
Due to the rapid development of information and communication techno-
logy, a new communication network, which combines the "real world" and 
"virtual world" together and recognizes the whole combination as one 
closely interacting system, has emerged. This network is the cyber-physical 
system (CPS). The CPS with long lifetime or lifecycle is defined as long-living 
cyber-physical system (LL-CPS). 

In many areas, especially in smart factories, digital manufacturing and smart 
logistics, the LL-CPS plays a very important role and should be always 
operated to meet continuous and fast-changing requirements, for example, 
the proliferation of business models, the rapid development of technology, 
the fast-changing market and customer requirements etc. 

However, the development of a LL-CPS is accompanied by risks and high 
expenditures. Generally, a LL-CPS cannot be defined perfectly at the be-
ginning. The multiple interactions between cyber and physical parts in a LL-
CPS make engineering difficult. Changes of these parts can generate some 
problems during evolution of a LL-CPS. At present, approaches or pro-
cedures have not been defined. This reduces risks of development and 
optimizes expenditures of system implementation. Based on a uniform 
formal description of LL-CPSs, this thesis provides an approach to guarantee 
the consistency between system evolution requirements and system im-
plementation during the managed evolution of LL-CPSs. Furthermore, this 
approach is also used to optimize expenditures of system implementation.
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Abstract  

 

The continued rapid information technological progress is causing major changes. From 

embedded systems to intelligent embedded systems and cyber-physical systems, the system 

evolution is always confronted with the challenge of the frequently changing requirements: 

the proliferation of business models, the rapid development of technology, the fast changing 

market and customer requirements, new varieties of development methods and models, etc. 

Cyber-physical systems (CPS) with a long-term life cycle (long-living) play a very important role 

in many areas, especially in smart factories, digital manufacturing, smart logistics, and energy 

efficiency. It combines the physical part with the cyber part in a holistic way, where the two 

parts have to flexibly and dependably adapt to each other to adapt to the changing system 

environment. On the other hand, a long-living CPS is complicated and multi-configurational, 

so an incompatible or non-combinable system development can lead to problems or high 

expenditures. Therefore, an approach is required to reduce the evolution risks and investment 

needs during the evolution of long-living CPSs.  

This thesis provides an approach for the managed evolution of long-living CPSs, which is based 

on the formal descriptions and model transformations of managed evolution of the long-living 

CPSs. This approach guarantees the consistency between the system evolution requirements 

and system implementation. Furthermore, with this approach the influence factors for 

investment needs like the cost of implementation can be scaled to optimize the expenditures 

of implementation. This approach is evaluated with two practical cases to ascertain the 

suitability for the managed evolution of long-living CPSs. 
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Today´s world is entering in the networking era. Due to the rapid development of information 

and communication technology, a new communication network has emerged, which 

combines the “real world” and “virtual world” together and recognizes the whole combination 

as one closely interacting system.  This network is named the cyber-physical system (CPS). 

In many areas, especially in smart factories, digital manufacturing, smart logistics, and energy 

efficiency, the CPS plays a very important role. For instance, modern mechanical engineering 

products are increasingly being supplemented by programmable controllers. In diverse areas 

of application like automobile or production automation, the trend is to network the 

embedded systems with each other, but also to integrate them into a higher digital level [1].  

A long-living cyber-physical system (LL-CPS) is defined as a huge CPS with a complex system 

architecture, long time life cycle and dynamic changing system boundary. In this chapter, the 

definitions and characteristics of CPS, long-living systems and LL-CPSs will first be introduced. 

The ongoing LL-CPS requires continuous operation to meet the fast changing requirements. 

Section 1.2 introduces the motivation of the evolution of LL-CPSs.  

An approach is regarded as the goal of this work and it is used for the managed evolution of 

LL-CPSs with the local minimal costs and controlled risks in the operations, which is introduced 

in section 1.3. The structure and content of this thesis are outlined in section 1.4.  
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1.1 Long-Living Cyber-Physical Systems 

What is a Cyber-Physical System? 

There are varied understandings about CPSs. The first proposition of a CPS was characterized 

by Helen Gill in the USA to describe a connection between physical processes with a 

calculation share. The National Science Foundation (NSF) declared it a core research point of 

national research work at the end of 2006. Since then, many different definitions and 

descriptions of CPSs have been developed. The general definitions or descriptions are based 

on the conceptual definition of Helen Gill [2].  

Because there is no standard and prevailing definition and description of CPSs, some popular 

definitions and descriptions are selected from two different perspectives and introduced in 

this section.   

 From the perspective of integration and networking:  

R. Rajkumar defined a CPS as “a physical and engineered system whose 

operations are monitored, coordinated, controlled and integrated by a 

computing and communication core” [3].  

Edward A. Lee defined a CPS as “the integration of computation with physical 

processes.” The computation part can control and monitor the physical processes, 

and the physical processes affect the computations with feedback. These 

interaction effects will be implied with the integration and networking between 

the computation and physical part [4].  

A.Sangiovanni-Vincentelli described a combination system with “a cyber side 

(computing and networking) with a physical side (mechanical, electrical and 

chemical processes)” as a definition of a CPS [5]. 

 From a software-intensive perspective:  

In the description of H. Giese et al., “Cyber-physical Systems (CPSs) present a 

unified view of computing systems that interact strongly with their physical 

environment” [6]. 

Compared to traditional embedded systems, CPSs are more modular, dynamic, 

networked and large-scale and can provide more computing.  I. Gerostathopoulos 

described that CPSs increasingly depend on software, and the software part has 

become their most intricate and extensive constituent [7]. 

E. Geisberger and M.Broy defined a CPS as “an open and networked system.” It 

uses sensors to identify situations and information in the physical world and 

makes them available to the network-based services, as well as acting directly on 
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the processes in the physical world through actuators to control the behaviour of 

devices, things, and services [8]. In addition, in the publication of M. Broy 

software-intensive systems are regarded as innovation drivers that enable new 

functionalities to be developed in different application areas [1]. 

Characteristics of Cyber-Physical System 

Although there are so many different definitions and descriptions of CPSs, the core 

descriptions are essentially the same, e.g. the CPS connects the cyber and physical worlds. The 

following characteristics position a CPS with five aspects [8]:  

(1) Fusing of the physical and virtual world 

(2) System of systems with dynamic changing of system boundaries  

(3) Context-adaptive and fully or partially autonomous system and active control 

in real time 

(4) Cooperative systems with distributed and alternative controls 

(5) Comprehensive human-system cooperation 

What is a Long-Living System? 

A long-living system is a system that has a long lifetime or lifecycle. Such systems are usually 

used as industrial software systems.  

“Software systems in the industrial automation domain are typically long-

living systems, i.e., some of them may operate for more than 20 years, 

because of the investment in the underlying machines and devices. Examples 

for such systems are distributed control systems to manage industrial 

processes, such as power generation, manufacturing, chemical production, or 

robotics systems to automate manual tasks, such as welding, pick & place, or 

sealing” [9]. 

Not only software systems but also the connected hardware and mechanical systems in the 

industrial domain are typically long-living systems. U. Goltz et al. expressed that “nowadays, 

software relies on several independent or loosely coupled components using complex 

technology stacks comprising hardware, middleware and reusable software components and 

other (software) systems” [10]. Figure 1 shows the lifecycle of hardware/software systems, 

which comprise various areas: technical system, platform and software ([10] quoted in [11]).  

In the work of U. Goltz et al., the evolutionary life cycle of a technical system in automation 

engineering includes two phases: the design and construction phase and operation phase (the 

vertical axis in Figure 1).   
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Figure 1: Integration of development and operation of hardware/software systems  

The requirements of new products or products changes are defined and specified in a design 

and construction phase, which is understood as the driving force of system evolution in the 

lifecycle (the lifetime is the horizontal axis from left to right in Figure 1). These requirements 

in the design and construction phase will be implemented in the operation phase. In Figure 1, 

the three different grey scales express the three areas: technical system, platform and 

software and the height of each curve indicates the amount of effort required in these areas.  

Before the adaptations and updates of changes starts, the system may have to be shut down 

to commission the entire system. During the commissioning time, the system needs to be re-

engineered to meet new design requirements. After the re-engineering, the system proceeds 

to the next commissioning and operation.  

In Figure 1, the technical system and platform have a smaller change frequency than in 

software engineering, because they are running for more years than software. However the 

amount of effort of the technical system or platform is much more compared with software 

engineering.  

What is a Long-Living Cyber-Physical System? 

A long-living cyber-physical system (LL-CPS) is understood as a CPS with a long lifetime or 

lifecycle. The closely-dependent relationship between different areas: technical system, 

platform and software in a long-living hardware/software system also exists in a LL-CPS. In 

addition, a LL-CPS has the following additional characteristics:  

Characteristics of LL-CPSs 

 A LL-CPS is a large-scale and complex system. 

 The components in a LL-CPS always have different lifecycles and come from 

different suppliers.  

 A LL-CPS has a multi-level hierarchy system architecture with multi-domains.  
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 Usually a LL-CPS has monolithic structure and cannot be defined perfectly at 

the beginning. 

1.2 Motivation 

Although a LL-CPS is a large-scale and long-living system, it need to be in constant evolution 

and should be always operated to meet the continuous and fast-changing requirements [6].  

 System repeatedly extended: in general, a complex system is not defined 

perfectly at the beginning. Sometime, the LL-CPS has to monitor itself for its 

health. Besides being driven by the availability of new technology, the LL-CPS 

is repeatedly enhanced and extended in its prolonged life time. 

 Different lifetime of parts: the different parts or components of LL-CPS have 

rather different life times. Some lower-cost elements like sensors and 

computer platforms tend to have short life time, while the costly and 

individual parts like production equipment generally have longer life time.  

 Changing requirements of market: the LL-CPS needs to be continuously 

developed and objective to the dynamic changes of requirements of the 

market or needs of customs. Nowadays, these changes tend to be much 

faster.  

 Changing environments: a LL-CPS is usually used in an open and unrestricted 

environment. Therefore it must be developed to adapt to the changes in the 

environment.  

 

However, the development of LL-CPS comes with risks and high expenditures. Not only the 

combination of cyber and physical parts makes the engineering much more difficult but also 

many other characteristics of LL-CPS can generate some problems during the evolution of LL-

CPSs [6].  

 The changes can occur at different levels in a LL-CPS: the elements in a LL-CPS 

allows at the same time belong to different subsystems. So the changes of 

these elements can affect the structures in different subsystems. The multiple 

interactions and side effects that can arise in the system can become very 

complex. 

 A large-scale system: like most large-scale systems, a LL-CPS is not easily 

partitioned, analysed and operated. It presents a monolithic structure. “That 

makes the interaction among the decision variables very hard to separate”.[5]    
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 In general, it cannot be shut down: in general, a LL-CPS cannot be shut down 

for system development or evolution. Therefore, it should support developing 

or evolving on a running system.  

 

At present, there are no defined approaches or certification procedures ensuring the safe, 

secure and economical evolution of LL-CPSs. In order to meet the needs for safety and 

economy, an approach or procedure should be developed and established.  

1.3 Goals of this Work 

The goal of this work is to develop an approach for the managed evolution of a LL-CPS with 

the local optimal costs and controlled risks in ongoing operations. This goal can be structured 

in three sub-goals:  

1. Define a description method to uniformly represent the requirements of system 

evolution and the plan of implementation of a LL-CPS:  

A LL-CPS can be described from different aspects. Each description aspect focuses on 

certain features of a LL-CPS to make design and analysis. In this thesis, a uniform formal 

description method of LL-CPSs is necessary to define the requirements of system 

evolution and the plan of system implementation concurrently.   

 

2. Derivate the requirements of a LL-CPS evolution to plan of implementation:  

With the uniform formal description of LL-CPSs, the requirements of system evolution 

have to be derived to the plan of implementation. This can be used to control the risks 

of the managed evolution of a LL-CPS.  

 

3. Optimize the costs of reconstruction: 

The costs of system evolution can be understood as the costs of reconstruction during 

the evolution of a LL-CPS in this thesis. A local optimal solution in a set of solutions is 

defined as the local optimal costs during the managed evolution of a LL-CPS.  

 

1.4 Structure and Content of the Thesis 

An overview of the structure of this thesis is provided below.  

In chapter 2, the basics and fundamentals in this thesis are introduced, including the relevant 

definitions and knowledge for the following chapters.  

Chapter 3 analyses the problems during the managed evolution of a LL-CPS based on an 

example. Accordingly, the LL-CPS is modeled with two different modeling methods. One is 
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used to model the evolution requirements of this LL-CPS, while the other one models this LL-

CPS from the implementation aspect. In addition, the existing research and approaches for 

the problems during the managed evolution of LL-CPSs will be also introduced in this chapter. 

At the end of this chapter, the evolution problems are summarized with four research 

questions. 

In chapter 4, a uniform formal description of LL-CPSs is introduced to achieve the sub-goal 1 

of this thesis. The models formed with two different modeling methods can be transformed 

to the uniform formal descriptions to derivate the evolution requirements to the plan of 

implementation. 

An approach is introduced in Chapter 5 to solve the problems during the managed evolution 

of a LL-CPS. This approach is considered as the achievement of the sub-goals 2 and 3 of this 

work.  

Chapter 6 presents the implementation of this approach. The design and architecture of the 

implementation are also introduced in this chapter.  

In chapter 7, the evaluation of this approach is introduced with a concrete project.   

The final chapter discusses the contributions of this work and highlights possible avenues for 

further works.  
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2 Basics and Fundamentals 

Content 

 
2.1 Graph theory 
    2.1.1 Graph 
    2.1.2 Graph operation 
    2.1.3 Walks and paths 
    2.1.4 Graph search 
 
2.2 Optimization problem 
 

 

2.3 Systems development models 
 
2.4 Model-driven development 
    2.4.1 System modeling languages 
    2.4.2 Metamodeling 
    2.4.3 Mathematical description of models 
    2.4.4 Model transformation 
         2.4.4.1 Bidirectional model transformation 
         2.4.4.2 Unidirectional model transformation 
    2.4.5 Model mapping 
    2.4.6 Operation of models 

 

 

 

The relevant basics and fundamentals for this thesis are introduced in this chapter to reach a 

common understanding.  

First, the important definitions and algorithms in graph theory are introduced as the 

mathematical foundations for the formal modeling of managed evolution of LL-CPS. 

Subsequently, the local minimum cost problem is a typical application of optimization 

problem. Section 2.2 introduces the basic understanding of local minimum cost by using the 

standard and popular example. 

In section 2.3, three classical system development models are introduce, namely the waterfall 

model, phased implementation model and prototyping model. They are used to specify how 

the activities are organized in the total system evolution.  

Then, the model-driven development (MDD) is introduced, which focuses on creating and 

exploiting domain models. A common way for system evolution description is the usage of the 

term process-oriented models. In this chapter, a process-oriented modeling method named 

value steam mapping is introduced. On the other hand, for planning the implementation and 

costs associated with reconstruction component-oriented models are necessary. Here, two 
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component-oriented modeling methods named block definition diagram and internal block 

diagram will be introduced. In this thesis, the value steam mapping and internal block diagram 

are used to model the managed evolution of LL-CPS. Subsequently, the definition of 

metamodeling is introduced, which is used to analyse, construction and development of 

models. Two definitions of model transformation the bidirectional model transformation and 

the unidirectional model transformation are introduced in this chapter, which will be used for 

model transformation in the following chapters. The mapping relationship between models is 

introduced in the final section.  

2.1 Graph theory  

Feature models or variable models can be described in graph structures. The behaviors of the 

variants can be also represented in graph-based structures [11]. Therefore, the graph-based 

structure and graph theory play important roles in system engineering. In this section, some 

important basics and fundamentals about graph theory will be introduced.  

2.1.1 Graph 

A directed graph 𝑔 is formalized with a four-tuple structure [12], [13]:  

Definition 1 
𝑔 ∶= (𝑉 , 𝐸 , 𝑠𝑟𝑐, 𝑡𝑔𝑡) 

 
𝑠𝑟𝑐 ∶= 𝐸 →  𝑉   
𝑡𝑔𝑡 ∶=  𝐸 →  𝑉  

 
𝐸 ≔ 𝑉 ×  𝑉  

 

𝑉  is a finite set of vertices. 𝐸  is a finite set of edges. The function 𝑠𝑟𝑐  represents the 

relationship for any edge to its source vertex, like the function 𝑡𝑔𝑡 represents the relationship 

for any edge to its target vertex. For every edge 𝑒𝑖 ∈ E, there are one source vertex  𝑣𝑖 ∈ V 

and one target vertex 𝑣𝑗 ∈ V, so an edge from 𝑣𝑖  to 𝑣𝑗  is represented as (𝑣𝑖, 𝑣𝑗). 

A set of directed graphs is defined with a set 𝐺 [14]:  

Definition 2 
𝐺 ∶= {𝑔} 

 

 

In a labelled directed graph 𝑔𝑤, all of the vertices and edges can be labelled. Though a labelling 

of the vertices in a graph that represents a mapping function 𝑐𝑡 ∶= 𝑉𝑤 → 𝐴, where 𝐴 is a set 

of labels. A labelling of the edges is also in the same way 𝑤𝑡 ∶= 𝐸𝑤 → 𝐵, where 𝐵 is a set of 
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labels. Often, these labels are numbers or colors, which can be called “weights” of vertices or 

edges [14], [15].  

Definition 3 
𝑔𝑤 ∶= (𝑉𝑤 , 𝐸𝑤 , 𝑠𝑟𝑐𝑤, 𝑡𝑔𝑡𝑤, 𝑐𝑡, 𝑤𝑡, 𝐴, 𝐵) 

 
𝑠𝑟𝑐𝑤 ∶= 𝑠𝑟𝑐 |𝐸𝑤→ 𝑉𝑤  

𝑡𝑔𝑡𝑤 ∶= 𝑡𝑔𝑡 |𝐸𝑤→ 𝑉𝑤  

 
𝐸𝑤 = 𝑉𝑤  × 𝑉𝑤 

 
𝑐𝑡 ∶= 𝑉𝑤 → 𝐴 
𝑤𝑡 ∶= 𝐸𝑤 → 𝐵 

 
𝐴 ≔ 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑙𝑎𝑏𝑒𝑙𝑠 
𝐵 ≔ 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑙𝑎𝑏𝑒𝑙𝑠 

 
 

The labels can be understood as the description information of vertices and edges in graphs. 

A directed connected graph structure is defined by the labellings of the vertices and edges, 

which are used to save the description information as the attributes in the vertices and edges.   

Definition 4 
𝑔𝑖𝑛  ∶= (𝑉𝑖𝑛,  𝐸𝑖𝑛, 𝑠𝑟𝑐𝑖𝑛 , 𝑡𝑔𝑡𝑖𝑛, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑖𝑛, 𝐾𝑒𝑦𝑖𝑛, 𝑉𝑎𝑙𝑢𝑒𝑖𝑛) 

 
𝑠𝑟𝑐𝑖𝑛 ∶= 𝑠𝑟𝑐 |𝐸𝑖𝑛→ 𝑉𝑖𝑛    

𝑡𝑔𝑡𝑖𝑛 ∶= 𝑡𝑔𝑡 |𝐸𝑖𝑛→ 𝑉𝑖𝑛   

 
𝐸𝑖𝑛 = 𝑉𝑖𝑛  × 𝑉𝑖𝑛 

 
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑖𝑛: = (𝑉𝑖𝑛 ∪ 𝐸𝑖𝑛) → (𝐾𝑒𝑦𝑖𝑛 → 𝑉𝑎𝑙𝑢𝑒𝑖𝑛) 

 
𝐾𝑒𝑦𝑖𝑛 ≔ 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 
𝑉𝑎𝑙𝑢𝑒𝑖𝑛 ≔ 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 

 
 

The function 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑖𝑛 maps every vertex and edge to the owned attributes, which are 

represented with a key-value structure comprising a set of strings 𝐾𝑒𝑦𝑉𝑆𝑀 and a set of strings 

𝑉𝑎𝑙𝑢𝑒𝑉𝑆𝑀. The relationship from the keys to values are represented with a hash function. A 

set of graphs {𝑔𝑖𝑛} can be represented with 𝐺𝑖𝑛.  

Definition 5 
𝐺𝑖𝑛 ∶= {𝑔𝑖𝑛} 
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Another representation for this directed connected graph structure is using a set of vertices.  

Definition 6 
𝑔𝑖𝑛 ∶= {𝑉𝑖𝑛} 

 
 

2.1.2 Graph operation 

Graphs 𝑔1 and 𝑔2 are two directed connected graph graphs in 𝐺𝑖𝑛. The operator ⊆ represents 

that a graph 𝑔2 is a subgraph of a directed Graph 𝑔1 [12], [14]:  

Definition 7 
𝑔1 ∈ 𝐺𝑖𝑛   and    𝑔2 ∈ 𝐺𝑖𝑛 

if 
𝑉2 ⊆ 𝑉1           𝑉2 ≠ ∅ 

  
𝐸2 ⊆ 𝐸1 

 
𝑠𝑟𝑐2 ∶= 𝑠𝑟𝑐1 |𝐸2→ 𝑉2 

𝑡𝑔𝑡2 ∶= 𝑡𝑔𝑡1 |𝐸2→ 𝑉2 

then 
𝑔2 ⊆ 𝑔1     

  
 

If the graph 𝑔2 is a subgraph of 𝑔1, the graph 𝑔1 must include all vertices and edges of the 

graph 𝑔2. The function 𝑠𝑟𝑐2 is the function 𝑠𝑟𝑐1 for the sets 𝐸2 and 𝑉2, as same as the function 

𝑡𝑔𝑡2 is the function 𝑡𝑔𝑡1 for the sets 𝐸2 and 𝑉2. Accordingly, the graphs 𝑔1 and 𝑔2 must have 

the same connection structure for the sets 𝐸2 and 𝑉2.  

The binary operation is used to create a new graph from two initial graphs. The graph union 

for two graphs 𝑔1 and 𝑔2 is represented with the operator “+”. 

Definition 8 
𝑔1 ∈ 𝐺𝑖𝑛   and    𝑔2 ∈ 𝐺𝑖𝑛 

 
𝑔3 = 𝑔1 + 𝑔2 

  
𝑉3 = 𝑉1 ∪ 𝑉2 

 
𝐸3 = 𝐸1 ∪ 𝐸2 

 
𝑠𝑟𝑐3 ∶= 𝑠𝑟𝑐 |𝐸3→ 𝑉3  

𝑡𝑔𝑡3 ∶= 𝑡𝑔𝑡 |𝐸3→ 𝑉3  

 
𝑔1 ⊆ 𝑔3 
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𝑔2 ⊆ 𝑔3 
 

 

The graph difference for one graph compared with another is represented with the operator 

“-”. The new created graph is a subgraph in the initial graph.  

Definition 9 
𝑔1 ∈ 𝐺𝑖𝑛   and    𝑔2 ∈ 𝐺𝑖𝑛 

 
𝑔4 = 𝑔1 − 𝑔2 

 
𝑉4 = 𝑉1 \ 𝑉2 

 
𝐸4 = 𝐸1 \ 𝐸2 

 
𝑠𝑟𝑐4 ∶= 𝑠𝑟𝑐 |𝐸4→ 𝑉4  

𝑡𝑔𝑡4 ∶= 𝑡𝑔𝑡 |𝐸4→ 𝑉4  

  
𝑔4 ⊆ 𝑔1 

 
 

A graph homomorphism of two graphs is defined as a mapping function ℎ𝑔 for the vertices 

and edges from one graph to another [16], [17]. Simply write for graph homomorphism is 

ℎ𝑔(𝑔1)= 𝑔2. There are different kinds of graph homomorphism, for example, the injective 

homomorphism, the subjective homomorphism, the bijective homomorphism (isomorphism) 

and the covering maps. The mapping from a vertex to a subgraph (representing with a set of 

vertices) or the mapping form edge to a path (representing with a set of edges) are also 

allowed in graph homomorphism.  

Definition 10 
𝑔1 ∈ 𝐺𝑖𝑛   and    𝑔2 ∈ 𝐺𝑖𝑛 

 
∀𝑣𝑖 ∈ 𝑉1 ∃ (ℎ𝑔(𝑣𝑖) ∶= 𝑣𝑖´) ∧ (𝑣𝑖´ ∈ 𝑉2) 

 
∀(𝑣𝑖 , 𝑣𝑖+1 ) ∈ 𝐸1 → (ℎ𝑔(𝑣𝑖) , ℎ𝑔(𝑣𝑖+1) ) ∈ 𝐸2 

 
 

2.1.3 Walks and paths 

The walks and paths can be understood as the special forms of graphs. A walk from 𝑣1 to 𝑣𝑛 

in a directed graph 𝑔1 ∈ 𝐺𝑖𝑛 is defined with a finite sequence of vertices [12], [14], where 𝑣1 

is the initial vertex and 𝑣𝑛 is the terminal vertex. Every vertex in a walk is allowed to appear 

more than once.   
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Definition 11 
𝑤(𝑣 1 , 𝑣𝑛 ) ∶= (𝑣1 , ⋯ 𝑣𝑖⋯ , 𝑣𝑛 ) 

 
𝑔1 ∈ 𝐺𝑖𝑛 

 
{𝑣1 , ⋯ 𝑣𝑖⋯ , 𝑣𝑛 } ∈ 𝑉1   

 
{(𝑣1 , 𝑣2)⋯ (𝑣𝑛−1, 𝑣𝑛)} ∈ 𝐸1 

 
𝑤(𝑣 1 , 𝑣𝑛 ) ⊆ 𝑔1 

 
∀𝑖 = 1,⋯ , 𝑛       𝑛 ∈ ℕ 

 
 

A path is defined similarly as a walk and it is a special walk [18], [13], where 𝑣1 is the initial 

vertex and 𝑣𝑛 is the terminal vertex. Every vertex in a path is allowed to appear only once.  If 

a path 𝑝(𝑣 1 , 𝑣𝑛 ) is in the graph 𝑔1, it can be written as 𝑝(𝑣 1 , 𝑣𝑛 ) ⊆ 𝑔1.  

Definition 12 
𝑝(𝑣 1 , 𝑣𝑛 ) ∶= (𝑣1 , ⋯ 𝑣𝑖⋯ , 𝑣𝑛 ) 

 
𝑔1 ∈ 𝐺𝑖𝑛 

 
{𝑣1 , ⋯ 𝑣𝑖⋯ , 𝑣𝑛 } ∈ 𝑉1   

 
{(𝑣1 , 𝑣2)⋯ (𝑣𝑛−1, 𝑣𝑛)} ∈ 𝐸1 

 
𝑝(𝑣 1 , 𝑣𝑛 ) ⊆ 𝑔1 

 
∀𝑖 = 1,⋯ , 𝑛       𝑛 ∈ ℕ 

 
 

A path is a special graph, so a path morphism is defined as a multivalued mapping function 

from a path in a graph to a set of paths in another graph (see Definition 10). An example of 

multivalued function is a square roots function √𝑥 = 𝑦, if x=4, dann y=2 and -2.  

There are two graphs 𝑔1 ∈ 𝐺𝑖𝑛  and 𝑔2 ∈ 𝐺𝑖𝑛 , and there is a path 𝑝(𝑣1 , 𝑣𝑛 )  in  𝑔1 . The 

mapping function 𝑝𝑣  maps the initial vertex 𝑣1  and the terminal vertex 𝑣𝑛  of the path 

𝑝(𝑣1 , 𝑣𝑛 ) to a vertex 𝑣1´ and a vertex 𝑣𝑛´ in graph  𝑔2.  All the paths 𝑝𝑗(𝑣1´ , 𝑣𝑛´) in the graph 

𝑔2, which are begins from 𝑣1´ and ends to 𝑣𝑛´, are mapped with the multivalued function 𝑝𝑚.  

Definition 13 
𝑝𝑚 ∶= 𝑝(𝑣1 , 𝑣𝑛) → {𝑝𝑗(𝑣1´ , 𝑣𝑛´)}  

 
𝑔1 ∈ 𝐺𝑖𝑛   and    𝑔2 ∈ 𝐺𝑖𝑛 
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𝑝(𝑣1 , 𝑣𝑛) ⊆ 𝑔1 

 
𝑝𝑣 ∶= 𝑉1 → 𝒫(𝑉2)  

 
𝑝𝑣(𝑣1) ∶=  𝑣1´    𝑣1´ ∈ 𝑉2 
𝑝𝑣(𝑣𝑛) ∶=  𝑣𝑛´    𝑣𝑛´ ∈ 𝑉2 

 
 

𝑝𝑚(𝑝(𝑣1 , 𝑣𝑛)) ∶=  {𝑝𝑗(𝑣1´ , 𝑣𝑛´)| 𝑝𝑗(𝑣1´ , 𝑣𝑛´) ⊆ 𝑔2}  

 
 

In path morphism, the vertices and edges between the initial vertex 𝑣1 and the terminal vertex 

𝑣𝑛  in 𝑝(𝑣1 , 𝑣𝑛 ) in  𝑔1 do not need to be mapped. One path in 𝑔1 can have any number of 

mapped paths in 𝑔2.  

Figure 2 shows an example of path morphism from path 𝑝(1,2) = (1,3, 2)  in graph 𝑔1 to a 

set of paths in graph 𝑔2.  

There are 𝑝𝑣(1) = 11  and  𝑝𝑣(2) = 14,  
 
then the mapping results are: 
 

𝑝𝑚(𝑝(1,2)) = {
𝑝(11,14) = (11,14)

𝑝(11,14) = (11,12,13,14)
 

 
 

2

1

(2,1) 3

14

(13,12)

11

(13,14)

13

12

(11,12)

(12,13)

𝑝𝑚
   

(11,14)

𝑔1 𝑔2 
 

Figure 2: A path morphism example 
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The definition of walk morphism is formalized with a multivalued mapping function 𝑤𝑚 from 

a walk in a graph to a set of walks in another graph. There are two graphs 𝑔1 and 𝑔2, and there 

is a walk 𝑤(𝑣1 , 𝑣𝑛 )  in  𝑔1 . The mapping function 𝑤𝑣  maps the initial vertex 𝑣1  and the 

terminal vertex 𝑣𝑛 of 𝑤(𝑣1 , 𝑣𝑛 ) to a vertex 𝑣1´ and a vertex 𝑣𝑛´ in graph  𝑔2. There 𝑣1´ and 𝑣𝑛´ 

are the initial vertex and terminal vertex in walks 𝑤𝑗(𝑣1´ , 𝑣𝑛´).  

Definition 14 
𝑤𝑚 ∶= 𝑤(𝑣1 , 𝑣𝑛) → {𝑤𝑗(𝑣1´ , 𝑣𝑛´)}  

 
𝑔1 ∈ 𝐺𝑖𝑛   and    𝑔2 ∈ 𝐺𝑖𝑛 

 
𝑤(𝑣1 , 𝑣𝑛) ⊆ 𝑔1 

 
𝑤𝑣 ∶= 𝑉1 → 𝒫(𝑉2)  

 
𝑤𝑣(𝑣1) ∶=  𝑣1´    𝑣1´ ∈ 𝑉2 
𝑤𝑣(𝑣𝑛) ∶=  𝑣𝑛´    𝑣𝑛´ ∈ 𝑉2 

 

𝑤𝑚(𝑤(𝑣1 , 𝑣𝑛)) ∶=  {𝑤𝑗(𝑣1´ , 𝑣𝑛´)| 𝑤𝑗(𝑣1´ , 𝑣𝑛´) ⊆ 𝑔2}  

 
 

An example of walk morphism from a walk 𝑤1(1,2) = (1,3, 2)  in graph 𝑔1 to a set of walks in 

graph 𝑔2 is shown in Figure 3. In this example, graph 𝑔2 has a cycle, so the mapped walks in 

𝑔2 have to be defined as the walks that include the same vertex maximal twice.  

There are 𝑤𝑣(1) = 11  and  𝑤𝑣(2) = 14,  
 
then the mapping results are: 

𝑤𝑚(𝑤1(1,2)) = {

𝑤2(11,14) = (11,14)

𝑤2(11,14) = (11,12,13,14)

𝑤2(11,14) = (11,12,13,12,13,14)
 

 

𝑔1 𝑔2 

2

1

(2,1) 3

14

(13,12)

11

(13,14)

13

12

(11,12)

(12,13)

𝑤𝑚
    

(11,14)
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Figure 3: A walk morphism example  

The weighting of a path is defined with the sum of the weights of the traversed vertices or 

edges. The following definition represents the weight of a path by using the vertex weights 

[14]. The function 𝑐𝑡 is a mapping function from vertices in a path to a set of labels 𝐴 (see 

Definition 3). 

Definition 15 

𝑐𝑡(𝑝(𝑣 1 , 𝑣𝑛 )) ∶= ∑ 𝑐𝑡(𝑣𝑖) 
𝑛

𝑖=1
 

 
𝑝(𝑣 1 , 𝑣𝑛 ) = (𝑣1 , ⋯ 𝑣𝑖⋯ , 𝑣𝑛) 

 
𝑐𝑡 ∶= {𝑣1 , ⋯ 𝑣𝑖⋯ , 𝑣𝑛}  → 𝐴 

 

 

The weighting of a walk is defined the same as the weighting of a path, where the weights of 

every traversed vertices or edges are summed. Definition 16 shows the weight of a walk by 

using the vertex weights.  

Definition 16 

𝑐𝑡(𝑤(𝑣 1 , 𝑣𝑛 )) ∶= ∑ 𝑐𝑡(𝑣𝑖) 
𝑛

𝑖=1
 

 
𝑤(𝑣 1 , 𝑣𝑛 ) = (𝑣1 , ⋯ 𝑣𝑖⋯ , 𝑣𝑛) 

 
𝑐𝑡 ∶= {𝑣1 , ⋯ 𝑣𝑖⋯ , 𝑣𝑛}  → 𝐴 

 
 

2.1.4 Graph search 

The graph search or traversal can be used to compute various properties of graphs, like 

reachability. This imitates a walk or path in the graph by following vertices. Some graph search 

algorithms can explore multiple paths in parallel at the same time, whereby some are 

sequential and search only one path at one time. The depth-first search (DFS) and breadth-

first search (BFS) are two graph search algorithms that can be applied to solve a variety of 

graph search problems, such as finding all of the paths between two given vertices, or finding 

the all paths from one given vertex to all other vertices in a given graph, finding all of the 

shortest path from a given vertex to another, etc. DFS and BFS can be applied to directed and 

undirected graphs.  

The DFS in a directed graph is described as following [19]:  
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Algorithm 1: 
Depth-first search from a given vertex to another given vertex in a directed graph 

1. Determine the vertices where the search begins and finishes. Mark beginning 

vertex as visited.  

2. Expand all of the following vertices of the start vertex and save them in a stack.  

3. Dequeuer the top vertex in the stack and examine it.  

a. If the target vertex is found, cancel the search and deliver the result.  

b. Otherwise enqueuer the following vertices that have not been discovered 

in the stack, and mark this vertex as visited.  

4. If the stack is empty, return “no result”. 

5. If the stack is not empty, repeat from step 2.   

The BFS in a directed graph is described below [19]:  

Algorithm 2: 
Breadth-first search from a given vertex to another given vertex in a directed graph 

1. Determine the vertices where the search begins and finishes. Mark the beginning 

vertex as visited and save it in a queue.  

2. Dequeuer a vertex from start of the queue and examine it.  

a. If the target vertex is found, cancel the search and deliver the result.  

b. Otherwise enqueuer the following vertices that have not been discovered 

to the end of the queue, and mark this vertex as visited.   

3. If the stack is empty, return “no result”. 

4. If the stack is not empty, repeat from step 2.   

1

5
3

4 7

2

6

DFS: (1,2,3,4,5,6,7)
BFS: (1,4,2,7,3,5,6)

   

Figure 4: An example of DFS and BFS in a directed graph  
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Figure 4 shows an example of DFS and BFS traversing in a directed graph. The given initial 

vertex is vertex 1. The traversing result using DFS is a scheduling of vertices in  (1,2,3,4,5,6,7), 

and using BFS is a scheduling of vertices in (1,4,2,7,3,5,6). 

 

2.2 Optimization problem  

The optimization problem in mathematics or computer science means problems finding the 

best or sub-best solutions from all feasible solutions.  

“Optimization is a mathematical discipline that concerns the finding of the extreme 

(minima and maxima) of numbers, functions, or systems. The great ancient 

philosophers and mathematicians created its foundations by defining the optimum 

(as an extreme, maximum, or minimum) over several fundamental domains such as 

numbers, geometrical shapes optics, physics, astronomy, the quality of human life 

and state government, and several others.” [20] 

The origin of the definition of the optimization problem is undoubtedly found in Greece from 

569 BC to 475 BC. Since then to now, many understandings, methods, and theories have been 

developed, like linear programming, non-linear programming, dynamic programming, 

stochastic approximation, direct search methods, evolutionary programming, differential 

evolution, etc. [20]. The local optimal problem is defined as the optimization problem, where 

the solutions are finite [21]. A general constrained optimization problem is defined in the work 

of Tasgetiren and Suganthan [22] as follows.  

𝑃 is a constrained optimization problem. The function 𝑓(𝑥) is the objective function. There 

are two constraints: the inequality constraints are represented with function 𝑟𝑖(𝑥) ≤ 0, and 

the equality constraints are represented with function ℎ𝑗(𝑥) = 0. 

 

Definition 17 
𝑃 ∶= min 𝑓(𝑥) 

subject to 
𝑟𝑖(𝑥) ≤ 0,    𝑓𝑜𝑟 𝑖 = 1,… , 𝑞 

 
ℎ𝑗(𝑥) = 0,    𝑓𝑜𝑟 𝑗 = 𝑞 + 1,… ,𝑚 

 
𝑓(𝑥) ∶=  𝑅𝑛 → 𝑅 

 
𝑟𝑖(𝑥) ≤ 0 
ℎ𝑗(𝑥) = 0 
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The shortest path problem  

The shortest path problem in graph theory is defined as the problem of finding a path between 

two vertices such that the sum of the “labels” of its traversed vertices is minimized. This is a 

special case of the optimization problem and it can be defined with the optimization 

problem 𝑃𝑠𝑝 [23], [24].  

The paths 𝑃𝑎𝑡ℎ𝑠1−𝑗 is a set of paths including all paths from 𝑣1 to 𝑣𝑗  in a graph. The function 

𝑐𝑡 maps this set of paths to a set of labels 𝐵. The shortest path is defined as the path with the 

minimized label.   

Definition 18 
𝑃𝑠𝑝 ≔ min{ 𝑐𝑡(𝑝𝑖)} 

 
𝑐𝑡 ∶= {𝑝𝑖} → 𝐵  

 
∀𝑝𝑖 ∈ 𝑃𝑎𝑡ℎ𝑠1−𝑗 

 
 

2.3 Systems development models 

System development models provide structure portions for different development phases to 

organize the development processes. Thereby, these set of phases are assigned to 

corresponding methods and techniques of the organization, and chained with workflow or 

dataflow together.  

Waterfall model 

 

Figure 5: Waterfall model  
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The waterfall model is a development model in which the phases are consecutively traversed 

in line during system development. A new phase begins when the previous one has been 

completed. The chained phases are represented in steps [25]. Figure 5 shows a waterfall 

model with an iteration, in which the blocks represents the development phases and the thick 

arrows show the execution sequence of the phases; for instance, after the execution of the 

requirement analysis phase the phase of system design begins. The slim arrows show the 

feedback paths from every phase to its preceding phases. If errors are detected at any phase, 

these feedback paths allow this phase to be reworked, in which errors are committed to 

correct the errors. 

Phases in waterfall model:  

 Requirement analysis: This phase is also called requirements engineering or 

requirements specification. The customer’s stakeholders and needs are identified and 

documented as requirements. The documentation of the requirements is generally 

made in a standard form that is easy to analyse and can be coordinated with the 

customer’s stakeholders and needs. 

 System design: This phase is also referred to as design or architectural design.  The 

large systems are divided into subsystems. The requirements are specified according 

to the system architecture. The system basics and their relationships are identified and 

documented.   

 Implementation: The systems are implemented with hardware and software according 

to the system design, which is documented in the previous phase.  

 Integration: The implementation units or subsystems will be integrated together if the 

system has multiple subsystems.  

 Testing: The interaction of the subsystems and the integrated system will be tested. It 

checks whether the implementation has correct system specification.  

 Operation (or Installation): The system will be installed and taken into operation.  This 

operation often involves maintaining the system and correcting errors in the running 

system.  

In practice, the phases are often performed in parallel and iterative, but these are very costly. 

The phases are chained together and the impacts from one phase can be delivered to its 

following phases. For example, the changes of requirements have an impact on the 

architecture or structure of the system design, due to high costs of system implementation.   

Phased implementation model 

In order to reduce the risks during the replacement of an old system, the new system can be 

implemented in a phased manner.  The old system does not need to stop completely; rather 

the new system is gradually replacing parts of the old system. In comparison with a parallel 

running model, the phased implementation does not take a lot of extra time and high costs 
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for the parallel running of a new and old system at the same time.  In comparison with a direct 

changeover model, it keeps a part of the old system to act as a back-up if anything goes wrong 

during the phased implementation. However, sometimes a direct changeover is the only way 

to implement a new system.  

Prototyping model 

A new system is first trailed in one part of a new system on an intermediary trial system. Once 

the intermediary trial system is running successfully, the new one can be introduced to all of 

the system. The advantages are apparent: in the intermediary trial system the users can get 

used to the new system and the new features can also be fully trailed. The existing interfaces 

and modules on the intermediary trial system provide an easier configuration and integration 

for system evolution. If something goes wrong with the now features, this only affects part of 

system, and prompts the need to go back to reengineer the features. Another disadvantage is 

the high costs and extra time [26]. 

2.4 Model-driven development 

Today, model-driven development is generally accepted as an important method enabler to 

cope with complex system development. It leverages graphical models and components so 

that users can visually construct complex system architecture.  

2.4.1 System modeling languages 

The system modeling language is a modeling language that can be used to express systems in 

a structure that is defined by a consistent set of rules.  An example of system modeling 

language is unified modeling language (UML) [27] [28].  

2.4.1.1 Process-oriented modeling  

The process-oriented modeling is defined to help to analyse and design business or production 

processes. The main goal is to identify the strategic processes according to the system 

development requirements. Usually process-oriented modeling is described with formal 

graphical and textual representations. A process-oriented model comprises process model 

elements and flows and it understood to mean a distinct arrangement of model elements that 

are related with flows to one another.  

 Process model element: A process model element is defined as an agent of a set of 

objects and it comprises several activities. Every process model element has the 

defined input and output, which can be machinery materials, product, manpower, 

energy, signal or information.  

 Flow: The process model elements are chained together with the flows, which express 

the connections between processes and can be categorized into different types [29].  
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Value stream mapping (VSM) is a process-oriented modeling method for analysing the current 

status and designing a targeted status and it is described with notation modeling language. 

VSM is a central instrument of lean management, which deals with the visualization of value 

streams in particular. The main field of application of VSM is the flow production with the 

original system and low variations in the automotive industry. The central modeling element 

of VSM is the graphic notation for mapping process and flows of material and information. 

The notation is defined to model the central production control and various Kanban species 

[30] [31]. 

The integrated modeling of material and information flow is an important advantage of VSM. 

At the same time, the status changes can be very well represented. In this thesis, VSM is used 

to model the existing status and targeted status of a LL-CPS and it determines the evolution 

requirements during its managed evolution. More details about this modeling method will be 

introduced in section 4.1.2.  Figure 6 shows an example of a VSM model [32].  

 

 

Figure 6: An example of a VSM model  

 

2.4.1.2 Component-oriented modeling 

The architecture modeling used for the system development, is resorted to the architectural 

principles and design alternatives. Taking into account the complexity of system 

decomposition in vertical, component-oriented modeling can reduce complexity by 

simplifying and strict interface specifications by assembling strongly encapsulated modeling 

entities, which are called components. Reuse of components can be maximized by finding the 
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guarantees on implementation of the given components. These component models are also 

called models [33] [34]. The Object Management Group (OMG) announced the systems 

modeling language (OMG SysML) to support the specification, analysis, design, verification 

and validation of complex systems. Two important component-oriented modeling languages 

in OMG SysML are introduced in the following.  

 Block definition diagram (BDD): It provides a black box representation of a system. The 

hierarchies between components in a system are represented by main block and its 

composite blocks. A BDD is a graphical modeling language of OMG SysML, in which the 

blocks represent the functions or components and are connected by lines describing 

the relationships between the blocks. This modeling language is heavily used in 

engineering for hardware design, software design, electronic design, etc. Figure 7 

shows an example of a block definition diagram [35]. In this example, the main block 

represents a RobotDomain and is comprises the composite blocks: Driver, Robot, 

PowerSource, Platform and Load.  

 

 

Figure 7: An example of a block definition diagram for a robot domain 

 

 Internal block diagram (IBD): The IBD provides the internal view of a system block, and 

it is usually instantiated from the block definition diagram to represent the assembly 

of all blocks within the main block. These composite blocks are assembled through 

ports/interfaces and connectors. The ports/interfaces of the main block are all 

associated with ports/interfaces of the internal blocks via connectors. Figure 8 

illustrates an example of the RobotDomain block with an IBD [35].  

 

In this thesis, VSM and IBD are used to model the managed evolution of LL-CPSs. More details 

and examples about these two modeling methods will be introduced in chapters 3 and 4.   
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Figure 8: An example of an internal block diagram foe the RobotDomain block  

 

2.4.2 Metamodeling 

The object management group has defined a standard four-layer metamodeling architecture, 

which is called the meta object facility (MOF). It provides a standard description for the 

hierarchy of modeling in four layers.  

M3 layer (MOF Metametamodel)

M2 layer (UML Metamodel)

M0 layer (Instances)

M1 layer (Model)

aCar

Car

 StartEngine():void

:Car

<instanceOf>

<instanceOf>

Operation Class Instance

Class

<instanceOf><instanceOf>

<instanceOf><instanceOf> <instanceOf>

 

Figure 9: Am example of OMG’s four-layer metamodel architecture 
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The first layer provides an instances layer named the M0 layer. At the M0 layer, there is the 

running system in which the real instances exist.  

The M1 layer is model layer and it contains models, for example, a UML model of a real car. 

Accordingly, the real car is an instance of car model. At the M1 layer, all categorizations or 

classifications of instances at the M0 layer are represented and designed.  

The M2 layer contains the model of the model of an instance, which is also called a 

metamodel. A metamodel is described as an abstractive syntax to determine the structure 

and meaning of a model at the M1 layer.  

The model at the M3 layer is the model of model of model of an instance. Indeed, this layer is 

the top layer of the four-layer modeling architecture [36], [37].  

Figure 9 shows an example of the OMG defined four-layer metamodel architecture from UML  

[38]. In this example, a real instance of car exists at the M0 layer. At the M1 layer, this real 

instance is modelled with a car model using UML. The object “: Car” at the M1 layer represents 

a car object and is abstracted to a instance at the M2 layer. The car model is abstracted to 

Operation and Class at the UML metamodel layer. They are the instances of the 

Metametamodel Class at the M3 layer.  

2.4.3 Mathematical description of models  

For a formal schematic representation, any network structure can be mathematically modeled 

as a graph [8]. A model 𝑚, which represents an integrated system in a network structure, is 

formed with a directed connected graph structure (see Definition 1).  

Definition 19 
𝑚:= (𝑀𝐸, 𝐴, 𝑏𝑒𝑔 , 𝑒𝑛𝑑) 

  
𝑏𝑒𝑔 ∶=  𝐴 →  𝑀𝐸   
𝑒𝑛𝑑 ∶=  𝐴 →  𝑀𝐸 

  
𝐴 ≔ 𝑀𝐸 ×  𝑀𝐸 

 
𝑚 ∈ 𝐺 

 
{𝑚𝑖} = 𝑀 ⊂ 𝐺 

 
∀𝑖 = 1,⋯ , 𝑛       𝑛 ∈ ℕ 

 
 

A model comprises a set of model elements 𝑀𝐸  and a set of relation elements 𝐴 . The 

functions 𝑏𝑒𝑔 and 𝑒𝑛𝑑 combine all model and relation elements together to an integrated 

system. Every model has an identifier. The ID of a relation element is represented with its 
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beginning model element and target model element. The model elements and relation 

elements can be continually specified by different types, processes or functions. These 

characters of elements are understood as the description information, which can be formed 

with a key-value structure. A set of models {𝑚𝑖} is represented by 𝑀.  

Another representation for a model m is using a set of model elements.  

Definition 20 
𝑚:= {𝑀𝐸} 

  

2.4.4 Model transformation 

The model transformation is a basic method of model-driven architecture (MDA) [39]. There 

are two important model transformations: bidirectional model transformation and 

unidirectional model transformation.  

2.4.4.1 Bidirectional model transformation  

A bidirectional model transformation is described with a one–to-one mapping relationship 

between one model on a modeling domain and a model on another modeling domain. This 

model transformation can be used to keep the model consistency and it allows the 

transformation between a concrete model and an abstract model.  Stevens [40] represents 

the bijection as a special case of bidirectional transformation, where the source elements 

contain the same information as the target elements. In Stevens’ example, a bidirectional 

model transformation takes place between UML activity diagrams and Petri net models.  

Read color Test number

Domain C

Domain A Model a

Model c

mr t

b

 

Figure 10: An example of bidirectional model transformation 

 

A bidirectional model transformation is defined with a mapping relationship 𝑏, where 𝐴 is a 

domain including a set of models, and 𝐶 is another domain including a set of models.  
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Definition 21 
𝑏 ≔  𝐴 ↔  𝐶 

 
 

In Figure 10, model a in domain A has a bidirectional transformed model c in domain C. This 

transformation can be understood as the projection of one model in a domain into another 

domain.  

 

2.4.4.2 Unidirectional model transformation  

The unidirectional model transformation is a refinement mapping and is defined as a mapping 

relationship of models from one modeling level to another. Czarnecki and Helsen [41] 

proposed a possible taxonomy for the classification of several existing and proposed model 

transformation approaches, whereby most of these approaches are used for unidirectional 

model transformation. A unidirectional model transformation is formalized as a mapping 

relationship 𝑢, where 𝐴 is its domain and 𝐵 is its codomain.  

Definition 22 
𝑢 ≔ 𝐴 →  𝐵 

 
 

Figure 11 shows an example of unidirectional model transformation. Model a in domain A is 

transformed to model b in domain B. In addition, a bidirectional model transformation can be 

achieved using two opposite unidirectional one-to-one model transformations [41].  

Domain B

Domain A Model a

Model b

mr t

u

1 32

 

Figure 11: Examples of unidirectional model transformation 
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The bidirectional and unidirectional model transformations are in essence the 

transformations for model elements and relation elements from one model to another model, 

which will be introduced in chapter 4.  

2.4.5 Model mapping 

A unidirectional mapping function 𝑞  represents a mapping relationship from a model to 

another model, where 𝐴  is its domain comprising a set of models and  𝐷  is its codomain 

comprising a set of models. 

Definition 23 
𝑞 ≔ 𝐴 →  𝐷 

 
 

Figure 12 shows an example of model mapping. The mapping function q maps the model a’ in 

domain A to model d in domain D. 

Domain A

Domain D

Model d

Model a 

1 32

mr

q

 

Figure 12: An example of model mapping 

 

The model mapping is essentially the mappings for model elements and relation elements 

from one model to another, which will be introduced in chapter 4.  

2.4.6 Operation of models  

The operation of models is used to represent the relationship between models or to create 

new models from the initial ones. Models 𝑚1 and 𝑚2 are two models in 𝑀 (see Definition 19). 

The operator “≤” represents that model 𝑚2 is a sub-model in model 𝑚1.   
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Definition 24 
𝑚1 ∈ 𝑀   and    𝑚2 ∈ 𝑀 

if 
𝑀𝐸2 ⊆ 𝑀𝐸1           𝑀𝐸2 ≠ ∅ 

  
𝐴2 ⊆ 𝐴1 

 
𝑏𝑒𝑔2 ∶= 𝑏𝑒𝑔1 |𝐴2→ 𝑀𝐸2  

𝑒𝑛𝑑2 ∶= 𝑒𝑛𝑑1 |𝐴2→ 𝑀𝐸2 

then 
𝑚2 ≤ 𝑚1     

  
 

The models union of two models 𝑚1 and 𝑚2 is represents with an operator “⊕”.The initial 

models are two sub-models of the new model.  

Definition 25 
𝑚3 = 𝑚1 ⊕𝑚2 

  
𝑀𝐸3 = 𝑀𝐸1 ∪𝑀𝐸2 

 
𝐴3 = 𝐴1 ∪ 𝐴2 

 
𝑏𝑒𝑔3 ∶= 𝑏𝑒𝑔 |𝐴1∪𝐴2→𝑀𝐸1 ∪𝑀𝐸2  

𝑒𝑛𝑑3 ∶= 𝑒𝑛𝑑 |𝐴1∪𝐴2→𝑀𝐸1 ∪𝑀𝐸2  

 
𝑚1 ≤ 𝑚3 
𝑚2 ≤ 𝑚3 

 
 

The models difference for one graph comparing with another is represented by an operator 

“⊖”. In this example, model 𝑚4 is a sub-model of model 𝑚1.  

Definition 26 

𝑚4 = 𝑚1 ⊖𝑚2 
 

𝑀𝐸4 = 𝑀𝐸1 \ 𝑀𝐸2 
 

𝐴4 = 𝐴1 \ 𝐴2 
 

𝑏𝑒𝑔4 ∶= 𝑏𝑒𝑔1 |𝐴4→ 𝑀𝐸4  

𝑒𝑛𝑑4 ∶= 𝑒𝑛𝑑1 |𝐴4→ 𝑀𝐸4 

  
𝑚4 ≤ 𝑚1 
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3 Problem Statement and Analysis with Example 

Content 

 
3.1 A sample of LL-CPS: A conveyor system with ASRS 
    3.1.1 Process-oriented description  
        3.1.1.1 Process-oriented structure  
        3.1.1.2 Processes description  
 
    3.1.2 Component-oriented description  
        3.1.2.1 Interfaces specification   
        3.1.2.2 System decomposition 
 
3.2 Managed evolution scenario of LL-CPS 
    3.2.1 Problems of the ongoing LL-CPS 
    3.2.2 The targeted status of this LL-CPS 
 
3.3 State of the art and existing approaches for managed evolution of LL-CPSs 
        3.3.1 Cyber physical system modeling 
        3.3.2 Formal modeling of system evolution 
        3.3.3 Modeling and optimizing the costs of reconstruction 
 
3.4 Research questions of this thesis 

 

 

 
The aim of this chapter is to ascertain the central problems during managed evolution of LL-

CPS. First a conveyor system in an auto manufactory factory as the application example will 

be introduced in section 3.1. This system is a classical LL-CPS. 

The process-oriented modeling method VSM introduced in the previous chapter models the 

system structure and working processes of this conveyor system from the perspective of 

process design.  On the other hand, the component-oriented modeling method IBD specifies 

the system hierarchy and interface specification of this conveyor system from the perspective 

of implementation plan. The existing status of this conveyor system is modeled by using of 

both modeling methods in section 3.1.1 and 3.1.2.  

In order to analyse the problems during the managed evolution of a LL-CPS, the targeted 

status of this conveyor system is clearly defined using a VSM model in section 3.2. Section 3.3 

provides an overview of the state of the art regarding the existing approaches supporting the 

development of the LL-CPS from the existing status to targeted status. Observing the problem 

analysis and state of the art of managed evolution of LL-CPS, the final section of this chapter 

will provide a summary of all the main research questions that will be particularly discussed 

and solved in the following chapters.  
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3.1 A sample of LL-CPS: A conveyor system with ASRS 

In an automobile factory, a conveyor system with an automated storage and retrieval system 

warehouse (ASRS) is understood as a LL-CPS that comprises mechanics, sensors, hardware and 

software. This system chains the different manufacturing processes together to an integrated 

production system, e.g. welding, injection modeling, sub-assembly/assembly and painting and 

dry system. For the intralogistics in the factory, this conveyor system is the key part and has a 

long life cycle. Figure 13 shows the conveyor system with ASRS as the core part in an 

automobile factory. 

This conveyor system with ASRS is a typical sample of LL-CPS, whereby people, machines, and 

products exchange information with each other to accomplish the conveyor tasks together.  

 

Suppliers

Conveyor system

Inspection

Auto Storage and 
Retrieving 

Warehouse
Welding

Injection 
molding 

Painting and 
Drying System

Sub-Assembly/ 
Assembly

 

Figure 13: A conveyor system with ASRS in an automobile factory 

 

A laboratory model of this conveyor system with ASRS is created as a substitution of the real 

factory to clearly define this LL-CPS and analyse the problems during its evolution. This 

laboratory model contains a conveyor system model and an auto storage and retrieving 

warehouse model. The conveyor system model is located between the warehouse model and 

the other CPSs, e.g. painting and dry system. The warehouse model is applied as a storage of 

the wares, before and after they go into the manufacturing processes (See Figure 14). The 

conveyor system model comprises four conveyor belts, a buffer belt and sensors, etc. The 

ARAS comprises a warehouse and a gripper robot. The automated parts of this laboratory 

model are controlled through two industrial programmable logic controllers (PLC) of Siemens. 

They connect to each other over the Ethernet to ensure the safety and reliability of the 

connection. The coordinated tasks between the sensors, actors, warehouse, four conveyor 

belts, and a buffer belt are controlled using these two PLCs. A computer is used as a human-
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machine-interface (HMI). More detailed information on the system specification will be 

introduced in section 3.1.2. 

 

Figure 14: A laboratory model of a Conveyor system with ASRS as a LL-CPS sample 

 

In practice, a LL-CPS is typically described and analysed by using multi-domain and multi-level 

models, where each model focuses on a fixed set of concerns on the system. This is conducive 

to system planners and engineers to understand a LL-CPS better and faster from different 

disciplines. Each modeling domain gives prominence to certain features and focuses on 

particular attributes.  

 

 

Figure 15: A LL-CPS modeled with VSM and IBD 

 

In Figure 15, there are two modeling methods that describe this LL-CPS with two different 

modeling methods: the VSM and the IBD.  



Chapter 3 - Problem Statement and Analysis with Example 

34 
 

3.1.1 Process-oriented description 

3.1.1.1 Process-oriented structure  

In this LL-CPS, the wares should be transported with the conveyor system from warehouse to 

the hall for the painting and dry processes in accordance with the production plan for painting 

and the dry hall. After the painting and dry processes, the wares will be transported back to 

the warehouse and wait for the following manufacturing processes. Subsequently, the wares 

will be stored in a warehouse in correct order. For example, the wares with different types, 

sizes, materials or paint colors can be divided into different groups and stored in the 

designated location or floor.  

The whole process of this laboratory model is separated into six sub-processes, which are 

chained step by step from the fist/leftmost process to the last/rightmost one. Every sub-

process contains the functions and tasks. Figure 16 shows the processes structure of this LL-

CPS sample. 

 

LL-CPS :

Conveyor System with

Auto Storage and Retrieving Warehouse

Extract 

from 

warehouse

Register 

Color code 

to wares

Transport 

the wares to 

Painting and 

dry hall and 

get back

Sort 

wares

Test 

wares 

number

Retrieve 

 the wares to 

warehouse

in correct order 

 

Figure 16: Processes structure of the LL-CPS sample 

 

3.1.1.2 Processes description  

Figure 17 shows a VSM model for this LL-CPS, which is defined as the existing status of this LL-

CPS. Every sub-process comprises different functions and tasks to accomplish the whole task 

together. 

 Extract:  

The wares will be transported from the warehouse to the conveyor belt with a gripper 

robot. This is a completely automated process and it is controlled by one PLC. This PLC 

gives off the signal information, likes the wares, amount and locations, to schedule the 

different functions and tasks in the extract process.   
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Figure 17: A VSM model for the existing status of the conveyor system with ASRS 

 

 Register color:  

The wares run on the conveyor belt and pass through a RFID read/write sensor. More 

specifically, when a ware arrives at the RFID read/write sensor, the conveyor belt will 

be stopped. At the same time, the RFID chip in the ware waits for an input from the 

worker; for instance, the color information. The conveyor belt will restart once the 

RFID chip receives correct information and then will be stopped again until the second 

ware without any information arrives at this RFID read/write sensor. The worker gives 

information by using a HMI of a computer. This information will be stored in this 

computer and used for the other automated processes. The wares will continue to be 

transported to the next conveyor belt after they leave the current belt. The register 

color process is a semi-automatization process. 

 

 Painting color: 

After the register color process, there is a buffer belt with a pusher, which is like a T-

Stab. This buffer belt bridges the conveyor belt to the painting and dry system. Each 

ware which will be transported to the painting and dry hall must be pushed on the 

buffer belt by using the pusher.  The painting and dry system is another LL-CPS and it 

is independent from this conveyor system with ASRS. The wares are taken sequentially 

to the reserved painting machine. The painting processes will not be introduced in this 

thesis. After the painting and dry process, all painted wares should be transported with 

the same buffer belt again, but from the painting and dry system side to the conveyor 

belt side.  
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 Sort: 

As a matter of course, the storage of painted wares must follow certain rules and 

standards. For instance, according to their types, sizes, materials or paint colors, the 

wares are able to be divided into different groups and then stored on the 

corresponding floors in the warehouse. For this reason, a worker must stand by the 

buffer belt and sort the wares by predefined sort order. For instance, the same color 

wares are divided into the same group and sorted on the buffer belt. This is a manual 

task.   

 

 Test number: 

This process is an automated process. By using a photoelectric sensor, the printed 

wares will be counted according to the given number information from the worker in 

the register color process. It is important to ensure that the actually stored quantity is 

equal to the number of wares to be painted before. This photoelectric sensor can 

count the wares number, but not read the color information.  

 

 Retrieve:  

Eventually, the wares will be retrieved through the gripper robot and then stored back 

in a predefined location or floor in the warehouse. 

3.1.2 Component-oriented description  

The component-oriented modeling description focuses on a decomposition of the system into 

its system structure, which is a central document for the creation of products.  The entire 

system is decomposed into segments and units and the relationships between these segments 

and units are identified and represented. Thereby, the component-oriented modeling method 

can support analysing the behavior in a large-scale system and guide the implementation of 

the system design.  

The component-oriented modeling methods BDD and IBD introduced in section 2.4.1.2 are 

used to model the laboratory model of the conveyor system with ASRS.  

3.1.2.1 Interfaces specification 

The interfaces are first fine specified, which are declared within the system between the 

segments and units or on the outside of the system. These specified interfaces serve a better 

understanding of the system structure. Figure 18 shows the symbols of the specified interfaces 

in this LL-CPS. 
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Figure 18: Interfaces specification 

 

 Electrical signal interface: 

This interface is used to provide the connection for digital information from one 

electronic device to another. The digital information can take the instructions of 

functions or the results of the executed functions; for example a USB interface, PCI 

express interface or the IEEE 1394.  

 

 Software interface:  

The software interfaces make the connection possible between software components 

to exchange information, functions or methods. In this sprcification, the software 

interfaces exist on software components or software components assembly.  

 

 Constructive interface:  

A constructive interface can be understood as an integration of devices. In this sample, 

the four conveyor belts are constructed together to execute a corporate 

transportation.  

 

 Human machine interface:  

A human machine interface is a special case of a user interface that connects human 

to mechanical or information systems. The mechanical or information systems can be 

the integrations of hardware, software, and mechanical components; for instance, a 

monitor or an operating panel of PLC or an operating platform of a conveyor belt. The 

HMI translates data or information from the machine side into human-readable visual 

representations. In our sample, the worker gives information into the information 

system by using the HMI of PC and reads the scheduling information from information 

system with the HMI again.  

 

 Execute interface:  

The execute interface is a computer interface that provides connections between the 

required component and the provided component. In this sample, the computer 

hardware can provide the execution for the requirements of the connected software.   
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 Material flow interface:  

The material flow interfaces are defined as the transport channels for material. They 

are often found between transport equipment or working processes. In our sample, 

the worker can also be understood as a transport tool to chain the material flow 

together.   

 

3.1.2.2 System decomposition 

The decomposition of a LL-CPS is introduced with a hierarchical structure. At the first level, 

the LL-CPC is decomposed into two parts: a set of information systems (IS) and a set of process 

systems (PS). The information system is the cyber part in the LL-CPS and the process system is 

monitoring and controlling the physical processes by using sensors and actuators. These two 

parts are connected, strongly associate with each other and work independently of one 

another. They sense and influence the environment of the LL-CPS together (see Figure 19).  
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Relevant environment factor

 

Figure 19: System decomposition of LL-CPS with BDD  
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Figure 20: System decomposition of the conveyor system with ASRS with BDD  
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The Figure 20 shows the decomposition of the conveyor system with ASRS as an example. The 

conveyor system with ASRS is decomposed into a Siemens Simatic panel touch system as the 

information system and an automated conveyer system as the process system. This LL-CPS is 

closely linked with the conveyor system environment and exchanges the information or wares 

through the system interfaces. 

Figure 21 shows the interface specification between the conveyor system with ASRS and its 

system environment with an IBD. The relevant environment factors comprises two important 

parts: another CPSs and workers. In this sample, the painting and dry system is another LL-CPS 

and it is connected with the conveyor system with ASRS using material flow interfaces and 

connecters. Worker 1 sorts the wares running on the buffer belt in the conveyor system using 

HMI and material flow interface. Worker 2 reads and gives the color information by using a 

HMI to this LL-CPS.  

 

Figure 21: Interface specification between the conveyor system and its system environment  
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Figure 22: System decomposition of process system with BDD 
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At the second level of this hierarchical structure, the information system and the process 

system will be continually decomposed. A PS (see Figure 22) is divided into a set of control 

systems (CS) and a set of mechanical systems (MS). The control system is continually 

decomposed into a set of software of control system (CS-SW), a set of software assembly (CS-

SW Assembly), a set of hardware of control system (CS-HW) and a set of hardware assembly 

(CS-HW Assembly). In a process system, the variables and information are shared between 

components, which is different than in an information system. 

With the laboratory model as an example, Figure 23 shows a BDD of the automated conveyor 

system as the process system in LL-CPS. It comprises a SIEMENS Simatic PCS7 as a control 

system and the conveyor models as a mechanical system.  
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Figure 23: BDD of process system in the sample 

 

The mechanical system in this laboratory model comprises four conveyor belts, a buffer belt 

and a warehouse, etc.  

 

Figure 24: Top view of the laboratory model 
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Figure 24 shows the top view of the laboratory model, whereby the four conveyor belts are 

chained in a cycle to transport the wares in circulation (turn counter clockwise in order 

①②③④). Above conveyor belt ① there is a RFID read/write sensor, which can be used 

to read/write production information from/into wares. There is a photoelectric sensor (light 

barrier) over the conveyor belt ③, which is used for detecting the wares when they get up 

the conveyor belt ③. The warehouse ⑤ is constructed with conveyor belt ④, and all of the 

wares will be transported from the warehouse to the conveyor belt ④ with a gripper robot 

or phase reversal. The buffer belt ⑥ with a pusher bridges the conveyor belt ② to other 

CPSs. 

Figure 25 illustrates the decomposition of the mechanical system in the laboratory model. This 

mechanical system/mechanics is composed of three MS-HW assemblies: from left to right are 

the ASRS warehouse, four conveyor belts, and one buffer belt. The ASRS warehouse comprises 

warehouse and gripper robot. The four conveyor belts comprise belts, belt-motors, R/W 

sensors and PH (photoelectric) sensors. Moreover, the buffer belt comprises belts, belt-

motors, and pushers.  
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Figure 25: BDD of the mechanical system in the sample 

 

With an internal block diagram of the mechanical system, the combination of interfaces, 

connectors, and components is represented in Figure 26.  
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Figure 26: IBD of the mechanical system in the sample 

 

The control system is the other important part in the process system in a LL-CPS. It manages, 

commands or regulates the behavior of connected mechanical systems to implement some 

tasks or processes. For sequential and combinational logic, the PLC is very necessary, like a 

computer numerical control (CNC) and robot controllers (RC). Figure 27 shows a BDD for the 

decomposition of control system in the laboratory model. This control system comprises 

different CS-HW assemblies and CS-SW assemblies. The CS-HW assembly PLC hardware 

platform comprises CS-HWs: from left to right are the data store, timer, program memory, 

BUS, etc. The CS-SW assembly STEP 7 comprises CS-SWs: FC 10, OB1, etc.  

 

Figure 27: BDD of control system in sample 

In this laboratory model, the CS-HWs and CS-HW assemblies are integrated in two PLC 

hardware platforms. The automation of this conveyor system with ASRS is under the control 
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of these two Siemens Simatic PCS7 300 PLC systems [42]. Figure 28 shows a picture of one 

integrated PLC hardware platform in the control system of the laboratory model.  

 

Figure 28: Siemens Simatic PCS7 300: Hardware assembly in control system 

 

The tasks in the programmable control system are not fulfilled only by combination of several 

hardware components, which need the specific software programs. Figure 29 shows the IEC 

61131-3 standards-based programming languages of PLC, which are classified by the language 

characteristics. The structured text (ST in Siemens S7 called Structured Control Language: SCL) 

and instruction list (IL) are two graphical languages. The function block diagram (FBD) and 

ladder diagram/logic (LD) are two classical text languages. The sequential function chart (SFC 

in Siemens S7 named Graph) is a mixed of the above two [43]. 

The ST is a high-level language, which is block structured. The function calls and variables are 

defined by common elements. The syntax of this language elements is very similar to Pascal. 

ST provides good mathematical operands for program logic. Figure 30 shows an example of 

an FBD program in the laboratory model. 

The IL is a low level language, which is mainly used for the logic connection between control 

inputs and outputs.  The main features of IL are that the operators have only one operand and 

the syntax of the language is based on assembly language. This language provides a table view 

that allows a lot of data to be well organized, updated and displayed. On the other side, for 

large-scale and complex program IL is difficult to read.  

 

 

Figure 29: IEC 61131-3 standards-based programming languages of PLC 
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Figure 30: A ST program example  

 

The FBD is a graphical language, which can describe the functions between the input variables 

and output variables. The function is understood as a set of elementary blocks. The connection 

lines are using to connect the input and output variables. This language is a very good fit for 

electrical engineers. Figure 31 shows an example of FBD program in the laboratory model.  

The LD represents the programs by using a graphical diagram, which is based on circuit 

diagrams of relay logic hardware. This language has a clear logical relationships that provides 

an easy structure to read. For a large-scale and complex program, LD is impractical and it has 

no mathematical operands possible.  

 

 

Figure 31: A FDB program example 
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The SFC is a graphical language, which can be used to program processes that can be split into 

steps. The control steps are associated with each other by conditions of the handoffs in this 

flow control. Between the control steps are transitions that are linked to input bits. The SFC is 

described as a Petri net and it is easy for process design and error analysis. In normal 

conditions, this programing language needs a strong program capacity.   

Siemens Simatic PCS7 : Control system (CS)

STEP 7 : CS-SW assembly

1. PLC hardware 

platform: 

CS-HW assembly

2. PLC hardware platform:

CH-HW assembly

Operating system: CS-

SW assembly

 

Figure 32: IBD of control system in sample 
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Figure 32 illustrates the system decomposition of the control system in the laboratory model 

with an IBD. The CS-HW assembly has two instances, which are two connected PLC hardware 

platforms. They provide the executions of requirements or functions for their connected 

software and software assemblies: Moreover, they control the linked mechanical components 

to implement the software-established processes at the physical level. 

The CS-SW assembly has two instances. They are the operating system and the STEP 7 

programs, which comprise two assemblies: TS1_TS2_ASRS and TS3_TS4_RFID. These two 

software assemblies comprise different function block, which are connected together as in a 

function block diagram.  
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Figure 33: System decomposition of Information system with BDD  
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Figure 34: BDD of information system in sample 
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An information system is decomposed into a set of software (IS-SW), a set of software 

assembly (IS-SW Assembly), a set of hardware (IS-HW) and a set of hardware assembly (IS-HW 

Assembly) (see Figure 33).  They deal with each other in the collection, processing, 

organization and storage of data and information. In the work of Boell and Cecez-Kecmanovic, 

the  “Information systems (IS) involve a variety of information technologies (IT) such as 

computers, software, databases, communication systems, the Internet, mobile devices and 

much more, to perform specific tasks, interact with and inform various actors in different 

organizational or social contexts” [44]. Compared with the process system, the IS is not a real 

time system and it has an open, dynamic and distributed system structure. Figure 34 shows a 

BDD for the decomposition of the information system in the laboratory model. A Siemens 

Simatic Panel Touch (see Figure 35) is modeled as the IS in this sample. It comprises a touchpad 

and integrates other PC hardware components as two hardware assemblies, and an operating 

system and an application software as two software assemblies. This IS has a human-machine 

interface, which allows workers read and control the functions in this LL-CPS.  

             

Figure 35: SIEMENS SIMATIC PANEL TOUCH 

 

 

Figure 36: System software and application software relation 

 

The IS-SWs and IS-SW assemblies in this sample are divided into two groups: operating system 

software and application software. The operating system software manages the resources of 

the computer hardware. The application software takes the functions, tasks and activities 

from the user and implements them during the operating system software and then the 
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hardware. Figure 36 shows the relationships between the user, application software, 

(operating) system software and hardware. In Figure 37, an internal block diagram describes 

the system combination of the IS in the laboratory model. 

 

Figure 37: IBD of information system in sample 

 

Summary of system decomposition  

 

Figure 38: System structure for a LL-CPS  
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The decomposed components in the LL-CPS are working either closely together on one task 

or completely independently of each other. From the aspect of attributes, all of the software 

components like the IS-SW, IS-SW assembly, CS-SW and CS-SW assembly, constitute the cyber 

part of the LL-CPS. The IS-HW, IS-HW assembly, CS-HW, CS-HW assembly and MS-HW 

constitute the physical part of the LL-CPS. On the other hand, the different software, hardware 

and assemblies constitute the information system and process system in this LL-CPS (see 

Figure 38). Figure 39 shows an IBD representing the decomposition of the conveyor system 

with ASRS as a sample.  

 

 

Figure 39: System decomposition of the conveyor system with ASRS 
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3.2 Managed evolution scenario of LL-CPS 

3.2.1 Problems of the ongoing LL-CPS 

A conveyor system with ASRS has been described and analysed as an ongoing LL-CPS. From 

the perspective of production efficiency, this ongoing conveyor system with ASRS is not 

perfect, because its production time can be reduced. The manual work of the workers in the 

existing conveyor system could cause an increase in production time, and an automated 

machine definitely has higher production efficiency since no thinking is needed by the 

machine. Furthermore, the worker who stands by the buffer belt repeatedly performs the 

same task (sort the wares), which increases the risk of making mistakes. In many factories, this 

is a main reason for the poor product quality.   

 

 

Figure 40: Managed evolution of a LL-CPS 

 

In conclusion, this existing conveyor system with ASRS is not production time effective and 

quality assurance. According to the problems of the existing LL-CPS, a targeted status of this 

LL-CPS is defined (see Figure 40). In this thesis, the development of LL-CPS is managed, which 

means that one system evolution step is defined from the existing status to the targeted status 

of a LL-CPS. The targeted status must be cleanly defined.  

3.2.2 The targeted status of this LL-CPS  

The new work processes in the targeted status of this LL-CPS are based on the existing LL-CPS. 

However, it is characterized by the high degree of the ability of automatization.  

 Extract, register color and painting Color:  

In the targeted status of this LL-CPS, the wares are taken out with the gripper robot 

from the warehouse. After obtaining painting information, the wares will be 

transported through the buffer belt to the painting and dry hall. These processes are 

as same as the processes in the existing LL-CPS.  
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 Read color: 

In this process, there are some differences compared with the existing status. There is 

no worker standing by the buffer belt to sort the wares that come back from the 

painting hall. Instead of the worker, a new RFID read sensor is procured and installed 

on the conveyor belt. It is used to read the color information from the wares.  

 

 Test number: 

This process is as same as the process test number in the existing status of this LL-CPS. 

The retrieved wares will be counted by using a photoelectric sensor according to the 

given information from the engineer in the register color process. 

 

 Retrieve:  

The wares will be retrieved through the gripper robot with the color information, 

which is read with the RFID read sensor in the read color process, in the predefined 

location or floor in the warehouse.  
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Figure 41: Targeted status of this LL-CPS 

 

Figure 41 describes the targeted status of this LL-CPS with a VSM model. During this 

development, the manual sort work is removed, which can improve the ability of 

automatization and the product quality. In addition, the production time is reduced from 8 

minutes 7 seconds to 6 minutes 9 seconds.   
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3.3 State of the art and existing approaches for managed 

evolution of LL-CPSs 

The problems during the evolution of CPS have been recognized by many researchers. In this 

section, the important related works will be divided into three research fields: system 

modeling, formal modeling of the system evolution and modeling and optimizing the cost of 

reconfiguration.  

3.3.1 Cyber physical system modeling  

Deynet [45] specifies the cyber-physical system based on a module architecture in his diploma 

thesis. By using of a pilot project in car as an example, Deynet introduced two methods for 

the system specification: the interfaces specification and the perspective specification. The 

interfaces specification emphasizes the description of the standardizing and specification of 

the interface types between the modules. Once the interface types are determined, the types 

must be kept, although the number of interfaces in the determined types can be continually 

specified. Figure 42 show an example of the interfaces specification in Deynet´s work.  

 

 

Figure 42: The interfaces specification for a pilot system in car 

 

All of the interfaces in this system are specified into four different types: the electrical analog 

interface, the software interface, the electrical digital interface and the mechanical interface. 

Such interfaces can be used for a further specification in a sub-system. For example, the 

hands-free car kit is specified into a cradle, baseplate, ECU (A mounted box under the interior 

trim of car) and microphone (see Figure 43).  
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Figure 43: The interfaces specification for the Hands-free car kit segment 

 

The perspective specification is focusing on the system specification at different system levels. 

At the each level, there is its own individual view and interface types of the overall system. 

The advantage of this specification is that each interface type appears only once in one system 

level. This makes the documenting of the system specification very clear and compact. In 

addition, the interdisciplinary specification is inevitable. 

 

Figure 44: The perspective specification for the Hands-free car kit segment in consideration only of mechanical, 

electrical analog and electromechanical interfaces 

 

Figure 44 shows a perspective specification for the hands-free car kit segment, in which the 

specification only focuses on the mechanical, electrical analog and electromechanical 

interfaces. The name of the line represents the two connecting blocks, like Cra-Tel for a cradle 

and mobile phone (Telephone). 

Bartelt et al. [46] defined a cyber-physical system based on the following characteristics. First, 

a CPS is a system of systems can be decomposed into information systems and control systems. 

Between them, there is an intelligent interface to join the different properties from the two 

kinds of systems. Secondly, the information systems and control system are decomposed in 

modular building blocks named components. The intelligent interface is also decomposed to 

fine-grained intelligent interfaces to network the components between the information 

system and control system.  Figure 45 shows the decomposition of a CPS with smart interfaces.   
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Figure 45: The CPS (decomposed) with smart interfaces 

 

Larsen et al. [47] described an approach using the example of a small unmanned aerial vehicle 

to model the cyber-physical systems and enable integration of multiple models and tools in a 

consistent tool chain. A CPS is decomposed to the discrete-event (DE) models of 

computational processes and the continuous-value and continuous-time (CT) formalisms of 

physical engineering [48]. The VDM-RT (an extension of the Vienna Development Method’s 

modelling language with features for object orientation, concurrency and real-time 

computation, including the distribution of processes to virtual CPUs) is used to notate the DE 

models and the 20-sim (a package for modelling and simulating complex physical systems) to 

notate the CT models. The architecture of DE models is presented here using SysML. A co-

modeling framework Crescendo is introduced, whereby the interfaces between DE and CT 

models identify the shared features of the tow constituent models.  P. Larsen was working on 

an integrated tool chain (INFO-CPS tool chain) to make a co-simulation of more than two 

simulation tools possible.  The CPS architecture on INFO-CPS is expressed using SysML, which 

allows cyber and physical elements to be identified such that each of these elements 

corresponds with a constituent model. However, there is a need for integrated development 

methods that span form requirements through to analyzing the results of simulation. Another 

need is for efficiently managing the traceability of design artefacts to analyze the changes 

impact and evidence the dependability of CPS development.  

In a cyber-physical system, the physical systems are inherently described by non-causal 

continuous-time equations. On the other hand, the cyber-based information and 

communication systems are based on the notion of causality and discrete-time semantics. In 

another work of Simko et al. [49], the formalization of composition and interactions in the 

two worlds is regarded as the new challenge for the model-based engineering of cyber-

physical system. A CPS-specific modeling language (CyPhyML) is developed and used to define 

the structure und behavior of physical and computational components. It supports the non-

causal and causal modeling and facilitates hierarchical composition. Simko et al. formalized a 

CyPhyML model as a tuple, which comprises a set of components, a set of component 
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assemblies, a set of design elements, a union of the sets of ports, a containment function for 

design elements and component assemblies, a port containment function, a set of power flow 

and a set of information flow (see Figure 46). The union of the sets of ports is specified into 

eight different types: the rotational mechanical power ports, the translational mechanical 

power ports, the multi-body power ports, the hydraulic power ports, the thermal power ports, 

the electrical power ports, the continuous time input signal ports and the continuous time 

output signal ports. Furthermore, all of the power ports are encapsulated into a union and all 

of the signal ports into another union. The power flow links any power ports together, and the 

information flow links any signal ports together. Through the mathematically rigorous and 

unambiguous formal specifications of CPS, the structural and behavioral specifications can be 

written using the same modeling language, whereby both can be used for deductive reasoning. 

The use of these formalizations for model checking, deductive reasoning and correctness 

proofs will be a matter of future work of Simko.   

 

 

Figure 46: The generic modeling environment meta-model for the composition sub-language of CyPhyML 

 

In general, a complex cyber-physical system is typically modeled from different disciplines for 

developing and evaluating design alternatives within the context of formalisms that are 

relevant to selected aspects of the system. Each modeling aspect highlights certain features 

and occludes others to make analysis tractable and to focus on particular performance 

attributes [50]. Bhave et al. introduced a base architecture of a CPS, which contains detail to 

convey the nature of information and physical quantities flowing between components. A 

quadrotor is modeled using multi-domain models, namely a physical model, software model, 

hardware model and control model, which represent the same cyber-physical system from 

the physical, software, hardware and control design domain perspectives. Figure 47 shows the 

conceptual relationship between system models, views and the base architecture.   
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Continuing with the case of a quadrotor, Bhave et al. built the encapsulation-based relation 

𝑅𝑉𝑋
𝑋  from model X to view 𝑉𝑋 , and then the encapsulation/refinement-based relation 𝑅BA

𝑉𝑋  

between view 𝑉𝑋 and the base architecture of CPS. On the other hand, model Y can be also 

transformed to the base architecture and with model X in the same level. The relation 𝑅𝑉𝑋
𝑋  is 

defined as a one-to-one or one-to-many maps. The relation 𝑅BA
𝑉𝑋  is defined as a combination 

of one-to-many and many-to-one maps, although the many-to-many maps are not allowed. 

In Bhave et al’s work, several research issues are not solved, including the rules to determine 

the encapsulations, as well as the combination of multiple connectors into a single one. Finally, 

the consistency during the transformation will need to be prescribed. 

 

 

Figure 47: The conceptual relationship between system models, views and the base architecture of CPS 

 

In the book of Tiller [51], a modeling approach was introduced for the multi-domain models, 

which are characterized by the fact that they have components belonging to different 

engineering domains. Hereby, a conveyor belt system was modeled from the mechanical and 

electrical domains. The mechanical domain is associated with the electronic domain during 

the position and speed sensors. The effective inertia between the mechanical components 

must be formulated for a combination of the two rigidly-connected inertias.  
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3.3.2 Formal modeling of system evolution 

A synergy between the systems modeling languages SysML and Modelica, which is a standard 

for modeling the continuous dynamics of systems in terms of hybrid discrete-event and 

differential algebraic equation systems, is the core work of Johnson et al. [52], in which the 

use of a triple graph grammar (TGG) to keep a bi-directional mapping between these SysML 

constructs and the corresponding Modelica models and create Modelica models from SysML 

models is the highlight of this work (see Figure 48 [41] (as cited in [52])). The SysML models 

and the Modelica models can be represented in an abstract syntax, which is defined by a 

metamodel. These metamodels are represented as graphs. The mappings between the SysML 

blocks and Modelica Classes are represented as a set of correspondence relationships. For 

instance, at the syntax level, a SysML block (in the SysML Metamodel graph) is mapping to a 

Modelica class (in the Modelica Metamodel graph) using a relationship entity block2class. 

These correspondence relationships with source and target points compose to a 

correspondence graph to represent the correspondences between SysML and Modelica 

models. Through the code generation technology, the created Modelica models to code are 

generated automatically.  

While Johnson et al. defined formal meta-level mappings for relating the different modeling 

representations SysML and Modelica, the changes of design during system engineering cannot 

be traced from SysML to Modelica.  

 

 

Figure 48: Triple Graph Grammar Formalism  

 

The work of Youness et al. [53] focused on the system development in a multi-modeling 

domains. The models in different modeling domains need to be composed for validation of 

partial models and synchronization tasks, which is an error-prone activity. Therefore, a 

traceability mechanism and a formalization of the model composition operation and the 

corresponding traceability were introduced to support a composition in multi-modeling 

domains. The formalization of composition operation comprises the formalization of 

composition operators, composition specification, composition rules, the execution of 

composition specification, the composition rule activation, model elements in a sub-set, the 

explicit and implicit rule call and target equivalence resolution. The formalization of model 

composition traces comprises the formalization of traces structuring and traces generation. 
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Nevertheless, the formalization of Youness et al. is not complete for every situation. For 

example, the formalization can be extended to generate more complete traces. In addition, 

the formalization of composition operation and model composition traces is tedious and 

complex.  

Padilla [54] introduced a middleware dedicated to CPS to manage the components 

deployment and the dynamic reconfiguration on the software layer of a cyber physical system 

(see Figure 49).  When new models or the new services or new creation of new bindings 

between the existing components need to be deployed, this middleware can propose an 

adoption of the model@rumtime paradigm to the specific constraints of CPSs. The 

model@rumtime is a model-based application to provide an automated synthesis to support 

component interoperability. The models in CPS are abstracted to nodes, which need to be 

dynamically reconfigured and redeployed to meet the CPS evolution and user preferences. 

The following figure illustrates the architecture of reconfiguration on each node of the CPS. 

First, new models are received to define the new targeted status of the CPS. Second, the set 

of local adaptations are defined to reach this new status. Finally, the various local adaptations 

are enacted on the node. The set of local adaptions comprise integrations of new pieces of 

codes, instantiations or removing of existing components and channels used to bind them, or 

reconfiguration of the value of any attribute. 

 

 

Figure 49: The architecture of reconfiguration on each node of the CPS 

 

However, this initial work only focuses on the software components deployment and the 

dynamic reconfiguration on the software layer, whereas it does not consider the components 

on the hardware layer of CPS.  
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3.3.3 Modeling and optimizing the costs of reconstruction 

Orabi et al. [55] developed a model for the reconstruction costs of damaged transportation 

networks. In this model, the total reconstruction costs comprised the direct costs (DC) and 

indirect cost (IC). The non-construction related costs, e.g. road user and business disruption, 

are not included in this model. The direct cost DC includes the cost of resources for the 

reconstruction and they are calculated using the equation below. The indirect cost IC includes 

time-dependent costs.  

 
𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 = 𝐷𝐶 + 𝐼𝐶 

 

𝐷𝐶 = ∑ ∑𝑅𝑚
𝑥 𝑑𝑐𝑟

𝑋

𝑥=1

𝑀

𝑚=1

 

 

𝐼𝐶 = ∑ 𝑑𝑚𝑖𝑐𝑚

𝑀

𝑚=1

 

 
The variable 𝑑𝑚 represents the duration of each project (m). The variable 𝑅𝑚

𝑥  represents the 

resource requirements for the activity (x) of project (m). The variable 𝑖𝑐𝑚 is the indirect cost 

unit rate for project (m). The 𝑑𝑐𝑟 is the unit cost of resource (r). The total number of projects 

is expressed with M. 

3.4 Research questions of this thesis 

Concluding from the problem analysis and literature research, the main research questions 

are formulated as follows. 

Research question 1: How can a LL-CPS and its managed evolution be formally modelled and 

described? 

Research question 2: How can the changes in the managed evolution of a LL-CPS be formally 

derived?  

Research question 3: How can an approach be developed for the managed evolution of a LL-

CPS, in respect of a local minimum of the costs of reconstruction for implementation and the 

controlled risks in ongoing operations?  

Research question 4: How can the developed approach be demonstrated and evaluated? 
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4 Formal Descriptions and Transformations of Managed 

Evolution of LL-CPSs 

Content 
 
4.1 Formal description for VSM  
    4.1.1 Formal semantical foundation 
    4.1.2 Model-based description 
    4.1.3 Semantical mapping 
    4.1.4 Concrete modeling 
 
4.2 Formal description for IBD 
    4.2.1 Formal semantical foundation 
    4.2.2 Model-based description 
    4.2.3 Semantical mapping 
    4.2.4 Concrete modeling 
 
4.3 Formal mapping relation from VSM to IBD 
    4.3.1 Formal semantical foundation  
    4.3.2 Model-based description 
 
4.4 Formal managed evolution of LL-CPSs 
    4.4.1 Formal semantical foundation 
    4.4.2 Model-based description 

 

 

 
Before introducing an approach to reduce the development risks and ascertaining the local 

optimal cost of reconstruction for the managed evolution of LL-CPSs, a formal description 

mechanism will first be introduced to represent the managed evolution of LL-CPS and the 

model transformations.  

In mathematics, computer science, and linguistics, a formal description is an abstract 

description that comprises a set of symbol, letters or tokens together with a set of 

specification rules. The formal description can be textual or graphical, but is often a mix of 

both [56]. This abstract description allows engineering systems by concentrating first on its 

core functionalities while deferring secondary concerns like details of the final execution 

platform. The details discarded earlier are retrieved later on at a lower level of abstraction or 

in the instance.  

In this formal description mechanism, the process-oriented modeling method VSM and the 

component-oriented modeling method IBD, which have been introduced in chapter 3, are 

applied as two different model-based descriptions to represent the same LL-CPSs on a 

description layer. This description layer is named the model-based description layer. The 
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formal description of all VSM models on a model-based description layer is represented with 

a set of models 𝑀𝑉𝑆𝑀. All IBD models are formed with a set of models 𝑀𝐼𝐵𝐷 (See Figure 50).  

If all models on the model-based description layer are formed with a set 𝑀 (see Definition 19), 

then the 𝑀𝑉𝑆𝑀 and 𝑀𝐼𝐵𝐷 are subsets of 𝑀 and disjoint sets.  

 
𝑀𝑉𝑆𝑀 ⊂ 𝑀             𝑀𝐼𝐵𝐷 ⊂ 𝑀               𝑀𝑉𝑆𝑀 ∩𝑀𝐼𝐵𝐷 = ∅ 

 
 

 

Figure 50: VSM and IBD models on model-based description layer 

The VSM and IBD models can be formed on a uniform description layer named formal 

semantical foundational layer. The models on this layer are formed with a uniform description: 

a graph-structure. This set VSM graphs is formed with a set 𝐺𝑉𝑆𝑀. The set of IBD graphs is 

formed with a set 𝐺𝐼𝐵𝐷 (See Figure 51). If all of the graphs on the formal semantical foundation 

layer are formed with a set of models 𝐺𝑖𝑛  (see Definition 4), then the 𝐺𝑉𝑆𝑀  and 𝐺𝐼𝐵𝐷  are 

subsets of 𝐺𝑖𝑛 and disjoint sets.  

 
𝐺𝑉𝑆𝑀 ⊂ 𝐺𝑖𝑛             𝐺𝐼𝐵𝐷 ⊂ 𝐺𝑖𝑛              𝐺𝑉𝑆𝑀 ∩ 𝐺𝐼𝐵𝐷 = ∅ 

 
 

 

Figure 51: VSM and IBD models on two description layers 
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The managed evolution of a LL-CPS can be represented with a sequence of system statuses. If 

an ongoing LL-CPS is defined as the existing status, its goal LL-CPS can be defined as its next 

status: the targeted status of this LL-CPS. When the targeted status is implemented, it can be 

used as a new existing status. Based on this new existing status, the next new LL-CPS can be 

continually developed to the next targeted status. Therefore, the managed evolution process 

of a LL-CPS can be expressed with a continual iteration from its existing status to its targeted 

status (See Figure 52).  

 

Figure 52: The managed evolution of a LL-CPS 

Figure 53 shows a cube model in a three-dimensional axes system, on which the LL-CPSs are 

described with two modeling methods: VSM and IBD. Each modeling method has two 

description layers: the model-based description layer and formal semantical foundation layer. 

The managed evolutions of these LL-CPSs are described with the developments from their 

existing statuses to targeted statuses. This cube model is divided into eight areas, each of 

which represents the LL-CPSs by different description layers, modeling methods and statuses.  

 

Figure 53: Cube model with eight areas 
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This cube model with eight areas provides a basic frame for the model transformation, model 

derivation and system managed evolution on two description layers. A predicate is formed 

with a Boolean-valued function 𝑠𝑡𝑎𝑡𝑢𝑠  to represent the statuses of VSM and IBD models 

during the managed evolution of LL-CPSs. A model 𝑚 can be a VSM model or IBD model. The 

function 𝑠𝑡𝑎𝑡𝑢𝑠 maps this model to a status: existing or targeted. The existing status means 

that this model is representing an ongoing system. The targeted status means that this model 

is representing a targeted system.  

Definition 27 
𝑠𝑡𝑎𝑡𝑢𝑠 ∶= (𝑀𝑉𝑆𝑀 ∪𝑀𝐼𝐵𝐷) → {𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, 𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑} 

 
𝑚 ∈ 𝑀𝑉𝑆𝑀 ∪ 𝑀𝐼𝐵𝐷 

 
 

All graphs for the ongoing LL-CPSs are formed with the 𝐺𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 ⊂ 𝐺𝑖𝑛, and all models with 

the set 𝑀𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 ⊂ 𝑀. All graphs for the targeted LL-CPSs are formed with the 𝐺𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 ⊂

𝐺𝑖𝑛, and all models with the set 𝑀𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 ⊂ 𝑀. The 𝐺𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 and 𝐺𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 are two disjoint 

sets and the sets 𝑀𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 and 𝑀𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 are also disjoint.   

 
𝐺𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 ⊂ 𝐺𝑖𝑛      𝑀𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 ⊂ 𝑀 

 
𝐺𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 ⊂ 𝐺𝑖𝑛      𝑀𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 ⊂ 𝑀 

 
𝐺𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 ∩ 𝐺𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 = ∅ 

𝑀𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 ∩𝑀𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 = ∅  

 
 

All VSM models for the ongoing LL-CPSs can be formed with a set of models 𝑀𝑉𝑆𝑀,𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔. The 

targeted statutes of these LL-CPSs are formed with a set of models 𝑀𝑉𝑆𝑀,𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑. They are 

two subsets of the set 𝑀𝑉𝑆𝑀 and disjoint sets on account of status. On the formal semantical 

foundation layer, the ongoing LL-CPSs and their targeted statutes are formed with a set of 

graphs 𝐺𝑉𝑆𝑀,𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 and a set of graphs 𝐺𝑉𝑆𝑀,𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑. These sets are disjoint and subsets of 

the set of VSM graphs 𝐺𝑉𝑆𝑀.  

𝑀𝑉𝑆𝑀,𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 ⊂ 𝑀𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔             𝑀𝑉𝑆𝑀,𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 ⊂ 𝑀𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑        

 
𝑀𝑉𝑆𝑀,𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, 𝑀𝑉𝑆𝑀,𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 ⊂ 𝑀𝑉𝑆𝑀                  

 
𝐺𝑉𝑆𝑀,𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 ⊂ 𝐺𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔             𝐺𝑉𝑆𝑀,𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 ⊂ 𝐺𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑               

    
𝐺𝑉𝑆𝑀,𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, 𝐺𝑉𝑆𝑀,𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 ⊂ 𝐺𝑉𝑆𝑀        
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On the other hand, all IBD models for the same ongoing LL-CPSs are formed with a set of 

models 𝑀𝐼𝐵𝐷,𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔. The same targeted statutes of these LL-CPSs are formed with a set of 

models  𝑀𝐼𝐵𝐷,𝑡𝑎𝑟𝑔𝑒𝑡𝑖𝑛𝑔. These two sets are subsets of the set of IBD models 𝑀𝐼𝐵𝐷 and they are 

two disjoint sets on account of status. On the formal semantical foundation layer, they are 

represented with the sets of graphs 𝐺𝐼𝐵𝐷,𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 and  𝐺𝐼𝐵𝐷,𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑(See Figure 54). These sets 

are subsets of the set of IBD graphs 𝐺𝐼𝐵𝐷 and disjoint sets on account of status.  

 
𝑀𝐼𝐵𝐷,𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 ⊂ 𝑀𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔             𝑀𝐼𝐵𝐷,𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 ⊂ 𝑀𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑        

 
𝑀𝐼𝐵𝐷,𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, 𝑀𝐼𝐵𝐷,𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 ⊂ 𝑀𝐼𝐵𝐷                  

 
𝐺𝐼𝐵𝐷,𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 ⊂ 𝐺𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔             𝐺𝐼𝐵𝐷,𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 ⊂ 𝐺𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑               

    
𝐺𝐼𝐵𝐷,𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, 𝐺𝐼𝐵𝐷,𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 ⊂ 𝐺𝐼𝐵𝐷             

  
 

 

Figure 54: Models and graphs in cube model 

 

There are transformations between the models on model-based description layer and the 

graphs on the formal semantical foundation layer. They are described with a set of equivalent 

transformation functions. They keep the models and graphs for the same LL-CPSs structurally 

and behaviorally identical (See Figure 55). The transformation functions 𝑠𝑒𝑚𝑣 and 𝑐𝑜𝑛𝑣 will 

be introduced in sections 4.1.3 and 4.1.4, the function 𝑠𝑒𝑚𝑖 will be introduced in section 4.2.3 

and the function 𝑐𝑜𝑛𝑖 in section 4.2.4.  
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Figure 55: Model descriptions transformations between two description layers 

 

The mapping relationship from a set of VSM graphs to a set of IBD graphs on the formal 

semantical foundation layer is represented with a set of mapping functions  {ℎ𝑖}. A set of 

functions {ℎ𝑚𝑖} represents the mapping relationship from a set of VSM models to a set of IBD 

models on the model-based description layer in Figure 56. These mappings will be introduced 

in section 4.3. 

 

Figure 56: Mapping functions from VSM to IBD side 

 

The managed evolution from the ongoing LL-CPSs to their targeted statuses is formed with a 

set of unidirectional functions {𝑓𝑖} on the formal semantical foundation layer and a set of 

unidirectional functions {𝑓𝑚𝑖} on the model-based description layer (See Figure 57). Section 

4.4 introduces the formalizations of these evolution functions. 
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Figure 57: Evolution functions for managed evolution of LL-CPSs  

 

Figure 58 summarizes all of the formal descriptions, model transformations, model mapping 

relationships and managed evolution functions for the managed evolution of LL-CPSs in the 

cube model and positions the sections in this chapter into this formal description mechanism. 

 

 

Figure 58: Positions of sections into modeling system  
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4.1 Formal description for VSM  

The VSM as a process-oriented modeling method is applied in this section to model the LL-

CPSs on the model-based description layer. All of these VSM models are formed as a set of 

models 𝑀𝑉𝑆𝑀. On the formal semantical foundation layer, they are formed as a set of graphs 

𝐺𝑉𝑆𝑀 . The models in 𝑀𝑉𝑆𝑀  and the graphs in 𝐺𝑉𝑆𝑀  model the same LL-CPSs. The 

transformations between models and graphs are described with the functions 𝑠𝑒𝑚𝑣  and 

𝑐𝑜𝑛𝑣 (See Figure 59). 

 

Figure 59: Formal descriptions and descriptions transformation for VSM 

 

4.1.1 Formal semantical foundation  

The formal semantical foundation is the deep structure of a modeling, which is represented 

by using a mathematical foundation, Metamodel, graphical representation and example in 

this section.  

4.1.1.1 Mathematical foundation  

A graph 𝑔𝑉𝑆𝑀  in the set 𝐺𝑉𝑆𝑀  is defined as a directed connected graph structure (see 

Definition 4). It comprises a set of vertices 𝑉𝑉𝑆𝑀 and a set of edges 𝐸𝑉𝑆𝑀. One edge links two 

vertices together and can be represented by using a 2-tuple of its source vertex and target 

vertex. The connect relation from the edge to its source vertex is represented with the 

function 𝑠𝑟𝑐𝑉𝑆𝑀, and to its target vertex is represented with the function 𝑡𝑔𝑡𝑉𝑆𝑀. Every vertex 

and edge has attributes to save information. These attributes are mappings from vertices and 

edges to a key-value structure comprising a set of strings 𝐾𝑒𝑦𝑉𝑆𝑀  and a set of strings 

𝑉𝑎𝑙𝑢𝑒𝑉𝑆𝑀. The mapping from the keys to values is represented with a hash function. 
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Definition 28 
𝑔𝑉𝑆𝑀 ∶= (𝑉𝑉𝑆𝑀, 𝐸𝑉𝑆𝑀 , 𝑠𝑟𝑐𝑉𝑆𝑀 , 𝑡𝑔𝑡𝑉𝑆𝑀 , 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑉𝑆𝑀 , 𝐾𝑒𝑦𝑉𝑆𝑀, 𝑉𝑎𝑙𝑢𝑒𝑉𝑆𝑀) 

 
𝑠𝑟𝑐𝑉𝑆𝑀 ∶= 𝑠𝑟𝑐 |𝐸𝑉𝑆𝑀→ 𝑉𝑉𝑆𝑀    

𝑡𝑔𝑡𝑉𝑆𝑀 ∶= 𝑡𝑔𝑡 |𝐸𝑉𝑆𝑀→ 𝑉𝑉𝑆𝑀   

 
𝐸𝑉𝑆𝑀 = 𝑉𝑉𝑆𝑀  × 𝑉𝑉𝑆𝑀 

 
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑉𝑆𝑀: = (𝑉𝑉𝑆𝑀 ∪ 𝐸𝑉𝑆𝑀) → (𝐾𝑒𝑦𝑉𝑆𝑀 → 𝑉𝑎𝑙𝑢𝑒𝑉𝑆𝑀) 

 
𝐾𝑒𝑦𝑉𝑆𝑀 ≔ 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 
𝑉𝑎𝑙𝑢𝑒𝑉𝑆𝑀 ≔ 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 

 
𝑔𝑉𝑆𝑀 ∈ 𝐺𝑉𝑆𝑀 

 

Every vertex must have a unique identifier (ID). The ID of an edge comprises the IDs of its 

source vertex and target vertex. There is an injective function 𝑖𝑑𝐺𝑉𝑆𝑀 to map the identifiers of 

every vertex and edge to strings. 

Definition 29 
𝑖𝑑𝐺𝑉𝑆𝑀 ≔ (𝑉𝑉𝑆𝑀 ∪ 𝐸𝑉𝑆𝑀) → 𝐼𝐷𝑠 

 
𝐼𝐷𝑠 ≔ 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 

  
4.1.1.2 Metamodel 

Every vertex can connect with any number of edges, although one edge must connect only 

with two vertices: one source vertex and one target vertex. Every vertex and edge can have 

any number of attributes or have not attribute if no attributes are given (see Figure 60).  

1

1 *

*𝑠𝑟𝑐𝑉𝑆𝑀  

𝑡𝑔𝑡𝑉𝑆𝑀  

𝑉𝑉𝑆𝑀  𝐸𝑉𝑆𝑀  

𝑔𝑉𝑆𝑀  

1

**

Property 

0..1

*

+ 𝐾𝑒𝑦𝑉𝑆𝑀  

+ 𝑉𝑎𝑙𝑢𝑒𝑉𝑆𝑀  

0..1

*

𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑠𝑉𝑆𝑀  𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑠𝑉𝑆𝑀  

+ ID + ID

 

Figure 60: A Metamodel for the formal semantical foundation of VSM model  
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4.1.1.3 Graphical representation 

The Table 1 shows the symbols, types, mathematical model element, Metamodel element and 

description of any graph element in a 𝑔𝑉𝑆𝑀.  

Symbol Type  
Mathematical model 

element  
Metamodel 

element 
Descriptions 

 
Vertex 𝑣𝑉𝑆𝑀 ∈ 𝑉𝑉𝑆𝑀  

 
Vertex in graph 

 
Edge 𝑒𝑉𝑆𝑀 ∈ 𝐸𝑉𝑆𝑀  

 
Edge in graph 

 

Attributes 𝐾𝑒𝑦𝑉𝑆𝑀 → 𝑉𝑎𝑙𝑢𝑒𝑉𝑆𝑀 

 

Attributes of vertices and 
edges 

 
Connect 

relation begin 
𝑠𝑟𝑐𝑉𝑆𝑀   

Connect relation for one 
edge and its source vertex 

 
Connect 

relation end 
𝑡𝑔𝑡𝑉𝑆𝑀 

 
Connect relation for one 

edge and its target vertex 

Table 1. Graphical representation of the formal semantical foundation of the VSM model  

 

4.1.1.4 Example 

Figure 61 illustrates a VSM graph 𝑔𝑎 in the set 𝐺𝑉𝑆𝑀.  Here, two edges and three vertices are 

linked together as a directed connected graph structure. The id of any edge is expressed with 

the id of its source vertex to the id of its target vertex. For instance, the edge (a,b) represents 

a directed edge with the type “Input” from vertex a to vertex b. The attributes are attached 

to every vertex and edge to save the description information, not only the type, but also the 

other information like full name, time and costs, etc.   

ba
(a,b)

:𝐸𝑉𝑆𝑀 :𝑉𝑉𝑆𝑀  
:𝑉𝑉𝑆𝑀  

Type: Process

Type: Databox

c :𝑉𝑉𝑆𝑀  

(c,b) :𝐸𝑉𝑆𝑀 

Type: Input

Type: owned

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

Type: Push arrow

 

Figure 61: An example for the formal semantical foundation of VSM model 
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4.1.2 Model-based description  

On the model-based description layer, a set of VSM models 𝑀𝑉𝑆𝑀 describe a set of LL-CPSs, 

which is introduced by using a mathematical foundation, Metamodel, graphical 

representation and example.  

4.1.2.1 Mathematical foundation  

Every VSM model 𝑚𝑉𝑆𝑀 in the set 𝑀𝑉𝑆𝑀 is defined with an integrated system in a network 

structure (see Definition 19) to describe an integrated LL-CPS. It comprises a set of model 

elements 𝑀𝐸𝑉𝑆𝑀 and a set of relation elements 𝐴𝑉𝑆𝑀. They are combined together by using 

the connection functions 𝑏𝑒𝑔𝑉𝑆𝑀  and 𝑒𝑛𝑑𝑉𝑆𝑀  to an integrated LL-CPS. As a standard 

modeling language, the description information of every model element and relation element 

in VSM is standardly structured. It can be in textual and/or graphical form. 

Definition 30 
𝑚𝑉𝑆𝑀: = ( 𝑀𝐸𝑉𝑆𝑀 , 𝐴𝑉𝑆𝑀 , 𝑏𝑒𝑔𝑉𝑆𝑀 , 𝑒𝑛𝑑𝑉𝑆𝑀) 

  
𝑏𝑒𝑔𝑉𝑆𝑀 ∶= 𝑏𝑒𝑔|𝐴𝑉𝑆𝑀→ 𝑀𝐸𝑉𝑆𝑀

   

𝑒𝑛𝑑𝑉𝑆𝑀 ∶= 𝑒𝑛𝑑|𝐴𝑉𝑆𝑀→ 𝑀𝐸𝑉𝑆𝑀   

 

𝐴𝑉𝑆𝑀 ≔ 𝑀𝐸𝑉𝑆𝑀  ×  𝑀𝐸𝑉𝑆𝑀  
 

𝑚𝑉𝑆𝑀 ∈ 𝑀𝑉𝑆𝑀 
  

 

In VSM, the model elements and relation elements will be continually specified by different 

types. The set of model elements 𝑀𝐸𝑉𝑆𝑀 comprises a set of process elements 𝑃𝑉𝑆𝑀, a set of 

flow elements 𝐹𝑉𝑆𝑀 and a set of comment elements 𝐶𝑉𝑆𝑀. They are disjoint sets. The 𝑃𝑉𝑆𝑀 

comprises two disjoint sets 𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠  and 𝑃𝑉𝑆𝑀

𝐼𝑛𝑓𝑜
. The 𝑃𝑉𝑆𝑀

𝑃𝑟𝑜𝑐𝑒𝑠𝑠  represents the set of model 

elements of production and logistic processes in VSM. The 𝑃𝑉𝑆𝑀
𝐼𝑛𝑓𝑜

 represents the set of model 

elements of data processing in VSM. 

 
𝑀𝐸𝑉𝑆𝑀 ∶=  {𝑃𝑉𝑆𝑀 ∪̇  𝐹𝑉𝑆𝑀 ∪̇ 𝐶𝑉𝑆𝑀} 

 

𝑃𝑉𝑆𝑀 ∶=  {𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 ∪̇  𝑃𝑉𝑆𝑀

𝐼𝑛𝑓𝑜
} 

 

𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 ∶=  {

𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠−𝑝𝑟𝑜𝑐𝑒𝑠𝑠 ∪̇  𝑃𝑉𝑆𝑀

𝑃𝑟𝑜𝑐𝑒𝑠𝑠−𝑠𝑡𝑜𝑐𝑘

∪̇  𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠−𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡 ∪̇  𝑃𝑉𝑆𝑀

𝑃𝑟𝑜𝑐𝑒𝑠𝑠−𝐶𝑢𝑆𝑢
} 

 

𝑃𝑉𝑆𝑀
𝐼𝑛𝑓𝑜

∶=  {𝑃𝑉𝑆𝑀
𝐼𝑛𝑓𝑜−𝐸𝐷𝑉

∪̇ 𝑃𝑉𝑆𝑀
𝐼𝑛𝑓𝑜−𝑐𝑜𝑛𝑡𝑟𝑜𝑙

} 

 

𝐹𝑉𝑆𝑀 ∶=  {𝐹𝑉𝑆𝑀
𝐸𝐼𝑛𝑓𝑜

 ∪̇ 𝐹𝑉𝑆𝑀
𝑀𝐼𝑛𝑓𝑜

 ∪̇ 𝐹𝑉𝑆𝑀
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙} 
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𝐶𝑉𝑆𝑀 ∶=  {
𝐶𝑉𝑆𝑀
𝐷𝑎𝑡𝑎𝑏𝑜𝑥 ∪̇  𝐶𝑉𝑆𝑀

𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟

∪̇  𝐶𝑉𝑆𝑀
𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒−𝐶𝑉𝐴 ∪̇  𝐶𝑉𝑆𝑀

𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒−𝑁𝑉𝐴 ∪̇ 𝐶𝑉𝑆𝑀
𝐺𝑜𝑠𝑒𝑒

} 

 

𝐴𝑉𝑆𝑀 ≔ { 𝐴𝑉𝑆𝑀
𝐼𝑛 ∪̇ 𝐴𝑉𝑆𝑀

𝑂𝑢𝑡 ∪̇  𝐴𝑉𝑆𝑀
𝑜𝑤𝑛𝑒𝑑} 

 
 

Every flow element in the VSM model is imaged with directed flow, where the arrow shows 

the flow direction. The set of flow elements 𝐹𝑉𝑆𝑀 comprises the electronic information flows 

in set 𝐹𝑉𝑆𝑀
𝐸𝐼𝑛𝑓𝑜

, the manual information flows in set 𝐹𝑉𝑆𝑀
𝑀𝐼𝑛𝑓𝑜

 and the material flows in set 

𝐹𝑉𝑆𝑀
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 , and they are disjoint sets. The set of comment elements 𝐶𝑉𝑆𝑀  comprises five 

disjoint sets by different types. The set  𝐶𝑉𝑆𝑀
𝐷𝑎𝑡𝑎𝑏𝑜𝑥 represents the comment elements in the 

type of data box. The elements in the set 𝐶𝑉𝑆𝑀
𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 make explanatory notes on the model 

element with the information about workers. The comment elements with type timeline CVA 

in the set 𝐶𝑉𝑆𝑀
𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒−𝐶𝑉𝐴 are used to describe the value added times, as well as the elements 

in the set 𝐶𝑉𝑆𝑀
𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒−𝑁𝑉𝐴 for the non-value added times (NVA). The set 𝐶𝑉𝑆𝑀

𝐺𝑜𝑠𝑒𝑒  represents a set 

of comment elements with the type of go see. The set of relation elements 𝐴𝑉𝑆𝑀 comprises a 

set of owned relation elements 𝐴𝑉𝑆𝑀
𝑂𝑤𝑛𝑒𝑑 and a set of the input relation elements 𝐴𝑉𝑆𝑀

𝐼𝑛  and a 

set of output relation elements 𝐴𝑉𝑆𝑀
𝑂𝑢𝑡 . They are also disjoint sets.  

There is a function to map the types of model elements and relation elements to strings, which 

describe the type of the corresponding model and relation elements. 

Definition 31 
𝑡𝑦𝑝𝑒 ≔ (𝑀𝐸𝑉𝑆𝑀 ∪ 𝐴𝑉𝑆𝑀) → 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 

 

∀𝑥 ∈ (𝑀𝐸𝑉𝑆𝑀 ∪𝐴𝑉𝑆𝑀) ∃ 𝑡𝑦𝑝𝑒(𝑥) =

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 "Process" 𝑖𝑓 𝑥 ∈ 𝑃𝑉𝑆𝑀

𝑃𝑟𝑜𝑐𝑒𝑠𝑠−𝑝𝑟𝑜𝑐𝑒𝑠𝑠

"Data box" 𝑖𝑓 𝑥 ∈ 𝐶𝑉𝑆𝑀
𝐷𝑎𝑡𝑎𝑏𝑜𝑥

"Worker" 𝑖𝑓 𝑥 ∈ 𝐶𝑉𝑆𝑀
𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟

"EDV" 𝑖𝑓 𝑥 ∈ 𝑃𝑉𝑆𝑀
𝐼𝑛𝑓𝑜−𝐸𝐷𝑉

"Production Control" 𝑖𝑓 𝑥 ∈ 𝑃𝑉𝑆𝑀
𝐼𝑛𝑓𝑜−𝑐𝑜𝑛𝑡𝑟𝑜𝑙

"Inventory hedge" 𝑖𝑓 𝑥 ∈ 𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠−𝑠𝑡𝑜𝑐𝑘

"Timeline − NVA" 𝑖𝑓 𝑥 ∈ 𝐶𝑉𝑆𝑀
𝑇𝑖𝑚𝑙𝑖𝑛𝑒−𝑁𝑉𝐴

"Timeline − CVA" 𝑖𝑓 𝑥 ∈ 𝐶𝑉𝑆𝑀
𝑇𝑖𝑚𝑙𝑖𝑛𝑒−𝐶𝑉𝐴

"External Shipment" 𝑖𝑓 𝑥 ∈ 𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠−𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡

"Supplier" 𝑖𝑓 𝑥 ∈ 𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠−𝐶𝑢𝑆𝑢

"Go See" 𝑖𝑓 𝑥 ∈ 𝐶𝑉𝑆𝑀
𝐺𝑜𝑠𝑒𝑒

"Electronic Information arrow" 𝑖𝑓 𝑥 ∈ 𝐹𝑉𝑆𝑀
𝐸𝐼𝑛𝑓𝑜

"Manual Information arrow" 𝑖𝑓 𝑥 ∈ 𝐹𝑉𝑆𝑀
𝑀𝐼𝑛𝑓𝑜

"Material arrow" 𝑖𝑓 𝑥 ∈ 𝐹𝑉𝑆𝑀
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

"𝐼𝑛𝑝𝑢𝑡" 𝑖𝑓 𝑥 ∈ 𝐴𝑉𝑆𝑀
𝐼𝑛

"𝑂𝑢𝑡𝑝𝑢𝑡" 𝑖𝑓 𝑥 ∈ 𝐴𝑉𝑆𝑀
𝑂𝑢𝑡

"𝑂𝑤𝑛𝑒𝑑 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛" 𝑖𝑓 𝑥 ∈ 𝐴𝑉𝑆𝑀
𝑂𝑤𝑛𝑒𝑑
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The IDs of every VSM model element and relation element are defined with an injective 

function 𝑖𝑑𝑀𝑉𝑆𝑀. The ID of a relation element is represented with its beginning model element 

and target model element. 

Definition 32 
𝑖𝑑𝑀𝑉𝑆𝑀 ≔ (𝑀𝐸𝑉𝑆𝑀 ∪ 𝐴𝑉𝑆𝑀) → 𝐼𝐷𝑠 

 
𝐼𝐷𝑠 ≔ 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 

  
 

4.1.2.2 Metamodel 

A VSM model 𝑚𝑉𝑆𝑀 is formed with a metamodel in Figure 60, which describes not only the 

system structure, but also the specifications of a VSM model by types.  

 

𝑀𝐸𝑉𝑆𝑀  𝐴𝑉𝑆𝑀  

𝑃𝑉𝑆𝑀  𝐶𝑉𝑆𝑀  

𝑚𝑉𝑆𝑀  

𝐹𝑉𝑆𝑀  

𝐹𝑉𝑆𝑀
𝐸𝐼𝑛𝑓𝑜

 

𝐹𝑉𝑆𝑀
𝑀𝐼𝑛𝑓𝑜

 

𝐶𝑉𝑆𝑀
𝐷𝑎𝑡𝑎𝑏𝑜𝑥  

𝐶𝑉𝑆𝑀
𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟

 

𝐶𝑉𝑆𝑀
𝐺𝑜𝑠𝑒𝑒  

𝑃𝑉𝑆𝑀
𝐼𝑛𝑓𝑜

 

𝑃𝑉𝑆𝑀
𝐼𝑛𝑓𝑜 −𝐸𝐷𝑉

 

𝑃𝑉𝑆𝑀
𝐼𝑛𝑓𝑜 −𝑐𝑜𝑛𝑡𝑟𝑜𝑙

 

𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠  

𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 −𝑝𝑟𝑜𝑐𝑒𝑠𝑠

 

𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 −𝑠𝑡𝑜𝑐𝑘  

𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 −𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡

 

𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 −𝐶𝑢𝑆𝑢  

𝐶𝑉𝑆𝑀
𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒 −𝐶𝑉𝐴  

𝐶𝑉𝑆𝑀
𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒 −𝑁𝑉𝐴  

𝐹𝑉𝑆𝑀
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙  

+ ID + ID

1 *

*𝑏𝑒𝑔𝑉𝑆𝑀  

𝑒𝑛𝑑𝑉𝑆𝑀  

1

1 **

𝐴𝑉𝑆𝑀
𝑂𝑤𝑛𝑒𝑑  

𝐴𝑉𝑆𝑀
𝑂𝑢𝑡  

𝐴𝑉𝑆𝑀
𝐼𝑛  

 

Figure 62: A Metamodel for specification of VSM model by types  

The specified model elements and relation elements in any model 𝑚𝑉𝑆𝑀 have to satisfy the 

combination rules forming with metamodels in Figure 63 and Figure 64 to guarantee the 

system integration. In this metamodel, the multiplicity describes the quantitative connection 
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relationship. It is interpreted as a subset of the natural numbers. The 1 is {1}, the * is the set 

of all natural numbers. 

One connection relation element has only two connected model elements: one is its source 

model element and the other is its target model element.  Any process element can have any 

number of relation elements. Any flow element can have maximal two relation elements (see 

Figure 63).  

𝑏𝑒𝑔𝑉𝑆𝑀  
1 1*0..1

𝑃𝑉𝑆𝑀  

𝐹𝑉𝑆𝑀  

𝑒𝑛𝑑𝑉𝑆𝑀  

𝑏𝑒𝑔𝑉𝑆𝑀  
1

1*0..1
𝑃𝑉𝑆𝑀  𝐴𝑉𝑆𝑀

𝐼𝑛  
𝑒𝑛𝑑𝑉𝑆𝑀  

𝐴𝑉𝑆𝑀
𝑂𝑢𝑡  

 

Figure 63: The Metamodel for connection relation in VSM model 

 

An owned relation element in the set 𝐴𝑉𝑆𝑀
𝑂𝑤𝑛𝑒𝑑   links one comment element and its owner 

element together. One process or flow element can have any number of comment elements, 

although one comment element only allows belonging to one model element. The other 

connection or owned relations are not allowed.  

𝑃𝑉𝑆𝑀  
*1

𝐶𝑉𝑆𝑀  
1 1

𝐴𝑉𝑆𝑀
𝑂𝑤𝑛𝑒𝑑  

𝐹𝑉𝑆𝑀  
*1

𝐶𝑉𝑆𝑀  
1 1

𝐴𝑉𝑆𝑀
𝑂𝑤𝑛𝑒𝑑  

𝑏𝑒𝑔𝑉𝑆𝑀  𝑒𝑛𝑑𝑉𝑆𝑀  

𝑏𝑒𝑔𝑉𝑆𝑀  𝑒𝑛𝑑𝑉𝑆𝑀  

 

Figure 64: A Metamodel for owned relation in VSM model 

4.1.2.3 Graphical representation 

The Table 2 shows the specified model elements and the relation elements in VSM by using 

the symbol, type, mathematical model element, metamodel element and descriptions.   

Symbol  Type 
Mathematical 

model element  
Metamodel 

element 
Descriptions 

 

Process 𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠−𝑝𝑟𝑜𝑐𝑒𝑠𝑠

 
 

A process, operation, 
machine or department. 

 

Data box 𝐶𝑉𝑆𝑀
𝐷𝑎𝑡𝑎𝑏𝑜𝑥  

 

It goes under other model 
elements and describe the 
corresponding model 
element. 
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 N Worker 𝐶𝑉𝑆𝑀
𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟

 
 

It represents a worker and 
shows the number of 
workers required to process. 

 
EDV 𝑃𝑉𝑆𝑀

𝐼𝑛𝑓𝑜−𝐸𝐷𝑉
 

 

Electronic/digital information 
or data for production 
planning and production 
control.  

 

Production 
Control 

𝑃𝑉𝑆𝑀
𝐼𝑛𝑓𝑜−𝑐𝑜𝑛𝑡𝑟𝑜𝑙

 
 

This box represents a central 
production scheduling or 
control department, person, 
system or operation. 

 

Inventory hedge  𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠−𝑠𝑡𝑜𝑐𝑘  

 

It represents a stock against 
problems such as downtime, 
to protect the system against 
sudden fluctuations in 
customer orders or system 
failures. 

 Timeline-NVA 𝐶𝑉𝑆𝑀
𝑇𝑖𝑚𝑙𝑖𝑛𝑒−𝑁𝑉𝐴 

 

It shows non-value added 
times (NVA).  

 Timeline-CVA 𝐶𝑉𝑆𝑀
𝑇𝑖𝑚𝑙𝑖𝑛𝑒−𝐶𝑉𝐴 

 

It shows value added times 
(CVA).  

 
External 

Shipment 
𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠−𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡

 
 

It represents the shipments 
from suppliers or to 
customers using external 
transport 

 
Supplier 𝑃𝑉𝑆𝑀

𝑃𝑟𝑜𝑐𝑒𝑠𝑠−𝐶𝑢𝑆𝑢 
 

It represents the supplier 
when in the upper left, and 
the customer when in the 
upper right, the usual end 
point for material 

 Go See 𝐶𝑉𝑆𝑀
𝐺𝑜𝑠𝑒𝑒  

 

It represents the gathering of 
information through visual 
means. 

 

Electronic 
Information 

arrow 
𝐹𝑉𝑆𝑀
𝐸𝐼𝑛𝑓𝑜

 
 

It represents electronic flow. 

 

Manual 
Information 

arrow 
𝐹𝑉𝑆𝑀
𝑀𝐼𝑛𝑓𝑜

 
 

This arrow shows general 
flow of information from 
memos, reports, or 
conversation. Frequency and 
other notes may be relevant. 

 
Material arrow 𝐹𝑉𝑆𝑀

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙  
 

It represents the 
transportation of material 
from one process to the next 
process. 

 
Input 𝐴𝑉𝑆𝑀

𝐼𝑛  
 

This represents the input 
relation between the model 
elements. 

 
Output 𝐴𝑉𝑆𝑀

𝑂𝑢𝑡  
 

This represents the output 
relation between the model 
elements. 

 
Owned relation 𝐴𝑉𝑆𝑀

𝑂𝑤𝑛𝑒𝑑  
 

This represents the owned 
relation between the model 
elements. 

Table 2. The graphical representation for the model-based description of VSM 
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4.1.2.4 Example 

The Figure 65 illustrates a VSM model 𝑚𝑎 ∈ 𝑀𝑉𝑆𝑀, which comprises one process element, 

three flow elements and a number of comment elements. The process element sort links 

conveyer belt 1, conveyer belt 2 and info 1 together as an integrated LL-CPS.  

Sort

Input 1 Conveyer 
belt 1 to Sort

1

Output 1  Sort to 
Conveyer belt 2

Conveyer belt 1: 𝐹𝑉𝑆𝑀
𝑀𝑎𝑡𝑒𝑟𝑎𝑙  Conveyer belt 2: 𝐹𝑉𝑆𝑀

𝑀𝑎𝑡𝑒𝑟𝑎𝑙  

Info 1: 𝐹𝑉𝑆𝑀
𝑀𝐼𝑛𝑓𝑜

 

Input 2 Info 1 to Sort: 𝐴𝑉𝑆𝑀
𝐼𝑛  

: 𝐴𝑉𝑆𝑀
𝐼𝑛  : 𝐴𝑉𝑆𝑀

𝑂𝑢𝑡  
Workers for Sort: 𝐶𝑉𝑆𝑀

𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟
 

Owned 3 to Sort: 𝐴𝑉𝑆𝑀
𝑜𝑤𝑛𝑒𝑑  

2 mins

5 s

Task: Sort

Interface type: Inf & M

Timeline CVA of SortTimeline NVA of Conveyer belt 1

Owned 1 to 
Conveyer belt 1

Owned 2 to Sort

Data box of Sort: 𝐶𝑉𝑆𝑀
𝐷𝑎𝑡𝑎𝑏𝑜𝑥  

5 s

Owned 1 to Sort: 𝐴𝑉𝑆𝑀
𝑜𝑤𝑛𝑒𝑑  

Timeline NVA of Conveyer belt 1

Owned 1 to 
Conveyer belt 2

: 𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 −𝑝𝑟𝑜𝑐𝑒𝑠𝑠

 

: 𝐴𝑉𝑆𝑀
𝑂𝑤𝑛𝑒𝑑  

: 𝐴𝑉𝑆𝑀
𝑂𝑤𝑛𝑒𝑑  

: 𝐴𝑉𝑆𝑀
𝑂𝑤𝑛𝑒𝑑  

: 𝐶𝑉𝑆𝑀
𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒 −𝑁𝑉𝐴  : 𝐶𝑉𝑆𝑀

𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒 −𝑁𝑉𝐴  : 𝐶𝑉𝑆𝑀
𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒 −𝐶𝑉𝐴  

ID: a

ID: b

ID: c

ID: e

ID: b3

ID: b1

ID: b2ID: a1 ID: c1
 

Figure 65: An example for the model-based description of a VSM model 

 

4.1.3 Semantical mapping 

The VSM graphs on the formal semantical foundation layer are understood as the equivalent 

descriptions of the VSM models on the model-based description layer. A semantical mapping 

represents the transformation from VSM models to the equivalent descriptions in the graph-

structure. This transformation must keep that the VSM graphs are consistent with the VSM 

models. 

4.1.3.1 Mathematical foundation  

A function 𝑠𝑒𝑚𝑣  is defined as a unidirectional bijective transformation function (see 

Definition 22): one-to-one (injective) and onto (surjective). This function represents a 

mapping relationship named semantical mapping from a set of models 𝑀𝑉𝑆𝑀 to a set of graphs 

𝐺𝑉𝑆𝑀. 
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Definition 33 
𝑠𝑒𝑚𝑣 ≔ 𝑀𝑉𝑆𝑀 → 𝐺𝑉𝑆𝑀 

The function 𝑠𝑒𝑚𝑣 is an equivalent mapping function for a model 𝑚 in 𝑀𝑉𝑆𝑀  to a graph 𝑔 in 

𝐺𝑉𝑆𝑀, if it meet three requirements: 

 
(∀𝑚𝑉𝑆𝑀 ∈ 𝑀𝑉𝑆𝑀) ∃  {𝑔𝑉𝑆𝑀 ∈ 𝐺𝑉𝑆𝑀| 𝑠𝑒𝑚𝑣(𝑚𝑉𝑆𝑀) = 𝑔𝑉𝑆𝑀} 

1. Elements identify: For any model 𝑚𝑎 in the set 𝑀𝑉𝑆𝑀, there exists a graph 𝑔𝑉𝑆𝑀 in the 

set 𝐺𝑉𝑆𝑀, which satisfies the transformation function 𝑠𝑒𝑚𝑣(𝑚𝑉𝑆𝑀) = 𝑔𝑉𝑆𝑀. For any 

model element 𝑚𝑒  in model 𝑚𝑉𝑆𝑀 , exists a vertex 𝑣 . The number of all model 

elements in 𝑚𝑉𝑆𝑀 must be equal to the number of all vertices in 𝑔𝑉𝑆𝑀. The ID of vertex 

𝑣  is mapped to the ID of model element 𝑚𝑒  with a mapping function: 𝑠𝑒𝑚𝑣𝑖𝑑 ∶=

{𝑖𝑑} → {𝑖𝑑} . 

 
(∀𝑚𝑒 ∈ 𝑀𝐸𝑉𝑆𝑀) ∃ (𝑣 ∈ 𝑉𝑉𝑆𝑀) ∧  |𝑀𝐸𝑉𝑆𝑀| = |𝑉𝑉𝑆𝑀|  ∧  𝑠𝑒𝑚𝑣𝑖𝑑(𝑖𝑑𝑀𝑉𝑆𝑀(𝑚𝑒))

= 𝑖𝑑𝐺𝑉𝑆𝑀(𝑣) 

2. Structure identify: For any relation element 𝑎 in 𝑚𝑉𝑆𝑀, there exists an edge 𝑒 in 𝑔𝑉𝑆𝑀. 

The number of all relation elements in 𝑚𝑉𝑆𝑀 must be equal to the number of all edges 

in 𝑔𝑉𝑆𝑀. The ID of the source vertex of 𝑒 is mapped to the ID of the beginning model 

element of 𝑎, and the ID of the target vertex of 𝑒 is mapped to the ID of the ending 

model element of 𝑎. 

 

 

(∀𝑎 ∈ 𝐴𝑉𝑆𝑀) ∃ (𝑒 ∈ 𝐸𝑉𝑆𝑀) ∧  |𝐴𝑉𝑆𝑀| = |𝐸𝑉𝑆𝑀|

∧  𝑠𝑒𝑚𝑣𝑖𝑑(𝑖𝑑𝑀𝑉𝑆𝑀(𝑏𝑒𝑔𝑉𝑆𝑀(𝑎))) = 𝑖𝑑𝐺𝑉𝑆𝑀(𝑠𝑟𝑐𝑉𝑆𝑀(𝑒))

∧ 𝑠𝑒𝑚𝑣𝑖𝑑(𝑖𝑑𝑀𝑉𝑆𝑀(𝑒𝑛𝑑𝑉𝑆𝑀(𝑎))) = 𝑖𝑑𝐺𝑉𝑆𝑀(𝑡𝑔𝑡𝑉𝑆𝑀(𝑒))

 

3. Information identify: For any vertex or edge 𝑥 in 𝑉𝑉𝑆𝑀 and 𝐸𝑉𝑆𝑀, if its ID is mapped to 

the ID of a model or relation element 𝑦, the attribute of 𝑥 is assigned with the string 

“Type” as its key and string 𝑡𝑦𝑝𝑒(𝑦) in its value.  

 

(∀𝑦 ∈ (𝑀𝐸𝑉𝑆𝑀 ∪ 𝐴𝑉𝑆𝑀) ∃𝑥 ∈ (𝑉𝑉𝑆𝑀 ∪ 𝐸𝑉𝑆𝑀) ∧  𝑠𝑒𝑚𝑣𝑖𝑑(𝑖𝑑𝑀𝑉𝑆𝑀(𝑦)) = 𝑖𝑑𝐺𝑉𝑆𝑀(𝑥)) 

→ (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑉𝑆𝑀(𝑥)("Type")  =  𝑡𝑦𝑝𝑒(𝑦)) 

If model and relation elements have other description information, they can be saved 

in the attributes of vertices or edges with the key-value structure too, for example the 

information of name. The function 𝛿  is a mapping function to map the model and 
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relation elements to strings. A set of these functions is represented with {𝛿𝑖} . A 

parameter 𝑠𝑖 represents a string and it is combined with the 𝛿𝑖 to a key-value structure 

according to the index 𝑖 in that 𝑠𝑖 as the key and 𝛿𝑖 as the value.  

 

(∀𝑦 ∈ (𝑀𝐸𝑉𝑆𝑀 ∪ 𝐴𝑉𝑆𝑀) ∃𝑥 ∈ (𝑉𝑉𝑆𝑀 ∪ 𝐸𝑉𝑆𝑀)  ∧  𝑠𝑒𝑚𝑣𝑖𝑑(𝑖𝑑𝑀𝑉𝑆𝑀(𝑦)) = 𝑖𝑑𝐺𝑉𝑆𝑀(𝑥)) 

→ (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑉𝑆𝑀(𝑥)(𝑠𝑖) =  𝛿𝑖(𝑦)) 
 

𝛿𝑖 ≔ (𝑀𝐸𝑉𝑆𝑀 ∪ 𝐴𝑉𝑆𝑀) → 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 
 

𝑠𝑖  ∈ 𝐾𝑒𝑦𝑖𝑛 
𝛿𝑖(𝑦) ∈ 𝑉𝑎𝑙𝑢𝑒𝑖𝑛 

4.1.3.2 Graphical representation 

Table 3 shows a comparison between the model-based description of VSM and formal 

semantical foundation of VSM by symbol, type and Metamodel element.   

Model-based description of VSM Formal semantical foundation of VSM 

Symbol Type 
Metamodel 

element 
Sybol Type 

Metamodel 
element 

 
Process 

  
Vertex 

 

 
Data box 

  
Vertex 

 

N Worker 
  

Vertex 
 

 
EDV 

  
Vertex 

 

 
Production 

Control   
Vertex 

 

 

Inventory 
hedge 

 
  

Vertex 
 

 Timeline-NVA 
  

Vertex 
 

 Timeline-CVA 
  

Vertex 
 

 
External 

Shipment   
Vertex 

 

 Supplier 
  

Vertex 
 

 Go See 
  

Vertex 
 

 

Electronic 
Information 

arrow 
  

Vertex 
 

 
Manual 

Information 
arrow 

  
Vertex 

 



Chapter 4 - Formal Descriptions and Transformations of Managed Evolution of LL-CPSs 

79 
 

 
Material 

arrow   
Vertex 

 

 
Input 

  
Edge 

 

 
Output  

  
Edge 

 

 

Owned 
relation   

Edge 
 

Table 3. Comparison table for semantical mapping for VSM model 

Figure 66 shows a graphical representation of the semantical mapping from a model in 𝑀𝑉𝑆𝑀 

to a graph in 𝐺𝑉𝑆𝑀.  

**

1
1

1

𝑔𝑉𝑆𝑀  

𝐸𝑉𝑆𝑀  𝑉𝑉𝑆𝑀  

𝑠𝑟𝑐𝑉𝑆𝑀  

𝑡𝑔𝑡𝑉𝑆𝑀  1

1

*

*

0/1

* *

0/1

Property 

+ 𝐾𝑒𝑦𝑉𝑆𝑀  

+ 𝑉𝑎𝑙𝑢𝑒𝑉𝑆𝑀  

𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑠𝑉𝑆𝑀  𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑠𝑉𝑆𝑀  

+ ID + ID

𝑀𝐸𝑉𝑆𝑀  𝐴𝑉𝑆𝑀  

𝑃𝑉𝑆𝑀  𝐶𝑉𝑆𝑀  

𝑚𝑉𝑆𝑀  

𝐹𝑉𝑆𝑀  
𝐴𝑉𝑆𝑀
𝑂𝑤𝑛𝑒𝑑  

𝐹𝑉𝑆𝑀
𝐸𝐼𝑛𝑓𝑜

 

𝐹𝑉𝑆𝑀
𝑀𝐼𝑛𝑓𝑜

 

𝐶𝑉𝑆𝑀
𝐷𝑎𝑡𝑎𝑏𝑜𝑥  

𝐶𝑉𝑆𝑀
𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟

 

𝐶𝑉𝑆𝑀
𝐺𝑜𝑠𝑒𝑒  

𝑃𝑉𝑆𝑀
𝐼𝑛𝑓𝑜

 

𝑃𝑉𝑆𝑀
𝐼𝑛𝑓𝑜 −𝐸𝐷𝑉

 

𝑃𝑉𝑆𝑀
𝐼𝑛𝑓𝑜 −𝑐𝑜𝑛𝑡𝑟𝑜𝑙

 

𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠  

𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 −𝑝𝑟𝑜𝑐𝑒𝑠𝑠

 

𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 −𝑠𝑡𝑜𝑐𝑘  

𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 −𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡

 

𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 −𝐶𝑢𝑆𝑢  

𝐶𝑉𝑆𝑀
𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒 −𝐶𝑉𝐴  

𝐶𝑉𝑆𝑀
𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒 −𝑁𝑉𝐴  

𝐴𝑉𝑆𝑀
𝑂𝑢𝑡  

𝐹𝑉𝑆𝑀
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙  

+ ID + ID

1 *

*𝑏𝑒𝑔𝑉𝑆𝑀  

𝑒𝑛𝑑𝑉𝑆𝑀  

1

1 **

𝐴𝑉𝑆𝑀
𝐼𝑛  

Elements 
identify

Structure 
identify

Information 
identify

 

Figure 66: Graphical representation for semantical mapping of VSM model 
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4.1.3.3 Example 

Figure 67 illustrates a semantical mapping transformation form a VSM model 𝑚𝑥 ∈ 𝑀𝑉𝑆𝑀 to 

a graph 𝑔𝑥 ∈ 𝐺𝑉𝑆𝑀.   

𝑚𝑥 ∈ 𝑀𝑉𝑆𝑀  𝑔𝑥 ∈ 𝐺𝑉𝑆𝑀  

ba

(a,b):𝐸𝑉𝑆𝑀  

:𝑉𝑉𝑆𝑀  

:𝑉𝑉𝑆𝑀  

Type: Worker

Type: Material arrow

b3

:𝑉𝑉𝑆𝑀  

Type: Process

(b3,b)

:𝐸𝑉𝑆𝑀  

𝑠𝑒𝑚𝑣
     

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

Type: Input

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

Type: Owned relation

Sort

Input 1 Conveyer 
belt 1 to Sort

1

Conveyer belt 1: 𝐹𝑉𝑆𝑀
𝑀𝑎𝑡𝑒𝑟𝑎𝑙  

: 𝐴𝑉𝑆𝑀
𝐼𝑛  

Workers for Sort: 𝐶𝑉𝑆𝑀
𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟

 

Owned 3 to Sort: 𝐴𝑉𝑆𝑀
𝑜𝑤𝑛𝑒𝑑  

: 𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 −𝑝𝑟𝑜𝑐𝑒𝑠𝑠

 

ID: a

ID: b

ID: b3

 

Figure 67: An example of semantical mapping for a VSM model 

 

In Table 4, all model elements in 𝑚𝑥  are transformed to vertices in 𝑔𝑥 , and all relation 

elements are transformed into edges. The types of model elements are transformed to 

attributes in the corresponding vertices.  

Conveyer belt 1 → 𝑣𝑎  and 𝑠𝑒𝑚𝑣𝑖𝑑(𝑣𝑎) = ID of Conveyer belt 1: a 

Type of  for Conveyer belt 1 →  (Type: Material arrow) in 𝑣𝑎  

Process sort → 𝑣𝑏 and 𝑠𝑒𝑚𝑣𝑖𝑑(𝑣𝑏)  = ID of Process sort: b 

Type of  for process sort →  (Type: Process) in 𝑣𝑏3 

Worker of Sort → 𝑣𝑏3 and ID of 𝑣𝑏 is mapped to the ID of Worker of Sort: b3 

Type of 1  in process sort →  (Type: worker) in 𝑣𝑏3 

Input 1 Conveyer belt 1 to sort → (𝑣𝑎 , 𝑣𝑏) and ID of (𝑣𝑎 , 𝑣𝑏) is mapped to the ID of Input 1 Conveyer belt 
1 to sort: (a,b) 

Type of Input 1 Conveyer belt 1 to sort →  (Type: Input) in (𝑣𝑎, 𝑣𝑏) 

Owned 3 to sort → (𝑣𝑏3, 𝑣𝑏) and ID of (𝑣𝑏3, 𝑣𝑏) is mapped to the ID of Owned 3 to sort: (b3,b) 

Type of Owned 3 to sort →  (Type: Owned relation) in (𝑣𝑏3, 𝑣𝑏) 

Table 4. Transformations of model/relation elements in a VSM model 

 

4.1.4 Concrete modeling 

The concrete modeling is defined as a transformation function 𝑐𝑜𝑛𝑣 from a set of graphs 𝐺𝑉𝑆𝑀 

to a set of models 𝑀𝑉𝑆𝑀.  
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4.1.4.1 Mathematical foundation 

This function 𝑐𝑜𝑛𝑣 is a unidirectional bijective transformation function and instances every 

graph in a set  𝐺𝑉𝑆𝑀 to VSM model in a set 𝑀𝑉𝑆𝑀 (see Definition 22).  

Definition 34 
𝑐𝑜𝑛𝑣 ≔ 𝐺𝑉𝑆𝑀 → 𝑀𝑉𝑆𝑀 

 
 

Like with the transformation function 𝑠𝑒𝑚𝑣 , the function 𝑐𝑜𝑛𝑣  is an equivalent mapping 

function if it meet three requirements: elements identify, structure identify and information 

identify.  

 
(∀𝑔𝑉𝑆𝑀 ∈ 𝐺𝑉𝑆𝑀) ∃  {𝑚𝑉𝑆𝑀 ∈ 𝑀𝑉𝑆𝑀| 𝑐𝑜𝑛𝑣(𝑔𝑉𝑆𝑀) = 𝑚𝑉𝑆𝑀} 

 

1. Elements identify: For any graph 𝑔𝑉𝑆𝑀 in the set 𝐺𝑉𝑆𝑀, there exists a model 𝑚𝑉𝑆𝑀 in 

the set 𝑀𝑉𝑆𝑀, which satisfies the transformation function 𝑐𝑜𝑛𝑣(𝑔𝑉𝑆𝑀) = 𝑚𝑉𝑆𝑀. For 

any vertex 𝑣  in graph 𝑔𝑉𝑆𝑀 , there exists a model element 𝑚𝑒 . The number of all 

vertices in 𝑔𝑉𝑆𝑀 must be equal to the number of all model elements in 𝑚𝑉𝑆𝑀. The ID 

of model element 𝑚𝑒 must be mapped to the ID of vertex 𝑣 with a mapping function: 

𝑐𝑜𝑛𝑣𝑖𝑑 ∶= {𝑖𝑑} → {𝑖𝑑} . 

 
(∀𝑣 ∈ 𝑉𝑉𝑆𝑀)∃ (𝑚𝑒 ∈ 𝑀𝐸𝑉𝑆𝑀) ∧  |𝑉𝑉𝑆𝑀| = |𝑀𝐸𝑉𝑆𝑀|  

∧ 𝑐𝑜𝑛𝑣𝑖𝑑(𝑖𝑑𝐺𝑉𝑆𝑀(𝑣))  = 𝑖𝑑𝑀𝑉𝑆𝑀(𝑚𝑒) 
 

2. Structure identify: For any edge 𝑒 in 𝐸𝑉𝑆𝑀, there exists a relation element 𝑎 in 𝐴𝑉𝑆𝑀. 

The number of all relation elements in 𝑚𝑉𝑆𝑀 must be equal to the number of all edges 

in 𝑔𝑉𝑆𝑀. The ID of the beginning model element of 𝑎 is mapped to the ID of the source 

vertex of 𝑒, and the ID of the ending model element of 𝑎 is mapped to the ID of the 

target vertex of 𝑒.  

 

 

(∀𝑒 ∈ 𝐸𝑉𝑆𝑀) ∃ (𝑎 ∈ 𝐴𝑉𝑆𝑀) ∧  |𝐴𝑉𝑆𝑀| = |𝐸𝑉𝑆𝑀| ∧ 𝑐𝑜𝑛𝑣𝑖𝑑(𝑖𝑑𝐺𝑉𝑆𝑀(𝑣))  = 𝑖𝑑𝑀𝑉𝑆𝑀(𝑚𝑒)

∧ 𝑐𝑜𝑛𝑣𝑖𝑑(𝑖𝑑𝐺𝑉𝑆𝑀(𝑠𝑟𝑐𝑉𝑆𝑀(𝑒))) = 𝑖𝑑𝑀𝑉𝑆𝑀(𝑏𝑒𝑔𝑉𝑆𝑀(𝑎))

∧ 𝑐𝑜𝑛𝑣𝑖𝑑(𝑖𝑑𝐺𝑉𝑆𝑀(𝑡𝑔𝑡𝑉𝑆𝑀(𝑒))) = 𝑖𝑑𝑀𝑉𝑆𝑀(𝑒𝑛𝑑𝑉𝑆𝑀(𝑎))

 

 

3. Information identify: For any model or relation element 𝑦, if its ID is mapped to the ID 

of a vertex or edge 𝑥 in graph 𝑔𝑉𝑆𝑀, then the string in the attribute with the key “Type” 
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of this vertex or edge 𝑥 will be reformed and assigned to the string of 𝑡𝑦𝑝𝑒(𝑦) in the 

corresponding model or relation element 𝑦.  

 

((∀𝑥 ∈ 𝑉𝑉𝑆𝑀 ∪ 𝐸𝑉𝑆𝑀∃ 𝑦 ∈ 𝑀𝐸𝑉𝑆𝑀 ∪ 𝐴𝑉𝑆𝑀)   ∧  𝑐𝑜𝑛𝑣𝑖𝑑(𝑖𝑑𝐺𝑉𝑆𝑀(𝑥)) = 𝑖𝑑𝑀𝑉𝑆𝑀(𝑦)) 

→ (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑉𝑆𝑀(𝑥)("Type") =  𝑡𝑦𝑝𝑒(𝑦)) 
 

The other attributes in vertices and edges can be transformed to the description 

information of model and relation elements like the type information.  

 

((∀𝑥 ∈ 𝑉𝑉𝑆𝑀 ∪ 𝐸𝑉𝑆𝑀∃ 𝑦 ∈ 𝑀𝐸𝑉𝑆𝑀 ∪ 𝐴𝑉𝑆𝑀) ∧  𝑐𝑜𝑛𝑣𝑖𝑑(𝑖𝑑𝐺𝑉𝑆𝑀(𝑥)) = 𝑖𝑑𝑀𝑉𝑆𝑀(𝑦)) 

→ (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑉𝑆𝑀(𝑥)(𝑠𝑖) =  𝛿𝑖(𝑦)) 
 

𝛿𝑖 ≔ (𝑀𝐸𝑉𝑆𝑀 ∪ 𝐴𝑉𝑆𝑀) → 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 
 

𝛿𝑖(𝑦) ∈ 𝑉𝑎𝑙𝑢𝑒𝑖𝑛 
𝑠𝑖  ∈ 𝐾𝑒𝑦𝑖𝑛 

 
 

4.1.4.2 Graphical representation  

Table 5 shows a graphical representation of concrete modeling, which can be understood as 

an inverse transformation of semantical mapping.  

 

Formal semantical foundation 
of VSM 

Model-based description of VSM 

Sybol Type  
Metamodel 

element 
Sybol Type  

Metamodel 
element 

 
Vertex 

 
…or …or 

 … 

Model element   

 
Edge 

 
or   or 

 

Relation element  

Table 5. Comparison table for concrete modeling for VSM graph 

 

The graphical representation for concrete modeling in Figure 68 shows how a VSM graph is 

transformed to a VSM model.   
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**

1
1

1

𝑔𝑉𝑆𝑀  

𝐸𝑉𝑆𝑀  𝑉𝑉𝑆𝑀  

𝑠𝑟𝑐𝑉𝑆𝑀  

𝑡𝑔𝑡𝑉𝑆𝑀  1

1

*

*

0/1

* *

0/1

Property 

+ 𝐾𝑒𝑦𝑉𝑆𝑀  

+ 𝑉𝑎𝑙𝑢𝑒𝑉𝑆𝑀  

𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑠𝑉𝑆𝑀  𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑠𝑉𝑆𝑀  

+ ID + ID

𝑀𝐸𝑉𝑆𝑀  𝐴𝑉𝑆𝑀  

𝑃𝑉𝑆𝑀  𝐶𝑉𝑆𝑀  

𝑚𝑉𝑆𝑀  

𝐹𝑉𝑆𝑀  

𝐹𝑉𝑆𝑀
𝐸𝐼𝑛𝑓𝑜

 

𝐹𝑉𝑆𝑀
𝑀𝐼𝑛𝑓𝑜

 

𝐶𝑉𝑆𝑀
𝐷𝑎𝑡𝑎𝑏𝑜𝑥  
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𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟
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𝐺𝑜𝑠𝑒𝑒  

𝑃𝑉𝑆𝑀
𝐼𝑛𝑓𝑜

 

𝑃𝑉𝑆𝑀
𝐼𝑛𝑓𝑜 −𝐸𝐷𝑉

 

𝑃𝑉𝑆𝑀
𝐼𝑛𝑓𝑜 −𝑐𝑜𝑛𝑡𝑟𝑜𝑙

 

𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠  

𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 −𝑝𝑟𝑜𝑐𝑒𝑠𝑠

 

𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 −𝑠𝑡𝑜𝑐𝑘  

𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 −𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡

 

𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 −𝐶𝑢𝑆𝑢  
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𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒 −𝐶𝑉𝐴  

𝐶𝑉𝑆𝑀
𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒 −𝑁𝑉𝐴  

𝐹𝑉𝑆𝑀
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙  

+ ID + ID

1 *

*𝑏𝑒𝑔𝑉𝑆𝑀  

𝑒𝑛𝑑𝑉𝑆𝑀  

1

1 **

𝐴𝑉𝑆𝑀
𝑂𝑤𝑛𝑒𝑑  

𝐴𝑉𝑆𝑀
𝑂𝑢𝑡  

𝐴𝑉𝑆𝑀
𝐼𝑛  

Elements 
identify

Structure 
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Information 
identify

 

Figure 68: Graphical representation of concrete modeling for VSM graph 

 

4.1.4.3 Example 

Figure 69 illustrates a concrete modeling transformation from graph 𝑔𝑥 to model 𝑚𝑥. 
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𝑐𝑜𝑛𝑣
    

𝑚𝑥 ∈ 𝑀𝑉𝑆𝑀  𝑔𝑥 ∈ 𝐺𝑉𝑆𝑀  

ba

(a,b):𝐸𝑉𝑆𝑀  

:𝑉𝑉𝑆𝑀  

:𝑉𝑉𝑆𝑀  

Type: Worker

Type: Material arrow

b3

:𝑉𝑉𝑆𝑀  

Type: Process

(b3,b)

:𝐸𝑉𝑆𝑀  

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

Type: Input

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

Type: Owned relation

Sort

Input 1 Conveyer 
belt 1 to Sort

1

Conveyer belt 1: 𝐹𝑉𝑆𝑀
𝑀𝑎𝑡𝑒𝑟𝑎𝑙  

: 𝐴𝑉𝑆𝑀
𝐼𝑛  Workers for Sort: 𝐶𝑉𝑆𝑀

𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟
 

Owned 3 to Sort: 𝐴𝑉𝑆𝑀
𝑜𝑤𝑛𝑒𝑑  

: 𝑃𝑉𝑆𝑀
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 −𝑝𝑟𝑜𝑐𝑒𝑠𝑠

 

ID: a

ID: b

ID: b3

 

Figure 69: An example of concrete modeling for a VSM graph 

 

4.2 Formal description for IBD 

In this section, the IBD is used as a component-oriented modeling method to describe LL-CPSs. 

A set of IBD models  𝑀𝐼𝐵𝐷 describes a set of LL-CPSs on model-based description layer. A set 

of graphs 𝐺𝐼𝐵𝐷 represents the same LL-CPSs on the formal semantical foundation layer. The 

transformations between the models in 𝑀𝐼𝐵𝐷 and the graphs in 𝐺𝐼𝐵𝐷 are represented with the 

mapping functions 𝑠𝑒𝑚𝑖 and 𝑐𝑜𝑛𝑖 (See Figure 70).  

 

Figure 70: Formal descriptions and descriptions transformation for IBD model 

 

4.2.1 Formal semantical foundation  

The IBD graphs on the formal semantical foundation layer are introduced in this section by 

using of mathematical foundation, metamodel, graphical representation and example.  
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4.2.1.1 Mathematical foundation  

Every graph 𝑔𝐼𝐵𝐷  in the set 𝐺𝐼𝐵𝐷  is defined as a directed connected graph structure (see 

Definition 4). It comprises a set of vertices 𝑉𝐼𝐵𝐷 and a set of edges 𝐸𝐼𝐵𝐷. The functions 𝑠𝑟𝑐𝐼𝐵𝐷 

and 𝑡𝑔𝑡𝐼𝐵𝐷 link every edge with its source vertex and target vertex together. Every vertex and 

edge have attributes that save the given information with a key-value structure, which 

comprises a set of string 𝐾𝑒𝑦𝐼𝐵𝐷 and a set of string 𝑉𝑎𝑙𝑢𝑒𝐼𝐵𝐷. The mapping from the keys to 

values are represented with a hash function. 

Definition 35 
𝑔𝐼𝐵𝐷 ∶= (𝑉𝐼𝐵𝐷, 𝐸𝐼𝐵𝐷, 𝑠𝑟𝑐𝐼𝐵𝐷 , 𝑡𝑔𝑡𝐼𝐵𝐷, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝐼𝐵𝐷, 𝐾𝑒𝑦𝐼𝐵𝐷, 𝑉𝑎𝑙𝑢𝑒𝐼𝐵𝐷) 

  
𝑠𝑟𝑐𝐼𝐵𝐷 ∶= 𝑠𝑟𝑐 |𝐸𝐼𝐵𝐷→ 𝑉𝐼𝐵𝐷    

𝑡𝑔𝑡𝐼𝐵𝐷 ∶= 𝑡𝑔𝑡 |𝐸𝐼𝐵𝐷→ 𝑉𝐼𝐵𝐷   

 
𝐸𝐼𝐵𝐷 = 𝑉𝐼𝐵𝐷  × 𝑉𝐼𝐵𝐷 

 
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝐼𝐵𝐷: = (𝑉𝐼𝐵𝐷 ∪ 𝐸𝐼𝐵𝐷) → (𝐾𝑒𝑦𝐼𝐵𝐷 → 𝑉𝑎𝑙𝑢𝑒𝐼𝐵𝐷) 

 
𝐾𝑒𝑦𝐼𝐵𝐷 ≔ 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 
𝑉𝑎𝑙𝑢𝑒𝐼𝐵𝐷 ≔ 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 

 
𝑔𝐼𝐵𝐷 ∈ 𝐺𝐼𝐵𝐷 

 
 

Every vertex and edge in 𝑔𝐼𝐵𝐷 have a unique identifier (ID). The ID of an edge comprises the 

IDs of its source vertex and target vertex. An injective function 𝑖𝑑𝐺𝐼𝐵𝐷 maps the identifiers of 

every vertex and edge to strings. 

Definition 36 
𝑖𝑑𝐺𝐼𝐵𝐷 ≔ (𝑉𝐼𝐵𝐷 ∪ 𝐸𝐼𝐵𝐷) → 𝐼𝐷𝑠 

 
𝐼𝐷𝑠 ≔ 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 

  
 

4.2.1.2 Metamodel 

Every vertex can connect with any number of edges, although one edge only allows connecting 

with one source vertex and one target vertex. The attributes in any vertex and edge are used 

to save the description information (see Figure 71).   
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1

1 *

*𝑠𝑟𝑐𝐼𝐵𝐷  

𝑡𝑔𝑡𝐼𝐵𝐷  
𝑉𝐼𝐵𝐷  𝐸𝐼𝐵𝐷  

𝑔𝐼𝐵𝐷  
1

**

Property 

0..1

*

+ 𝐾𝑒𝑦𝑉𝑆𝑀  

+ 𝑉𝑎𝑙𝑢𝑒𝑉𝑆𝑀  

0..1

*

𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑠𝐼𝐵𝐷  𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑠𝐼𝐵𝐷  

+ ID + ID

 

Figure 71: A Metamodel for formal semantical foundation of IBD model 

 

4.2.1.3 Graphical representation  

The graphical representation in Table 6 shows the symbol, name, mathematical model 

element, metamodel element and description of every graph elements in a IBD graph 𝑔𝐼𝐵𝐷.  

Symbol Type Mathematical model element  
Metamodel 

element 
Descriptions 

 
Vertex 𝑣𝐼𝐵𝐷 ∈ 𝑉𝐼𝐵𝐷 

 
Vertex in graph 

 
Edge 𝑒𝐼𝐵𝐷 ∈ 𝐸𝐼𝐵𝐷  

 

Edge in graph 

 

Attributes 𝐾𝑒𝑦𝐼𝐵𝐷 → 𝑉𝑎𝑙𝑢𝑒𝐼𝐵𝐷 

 

Attributes of vertices and 
edges 

 
Connect 

relation begin 
𝑠𝑟𝑐𝐼𝐵𝐷  

Connect relation for one 
edge and its source vertex 

 
Connect 

relation end 
𝑡𝑔𝑡𝐼𝐵𝐷  

Connect relation for one 
edge and its target vertex 

Table 6. Graphical representation of the formal semantical foundation of IBD model 

 

4.2.1.4 Example 

Figure 72 illustrates an IBD graph 𝑔𝑏 ∈ 𝐺𝐼𝐵𝐷 . One edge links two vertices together to a 

connected graph. The attributes of vertices and edges are used to save the description 

information. 
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HW4

_P1

MS1_H

W4

(MS1_HW4,HW4_P1)

Type: Port ES

Type: MS

:𝑉𝐼𝐵𝐷  

:𝑉𝐼𝐵𝐷  

:𝐸𝐼𝐵𝐷  
Type: Output port

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

 

Figure 72: Example of the formal semantical foundation of IBD model 

 

4.2.2 Model-based description  

On the model-based description layer, a set of IBD models 𝑀𝐼𝐵𝐷 model a set of LL-CPSs. 

4.2.2.1 Mathematical foundation  

Any IBD model 𝑚𝐼𝐵𝐷 ∈ 𝑀𝐼𝐵𝐷 is defined with an integrated system in a network structure (see 

Definition 19) and comprises a set of model elements 𝑀𝐸𝐼𝐵𝐷 and a set of relation elements 

𝐴𝐼𝐵𝐷. The model elements comprise a set of blocks 𝑁𝐼𝐵𝐷and a set of ports (interfaces) 𝑃𝐼𝐵𝐷. 

The specifications of the blocks and ports (interfaces) have been introduced in sections 2.4.1.2 

and 3.1.2. The model elements and relation elements connect to each other by using of the 

connection functions 𝑏𝑒𝑔𝐼𝐵𝐷 and 𝑒𝑛𝑑𝐼𝐵𝐷 and build an integrated system. 

Definition 37 
𝑚𝐼𝐵𝐷 ∶= (𝑀𝐸𝐼𝐵𝐷, 𝐴𝐼𝐵𝐷, 𝑏𝑒𝑔𝐼𝐵𝐷 , 𝑒𝑛𝑑𝐼𝐵𝐷) 

 
𝑏𝑒𝑔𝐼𝐵𝐷 ∶= 𝑏𝑒𝑔 |𝐴𝐼𝐵𝐷→ 𝑀𝐸𝐼𝐵𝐷   

𝑒𝑛𝑑𝐼𝐵𝐷 ∶= 𝑒𝑛𝑑 |𝐴𝐼𝐵𝐷→  𝑀𝐸𝐼𝐵𝐷   

 
𝐴𝐼𝐵𝐷 ≔ 𝑀𝐸𝐼𝐵𝐷  ×  𝑀𝐸𝐼𝐵𝐷 

 
𝑚𝐼𝐵𝐷 ∈ 𝑀𝐼𝐵𝐷 

 
 

The model elements and relation elements in IBD model can be continually specified by 

different types. The set of model elements 𝑀𝐸𝐼𝐵𝐷 comprises a set block elements 𝑁𝐼𝐵𝐷 and a 

set of port elements 𝑃𝐼𝐵𝐷. They are disjoint sets. The 𝑁𝐼𝐵𝐷 comprises three disjoint sets: the 

set of blocks for information systems 𝑁𝐼𝐵𝐷
𝐼𝑆 , the set of blocks for process systems 𝑁𝐼𝐵𝐷

𝑃𝑆  and the 

set of relevant environment factors 𝑁𝐼𝐵𝐷
𝑅𝐹 . The 𝑁𝐼𝐵𝐷

𝐼𝑆  is specified by the types of software and 

hardware. The 𝑁𝐼𝐵𝐷
𝑃𝑆  is specified into 𝑁𝐼𝐵𝐷

𝐶𝑆  and 𝑁𝐼𝐵𝐷
𝑀𝑆 . The 𝑁𝐼𝐵𝐷

𝐶𝑆  is continually specified into 
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𝑁𝐼𝐵𝐷
𝐶𝑆−𝐻𝑊  and 𝑁𝐼𝐵𝐷

𝐶𝑆−𝑆𝑊 . The set of relevant environment factors 𝑁𝐼𝐵𝐷
𝑅𝐹  is specified into two 

disjoint sets: 𝑁𝐼𝐵𝐷
𝑅𝐹−𝐻 and 𝑁𝐼𝐵𝐷

𝑅𝐹−𝐶𝑃𝑆.  

The interface specification for the set 𝑃𝐼𝐵𝐷  is introduced in section 3.1.2.1. The 𝑃𝐼𝐵𝐷
𝐻𝑀𝐼  

represents a set of HMI interfaces in an IBD model. The 𝑃𝐼𝐵𝐷
𝑀  represents a set of material 

interfaces. The 𝑃𝐼𝐵𝐷
𝐸𝑆  represents a set of electrical signal interfaces. The 𝑃𝐼𝐵𝐷

𝐶  represents a set 

of constructive interfaces. The 𝑃𝐼𝐵𝐷
𝑆  represents a set of software interfaces. The 𝑃𝐼𝐵𝐷

𝐸  

represents a set of execute interfaces. 

The relation elements can be specified into three disjoint sets: 𝐴𝐼𝐵𝐷
𝐶𝑜𝑛 for all of the connection 

relations between the port elements, 𝐴𝐼𝐵𝐷
𝐼𝑛𝑝𝑢𝑡  and 𝐴𝐼𝐵𝐷

𝑂𝑢𝑡𝑝𝑢𝑡  for the connection relations 

between port elements and block elements.  

 
𝑀𝐸𝐼𝐵𝐷 ≔ { 𝑁𝐼𝐵𝐷 ∪̇  𝑃𝐼𝐵𝐷} 

 
𝑁𝐼𝐵𝐷 ∶=  {𝑁𝐼𝐵𝐷

𝐼𝑆  ∪̇ 𝑁𝐼𝐵𝐷
𝑃𝑆 ∪̇ 𝑁𝐼𝐵𝐷

𝑅𝐹 } 
 

𝑁𝐼𝐵𝐷
𝐼𝑆 ∶=  { 𝑁𝐼𝐵𝐷

𝐼𝑆−𝐻𝑊  ∪̇ 𝑁𝐼𝐵𝐷
𝐼𝑆−𝑆𝑊} 

 
𝑁𝐼𝐵𝐷
𝑃𝑆 ∶=  {𝑁𝐼𝐵𝐷

𝐶𝑆  ∪̇ 𝑁𝐼𝐵𝐷
𝑀𝑆 } 

 
𝑁𝐼𝐵𝐷
𝐶𝑆 ∶=  { 𝑁𝐼𝐵𝐷

𝐶𝑆−𝐻𝑊  ∪̇ 𝑁𝐼𝐵𝐷
𝐶𝑆−𝑆𝑊} 

 

𝑁𝐼𝐵𝐷
𝑀𝑆 ∶=  {𝑁𝐼𝐵𝐷

𝑀𝑆−𝐻𝑊} 
 

𝑁𝐼𝐵𝐷
𝑅𝐹 ∶=  {𝑁𝐼𝐵𝐷

𝑅𝐹−𝐻  ∪̇ 𝑁𝐼𝐵𝐷
𝑅𝐹−𝐶𝑃𝑆} 

 
𝑃𝐼𝐵𝐷 ∶=  {𝑃𝐼𝐵𝐷

𝐻𝑀𝐼  ∪̇ 𝑃𝐼𝐵𝐷
𝑀 ∪̇ 𝑃𝐼𝐵𝐷

𝐸𝑆 ∪̇ 𝑃𝐼𝐵𝐷
𝐶 ∪̇ 𝑃𝐼𝐵𝐷

𝑆 ∪̇ 𝑃𝐼𝐵𝐷
𝐸 } 

 

𝐴𝐼𝐵𝐷 ∶=  {𝐴𝐼𝐵𝐷
𝐶𝑜𝑛  ∪̇ 𝐴𝐼𝐵𝐷

𝐼𝑛𝑝𝑢𝑡  ∪̇ 𝐴𝐼𝐵𝐷
𝑂𝑢𝑡𝑝𝑢𝑡 } 

 

The identifiers of every IBD model element and relation element are defined with an injective 

function 𝑖𝑑𝑀𝐼𝐵𝐷. The ID of a relation element is represented with its beginning model element 

and target model element. 

Definition 38 
𝑖𝑑𝑀𝐼𝐵𝐷 ≔ (𝑀𝐸𝐼𝐵𝐷 ∪ 𝐴𝐼𝐵𝐷) → 𝐼𝐷𝑠 

 
𝐼𝐷𝑠 ≔ 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 

  
 

There is a function 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 to map the types of model elements and relation elements in 

IBD model to strings, which characterize the type of the corresponding model and relation 

elements.  
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Definition 39 
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 ≔ (𝑀𝐸𝐼𝐵𝐷 ∪ 𝐴𝐼𝐵𝐷) → 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 

 

∀𝑥 ∈ (𝑀𝐸𝐼𝐵𝐷 ∪𝐴𝐼𝐵𝐷) ∃ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦(𝑥) =

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 "𝐼𝑆 − 𝐻𝑊" 𝑖𝑓 𝑥 ∈ 𝑁𝐼𝐵𝐷

𝐼𝑆−𝐻𝑊

"𝐼𝑆 − 𝑆𝑊" 𝑖𝑓 𝑥 ∈ 𝑁𝐼𝐵𝐷
𝐼𝑆−𝑆𝑊

"𝐶𝑆 − 𝐻𝑊" 𝑖𝑓 𝑥 ∈ 𝑁𝐼𝐵𝐷
𝐶𝑆−𝐻𝑊

"𝐶𝑆 − 𝑆𝑊" 𝑖𝑓 𝑥 ∈ 𝑁𝐼𝐵𝐷
𝐶𝑆−𝑆𝑊

"𝑀𝑆 − 𝐻𝑊" 𝑖𝑓 𝑥 ∈ 𝑁𝐼𝐵𝐷
𝑀𝑆−𝐻𝑊

"𝑅𝐹 − 𝐻" 𝑖𝑓 𝑥 ∈ 𝑁𝐼𝐵𝐷
𝑅𝐹−𝐻

"𝑅𝐹 − 𝐶𝑃𝑆" 𝑖𝑓 𝑥 ∈ 𝑁𝐼𝐵𝐷
𝑅𝐹−𝐶𝑃𝑆

"𝑃𝑜𝑟𝑡 𝐻𝑀𝐼" 𝑖𝑓 𝑥 ∈ 𝑃𝐼𝐵𝐷
𝐻𝑀𝐼

"𝑃𝑜𝑟𝑡 𝐸" 𝑖𝑓 𝑥 ∈ 𝑃𝐼𝐵𝐷
𝐸

"𝑃𝑜𝑟𝑡 𝐸𝑆" 𝑖𝑓 𝑥 ∈ 𝑃𝐼𝐵𝐷
𝐸𝑆

"𝑃𝑜𝑟𝑡 𝐶" 𝑖𝑓 𝑥 ∈ 𝑃𝐼𝐵𝐷
𝐶

"𝑃𝑜𝑟𝑡 𝑆" 𝑖𝑓 𝑥 ∈ 𝑃𝐼𝐵𝐷
𝑆

"𝑃𝑜𝑟𝑡 𝑀" 𝑖𝑓 𝑥 ∈ 𝑃𝐼𝐵𝐷
𝑀

"𝐼𝑛𝑝𝑢𝑡 𝑝𝑜𝑟𝑡" 𝑖𝑓 𝑥 ∈ 𝐴𝐼𝐵𝐷
𝐼𝑛𝑝𝑢𝑡

"𝑂𝑢𝑡𝑝𝑢𝑡 𝑝𝑜𝑟𝑡" 𝑖𝑓 𝑥 ∈ 𝐴𝐼𝐵𝐷
𝑂𝑢𝑡𝑝𝑢𝑡

"𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛" 𝑖𝑓 𝑥 ∈ 𝐴𝐼𝐵𝐷
𝐶𝑜𝑛

 

 
 

4.2.2.2 Metamodel 

1

1 *

*𝑏𝑒𝑔𝐼𝐵𝐷  

𝑒𝑛𝑑𝐼𝐵𝐷  

𝑀𝐸𝐼𝐵𝐷  𝐴𝐼𝐵𝐷  

𝑁𝐼𝐵𝐷  𝑃𝐼𝐵𝐷  

𝑚𝐼𝐵𝐷  

𝑁𝐼𝐵𝐷
𝐼𝑆  

𝑁𝐼𝐵𝐷
𝐼𝑆−𝐻𝑊  

𝑁𝐼𝐵𝐷
𝐼𝑆−𝑆𝑊  

𝑁𝐼𝐵𝐷
𝑃𝑆  

𝑁𝐼𝐵𝐷
𝐶𝑆−𝐻𝑊  

𝑁𝑀_𝐼𝐵𝐷
𝑆𝑊  

𝑁𝐼𝐵𝐷
𝐶𝑆  

𝑁𝐼𝐵𝐷
𝑀𝑆  

1

**

𝑃𝐼𝐵𝐷
𝐻𝑀𝐼  

𝑃𝐼𝐵𝐷
𝑀  

𝑃𝐼𝐵𝐷
𝐸𝑆  

𝑃𝐼𝐵𝐷
𝐶  

𝑃𝐼𝐵𝐷
𝑆  

𝑃𝐼𝐵𝐷
𝐸  𝑁𝐼𝐵𝐷

𝑀𝑆−𝐻𝑊  

𝑁𝐼𝐵𝐷
𝑅𝐹  

𝑁𝐼𝐵𝐷
𝑅𝐹−𝐻 

𝑁𝐼𝐵𝐷
𝑅𝐹−𝐶𝑃𝑆  

𝐴𝐼𝐵𝐷
𝐼𝑛𝑝𝑢𝑡

 

𝐴𝐼𝐵𝐷
𝑂𝑢𝑡𝑝𝑢𝑡

 

+ ID + ID

𝐴𝐼𝐵𝐷
𝐶𝑜𝑛  

 

Figure 73: A Metamodel for IBD Model  



Chapter 4 - Formal Descriptions and Transformations of Managed Evolution of LL-CPSs 

90 
 

The metamodel in Figure 73 describes the system structure of model 𝑚𝐼𝐵𝐷 . Every model 

element must have an identifier and can have any number of relation elements, although 

every relation element only allows connecting with one model element as source and one as 

target.  The ID of relation element is a tuple comprising the IDs from its beginning model 

element and ending model element.   

The specified model elements and relation elements in any model 𝑚𝑉𝑆𝑀 have to satisfy the 

combination rules forming with metamodels in Figure 74 to Figure 80, which are used to 

guarantee the system integration.  

𝐴𝐼𝐵𝐷
𝐼𝑛𝑝𝑢𝑡

 

1 1*

𝑏𝑒𝑔𝐼𝐵𝐷  

𝑒𝑛𝑑𝐼𝐵𝐷  

1

𝐴𝐼𝐵𝐷
𝑂𝑢𝑡𝑝𝑢𝑡

 

1

*1

𝑏𝑒𝑔𝐼𝐵𝐷  

𝑒𝑛𝑑𝐼𝐵𝐷  

1

1

1

𝑏𝑒𝑔𝐼𝐵𝐷  

𝑏𝑒𝑔𝐼𝐵𝐷  
𝑃𝐼𝐵𝐷
𝐶  

𝑃𝐼𝐵𝐷
𝐸𝑆  

𝑒𝑛𝑑𝐼𝐵𝐷  

𝑒𝑛𝑑𝐼𝐵𝐷  
1

1

1

1

𝑁𝐼𝐵𝐷
𝐼𝑆−𝐻𝑊  

𝑃𝐼𝐵𝐷
𝐻𝑀𝐼  

𝑃𝐼𝐵𝐷
𝐸  

𝑒𝑛𝑑𝐼𝐵𝐷  

1

1

𝑏𝑒𝑔𝐼𝐵𝐷  1

1

 

Figure 74: Combination rules between IS-HW model elements and ports 

The block elements and port elements are connected to each other with the input and output 

relation elements. Every block element allows having any number of input and output port 

elements, although one port element only allows belonging to one block element. 

𝑁𝐼𝐵𝐷
𝐶𝑆−𝐻𝑊  𝐴𝐼𝐵𝐷

𝐼𝑛𝑝𝑢𝑡
 

1 1*

𝑏𝑒𝑔𝐼𝐵𝐷  

𝑒𝑛𝑑𝐼𝐵𝐷  

1

𝐴𝐼𝐵𝐷
𝑂𝑢𝑡𝑝𝑢𝑡

 

1

*1

𝑏𝑒𝑔𝐼𝐵𝐷  

𝑒𝑛𝑑𝐼𝐵𝐷  

1

1

1

𝑏𝑒𝑔𝐼𝐵𝐷  

𝑏𝑒𝑔𝐼𝐵𝐷  
𝑃𝐼𝐵𝐷
𝐶  

𝑃𝐼𝐵𝐷
𝐸𝑆  

𝑒𝑛𝑑𝐼𝐵𝐷  

𝑒𝑛𝑑𝐼𝐵𝐷  
1

1

1

1

𝑃𝐼𝐵𝐷
𝐻𝑀𝐼  

𝑃𝐼𝐵𝐷
𝐸  

𝑒𝑛𝑑𝐼𝐵𝐷  

1

1

𝑏𝑒𝑔𝐼𝐵𝐷  1

1

 

Figure 75: Combination rules between CS-HW model elements and ports 

 

For example, Figure 74 and Figure 75 show the hardware blocks in the information system can 

have any number of ports by the types of HMI (HMI), electrical signal (ES), constructive (C) and 

execute (E), like the hardware blocks in the control system. The software blocks in the 

information system can have any number of ports by the types of software (S) and execute 

(E), like the software blocks in the control system that are shown with Figure 76 and Figure 

77. The hardware blocks in the mechanic system can have any number of ports by the types 

of HMI (HMI), material flow (M), constructive (C) and execute (E), shown in Figure 78. The 
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human blocks can have any number of ports with HMI (HMI) type and material flow (M) type. 

The CPS block can have any number of ports in any type (see Figure 79).  

𝐴𝐼𝐵𝐷
𝐼𝑛𝑝𝑢𝑡

 

1 1*

𝑏𝑒𝑔𝐼𝐵𝐷  

𝑒𝑛𝑑𝐼𝐵𝐷  

1

𝐴𝐼𝐵𝐷
𝑂𝑢𝑡𝑝𝑢𝑡

 

1

*1

𝑏𝑒𝑔𝐼𝐵𝐷  

𝑒𝑛𝑑𝐼𝐵𝐷  

1

𝑁𝐼𝐵𝐷
𝐼𝑆−𝑆𝑊  

1

𝑏𝑒𝑔𝐼𝐵𝐷  
𝑃𝐼𝐵𝐷
𝐸  

𝑃𝐼𝐵𝐷
𝑆  

𝑒𝑛𝑑𝐼𝐵𝐷  

1

1

 

Figure 76: Combination rules between IS-SW model elements and ports 

 

𝐴𝐼𝐵𝐷
𝐼𝑛𝑝𝑢𝑡

 

1 1*

𝑏𝑒𝑔𝐼𝐵𝐷  

𝑒𝑛𝑑𝐼𝐵𝐷  

1

𝐴𝐼𝐵𝐷
𝑂𝑢𝑡𝑝𝑢𝑡

 

1

*1

𝑏𝑒𝑔𝐼𝐵𝐷  

𝑒𝑛𝑑𝐼𝐵𝐷  

1

𝑁𝐼𝐵𝐷
𝐶𝑆−𝑆𝑊  

1

𝑏𝑒𝑔𝐼𝐵𝐷  
𝑃𝐼𝐵𝐷
𝐸  

𝑃𝐼𝐵𝐷
𝑆  

𝑒𝑛𝑑𝐼𝐵𝐷  

1

1

 

Figure 77: Combination rules between CS-SW model elements and ports 

𝐴𝐼𝐵𝐷
𝐼𝑛𝑝𝑢𝑡

 

1 1* 𝑏𝑒𝑔𝐼𝐵𝐷  
𝑒𝑛𝑑𝐼𝐵𝐷  

1

𝐴𝐼𝐵𝐷
𝑂𝑢𝑡𝑝𝑢𝑡

 

1

*
1

𝑏𝑒𝑔𝐼𝐵𝐷  

𝑒𝑛𝑑𝐼𝐵𝐷  

1

𝑁𝐼𝐵𝐷
𝑀𝑆−𝐻𝑊  

1

1𝑏𝑒𝑔𝐼𝐵𝐷  

𝑏𝑒𝑔𝐼𝐵𝐷  

𝑃𝐼𝐵𝐷
𝑀  

𝑃𝐼𝐵𝐷
𝐶  

𝑃𝐼𝐵𝐷
𝐸𝑆  

𝑒𝑛𝑑𝐼𝐵𝐷  

𝑒𝑛𝑑𝐼𝐵𝐷  

1

1

1

1

𝑃𝐼𝐵𝐷
𝐻𝑀𝐼  

𝑒𝑛𝑑𝐼𝐵𝐷  

1

1

1

1

 

Figure 78: Combination rules between MS-HW model elements and ports 

 

𝑃𝐼𝐵𝐷  𝐴𝐼𝐵𝐷
𝐼𝑛𝑝𝑢𝑡

 𝑁𝐼𝐵𝐷
𝑅𝐹−𝐶𝑃𝑆  

1 1* 𝑏𝑒𝑔𝐼𝐵𝐷  𝑒𝑛𝑑𝐼𝐵𝐷  1

𝑃𝐼𝐵𝐷  𝐴𝐼𝐵𝐷
𝑂𝑢𝑡𝑝𝑢𝑡

 𝑁𝐼𝐵𝐷
𝑅𝐹−𝐶𝑃𝑆  

1 1*𝑏𝑒𝑔𝐼𝐵𝐷  𝑒𝑛𝑑𝐼𝐵𝐷  1

 

Figure 79: Combination rules between RF-CPS model elements and ports 

 

Only two ports with the same type can be connected by using a connection relation element, 

and a connection relation element can just links two ports together (see Figure 80). 
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1 1

𝑃𝐼𝐵𝐷  𝐴𝐼𝐵𝐷
𝐶𝑜𝑛  

11

𝑏𝑒𝑔𝐼𝐵𝐷  

𝑒𝑛𝑑𝐼𝐵𝐷  

 

Figure 80: A Metamodel for connection relations between ports in IBD model 

 

The other connection in IBD model are not allowed. Accordingly, that block and block cannot 

connect directly, port and port are not allowed to connect without connector to each other.   

4.2.2.3 Graphical representation 

The symbol, type, mathematical model element, metamodel element and description for 

every model element in IBD model are shown in Table 7.   

 Symbol  Type 
Mathematical 

model 
element  

Metamodel 
element 

Descriptions 

 
Block 𝑁𝐼𝐵𝐷  

It represents an entity, which is 
conceptual in nature during the initial 
phase of development but will be defined 
as part of the development process. 

 Port 𝑃𝐼𝐵𝐷   
It is defined as the specified interaction 
point on a block.  

 Connection 𝐴𝐼𝐵𝐷
𝐶𝑜𝑛  

It represents a connection relation. 

 
Input port 𝐴𝐼𝐵𝐷

𝐼𝑛𝑝𝑢𝑡
  

It represents an input relation. 

 
Output port 𝐴𝐼𝐵𝐷

𝑂𝑢𝑡𝑝𝑢𝑡
 

 

It represents an output relation. 

Table 7. Graphical representation of the model elements in IBD model 

 

4.2.2.4 Example 

: 𝑃𝐼𝐵𝐷
𝐸𝑆  

: 𝑃𝐼𝐵𝐷
𝐸𝑆  

∶ 𝐴𝐼𝐵𝐷
𝑂𝑢𝑡𝑝𝑢𝑡

  HW4_P1 in MS1_HW4

∶ 𝐴𝐼𝐵𝐷
𝐼𝑛𝑝𝑢𝑡

 HW5_P1 in MS1_HW5 

: 𝑁𝐼𝐵𝐷
𝑀𝑆  

: 𝑁𝐼𝐵𝐷
𝑀𝑆  

∶ 𝐴𝐼𝐵𝐷
𝐶𝑜𝑛  HW4_P1 to HW5_P1

HW5_P1

HW4_P1

MS1_HW4

MS1_HW5

 

Figure 81: An example of IBD Model 
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Figure 81 illustrates one model in 𝑀𝐼𝐵𝐷. The block MS1_HW4 has one port HW4_P1, which 

connects to the port HW5_P1 of the block MS1_HW5.   

4.2.3 Semantical mapping  

The transformation function 𝑠𝑒𝑚𝑖  is defined as an unidirectional bijective transformation 

function from IBD models in 𝑀𝐼𝐵𝐷  to IBD graphs in 𝐺𝐼𝐵𝐷  (see Definition 22). This 

transformation function can be used for an equivalent transformation of a set of IBD models 

on the model-based description layer to a set of graphs on the formal semantical foundation 

layer.  

4.2.3.1 Mathematical foundation  

The domain of function 𝑠𝑒𝑚𝑖 is a set of IBD models 𝑀𝐼𝐵𝐷 and the codomain is a set of graphs 

𝐺𝐼𝐵𝐷.  

Definition 40 
𝑠𝑒𝑚𝑖 ≔ 𝑀𝐼𝐵𝐷 → 𝐺𝐼𝐵𝐷 

 

Like the transformation function 𝑠𝑒𝑚𝑣, the function 𝑠𝑒𝑚𝑖 is an equivalent mapping function 

for a model 𝑚𝐼𝐵𝐷 in 𝑀𝐼𝐵𝐷 to a graph 𝑔𝐼𝐵𝐷 in 𝐺𝐼𝐵𝐷, if it meet three requirements: elements 

identify, structure identify and information identify (see section 4.1.3.1). The domain and 

codomain of function are  𝑀𝐼𝐵𝐷 and 𝐺𝐼𝐵𝐷.  

 
(∀𝑚𝐼𝐵𝐷 ∈ 𝑀𝐼𝐵𝐷) ∃  {𝑔𝐼𝐵𝐷 ∈ 𝐺𝐼𝐵𝐷| 𝑠𝑒𝑚𝑖(𝑚𝐼𝐵𝐷) = 𝑔𝐼𝐵𝐷} 

 

 

4.2.3.2 Graphical representation  

Table 8 shows a comparison of model/relation elements in an IBD model on the model-based 

description layer and on the formal semantical foundation layer.  

 

Model-based description of IBD Formal semantical foundation of IBD 

Symbol  Name 
Metamodel 

element 
Sybol Name 

Metamodel 
element 

 
Block 

  
Vertex 

 

 Port   
Vertex 
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 Connection   
 

Edge 
 

 
Input  

  
Edge 

 

 
Output  

  
Edge 

 

Table 8. Comparison table for semantical mapping of elements in an IBD model 

 

Figure 82 shows a graphical representation for the semantical mapping from an IBD model 

𝑚𝐼𝐵𝐷 to an IBD graph 𝑔𝐼𝐵𝐷.  

**

1
1

1

1

1

*

*

0/1

* *

0/1

Property 

+ 𝐾𝑒𝑦𝑉𝑆𝑀  

+ 𝑉𝑎𝑙𝑢𝑒𝑉𝑆𝑀  

+ ID + ID

1

1 *

*𝑏𝑒𝑔𝐼𝐵𝐷  

𝑒𝑛𝑑𝐼𝐵𝐷  

𝐴𝐼𝐵𝐷  

𝑁𝐼𝐵𝐷  𝑃𝐼𝐵𝐷  

𝑚𝐼𝐵𝐷  

𝑁𝐼𝐵𝐷
𝐼𝑆  

𝑁𝐼𝐵𝐷
𝐼𝑆−𝐻𝑊  

𝑁𝐼𝐵𝐷
𝐼𝑆−𝑆𝑊  

𝑁𝐼𝐵𝐷
𝑃𝑆  

𝑁𝐼𝐵𝐷
𝐶𝑆−𝐻𝑊  

𝑁𝑀_𝐼𝐵𝐷
𝑆𝑊  

𝑁𝐼𝐵𝐷
𝐶𝑆  

𝑁𝐼𝐵𝐷
𝑀𝑆  

1

**

𝑃𝐼𝐵𝐷
𝐻𝑀𝐼  

𝑃𝐼𝐵𝐷
𝑀  

𝑃𝐼𝐵𝐷
𝐸𝑆  

𝑃𝐼𝐵𝐷
𝐶  

𝑃𝐼𝐵𝐷
𝑆  

𝑃𝐼𝐵𝐷
𝐸  𝑁𝐼𝐵𝐷

𝑀𝑆−𝐻𝑊  

𝑁𝐼𝐵𝐷
𝑅𝐹  

𝑁𝐼𝐵𝐷
𝑅𝐹−𝐻 

𝑁𝐼𝐵𝐷
𝑅𝐹−𝐶𝑃𝑆  

𝐾𝐼𝐵𝐷  𝐴𝐼𝐵𝐷
𝐶𝑜𝑛  

𝐴𝐼𝐵𝐷
𝐼𝑛𝑝𝑢𝑡

 

+ ID + ID

𝑀𝐸𝐼𝐵𝐷  

𝑠𝑟𝑐𝐼𝐵𝐷  

𝑡𝑔𝑡𝐼𝐵𝐷  
𝑉𝐼𝐵𝐷  𝐸𝐼𝐵𝐷  

𝑔𝐼𝐵𝐷  

𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑠𝐼𝐵𝐷  𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑠𝐼𝐵𝐷  

𝐴𝐼𝐵𝐷
𝑂𝑢𝑡𝑝𝑢𝑡

 

Elements 
identify

Structure 
identify

Information 
identify

 

Figure 82: Graphical representation of the semantical mapping for IBD models 
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4.2.3.3 Example  

Figure 83 illustrates an example of semantical mapping from one IBD model 𝑚𝑏 ∈ 𝑀𝐼𝐵𝐷 to a 

graph 𝑔𝑏 ∈ 𝐺𝐼𝐵𝐷.   

𝑠𝑒𝑚𝑖
     

HW4_

P1

(HW4_P1, HW5_P1)

MS1_HW

4

(MS1_HW4 ,HW4_P1)

Type: Port ES

Type: MS-HW

𝑔𝑏 ∈ 𝐺𝐼𝐵𝐷  

HW5_

P1

Type: Port ES

MS1_H

W5 Type: MS-HW

(HW5_P1, MS1_HW5)

𝑚𝑏 ∈ 𝑀𝐼𝐵𝐷  

Type: Connection

Type: Input port

: 𝑃𝐼𝐵𝐷
𝐸𝑆  

: 𝑃𝐼𝐵𝐷
𝐸𝑆  

∶ 𝐴𝐼𝐵𝐷
𝑂𝑢𝑡𝑝𝑢𝑡

  HW4_P1 in MS1_HW4

∶ 𝐴𝐼𝐵𝐷
𝐼𝑛𝑝𝑢𝑡

 HW5_P1 in MS1_HW5 

: 𝑁𝐼𝐵𝐷
𝑀𝑆  

: 𝑁𝐼𝐵𝐷
𝑀𝑆  

∶ 𝐴𝐼𝐵𝐷
𝐶𝑜𝑛  HW4_P1 to HW5_P1

HW5_P1

HW4_P1

MS1_HW4

MS1_HW5

Type: Output port

:𝑉𝐼𝐵𝐷  

:𝐸𝐼𝐵𝐷  

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝐸𝐼𝐵𝐷  

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝐸𝐼𝐵𝐷  

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝑉𝐼𝐵𝐷  

:𝑉𝐼𝐵𝐷  

:𝑉𝐼𝐵𝐷  

 

Figure 83: Example of semantical mapping of IBD 

 

4.2.4 Concrete modeling  

The concrete modeling is described with a unidirectional bijective transformation function 

𝑐𝑜𝑛𝑖 (see Definition 22) from a set of graphs on the formal semantical foundation layer to a 

set of IBD models on the model-based description layer. 

4.2.4.1 Mathematical foundation  

The domain of function 𝑐𝑜𝑛𝑖 is a set of IBD graphs and its codomain is a set of IBD models.  

Definition 41 
𝑐𝑜𝑛𝑖 ≔ 𝐺𝐼𝐵𝐷 → 𝑀𝐼𝐵𝐷 

 
 

The function 𝑐𝑜𝑛𝑖 is an equivalent mapping function, if it meet three requirements: elements 

identify, information identify and structure identify (see section 4.1.4.1). 

 
(∀𝑔𝐼𝐵𝐷 ∈ 𝐺𝐼𝐵𝐷) ∃  {𝑚𝐼𝐵𝐷 ∈ 𝑀𝐼𝐵𝐷| 𝑐𝑜𝑛𝑖(𝑔𝐼𝐵𝐷) = 𝑚𝐼𝐵𝐷} 

 

4.2.4.2 Graphical description  

The elements comparing by using of the symbol, type and Metamodel element between an 

IBD graph on formal semantical foundation layer and an IBD model on model-based 

description layer is illustrated with the Table 9.  
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Formal semantical foundation of IBD Model-based description of IBD 

Symbol Type  
Metamodel 

element 
Symbol Type 

Metamod
el element 

 
Vertex 

  or  or  
Model 

element   

 
Edge 

 or  or   

Relation 
element  

Table 9. Comparison table for concrete modeling of elements in an IBD graph 

The graphical representation in Figure 84 shows, how an IBD graph is reverted to an IBD model 

by using concrete modeling.   

**

1
1

1

1

1

*

*

0/1

* *

0/1

Property 

+ 𝐾𝑒𝑦𝑉𝑆𝑀  

+ 𝑉𝑎𝑙𝑢𝑒𝑉𝑆𝑀  

+ ID + ID

1

1 *

*𝑏𝑒𝑔𝐼𝐵𝐷  

𝑒𝑛𝑑𝐼𝐵𝐷  

𝐴𝐼𝐵𝐷  

𝑁𝐼𝐵𝐷  𝑃𝐼𝐵𝐷  

𝑚𝐼𝐵𝐷  

𝑁𝐼𝐵𝐷
𝐼𝑆  

𝑁𝐼𝐵𝐷
𝐼𝑆−𝐻𝑊  

𝑁𝐼𝐵𝐷
𝐼𝑆−𝑆𝑊  

𝑁𝐼𝐵𝐷
𝑃𝑆  

𝑁𝐼𝐵𝐷
𝐶𝑆−𝐻𝑊  

𝑁𝑀_𝐼𝐵𝐷
𝑆𝑊  

𝑁𝐼𝐵𝐷
𝐶𝑆  

𝑁𝐼𝐵𝐷
𝑀𝑆  

1

**

𝑃𝐼𝐵𝐷
𝐻𝑀𝐼  

𝑃𝐼𝐵𝐷
𝑀  

𝑃𝐼𝐵𝐷
𝐸𝑆  

𝑃𝐼𝐵𝐷
𝐶  

𝑃𝐼𝐵𝐷
𝑆  

𝑃𝐼𝐵𝐷
𝐸  𝑁𝐼𝐵𝐷

𝑀𝑆−𝐻𝑊  

𝑁𝐼𝐵𝐷
𝑅𝐹  

𝑁𝐼𝐵𝐷
𝑅𝐹−𝐻 

𝑁𝐼𝐵𝐷
𝑅𝐹−𝐶𝑃𝑆  

𝐾𝐼𝐵𝐷  𝐴𝐼𝐵𝐷
𝐶𝑜𝑛  

𝐴𝐼𝐵𝐷
𝐼𝑛𝑝𝑢𝑡

 

+ ID + ID

𝑀𝐸𝐼𝐵𝐷  

𝑠𝑟𝑐𝐼𝐵𝐷  

𝑡𝑔𝑡𝐼𝐵𝐷  
𝑉𝐼𝐵𝐷  𝐸𝐼𝐵𝐷  

𝑔𝐼𝐵𝐷  

𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑠𝐼𝐵𝐷  𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑠𝐼𝐵𝐷  

𝐴𝐼𝐵𝐷
𝑂𝑢𝑡𝑝𝑢𝑡

 

Elements 
identify

Structure 
identify

Information 
identify

 

Figure 84: Graphical representation of the concrete modeling for IBD graphs 
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4.2.4.3 Example  

Figure 85 illustrates a concrete modeling transformation from an IBD graph 𝑔𝑏  to an IBD 

model 𝑚𝑏.  

𝑐𝑜𝑛 𝑖
    

HW4_

P1

(HW4_P1, HW5_P1)

MS1_HW

4

(MS1_HW4 ,HW4_P1)

Type: Port ES

Type: MS-HW

𝑔𝑏 ∈ 𝐺𝐼𝐵𝐷  

HW5_

P1

Type: Port ES

MS1_H

W5 Type: MS-HW

(HW5_P1, MS1_HW5)

𝑚𝑏 ∈ 𝑀𝐼𝐵𝐷  

Type: Connection

Type: Input port

: 𝑃𝐼𝐵𝐷
𝐸𝑆  

: 𝑃𝐼𝐵𝐷
𝐸𝑆  

∶ 𝐴𝐼𝐵𝐷
𝑂𝑢𝑡𝑝𝑢𝑡

  HW4_P1 in MS1_HW4

∶ 𝐴𝐼𝐵𝐷
𝐼𝑛𝑝𝑢𝑡

 HW5_P1 in MS1_HW5 

: 𝑁𝐼𝐵𝐷
𝑀𝑆  

: 𝑁𝐼𝐵𝐷
𝑀𝑆  

∶ 𝐴𝐼𝐵𝐷
𝐶𝑜𝑛  HW4_P1 to HW5_P1

HW5_P1

HW4_P1

MS1_HW4

MS1_HW5

Type: Output port

:𝑉𝐼𝐵𝐷  

:𝐸𝐼𝐵𝐷  

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝐸𝐼𝐵𝐷  

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝐸𝐼𝐵𝐷  

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

:𝑉𝐼𝐵𝐷  

:𝑉𝐼𝐵𝐷  

:𝑉𝐼𝐵𝐷  

 

Figure 85: Example of concrete modeling of an IBD graph 

 

4.3 Formal mapping relation from VSM to IBD 

The mapping relationship from one VSM graph to one IBD graph is represented with a 

unidirectional mapping function ℎ𝑖  on the formal semantical foundation layer. On the model-

based description layer, the mapping relationship from one VSM model to one IBD model is 

represented with a unidirectional mapping function ℎ𝑚𝑖  (see Definition 23). A set of VSM 

graphs 𝐺𝑉𝑆𝑀  is mapped to a set of IBD graphs 𝐺𝐼𝐵𝐷  using a set of functions {ℎ𝑖}, and the 

mappings for a set of VSM models 𝑀𝑉𝑆𝑀 to a set of IBD models 𝑀𝐼𝐵𝐷 is formed with a set of 

functions {ℎ𝑚𝑖} (See Figure 86).  

 

Figure 86: The mapping functions from VSM areas to IBD areas 
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The functions 𝑐𝑟𝑒𝑎𝑡𝑒𝐺 and 𝑐𝑟𝑒𝑎𝑡𝑒𝑀 represent that a VSM graph can be mapped with a set of 

functions {ℎ𝑖} and a VSM model can be mapped with a set of functions {ℎ𝑚𝑖}.  

Definition 42 
𝑐𝑟𝑒𝑎𝑡𝑒𝐺 ≔ 𝐺𝑉𝑆𝑀 → 𝑃({ℎ𝑖}) 

  
Definition 43 

𝑐𝑟𝑒𝑎𝑡𝑒𝑀 ≔ 𝑀𝑉𝑆𝑀 → 𝑃({ℎ𝑚𝑖}) 
 

 

4.3.1 Formal semantical foundation  

On the formal semantical foundation layer, a set of mapping functions ℎ𝑖  maps a set of VSM 

graphs to a set of IBD graphs.  

4.3.1.1 Mathematical foundation 

Every mapping function ℎ𝑖  is a one-to-one mapping from a VSM graph to an IBD graph.  

Definition 44 
ℎ𝑖 ≔ 𝐺𝑉𝑆𝑀 → 𝐺𝐼𝐵𝐷 

 

In graph theory, the mapping relationship between graphs, in essence, is the mapping 

relationships between the vertex sets and edge sets in different graphs [57] [16].  If a VSM 

graph is mapped to a IBD graph with mapping function ℎ𝑖, there exists a multivalued mapping 

function ℎ𝑣 , for every vertex in this VSM graph. This function ℎ𝑣  is a one-to-many and 

surjective mapping function.  

Definition 45 
ℎ𝑣 ≔ 𝑉𝑉𝑆𝑀 →  𝒫(𝑉𝐼𝐵𝐷) 

 

∀ℎ𝑖(𝑔𝑦) = 𝑔𝑑 ∃ ℎ𝑣 ≔ 𝑉𝑦 →  𝒫(𝑉𝑑)  

 
𝑔𝑦 ∈ 𝐺𝑉𝑆𝑀   

𝑔𝑑 ∈ 𝐺𝐼𝐵𝐷   
 

 

If a VSM graph 𝑔𝑦 is mapped to an IBD graph 𝑔𝑑, the function ℎ𝑣 maps every vertex in 𝑔𝑦 to 

a set of vertices in 𝑔𝑑. A vertex 𝑣 in a VSM graph 𝑔𝑦 can be mapped with a set of multivalued 

mapping functions. Every mapping result comprises a set of vertices in 𝑔𝑑, where this set of 

these vertices must be a subgraph in 𝑔𝑑 (see Definition 7).  
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(∀𝑣 ∈ 𝑉𝑦) ∃  {𝑣𝑗 ∈ 𝑉𝑑| ℎ𝑣(𝑣) = {𝑣𝑗}  ∧  𝑔{𝑣𝑗} ⊆  𝑔𝑑} 

 
𝑗 = 1,⋯ , 𝑛    𝑛 ∈ ℕ 

 
 

One vertex 𝑣𝑗 ∈ 𝑉𝑑 can be mapped by different 𝑣 in 𝑉𝑦. For instance, the vertex 8 in 𝑔𝑑,1 in 

Figure 87 is mapped by the vertices a and c in 𝑔𝑦. 

Because the mapping function 𝑝𝑣 in the definition of the path morphism in Definition 13 is 

also a mapping relationship from a set of vertices to a set of vertices. So the mapping function 

ℎ𝑣 can be also used to in the path morphism and the walk morphism (see Definition 14). 

 

𝑝𝑚(𝑝(𝑣1 , 𝑣𝑛)) ∶=  {𝑝𝑗({𝑣𝑖} , {𝑣𝑗})| 𝑝𝑗(𝑣𝑖  , 𝑣𝑗) ⊆ 𝑔2}  

 
𝑔𝑦 ∈ 𝐺𝑉𝑆𝑀  and  𝑔𝑑 ∈ 𝐺𝐼𝐵𝐷   

 
𝑝(𝑣1 , 𝑣𝑛) ⊆ 𝑔𝑦 

 
ℎ𝑣 ≔ 𝑉𝑉𝑆𝑀 →  𝒫(𝑉𝐼𝐵𝐷) 

 
ℎ𝑣(𝑣1):= {𝑣𝑖}    𝑣𝑖 ∈ 𝑉𝑑 
ℎ𝑣(𝑣𝑛) ∶=  {𝑣𝑗}    𝑣𝑗 ∈ 𝑉𝑑 

 
𝑖, 𝑗 = 1,⋯ , 𝑛    𝑛 ∈ ℕ 

 
 

A one-to-many (multivalued) and surjective mapping function ℎ𝑒 maps edges in 𝑔𝑦 to edges 

in 𝑔𝑑.  

Definition 46 
ℎ𝑒 ≔ 𝐸𝑉𝑆𝑀 → 𝒫(𝐸𝐼𝐵𝐷) 

 

∀ℎ𝑖(𝑔𝑦) = 𝑔𝑑 ∃ ℎ𝑒 ≔ 𝐸𝑦 →  𝒫(𝐸𝑑)  

 

Every edge in a VSM graph 𝑔𝑦 is allowed to be mapped with a set of multivalued mapping 

functions ℎ𝑒𝑖. 

 
(∀𝑒 ∈ 𝐸𝑦) ∃  {𝑒𝑖 ∈ 𝐸𝑑| ℎ𝑒(𝑒) = {𝑒𝑖} } 

 
𝑖 = 1,⋯ , 𝑛    𝑛 ∈ ℕ 
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4.3.1.2 Example 

An example for the mapping relationship from a VSM graph 𝑔𝑦  to an IBD graph 𝑔𝑑,1  is 

illustrated in Figure 87. In order to clearly show the mapping relationships, all of the attributes 

of every vertex and edges are described as invisible.   

𝑔𝑦 ∈ 𝐺𝑉𝑆𝑀  𝑔𝑑 ,1 ∈ 𝐺𝐼𝐵𝐷  

ℎ
→ b a

(a,b )

c

3

2

(2,3)

7

4

(4,6)

1

(1,2)

a

6 (6,7)

8

(7,8)

b 

(3,4)

(8,2)

c

 

Figure 87: An example of mapping relationship h 

 

Table 10 shows the mapping relationships ℎ𝑣 and ℎ𝑒 for every vertex and edge in graph 𝑔𝑦 in 

this example. Vertex 8 is shared with a and c. Edge (b’, c) maps to two edges (4,6) and (6,7) in 

IBD graph 𝑔𝑑,1.  

 

𝑣 ∈ 𝑉𝑉𝑆𝑀  ℎ𝑣(𝑣) 

a {𝑣1, 𝑣2, 𝑣8 } 

b’ {𝑣3, 𝑣4, } 

c {𝑣6, 𝑣7, 𝑣8} 

𝑒 ∈ 𝐸𝑉𝑆𝑀 ℎ𝑒(𝑒) 

(a,b’) {(2,3)} 

(b’,c) {(4,6), (6,7)} 

Table 10. Mapping relationship of every vertex and edge 
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4.3.2 Model-based description  

On the model-based description layer, the mapping relationship from a VSM model to a IBD 

model is formed with a mapping function ℎ𝑚𝑖.  

4.3.2.1 Mathematical foundation 

This ℎ𝑚𝑖  is defined as a one-to-one mapping from a set of VSM models 𝑀𝑉𝑆𝑀  to a set of IBD 

models 𝑀𝐼𝐵𝐷.  

 Definition 47 
ℎ𝑚𝑖 ≔ 𝑀𝑉𝑆𝑀 → 𝑀𝐼𝐵𝐷 

 
 

If a VSM model 𝑚𝑦 is mapped to an IBD model 𝑚𝑑 with mapping function ℎ𝑚𝑖, there is a one-

to-many and surjective mapping function ℎ𝑚𝑚 to map every model elements in 𝑚𝑦 to a set 

of model elements in 𝑚𝑑.  

Definition 48 
ℎ𝑚𝑚 ≔ 𝑀𝐸𝑉𝑆𝑀 → 𝒫(𝑀𝐸𝐼𝐵𝐷)   

 

∀ℎ𝑚𝑖(𝑚𝑦) = 𝑚𝑑 ∃ ℎ𝑚𝑚 ≔ 𝑀𝐸𝑦 →  𝒫(𝑀𝐸𝑑)  

 
𝑚𝑦 ∈ 𝑀𝑉𝑆𝑀   

𝑚𝑑 ∈ 𝑀𝐼𝐵𝐷   
 

In this mapping, every model elements in this set must be connected as an integrated sub-

model in model 𝑚𝑑 (see Definition 20) and one model element 𝑚𝑒𝑖 ∈ 𝑀𝐸𝑑 can be shared for 

using by different 𝑚𝑒 in 𝑀𝐸𝑦. 

 

 (∀𝑚𝑒 ∈ 𝑀𝐸𝑦) ∃  {𝑚𝑒𝑖 ∈ 𝑀𝐸𝑑| ℎ𝑚𝑚(𝑚𝑒) = {𝑚𝑒𝑗}  ∧  𝑚{𝑚𝑒𝑗} ≤ 𝑚𝑑} 

 
𝑗 = 1,⋯ , 𝑛    𝑛 ∈ ℕ 

 

A one-to-many and surjective mapping function ℎ𝑚𝑎 maps any relation element in 𝑚𝑦 to a 

set of relation elements in 𝑚𝑑.  

Definition 49 
ℎ𝑚𝑎 ≔ 𝐴𝑉𝑆𝑀 → 𝒫(𝐴𝐼𝐵𝐷) 

 

∀ℎ𝑚𝑖(𝑚𝑦) = 𝑚𝑑  ∃ ℎ𝑚𝑎 ≔ 𝐴𝑦 →  𝒫(𝐴𝑑)  
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Every relation element in a VSM model  𝑚𝑦 is allowed to be mapped with a set of multivalued 

mapping functions ℎ𝑚𝑎𝑖. One relation element in 𝑚𝑑 can be also shared by different relation 

elements in 𝑚𝑦. 

 
(∀𝑎 ∈ 𝐴𝑦) ∃  {𝑎𝑖 ∈ 𝐴𝑑| ℎ𝑚𝑎(𝑎) = {𝑎𝑖} } 

 
𝑖 = 1,⋯ , 𝑛    𝑛 ∈ ℕ 

 

4.3.2.2 Example  

The Figure 88 illustrates the example for a mapping ℎ𝑚 from a VSM model 𝑚𝑦  to an IBD 

model 𝑚𝑑 . In order to clearly represent the mapping relationships, the description 

information aside from the name in the VSM model is not displayed in all model elements.   

Read Color

Conveyer belt 1

Input 1 Conveyer 
belt 1 to Read 

Color

ℎ𝑚
   

𝑚𝑦 ∈ 𝑀𝑉𝑆𝑀  
𝑀𝑆1_𝐻𝑊6 

𝐻𝑊6_𝑃1  

Conveyer belt 1

𝑀𝑆1_𝐻𝑊2  

𝑀𝑆1_𝐾3 

𝐻𝑊6_𝑃2 

𝐻𝑊2_𝑃1 

Read Color

𝑚𝑑 ∈ 𝑀𝐼𝐵𝐷  

𝐻𝑊5_𝑃1 

𝑀𝑆1_𝐻𝑊5  

𝐻𝑊5_𝑃4  

𝐻𝑊5_𝑃3 

𝐻𝑊5_𝑃2 𝐻𝑊5_𝑃5 

𝐻𝑊4_𝑃1 

𝑀𝑆1_𝐻𝑊4 

𝑀𝑆1_𝐾1 

𝐻𝑊2_𝑃2 

𝑀𝑆1_𝐾4 

 

Figure 88: Example of mapping relationship hm 

 

In Table 11, every model element and relation element in 𝑚𝑦 is mapped with functions ℎ𝑚𝑚 

and ℎ𝑚𝑎 to the model elements and relation elements in 𝑚𝑑.  

𝑚𝑦  ℎ𝑚𝑚(𝑚𝑦) 

Conveyer belt 1 {𝑀𝑆1_𝐻𝑊4,𝐻𝑊4_𝑃1,𝑀𝑆1_𝐾1 } 

Read color process  {

𝑀𝑆1_𝐻𝑊5,𝐻𝑊5_𝑃1, 𝐻𝑊5_𝑃2
𝐻𝑊5_𝑃3, 𝐻𝑊5_𝑃4, 𝐻𝑊5_𝑃5,

𝑀𝑆1_𝐾4,𝑀𝑆1_𝐻𝑊6,𝐻𝑊6_𝑃1, 𝐻𝑊6_𝑃2,
 𝑀𝑆1_𝐾3,𝑀𝑆1_𝐻𝑊2,𝐻𝑊2_𝑃1, 𝐻𝑊2_𝑃2

} 

𝑎𝑦 ℎ𝑚𝑎(𝑎𝑦) 

Input 1 Conveyer belt 1 
to read color 

{( 𝑀𝑆1_𝐾1, 𝐻𝑊5_𝑃1)} 

Table 11. Mapping relationship of every model and relation element 
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4.4 Formal managed evolution of LL-CPSs  

In this section, the formal descriptions for the managed evolution processes of LL-CPSs are 

introduced on the formal semantical foundation layer and model-based description layer. An 

ongoing LL-CPS is defined as the existing status of this system. The managed evolved status of 

this LL-CPS is defined as its targeted status.  The managed evolutions of a set of LL-CPSs from 

existing statuses to targeted statuses are represented with a set of unidirectional evolution 

functions {𝑓𝑚𝑖} on the model-based description layer. On the formal semantical foundation 

layer, the managed evolutions are represented with a set of unidirectional functions {𝑓𝑖} (See 

Figure 89).  

 

Figure 89: The managed evolution functions  

4.4.1 Formal semantical foundation  

On the formal semantical foundation layer, a set of evolution functions {𝑓𝑖} maps a set of 

graphs 𝐺𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 , which represents a set of ongoing LL-CPSs, to a set of graphs 𝐺𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 

representing a set of targeted status of the ongoing LL-CPSs.  

4.4.1.1 Mathematical foundation 

The evolution function 𝑓𝑖  is a unidirectional function from a set of graphs 𝐺𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 to a set of 

graphs 𝐺𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑. A set of these functions is represented by {𝑓𝑖}. 

Definition 50 
𝑓𝑖 ≔ 𝐺𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 → 𝐺𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 

 
𝐺𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 ⊂ 𝐺𝑖𝑛 

𝐺𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 ⊂ 𝐺𝑖𝑛 
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Every evolution function 𝑓𝑖   can be represented with a system of linear equations, as below.  

 
𝑔𝑐 ∈ 𝐺𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔        and        𝑔𝑑 ∈ 𝐺𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 

 
𝑓𝑖(𝑔𝑐) =  𝑔𝑑 

 
there is a system of linear equations:   

𝑔𝑑 = 𝑔𝑐 + 𝐺𝑐
∆  

 

𝐺𝑐
∆ = 𝐺𝑐

+ − 𝐺𝑐
−   

 

𝐺𝑐
+ = {𝑔𝑐

+𝑖| 𝑔𝑑 − 𝑔𝑐} 

 

𝐺𝑐
− = {𝑔𝑐

−𝑗
| 𝑔𝑐 − 𝑔𝑑} 

 

𝑔𝑐
−𝑗

⊆ 𝑔𝑐      𝑔𝑐
+𝑖 ⊆ 𝑔𝑑  

 
∀𝑖, 𝑗 = 1,⋯ , 𝑛       𝑛 ∈ ℕ 

 

Operators Explanatory Notes:  

 𝑔𝑐 + 𝐺𝑐
∆ means the union graph of graph 𝑔𝑐 and a set of graphs 𝐺𝑐

∆.  

 𝐺𝑐
+ = {𝑔𝑐

+𝑖| 𝑔𝑑 − 𝑔𝑐} is a set of subgraphs in 𝑔𝑑, which are different compared with 

𝑔𝑐. Every subgraph must be a connected graph. For this reason, these subgraphs can 

include some vertices in 𝑔𝑐, which are directly connected with the vertices not in 𝑔𝑐. 

Accordingly, each subgraph 𝑔𝑐
+𝑖 comprises a set of the new added vertices and edges 

with the direct connected existing vertices and edges.  

 𝐺𝑐
− = {𝑔𝑐

−𝑗
| 𝑔𝑐 − 𝑔𝑑} is a set of subgraphs in 𝑔𝑐, which are different compared with 

𝑔𝑑. Every subgraph must be a connected graph, although it cannot include any vertex 

or edge in 𝑔𝑑 . Therefore, each subgraph 𝑔𝑐
−𝑗

 is composed of a set of the deleted 

vertices and edges.  

4.4.1.2 Example 

Figure 90 illustrates managed evolutions of an ongoing LL-CPS. A set of functions {𝑓1, 𝑓2} 

represents the managed evolutions from this ongoing LL-CPS representing with graph 𝑔𝑐 to 

two graphs 𝑔𝑑,1 and 𝑔𝑑,2, where the targeted status of this ongoing LL-CPS is expressed with 

two different graphs 𝑔𝑑,1 and 𝑔𝑑,2 on the formal semantical foundation layer. The attributes 

of every vertex and edges are unseen to clearly express the managed evolution.  

In this example, the graph 𝑔𝑑,1 shows one possible reconstruction for the targeted status of 

the ongoing LL-CPS, where vertices 4 and 5 are new added. According to the operation rules, 
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the remaining vertex 3 has to be added to 𝑔𝑐
+1, in order to obtain the new added edge (3,4) 

and build into the graph structure.  

For 𝑓1 there are: 

𝐺𝑐
+ = {𝑔𝑐

+𝑖| 𝑔𝑑,1 − 𝑔𝑐} = {𝑔𝑐
+1(3,4,5)} 

 

𝐺𝑐
− = {𝑔𝑐

−𝑗
| 𝑔𝑐 − 𝑔𝑑,1} = ∅ 

 

 

2

1

(1,2)

𝑔𝑑 ,2 ∈ 𝐺𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑  

4

(4,5)

5

(2,5)

3

2

(2,3)

1

(1,2)

𝑔𝑑 ,1 ∈ 𝐺𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑  

4(3,4)

5

(4,5)

3

2

(2,3)

1

(1,2)

𝑔𝑐 ∈ 𝐺𝑒𝑥𝑖𝑠𝑡 𝑖𝑛𝑔  

𝑓1  

𝑓2 

 

Figure 90: Example of two managed evolution functions on the formal semantical foundation layer 

 

Graph 𝑔𝑑,2 shows another evolved possibility for the targeted status of the ongoing LL-CPS, 

where vertices 4 and 5 are new added and vertex 3 is formed as a deleted vertex.  

 

For 𝑓2 there are: 

𝐺𝑐
+ = {𝑔𝑐

+𝑖| (𝑔𝑑,2 − 𝑔𝑐)} = {𝑔𝑐
+1(2,4,5)} 

 

𝐺𝑐
− = {𝑔𝑐

−𝑗
| 𝑔𝑐 − 𝑔𝑑,2} = {𝑔𝑐

−1(3)} 
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4.4.2 Model-based description 

On the model-based description layer, the existing LL-CPSs and their targeted statuses are 

formed with a set of models 𝑀𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 and a set of models 𝑀𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑. The managed evolution 

relationships from 𝑀𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 to 𝑀𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 are represented with a set of functions {𝑓𝑚𝑖}. 

4.4.2.1 Mathematical foundation 

A function 𝑓𝑚𝑖 is a unidirectional function from 𝑀𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 to 𝑀𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑. 

Definition 51 
𝑓𝑚𝑖 ≔ 𝑀𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 → 𝑀𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 

 
𝑀𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 ⊂ 𝑀 

𝑀𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 ⊂ 𝑀 

 
 

The linear equations below can be used to represent this evolution function 𝑓𝑚𝑖.  

 
𝑚𝑐 ∈ 𝑀𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔    and     𝑚𝑑 ∈ 𝑀𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 

 
𝑓𝑚𝑖(𝑚𝑐) = 𝑚𝑑 

 
there is a system of linear equations:   

𝑚𝑑 = 𝑚𝑐 ⊕𝑀𝑐
∆ 

 

𝑀𝑐
∆ = 𝑀𝑐

+ ⊖𝑀𝑐
− 

 

𝑀𝑐
+ = {𝑚𝑐

+𝑖| 𝑚𝑑 ⊖ 𝑚𝑐} 

 

𝑀𝑐
− = {𝑚𝑐

−𝑗
| 𝑚𝑐 ⊖ 𝑚𝑑} 

  

𝑚𝑐
−𝑗

≤ 𝑚𝑐      𝑚𝑐
+𝑖 ≤ 𝑚𝑑   

 
∀𝑖, 𝑗 = 1,⋯ , 𝑛       𝑛 ∈ ℕ 

Operators Explanatory Notes:  

 𝑚𝑐 ⊕𝑀𝑐
∆  means an integrated system of the model 𝑚𝑐  with a set of models: 𝑀𝑐

∆ , 

which represents all of changes during the managed evolution of 𝑚𝑐.  

 𝑀𝑐
+ = {𝑚𝑐

+𝑖| 𝑚𝑑 ⊖ 𝑚𝑐} is a set of sub-models 𝑚𝑐
+𝑖 in model 𝑚𝑑 compared with 𝑚𝑐. 

Every sub-model must be an integrated system and must include the elements in 𝑚𝑐, 

which are direct linked with the elements that are not in 𝑚𝑐. Accordingly, every sub-

model is composed of a set of the new added elements and their direct connected 

existing elements. 
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 𝑀𝑐
− = {𝑚𝑐

−𝑖| 𝑚𝑐 ⊖ 𝑚𝑑}  means a set of sub-models 𝑚𝑐
−𝑖 in model 𝑚𝑐 compared with 

𝑚𝑑. Every sub-model must be an integrated system, although it cannot include any 

element in 𝑚𝑐 . Therefore, every sub-model is only composed with the deleted 

elements.  

4.4.2.2 Example 

Figure 91 shows an example of a set of managed evolution functions {𝑓𝑚1, 𝑓𝑚2}. A model 𝑚𝑐 

represents the existing status of an ongoing LL-CPS and the 𝑚𝑑,1  and 𝑚𝑑,2  express two 

different models for the targeted status of the same LL-CPS.  In order to clearly represent the 

changes during managed evolution of LL-CPS, the other description information aside from 

the ID is not displayed in every model element.   

𝑓𝑚1 

𝑓𝑚2 

𝑚𝑑 ,1 ∈ 𝑀𝐼𝐵𝐷  

𝑚𝑐 ∈ 𝑀𝐼𝐵𝐷  

MS1_HW5

MS1_HW4

HW4_P1

MS1_K1

HW5_P1

HW5_P2

HW5_P3

HW5_P4

HW5_P5

MS1_HW5

MS1_HW4

HW4_P1
MS1_K1

HW5_P1
HW5_P2

HW5_P3

HW5_P4

HW5_P5

MS1_HW1

HW1_P1MS1_K2

HW1_P2

𝑚𝑑 ,2 ∈ 𝑀𝐼𝐵𝐷  

MS1_HW5

HW5_P1

HW5_P2

HW5_P3

HW5_P4

HW5_P5

MS1_HW6

HW6_P2

HW6_P1

MS1_K4

 

Figure 91: Example of two managed evolution functions on the model-based description layer 

 

In this example, model 𝑚𝑑,1  shows an evolved possibility for the targeted status of the 

ongoing LL-CPS, where the targeted status is implemented with a new system, which is 

integrated a new hardware MS1-HW1 on the existing model 𝑚𝑐.   

For 𝑓𝑚1 there are: 
 

𝑀𝑐
+ = {𝑚𝑐

+𝑖| 𝑚𝑑,1⊖ 𝑚𝑐} = {𝑚𝑐
+1 (

𝐻𝑊5_𝑃5,𝑀𝑆1_𝐾2,𝑀𝑆1_𝐻𝑊1,
𝐻𝑊1_𝑃1,𝐻𝑊1_𝑃2

)} 

 

𝑀𝑐
− = {𝑚𝑐

−𝑗
| 𝑚𝑐 ⊖ 𝑚𝑑,1} = ∅ 
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The 𝑚𝑑,2  shows another evolved possibility for the targeted status during the managed 

evolution of LL-CPS.  

For 𝑓𝑚2 there are: 
 

𝑀𝑐
+ = {𝑚𝑐

+𝑖| 𝑚𝑑,2⊖ 𝑚𝑐} = {𝑚𝑐
+1 (

𝐻𝑊5_𝑃4,𝑀𝑆1_𝐾4,𝑀𝑆1_𝐻𝑊6,
𝐻𝑊6_𝑃1,𝐻𝑊6_𝑃2

)} 

 

𝑀𝑐
− = {𝑚𝑐

−𝑗
| 𝑚𝑐 ⊖ 𝑚𝑑,2} = {𝑚𝑐

−1 (
𝑀𝑆1_𝐾1,𝑀𝑆1_𝐻𝑊4,

𝐻𝑊4_𝑃1
)} 

 
 

In 𝑚𝑑,2, the hardware MS1-HW5 with its ports is retained and connects with a new hardware 

MS1_HW6 by using the ports HW5_P4 and HW6_P1. A connector MS1_K4 links these two 

ports together. The hardware MS1_HW4 with its port HW4_P1 is deleted in the targeted 

status.  
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5 Solution Approach Overview 

Content  
 

 
5.1 Problems formalization 
 
5.2 Semantical mapping 
 
5.3 Generating graph solutions 
    5.3.1 Reforming the mapping domain  
    5.3.2 Creating the mapping codomain 
    5.3.3 Path morphism 
    5.3.4 Graphs combination 
 
5.4 Concrete modeling 
 
5.5 Optimizing the model solutions 

 

 

 
After the introduction of the formal descriptions and transformations of the managed 

evolution of LL-CPSs, the problems introduced in chapter 3 will be formalized in this chapter 

by using the formal descriptions and transformations. On this basis, an approach is introduced 

to solute the problems during the managed evolution of LL-CPS. 

Section 5.1 introduces the formalization of the start position for the managed evolution of a 

LL-CPS by using the cube model introduced in chapter 4. In section 5.2, the semantical 

mapping functions will be used for the equivalently transformations of the models at the start 

position from the model-based description layer to the formal semantical foundation layer. 

Section 5.3 introduces how to generate a set of graph solutions on the formal semantical 

foundation layer, which are generated from the changes during the managed evolution of the 

LL-CPS. Every graph solution in this set represents one possible solution for the targeted status 

of the LL-CPS. In section 5.4, these graph solutions will be equivalently transformed from the 

formal semantical foundation layer to a set models on the model-based description layer, 

thereon every model must satisfy the combination rules in modeling method and the 

execution sequences of the development requirements. The models, which cannot satisfy the 

combination rules and execution sequences will be deleted from this set.  

In section 5.5, a model will be determined that represents the local optimal costs of system 

reconstruction during the managed evolution of this LL-CPS. Accordingly, the problems during 

managed evolution of LL-CPS are solved by using this approach.  

Figure 92 shows the processes of the approach to solve the problems during the managed 

evolution of LL-CPS and the arrangement of sections in this chapter.  
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Figure 92: The processes of the approach 
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5.1 Problems formalization 

Figure 93 shows the start position of the managed evolution of a LL-CPS, which is 

illustrated using the conveyor system with ASRS in chapter 3. In this example, the 

existing status of this LL-CPS named also as the ongoing LL-CPS is described concurrently 

with two modeling methods: VSM and IBD. There is an inherent mapping relationship 

from the elements in the VSM model to the elements in the IBD model, when both 

models describe the same LL-CPS. For instance, a conveyor belt with a RFID read/write 

sensor is modeled with a process element in the VSM model and modeled as a set of 

model components in the IBD model. Therefore, this process element is mapped to this 

set of model components from the VSM model to the IBD model.  

The targeted status of this LL-CPS is clearly described with a VSM model. The managed 

evolution from the existing status to the targeted status of this LL-CPS is defined with an 

evolution relationship from one VSM model to another. However, in this start position 

the IBD model, which describes the targeted status of this LL-CPS, is unknown. The 

mapping relationships for the new added model elements and relation elements in the 

VSM model describing the targeted status are unknown. For instance, the new added 

process element “read color” in the VSM model for the targeted status does not have 

any mapping relationship to the model elements in the IBD model (see Figure 93). The 

evolution relationship for the existing IBD model is unknown too. 

 

Figure 93: Example of the start position of the managed evolution of a LL-CPS 
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The objective of this approach is to generate a new IBD model that represents the 

targeted status of this LL-CPS as same as the VSM model. At the same time, the managed 

evolution from the existing IBD model to the new IBD model must offer a local optimal 

costs of system reconstruction and controlled risks for system development.  

This start position is formalized with the cube model introduced in chapter 4. The three 

models, one mapping relationship and one evolution relationship in Figure 93 are all laid 

flat on the model-based description layer in the cube model. The VSM model for the 

ongoing LL-CPS is formalized with a model 𝑚𝑥 ∈ 𝑀𝑉𝑆𝑀,𝑒𝑥𝑖𝑠𝑡𝑒𝑑 and the IBD model for the 

same LL-CPS is formalized with a model 𝑚𝑐 ∈ 𝑀𝐼𝐵𝐷,𝑒𝑥𝑖𝑠𝑡𝑒𝑑. These two models are known. 

The mapping relationship from 𝑚𝑥 to 𝑚𝑐 is defined with a function ℎ𝑚𝑥. The mapping 

relationships for the model elements and relation elements from model 𝑚𝑥 to model 

𝑚𝑐 are represented with functions ℎ𝑚𝑚𝑥 and ℎ𝑚𝑎𝑥. These functions are also known.   

The targeted status of this LL-CPS is described with a VSM model 𝑚𝑦 ∈ 𝑀𝑉𝑆𝑀,𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑. 

The evolution relationship from 𝑚𝑥 to 𝑚𝑦 is formalized with a function 𝑓𝑚𝑥. The model 

𝑚𝑦 and the function𝑓𝑚𝑥 are known (see Figure 94).  

There are  
𝑚𝑥 ∈ 𝑀𝑉𝑆𝑀,𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔      

𝑚𝑦 ∈ 𝑀𝑉𝑆𝑀,𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 

𝑚𝑐 ∈ 𝑀𝐼𝐵𝐷,𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 

 and 
𝑓𝑚𝑥(𝑚𝑥) = 𝑚𝑦 

ℎ𝑚𝑥(𝑚𝑥) = 𝑚𝑐 
 for any  

∀𝑚𝑒𝑥 ∈ 𝑀𝐸𝑥          ∀𝑎𝑥 ∈ 𝐴𝑥 
 there are 

ℎ𝑚𝑚𝑥(𝑚𝑒𝑥) = {𝑚𝑒𝑐,𝑖} 
ℎ𝑚𝑎𝑥(𝑎𝑥) = {𝑎𝑐,𝑖} 

 
𝑚𝑒𝑐,𝑖 ∈ 𝑀𝐸𝑐           𝑎𝑐,𝑖 ∈ 𝐴𝑐  

 
𝑖 = 1,⋯ , 𝑛    𝑛 ∈ ℕ 

 

 

 

Figure 94: Formalization of the start position with the cube model 
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5.2 Semantical mapping  

All of the known VSM and IBD models will be equivalently transformed to graphs on the formal 

semantical foundation layer in this cube model. Such graphs represent different models with 

a universal form (see Figure 95). The equivalent transformation function 𝑠𝑒𝑚𝑣 transforms 

VSM model 𝑚𝑥  to graph 𝑔𝑥  and model 𝑚𝑦  to graph 𝑔𝑦 . The equivalent transformation 

function 𝑠𝑒𝑚𝑖 transforms IBD model 𝑚𝑐 to graph 𝑔𝑐 (see Definition 33 and Definition 40). 

𝑠𝑒𝑚𝑣(𝑚𝑥) = 𝑔𝑥 𝑠𝑒𝑚𝑣(𝑚𝑦) = 𝑔𝑦 𝑠𝑒𝑚𝑖(𝑚𝑐) = 𝑔𝑐 

 

The transformations of the model and relation elements to their corresponding vertices and 

edges have been introduced in sections 4.1.3 and 4.2.3. The description information of the 

model/relation elements is reformed and ordered into the attributes of the corresponding 

vertices and edges.  

 

 Figure 95: Semantical mapping with concrete example 

Because the 𝑠𝑒𝑚𝑣 and 𝑠𝑒𝑚𝑖 are used for equivalent transformations, the graphs 𝑔𝑥, 𝑔𝑦 and 

𝑔𝑐 on the formal semantical foundation layer can be understood as the projections of the 

models 𝑚𝑥 , 𝑚𝑦  and 𝑚𝑐 . The mapping relationship ℎ𝑥  from 𝑔𝑥  to 𝑔𝑐  and the evolution 

function 𝑓𝑥 from 𝑔𝑥  to 𝑔𝑦  are projected from the functions ℎ𝑚𝑥  and 𝑓𝑚𝑥 . The mapping 

functions ℎ𝑚𝑚𝑥 and ℎ𝑚𝑎𝑥 are projected to the mapping functions ℎ𝑣𝑥  and ℎ𝑒𝑥 for vertices 

and edges from 𝑔𝑥  to 𝑔𝑐 . The models and functions are known, therefore the projected 

graphs and functions are known. 

There are 
𝑔𝑥 ∈ 𝐺𝑉𝑆𝑀,𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔      

𝑔𝑦 ∈ 𝐺𝑉𝑆𝑀,𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 

𝑔𝑐 ∈ 𝐺𝐼𝐵𝐷,𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 
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 and  
𝑓𝑥(𝑔𝑥) = 𝑔𝑦 

ℎ𝑥(𝑔𝑥) = 𝑔𝑐 
 for any  

∀𝑣𝑥 ∈ 𝑉𝑥          ∀𝑒𝑥 ∈ 𝐸𝑥 
 there are 

ℎ𝑣𝑥(𝑣𝑥) = {𝑣𝑐,𝑖} 
ℎ𝑒𝑥(𝑒𝑥) = {𝑒𝑐,𝑖} 

 
𝑣𝑐,𝑖 ∈ 𝑉𝑐          𝑒𝑐,𝑖 ∈ 𝐸𝑐  

 
𝑖 = 1,⋯ , 𝑛    𝑛 ∈ ℕ 

 

5.3 Generating graph solutions  

All of the known models and functions at the start position of the managed evolution of a LL-

CPS have been equivalently transformed to the graphs and functions on the formal semantical 

foundation layer in the previous section. In this section, they will be used to generate a set of 

graphs 𝐺𝑑 = {𝑔𝑑,𝑖}  from the VSM domain to the IBD domain on the formal semantical 

foundation layer by using algorithms in graph theory. Each graph in this set represents an IBD 

graph for the targeted status of this LL-CPS named the graph solution. A set of functions {ℎ𝑦,𝑖} 

maps the graph 𝑔𝑦 to this set of graphs 𝐺𝑑 = {𝑔𝑑,𝑖} (see Figure 96).  

 

ℎ𝑦,𝑖(𝑔𝑦) = {𝑔𝑑,𝑖} = 𝐺𝑑 

  
𝑖 = 1,⋯ , 𝑛  𝑎𝑛𝑑 𝑛 ∈ ℕ 

 

 

Figure 96: Generating a set of graph solutions 
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Graph 𝑔𝑦 comprises two parts: the remaining vertices and edges and the new added vertices 

and edges during the managed evolution from 𝑔𝑥 to 𝑔𝑦.  By using the linear equations of the 

managed evolution function 𝑓𝑥 (see section 4.4.1), these two parts can be reformed with a set 

of subgraphs 𝐺𝑥
+ = {𝑔𝑥

+𝑗
} for all new added vertices and edges and a set of subgraphs 𝑔𝑦 −

𝐺𝑥
− for all remaining vertices and edges.  

  

𝐺𝑥
+ = {𝑔𝑥

+𝑖| 𝑔𝑦 − 𝑔𝑥} 

 

𝐺𝑥
− = {𝑔𝑥

−𝑗
| 𝑔𝑥 − 𝑔𝑦} 

 

𝑔𝑥
+𝑖 ⊆ 𝑔𝑦  

𝑔𝑥
−𝑗

⊆ 𝑔𝑥  
 

𝑖, 𝑗 = 1,⋯ , 𝑛       𝑛 ∈ ℕ 

 

Moreover, the mapping relationship from graph to graph is essentially the mapping for every 

vertex to vertices and edge to edges. For the remaining vertices and edges, the mapping 

functions ℎ𝑣𝑥  and ℎ𝑒𝑥 are used to map them to the vertices and edges in graph every 𝑔𝑑,𝑖 (see 

Definition 45 and Definition 46). For the new added vertices and edges, it is necessary to 

define two new mapping functions.    

  

∀𝑣 ∈ 𝑉𝑦∃ ℎ𝑣𝑦,𝑖(𝑣) = {
 ℎ𝑣𝑥(𝑣),             𝑖𝑓 𝑣 ∈ 𝑉𝑥 
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 1,       𝑖𝑓 𝑣 ∉ 𝑉𝑥

 

 

∀𝑒 ∈ 𝐸𝑦∃ ℎ𝑒𝑦,𝑖(𝑒) = {
 ℎ𝑒𝑥(𝑒),          𝑖𝑓 𝑒 ∈ 𝐸𝑥 
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 2,   𝑖𝑓 𝑒 ∉ 𝐸𝑥

 

 
𝑖 = 1,⋯ , 𝑛  𝑎𝑛𝑑 𝑛 ∈ ℕ 

 
 

5.3.1 Reforming the mapping domain 

The path morphism mapping function 𝑝𝑚 (see Definition 13 and section 4.3.1.1) is used to 

define these two new mapping functions: 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 1 and 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 2, for the new added 

vertices and edges in a VSM graph into vertices and edges in an IBD graph. The first step is 

reforming of the new added vertices and edges to paths, which are defined as the domain 

elements of the path morphism mapping function 𝑝𝑚.  

The set of subgraphs 𝐺𝑥
+ includes all new added vertices and edges, which will be reformed 

into a set of paths {𝑝𝑙| 𝑙 = 1,⋯ , 𝑛    𝑛 ∈ ℕ}, and they must satisfy the following requirements. 
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 The set of paths {𝑝𝑙} is a finite set of paths and must include all of the new added 

vertices and edges in 𝑔𝑦 compared with 𝑔𝑥. 

 Any path has at least one remaining vertex or at most two remaining vertices. 

 Any path must have at least one new added vertex.  

 Any two remaining vertices cannot be adjacent in any path.    

 Any remaining vertex cannot lie between two new added vertices in any path. 

 Find out the paths including two remaining vertices as much as possible.  

 

It should be emphasized that if the remaining vertices in any path are deleted, the 

remaining part after the deleting must be a series of connected new added vertices or 

one single new added vertex. This method can be used to evaluate the reforming results.   

5.3.2 Creating the mapping codomain  

The elements in the codomain of the mapping function 𝑝𝑚 should also be paths in a graph. A 

foundation graph 𝑔𝑐
∗ is created to determine the codomain of 𝑝𝑚. The following steps show 

how to create this foundation graph 𝑔𝑐
∗. 

 

Figure 97: Complete directed graph K4 

 

 First of all, get all of the vertices in graph 𝑔𝑐, which represents the existing status of 

the LL-CPS.  

 Link those vertices together to build a complete directed graph 𝐾𝑛. The variate 𝑛 is 

the number of all vertices in 𝑔𝑐
∗. Figure 97 shows a complete directed graph 𝐾4.  

 Subsequently, insert a virtual vertex between every two existing vertices in 𝐾𝑛 and link 

the virtual vertex to the existing vertices to substitute the edges in 𝐾𝑛. This new graph 

is named 𝐾𝑛∗. Each virtual vertex is an IBD vertex and it must have an identifier, which 

comprises the ID of its front vertex and the ID of its following vertex. For instance, the 
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identifier of virtual vertex 𝑣𝑥(𝑎,𝑏) comprises the identifier “a” of its front vertex 𝑣𝑎 and 

the identifier “b” of its the following vertex 𝑣𝑏. The index “x” shows, the vertex is a 

virtual vertex. The attributes in a virtual vertex can be defined as an empty value or an 

infinite value. The empty virtual vertex represents a directed edge. An infinite value 

can be understood as a black box contains any number of vertices to represent any 

change during the managed evolution of a LL-CPS. A new added virtual edge is an IBD 

edge. Figure 98 shows an example of a graph 𝐾4∗.  

 Combine the graphs ℎ𝑥(𝑔𝑥 − 𝐺𝑥
−) and 𝐾𝑛∗ together to obtain a new directed graph 

𝑔𝑐
∗.   

 

 Figure 98: Directed graph K4* 

Because the set of graphs 𝐺𝑥
− includes all deleted vertices and edges, all remaining vertices 

and edges in VSM graph during the managed evolution of LL-CPS can be formed with 𝑔𝑥 −

𝐺𝑥
− . By using the mapping function ℎ𝑥 , all remaining vertices and edges in 𝑔𝑦  during the 

managed evolution of the LL-CPS are mapped to ℎ𝑥(𝑔𝑥 − 𝐺𝑥
−) that represents the remaining 

vertices and edges in 𝑔𝑐 during the managed evolution of this LL-CPS.  

  
ℎ𝑥(𝑔𝑥 − 𝐺𝑥

−) = ℎ𝑥(𝑔𝑥) − ℎ𝑥(𝐺𝑥
−) = 𝑔𝑐 − ℎ𝑥(𝐺𝑥

−) 
 

 

The virtual vertices can contain any number of attributes to represent any change during the 

managed evolution of a LL-CPS, thus the graph 𝑔𝑐
∗ is understood as a graph represents any 

changes during the managed evolution of this LL-CPS. Therefore, a set of paths {𝑝𝑙,𝑖} in the 

foundation graph 𝑔𝑐
∗ is defined as the codomain of mapping 𝑝𝑚. 



Chapter 5 - Solution Approach Overview 

118 
 

5.3.3 Path morphism  

The path morphism function 𝑝𝑚 (see Definition 13 and section 4.3.1.1) maps every path in a 

set of paths {𝑝𝑙} in graph 𝑔𝑦 to a set of paths {𝑝𝑙,𝑖} in graph 𝑔𝑥
∗ .  

 
𝑝𝑚 (𝑝𝑙) = {𝑝𝑙,𝑖} 

 
𝑝𝑙 = (𝑣1, … , 𝑣𝑛) 
𝑝𝑙,𝑖: = (𝑣1´, … , 𝑣𝑛´) 

 

𝑝𝑚(𝑣1) ∶=  {
ℎ𝑣𝑥(𝑣1),                                                                            𝑖𝑓 𝑣1 ∈ 𝑉𝑥
𝑎𝑛𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑣𝑒𝑟𝑡𝑒𝑥 𝑤𝑖𝑡ℎ ℎ𝑣𝑥(𝑣𝑛),    𝑖𝑓 𝑣1 ∉ 𝑉𝑥

 

 

𝑝𝑚(𝑣𝑛) ∶=  {
ℎ𝑣𝑥(𝑣𝑛),                                                                            𝑖𝑓 𝑣𝑛 ∈ 𝑉𝑥
𝑎𝑛𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑣𝑒𝑟𝑡𝑒𝑥 𝑤𝑖𝑡ℎ ℎ𝑣𝑥(𝑣1),    𝑖𝑓 𝑣𝑛 ∉ 𝑉𝑥

 

  

Every path in {𝑝𝑙,𝑖} is a result path and it must satisfy the following requirements.  

 Every result path must be a finite path.  

 Every result path must include at least one remaining vertex.  

 Each vertex in result path can only appear a finite number of times.  

In order to obtain the mapping relationships for the new added vertices and edges, the result 

paths have to be reformed to vertices and edges. 

If a remaining vertex or edge in a path 𝑝𝑙  is deleted, the mapped vertices or edges in the 

corresponding path 𝑝𝑙,𝑖 will be also deleted. The other vertices and edges in path 𝑝𝑙 hold the 

mapping relationships with the remaining parts in the corresponding paths 𝑝𝑙,𝑖. This  necessary 

condition for reforming is used to determine the two new mappings in ℎ𝑣𝑦,𝑖 and ℎ𝑒𝑦,𝑖 for the 

new added vertices and edges. The set {𝑝𝑙} includes all of the new added vertices and edges, 

therefore the mapping functions ℎ𝑣𝑦,𝑖 and ℎ𝑒𝑦,𝑖 can be determined as below. 

 
𝑝𝑚 (𝑝𝑙) = {𝑝𝑙,𝑖} 

 
𝑉𝑗 = {𝑣|𝑣 ∈ 𝑝𝑙  ∧ 𝑣 ∈ 𝑉𝑥} 

 

∀𝑣 ∈ 𝑝𝑙∃ ℎ𝑣𝑦,𝑖(𝑣) = {
 ℎ𝑣𝑥(𝑣),            𝑖𝑓 𝑣 ∈ 𝑉𝑥 
𝑉𝑙,𝑖/ℎ𝑣𝑥  (𝑉𝑗),   𝑖𝑓 𝑣 ∉ 𝑉𝑥

 

 

∀𝑒 ∈ 𝑝𝑙∃ ℎ𝑒𝑦,𝑖(𝑒) = {
 ℎ𝑒𝑥(𝑒),          𝑖𝑓 𝑒 ∈ 𝐸𝑥 

𝒫(𝐸𝑙,𝑖),            𝑖𝑓 𝑒 ∉ 𝐸𝑥
 

 
𝑖, 𝑗, 𝑙 = 1,⋯ , 𝑛    𝑛 ∈ ℕ 
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5.3.4 Graphs combination  

Every result path in have to be combined with all vertices and edges in ℎ𝑥(𝑔𝑥 − 𝐺𝑥
−) together 

to build a new graph 𝑔𝑑,𝑖, which represents the targeted status of the LL-CPS.  

 

𝑔𝑑,𝑖 =∑𝑝𝑙,𝑖

𝑛

𝑙=1

+ ℎ𝑥(𝑔𝑥 − 𝐺𝑥
−) 

 

Each graph 𝑔𝑑,𝑖  in the set of graph solutions 𝐺𝑑 = {𝑔𝑑,𝑖}  represents one reconstruction 

possibility for the targeted status of the ongoing LL-CPS. 

After undertaking all of the steps above, the objective mapping functions ℎ𝑦,𝑖 , ℎ𝑣𝑦,𝑖 and ℎ𝑒𝑦,𝑖 

are determined.  

5.4 Concrete modeling  

 

Figure 99: Concrete modeling of graph solutions 

 

The set of graph solutions 𝐺𝑑 have to be equivalently transformed from the formal semantical 

foundation layer to a set of models on the model-based layer in the cube model to obtain the 

IBD models. The equivalent transformation function 𝑐𝑜𝑛𝑖 transforms the set of graphs 𝐺𝑑 =

{𝑔𝑑,𝑖} to a set of IBD models 𝑀𝑑 = {𝑚𝑑,𝑖} (see Definition 41).  

 
𝑐𝑜𝑛𝑖(𝑔𝑑,𝑖) = 𝑚𝑑,𝑖 
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If the IBD vertices and edges in 𝑔𝑑,𝑖 are remaining vertices and edges during the managed 

evolution of the LL-CPS, they have to be transformed to the original model elements and 

relation elements (see section 4.2.4). If an IBD vertex or edge is a virtual vertex or edge, it has 

to be transformed to a virtual model element 𝑣𝑚𝑒𝑑,𝑖 or a virtual relation element 𝑣𝑎𝑑,𝑖 in an 

IBD model. The virtual model element or virtual relation element is defined as an IBD model 

element or IBD relation element with the undefined description information.   

  
𝑣𝑚𝑒𝑑,𝑖 ∈ 𝑀𝐸𝐼𝐵𝐷                  𝑣𝑎𝑑,𝑖 ∈ 𝐴𝐼𝐵𝐷                   

  
 

Before to ascertaining the costs local optimal solution in the set of models 𝑀𝑑, the description 

information of the virtual model elements and the virtual relation elements in any model 𝑚𝑑,𝑖 

should be filled. For instance, the virtual model elements and virtual relation elements can be 

filled with different type information. The filled virtual model element can be an IS-HW block 

or a HMI port or an integrated sub-model. The filled virtual relation element can be an input, 

output or connection relation element. Any virtual model and relation element has to be filled 

to satisfy the combination rules as much as possible, which have been introduced in section 

4.2.2. 

Every model 𝑚𝑑,𝑖 after the filling must satisfy two requirements. The IBD models, which can 

meet these two filter conditions, make up a set of models 𝑀𝑒. This set is a subset of 𝑀𝑑 (see 

Figure 99).  

 The first requirement is the combination rules of this IBD modeling. If any filled model 

element or relation element is still unable to meet the combination rules, this model 

will be deleted from the set of models 𝑀𝑑.  

 Because the model elements and relation elements in the VSM model 𝑚𝑦  can be 

mapped to model elements and relation elements in the models in 𝑀𝑑 by using the 

cube model. Therefore, the model elements and relation elements in any IBD model 

𝑚𝑑,𝑖 ∈ 𝑀𝑑 must satisfy execution sequence of the mapped the model elements and 

relation elements in VSM model 𝑚𝑦. If any IBD model cannot satisfy the execution 

sequence, it will be filtered out from the set 𝑀𝑑.  
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5.5 Optimizing the model solutions  

 

Figure 100: Optimizing the model solutions 

 

Each IBD model in the set 𝑀𝑒 represents a possible reconstruction for the managed evolution 

of the LL-CPS from the existing status to its targeted status. In order to ascertain the cost-

optimal one, every model and relation element in each IBD model will be labelled with “costs”.  

For every model solution 𝑚𝑑,𝑖  in 𝑀𝑒 , there is a costs function 𝐶  to label the costs of the 

reconstruction for every model element in the IBD model. The total costs of the reconstruction 

in one model solution is defined as the sum of these costs of its all reconstructed model 

elements. 

 
𝐶 ∶= 𝐶 |𝑀𝐸𝐼𝐵𝐷→ 𝑁 

 

𝐶(𝑚𝑑,𝑖) =∑𝐶(𝑀𝐸𝑑,𝑖)   

 

The local optimal solution 𝑚𝑑 (see Definition 18) is defined as the final solution for the local 

minimal cost of the reconstruction during the managed evolution of LL-CPS (see Figure 100). 

 
𝑚𝑑 = min(𝐶(𝑚𝑑,𝑖))                𝑖 = 1,⋯ , 𝑛       𝑛 ∈ ℕ 

 

 

This approach is introduced for the managed evolution of a LL-CPS with local optimal costs 

and controlled risks in ongoing operations. In chapter 6, this approach will be implemented. 

The evaluation of this approach and the implementation will be introduced in chapter 7.  
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6 Implementation 

Content  
 
6.1 System requirements 
    6.1.1 Use case diagram  

6.1.2 Input models restructuring   
 
6.2 System architecture 
    6.2.1 System structure  
    6.2.2 System behavior 
 
6.3 Functions realization 

 

 

 
In this chapter, a Java application is developed to implement the approach that has been 

introduced in the previous chapter. In section 6.1, the system requirements of this application 

are illustrated by using of a use case diagram. Subsequently, the Input models restructuring 

for this application is introduced to serve a foundation for the implementation of the main 

tasks of this approach. In section 6.2, the system architecture and behavior in this application 

are introduced by using a class diagram and sequence diagram. The realization of the 

important algorithms and functions is introduced in the last section by using the formal and 

informal programming description.    

6.1 System requirements 

The approach should be implemented within the scope of a suitable environment and a clear 

implementation process. All of the requirements for this application are illustrated by using 

the use case diagram in this section. 

6.1.1 Use case diagram  

This application is named the LL-CPS managed evolution solutions generation system and its 

system environment comprises LL-CPS planner and LL-CPS designer. The LL-CPS planner 

defines two VSM models as input models for the managed evolution of LL-CPS. The LL-CPS 

designer places the IBD model of the ongoing LL-CPS as an input model and he defines the 

mapping relationships form the VSM model to this IBD model for the ongoing LL-CPS. By using 

this application, the LL-CPS designer obtains the costs local optimal IBD model as a solution 

for the implementation of the managed evolution of this LL-CPS, which is visualized with a 

graphical user interface (GUI). The other functions and algorithms in this application are 

shown with a block “Generating” in Figure 101.  
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LL-CPS planer

LL-CPS managed evolution solutions 

generation system

 

Generating

place

VSM models

 

GUI

(Graphical User 

Interface)

receive solution

LL-CPS designer

<<uses>>

<<uses>>

place

IBD model

and relationships

 

Figure 101: Use case diagram for the LL-CPS managed evolution solutions generation system 

 

6.1.2 Input models restructuring  

The data structure plays an important role in the system requirements, which serves the basis 

for the later data processing. All of the input models for this application will be reformed with 

a standard data structure. Every VSM model has to be restructured by the LL-CPS planner with 

the key-value data structure in a pair documents. One of them represents the model elements 

in the VSM model. The other one represents the relation elements with a two-tuple data 

structure, which describes the connection relationship with the IDs from one model element 

to another.  

 

Key (ID) Value 

A string 

b string 

  
 

Relation elements 

a,b 

b,a 
 

(a) Model elements in a VSM model (b) Connection relationships in a VSM model 

Table 12: Example of data structure in a VSM model 

 

Table 12 shows an example of this data structure with two inputs documents for a VSM 

described LL-CPS.  

The IBD model restructured by the LL-CPS designer describes the ongoing LL-CPS (see Table 

13) with the same data structure as the VSM models.  

 



Chapter 6 - Implementation 

125 
 

 

  

Key (ID) Value 

1 string 

2 string 

3 string 

  
 

Relation elements 

1,2 

2,3 
 

(a) Model elements in an IBD model (b) Connection relationships in an IBD model 

Table 13: Example of data structure in an IBD model 

 

There are another two necessary input documents to represent the mapping relations for the 

model and relation elements in the VSM model to model and relation elements in the IBD 

model, which model the same ongoing LL-CPS. Table 14 illustrates these mapping 

relationships with two input documents. 

In this example, the model element “a” in the VSM model is mapped to a set of model 

elements “1” and “2” in the IBD model. The relation element “a, b” in this VSM model is 

mapped to the relation element “2,3” in the IBD model.  

 

Model element in VSM Model elements in IBD 

a 1,2 
 

(a) Input document for the mapping relation between model elements 

Relation element in VSM Model elements in IBD 

a,b 2,3 
 

(b) Input document for the mapping relation between relation elements 

Table 14: Example of input document for the mapping relationships  

6.2 System architecture  

6.2.1 System structure 

The system structure describes the organization and arrangement of interrelated components 

in a system. In software engineering, it can be represented in diagrams such as a class diagram, 

in which the structural classes reflect the functional requirements of the application.  

The class diagram in Figure 102 shows the system structure of this application implemented 

by Java in the software programming tool Eclipse. The class “home” provides a graphical user 

interface for the generic organizing and structuring of this application and therein the program 
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starts with the main function. The class “Algorithimlib” is an algorithms library and it 

comprises the different algorithms; for instance, the algorithms in the graph theory, the 

optimization problem, etc.  They will be used by the class “graph” to implement the functional 

requirements. The class “SystemRules” provides the combination rules, which is used by the 

class “Algorithimlib” to obtain the combinable solutions.  

 

Figure 102: Class diagram of the application 
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6.2.2 System behavior  

The system behavior is a specification of events that occur dynamically over situations or time. 

This specification is determined specifically by what events occur in that situations or time. 

The sequence diagram in Figure 103 represents the interactions between the classes in this 

application, arranged in time sequence.  

 

home graph Algorithmlib SystemRules

build()

retrieve node

node

mappingGenerat()

Addedge()

basicGraph

buildbasicgraph()

vsmNode: node ibdNode: node

retrieve node

node
Addedge()

build()

comparingGraphs()
retrieve node

node

retrieve node

node

resultpahts

findresultpaths()

changes

retrieve node

node
Addedge()

build()

ruler_matching()

read()

resultpahts

 

Figure 103: Sequence diagram of the application 
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6.3 Functions realization 

Two important functions for this application are introduced by using the informal and formal 

descriptions in this section.   

The reforming the mapping domain of the path morphism function 𝑝𝑚 introduced in section 

5.3.1 is first introduced with the pseudocodes below. They describe the operating principle of 

the algorithm, which reforms the new added vertices and edges during the managed evolution 

of a LL-CPS into a set of paths.   

 

Algorithm findChangedPaths 

 

Input: verxGp1: all of the vertexes in Gp1,  

            verxGp2: all of the vertexes in Gp2, 

            edgesGp2: all of the edges in Gp2 

Output: candidates[ ] 

Parameters and variables:  

(Vx ,Vy) is any edge from Vx to Vy in Gp2. (Vx,Vy) ∈ edgesGp2 

candidates[ ] is a set of paths 

 

       1: initialize: set candidates[ ] = null 

       2: set all of the elements in verxGp2 as unvisited vertices:  

           Vx.visited = false 

       3: set all of the elements in edgesGp2 as unvisited edges:  

           (Vx,Vy).visited = false 

       4: while any edge has not been visited do 

       5:      if Vx and Vy are in verxGp1 then 

       6:          set edge (Vx,Vy).visited = true 

       7:      else if Vx ∉ verxGp1 and Vy ∉ verxGp1 then 

       8:          set edge (Vx,Vy).visited = true 

       9:      else if Vx ∈ verxGp1and Vy ∉ verxGp1 then  

     10:          set edge (Vx,Vy).visited = true 

     11:          function arrowSearch(Vx,Vy ) 

     12:      else if Vx ∉ verxGp1 and Vy ∈ verxGp1 then  

     10:          set edge (Vx,Vy).visited = true 

     14:          function oppositeSearch(Vx,Vy ) 

     15:      End if 

     16: End while 

 

 

The functions arrowSearch and oppositeSearch are used to chain all of the new added vertices 

and edges into paths. The pseudocodes below describe the function arrowSearch. The 

function oppositeSearch is the same as the function arrowSearch, albeit in a different search 

direction (see section 13.1).  
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function arrowSearch( ) 

1: initialize: set list tempPath[ ] = null 

2: initialize: set a Stack S := null 

3: Set Vx.visited = true, Vy.visited = true 

4: if Vy has any linked following vertex in Gp2 

5:      push all of the linked following vertices of Vy into Stack S 

6:      while S is not empty do  

7:          if S.peek.visited = false then 

8:               if S.peek ∉ verxGp1 then 

9:                    if S.peek has not linked following vertex then 

10:                         add S.peek into tempPath[ ] 

11:                         set S.peek.visited = ture 

12:                         save Path(Vx,Vy,tempPath[ ]) in candidates[ ] 

13:                         set all paths in Path(Vx,Vy,tempPath[ ]) as visited paths 

14:                         delete S.peek  

15:                         reset tempPath[ ] =null 

16:                    else 

17:                         add S.peek into tempPath[ ] 

18:                         set S.peek.visited = ture 

19:                         replace S.peek with all of its linked following vertices in S 

20:               else 

21:                    add S.peek into tempPath[ ] 

22:                    set S.peek.visited = ture 

23:                    save Path(Vx,Vy,tempPath[ ]) in candidates[ ] 

24:                    set all paths in Path(Vx,Vy,tempPath[ ]) as visited paths 

25:                    delete S.peek  

26:                    reset tempPath[ ] =null 

27:          else 

28:               delete S.peek 

29:          End if  

30:     End while 

31: else 

32:     save Path(Vx,Vy) in candidates[ ] 

  

 

The implementation of another important function is introduced with the Java codes in Figure 

104, which is used to compose the result paths to a set of solution graphs.  

 

Figure 104: Generating to graphs in Java code 
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7 Evaluation 

Content  
 

 
7.1 Case study 1: Conveyor System with ASRS 
    7.1.1 LL-CPS managed evolution by using the approach  

7.1.2 Comparison of solutions  
7.1.3 Development risk evaluation  
7.1.4 Economic evaluation 

 
7.2 Case study 2: Project “Synus” 

 

 

 
This chapter evaluates the efficiency of approach introduced in chapter 5 to solve two 

problems during the managed evolution of LL-CPSs in this thesis: one problem is the local 

minimization of the reconstruction costs of implementation (economic requirements), the 

other one is the controlled risks in ongoing operations (risk management).  Therefore, the 

evaluation is divided into two parts: the development risk evaluation and economic 

evaluation. Figure 105 shows the evaluation concept. In this chapter, two cases are used to 

evaluate this approach. One is the laboratory model of the conveyor system with ASRS 

introduced in chapter 3, which will be here continually applied for the evaluation. The other 

one is an industry project named in short Synus: Methods and tools for the synergetic 

conception and evaluation of Industry 4.0 solutions, which is funded by the European Regional 

Development Fund (EFRE-ZW 6-85012454) and managed by the Project Management Agency 

NBank [58].  

Solution by using 

the appoach

Economic

Evaluation

Development 

risk 

Evaluation

 

Figure 105: The evaluation concept 

7.1 Case study 1:  Conveyor System with ASRS  

Continuing the laboratory model of a conveyor system with ASRS in chapter 3, the ongoing 

system is defined as the existing status of this LL-CPS and described with a VSM model (section 

3.1.1) and an IBD model (section 3.1.2). The targeted status of this LL-CPS is formed with 

another VSM model (section 3.2.2), which also describes the new functional requirements 
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during the managed evolution. By using the approach, a set of IBD models is generated, 

whereby a final solution is selected and implemented that represents the local optimal costs 

of the reconstruction. In order to evaluate this solution, another IBD model is chosen for 

evaluating the economic requirements and development risk. In this case, the direct costs are 

defined as the reconstruction costs during the managed evolution of a LL-CPS, whereby it is 

not necessary to consider the time-dependent costs.  

7.1.1 Managed evolution of LL-CPS by using the approach  

The existing status of LL-CPS is represented with a IBD model 𝑚𝑐. The final solution is formed 

with IBD model 𝑚𝑑,2. IBD model  𝑚𝑑,1 represents another evolution solution. They will be 

implemented and compared with each other and model 𝑚𝑐 . This comparison is from four 

areas in LL-CPS: the relevant environment factors, mechanical system, control system and 

information system. The reconstructions during the managed evolution of LL-CPS are specified 

into three actions: the addition, modification and deletion.   

The implemented model 𝒎𝒅,𝟏 

Model 𝑚𝑑,1 is implemented as one solution for the managed evolution of the ongoing LL-CPS. 

A new RFID real sensor is integrated in 𝑚𝑑,1 to read the color information of the wares. The 

software codes are developed to control the gripper robot and many other hardware 

components to reach the new functional requirements in the targeted status of this LL-CPS. 

Compared with the existing status 𝑚𝑐, worker 1 is deleted in 𝑚𝑑,1. The connections between 

worker 1 and the conveyor system are also deleted (see Figure 106). 

 

Figure 106: Changes of the relevant environment factors in md,1 

 

In the mechanical system in 𝑚𝑑,1, a new RFID read sensor is installed. Figure 107 shows the 

changes of hardware components in the mechanical system in 𝑚𝑑,1.  
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Figure 107: Changes of hardware components in mechanical system in md,1  

In 𝑚𝑑,1, the software codes in the control system and information system have to be changed 

to adapt to the reconstruction in the mechanical system. Figure 108 shows the changes of the 

software codes in the control system in 𝑚𝑑,1 compared with the ongoing LL-CPS modeled with 

model 𝑚𝑐.  In this figure, the red color marks the deleted codes during the managed evolution 

from 𝑚𝑐 to 𝑚𝑑,1.  The green color marks the new added codes and the blue one labels the 

codes that changed the executing place.  

 

Figure 108: Comparing software codes in control system between mc and md,1 
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Figure 109 shows the changes of the codes in the information system during the managed 

evolution from 𝑚𝑐 to 𝑚𝑑,1. The new information system has the new codes to visualise the 

information collected from the new RFID read sensor.  

 

 

Figure 109: Comparing software codes in information system between mc and md,1 

 

The implemented model 𝒎𝒅,𝟐 

In 𝑚𝑑,2, an existing RFID read/write sensor is used to write the color information into the ware, 

when the ware reaches it for the first time, and it is reused to read the color information from 

the ware, when the ware reaches it again. In this situation, the other hardware components 

have to be adapted to reach this requirement. Accordingly, all four conveyor belts have to 

after the painting color process continually transport the wares in a cycle to enable the wares 

to reach the existing RFID read/write sensor again. Meanwhile the gripper and the 

photoelectric sensor are blocked to let the ware run in a cycle and activated again, when the 

read/write sensor obtain the full information of all wares.  

Compared with the existing status 𝑚𝑐, worker 1 and its related connections have to be deleted 

to reach the requirements in targeted status of this LL-CPS (see Figure 110).  
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Figure 110: Changes of the relevant environment factors in md,2 

 

In the mechanical system in 𝑚𝑑,2 , there are no changes during the managed evolution. 

However, the software codes need to be developed to reach the functional requirements. 

Figure 111 shows the changes of software codes in the control system in 𝑚𝑑,2 compared with 

𝑚𝑐. 

 

 

Figure 111: Comparing software codes in control system between mc and md,2 

 

The new codes in the information system in 𝑚𝑑,2 visualise the information collected by using 

the existing RFID Read/Write sensor (see Figure 112). The other code changes in md,2 

comparing to the ongoing LL-CPS is introduced in section 13.2.  
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Figure 112: Comparing software codes in information system between mc and md,2 

 

7.1.2 Comparison of solutions 

The evolution function 𝑓𝑚 and its linear equations system introduced in section 4.4.2 are used 

here to compare the changes between 𝑚𝑑,1 and 𝑚𝑑,2. 

There are 
𝑓𝑚1(𝑚𝑐) = 𝑚𝑑,1 

 
𝑓𝑚2(𝑚𝑐) = 𝑚𝑑,2 

and 

𝑚𝑑,1 = 𝑚𝑐 ⊕𝑀𝑐
∆1 

 

𝑚𝑑,2 = 𝑚𝑐 ⊕𝑀𝑐
∆2 

 
 

The set of sub-models 𝑀𝑐
∆1 represents the changes during the managed evolution form 𝑚𝑐 to 

𝑚𝑑,1, and 𝑀𝑐
∆2 represents the changes during the managed evolution form 𝑚𝑐 to 𝑚𝑑,2.  

 

7.1.3 Development risk evaluation 

The development risk evaluation can be divided into three parts: risk identification, risk 

analysis and risk prioritization [59] as cited in [60]. The risk identification entails listing the 

important risks. In this case, the matching of functions is identified as the most import risk 



Chapter 7 - Evaluation 

137 
 

factor for the managed evolution of LL-CPSs.  The risk analysis involves the possible negative 

effects for each risk. The risk prioritization specifies the sequence of negative effects of risks.  

The functional requirements have been defined with a VSM model in section 3.2 and are 

specified with the following points:   

1. There is no worker standing by the buffer belt to sort the wares.   

2. The color information is read by using RFID sensor. 

3. The wares are retrieved through the gripper robot with the sort information in the 

predefined floor in the warehouse. 

Table 15 shows that all of the functional requirements are satisfied in 𝑚𝑑,1 and 𝑚𝑑,2.  

Requirements Solution 𝑚𝑑,1 Solution 𝑚𝑑,2 

1 Yes Yes 

2 Yes Yes 

3 Yes Yes 

Table 15. The functional evaluation of two solutions 

 

7.1.4 Economic evaluation  

In order to evaluate the economic efficiency, the economic requirements during the managed 

evolution of LL-CPSs need to be specified. In this case, the total reconstruction costs only 

comprise the direct costs. The indirect costs, the non-construction related costs, the time 

dependent costs, the software codes rewriting costs e.g. are not included in the total 

reconstruction costs. A costs function 𝐶 represents a mapping relationship from the model 

and relation elements to their direct costs for reconstruction. 𝐷𝐶 is a set of direct costs of the 

model and relation elements for reconstruction during managed evolution of LL-CPSs.  

Definition 52 
𝐶 ≔ (𝑀𝐸 ∪ 𝐴) → 𝐷𝐶 

 
 

The local optimal solution must have a local minimal reconstruction costs compared with the 

ongoing LL-CPS (see Definition 18).  

 

𝑃𝑐𝑜𝑠𝑡𝑠 = min (𝐶(𝑀𝑐
∆𝑖)) 

 
𝑖 = 1,⋯ , 𝑛       𝑛 ∈ ℕ 
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In this case, the model elements are classified into a set of hardware elements and a set of 

software elements, because the direct reconstruction costs are related to this character of the 

model elements. The reconstructions of any relation element are defined as the cost free 

works. Table 16 shows an example of the direct reconstruction costs of the model and 

relations elements classified by cyber-physical characters.  

 

Reconstruction actions  
 
Character 

Addition Modification Deletion 

HW element 200 unit 100 unit 20 unit 

 SW element 50 unit 20 unit 1 unit 

Relation element 0 unit 0 unit 0 unit 

Table 16: Example of the direct costs for reconstruction 

 

The addition of a new hardware element is among the most expensive in all of the 

reconstruction actions. The modifications of hardware and software elements incur more 

costs than their deletions. The costs unit here is a unit of measurement, named as a unit. 

The model 𝑚𝑑,2 can be proved by practice as the local optimal solution in the set of all possible 

solutions by using the method named proof by exhaustion, in which the direct reconstruction 

costs of every model and relation element in the table above are used to check the local 

solutions.  

 

7.2 Case study 2:  Project “Synus” 

Industry 4.0 is the short name for the fourth industrial evolution, which encompasses areas of 

intelligent, network, smart factory, etc. Since 2012, the German Federal Ministry of Education 

and Research has supported more than EUR 120 Million for projects in the context of industry 

4.0 to improve the global competitiveness and the level of prosperity in the country [61]. In 

the coming years, it is expected that German industrial companies will invest up to EUR 40 

Billion in industry 4.0 solutions [62]. The project “Methods and tools for the synergetic 

conception and evaluation of Industry 4.0 solutions” (in short Synus) began in June 2017 and 

will last until June 2020. The important goal of this project is to solve the problem that during 

the use of industry 4.0 solutions often involve high investment and unknown follow-up costs; 

for instance, integration an industry 4.0 solution on an ongoing production system. Figure 113 

[63] shows a concept for a data-driven managed evolution of a production system, which is 

defined as a LL-CPS. The evaluating factors like production time, energy consumption and 

processing costs are extracted for the evaluation of the ongoing production system. During 
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the analysis of the result of the evaluation by the experts, some current industry 4.0 solutions 

are proposed to improve the production performance of the ongoing production system. The 

changes from the existing status of this production system to its targeted status are formed 

with requirements data, which drives on the evolution of this system. The approach 

introduced in this thesis is used to generate a set of the configurations of the components in 

the targeted status of this production system, which have to meet the requirements of the 

driving data. One of these configurations will be simulated and implemented as a new 

production system. This new system is named target 1 and it will be continually evaluated and 

evolved into the second iteration. 

 

 

Figure 113: Data driven development of a production system   

 

At present, there are few opportunities for small and medium-size enterprises (SMEs) to 

gather the information which they need to adopt Industry 4.0 solutions. This project using the 

approach provides a decision support for the development of LL-CPSs in the SMEs, before the 

implementation of new systems.  

The project Synus is financed by European Regional Development Fund (ERDF) for Lower 

Saxony to help to reduce the regional imbalances. The goal of ERDF is to build up the economic 

and social cohesion in the European Union by correcting imbalances between its regions. 
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8 Conclusion and Outlook 

Content 
 
8.1 Conclusion 
 
8.2 Outlook 

 

 

 

8.1 Conclusion  

In this thesis, an approach has been developed to generate a costs local optimal solution for 

the managed evolution of a LL-CPS with controlled risks in system development. This solution 

is generated by tracing the changes of the planned requirements during the system managed 

evolution and it will be used for the implementation of the targeted status of this LL-CPS that 

helps the system designer reduce the development risks.   

In this thesis, the following research achievements have been achieved:  

 The modeling method VSM has been introduced in details and applied to model the 

existing and targeted statuses of a LL-CPS.  

 The modeling processes and the interfaces specification for a LL-CPS by using the 

modeling method IBD have been introduced.  

 A graph based uniform description of the models modeled with two different modeling 

methods has been developed. 

 A cube model has been formed to integrate the models modeled with two different 

modeling methods and the system evolution together. This cube model provides a 

clear and formal description for the managed evolution of a LL-CPS modeled with two 

different modeling methods. Moreover, it provides the transformations between the 

models on the model-based description layer and the graphs on the formal semantical 

foundation layer. 

 An approach has been developed that uses the cube model to automatic generate a 

set of models for implementation by tracing the changes of the planned requirements. 

This generating reduces the inconsistency between the system implementation and 

the planned requirements during the managed evolution of a LL-CPS. For a long-living 

system, this approach can be iteratively and evolutionarily used for a long-term system 

evolution. 

 This set of models provides a candidate to evaluate the different possible solutions.   

 The implementation and evaluation of this approach have been introduced.  
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8.2 Outlook 

Several areas for future work are suggested regarding the approach presented in this thesis.  

First of all, the approach is used on two modeling methods (VSM and IBD) and generates the 

evolution changes from one modeling method to another. In the future, it may be improved 

by using conduction to diffuse the evolution changes from one modeling method to more 

modeling methods. This conduction can chain different modeling methods together to 

achieve a synergetic system evolution.      

The input models for this approach are formed with a key-value data structure, although the 

transformation processes from the input models to this data structure are not automatic. 

Therefore, an automatic transformation platform can be developed in the future and 

integrated with the modeling tools to supersede the manual transformation.   

In this thesis, this approach provides only one final solution. Future work could expand to a 

range of a set of solutions; for example, the first ten minimal costs of reconstruction in a set 

of solutions.        

The local optimal costs of reconstruction is considered as the only one evaluation factor used 

to ascertain the final solution in this thesis. However, today increasingly more requirements 

need to be factored during managed evolution of a LL-CPS; for example, the energy 

expenditure, the costs of maintenance and environmental protection, etc. In the future, this 

approach can be continually developed considering more evaluation factors and the 

preference of different evaluation requirements.  

In summary, this work addresses an important aspect of consistency assurance between 

evolution requirements and architectures of implementation. For a complete automation, the 

consistency assurance between requirements and architectures in the field of system 

engineering needs to be carried out in the future. 
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13  Appendixes 

13.1 Pseudocodes for oppositeSearch 

function oppositeSearch ( ) 

1: initialize: set list tempPath[ ] = null 

2: initialize: set a Stack S := null 

3: Set Vx.visited = true, Vy.visited = true 

4: if Vy has any linked front vertex 

5:      push all of the linked front vertices of Vx into S 

6:      while S is not empty do  

7:          if S.peek.visited = false then 

8:               if m.(S.peek) ∉ Gc1 then 

9:                    if S.peek has not linked front vertex then 

10:                         add S.peek into tempPath[ ] 

11:                         set S.peek.visited = ture 

12:                         save Path(opposite of tempPath[ ], Vx,Vy)  in candidates[ ] 

13:                         delete S.peek  

14:                         reset tempPath[ ] =null 

15:                    else 

16:                         add S.peek into tempPath[ ] 

17:                         set S.peek.visited = ture 

18:                         replace S.peek with all of its linked front vertices in S 

19:               else 

20:                    add S.peek into tempPath[ ] 

21:                    set S.peek.visited = ture 

22:                    save Path(opposite of tempPath[ ], Vx,Vy)  in candidates[ ] 

23:                    delete S.peek  

24:                    reset tempPath[ ] =null 

25:          else 

26:               delete S.peek 

27:          End if  

28:     End while 

29: else 

30: save Path(Vx,Vy) in candidates[ ] 

 

 

13.2 Comparing code changes 

The following codes in Structured Control Language SCL in Siemens S7 implement the counting 

function by using of the photoelectric sensor. Figure 114 shows the codes in the ongoing LL-

CPS.  
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Figure 114: SCL codes in the ongoing LL-CPS  

 

In the targeted status of LL-CPS, these code in Figure 114 will be changed with the state 

variable “Werkstueckerkennt” from “true” to “false”. In order to meet the functional 

requirements, the new codes are added as in Figure 115 and Figure 116.  

 

 

Figure 115: New added SCL codes in the target status of the LL-CPS 

 

 

Figure 116: New added FUP codes in the target status of the LL-CPS  

 

 


