomous vehicle systems for traffic scenarios in addition to
traffic situations.
The implementation of the runtime monitoring framework in the case study solely records
abstract situation based on the evaluation of system requirements for the behavior of
autonomous vehicle systems and their environments. The modular architecture of the
runtime monitoring allows for extensions in recording additional information about
autonomous vehicle systems and their environments, e.g., sensors raw data. Future
work should identify beneficial information about systems and environments for the
development of autonomous vehicle systems and develop the functional and technical
extensions to the runtime monitoring framework for recording this information.
The runtime monitoring of autonomous vehicle systems during operation in the real
world enables the initiation of safety measure during operation for the mitigation of
emerging safety risks by faulty system behavior or unknown situations. The selection and

285

9. Conclusion

execution of safety measures have not been addressed in this thesis due to the complexity
in selecting safe and efficient safety measures in critical situations. For a comprehensive
safety strategy, future work should research safe and sound strategies for the selection and
execution of safety measures and integrated them into the runtime monitoring framework.
The research should consider existing research in this field (cf. [Hör11; RM15]).

9.3.3. Improving Verification and Validation
The engineering approach depends on the quality and accuracy of simulations and the
diversity and extent of test drives in the real world. A high level of realism in simulations is
inevitable for the consideration of sensors in the verification and validation of autonomous
vehicle systems in simulations. However, the complexity and graphic visualization of
current simulation frameworks do not sufficiently match the realism of the real world.
Simulations have to sufficiently model relevant physical properties of real sensors and
real-world objects in order to verify and validate physical problems for the real sensor
perception and their impacts on the autonomous vehicle systems in simulations. For
example, RADAR sensors have the tendency not sufficiently to recognize objects with
reflective or glossy surfaces. The realism of graphical visualizations is highly relevant for
the verification and validation of video camera sensors. Simulation frameworks currently
lack sufficient realistic visualization as known from current video games. The complexity
and realism of simulations, their environment modeling, and the modeling of sensors
have to be further improved until the realism of simulations allows for comprehensive
results which are intuitively applicable to the operation of autonomous vehicle systems
in the real world.
Test drives in the real world are inevitable in order to verify and validate autonomous
vehicle systems in the real world and to gather operational data for the engineering
approach. However, the necessary configuration of prototype vehicles and the long
mileage and time for the verification and validation of specific system behavior impose
high costs (cf. [Sti13; Wei+14; Win15]). These costs are significantly higher than the
costs of simulations.
The runtime monitoring may support the optimization of real-world test drives and
reduce corresponding costs. Results from the runtime monitoring during operation of
autonomous vehicle systems on public roads can be used to analyze and classify roads
and their traffic. These classifications can be used in the planning of test drives. Test
drives can be planed and performed on public roads which are likely to provide novel
insight about road traffic or are likely to verify and validate specific autonomous system
behavior, e.g., lane changes. Future work should investigate the integration of runtime
monitoring results, positioning data, map data, and machine-learning techniques to
provide automatic route planning for test drives with specific test goals.

9.3.4. Comprehensive Safety Strategy
The engineering approach addresses the development, verification, and validation of
software functions. Results by the runtime monitoring framework apply solely to the

286

9.3. Future Work

monitored part of the autonomous vehicle systems—the function (cf. Fig. 5.1). Tech-
nical components, e.g., sensors and actuators, are currently not incorporated into the
engineering approach and have to be verified and validated by other V&V methods.
Nevertheless, a comprehensive safety strategy, which includes hardware components, e.g.,
sensors and actuators, is essential for the introduction of autonomous vehicle systems to
public traffic. Future research has to extend the engineering approach to these technical
components by investigating extensions for the presented runtime monitoring and by
introducing novel runtime monitoring concepts.
The functional safety cages by [Hec+11] and the dependability cages in [Ani+18b] present
concepts for the integration of safety functions into autonomous vehicle systems in large
extent. The engineering approach and its runtime monitoring represent a potential
realization of these cages for in-vehicle software functions with complex or learned
behavior. Future work should investigate the necessary modifications of the engineering
approach for the implementation of these cage concepts.
In the context of functional safety cages and dependability cages, the implementation
of the runtime monitoring as additional safety function in production vehicles and the
integration of data from production vehicles into the engineering approach should be
investigated. The integration as a safety function in production vehicle imposes additional
requirements for the development of runtime monitors because safety standards like the
safety standard ISO 26262 have to be considered. Furthermore, the data recorded by
production vehicle is not directly accessible for car manufacturers, and the data storage
in production vehicles is limited in general. Novel solutions for the storage and access of
runtime monitoring data have to be realized in order to integrate production vehicles
into the engineering approach. The verification and validation of autonomous vehicle
systems can benefit from large amounts of data recorded over the large mileages which
their owners commonly operate these vehicles.

9.3.5. Application in Rural and Urban Domains

In this thesis, the engineering approach has been applied to a lane change assistant
which solely operates on highways. Future research should investigate the application of
the engineering approach to other autonomous vehicle systems used on rural and urban
roads. The research has to evaluate the transfer of the engineering approach to rural
and urban domains and identify necessary modifications and extensions. For example,
the increasing complexity of rural and urban traffic by additional traffic participants,
e.g., pedestrians and cyclists, and different infrastructure, e.g., traffic signals, require a
revision of the abstract situation interpretation by the runtime monitoring.
The application of the engineering approach to other domains should include additional
industrial case studies. These industrial case studies should incorporate large and diverse
fleets of vehicles with various autonomous vehicle systems. The amount of data recorded
by these fleets would allow reinforcing results and estimations from the case study of
this thesis—especially the prediction about the contentious decrease in the discovery of
new abstract situations over time.

287

9. Conclusion

The application of the engineering approach to rural and urban traffic should help to
investigate the possibility of a single common situation description throughout all traffic
domains. The majority of autonomous vehicle systems operate in the same environments.
A standard description of traffic and the behavior of vehicles across all manufacturers and
tech companies would support the standardization of safety assessment for autonomous
vehicle systems as well as consistent communication about the safety of autonomous
vehicle system to the general public.

9.3.6. Metric for Safety of Autonomous Vehicles
Autonomous vehicle systems have to be sufficiently safe for a positive impact on public
traffic. Car manufacturers and tech companies are required by national authorities to
prove the safety of their autonomous vehicle systems sufficiently. The qualification of
residual risks based on failure rates is not applicable to autonomous vehicle systems
because the required mileage is not feasible under reasonable costs (cf. [Win15]). Novel
metrics have to be introduced for qualification of residual risks by autonomous vehicle
systems in public traffic(cf. [Sip+16]).
The engineering approach can support such metrics because the runtime monitoring
during operation can estimate the safe behavior limits of autonomous vehicle systems
in the real world. Future work should investigate the definition of new metrics for the
safety of autonomous vehicle systems. These metrics should incorporate the results about
encountered safe resp. critical situations from the runtime monitoring during operation in
the real world (cf. [AHR15]). Information about safe resp. critical traffic situations could
allow quantifying the residual risks of autonomous vehicle based on traffic situations and
not on system failures.
A metric incorporating traffic situations instead of failure rates could also be beneficial
for the selection of test scenarios and test cases for the system verification of autonomous
vehicle systems. Future research should investigate how the quantification of the safety
impact by individual test scenarios and test case could be used for the selection of the
test scenarios and test cases for the test suite of the system verification. The goal is to
define an efficient test suite which verifies autonomous vehicle systems for a large number
of traffic situations under reasonable time and costs.

9.3.7. General Understanding about System Safety
A safety metric quantifies the safety resp. remaining residual risks for autonomous vehicle
systems. In general, the approval of autonomous vehicles to public traffic rests on the
comparison of quantified safety to the required safety threshold by national authorities.
However, a commonly agreed safety threshold has not yet been defined for autonomous
vehicles. Public discourse about the publicly excepted impact and publicly accepted
drawbacks of autonomous vehicles is required. National authorities should incorporate the
results of such discourse in the definition of the legally required safety for the operation
of autonomous vehicles in public traffic.

288

9.3. Future Work

The public discourse significantly impacts the acceptance of autonomous vehicles by the
general public. Clear communication and description about impacts and shortcomings
of autonomous vehicles are essential for this public discourse and the public acceptance
(cf. [Fra+18]). The behavior of autonomous vehicle systems has to be described and
communicated by car manufacturers and tech companies in a way that non-technical
people can understand the decision-making of autonomous vehicle systems and relate it
to their impacts and shortcomings (cf. [SSS17]). Car manufacturers and tech companies
should support an early discourse by publishing available information and data from
their trials with prototype vehicles on public roads.
For the approval of autonomous vehicles and their acceptance by the general public, all
results about the safety of autonomous vehicle systems in their verification and validate
have to ensure high fidelity and trust. Any manipulation of verification and validation
results have to be excluded. At the moment, statements about the safety of autonomous
vehicle systems are subject to estimation by car manufacturers and tech companies under
the usage of inappropriate verification and validation methods, e.g., failures rates in
real-world test drives. In the future, independent third parties will have to validate the
safety statements by car manufacturers, and tech companies or technical solutions will
have to be introduced for the direct and secure integration of fidelity guarantees into the
data of safety statements.
A standardized safety assessment for autonomous vehicle systems would inherently
provide such fidelity guarantees and enable the comparison of systems from different
manufacturers. National authorities, car manufacturers, and tech companies would have
to agree on such a standardized safety assessment. This agreement would include the
definition of necessary and relevant data, e.g., road topologies and traffic scenarios.
Current research projects, like the PEGASUS project (cf. [Win+18]), try to define
such a V&V data set as a set of relevant traffic scenarios by manual analysis of system
requirements and real-world traffic. It remains questionable if these traffic scenarios
sufficiently verify the safety of autonomous vehicles. The results from the case study
suggest that a diverse set of realistic traffic scenarios from real-world recordings would be
the better approach (cf. Chapter 8). A database of traffic scenarios should be established
that is commonly accepted by all car manufacturers, tech companies, and legal authorities
for the approval of autonomous vehicles. Car manufacturers and tech companies would
be required to cooperate and share their recorded data from tests with their prototype
vehicles on public roads with each other in order to build a sufficiently large and diverse
V&V database.

289

A. Appendix

A.1. Data Structures in the Case Study
The following UML diagrams present the data structures for the abstract situation and
the abstract targets as they have been used in the case study for the runtime monitoring
of the lane change assistant (cf. Chapter 8).

Figure A.1.: Data structure of the abstract target.

291

A. Appendix

«struct»
tLaneCategory

+
curvature: eLaneCurvature

+
laneID

: tInt8
+

left
M

arking: eLaneM
arking

+
position: eLaneRam

pPosition
+

rightM
arking: eLaneM

arking
+

type: eLaneType

«struct»
tCategorisation

+
dom

ain: eD
om

ainType
+

driverInput: eD
riverTurning

+
ego: tEgoVehicleCategory

+
lanes: vector<tLaneCategory>

+
objectCount: tU

Int16
+

objects: vector<tO
bjectCategory>

«struct»
tEgoV

ehicleCategory

+
offset: eEgoO

ffset
+

velocity: eEgoVelocity

«struct»
tO

bjectCategory

+
distance: eD

istance2Ego
+

lanePosition: eLanePosition
+

objID
: tU

Int16
+

relativePosition: eRelativePosition
+

relativeVelocity: eRelativeVelocity

«Enum
eration»

eD
istance2Ego

IN

SU
FFICIEN

T_D
ISTA

N
CE = 0

SU

FFICIEN
T_D

ISTA
N

CE

distanceElem
ents

«Enum
eration»

eD
om

ainType

A

PPLICABLE = 0

N
O

N
_APPLICABLE

dom

ainElem
ents

«Enum
eration»

eD
riverTurning

N

O
N

E = 0

O
VERTU

RN
ED

driverElem

ents

«Enum
eration»

eEgoO
ffset

SM

A
LL = 0

LARG

E

egoO
ffsetelem

ents

«Enum
eration»

eEgoVelocity

IN

SU
FFICIEN

T_VELO
CITY = 0

SU

FFICIEN
T_VELO

CITY

egoVelocityElem
ents

«Enum
eration»

eLaneCurvature

LO

W
 = 0

H

IG
H

laneCurvatureElem

ents

«Enum
eration»

eLaneM
arking

RESTRICTED

_M
A

RKIN
G

 = 0

U
N

RESTRICTED
_M

ARKIN
G

laneM

arkingElem
ents

«Enum
eration»

eLaneRam
pPosition

N

O
_RAM

P = 0

RAM
P

laneRam

pPositionElem
ents

«Enum
eration»

eLanePosition

LEFT_N

EIG
H

BO
R = 0

EG

O

RIG
H

T_N
EIG

H
BO

R

O
TH

ER

lanePositionElem
ents

«Enum
eration»

eLaneType

RESTRICTED

_TYPE = 0

U
N

RESTRICTED
_TYPE

N

O
N

EXISTIN
G

laneTypeElem

ents

«Enum
eration»

eRelativePosition

BEH

IN
D

 = 0

N
EXT

FRO

N
T

U

N
KN

O
W

N

relativePositionElem
ents

«Enum
eration»

eRelativeVelocity

LO

W
ER = 0

H

IG
H

ER

relativeVelocityElem
ents

+offset

+distance

0..*

+lanePosition

+position

+type

+rightM
arking

+velocity

+dom
ain

0..*

+ego
1

+relativeVelocity

+driverInput

+left
M

arking

+relativePosition

+curvature

Figure
A
.2.:D

ata
structure

ofthe
abstract

situation.

292

A.2. Requirements-based Test Scenarios and Test Cases

A.2. Requirements-based Test Scenarios and Test Cases
For the verification of the lane change assistant, one of the project partners has modeled
test scenarios and test cases based on the system requirements of the lane change assistant
(cf. Section 3.2). The test scenarios and corresponding test cases are presented in the
following tables.

Table A.1.: Test Scenario 1.

Initial Situation

Requirements
FR_1_1: The system shall be able to perform lane changes on multi-lane highways.
FR_7_1_3: The system has to evaluate whether a lane change to a neighbor lane
is possible based on objects on its current lane in front itself.
FR_5_1: In case, the system is in the automated driving mode, the system has to
determine if a lane change is beneficial based on the current traffic situation.
FR_2_2: The system shall be able to prevent lane changes if the curvature of the
ego lane is less than 125 m.
Parametrization by Test Cases

Test Case 1 Test Case 2 Test Case 3
Road layout 2 lane highway 2 lane highway 2 lane highway
Road Radius ∞ ∞ 900m
Speed Limit 130 km/h 130 km/h 130 km/h
Velocity Ego 130 km/h 130 km/h 130 km/h
Velocity Veh. 1 100 km/h 100 km/h 100 km/h
Distance Veh. 1
to Ego

100 m 50 m 100 m

Expected Result lane change (left) remain lane change (left)

293

A. Appendix

Table A.2.: Test Scenario 2.
Scenario 2

Initial Situation

Requirements
FR_7_1_1: The system has to evaluate whether a lane change to a neighbor lane
is possible based on objects on that neighbor lane behind itself.
Parametrization by Test Cases

Test Case 4 Test Case 5 Test Case 6
Road layout 2 lane highway 2 lanes highway 2 lanes highway
Road Curvature ∞ ∞ ∞
Speed Limit
Velocity Ego 130 km/h 130 km/h 130 km/h
Velocity Veh. 1 100 km/h 100 km/h 100 km/h
Distance Veh. 1
to Ego

50 km/h 50 km/h 50 km/h

Velocity Veh. 2 140 km/h 100 km/h No Veh. 2
Distance Veh. 2
to Ego

−250 m −50 m No Veh. 2

Expected Result remain lane change (left) remain

294

A.2. Requirements-based Test Scenarios and Test Cases

Table A.3.: Test Scenario 3.
Scenario 3

Initial Situation

Requirements
FR_7_1_2: The system has to evaluate whether a lane change to a neighbor lane
is possible based on objects on that neighbor lane in front of itself.
FR_7_1_5: The system shall be able to consider objects directly next to it with a
relative velocity of less than 5 m/s.
Parametrization by Test Cases

Test Case 7 Test Case 8 Test Case 9 Test Case 10
Road layout 2 lane highway 2 lane highway 2 lane highway 2 lane highway
Road Curvature ∞ ∞ ∞ ∞
Speed Limit 130 km/h 130 km/h 130 km/h 130 km/h
Velocity Ego 130 km/h 130 km/h 130 km/h 130 km/h
Velocity Veh. 1 100 km/h 100 km/h 100 km/h 130 km/h
Distance Veh. 1
to Ego

50 m 50 m 50 m 50 m

Velocity Veh. 2 81 km/h 105 km/h 130 km/h 100 km/h
Distance Veh. 2
to Ego

100 m 0 m 0 m 100 m

Expected Result Remain
(decelerate) or
lane change

(left)

lane change
(left)

remain Remain
(decelerate) or
lane change

(left)

295

A. Appendix

Table A.4.: Test Scenario 4.
Scenario 3

Initial Situation

Requirements
FR_7_1_4: The system shall evaluate whether a lane change is possible based on
approaching objects on the ego lane behind itself.
FR_2_3: The system shall be able to prevent lane changes if the lateral offset to
the center of the current lane is more than 0.4 m.
Parametrization by Test Cases

Test Case 11 Test Case 12 Test Case 13
Road layout 2 lane highway 2 lane highway 2 lane highway
Road Curvature ∞ ∞ ∞
Speed Limit 130 km/h 130 km/h 130 km/h
Velocity Ego 110 km/h 110 km/h 110 km/h
Lateral offset
Ego

0 m 0 m 0.5 m

Velocity Veh. 1 100 km/h 100 km/h 100 km/h
Distance Veh. 1
to Ego

50 m 50 m 50 m

Velocity Veh. 2 100 km/h 140 km/h 100 km/h
Distance Veh. 2
to Ego

−50 m −200 m −50 m

Start Overtaking
Veh. 2

−50 m

Expected Result lane change (left) remain remain

296

A.2. Requirements-based Test Scenarios and Test Cases

Table A.5.: Test Scenario 5.
Scenario 5

Initial Situation

Requirements
FR_6_1: The system shall be able to perform lane changes in onto off-ramps less
than 100 m after the off-ramp started.
FR_5_1_3: The system shall be able to assess, whether a lane change is beneficial
based on timing restrictions regarding prior driving events.
Parametrization by Test Cases

Test Case 14 Test Case 15 Test Case 16 Test Case 17
Road layout 2 lane highway

w. off-ramp
2 lane highway
w. off-ramp

2 lane highway
w. off-ramp

2 lane highway
w. off-ramp

Road Curvature ∞ ∞ ∞ ∞
Speed Limit 130 km/h 130 km/h 130 km/h 130 km/h
Velocity Ego 130 km/h 130 km/h 130 km/h 130 km/h
Ego distance to
off-ramp

300 m 300 m 300 m 300 m

Mission Ego: Follow
Highway

Leave Highway Leave Highway Leave Highway

Velocity Veh. 1 100 km/h 110 km/h
Distance Veh. 1
to Ego

50 m 50 m 50 m 50 m

Mission Veh. 1 Follow
Highway

Follow
Highway

Velocity Veh. 2 100 km/h
Distance Veh. 2
to Ego

100 m

Start Overtaking
Veh. 2

−50 m

Expected Result remain lane change
(right)

lane change
(right)

remain

297

A. Appendix

Table A.6.: Test Scenario 6.
Scenario 6

Initial Situation

Requirements
FR_6: The system shall be able to perform lane changes to enter a highway on an
on-ramp.
Parametrization by Test Cases

Test Case 18 Test Case 19
Road layout 2 lane highway w. on-ramp 2 lane highway w. on-ramp
Road Curvature ∞ ∞
Speed Limit 130 km/h 130 km/h
Velocity Ego 100 km/h 100 km/h
Ego distance to highway 200 m 200 m
Velocity Veh. 1 100 km/h
Distance Veh. 1 to Ego 0 m
Expected Result lane change (left) lane change (left)

298

A.2. Requirements-based Test Scenarios and Test Cases

Table A.7.: Test Scenario 7.
Scenario 7

Initial Situation

Requirements
FR_6_3: The system shall prevent lane changes towards areas with an
adjacent highway on-ramp.
Parametrization by Test Cases

Test Case 20 Test Case 21 Test Case 22
Road layout 2 lane highway

w. on-ramp
2 lane highway
w. on-ramp

2 lane highway
w. on-ramp

Road Curvature ∞ ∞ ∞
Speed Limit 130 km/h 130 km/h 130 km/h
Velocity Ego 130 km/h 130 km/h 130 km/h
Ego distance to
on-ramp

200 m 200 m 250 m

Velocity Veh. 1 100 km/h 150 km/h
Distance Veh. 1
to Ego

100 m −100 m

Expected Result remain remain remain

299

A. Appendix

Table A.8.: Test Scenario 8.
Scenario 8

Initial Situation

Requirements
FR_3: The system shall be able to adjust the vehicle longitudinally towards a
suitable gap in a search range of 100 m to the front and 100 m to the rear of the
vehicle in order to prepare a lane change.
FR_9_1: The system has to evaluate whether a lane change is possible based on
the lane marking type of the appropriate lane boundary.
Parametrization by Test Cases

Test Case 23 Test Case 24
Road layout 2 lane highway w. off-ramp 2 lane highway w. off-ramp
Road Curvature ∞ ∞
Speed Limit 130 km/h 130 km/h
Lane Marking dashed solid
Velocity Ego 130 km/h 130 km/h
Ego distance to
off-ramp

900 m 900 m

Velocity Veh. 1 100 km/h 100 km/h
Distance Veh. 1
to Ego

−30 m −30 m

Velocity Veh. 2 100 km/h 100 km/h
Distance Veh. 2
to Ego

0 m 0 m

Velocity Veh. 3 100 km/h 100 km/h
Distance Veh. 3
to Ego

40 m 400 m

Velocity Veh. 4 100 km/h 100 km/h
Distance Veh. 4
to Ego

100 m 100 m

Expected Result lane change (right) remain

300

A.3. Test Scenarios from Real World Recoding

A.3. Test Scenarios from Real World Recoding
The following tables present the initial situations and the list of maneuvers by dynamic
objects in the vicinity of the automated vehicle with the lane change assistant for the
eight test scenarios which have been modeled in the case study based on the runtime
monitoring results (cf. Chapter 8). The sequences of object maneuvers in the test
scenarios are relevant for the correct emergences of the envisaged abstract situation in
the simulations. The envisioned situations correspond to the recorded abstract situation
by the runtime monitoring in the recordings from the German Highway A2.

Table A.9.: Real World Scenario 1.
Real World Scenario 1

Initial Situation

Sequence of Maneuvers

1. Vehicle in zone front-right falls back into zone next-right.
2. Lane change of vehicle in zone rear-right to rear-ego.
3. Vehicle in zone next-right drives up to zone front-right.
4. Lane change of vehicle in zone front-left to zone front-ego.
5. Lane change of vehicle in zone front-ego to zone front-left.
6. Vehicle in zone front-right falls back into zone next-right.
7. Vehicle in zone next-right falls back into zone rear-right.
8. Second vehicle in zone next-right falls back into zone rear-right.
9. Vehicle in zone rear-right falls out of the rear sensor range.
10. Vehicle in zone front-left drives out of the front sensor range.
11. Vehicle in zone rear-right falls out of the rear sensor range.
12. Vehicle in zone rear-ego falls out of the rear sensor range.

301

A. Appendix

Table A.10.: Real World Scenario 2.
Real World Scenario 2

Initial Situation

Sequence of Maneuvers

1. Lane change of vehicle in zone front-ego to zone front-right.
2. Vehicle in zone rear-ego falls out of the rear sensor range.
3. Vehicle falls back into zone front-left from outside the front sensor

range.
4. Lane change of vehicle in zone front-ego to zone front-right.
5. Vehicle in zone front-right falls back into zone next-right.
6. Vehicle falls back into zone front-right from outside the front

sensor range.
7. Vehicle in zone front-right falls back into zone next-right.
8. Lane change of vehicle in zone rear-ego to zone rear-right.
9. Vehicle drives into zone rear-right from outside the rear sensor

range.
10. Vehicle in zone front-right drives out of the front sensor range.
11. Vehicle in zone rear-right falls out of the rear sensor range.
12. Vehicle in zone next-right falls back into zone rear-right.
13. Vehicle in zone rear-right falls out of the rear sensor range.
14. Vehicle in zone next-right falls back into zone rear-right.
15. Vehicle in zone rear-right falls out of the rear sensor range.
16. Vehicle in zone next-left drives up to zone front-left.
17. Vehicle falls back into zone front-right from outside the front

sensor range.
18. Vehicle in zone front-right falls back into zone next-right.
19. Lane change of vehicle in zone front-ego to zone front-right.
20. Vehicle in zone next-right falls back into zone rear-right.

302

A.3. Test Scenarios from Real World Recoding

Table A.11.: Real World Scenario 3.
Real World Scenario 3

Initial Situation

Sequence of Maneuvers

1. Lane change of vehicle in zone front-ego to front-right.
2. Lane change of vehicle in zone front-right to front-ego.
3. Lane change of vehicle in zone front-ego to front-right.
4. Vehicle falls back into zone front-right from outside the front

sensor range.
5. Vehicle in zone front-ego drives out of the front sensor range.
6. Vehicle in zone rear-right falls out of the rear sensor range.
7. Lane change of vehicle in zone rear-right to rear-ego.
8. Lane change of vehicle into zone rear-right from adjacent outside

lane.
9. Lane change of vehicle into zone next-right from adjacent outside

lane.
10. Vehicle in zone next-right falls back into zone rear-right.
11. Vehicle in zone front-right drives out of the front sensor range.
12. Vehicle in zone next-right falls back into zone rear-right.
13. Lane change of vehicle in zone front-ego to front-right.
14. Vehicle drives into zone rear-ego from outside the rear sensor

range.

303

A. Appendix

Table A.12.: Real World Scenario 4.
Real World Scenario 4

Initial Situation

Sequence of Maneuvers

1. Vehicle falls back into zone front-ego from outside the front sensor
range.

2. Lane change of vehicle in zone front-ego to front-right.
3. Lane change of vehicle in zone front-right to adjacent outside

lane.

Table A.13.: Real World Scenario 5.
Real World Scenario 5

Initial Situation

Sequence of Maneuvers

1. Lane change of vehicle in zone front-ego to front-right.
2. Lane change of vehicle in zone front-right to adjacent outside

lane.
3. Vehicle in zone rear-right falls out of the rear sensor range.
4. Vehicle in zone rear-ego falls out of the rear sensor range.

304

A.3. Test Scenarios from Real World Recoding

Table A.14.: Real World Scenario 6.
Real World Scenario 6

Initial Situation

Sequence of Maneuvers

1. Lane change of vehicle in zone front-ego to front-right.
2. Vehicle in zone front-right drives out of the front sensor range.
3. Lane change of vehicle in zone rear-right to rear-ego.
4. Lane change of vehicle in zone rear-right to adjacent outside lane.
5. Vehicle in zone rear-ego falls out of the rear sensor range.
6. Vehicle drives into zone rear-right from outside the rear sensor

range.
7. Lane change of vehicle into zone front-right from adjacent outside

lane.

Table A.15.: Real World Scenario 7.
Real World Scenario 7

Initial Situation

Sequence of Maneuvers

1. Vehicle in zone front-ego drives out of the front sensor range.
2. Vehicle falls back into zone front-right from outside the front

sensor range.
3. Lane change of Automated (ego) vehicle to the right neighbor

lane.
4. Lane change of vehicle in zone front-left to adjacent outside lane.

305

Glossary
absolute global reference frame

The positioning of objects in the real world relative to a fixed reference frame.

abstract action
The representation of the system output in the runtime monitoring framework.

abstract behavior
The behavior of a system in the abstract representation of the runtime monitoring
framework. (see abstract action.

abstract representation
The representation of the system and its environment by the runtime monitoring
framework.

abstract situation
The abstract representation of the system state and environment state within the
runtime monitoring framework.

artifact under test
The development artifact, e.g., models, software, hardware, or system, that is being
verified for correct operation in the test.

augmented reality
The overlay of computer-generated perceptual information and objects in the
humans’ visual, auditory, haptic, somatosensory, or olfactory perception.

behavior planning
The planning of vehicle actions from the information about the vehicle environment
from the situation assessment.

black-box
The consideration of a system based on its external observable behavior without
any information about the internal structure and processing of the system.

certifiability
The ability of a system to be evaluated and assessed by qualified assessors.

307

Glossary

closed formula
A formula without any free variables.

closed-loop
The output of a system is considered for its control actions. The outputs are
transferred back to the system as inputs via feedback loop.

closed-loop simulation
A feedback loop transfers the outputs of the system under test back via the
environment simulation back to the system under test as inputs.

closed-world assumption
The assumption that the system environment can be completely specified in the
systems development (design time).

cluster
A trace of abstract situations which have been recorded in a cohesive time frame
by the runtime monitoring framework.

code instrumentation
The integration of sensor or probes into the code of the monitored system.

counter example
A path through the state space of the system and its environment as an example
of the violation of an intended system property.

decomposition
The partitioning of requirements, systems, or system components into smaller parts
- sub-requirements, subsystems, or subcomponents.

dependability
The ability of a system to provide its functionality correctly for a given time-period.

design time
The time in which the system is specified, design, implmented, verified and validated.

development part
The part of the engineering approach which is concerned with the specification,
design, implementation, and verification of autonomous vehicle systems.

domain
The set of (real world) objects for the semantic evaluation of first-order logic.

308

Glossary

domain control unit
A more powerful control unit than ECU for the execution of computation-heavy
and communication-heavy software functions.

domain specific language
A (formal) language which is tailored to the requirements and semantics of a
particular domain.

dummy object
see mock object.

dynamic object
An object in the environment which can change its state for each time stamp.

electronic control unit
Embedded hardware in automotive electronics which executes software for control
of one or more of vehicle systems, e.g., the engine or brakes.

environment
The set of all objects, which reside in the vicinity of a system or vehicle.

environment model
The internal representation of the vehicle environment within autonomous vehicle
systems.

environment perception
The components which are involved in the perception of the vehicle environment
and the definition of an internal representation of environmental situations.

environment situation
The situation in the environment of a system. For autonomous vehicles relates to
traffic situation.

environment-referenced view
The environment is described in relation to the absolute global reference frame.

error
“A discrepancy between a computed, observed, or measured value or condition and
the true, specified, or theoretically correct value or condition” [Int09a].

exteroceptive
That responds to external stimuli.

309

Glossary

failure
“The termination of the ability of an element or an item to perform a function as
required” [Int09a].

false negative
The nonconformity of a negative test result for a (system) property for the mani-
festation of the property in the real world.

false positive
The nonconformity of a positive test result for a (system) property for the manifes-
tation of the property in the real world.

fault
“An abnormal condition that can cause an element or an item to fail” [Int09a].

feedback loop
The transfer of system outputs of back to the system as inputs.

field operational test
The test of the correct operation of a vehicle in public traffic or on test tracks.

field test
see field operational test.

field testing
The activity to verify the operation of a system in field operational test.

functionality
The ability of a system to provide its intended functionality.

fuzzing
The derivation of value for a set of concrete parameter values from a set parameters
in an abstract representation. Here, the definition of concrete parameters in a test
case from the abstract parameters in test scenarios.

fuzzy Parameter
A parameter which does not contain a single absolute value but an interval of
possible values.

gateway
A hardware component or ECU that connects and organizes the data transfer
between multiple communication systems, e.g., CAN buses.

310

Glossary

ghost object
A virtual object as a representation of emerging objects and their maneuvers in
the definition of test scenarios.

ground term
A term without any variables.

ground truth
The independent confirmation [validation] at a site for information or results
obtained by remote sensing, evaluation, verification, or testing.

human machine interface
The interfaces of the system for interactions between humans and the system.

interventions
An action by a human driver to interfere with the autonomous operation of a
vehicle to take over the control of the car - predominantly in critical and unsafe
traffic situations.

localization
The position estimation of the ego vehicle in the (real) world.

malfunction
“An intermittent irregularity in the fulfillment of a system’s desired function”
[Ise06b].

maneuver
An action by a dynamic object.

mock object
A simulated object which mimics the behavior of real system objects in controlled
ways.

multiple points of failure
The parts of a system which have to fail simultaneously for the entire system to
stop working.

multitudinous environments
An environment with a vast number of characteristics and situations which is
difficult to be precisely specified.

311

Glossary

natural language processing
The computer-based processing and analysis of large amounts of natural language
data.

object
An atomic entity of the environment or a combination of atomic entities.

object tracking
The identification and pursuit of specific objects in the data from vehicle sensor
over time.

off-the-shelf
Existing Solutions or products of suppliers and vendors which are adapted to the
needs of the purchasing organization rather than the commissioning of custom-made
solutions or products.

offline monitoring
The verification of formally specified conditions for a system at design time on
information recorded during the system operation.

online monitoring
The verification of formally specified conditions for a system during its operation
at runtime (cf. runtime verification).

open-loop
The output of a system does not affect the system’s control actions.

open-loop simulation
Outputs from the system under test are not considered for the simulation of the
environment. The feedback loop between the SUT and environment is not closed.

open-world assumption
The assumption that the system environment cannot be completely specified in
the systems development (design time).

operation
The method by which a system performs its function - predominantly in the real
world.

operation condition
The state of system environment for the execution of the system in a specific
operation mode.

312

Glossary

operation mode
Specific states of software functions, hardware components, and the environment of
a system for the execution of a particular operation or functionality by the system
at runtime.

operation part
The part of the engineering approach which is concerned with the operation of
autonomous vehicle systems in the real world.

parametrization
see fuzzing

powertrain
The main components of a vehicle for the generation of power and its delivery to
the road surface, i.e., engine, transmission, drive shafts, differentials, and the final
drive.

processing chain
The chain of the functional components in the autonomous vehicle system for the
processing of actions based on the data from the environment perception.

proprioceptive
Something pertaining to the sense of the position of parts of the body, relative to
other neighboring parts of a body.

rapid prototyping
Techniques for the modeling or emulation of physical systems or components for
the fast execution and evaluation in the real world while the actual system or
component is still developed.

ring buffer
A first-in-first-out buffer which the oldest elements is discarded if the buffer is full
and a new item is added to the buffer.

road graph
The partitioning of requirements, systems, or system components into smaller parts
- sub-requirements, subsystems, or subcomponents.

road safety
Absence of unreasonable risk for traffic participants.

runtime
The time during which the system is running.

313

Glossary

runtime data
see system data.

runtime environment
The framework for the execution of software, hardware, or system; The surrounding
entities of software, hardware, or system during its operation.

runtime monitor
The software and hardware components for the observation of the system execu-
tion and proving the correctness of the system execution for a formally defined
specification or property.

runtime verification
The verification of formally specified conditions based on observed system properties
from the monitoring of software execution (cf. [HG08]).

safe state
A state of the system in which any risks for the safety of any humans and objects
are excluded.

safety
Absence of unreasonable risks.

safety measure
An action by a system or the system’s safety function (in the presence of system
faults or unsafe system behavior) to mitigate emerging risks for the safety of persons
and objects.

scene
The configuration of the vehicle’s environment as a spatial-temporal arrangement
from an observers point of view - including the scenery, dynamic objects, and
self-representation.

scenery
The set of static objects in the environment of a vehicle.

schedulability
The ability of a system process to meet their deadlines to provide its functionality
correctly.

self-adaptive system
“Self-adaptive software is capable of evaluating and changing its behavior, whenever
the evaluation shows that the software is not accomplishing what it was intended
to do, or when better functionality or performance may be possible” [Mac+13].

314

Glossary

simulation environment
see simulation framework.

simulation framework
A framework which integrates system under test into a co-simulation with various
models for the different aspects of the system’s environment.

simulation-based testing
Simulation-based testing is testing of systems using models and simulations.

single point of failure
A part of a system that will stop the entire system from working if it fails.

situation
The entirety of circumstances which results in a certain behavior of a system.

situation assessment
The assessment and augmentation of the environment representation from the
environment perception with additional information for the processing of each
function.

situation parameter
A parameter (dimension) in abstract situation of the runtime monitoring framework.

slicing
The partition of long test scenarios into specialized sub-scenarios with smaller
durations.

specification
The collection of functional and non-functional requirements posted on a system,
subsystems, or a single component.

stakeholder
A person or group with interest in the outcome of a project, activity, or decision.

state
The entirety of circumstances for all properties of an entity, object, or system.

static object
An object in the environment which cannot change its state.

system data
The information data which is generated by a system at operation.

315

Glossary

system development
The specification, design, implementation, and verification of a system.

system environment
see environment.

system operation
The operation of a system in the real world.

system specification
see specification.

system state
The joint condition of the system. Here, the system denotes an autonomous vehicle
system and its environment.

system test
Test of the complete product (system) instead of individual system components or
subsystems (cf. test).

system under test
The system in a test that is being tested for correct operation (cf. artifact under
test).

target point
A 2-dimensional or 3-dimensional point in front of the vehicle as the target for the
calculations of the future vehicle trajectory.

test
The verification of an artifact, e.g., methods, class, components, or system, for a
set of test cases.

test case
The specification of the inputs, execution conditions, testing procedure, and ex-
pected results for the execution of system under test (SUT) in order to verify if the
system meets its requirements or specification

test coverage
The extent of an system that is verified by a set of test case.

test oracle
A (software) component which process the intended reaction or output of a artifact
under test in a test case.

316

Glossary

test plan
The definition and documentation of the proceeding for the testing of an artifact -
including the test suite.

test scenario
A (timed) sequence of scenery changes and maneuvers by dynamic objects in the
vicinity of the system under test.

test suite
The set of test cases for verifying the correct operation of an artifact, e.g., methods,
class, components, or system.

testing
Testing is the process of executing a program with the intent of finding errors.

time-to-market
The time until a product is available for sale.

trace
A possibly infinite sequence of system states or system actions.

traffic situation
The state of the traffic in the vicinity of a vehicle.

type
A class of objects which share similar properties.

type hierarchy
An inheritance hierarchy of types.

unique abstract situation
An instance in a set of abstract situation which has no duplicates.

use case
A typical scenario for the operation of a system - including the interaction between
the system and its environment.

validation
The activity to check the compliance of artifacts, e.g., methods, class, components,
or system, for its purpose.

vehicle-referenced view
The environment is described in relation to the ego vehicle.

317

Glossary

vehicle-under-test
The vehicle in a test that is being tested for correct operation (cf. artifact under
test).

verification
Proving the correctness of a system or algorithms with respect to a formally defined
specification or property.

318

Bibliography
[aca06] acatech - Deutsche Akademie der Technikwissenschaften e.V. “Mobilität

2020. Perspektiven für den Verkehr von Morgen. Schwerpunkt: Straßen- und
Schienenverkehr”. In: acatech BERICHTET UND EMPFIEHLT 1 (2006).

[Ack+08] Chris Ackermann et al. “Model Based Design Verification: A Monitor Based
Approach”. In: SAE Technical Paper 2008-01-0741 (2008).

[ADT14] Thomas Arts, Michele Dorigatti, and Stefano Tonetta. “Making Implicit
Safety Requirements Explicit”. In: Proceedings of the 33rd International
Conference on Computer Safety, Reliability, and Security. Vol. 8666. LNCS.
Florence, Italy: Springer International Publishing Switzerland, 2014, pp. 81–
92. isbn: 978-3-319-10505-5.

[Aga+16] Venkatesh Agaram et al. “Validation and Verification of Automated Road
Vehicles”. In: Road Vehicle Automation 3. Ed. by Gereon Meyer and Sven
Beiker. Vol. 3. Lecture Notes in Mobility. Springer International Publishing,
July 2016, pp. 201–210.

[Agg14] Charu C. Aggarwal. Data Classification: Algorithms and Applications. Ed.
by Vipin Kumar. Vol. 35. Data Mining and Knowledge Discovery Series.
Chapman & Hall/CRC, 2014. isbn: 9781466586741.

[Ahl+05] Jaswinder Ahluwalia et al. “Model-Based Run-Time Monitoring of End-to-
End Deadlines”. In: Proceedings of the 5th ACM international conference
on Embedded software. ACM. New York, NY, USA, 2005, pp. 100–109.

[AHR15] Rob Alexander, Heather Rebecca Hawkins, and Andrew John Rae. Situation
coverage - a coverage criterion for testing autonomous robots. Tech. rep.
YCS-2015-496. Department of Computer Science, University of York, 2015.

[Alu15] Rajeev Alur. Principles of Cyber-Physical Systems. The MIT Press, 2015.
isbn: 9780262029117.

[Amo+16] Dario Amodei et al. “Concrete Problems in AI Safety”. In: arXiv:1606.06565
(2016).

[Ana+13] Saswat Anand et al. “An orchestrated survey of methodologies for automated
software test case generation”. In: Journal of Systems and Software 86.8
(2013), pp. 1978–2001.

319

Bibliography

[Ani+16] Adina Aniculaesei et al. “Towards the Verification of Safety-critical Au-
tonomous Systems in Dynamic Environments”. In: Proceedings of the The
First Workshop on Verification and Validation of Cyber-Physical Systems,
V2CPS@IFM 2016. Ed. by Mehdi Kargahi and Ashutosh Trivedi. Vol. 232.
EPTCS. 2016, pp. 79–90.

[Ani+18a] Adina Aniculaesei et al. “Automated Generation of Requirements-based Test
Cases for an Adaptive Cruise Control System”. In: 2018 IEEE Workshop
on Validation, Analysis and Evolution of Software Tests (VST). Mar. 2018,
pp. 11–15.

[Ani+18b] Adina Aniculaesei et al. “Towards a Holistic Software Systems Engineering
Approach for Dependable Autonomous Systems”. In: Proceedings of the 1st
International Workshop on Software Engineering for AI in Autonomous
Systems. ACM, 2018, pp. 23–30.

[AS95] Rakesh Agrawal and Ramakrishnan Srikant. “Mining Sequential Patterns”.
In: Proceedings of the Eleventh International Conference on Data Engineer-
ing. Washington, DC, USA: IEEE Computer Society, 1995, pp. 3–14.

[Avi+04] Algirdas Avivienis et al. “Basic concepts and taxonomy of dependable
and secure computing”. In: IEEE transactions on dependable and secure
computing 1.1 (2004), pp. 11–33.

[Bac+15] Johannes Bach et al. “Control based driving assistant functions’ test using
recorded in field data”. In: Proc. 7. Tagung Fahrerassistenzsysteme. Munich,
Germany: TÜV SÜD Akad., 2015.

[Bac+17a] Johannes Bach et al. “Data-Driven Development, A Complementing Ap-
proach for Automotive Systems Engineering”. In: 2017 IEEE International
Systems Engineering Symposium. IEEE Computer Society, Oct. 2017, pp. 1–
6.

[Bac+17b] Johannes Bach et al. “Reactive-Replay Approach for Verification and Vali-
dation of Closed-Loop Control Systems in Early Development”. In: SAE
Technical Paper Series. 2017-01-1671. SAE International, Mar. 2017.

[Bac+17c] Johannes Bach et al. “Test Scenario Selection for System-Level Verification
and Validation of Geolocation-Dependent Automotive Control Systems”. In:
2017 International Conference on Engineering, Technology and Innovation.
IEEE, June 2017, pp. 203–210.

[Ban+05] Jerry Banks et al. Discrete-Event System Simulation. Pearson Prentice-Hall,
2005. isbn: 7111171942.

[Bar+09] Arne Bartels et al. “Qualitätsgesicherte Fahrentscheidungsunterstützung für
automatisches Fahren auf Schnellstraßen und Autobahnen”. In: Proceedings
des 10. Braunschweiger Symposiums Automatisierungssysteme, Assisten-
zsysteme und eingebettete Systeme für Transportmittel. Gesamtzentrum für
Verkehr Braunschweig e.V., 2009, pp. 341–353.

320

[Bar+15] Earl T. Barr et al. “The Oracle Problem in Software Testing: A Survey”. In:
IEEE Transactions on Software Engineering 41.5 (May 2015), pp. 507–525.

[Bar+16] Yvonne Barnard et al. “Methodology for Field Operational Tests of Auto-
mated Vehicles”. In: Transportation Research Procedia 14 (2016), pp. 2188–
2196.

[Bar10] Jaume Barceló. “Models, Traffic Models, Simulation, and Traffic Simulation”.
In: Fundamentals of Traffic Simulation. Ed. by Jaume Barceló. New York,
NY: Springer New York, 2010, pp. 1–62. isbn: 978-1-4419-6142-6.

[Bau+07] Thomas Bauer et al. “From Requirements to Statistical Testing of Embedded
Systems”. In: Fourth International Workshop on Software Engineering for
Automotive Systems. Washington, DC, USA: IEEE, May 2007, pp. 3–.

[Bau+08] Thomas Bauer et al. “Risikobasierte Ableitung und Priorisierung von Test-
fällen für den modellbasierten Systemtest”. In: Software Engineering 2008.
Fachtagung des GI-Fachbereichs Softwaretechnik. Ed. by Korbinian Her-
rmann and Bernd Brügge. Vol. 121. LNI. Munich, Germany: GI, Feb. 2008,
pp. 99–111.

[Bau+12] Eric Bauer et al. “PRORETA 3: An Integrated Approach to Collision
Avoidance and Vehicle Automation”. In: At-Automatisierungstechnik 60.12
(Dec. 2012), pp. 755–765.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Ed. by M. Henzinger et al. Texts in Theoretical Computer
Science. An EATCS Series. Springer-Verlag Berlin Heidelberg, 2004.

[BC10] Yvonne Barnard and Oliver Carsten. “Field operational tests: challenges
and methods”. In: Proceedings of European conference on human centred
design for intelligent transport systems. Ed. by J. Krems, T. Petzholdt, and
M. Henning. Lyon, France: HUMANIST Publications, 2010, pp. 323–332.

[BD08] Christopher R. Baker and John M. Dolan. “Traffic interaction in the urban
challenge: Putting boss on its best behavior”. In: 2008 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. Nice, France: IEEE,
Sept. 2008, pp. 1752–1758.

[Bec+14] Kristian Beckers et al. “Systematic Derivation of Functional Safety Re-
quirements for Automotive Systems”. In: Computer Safety, Reliability, and
Security. Ed. by A. Bondavalli and F. Di Giandomenico. Vol. 8666. Lec-
ture Notes in Computer Science. Springer International Publishing, 2014,
pp. 65–80.

[Bei12] Sven A. Beiker. “Legal Aspects of Autonomous Driving”. In: Santa Clara
Law Review 52.4 (2012), pp. 1145–1561.

321

Bibliography

[Bel+12] Assia Belbachir et al. “Simulation-Driven Validation of Advanced Driving-
Assistance Systems”. In: Transport Research Arena 2012. Ed. by Panos
Papaioannou. Vol. 48. Procedia-Social and Behavioral Sciences. Elsevier
BV, 2012, pp. 1205–1214.

[Bel57] Richard Bellman. “A Markovian decision process”. In: Journal of Mathe-
matics and Mechanics 6.5 (1957), pp. 679–684.

[Ben+14] Klaus Bengler et al. “Three Decades of Driver Assistance Systems: Review
and Future Perspectives”. In: IEEE Intelligent Transportation Systems
Magazine 6.4 (2014), pp. 6–22.

[Ber+14] C Berger et al. “Simulations on Consumer Tests: Systematic Evaluation
of Tolerance Ranges by Model-Based Generation of Simulation Scenarios”.
In: Proc. Fahrerassistenzsysteme und Integrierte Sicherheit. Vol. 2223. VDI
Berichte 2014. VDI-Verlag, 2014, pp. 403–418.

[Ber+15] Christian Berger et al. “Simulations on Consumer Tests: A Systematic
Evaluation Approach in an Industrial Case Study”. In: IEEE Intelligent
Transportation Systems Magazine 7.4 (Oct. 2015), pp. 24–36. issn: 1939-
1390.

[Ber10] Christian Berger. “Automating Acceptance Tests for Sensor-and Actuator-
based Systems on the Example of Autonomous Vehicles”. In: Aachener
Informatik-Berichte, Software Engineering. Ed. by Prof. Dr. rer. nat. Bern-
hard Rumpe. Vol. 6. Shaker Verlag, 2010.

[BHS07] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Verification of
Object-Oriented Software. The KeY Approach. Springer Berlin Heidelberg,
2007. isbn: 9783540689775.

[Bir+13] John Birch et al. “Safety cases and their role in ISO 26262 functional safety
assessment”. In: International Conference on Computer Safety, Reliability,
and Security (SAFECOMP 2013). Ed. by F. Bitsch, J. Guiochet, and M.
Kaâniche. Vol. 8153. Lecture Notes in Computer Science. Springer. 2013,
pp. 154–165.

[Bis96] Robert H. Bishop. Modern Control Systems Analysis and Design Using
MATLAB and SIMULINK. First. Boston, MA, USA: Addison-Wesley Long-
man Publishing Co., 1996. isbn: 0201498464.

[Bit01] Friedemann Bitsch. “Safety patterns - the key to formal specification of
safety requirements”. In: International Conference on Computer Safety,
Reliability, and Security (SAFECOMP 2001). Ed. by U. Voges. Vol. 2187.
Lecture Notes in Computer Science. Springer, 2001, pp. 176–189.

[BJ05] Guillaume Brat and Ari Jonsson. “Challenges in verification and validation
of autonomous systems for space exploration”. In: Proceedings. 2005 IEEE
International Joint Conference on Neural Networks. Vol. 5. IEEE, 2005,
pp. 2909–2914.

322

[BKM10] David Basin, Felix Klaedtke, and Samuel Müller. “Policy Monitoring in
First-Order Temporal Logic”. In: Computer Aided Verification. Ed. by T.
Touili, B. Cook, and P. Jackson. Vol. 6174. Lecture Notes in Computer
Science. Berlin, Heidelberg, Germany: Springer, 2010, pp. 1–18.

[BKV13] Andreas Bauer, Jan-Christoph Küster, and Gil Vegliach. “From proposi-
tional to first-order monitoring”. In: International Conference on Runtime
Verification (RV 2013). Ed. by A. Legay and S. Bensalem. Vol. 8174. Lec-
ture Notes in Computer Science. Springer. Springer Berlin Heidelberg, 2013,
pp. 59–75.

[BLS06] A. Bauer, M. Leucker, and C. Schallhart. “Model-based runtime analy-
sis of distributed reactive systems”. In: Australian Software Engineering
Conference (ASWEC’06). IEEE, 2006, pp. 243–252.

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart. “Runtime Veri-
fication for LTL and TLTL”. In: ACM Trans. Softw. Eng. Methodol. 20.4
(Sept. 2011), 14:1–14:64. issn: 1049-331X.

[BMF07] Thomas Bokc, Markus Maurer, and Georg Farber. “Validation of the Vehicle
in the Loop (VIL); A milestone for the simulation of driver assistance
systems”. In: 2007 IEEE Intelligent Vehicles Symposium. IEEE, June 2007,
pp. 612–617.

[BMW18] BMW AG. Heading for Europe’s motorways in a highly automated BMW.
BMW Group and Continental team up on next step towards highly automated
driving. Online. https://www.press.bmwgroup.com/global/article/detail/
T0137270EN/heading-for-europe-s-<-in-a-highly-automated-bmw-bmw-
group-and-continental-team-up-on-next-step-towards-highly-automated-
driving?language=en. Retrieved: 11/ 21/2018. 2018.

[BN96] R Bajcsy and HH Nagel. “Descriptive and prescriptive languages for mo-
bility tasks: Are they different”. In: Advances in Image Understanding –
A Festschrift for Azriel Rosenfeld. Ed. by K. Bowyer and N. Ahuja. Los
Alamitos, CA: IEEE Computer Society Press, 1996, pp. 280–300.

[BNF16] Guy Berg, Verena Nitsch, and Berthold Färber. “Vehicle in the Loop”. In:
Handbook of Driver Assistance Systems: Basic Information, Components
and Systems for Active Safety and Comfort. Ed. by Hermann Winner et al.
Cham: Springer International Publishing, 2016, pp. 199–210. isbn: 978-3-
319-12352-3.

[BNG06] L. Baresi, E. Di Nitto, and C. Ghezzi. “Toward open-world software: Issues
and challenges”. In: Computer 39.10 (Oct. 2006), pp. 36–43. issn: 00189162.

[Boc09] Thomas Bock. “Bewertung von Fahrerassistenzsystemen mittels der Vehicle
in the Loop-Simulation”. In: Handbuch Fahrerassistenzsysteme. Ed. by H.
Winner. Vieweg+Teubner, 2009, pp. 76–83.

323

https://www.press.bmwgroup.com/global/article/detail/T0137270EN/heading-for-europe-s-<-in-a-highly-automated-bmw-bmw-group-and-continental-team-up-on-next-step-towards-highly-automated-driving?language=en
https://www.press.bmwgroup.com/global/article/detail/T0137270EN/heading-for-europe-s-<-in-a-highly-automated-bmw-bmw-group-and-continental-team-up-on-next-step-towards-highly-automated-driving?language=en
https://www.press.bmwgroup.com/global/article/detail/T0137270EN/heading-for-europe-s-<-in-a-highly-automated-bmw-bmw-group-and-continental-team-up-on-next-step-towards-highly-automated-driving?language=en
https://www.press.bmwgroup.com/global/article/detail/T0137270EN/heading-for-europe-s-<-in-a-highly-automated-bmw-bmw-group-and-continental-team-up-on-next-step-towards-highly-automated-driving?language=en

Bibliography

[Böd+18] Eckard Böde et al. “Efficient Splitting of Test and Simulation Cases for the
Verification of Highly Automated Driving Functions”. In: Computer Safety,
Reliability, and Security (SAFECOMP 2018). Ed. by Barbara Gallina,
Amund Skavhaug, and Friedemann Bitsch. Vol. 11093. Lecture Notes in
Computer Science, Springer, 2018, pp. 139–153. isbn: 978-3-319-99130-6.

[Bon+96] R. Peter Bonasso et al. “Experiences with an architecture for intelligent,
reactive agents”. In: Intelligent Agents II Agent Theories, Architectures,
and Languages (ATAL 1995). Ed. by M. Wooldridge, J. P. Müller, and
M. Tambe. Vol. 1037. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 1996, pp. 187–202. isbn: 3540608052.

[BOS16] Johannes Bach, Stefan Otten, and Eric Sax. “Model based scenario specifi-
cation for development and test of automated driving functions”. In: 2016
IEEE Intelligent Vehicles Symposium (IV). IEEE, June 2016, pp. 1149–1155.

[BP09] Karsten Berns and Ewald von Puttkamer. Autonomous Land Vehicles. First.
Vieweg+Teubner, 2009.

[BR15] Arne Bartels and Thomas Ruchatz. “Einführungsstrategie des Automatis-
chen Fahrens”. In: at - Automatisierungstechnik 63.3 (Jan. 2015), pp. 168–
179.

[Bra+15] Guillaume Brat et al. “Verifying the safety of a flight-critical system”. In:
International Symposium on Formal Methods (FM 2015). Ed. by N. Bjørner
and F. de Boer. Vol. 9109. Lecture Notes in Computer Science, Springer.
2015, pp. 308–324.

[Bro03] Manfred Broy. “Automotive Software Engineering”. In: Proceedings of the
25th International Conference on Software Engineering (ICSE ’03). New
York, New York, USA: IEEE Computer Society, 2003, pp. 719–720.

[Bro86] R. Brooks. “A robust layered control system for a mobile robot”. In: IEEE
Journal on Robotics and Automation 2.1 (1986), pp. 14–23. issn: 0882-4967.

[Bru+09] Yuriy Brun et al. “Engineering self-adaptive systems through feedback
loops”. In: Software engineering for self-adaptive systems. Ed. by B.H.C.
Cheng et al. Vol. 5525. Lecture Notes in Computer Science. Springer, 2009,
pp. 48–70.

[BT93] D. Briere and P. Traverse. “AIRBUS A320/A330/A340 electrical flight
controls - A family of fault-tolerant systems”. In: FTCS-23 The Twenty-
Third International Symposium on Fault-Tolerant Computing. IEEE. IEEE
Comput. Soc. Press, 1993, pp. 616–623.

[Bub02] H. Bubb. “Der Fahrprozess, Informationsverarbeitung durch den Fahrer”. In:
4. Technischer Kongress 20./21. Stuttgart, Germany: VDA, 2002, pp. 19–38.

[Bud+96] F. J. Budinsky et al. “Automatic code generation from design patterns”. In:
IBM Systems Journal 35.2 (1996), pp. 151–171.

324

[BV10] Marco Bozzano and Adolfo Villafiorita. Design and safety assessment of
critical systems. First. Auerbach Publications, 2010.

[Cap+13] P Capros et al. EU Energy, Transport and GHG Emissions: Trends to 2050,
reference scenario 2013. Tech. rep. European Comimission: Directorate-
General for Energy, Directorate-General for Climate Action, Directorate-
General for Mobility, and Transport, 2013.

[Cas+87] Paul Caspi et al. “LUSTRE: a declarative language for real-time program-
ming”. In: Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages. ACM. 1987, pp. 178–188.

[CC04] David E. Clark and Brad M. Cushing. “Rural and urban traffic fatalities,
vehicle miles, and population density”. In: Accident Analysis & Prevention
36.6 (Nov. 2004), pp. 967–972.

[CDS02] Szyperski Clemens, Gruntz Dominik, and Murer Stephan. Component
Software: Beyond Object-Oriented Programming. Second Edition. Addison-
Wesley Professional, 2002. isbn: 0201745720.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. “Model checking
and abstraction”. In: ACM Transactions on Programming Languages and
Systems (TOPLAS) 16.5 (Sept. 1994), pp. 1512–1542.

[CGP99] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking.
Ed. by Calin Belta. First. Vol. 2. Cyber Physical Systems Series. MIT press,
1999.

[CH03] Krzysztof Czarnecki and Simon Helsen. “Classification of model transfor-
mation approaches”. In: Proceedings of the 2nd OOPSLA Workshop on
Generative Techniques in the Context of the Model Driven Architecture.
USA. 2003.

[Cho05] Gobinda G. Chowdhury. “Natural language processing”. In: Annual Review
of Information Science and Technology 37.1 (Jan. 2005), pp. 51–89.

[Chr02] Nicholas R. Chrisman. Exploring Geographic Information System. English.
Wiley, 2002. isbn: 0471314250.

[Chr08] Jost-Pieter Katoen Christel Baier. Principles of Model Checking. The MIT
Press, June 11, 2008. isbn: 9780262026499.

[Cim+02] Alessandro Cimatti et al. “NuSMV 2: An OpenSource Tool for Symbolic
Model Checking”. In: Computer Aided Verification (CAV 2002). Ed. by
Ed Brinksma and Kim Guldstrand Larsen. Vol. 2404. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2002, pp. 359–364.

[Cim+08] Alessandro Cimatti et al. “From informal requirements to property-driven
formal validation”. In: Formal Methods for Industrial Critical Systems. Ed.
by D. Cofer and A. Fantechi. Vol. 5596. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2008, pp. 166–181.

325

Bibliography

[Cim+10] Alessandro Cimatti et al. “Formalization and Validation of Safety-Critical
Requirements”. In: 16th Int. Symposium on Formal Methods. Vol. 20. Open
Publishing Association, Mar. 2010, pp. 68–75.

[Cla+99] Manuel Clavel et al. “The Maude System”. In: 10th International Conference
on Rewriting Techniques and Applications. Springer. 1999, pp. 240–243.

[Cle07] Jane Cleland-Huang. “Quality Requirements and their Role in Successful
Products”. In: 15th IEEE International Requirements Engineering Confer-
ence (RE 2007). Ed. by Alistair Sutcliffe and Pankaj Jalote. IEEE. IEEE,
Oct. 2007, pp. 361–361.

[Coh+97] Don Cohen et al. “Automatic Monitoring of Software Requirements”. In:
Proceedings of the 19th International Conference on Software Engineering.
New York, NY, USA: ACM, 1997, pp. 602–603.

[Con+06] J. Connelly et al. “Current challenges in autonomous vehicle development”.
In: Unmanned Systems Technology VIII. Ed. by Grant R. Gerhart, Charles
M. Shoemaker, and Douglas W. Gage. Vol. 6230. SPIE, May 2006.

[CS217] C/S2ESC - Software & Systems Engineering Standards Committee. IEEE
1012-2016 - IEEE Standard for System, Software, and Hardware Verification
and Validation. C/S2ESC - Software & Systems Engineering Standards
Committee, 2017.

[CW96] Edmund M. Clarke and Jeannette M. Wing. “Formal Methods: State of
the Art and Future Directions”. In: ACM Computing Surveys (CSUR) 28.4
(1996), pp. 626–643.

[DB10] Richard C. Dorf and Robert H. Bishop. Modern Control Systems. 12th
Edition. Pearson, 2010. isbn: 9780136024583.

[Den+14] Louise a Dennis et al. “Practical verification of decision-making in agent-
based autonomous systems”. In: Automated Software Engineering 23.3 (Sept.
2014), pp. 305–359.

[DG15] Marko Dimjašević and Dimitra Giannakopoulou. “Test-case Generation
for Runtime Analysis and Vice Versa: Verification of Aircraft Separation
Assurance”. In: Proceedings of the 2015 International Symposium on Soft-
ware Testing and Analysis. ISSTA 2015. New York, NY, USA: ACM, 2015,
pp. 282–292.

[DGH92] Paul Dagum, Adam Galper, and Eric Horvitz. “Dynamic Network Models
for Forecasting”. In: Proceedings of the Eighth International Conference
on Uncertainty in Artificial Intelligence. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1992, pp. 41–48.

[Dic07] Ernst Dieter Dickmanns. Dynamic Vision for Perception and Control of
Motion. Springer London, 2007. isbn: 978-1-84628-637-7.

326

[DMB04] J. Du, J. Masters, and M. Barth. “Lane-level positioning for in-vehicle
navigation and automated vehicle location (AVL) systems”. In: 7th Interna-
tional IEEE Conference on Intelligent Transportation Systems. IEEE, Oct.
2004, pp. 35–40.

[Don+07] E. Donner et al. “RESPONSE 3 - Code of Practice für die Entwicklung,
Validierung und Markteinführung von Fahrerassistenzsystemen”. In: VDA
Technischer Kongress. 2007, pp. 231–241.

[Don15] Edmund Donges. “Driver Behavior Models”. In: Handbook of Driver As-
sistance Systems. Ed. by Hermann Winner et al. Springer International
Publishing, 2015, pp. 19–33.

[Don82] Edmund Donges. “Aspekte der aktiven Sicherheit bei der Führung von
Personenkraftwagen”. In: Automobil-Industrie 27.2 (1982), pp. 183–190.

[DT16] Nabarun Das and William Taylor. “Quantified Fault Tree Techniques for
Calculating Hardware Fault Metrics According to ISO 26262”. In: 2016
IEEE Symposium on Product Compliance Engineering. IEEE, May 2016,
pp. 1–8.

[Dup16] Marius Dupuis. Openscenario - bringing content to the road. Tech. rep. 2nd
OpenSCENARIO Meeting, 2016.

[Dur05] Hugh Durrant-Whyte. “Autonomous land vehicles”. In: Proceedings of the
Institution of Mechanical Engineers, Part 1: Journal of Systems and Control
Engineering. Vol. 219. 1. SAGE Publications, Feb. 2005, pp. 77–98.

[EGA13] EGAS Workgroup. Standardized E-GAS Monitoring Concept for Gasoline
and Diesel Engine Control Unit. IAV GmbH, 2013.

[El 02] Mohammed El Shobaki. “On-Chip Monitoring of Single- and Multiproces-
sor Hardware Real-Time Operating Systems”. In: Proceedings of the 8th
international conference on real-time computing systems and applications.
IEEE, 2002.

[ELC12] Heinz Erzberger, Todd A. Lauderdale, and Yung-Cheng Chu. “Automated
conflict resolution, arrival management, and weather avoidance for air traffic
management”. In: Proceedings of the Institution of Mechanical Engineers,
Part G: Journal of Aerospace Engineering 226.8 (Oct. 2012), pp. 930–949.

[ELS10] Christopher Edwards, Thomas Lombaerts, and Hafid Smaili, eds. Fault
Tolerant Flight Control. Vol. 399. Lecture Notes in Control and Information
Sciences. Springer, 2010.

[Eri05] Clifton A. Ericson. Hazard Analysis Techniques for System Safety. John
Wiley & Sons, Inc., 2005. isbn: 9780471720195.

[Eur11] European Commission. “Roadmap to a single European transport area -
Towards a competitive and resource efficient transport system”. In: White
Paper (COM (2011) 144) (2011).

327

Bibliography

[FDW13] Michael Fisher, Louise Dennis, and Matt Webster. “Verifying Autonomous
Systems”. In: Communications of the ACM 56.9 (2013), pp. 84–93.

[FE98] Peter Fritzson and Vadim Engelson. “Modelica – A Unified Object-Oriented
Language for System Modeling and Simulation”. In: European Conference
on Object-Oriented Programming. Vol. 1445. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, July 1998, pp. 67–90.

[Fea+98] M. S. Feather et al. “Reconciling System Requirements and Runtime Behav-
ior”. In: Proceedings Ninth International Workshop on Software Specification
and Design. IEEE Computer Society, Apr. 1998, pp. 50–59.

[Fed17] Federal Ministry of Transport and Digital Infrastructure. Ethics Commis-
sion: Automated and connected driving. June 2017.

[FG96] Stan Franklin and Art Graesser. “Is it an Agent, or just a Program?:
A Taxonomy for Autonomous Agents”. In: Intelligent Agents III. Agent
Theories, Architectures, and Languages. Ed. by Jörg Müller, Michael J.
Wooldridge, and Nicholas Jennings. Vol. 1193. Lecture Notes in Artificial
Intelligence. Springer-Verlag Berlin Heidelberg, 1996, pp. 21–35.

[FGG97] Nir Friedman, Dan Geiger, and Moises Goldszmidt. “Bayesian Network
Classifiers”. In: Machine Learning. Vol. 29. 2-3. Kluwer Academic Publishers,
Nov. 1997, pp. 131–163.

[FGT11] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. “A formal ap-
proach to adaptive software: continuous assurance of non-functional require-
ments”. In: Formal Aspects of Computing. Vol. 24. 2. Springer Nature, Nov.
2011, pp. 163–186.

[Fle05] FlexRay Consortium. FlexRay Communications System Protocol Specifica-
tion v2.1. 2005.

[Flo67] Robert W. Floyd. “Nondeterministic Algorithms”. In: Journal of the ACM.
Ed. by Victor Vianu. Vol. 14. 4. New York, NY, USA: ACM, Oct. 1967,
pp. 636–644.

[For08] Forschungsgesellschaft für Straßen- und Verkehrswesen, Arbeitsgruppe
Stra"senentwurf. “Richtlinien für die Anlage von Autobahnen: RAA”. In:
FGSV. Vol. 220. Köln: FGSV-Verlag, 2008.

[FPE14] Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. Feedback
Control of Dynamic Systems. 7th Edition. Pearson, 2014. isbn: 0133496597.

[Fra+17] Adrian Francalanza et al. “A Foundation for Runtime Monitoring”. In:
International Conference on Runtime Verification. Ed. by S. Lahiri and
G. Reger. Vol. 10548. Lecture Notes in Computer Science. Springer. 2017,
pp. 8–29.

[Fra+18] Laura Fraade-Blanar et al. Measuring Automated Vehicle Safety: Forging a
Framework. Tech. rep. RR-2662. Santa Monica: Calif.: RAND Corporation,
Oct. 2018.

328

[Fri+06] Peter Fritzson et al. “OpenModelica – A Free Open-Source Environment for
System Modeling, Simulation, and Teaching”. In: Proceedings of the 2006
IEEE Conference on Computer Aided Control Systems Design. IEEE, Oct.
2006, pp. 1588–1595.

[Für+09] Simon Fürst et al. “AUTOSAR – A Worldwide Standard is on the Road”.
In: 14th International VDI Congress Electronic Systems for Vehicles, Baden-
Baden. Vol. 2075. VDI Berichte. VDI, 2009, pp. 797–812.

[Gäf+08] Magnus Gäfvert et al. “Simulation-Based Automated Verification of Safety-
Critical Chassis-Control Systems”. In: Proc. 9th Intern. Symposium on
Advanced Vehicle Control. Oct. 2008.

[Gas+12] Tom Michael Gasser et al. “Rechtsfolgen zunehmender Fahrzeugautoma-
tisierung - Gemeinsamer Schlussbericht der Projektgruppe”. In: Berichte
der Bundesanstalt für Straßenwesen. Vol. 83. Wirtschaftsverlag NW, 2012.

[Gas12] Tom Michael Gasser. “Legal Issues of Driver Assistance Systems and Au-
tonomous Driving”. In: Handbook of Intelligent Vehicles. Ed. by Azim
Eskandarian. London: Springer, 2012, pp. 1519–1535.

[GBH12] Philipp Glauner, Axel Blumenstock, and Martin Haueis. “Effiziente Felder-
probung von Fahrerassistenzsystemen”. In: FAS, Workshop Fahrerassisten-
zsystem. Vol. 8. Uni-DAS, Sept. 2012, pp. 5–14.

[Ger+14] Mario Gerla et al. “Internet of Vehicles: From Intelligent Grid to Autonomous
Cars and Vehicul”. In: 2014 IEEE World Forum on Internet of Things.
IEEE. 2014, pp. 241–246.

[Gey+14] Sebastian Geyer et al. “Concept and development of a unified ontology for
generating test and use-case catalogues for assisted and automated vehicle
guidance”. In: IET Intelligent Transport Systems 8.3 (2014), pp. 183–189.

[GG14] Heinrich Gotzig and Georg Geduld. “Automotive LIDAR”. In: Handbook of
Driver Assistance Systems: Basic Information, Components and Systems
for Active Safety and Comfort. Ed. by Hermann Winner et al. Springer
International Publishing, 2014, pp. 1–20.

[GGD12] Dominique Gruyer, Mélanie Grapinet, and Philippe De Souza. “Modeling
and validation of a new generic virtual optical sensor for ADAS prototyping”.
In: 2012 IEEE Intelligent Vehicles Symposium. IEEE. 2012, pp. 969–974.

[Gha+18] Mohamad Gharib et al. “On the Safety of Automotive Systems Incorporating
Machine Learning Based Components: A Position Paper”. In: 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops. IEEE, 2018, pp. 271–274.

[Gia+14] Dimitra Giannakopoulou et al. “Taming Test Inputs for Separation Assur-
ance”. In: Proceedings of the 29th ACM/IEEE international conference on
Automated software engineering. ACM, 2014, pp. 373–384.

329

Bibliography

[Gie+04] O. J. Gietelink et al. “Pre-crash System Validation with PRESCAN and
VEHIL”. In: 2004 IEEE Intelligent Vehicles Symposium (2004), pp. 913–
918.

[Gie+06] Olaf Gietelink et al. “Development of advanced driver assistance systems
with vehicle hardware-in-the-loop simulations”. In: Vehicle System Dynamics
44.7 (2006), pp. 569–590.

[Goe10] Anita Goel. Computer Fundamentals. Pearson Education India, 2010. isbn:
8131733092.

[GP10] Alwyn E Goodloe and Lee Pike. Monitoring Distributed Real-Time Systems:
A Survey and Future Directions. Tech. rep. NASA Langley Reasearch Center,
July 2010.

[GP17] Ian Goodfellow and Nicolas Papernot. The challenge of verification and
testing of machine learning. Online. http://www.cleverhans.io/security/
privacy/ml/2017/06/14/verification.html. Retrieved: 12/13/2018. 2017.

[Gri+01] Wolfgang Grieskamp et al. “Testable Use Cases in the Abstract State
Machine Language”. In: Proceedings Second Asia-Pacific Conference on
Quality Software. IEEE, 2001, pp. 167–172.

[GRS14] Clément Galko, Romain Rossi, and Xavier Savatier. “Vehicle-Hardware-
In-The-Loop System for ADAS Prototyping and Validation”. In: 2014
International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation. IEEE, 2014, pp. 329–334.

[Gru+10] Dominique Gruyer et al. “A new generic virtual platform for cameras
modeling”. In: Vehicle and Infrastructure Safety Improvement in Adverse
Conditions and Night Driving (Oct. 2010).

[Har87] David Harel. “Statecharts: A Visual Formalism For Complex Systems”. In:
Science of Computer Programming 8.3 (1987), pp. 231–274.

[Hav11] Klaus Havelund. “Implementing Runtime Monitors”. In: 2nd TORRENTS
Workshop (2011).

[HB82] Steve J Heims and Duane W Bailey. “John von Neumann and Norbert
Wiener, from Mathematics to the technologies of life and death”. In: Amer-
ican Journal of Physics 50.4 (1982), pp. 383–383.

[HBS18] Andreas Herrmann, Walter Brenner, and Rupert Stadler. Autonomous
Driving: How the Driverless Revolution Will Change the World. Emerald
Publishing Limited, 2018. isbn: 1787148343.

[Hec+11] Karl Heckemann et al. “Safe Automotive Software”. In: International Con-
ference on Knowledge-Based and Intelligent Information and Engineering
Systems. Ed. by A. König et al. Vol. 6884. Lecture Notes in Computer
Science. Springer, Berlin, Heidelberg, 2011, pp. 167–176.

330

http://www.cleverhans.io/security/privacy/ml/2017/06/14/verification.html
http://www.cleverhans.io/security/privacy/ml/2017/06/14/verification.html

[HG08] Klaus Havelund and Allen Goldberg. “Verify Your Runs”. In: Verified
Software: Theories, Tools, Experiments. Ed. by B. Meyer and J. Woodcock.
Vol. 4171. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg,
Oct. 2008, pp. 374–383.

[HGR13] Falk Howar, Dimitra Giannakopoulou, and Zvonimir Rakamarić. “Hybrid
Learning: Interface Generation through Static, Dynamic, and Symbolic
Analysis”. In: Proceedings of the 2013 International Symposium on Software
Testing and Analysis. ACM, 2013, pp. 268–279.

[Hil+11] Martin Hilscher et al. “An Abstract Model for Proving Safety of Multi-Lane
Traffic Manoeuvres”. In: Formal Methods and Software Engineering. Ed. by
Qin S. and Qiu Z. Vol. 6991. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2011, pp. 404–419.

[HK16] Stephan Hakuli and Markus Krug. “Virtual Integration in the Development
Process of ADAS”. In: Handbook of Driver Assistance Systems: Basic Infor-
mation, Components and Systems for Active Safety and Comfort. Ed. by
Hermann Winner et al. Springer International Publishing, 2016, pp. 159–
176.

[HLO13] Martin Hilscher, Sven Linker, and Ernst-Rüdiger Olderog. “Proving Safety
of Traffic Manoeuvres on Country Roads”. In: Theories of Programming
and Formal Methods. Ed. by Z. Liu, J. Woodcock, and H Zhu. Vol. 8051.
Lecture Notes in Computer Science. Springer, 2013, pp. 196–212.

[HLR94] Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. “Synchronous
observers and the verification of reactive systems”. In: Algebraic Method-
ology and Software Technology. Ed. by Maurice Nivat et al. Workshops in
Computing. Springer, London, 1994, pp. 83–96.

[HLZ17] Zhiyuan Huang, Henry Lam, and Ding Zhao. “Towards Affordable On-track
Testing for Autonomous Vehicle - A Kriging-based Statistical Approach”. In:
IEEE 20th International Conference on Intelligent Transportation Systems.
IEEE, 2017, pp. 1–6.

[HMA03] Hui-Min Huang, Elena Messina, and James Albus. “Autonomy Level Spec-
ification for Intelligent Autonomous Vehicles: Interim Progress Report”.
In: 2003 Performance Metrics for Intelligent Systems (PerMIS) September
(2003), pp. 1–7.

[HMF14] Donal Heffernan, Ciaran MacNamee, and Padraig Fogarty. “Runtime verifi-
cation monitoring for automotive embedded systems using the ISO 26262
Functional Safety Standard as a guide for the definition of the monitored
properties”. In: Software, IET 8.5 (Oct. 2014), pp. 193–203.

[Hör11] Markus Hörwick. “Sicherheitskonzept für hochautomatisierte Fahrerassis-
tenzsysteme”. PhD thesis. Technische Universität München, 2011.

331

Bibliography

[HPT10] Falke Hendriks, Riné Pelders, and Martijn Tideman. “Future Testing of
Active Safety Systems”. In: SAE International Journal of Passenger Cars -
Electronic and Electrical Systems 3.2 (Oct. 2010), pp. 170–175.

[HR04] Michael Huth and Mark Ryan. “Predicate logic”. In: Logic in Computer
Science: Modelling and Reasoning about Systems. 2nd Edition. Cambridge
University Press, 2004, pp. 93–171. isbn: 052154310X.

[HRS98] Kirsten M Hansen, Anders P Ravn, and Victoria Stavridou. “From Safety
Analysis to Software Requirements”. In: vol. 24. 7. IEEE, July 1998, pp. 573–
584.

[HW08] Mordechai Haklay and Patrick Weber. “OpenStreetMap: User-Generated
Street Maps”. In: IEEE Pervasive Computing. Vol. 7. 4. IEEE Computer
Society, Oct. 2008, pp. 12–18.

[HW11] Kai Homeier and Lars Wolf. “RoadGraph: High level sensor data fusion
between objects and street network”. In: 2011 14th International IEEE Con-
ference on Intelligent Transportation Systems. IEEE, Oct. 2011, pp. 1380–
1385.

[HZB00] Almut Hochstädter, Peter Zahn, and Karsten Breuer. “Ein universelles
Fahrermodell mit den Einsatzbeispielen Verkehrssimulation und Fahrsim-
ulator”. In: 9. Aachener Kolloquium Fahrzeug- und Motorentechnik. TH
Aachen, Lehrstuhl für Verbrennungskraftmaschinen, Oct. 2000.

[Ina06] Toshiyuki Inagaki. “Design of human – machine interactions in light of
domain-dependence of human-centered automation”. In: Cognition, Tech-
nology & Work 8.3 (Apr. 2006), pp. 161–167.

[Int09a] International Organization for Standardization. Road vehicles - Functional
safety - Part 1: Vocabulary. 2009.

[Int09b] International Organization for Standardization. Road vehicles - Functional
safety - Part 10: Guideline. 2009.

[Int09c] International Organization for Standardization. Road vehicles - Functional
safety - Part 3: Concept phase. 2009.

[Int09d] International Organization for Standardization. Road vehicles - Functional
safety - Part 4: Product development: system level. 2009.

[Int09e] International Organization for Standardization. Road vehicles - Functional
safety - Part 5: Product development: hardware level. 2009.

[Int09f] International Organization for Standardization. Road vehicles - Functional
safety - Part 6: Product development: software level. 2009.

[Int11a] International Organization for Standardization. ISO 8855:2011: Road vehi-
cles - Vehicle dynamics and road-holding ability - Vocabulary. 2011.

[Int11b] International Organization for Standardization. ISO-IEC 25010: 2011 Sys-
tems and Software Engineering-Systems and Software Quality Requirements
and Evaluation (SQuaRE)-System and Software Quality Models. 2011.

332

[Int17] International Organization for Standardization. ISO/IEC/IEEE Interna-
tional Standard - Systems and software engineering - Vocabulary. Aug. 2017.

[Ise05] Rolf Isermann. “Model-based fault-detection and diagnosis - status and
applications”. In: Annual Reviews in control. Ed. by Janos J. Gertler et al.
Vol. 29. 1. Elsevier BV, 2005, pp. 71–85.

[Ise06a] Rolf Isermann, ed. Fahrdynamik-Regelung. Vieweg+Teubner Verlag, 2006.
isbn: 978-3-8348-9049-8.

[Ise06b] Rolf Isermann. Fault-Diagnosis Systems. Springer Berlin Heidelberg, 2006.
isbn: 978-3-540-30368-8.

[Ise11] Rolf Isermann. Fault-Diagnosis Applications. Springer Berlin Heidelberg,
2011. isbn: 978-3-642-12766-3.

[Ise97] Rolf Isermann. “Supervision, Fault-Detection and Fault-Diagnosis Methods
- An Introduction”. In: Control Engineering Practice. Vol. 5. 5. Elsevier,
1997, pp. 639–652.

[Jak+15] Stefan Jakšić et al. “From signal temporal logic to FPGA monitors”. In:
ACM/IEEE International Conference on Formal Methods and Models for
Codesign. IEEE, 2015, pp. 218–227.

[JBS13] Ethan K. Jackson, Nikolaj Bjorner, and Wolfram Schulte. Open-World Logic
Programs: A New Foundation for Formal Specifications. Tech. rep. 2013-55.
Microsoft Research, 2013.

[Kal17] Nidhi Kalra. Challenges and Approaches to Realizing Autonomous Vehicle
Safety. Online. https://www.rand.org/pubs/testimonies/CT463.html. 2017.

[Kan+15] Aaron Kane et al. “A Case Study on Runtime Monitoring of an Autonomous
Research Vehicle (ARV) System”. In: Runtime Verification. Ed. by Ezio
Bartocci and Rupak Majumdar. Vol. 9333. Lecture Notes in Computer
Science. Springer. 2015, pp. 102–117.

[Kan15] Aaron Kane. “Runtime Monitoring for Safety-Critical Embedded Systems”.
PhD thesis. Carnegie Mellon University, 2015.

[Kap+16] James Kapinski et al. “Simulation-Based Approaches for Verification of
Embedded Control Systems: An Overview of Traditional and Advanced
Modeling, Testing, and Verification Techniques”. In: IEEE Control Systems
36.6 (2016), pp. 45–64.

[KFK14] Aaron Kane, Thomas Fuhrman, and Philip Koopman. “Monitor Based
Oracles for Cyber-Physical System Testing: Practical Experience Report”. In:
44th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks. IEEE, June 2014, pp. 148–155.

[KH10] Jorn Knaup and Kai Homeier. “RoadGraph - Graph based environmental
modelling and function independent situation analysis for driver assistance
systems”. In: 13th International IEEE Conference on Intelligent Transporta-
tion Systems. IEEE, 2010, pp. 428–432.

333

https://www.rand.org/pubs/testimonies/CT463.html

Bibliography

[Kha+17] Siddartha Khastgir et al. “Test Scenario Generation for Driving Simulators
Using Constrained Randomization Technique”. In: SAE Technical Paper.
Vol. 2017-01-1672, SAE International, 2017.

[Kim+08] Seung-Han Kim et al. “A Gateway System for an Automotive System: LIN,
CAN, and FlexRay”. In: 6th IEEE International Conference on Industrial
Informatics. IEEE. 2008, pp. 967–972.

[Kis02] Ivan Kiselev. Aspect-Oriented Programming with AspectJ. Indianapolis, IN,
USA: Sams, 2002. isbn: 0672324105.

[KK15] Fabian Kneer and Erik Kamsties. “Model-based Generation of a Require-
ments Monitor.” In: Joint Proceedings of REFSQ-2015 Workshops, Research
Method Track, and Poster Track co-located with the 21st International Con-
ference on Requirements Engineering: Foundation for Software Quality.
Vol. 1342. CEUR Workshop Proceedings. 2015, pp. 156–170.

[KKL13] D. Richard Kuhn, Raghu N. Kacker, and Yu Lei. Introduction to Combina-
torial Testing. Chapman and Hall/CRC, 2013. isbn: 9781466552296.

[KLC98] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. “Plan-
ning and acting in partially observable stochastic domains”. In: Artificial
intelligence. Ed. by R. Dechter and P. Doherty. Vol. 101. 1-2. Elsevier, May
1998, pp. 99–134.

[KM08] Fred Kröger and Stephan Merz. Temporal Logic and State Systems. Texts
in Theoretical Computer Science. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2008. isbn: 9783540674016.

[KMM07] Ingolf H. Krüger, Michael Meisinger, and Massimiliano Menarini. “Runtime
Verification of Interactions: From MSCs to Aspects”. In: Runtime Verifica-
tion. Ed. by Oleg Sokolsky and Serdar Taşiran. Vol. 4839. Lecture Notes in
Computer Science. Springer. Springer Berlin Heidelberg, 2007, pp. 63–74.

[Kna+17a] Alessia Knauss et al. “Paving the Roadway for Safety of Automated Vehicles:
An Empirical Study on Testing Challenges”. In: IEEE Intelligent Vehicles
Symposium (IV). IEEE. 2017, pp. 1873–1880.

[Kna+17b] Alessia Knauss et al. “Software-Related Challenges of Testing Automated
Vehicles”. In: Proceedings of the 39th International Conference on Software
Engineering Companion. [IEEE], 2017, pp. 328–330.

[Koy92] Ron Koymans. Specifying Message Passing and Time-Critical Systems with
Temporal Logic. Vol. 651. Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg, 1992.

[KP16] Nidhi Kalra and Susan M. Paddock. Driving to Safety: How Many Miles
of Driving Would It Take to Demonstrate Autonomous Vehicle Reliability?
Online. https://www.rand.org/pubs/research_reports/RR1478.html. 2016,
pp. 182–193.

334

https://www.rand.org/pubs/research_reports/RR1478.html

[KW16] Philip Koopman and Michael Wagner. “Challenges in Autonomous Vehicle
Testing and Validation”. In: SAE International Journal of Transportation
Safety 4.1 (2016), pp. 2016–01–0128. issn: 2327-5634.

[Las+10] Yvonne Laschinsky et al. “Evaluation of an Active Safety Light using Virtual
Test Drive within Vehicle in the Loop”. In: IEEE International Conference
on Industrial Technology (2010).

[Lee+85] W. S. Lee et al. “Fault Tree Analysis, Methods, and Applications: A Review”.
In: IEEE Transactions on Reliability R-34.3 (Aug. 1985), pp. 194–203.

[Lee82] C. Lee. “Robot Arm Kinematics, Dynamics, and Control”. In: Computer.
Vol. 15. 12. IEEE, Dec. 1982, pp. 62–80.

[Lef+97] U. Lefarth et al. “ASCET-SD – Development Environment for Embedded
Control Systems”. In: IFAC Proceedings Volumes. Vol. 30. 4. Elsevier BV,
1997, pp. 85–90.

[Leo+08] John Leonard et al. “A Perception-Driven Autonomous Urban Vehicle”. In:
Journal of Field Robotics 25.10 (Oct. 2008), pp. 727–774.

[Leu11] Martin Leucker. “Teaching runtime verification”. In: Runtime Verification.
Ed. by Sarfraz Khurshid and Koushik Sen. Vol. 7186. Lecture Notes in
Computer Science. Springer. 2011, pp. 34–48.

[LF96] Kangsun Lee and Paul A. Fishwick. “Dynamic Model Abstraction”. In:
Proceedings of the 28th conference on Winter simulation. Ed. by John M.
Charnes et al. IEEE, 1996, pp. 764–771.

[LF97] Kangsun Lee and Paul A Fishwick. “Semiautomated method for dynamic
model abstraction”. In: Enabling Technology for Simulation Science. Ed. by
Alex F. Sisti. Vol. 3083. Proc. SPIE. SPIE, June 1997, pp. 31–42.

[LH94] Jaynarayan H Lala and Richard E Harper. “Architectural Principles for
Safety-Critical Real-Time Applications”. In: Proceedings of the IEEE. Vol. 82.
1. IEEE, 1994, pp. 25–40.

[Lig09] Peter Liggesmeyer. Software-Qualität: Testen, Analysieren und Verifizieren
von Software. Springer Science & Business Media, 2009.

[LK97] Averill M. Law and W. David Kelton. Simulation Modeling and Analysis.
2nd. McGraw-Hill Higher Education, 1997. isbn: 0070366985.

[LMT15] Kim Guldstrand Larsen, Marius Mikučionis, and Jakob Haahr Taankvist.
“Safe and Optimal Adaptive Cruise Control”. In: Correct System Design.
Ed. by Roland Meyer, André Platzer, and Heike Wehrheim. Vol. 9360.
Lecture Notes in Computer Science. Springer International Publishing,
2015, pp. 260–277. isbn: 978-3-319-23506-6.

[LP10] Daniel Le Berre and Anne Parrain. “The sat4j library, release 2.2, system de-
scription”. In: Journal on Satisfiability, Boolean Modeling and Computation.
Vol. 7. IOS Press, 2010, pp. 59–64.

335

Bibliography

[LPY97] Kim G Larsen, Paul Pettersson, and Wang Yi. “UPPAAL in a nutshell”.
In: International Journal on Software Tools for Technology Transfer. Vol. 1.
1-2. Springer, 1997, pp. 134–152.

[LS09] Martin Leucker and Christian Schallhart. “A brief account of runtime
verification”. In: The 1st Workshop on Formal Languages and Analysis
of Contract-Oriented Software. Ed. by Olaf Owe and Gerardo Schneider.
Vol. 78. The Journal of Logic and Algebraic Programming 5. Elsevier BV,
2009, pp. 293–303.

[LSK13] Ulrich Lages, Martin Spencer, and Roman Katz. “Automatic Scenario
Generation based on Laserscanner Reference Data and Advanced Offline
Processing”. In: IEEE Intelligent Vehicles Symposium (IV). IEEE, 2013,
pp. 153–155.

[Luc+16] Alberto Lucchetti et al. “Automatic recognition of driving scenarios for
ADAS design”. In: 8th IFAC Symposium on Advances in Automotive Control.
Ed. by Per Tunestål and Lars Eriksson. Vol. 49. IFAC-PapersOnLine 11.
8th IFAC Symposium on Advances in Automotive Control AAC 2016. 2016,
pp. 109–114.

[Mac+13] Frank D. Macías-Escrivá et al. “Self-adaptive systems: A survey of current
approaches, research challenges and applications”. In: Expert Systems with
Applications 40.18 (2013), pp. 7267–7279. issn: 0957-4174.

[Mac+14] Mathilde Machin et al. “Specifying Safety Monitors for Autonomous Systems
Using Model-Checking”. In: Computer Safety, Reliability, and Security. Ed.
by Andrea Bondavalli and Felicita Di Giandomenico. Vol. 8666. Lecture
Notes in Computer Science. Springer. 2014, pp. 262–277.

[Mac+18] Mathilde Machin et al. “SMOF - A Safety MOnitoring Framework for
Autonomous Systems”. In: IEEE Transactions on Systems, Man, and Cy-
bernetics: Systems. Vol. 48. 5. IEEE, 2018, pp. 702–715.

[Mar+13] R. Marino et al. “Fault-tolerant cruise control of electric vehicles with
induction motors”. In: Control Engineering Practice 21.6 (2013), pp. 860–
869.

[Mar10] Rebecca J. Parsons Martin Fowler. Domain-Specific Languages. Addison-
Wesley Professional, 2010. isbn: 0321712943.

[Mar18] Gary Marcus. “Deep Learning: A Critical Appraisal”. In: CoRR abs/1801.
00631 (2018).

[Mat15] Richard Matthaei. “Wahrnehmungsgestützte Lokalisierung in fahrstreifen-
genauen Karten für Assistenzsysteme und automatisches Fahren in urbaner
Umgebung”. PhD thesis. TU Braunschweig, 2015.

336

[Mau00a] M Maurer. “Flexible Automatisierung von Straßenfahrzeugen mit Rechn-
ersehen”. In: Verkehrstechnik/Fahrzeugtechnik. Vol. 12. 445. https://www.
ifr.ing.tu-bs.de/static/files/forschung/buecher/dissertation_maurer.pdf.
VDI-Verlag, 2000.

[Mau00b] M. Maurer. “EMS-Vision: Knowledge Represent at ion for Flexible Automa-
tion of Land Vehicles”. In: Proceedings of the IEEE Intelligent Vehicles
Symposium 2000. IEEE, Oct. 2000, pp. 575–580.

[ME10] Nizar R. Mabroukeh and C. I. Ezeife. “A Taxonomy of Sequential Pattern
Mining Algorithms”. In: ACM Comput. Surveys. Vol. 43. 1. ACM, Dec.
2010, 3:1–3:41.

[Mer18] Merriam-Webster Online Dictionary. Autonomy. Online. https://www.
merriam-webster.com/dictionary/autonomy. Retrieved: 11-8-2018. 2018.

[MFG11] Javad Mohammadpour, Matthew Franchek, and Karolos Grigoriadis. “A
Survey on Diagnostics Methods for Automotive Engines”. In: Int. Journal
of Engine Research. Vol. 13. 1. SAGE Publications, Nov. 2011, pp. 41–64.

[MG14] Shabnam Mousavi and Gerd Gigerenzer. “Risk, uncertainty, and heuristics”.
In: Journal of Business Research 67.8 (2014), pp. 1671–1678. issn: 0148-
2963.

[MHR15] Malte Mauritz, Falk Howar, and Andreas Rausch. “From Simulation to
Operation : Using Design Time Artifacts to Ensure the Safety of Advanced
Driving Assistance Systems at Runtime”. In: International Workshop on
Modelling in Automotive Software Engineering (2015).

[MHR16] Malte Mauritz, Falk Howar, and Andreas Rausch. “Assuring the safety
of advanced driver assistance systems through a combination of simula-
tion and runtime monitoring”. In: International Symposium on Leveraging
Applications of Formal Methods. Springer. 2016, pp. 672–687.

[Mon+08] Michael Montemerlo et al. “Junior: The Stanford Entry in the Urban
Challenge”. In: The DARPA Urban Challenge. Ed. by Martin Buehler, Karl
Iagnemma, and Sanjiv Singh. Vol. 56. Springer Tracts in Advanced Robotics.
Springer, Berlin, Heidelberg, 2008, pp. 91–123.

[Mon+97] Robert T Monroe et al. “Architectural Styles, Design Patterns, and Objects”.
In: IEEE Software. Vol. 14. 1. IEEE, 1997, pp. 43–52.

[Moo97] Christopher Z. Mooney. Monte carlo simulation. Vol. 116. Quantitative Ap-
plications in the Social Sciences. Sage Publications, 1997. isbn: 0803959435.

[MP+07] Charlie Miller, Zachary N. J. Peterson, et al. “Analysis of mutation and
generation-based fuzzing”. In: Independent Security Evaluators, Tech. Rep
(2007).

337

https://www.ifr.ing.tu-bs.de/static/files/forschung/buecher/dissertation_maurer.pdf
https://www.ifr.ing.tu-bs.de/static/files/forschung/buecher/dissertation_maurer.pdf
https://www.merriam-webster.com/dictionary/autonomy
https://www.merriam-webster.com/dictionary/autonomy

Bibliography

[MPB09] Daniel Meyer-Delius, Christian Plagemann, and Wolfram Burgard. “Prob-
abilistic situation recognition for vehicular traffic scenarios”. In: IEEE
International Conference on Robotics and Automation 2009 (ICRA’09).
Citeseer. 2009, pp. 459–464.

[MR82] Michael F Morris and Paul F Roth. Computer Performance Evaluation:
Tools and Techniques for Effective Analysis. Van Nostrand Reinhold Com-
pany, 1982.

[MRS14] Malte Mauritz, Andreas Rausch, and Ina Schaefer. “Dependable ADAS by
Combining Design Time Testing and Runtime Monitoring”. In: FORMS/FORMAT
2014, 10th Int. Symp. on Formal Methods. 2014, pp. 28–37.

[MS11] Frank Moosmann and Christoph Stiller. “Velodyne SLAM”. In: IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2011, pp. 393–398.

[MSB11] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software
testing. John Wiley & Sons, 2011.

[Nat13] National Highway Traffic Safety Administration. “Preliminary statement of
policy concerning automated vehicles”. In: Washington, DC (2013), pp. 1–
14.

[Nat98] National Research Council. Statistics, Testing, and Defense Acquisition: New
Approaches and Methodological Improvements. Ed. by Micheal L. Cohen,
Hohn E. Rolph, and Duane L. Steffey. Washington, DC: The National
Academies Press, May 1998. isbn: 978-0-309-06551-1.

[NDW09] K von Neumann-Cosel, M Dupuis, and Ch Weiss. “Virtual test drive–
provision of a consistent tool-set for [d, h, s, v]-in-the-loop”. In: Proceedings
of the Driving Simulation Conference Monaco. 2009.

[NE91] H. Nagel and W. Enkelmann. “Generic road traffic situations and driver sup-
port systems”. In: Proceedings of the 5th Prometheus Workshop. Prometheus
Office, 1991, pp. 76–85.

[Nen+15] Laura Nenzi et al. “Qualitative and quantitative monitoring of spatio-
temporal properties”. In: Runtime Verification. Springer. 2015, pp. 21–
37.

[Neu14] Kilian von Neumann-Cosel. “Virtual Test Drive: Simulation umfeldbasierter
Fahrzeugfunktionen”. PhD thesis. Universitätsbibliothek der TU München,
2014.

[Ngu+16] Thang Nguyen et al. “The HARMONIA project: hardware monitoring for
automotive systems-of-systems”. In: International Symposium on Leveraging
Applications of Formal Methods. Springer. 2016, pp. 371–379.

[NL14] Richard Ni and Jason Leung. Safety and Liability of Autonomous Vehicle
Technologies. Tech. rep. Massachusetts Institute, 2014.

[NM08] Bernd Neumann and Ralf Möller. “On scene interpretation with description
logics”. In: Image and Vision Computing 26.1 (2008), pp. 82–101.

338

[Not14] Tobias Nothdurft. Ein Kontextmodell für sicherheitsrelevante Anwendun-
gen in der autonomen Fahrzeugführung. Techn. Univ., Niedersächsisches
Forschungszentrum für Luftfahrt, 2014.

[NPP15] Geoffrey Nelissen, David Pereira, and Luis Miguel Pinho. “A novel run-
time monitoring architecture for safe and efficient inline monitoring”. In:
Ada-Europe International Conference on Reliable Software Technologies.
Springer. 2015, pp. 66–82.

[NYC15] Anh Nguyen, Jason Yosinski, and Jeff Clune. “Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2015, pp. 427–436.

[OB12] Bernd Oestereich and Stefan Bremer. Analyse und Design mit der UML
2.5: objektorientierte Softwareentwicklung. Oldenbourg verlag, 2012.

[Oli+16] Stephanie Prialé Olivares et al. “Virtual Stochastic Testing of Advanced
Driver Assistance Systems”. In: Advanced Microsystems for Automotive
Applications 2015. Springer, 2016, pp. 25–35.

[Ors+02] Alessandro Orso et al. “Gamma System: Continuous Evolution of Software
after Deployment”. In: ACM SIGSOFT Software Engineering Notes 27.4
(2002), p. 65. issn: 01635948.

[Par62] Emanuel Parzen. “On estimation of a probability density function and
mode”. In: The annals of mathematical statistics 33.3 (1962), pp. 1065–
1076.

[Pat+17] Sujeet Milind Patole et al. “Automotive radars: A review of signal processing
techniques”. In: IEEE Signal Processing Magazine 34.2 (2017), pp. 22–35.

[PD02] M Pellkofer and ED Dickmanns. “Behavior decision in autonomous vehicles”.
In: Intelligent Vehicle Symposium, 2002. IEEE. Vol. 2. IEEE. 2002, pp. 495–
500.

[PDE11] Rahul Purandare, Matthew B Dwyer, and Sebastian Elbaum. “Moni-
toring finite state properties: Algorithmic approaches and their relative
strengths”. In: International Conference on Runtime Verification. Springer.
2011, pp. 381–395.

[PGV12] Steve Pechberti, Dominique Gruyer, and Vincent Vigneron. “Radar simula-
tion in SiVIC platform for transportation issues. Antenna and propagation
channel modelling”. In: Intelligent Transportation Systems (ITSC), 2012
15th International IEEE Conference on. IEEE. 2012, pp. 469–474.

[PHK17] G Prokop, L Hannawald, and M Koebe. “Eine Bewertungsmethodik zur
Inspektion automatisierter Fahrfunktionen. Szenarien-basierte Plattform
zur Inspektion automatisierter Fahrfunktionen. Das Projekt SePIA”. In:
Hochschule fuer angewandte Wissenschaften Kempten, Schriftenreihe 3
(2017).

339

Bibliography

[PHR16] Henrik Peters, Falk Howar, and Andreas Rausch. “Towards inferring en-
vironment models for control functions from recorded signal data”. In:
Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE
23rd International Conference on. Vol. 2. IEEE. 2016, pp. 1–4.

[PM06] Bureau International des Poids and Mesures. International System of Units
(SI). Sèvres, France: Le Bureau, 2006.

[Pnu77] Amir Pnueli. “The temporal logic of programs”. In: 18th Annual Symposium
on Foundations of Computer Science. IEEE. 1977, pp. 46–57.

[QON07] Mohammed A Quddus, Washington Y Ochieng, and Robert B Noland.
“Current map-matching algorithms for transport applications: State-of-the
art and future research directions”. In: Transportation research part c:
Emerging technologies 15.5 (2007), pp. 312–328.

[Rad17] Sabine Radke, ed. Verkehr in Zahlen 2017/2018. Vol. 46. Bundesministerium
für Verkehr und digitale Infrastruktur, 2017.

[Ray+09] Arnab Ray et al. “Validating automotive control software using instrumenta-
tion based verification”. In: Automated Software Engineering, 2009. ASE’09.
24th IEEE/ACM International Conference on. IEEE. 2009, pp. 15–25.

[RB08] Andreas Rausch and Manfred Broy. “Die V-Modell XT Grundlagen”. In: Das
V-Modell XT: Grundlagen, Methodik und Anwendungen. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 1–27. isbn: 978-3-540-30250-6.

[RD04] S Ricardo and JR De Almeida. “Run-time monitoring for dependable
systems: an approach and a case study”. In: Reliable Distributed Systems,
2004. Proceedings of the 23rd IEEE International Symposium on. IEEE.
2004, pp. 41–49.

[Rei+10] Michael Reichel et al. “Situation aspect modelling and classification using
the scenario based random forest algorithm for convoy merging situations”.
In: Intelligent Transportation Systems (ITSC), 2010 13th International
IEEE Conference on. IEEE. 2010, pp. 360–366.

[Rei+11] Thomas Reinbacher et al. “Past time LTL runtime verification for micro-
controller binary code”. In: International Workshop on Formal Methods for
Industrial Critical Systems. Springer. 2011, pp. 37–51.

[RG05] RH Rasshofer and K Gresser. “Automotive radar and lidar systems for next
generation driver assistance functions”. In: Advances in Radio Science 3.B.
4 (2005), pp. 205–209.

[Ric16] Thomas Richter. Planung von Autobahnen und Landstraßen. Springer, 2016.
[RM15] Andreas Reschka and Markus Maurer. “Conditions for a safe state of

automated road vehicles”. In: it-Information Technology 57.4 (2015), pp. 215–
222.

340

[Rot+11] Erwin Roth et al. “Analysis and Validation of Perception Sensor Models in
an Integrated Vehicle and Environment Simulation”. In: Proceedings of the
22nd Enhanced Safety of Vehicles Conference. 2011.

[RP92] C Rolland and C Proix. “A natural language Approach for requirements engi-
neering”. In: Proc. of 4th International Conference on Advanced Information
Systems Engineering 593 (1992), pp. 257–277.

[SAE14] SAE On-Road Automated Vehicle Standards Committee. “J3016-2014: Tax-
onomy and definitions for terms related to on-road motor vehicle automated
driving systems”. In: SAE Standard J 3016 (2014), pp. 1–16.

[SAE18] SAE On-Road Automated Vehicle Standards Committee. “J3016-2018: Tax-
onomy and definitions for terms related to on-road motor vehicle automated
driving systems”. In: SAE Standard J 3016 (2018), pp. 1–16.

[Sau+09] Falko Saust et al. “Entwicklungsbegleitendes Simulations-und Testkonzept
für autonome Fahrzeuge in städtischen Umgebungen”. In: AAET 2009.
Automatisierungs-, Assistenzsysteme und eingebettete Systeme für Trans-
portmittel 129 (2009).

[Sch+11] Hans-Peter Schöner et al. “Koordiniertes automatisiertes Fahren für die
Erprobung von Assistenzsystemen”. In: ATZ-Automobiltechnische Zeitschrift
113.1 (2011), pp. 40–45.

[Sch+13] Fabian Schuldt et al. “Effiziente systematische Testgenerierung für Fahreras-
sistenzsysteme in virtuellen Umgebungen”. In: AAET2013 - Automatisie-
rungssysteme, Assistenzsysteme und eingebettete Systeme für Transportmit-
tel, (2013).

[Sch+14] F Schuldt et al. “Systematische Auswertung von Testfällen für Fahrfunktio-
nen im modularen virtuellen Testbaukasten”. In: 9. Workshop Fahrerassis-
tenzsysteme. 2014, pp. 169–179.

[Sch+17] Alexander Schaermann et al. “Validation of vehicle environment sensor
models”. In: Intelligent Vehicles Symposium (IV), 2017 IEEE. IEEE. 2017,
pp. 405–411.

[Sch05] Stephen Schmitt. Integrierte Simulation und Emulation eingebetteter Hard-
ware/Software-Systeme. Cuvillier Verlag, 2005.

[Sch07] R Schabenberger. “Adtf: Framework for driver assistance and safety systems”.
In: VDI Berichte 2000 (2007), p. 701.

[Sch10] Brent Schwarz. “LIDAR: Mapping the world in 3D”. In: Nature Photonics
4.7 (2010), p. 429.

[Sch11a] Boris Schling. The Boost C++ Libraries. XML Press, 2011.
[Sch11b] Frank Schroven. “Probabilistische Situationsanalyse für eine adaptive au-

tomatisierte Fahrzeuglängsführung”. PhD thesis. TU Braunschweig, 2011.

341

Bibliography

[Sch12] Florian Schmidt. “Funktionale Absicherung kamerabasierter Aktiver Fahreras-
sistenzsysteme durch Hardware-in-the-Loop-Tests”. PhD thesis. TU Kaiser-
slautern, 2012.

[Sch13] Wladimir Schamai. “Model-based verification of dynamic system behavior
against requirements: Method, language, and tool”. PhD thesis. Linköping
University Electronic Press, 2013.

[Sch17] Fabian Schuldt. “Ein Beitrag für den methodischen Test von automatisierten
Fahrfunktionen mit Hilfe von virtuellen Umgebungen”. PhD thesis. TU
Braunschweig, Apr. 2017.

[Sch95] B. A. Schroeder. “On-Line Monitoring: A Tutorial”. In: Computer 28 (June
1995), pp. 72–78. issn: 0018-9162.

[Sha98] Robert E Shannon. “Introduction to the art and science of simulation”. In:
Proceedings of the 30th conference on Winter simulation. IEEE Computer
Society Press. 1998, pp. 7–14.

[Sie+11] Sebastian Siegl et al. “Automated testing of embedded automotive systems
from requirement specification models”. In: Test Workshop (LATW), 2011
12th Latin American. IEEE. 2011, pp. 1–6.

[Sip+16] Christoph Sippl et al. “From simulation data to test cases for fully automated
driving and ADAS”. In: IFIP International Conference on Testing Software
and Systems. Springer. 2016, pp. 191–206.

[SJ12] Jingjing Shen and Xiaogang Jin. “Detailed traffic animation for urban road
networks”. In: Graphical Models 74.5 (2012), pp. 265–282.

[Slo08] JJ Slob. “State-of-the-art driving simulators, a literature survey”. In: DCT
report 107 (2008).

[SLS18] Eugene Syriani, Lechanceux Luhunu, and Houari Sahraoui. “Systematic
mapping study of template-based code generation”. In: Computer Languages,
Systems & Structures 52 (2018), pp. 43–62.

[Smu12] Raymond R Smullyan. First-order logic. Vol. 43. Springer Science & Business
Media, 2012.

[Som+13] Stephan Sommer et al. “Race: A centralized platform computer based
architecture for automotive applications”. In: Electric Vehicle Conference
(IEVC), 2013 IEEE International. IEEE. 2013, pp. 1–6.

[SSS17] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. “On a
formal model of safe and scalable self-driving cars”. In: arXiv preprint
arXiv:1708.06374 (2017).

[SSW13] M. Sefati, A. Stoff, and H. Winner. “Testing Method for Autonomous Safety
Functions Based on Combined Steering/Braking Maneuvers for Collision
Avoidance and Mitigation.” In: 6. Tagung Fahrerassistenz. 2013.

342

[Ste+15] Jan Erik Stellet et al. “Testing of Advanced Driver Assistance Towards
Automated Driving: A Survey and Taxonomy on Existing Approaches and
Open Questions.” In: ITSC. 2015, pp. 1455–1462.

[Ste10] Angus Stevenson. “Autonomy”. In: Oxford Dictionary of English. Oxford
University Press, Jan. 2010. isbn: 9780199571123.

[Ste14] Milan Stevanovic. Advanced C and C++ Compiling. 1st. Berkely, CA, USA:
Apress, 2014. isbn: 9781430266679.

[Sti13] Matthias Stiller. “Absicherung von Systemen für das (hoch) automatisierte
Fahren”. In: 6. Fachkonferenz Autotest. 6. needs rework. Oct. 2013.

[Str12] Benedikt Strasser. Vernetzung von Test-und Simulationsmethoden für die
Entwicklung von Fahrerassistenzsystemen. Cuvillier, E, 2012.

[Str16] Umberto Straccia. Foundations of fuzzy logic and semantic web languages.
Chapman and Hall/CRC, 2016.

[Sun+15] Jun Sun et al. “TLV: abstraction through testing, learning, and validation”.
In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM. 2015, pp. 698–709.

[SV06] J. Schumann and W. Visser. “Autonomy Software: V&V Challenges and
Characteristics”. In: 2006 IEEE Aerospace Conference. 2006, pp. 1–6.

[SZ13] Jörg Schäuffele and Thomas Zurawka. Automotive software engineering:
Grundlagen, Prozesse, Methoden und Werkzeuge effizient einsetzen. Springer-
Verlag, 2013.

[Szl18] Andreas Szlatki. “Test Case Generation for System Simulations of Advanced
Driver Assistance Systems by Analysis of Recorded Field Data”. MA thesis.
University of Mannheim, Feb. 2018.

[Tat15] Mugur Tatar. “Enhancing ADAS test and validation with automated search
for critical situations”. In: Driving Simulation Conference (DSC). 2015.

[Tel12] Dirk Tellmann. Hardware-in-the-Loop-gestützte Entwicklungsplattform für
Fahrerassistenzsysteme: Modelle der Umfeldsensorik und angepasste Fahrer-
modelle. kassel university press GmbH, 2012.

[TH02] D. Thomas and A. Hunt. “Mock objects”. In: IEEE Software 19.3 (May
2002), pp. 22–24. issn: 0740-7459.

[Tha+03] Henrik Thane et al. “Replay debugging of real-time systems using time
machines”. In: Parallel and Distributed Processing Symposium, 2003. Pro-
ceedings. International. IEEE. 2003, 8–pp.

[THH06] Sri Fatimah Tjong, Nasreddine Hallam, and Michael Hartley. “Improving
the quality of natural language requirements specifications through natural
language requirements patterns”. In: Computer and Information Technology,
2006. CIT’06. The Sixth IEEE International Conference on. IEEE. 2006,
pp. 199–199.

343

Bibliography

[TMJ12] Mugur Tatar, Jakob Mauss, and Andreas Junghanns. Systematic Test and
Validation of Automotive Systems. Tech. rep. QTronic GmbH, 2012.

[Töl96] Winfried Tölle. “Ein Fahrmanöverkonzept für einen maschinellen Kopiloten”.
In: Fortschritt-Berichte VDI, Reihe 12: Verkehrstechnik/Fahrzeugtechnik
(1996).

[Ulb+14] Simon Ulbrich et al. “Graph-based context representation, environment
modeling and information aggregation for automated driving”. In: IEEE
Intelligent Vehicles Symposium, Proceedings. 2014. isbn: 9781479936380.

[Ulb+15] Simon Ulbrich et al. “Defining and Substantiating the Terms Scene, Situa-
tion, and Scenario for Automated Driving”. In: 2015 IEEE 18th International
Conference on Intelligent Transportation Systems. IEEE. 2015, pp. 982–988.

[Ulb+16] S. Ulbrich et al. “Testing and Validating Tactical Lane Change Behavior
Planning for Automated Driving”. In: Automated Driving - Safer and more
efficient future driving. Ed. by Martin Horn and Daniel Watzenig. (accepted
to appear). Springer International Publishing AG, 2016.

[UM13] S. Ulbrich and M. Maurer. “Probabilistic online POMDP decision making
for lane changes in fully automated driving”. In: 16th International IEEE
Conference on Intelligent Transportation Systems (ITSC 2013). Oct. 2013,
pp. 2063–2067.

[UM15a] S. Ulbrich and M. Maurer. “Situation Assessment in Tactical Lane Change
Behavior Planning for Automated Vehicles”. In: 2015 IEEE 18th Interna-
tional Conference on Intelligent Transportation Systems. Sept. 2015, pp. 975–
981.

[UM15b] S. Ulbrich and M. Maurer. “Towards Tactical Lane Change Behavior Plan-
ning for Automated Vehicles”. In: 2015 IEEE 18th International Conference
on Intelligent Transportation Systems. Sept. 2015, pp. 989–995.

[VDI14] VDI-Gesellschaft Produktion und Logistik. VDI3633: Simulation of sys-
tems in materials handling, logistics and production - Fundamentals. VDI-
Gesellschaft Produktion und Logistik, 2014.

[VDM95] Axel Van Lamsweerde, Robert Darimont, and Philippe Massonet. “Goal-
directed elaboration of requirements for a meeting scheduler: Problems and
lessons learnt”. In: Requirements Engineering, 1995., Proceedings of the
Second IEEE International Symposium on. IEEE. 1995, pp. 194–203.

[Ver+00] L Verhoeff et al. “VEHIL: A full-scale test methodology for intelligent trans-
port systems, vehicles and subsystems”. In: Intelligent Vehicles Symposium.
IEEE. 2000.

[Vis+08] C Visvikis et al. “Study on lane departure warning and lane change assistant
systems”. In: Transport Research Laboratory Project Rpt PPR 374 (2008).

344

[VKV00] Arie Van Deursen, Paul Klint, and Joost Visser. “Domain-specific languages:
An annotated bibliography”. In: ACM Sigplan Notices 35.6 (2000), pp. 26–
36.

[VVP02] Dirk J Verburg, Albert CM Van der Knaap, and Jeroen Ploeg. “VEHIL: de-
veloping and testing intelligent vehicles”. In: Intelligent Vehicle Symposium,
2002. IEEE. IEEE. 2002.

[Wan+07] Yiqiao Wang et al. “An automated approach to monitoring and diagnosing
requirements”. In: Automated Software Engineering Conference. ACM. 2007,
pp. 293–302.

[Wed16] Sebastian Wedeniwski. The Mobility Revolution in the Automotive Industry.
Springer, 2016.

[Wei+14] Alexander Weitzel et al. “Absicherungsstrategien für Fahrerassistenzsys-
teme mit Umfeldwahrnehmung Forschungsbericht der Bundesanstalt für
Straßenwesen, Bereich Fahrzeugtechnik”. In: Berichte der Bundesanstalt
für Straßenwesen. Vol. 98. Wirtschaftsverlag NW, 2014.

[WH06] John Whitelegg and Gary Haq. Vision Zero: Adopting a Target of Zero for
Road Traffic Fatalities and Serious Injuries. Tech. rep. Stockholm Environ-
ment Institute, 2006.

[WH07] C. Watterson and D. Heffernan. “Runtime verification and monitoring of
embedded systems”. In: IET Software 1.5 (Oct. 2007), pp. 172–179. issn:
1751-8806.

[WH08] Conal Watterson and Donal Heffernan. “A runtime verification monitoring
approach for embedded industrial controllers”. In: Industrial Electronics,
2008. ISIE 2008. IEEE International Symposium on. IEEE. 2008, pp. 2016–
2021.

[Win+18] Hermann Winner et al. “PEGASUS - First Steps for the Safe Introduction
of Automated Driving”. In: Automated Vehicles Symposium 2018. Springer.
2018, pp. 185–195.

[Win15] Hermann Winner. “ADAS, Quo Vadis?” In: Handbook of Driver Assistance
Systems: Basic Information, Components and Systems for Active Safety
and Comfort. Ed. by Hermann Winner et al. Cham: Springer International
Publishing, 2015, pp. 1557–1584. isbn: 978-3-319-12352-3.

[WS05] David P. Watson and David H. Scheidt. “Autonomous Systems”. In: Johns
Hopkins APLTechnical Digest 26.4 (2005).

[Wu+17] Meng Wu et al. “Safety guard: Runtime enforcement for safety-critical cyber-
physical systems”. In: Proceedings of the 54th Annual Design Automation
Conference 2017. ACM. 2017, p. 84.

[WW15] Walther Wachenfeld and Hermann Winner. “Virtual Assessment of Au-
tomation in Field Operation A New Runtime Validation Method”. In: 10.
Workshop Fahrerassistenzsysteme. 2015, p. 161.

345

Bibliography

[WW16] Walther Wachenfeld and Hermann Winner. “The Release of Autonomous
Vehicles”. In: Autonomous Driving: Technical, Legal and Social Aspects.
Ed. by Markus Maurer et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
2016, pp. 425–449. isbn: 978-3-662-48847-8.

[WW17] Walther Wachenfeld and Hermann Winner. “The New Role of Road Testing
for the Safety Validation of Automated Vehicles”. In: Automated Driving:
Safer and More Efficient Future Driving. Ed. by Daniel Watzenig and Martin
Horn. Cham: Springer International Publishing, 2017, pp. 419–435. isbn:
978-3-319-31895-0.

[You01] Ralph R Young. “Effective requirements practices”. In: Information Tech-
nology Series. Addison-Wesley (2001).

[ZAM14] Xueyi Zou, Rob Alexander, and John McDermid. “Safety validation of
sense and avoid algorithms using simulation and evolutionary search”. In:
International Conference on Computer Safety, Reliability, and Security.
Springer. 2014, pp. 33–48.

[Zei13] Knut Zeißler. “Fahrspurerkennung in LIDAR-Punktwolken”. MA thesis.
Institut fur Informatik, Arbeitsgruppe Künstliche Intelligenz, 2013.

[Zel+10] Marc Zeller et al. “Co-simulation of self-adaptive automotive embedded
systems”. In: Embedded and Ubiquitous Computing (EUC), 2010 IEEE/IFIP
8th International Conference on. IEEE. 2010, pp. 73–80.

[Zha16] Ding Zhao. “Accelerated Evaluation of Automated Vehicles.” PhD thesis.
The University of Michigan, 2016.

[Zof+15] M. R. Zofka et al. “Data-driven simulation and parametrization of traffic
scenarios for the development of advanced driver assistance systems”. In:
18th International Conference on Information Fusion. July 2015, pp. 1422–
1428.

346

	Abstract
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Thesis Contributions
	Outline

	Background
	Autonomous Vehicle Systems
	Definition: System
	Definition: Autonomous System
	Definition: Autonomous Vehicle System
	Taxonomy of Autonomous Vehicle Systems
	Activities in the Driving Tasks
	Levels of Automation for Road Vehicles

	Functional Architecture of Autonomous Vehicle Systems
	Absolute Global Localization
	External Data
	Environment-Perception and Self-Perception
	Mission Accomplishment

	Simulation-based Testing of Autonomous Vehicle Systems
	Components of Simulation Frameworks
	Environment
	Scenery
	Traffic

	Vehicle
	Vehicle Sensors
	Vehicle Dynamics
	Driver

	X-in-the-Loop Simulations
	Model-in-the-Loop Simulations
	Software-in-the-Loop Simulations
	Driver-in-the-loop simulations
	Hardware-in-the-Loop Simulations
	Vehicle-Hardware-in-the-Loop Simulations.
	Vehicle-in-the-Loop Simulations
	Field Operational Tests

	Runtime Verification
	Runtime Monitor
	Software Monitors
	Hardware Monitors
	Hybrid Monitors

	Property Specification

	Typed First-Order Logic
	Types
	Signature
	Terms and Formulas
	Semantics

	Problem Outline
	Running Example: Lane Change Assistant
	Basic Functionality of Lane Change Assistant
	Development Activities

	Requirements Analysis
	Functionality
	Lane Changes between Highway Lanes
	Entering and Exiting Highways
	Environment Perception and Interaction
	Maneuver Cancellation

	Usability
	Reliability
	Development

	System Design
	Functional Architecture
	Environment Perception
	Data Structure of the Scene

	Situation Assessment
	Scene Augmentation
	Data Structure of the Situation
	Situation Assessment and Situation Prediction

	Behavior Planning

	Technical Architecture
	Sensor Configuration
	Execution Platform

	Safety Analysis
	Hazard Analysis and Risk Assessment
	Functional and Technical Safety Requirements
	Fault Tree Analysis
	Faults for the Perception of the Vehicle
	Faults for the Planning of Lane Changes
	Faults for the Execution of Lane Changes

	Result and Impact of the Safety Analysis
	Impact on the System Requirements
	Safety Invariants
	Robustness of the Environment Perception
	Technical Abilities and Restrictions

	Impact on the System Design
	Impact on the Functional Architecture
	Impact on the Technical Architecture

	Impact on the System Implementation
	Impact on the Software Implementation
	Impact on the Hardware Implementation

	Impact on the Verification and Validation
	Verification
	Validation
	Safety Assessment

	Implementation
	Implementation of the Functional Architecture
	Implementation of Software Components
	Rapid Prototyping
	Software Unit Tests

	Implementation of the Technical Architecture
	Procurement of Hardware Components
	Hardware Unit Tests

	System Integration and Verification
	Software Integration
	Software Integration Testing
	Integration of the Hardware / Software System
	Verification of the Hardware / Software System

	Validation in Field Tests
	Problem Analysis of the Development Methodology
	Modeling the System Environment
	Environment Perception and Interpretation
	Decision Making in Indefinite Environments
	Quantification of Correctness and Safety for Acceptability
	Summary of Analysis Results

	Emerging Research Questions and Solution Concept
	Related Work
	Testing of Autonomous Vehicle Systems
	Real World Testing
	Simulation-based Testing
	Mathematical Test Case Generation
	Test Case Generation from Real World Data

	Vehicle Diagnosis and Runtime Monitoring
	On-board diagnosis
	Runtime Monitoring
	Monitoring Architecture

	Runtime Monitoring Properties
	Comprehensive Safety Approaches

	Synthesis of Verified Vehicle Controllers
	Related Work from the Field of Avionics

	Emerging Research Questions
	Seamless Development and Operation of Autonomous Vehicles by Qualitative and Quantitative Runtime Monitoring
	Monitoring Architecture for Seamless Development and Operation
	Monitor Engineering and Training in System Development
	Operation Analysis and System Evolution for Dependability Improvement

	Monitoring Architecture
	System Layer
	Simulation Layer
	Abstraction Layer
	System Interfaces
	Data Abstraction
	Input Abstraction
	Output Abstraction

	Qualitative Monitoring Layer
	Abstract Function
	Conformity Oracle

	Quantitative Monitoring Layer
	Situation Monitor and Situation Knowledge
	Situation Oracle

	Monitor Engineering and Training
	Formal Representation of the Runtime Monitoring
	Domains
	Functions
	Correctness Condition
	Soundness property

	Development of Runtime Monitors
	Selection of Interface and Requirements
	Formalization of Interfaces and Requirements
	Pattern-based Analysis of System Requirements
	State Condition Part
	Action Part

	Definition of Typed first-order Logic
	Types and Co-Domains
	Domains and Type Hierarchies
	Variables
	Function Symbols
	Predicate Symbols
	Formulas

	Semantic Interpretation of Logic by Implementation
	Domain
	Typing Function
	Interpretation of Functions and Predicates

	Implementation of Runtime Monitors
	Implementation of Data Access
	Implementation of Runtime Monitoring Domains
	Transformations between Domains
	Implementation Qualitative Monitoring
	Abstract Function
	Conformity Oracle

	Implementation Quantitative Monitoring
	Situation Recording
	Situation Comparison

	Implementation of Logging

	Monitor Training in Simulations
	System Verification in Simulations
	Qualitative Monitoring as Test Oracle
	Training of Situation Monitor

	Impact and Limitations of the Runtime Monitoring Framework

	Operation Analysis and System Evolution
	Runtime Monitoring at Operation
	Qualitative Evaluation and Safety Enforcement
	Quantitative Evaluation and Situation Recording

	System Evolution
	Improvement by Situations with Incorrect System Behavior
	Improvement by Unverified Situations
	Definition of Test Scenarios and Test Cases from Runtime Data
	Identification of Situation Transitions
	Changes of the Scenery
	Behavior of Dynamic Objects
	Introduction of Ghost Objects
	Integration as Situation Graphs

	Slicing of Test Scenarios
	Parametrization by Test Cases
	Intermediate Data Model
	Fuzzy Model Parameters

	Assessment of System Evolution and Test Generation

	Case Study
	Evaluation Setup
	Highway Pilot with Lane Change Assistant
	Runtime Monitoring Framework
	Simulation Framework
	Recordings from Real World Test Drives

	Evaluation Results
	Experiment E1
	System Verification with Manually modeled Test Cases
	Results of Manual Evaluation
	Results of the Runtime Monitoring
	Recording of Tested Situation Knowledge

	Runtime Monitoring at Operation in Simulations with Random Traffic
	Results from the Quantitative Runtime Monitoring in Simulations
	Results from the Qualitative Runtime Monitoring in Simulations

	Runtime Monitoring at Operation in Recordings from the Real World
	Results from the Quantitative Runtime Monitoring in Recordings
	Results from the Qualitative Runtime Monitoring in Recordings

	Experiment E2
	Modeling of Test Cases from Runtime Monitoring Results in Recordings
	Results from the System Verification with the Realistic Test Cases
	Runtime Monitoring at Operation with knowledge of Realistic Test Cases

	Summary and Assessment of the Case Study

	Conclusion
	Summary
	Discussion
	Future Work
	Automation of Engineering Approach
	Extending the Scope of the Runtime Monitoring
	Improving Verification and Validation
	Comprehensive Safety Strategy
	Application in Rural and Urban Domains
	Metric for Safety of Autonomous Vehicles
	General Understanding about System Safety

	Appendix
	Data Structures in the Case Study
	Requirements-based Test Scenarios and Test Cases
	Test Scenarios from Real World Recoding

	Glossary
	Bibliography

