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Abstract 

Current concepts of designing automatic control systems rely on dynamic behavioral 

modeling by using mathematical approaches like differential equations to derive 

corresponding functions [1], and slowly reach limitations due to increasing system 

complexity. Along with the development of these concepts [1]–[5], an architectural 

evolution of automatic control systems is raised. 

This dissertation defines a taxonomy to illustrate the aforementioned architectural 

evolution relying on a typical example of control application: adaptive cruise control 

(ACC). Current ACC variants, with their architectures considering control theory, are 

analyzed. The analysis results indicate that the future automatic control system in ACC 

requires more substantial self-adaptation capability and scalability. For this purpose, 

more complicated algorithms requiring different computation mechanisms must be 

integrated into the system and further increase system complexity. This makes the future 

automatic control system evolve into a self-adaptive cyber-physical system and 

constitutes significant challenges for the system’s architecture design.  

Inspired by software engineering approaches for designing architectures of software-

intensive systems, a generic architecture style is proposed. The proposed architecture 

style serves as a template by following the developed design principle to construct 

networked architectures not only for the current automatic control systems but also for 

self-adaptive cyber-physical systems in the future. Different triggering mechanisms and 

communication paradigms for designing dynamic behaviors are applicable in the 

networked architecture. 

To evaluate feasibility of the architecture style, current ACCs are retaken to derive 

corresponding logical architectures and examine architectural consistency compared to 

the previous architectures considering the control theory (e.g., in the form of block 

diagrams). By applying the proposed generic architecture style, an artificial cognitive 

cruise control (ACCC) is designed, implemented, and evaluated as a future ACC in this 

dissertation. The evaluation results show significant performance improvements in the 

ACCC compared to the human driver and current ACC variants. 
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1 Introduction 

This chapter presents a short introduction to the whole dissertation. First, the motivation 

behind the dissertation is presented. The objective of the dissertation is also included in 

this chapter. Subsequently, the concrete contributions of the dissertation are 

summarized. Finally, this chapter ends with the content and structure of the dissertation. 

1.1 Motivation 

Automatic control systems have been increasingly deployed in diverse applications 

covering almost every area in daily life, ranging from an ordinary oven in the kitchen to 

significant industrial devices like production machines and mobilities like cars and 

drones [6]–[8]. Generally, the automatic control system is designed to fulfill predefined 

control targets through automated control of dynamic technical processes, particularly 

against different disturbances and influences from the surrounding system environment 

[9].  

Traditional design approaches to such automatic control systems, like classical and 

modern control theory, rely on mathematical modeling using differential and state-space 

equations to derive dynamic behavioral functions of the controlled technical processes 

[10]. In such approaches, development engineers must have the explicit domain 

knowledge to model the controlled processes at the design time. Thus, they can 

parametrize a controller to keep it working as expected within a limited working range, 

considering bounded uncertainties like environmental disturbances. After the system 

design, the controller parametrization remains static at run time. 

Due to the limited working range, static parametrization of the controller limits the control 

system’s performance in diversified operating situations at run time, which hinders 

system flexibility. Thus, the reconfigurable controller is applied to enable the system to 

work appropriately in more diversified operational cases [9][11]. For this purpose, a 

secondary control loop relying on the technology of variable monitoring is deployed on 

top of the primary control loop to estimate the current situational context of the controlled 
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processes and accordingly make decisions to adapt the controller parametrization at run 

time [12]. 

However, the diversity required in the operational cases of automatic control systems is 

still increasing. Rapidly developing sensor technologies increase context data for the 

controlled technical processes, and accompanying complicated algorithms for data 

interpretation on higher levels of abstraction are integrated into the secondary control 

loop to make the system operate appropriately in diversified operating situations [13][14]. 

In this sense, the complexity of automatic control systems is increasing continuously. 

Such a development trend constitutes significant challenges for the design of automatic 

control systems. As discussed earlier, the field of control theory initially focuses on the 

control flow of dynamic processes. With this idea in mind, system design focuses on the 

conception of a pure embedded system, and takes scheduling for fulfilling real-time 

interaction with the physical world as the most crucial constraint. Thus, required real-

time interaction with the system’s surrounding physical world generates a hard timing 

constraint for the cycle time of the whole control loop. All system parts on the control 

loop perform under the consideration of this timing constraint. This constraint may 

become a bottleneck that limits the complexity of the system during the overall system 

design. 

For example, it may conflict with the high complexity of the previously mentioned 

complicated algorithms due to their long (and even possibly non-deterministic) 

computation time. Thus, a tradeoff between algorithm complexity and the required cycle 

time to guarantee reliable system scheduling must be considered while designing the 

system. Along with the increasing system complexity in the future, such tradeoffs will 

increasingly arise in system design and become much more difficult to manage. Thus, 

traditional design approaches of control theory that primarily focus on modeling the 

controlled technical processes to derive dynamic behavioral functions with mathematical 

equations have reached their limitations. 

Against such a background, system architecture design from the software engineering 

research field that considers system construction and makes the software-intensive 

system’s complexity manageable, becomes crucial [15]. Unlike control theory, software 

engineering focuses on organizing fundamental software building blocks, including their 
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functionalities and behavioral interactions in an overall system architecture [16][17]. 

Instead of a simplified superposition of the primary and secondary control loops, 

hierarchical architectures with multiple layers are proposed [2][15][18][19]. These 

architectures roughly derive an implicit design paradigm about the responsibility 

assignment of different hierarchical layers. However, a generic concept of architecture 

design on a higher meta-level that can be applied to systematically design different kinds 

of automatic control systems with high complexity is still missing. 

Without such a generic concept, the architecture design of automatic control systems 

with increasing complexity is becoming more challenging. Integrating algorithms with 

high complexity (e.g., by using heuristic, linguistic, or artificial intelligence (AI) 

approaches) would deteriorate the system's scheduling issues. In addition, such 

integration may make the system include heterogeneous parts with different expected 

computation mechanisms. Thus, the automatic control system evolves from a pure 

embedded system into a so-called cyber-physical system with a hybrid construction 

[20][21]. A typical cyber-physical system is a vehicle’s autonomous driving system [22]. 

It includes the system parts with interpretation on a high semantic level like perception 

and decision-making. But it also includes system parts processing on a low data level, 

like real-time feedback control [23]. Along with further development in the future, the 

requirements of such cyber-physical systems with higher complexity will increase more 

progressively than in the past.  

The evolution of the automatic control system as the cyber-physical system causes the 

system to acquire features of other software-intensive systems [15] (e.g., the self-

adaptive system with a so-called self-adaptation capability established by the software 

engineering field [24][25]). In this sense, it can be said that control theory and software 

engineering are converging due to the similarity of their investigated systems’ features 

(cf. Section 4.1). Such a background motivates the reconsideration of the architecture 

design concept of automatic control systems from the view of software engineering, 

particularly in the case of future self-adaptive cyber-physical systems. Thus, the system 

architecture design can benefit from mature software engineering approaches for the 

architecture design of software-intensive systems. 
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1.2 Objectives of this Dissertation 

As discussed in the previous section, system architecture design will become a 

meaningful and increasingly important research topic in the future. Thus, this 

dissertation takes as a main objective the development of a generic concept for the 

architecture design of different automatic control systems, particularly for future 

automatic control systems with high complexity designed as self-adaptive cyber-

physical systems [20]. For this purpose, it is necessary to investigate current design 

concepts of automatic control systems, primarily aiming to analyze their established 

underlying architectures. This dissertation takes a vehicle’s original adaptive cruise 

control (ACC) and its current variants by applying the previously mentioned automatic 

control concepts as concrete application examples to analyze the current technical 

limitations and derive a functional vision for the future. 

The functional vision of the ACC would constitute further challenges for the architecture 

design of future automatic control systems, which the expected generic concept of 

architecture design must address. Since the expected concept will be applicable to 

different automatic control systems, particularly for the future self-adaptive cyber-

physical system, this dissertation aims to define a generic architecture style. This 

generic architecture style will be applicable as a template to derive the appropriate 

architectures of different automatic control systems while considering their boundary 

conditions in concrete applications. In particular, the architecture style shall also cover 

the use case of designing self-adaptive cyber-physical systems. In this architecture style, 

architectural paradigms from different perspectives as further sub-objectives of the 

dissertation will be defined. 

Considering a static view of system construction, a pattern of the fundamental 

component structure must first be developed, defining a set of components and their 

corresponding functionalities as basic building blocks in the overall architecture. 

Subsequently, a paradigm of system construction must also be determined to build more 

complicated system architectures based on the fundamental component structure. In 

addition to the static view of system construction, the dynamic view that focuses on the 

run-time behaviors of the components and their interactions is also crucial for developing 

the generic architecture style. For this purpose, use cases for the whole architecture 
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must be defined, describing communication paths between the components in 

corresponding scenarios. To realize concrete communication between related 

components on the communication path, it is also still necessary to define potential 

concrete communication paradigms, which requires an investigation of common 

communication architecture patterns (cf. Section 2.2.7). 

After developing the generic architecture style, this dissertation shall evaluate its 

feasibility and generalization potential. For this purpose, it is essential to derive instance 

architectures for the current ACC variants by applying the developed generic 

architecture style. The derived instance architectures must be compared with previous 

architectures concerning the control flow of dynamic processes from the view of control 

theory to check the generalization potential of the architecture style based on 

architectural consistency. In addition, an example architecture for a potential future ACC 

variant named artificial cognitive cruise control (ACCC), with improvements for 

overcoming the previously analyzed technical limitations, must be derived. This will be 

used to evaluate the feasibility of the generic architecture style. As a further objective in 

this dissertation, the mentioned technical limitations of current ACC variants must be 

overcome by the ACCC, and this must be evaluated quantitatively. 

1.3 Contributions of this Dissertation 

The main contributions of this dissertation are as follows:  

• A comprehensive architectural taxonomy of current automatic control 

concepts is proposed considering the relationship between the included 

technical system and its managed physical system (primarily referring to 

controlled dynamic processes in the physical world). Based on this 

comprehensive taxonomy, current ACC variants on the market as concrete 

application examples of the control concepts are categorized and analyzed 

to derive a functional vision for the future. 

• Based on the functional vision, existing challenges are summarized and a 

vision for the architecture design of future automatic control systems is 

presented. Artificial cognitive control is defined as a control concept for the 
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next generation of automatic control systems that must be designed as self-

adaptive cyber-physical systems. 

• As the most significant contribution of this dissertation, a generic architecture 

style including a fundamental component structure and accompanying 

paradigm for the system construction is proposed to address the pain points 

of current system architecture design. This architecture style can be applied 

as a template to design architectures for different automatic control systems, 

particularly for future self-adaptive cyber-physical systems. 

• As a concrete potential future ACC variant following the concept of artificial 

cognitive control, an innovative so-called artificial cognitive cruise control 

(ACCC) that works by learning and satisfying a single driver’s driving 

preferences is proposed. In addition, the ACCC also learns the experienced 

historical context of driving environment. 

• Recommendations are made for meaningful future research directions to 

improve the system’s scalability and cognition or, more generally, to improve 

intelligence capability.  

1.4 Content and Structure  

This dissertation consists of six chapters. Chapter 1 briefly introduces the framework of 

this dissertation, including its motivation, objectives, and contributions. Chapter 2 

focuses on the state of the art in relevant fundamental theories, these are, generally 

divided into control theory, software engineering for architecture design of software-

intensive systems, generic communication architecture patterns, and application of 

underlying AI-based technologies in the dissertation’s implementation.  

The third chapter deals with a case study about the architectural evolution of the 

automatic control systems mentioned above with the help of concrete examples of ACC 

variants. In the case study, the functionalities of these ACC variants and their technical 

limitations (particularly their underlying architectures) are systematically analyzed to 

review the architectural evolution of recent years. Along with this evolution, a functional 

vision of ACC in the future is then illustrated based on two postulated future variants, 

which would make the original pure embedded systems become self-adaptive cyber-
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physical systems with significantly higher architectural complexity. Thus, existing 

challenges for architecture design of underlying automatic control systems are 

constituted. Finally, a future concept of the automatic control system, which aims to fulfill 

expected features of the ACC variants, is roughly defined and named artificial cognitive 

control. 

Chapter 4 introduces a generic architecture style serving as a template for the 

architecture design of different automatic control systems. This architecture style 

particularly considers the artificial cognitive control system designed as a self-adaptive 

cyber-physical system to fulfill the previously mentioned existing challenges. 

Fundamental component structure and different design paradigms are introduced as 

parts of the architecture style. The proposed architecture style is applied to instantiate 

example logical architectures of current automatic control systems by applying software 

engineering approaches, particularly considering the previously presented concrete 

examples of ACC variants. The instantiated logical architectures are then compared with 

architectures from the view of control theory to evaluate the architecture style’s 

generalization potential by checking the architectural consistency.  

To further evaluate the feasibility of the proposed architecture style, a future ACC variant 

called artificial cognitive cruise control, which realizes both previously postulated future 

ACC variants in the functional vision, is designed and implemented by applying the 

architecture style, as presented in Chapter 5. A systematic performance evaluation of 

ACCC is also included in this chapter. 

Finally, a summary of this dissertation is provided in Chapter 6. In this chapter, the 

limitations of the dissertation are also discussed, which can be taken as indications of 

future research activity. In addition, some recommendations indicating potential future 

research directions in the long term (after this dissertation) are also summarized. 
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2 State of the Art     

This chapter introduces all related theoretical fundamentals in the scope of this 

dissertation, which mainly involves three fields: control theory, architecture design of 

software-intensive systems, and generic communication architecture patterns for 

defining dynamic system behaviors. Additionally, related underlying AI-based 

technologies utilized in the practical application for evaluating the proposed architecture 

style in this dissertation are also presented in this chapter. 

2.1 Control Theory 

The research field of control theory focuses on systems for automatic control of technical 

processes (e.g., within industrial machines or applications) which have been widely 

applied almost everywhere in the world. For this purpose, models and algorithms must 

be developed to regulate the system inputs so that the system outputs can be 

maintained within a desired state, considering additional factors like time delay, system 

stability, and optimality in parallel [26][27].  

Since this dissertation focuses on developing a generic architecture style that serves as 

a template for the architecture design of automatic control systems, a taxonomy covering 

different automatic control systems is required. However, current well-known 

taxonomies like classical1 and modern2 control theory focus intensively on underlying 

mathematical approaches instead of system architectures [10]. Thus, this dissertation 

takes as a reference another taxonomy derived from a stage model proposed by Iwanek 

within his dissertation and further developes this taxonomy [28]. 

In Iwanek’s proposed stage model, different functional areas are defined and then used 

as different perspectives to categorize intelligence levels of diverse mechatronic 

systems. In these functional areas, it is emphasized that “control and feedback control” 

 
1  Classical control theory relies on mathematical approaches like Laplace or z-transform to convert 
differential equations for modeling the physical system from the time domain into the frequency domain, 
aiming to reduce mathematical complexity.  
2  Modern control theory relies on time-domain analysis and converts differential equations into state 
equations based on state variables, which can be further processed by using linear algebra approaches. 
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is one of the most important, which points precisely to the topic of automatic control and 

thus is of interest for this dissertation. Based on the stage model of Iwanek, other 

researchers have attemped to assign automatic control approaches to different 

intelligence levels within the stage model, as shown in Figure 2.1. 

 

Figure 2.1: Exemplary Assignment of Automatic Control Systems to the Stage Model and its Derived 
Categories [11] 

Based on the assignment results, different automatic control systems, including feed-

forward and feedback control, are divided by Trächtler and Gausemeier [11] into three 

categories along with increasing performance stages regarding the level of intelligence: 

(a) fundamental control, which is called basic control in this dissertation, (b) optimal and 

adaptive control, and (c) self-optimization control. Since this dissertation primarily 

focuses on feedback control systems, more details of these systems will be provided in 

the following sections. In this dissertation, the categories based on the increasing 

performance stages are taken as a reference to derive the taxonomies of this 

dissertation from the perspective of system architecture evolution, which will be 

discussed in Chapter 3. 

2.1.1 Basic Control 

The first category in the lowest performance stage refers to basic control systems. 

Control engineering aims to realize the automated goal-oriented influence of a dynamic 

process during operation. In this case, the behaviors of the focused dynamic process as 

a controlled system must usually be explicitly known in advance and thus modeled using 

mathematical differential equations to derive corresponding functions. The designed 

control system takes the current value of the system’s output variable as the controlled 
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variable (y(t)). It aims to maintain the controlled variable as a given set value of the 

reference variable (w(t)) as much as possible, as shown in Figure 2.2.  

Since the behaviors of the controlled system can be influenced by disturbance variables 

(z(t)) from the system environment, the control system also focuses on compensation 

for environmental disturbances. If disturbances from the environment and system 

behavior are precisely known, the technologies of feed-forward control can be applied 

to set the value of the reference variable. However, in the case of unknown disturbances 

and uncertain parameters, the approaches of control engineering, like feed-forward 

control with an opening chain of effect, become insufficient [11]. Instead, feedback 

control is able to compensate for uncertainties by relying on a closed control loop. It 

calculates a deviation (so-called control error: e(t)) between the current value of the 

controlled variable (y(t)) and the set value of the reference variable (w(t)). A controller 

subsequently determines a control activity aiming to minimize this deviation. Based on 

the controller activity, the final control element manipulates the value of the manipulated 

variable (u(t)) to influence the dynamic processes of the controlled system. Figure 2.2 

shows the process flow of such a closed control loop with a block diagram. 

 

Figure 2.2: Block Diagram of Fundamental Feedback Control Loop [11] 

As shown in Figure 2.2, the most crucial component in the feedback control system is 

the controller. In the design of the controller, it is necessary to model the dynamic 

processes of the controlled system, which can be accomplished using mathematical 

differential equations, as discussed previously. 

In this design process, the Laplace- or z-transform (appropriate for continuous and 

discrete systems, respectively) for reducing the complexity of the design problem is often 

used to investigate system behaviors in the frequency domain. These transforms 
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convert the differential equations in the time domain into a transfer function (G(s)) in the 

frequency domain, which describes the relationship between the input (U(s)) and output 

(Y(s)) of the controlled system with algebraic equations [11]. In the case that the 

behavior of the controlled system is linear and time-invariant, the differential equation in 

the time domain would also be linear with constant coefficients, for which standard 

transfer functions such as a PT1- or PT2-element with application parameters like a so-

called time constant can be used [9]. These time constants play an essential role in the 

controller's design while determining the optimized values of corresponding application 

parameters. 

The controller design strongly influences the performance of the whole control system. 

During the design stage, different criteria like the system’s reaction time to the 

environmental change, damping of the system’s response, and its stationary accuracy 

after the damping process must be considered [11]. In particular, system stability must 

be evaluated. Otherwise, unstable oscillations in unfavorable cases may even cause the 

failure of the whole control system. For this purpose, different approaches addressing 

system stability, such as NYQUIST and HURWITZ, have been developed [29][30]. 

The most significant and well-known approach is the proportional-integral-derivative 

controller (PID controller), which works based on a parallel connection consisting of a 

proportion-element (P), an integrator (I), and a differentiator (D), as shown in the 

following equation. The P-element is responsible for adjusting the value of the 

manipulated variable (u(t)), aiming to align with the control error (e(t)), while the 

integrator is responsible for stationary accuracy. The differentiator arranges for the 

reaction time and the response damping of the controlled system. The control effects of 

the P-element, the integrator, and the differentiator are influenced by the value 

configuration of corresponding application parameters: Kp, KI, and KD (cf. Equation (2.1)). 

In some cases, certain parts of the PID controller can also be removed to build variants 

like the P controller, PI controller, or PD controller [11].  

𝑈𝑈(𝑠𝑠 = 𝑗𝑗𝑗𝑗) = �𝐾𝐾𝑃𝑃 + 𝐾𝐾𝐼𝐼
1
𝑠𝑠

+ 𝐾𝐾𝐷𝐷
𝑠𝑠

1 + 𝑇𝑇𝑁𝑁𝑠𝑠
� ∙ 𝑌𝑌(𝑠𝑠) (2.1) 
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                  = 𝐾𝐾𝑅𝑅
(1 + 𝑇𝑇𝑅𝑅1𝑠𝑠)(1 + 𝑇𝑇𝑅𝑅2𝑠𝑠)

𝑠𝑠(1 + 𝑇𝑇𝑁𝑁𝑠𝑠) ∙ 𝑌𝑌(𝑠𝑠) 

The first step in designing a controller is to decide on an appropriate variant. 

Subsequently, it is also essential to determine the parametrization of the controller by 

adjusting the values of corresponding parameters: TR1, TR2, and KR. In this case, TR1 and 

TR2 as time constants can be applied to compensate for the slowest sub-processes in 

the controlled system, and KR is used to realize an expected response damping [11].  

The control approach based on a conversion from the time domain into the frequency 

domain is appropriate for single-input and single-output (SISO) systems. However, it 

reaches its performance limit in the case of multiple-input and multiple-output (MIMO) 

systems. Thus, an intermediate parameter between the input and output variables of the 

system is developed to describe the system’s internal state, which is named state 

variable (x). In this case, a complicated high-order differential equation can be avoided 

by decomposing it into multiple differential equations of the first order. Thus, a state-

space Equation (2.2) and an output differential Equation (2.3), including multiple 

matrices, are constituted. The matrices in the equations covering a state matrix (A), a 

feedthrough matrix (D), an input (B), and an output matrix (C) are used to describe the 

behavior of the controlled system, as shown below: 

𝑥̇𝑥(𝑡𝑡) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡); 𝑥𝑥 = [𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛] (2.2) 

𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝐶𝐶(𝑡𝑡) + 𝐷𝐷𝐷𝐷(𝑡𝑡);𝑦𝑦 = �𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑞𝑞� (2.3) 

The eigenvalues (λ) of the state matrix (A) can be calculated to analyze the dynamics of 

the controlled system. Further, they can also be used as specifications to design the 

state controller represented by a controller matrix (R), following the rules included in the 

following Equation (2.4). Thus, an updated system matrix (AR) for the whole system can 

be constituted as follows: 

𝑢𝑢 = −𝑅𝑅𝑅𝑅 (2.4) 

𝐴𝐴𝑅𝑅 = 𝐴𝐴 − 𝐵𝐵𝐵𝐵 (2.5) 
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Controllability and observability are two additional system properties that must still be 

considered for designing an appropriate state space control. Controllability implies that 

the state variable (x) can be steered by adjusting the manipulated variable (u) from an 

initial value to any final value within a finite time duration. Observability refers to the fact 

that the system's internal state, represented by the non-measurable state variable (x), 

can be reconstructed by measuring the output variable (y). For this purpose, the concept 

of state space control based on the so-called Luenberger-observer is developed, as 

shown in Figure 2.3. 

 

Figure 2.3: Block Diagram State-Space Control with State Observer [11] 

In this concept, the observer aims to determine the state variables as a vector (x�). Thus, 

a model of the controlled system’s dynamics can be constructed relying on the observed 

input and output variables of the controlled system (u(t) and y(t)). The observer 

compares the actual output of the controlled system and the model's output to balance 

the deviation due to unknown disturbances from the system environment and initial 

system state so that the estimation error by the model can be minimized. 

2.1.2 Optimal and Adaptive Control 

The second category in the following performance stage refers to control-engineering 

concepts, which either rely on optimization approaches to optimize the control 

performance, or on adaptation of the control system to work against changeable 

environmental conditions [11]. A typical example approach in this category is optimal 

control. The controller’s design in previously mentioned control concepts primarily relies 

on the human engineers’ experiences, particularly in state-space control. In this case, 
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human engineers must iteratively adjust controller parametrization to guarantee the 

expected system performance represented by the eigenvalues of the state matrix. 

Unlike such an approach, optimal control relies on a cost function consisting of multiple 

criteria and corresponding weights, as shown in equation (2.6).  

𝐽𝐽 =
1
2
� (𝑥𝑥𝑇𝑇(𝑡𝑡)𝑄𝑄𝑄𝑄(𝑡𝑡) + 𝑢𝑢𝑇𝑇(𝑡𝑡)𝑆𝑆𝑆𝑆(𝑡𝑡))𝑑𝑑𝑑𝑑
∞

0
 (2.6) 

Different criteria for evaluating control performance, such as high response speed and 

low oscillation (which also means less energy consumption), are considered and 

represented by different terms in the equation. Additionally, corresponding weighting 

matrices (Q and S) are also included in the equation. By minimizing the final cost function 

(J), the optimal control parametrization can be determined, and thus the design of the 

controller becomes an optimization problem. Since the solution of this optimization 

problem leads to a non-linear matrix equation, which is also called an algebraic Riccati 

equation, the controller designed by following such an approach is called a Riccati 

controller [29]. In this approach, control performance is represented by the weighting 

matrices (Q and S) instead of the eigenvalues of the state matrix.  

In addition to optimal control, another example concept included in the category of 

optimal and adaptive control is model predictive control (MPC). MPC relies on the idea 

of prediction of system behavior by a time-discrete model of the dynamic processes 

included in the linear or non-linear controlled system [11], as illustrated in the following 

Equation (2.7) and Equation (2.8).  

𝑥𝑥(𝑘𝑘 + 1) = 𝐴𝐴𝐴𝐴(𝑘𝑘) + 𝐵𝐵𝐵𝐵(𝑘𝑘) (2.7) 

𝑦𝑦(𝑘𝑘) = 𝐶𝐶𝐶𝐶(𝑘𝑘) (2.8) 

Unlike the Riccati controller’s offline optimization, which means that the optimization 

process must be completed before system operation, MPC includes online optimization 

that is live during system operation. Its block diagram is illustrated in Figure 2.4. 
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Figure 2.4: Block Diagram of Model Predictive Control [11] 

In MPC, the optimizer is initialized by an initial value of the system’s input and output. 

The optimizer in MPC performs an optimization process, aiming at minimizing a cost 

function (J) with consideration of a finite time horizon. The model is responsible for 

predicting the future outputs (y) of the controlled system until the end of the considered 

finite horizon, which is then compared with the reference trajectory of the output variable 

(yref) to estimate the deviation. The optimizer takes the deviation as its input. Thus, the 

optimizer can determine the optimal system input for the current time point (u*(k)) and 

forward it into the controlled system. 

As discussed above, a cost function is required for the optimizer in MPC to identify the 

optimal solution for the controlled system's input variable (u*). For this purpose, 

considering the prediction model, the cost function should describe the system state 

within the finite time horizon. A typical example cost function is shown in Equation (2.9), 

in which the weighting matrices (Q and S) are applied again. In this case, the optimizer 

attempts to determine the optimal system input (u) considering the accuracy of the 

output variable's predicted trajectory compared to the reference trajectory and the 

oscillation of the system input, which also relates to the required energy consumption. 

𝐽𝐽�𝑌𝑌(𝑘𝑘),𝑈𝑈(𝑘𝑘)� = (𝑌𝑌(𝑘𝑘)− 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘))𝑇𝑇𝑄𝑄�𝑌𝑌(𝑘𝑘) − 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘)� + 𝑈𝑈𝑇𝑇(𝑘𝑘)𝑆𝑆𝑆𝑆(𝑘𝑘) (2.9) 

MPC shows remarkable advantages by considering constraints of the system state and 

the system’s input and output simultaneously, covering the controlled system's technical 

and physical limitations [11]. However, from the opposite perspective, such an approach 

also strongly increases the non-linearity of the optimization problem and thus makes 

MPC possibly require greater computational effort. 
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The previously presented control concepts all rely on modeling of the controlled system, 

which requires precisely describing the system’s dynamic behaviors but does not involve 

consideration of time-dependent behavioral changes. Instead, the control engineering 

approaches with an adaptation of the controller parametrization at runtime are 

developed to deal with the controlled system with time-dependent behavioral changes, 

which are also categorized as adaptive control in the control theory [30] (e.g., the 

parameter-adaptive control in Figure 2.1). 

Different strategies for adaptation of controller parametrization have been developed in 

the parameter-adaptive control, depending on whether feedback of system dynamics is 

available or not available, respectively. In the case of unavailable feedback, the 

adaptation process can be understood as a pure feed-forward control task. In this case, 

an approach like gain scheduling can be applied, which linearizes the nonlinear model 

of the controlled system under different boundary conditions as operating points with 

corresponding assumed linear behaviors. Subsequently, the controller parametrizations 

such as gains are determined and assigned to the operating points. Thus, gain 

scheduling can be completed with the help of a scheduling variable, which aims to 

identify the system’s state or the output. In this case, since the stability of the nonlinear 

system cannot be analytically guaranteed, a simulation-based evaluation of the system 

stability is required [11]. 

If time-dependent environmental disturbances or system dynamics must be considered 

in the adaption of the controller parametrization, feedback for continuous variable 

monitoring of the system is required. For example, in model reference adaptive control 

(MRAC), a reference model is deployed in parallel to estimate a reference output of the 

system so that controller adaptation can be completed, aiming at approximating the 

reference output and the actual output of the controlled system. Unlike MRAC, model 

identification adaptive control (MIAC) relies on model-based estimation approaches to 

identify the system parameters' states and thus adjust the controller parametrization. 

2.1.3 Self-Optimization Control 

The final category in the highest performance stage defined by Trächtler and 

Gausemeier [11] is self-optimization control. The self-optimization system is defined as 
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a system with a capability for automatic adaptation to changes in the environment and 

user profile. The intelligent mechatronic system is defined as a system with an automatic 

adaptation of its system structure and parameters at runtime in changeable 

environments or under different operating modes [11]. Based on these two definitions, 

the self-optimization control is defined by Trächtler and Gausemeier [11] as a control 

system with the capability for situational adaptation of its system configuration to the 

optimal setup with the help of a controller, which is further developed based on the 

concept of adaptive control [28]. 

To realize self-optimization control, the approaches of multi-objective optimization and 

reconfiguration of the controller are essential. Multi-objective optimization is responsible 

for identifying the optimal system configuration considering corresponding constraints 

and criteria, which are typically in conflict. The second required approach for 

reconfiguring the controller aims to guarantee the stability and functionality of the fault-

tolerant system by adapting the system structure or the controller’s application 

parameters. A typical example of self-optimization control is the concept of Pareto-

optimal control based on the so-called approach of Pareto sets [31], which has been 

listed as an example included in the category of self-optimization control in Figure 2.1. 

A block diagram of Pareto-optimal control is illustrated in Figure 2.5. 

 

Figure 2.5: Block Diagram of Pareto-Optimal Control [11] 

In Figure 2.5, it is indicated that Pareto-optimal control has a two-layered hierarchical 

architecture, including two feedback control loops, on which a goal-oriented controller 
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and a configurable controller are deployed. The lower layer focuses on realizing the 

adaptation of the configurable controller’s parameters and structure so that the controller 

can guarantee the stability of the system and its expected functionalities.  

Unlike the lower layer, the higher layer in the hierarchical architecture, including the goal-

oriented controller, aims to figure out the optimal parameter setup for the (re-

)configurable controller on the lower layer without solving the multi-objective 

optimization problem at runtime during the system operation and thus is different from 

the MPC [11]. Instead of the online optimization at runtime, characteristic diagrams 

illustrated as Pareto fronts are defined and deployed in the components Pareto Sets and 

Objective Space in advance. The feedback control loops on the higher and lower layers 

are discussed in detail in the following sections. 

2.1.3.1 Feedback Control Loop on Higher Layer 

As illustrated in Figure 2.5, unknown environmental disturbances (z) influence the 

system’s output (ye) and subsequently influence the output of a predefined cost function 

(J(p*)). This cost function is used to evaluate the fulfillment of the control objective. The 

parameter p* stands for the current configuration of the configurable controller (e.g., the 

value setup of the controller’s application parameters). Due to the mentioned multi-

objective optimization, the cost function is defined as a vector consisting of a set of sub-

functions in parallel, which can respectively provide corresponding evaluation results 

(J1(p*), J2(p*), …, Jn(p*)) from the perspectives of different objectives. 

As discussed earlier, the Pareto-optimal control needs to realize a situational adaptation 

of its system configuration to the optimal setup. For this purpose, the higher layer aims 

to figure out the optimal parameter setup for the reconfigurable controller on the lower 

layer in different situations, which also means that the functionalities of situation 

identification and corresponding mode change are required. 

To realize the situation identification and corresponding mode, a relative weight (α), 

representing the relative importance of different objectives, is applied in the component 

objective space on the higher layer. Figure 2.6 shows an example of the objective space 

considering the case with two different objectives. The calculated evaluation results of 

the fulfillment of the objectives (J1,cur, J2,cur) are taken as inputs of the objective space. 
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Additionally, maximal limited values of the cost function (J1,lim in Figure 2.6) and a desired 

relative weight (αdes) are given in advance as constraints by external sources (e.g., 

predefined by the user). They are also taken as inputs of the objective space. 

 

(a) 

 

(b) 

Figure 2.6: Determination of Reference Relative Weight αref (a) and Logic of Mode-Switch (b) in Objective 
Space [11] 

Based on the cost function’s current output (J1,cur , J2,cur), it is possible to identify a red 

point in the objective space, as shown in Figure 2.6. The red point is assumed to be 

located on an approximated Pareto front illustrated by a dotted line. Based on the 

position of the red point, the current relative weight (αcur) can be determined, which is 

understood as an angle in the objective space. As presented earlier, characteristic 

diagrams referring to the smoothed Pareto fronts in the diagram (a) of Figure 2.6 are 

predefined in the objective space. Thus, a target value (J*1,cur) located on the smoothed 

Pareto front can be found based on the identified red point and the current relative 

weight (αcur). 

In the case of great environmental disturbances (z), the current value of the cost function 

would become very high to work against the disturbances. The determined target value 

(J*1,cur) with current relative weight would become higher and violate the constraint of 

the limited value (J1,lim), which triggers the objective space to switch into Mode 2. In this 

case, the current relative weight cannot be taken as the referenced relative weight (αref). 
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Thus, it is required to determine a new referenced relative weight, which is under the 

constraint regarding the limited value of the cost function. For this purpose, a value of 

J*1,lim for determining the referenced relative weight located on the smoothed Pareto 

front as shown in diagram (a) of Figure 2.6, can be calculated following Equation (2.10). 

𝐽𝐽1,𝑙𝑙𝑙𝑙𝑙𝑙
∗ = 𝐽𝐽1,𝑙𝑙𝑙𝑙𝑙𝑙

𝐽𝐽1,𝑐𝑐𝑐𝑐𝑐𝑐
∗

𝐽𝐽1,𝑐𝑐𝑐𝑐𝑐𝑐
 (2.10) 

Subsequently, the referenced relative weight (αref) under the constraint of the maximal 

limited value of the cost function (J*1,lim) can be determined as follows: 

𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑓𝑓(𝐽𝐽1,𝑙𝑙𝑙𝑙𝑙𝑙
∗ ) (2.11) 

If the environmental disturbances (z) become weaker, the current value of the cost 

function (J1,cur) will be lower than the maximal limited value (J1,lim). Thus, the referenced 

relative weight will equal or be greater than the desired relative weight. In this case, the 

current relative weight can be directly taken as the referenced relative weight, and the 

objective space will switch into Mode 1. With such a switch mechanism, the mentioned 

situational change of operating modes can be realized by corresponding trigger 

conditions, as shown in diagram (b) of Figure 2.6. 

Based on the calculated current and referenced relative weights from the objective 

space as inputs, the goal-oriented controller (e.g., one possibly designed as a linear PI 

controller) determines a current relative weight (αuse). In this case, the optimal candidate 

setup of the controller parameters (p*) can be selected from the Pareto sets to adapt the 

parametrization of the configurable controller on the lower layer. It is emphasized that 

the reliability of the parametrization solution is not explicitly considered during the 

selection of the optimal controller parameters. Instead, it is guaranteed by the previously 

defined value range of the candidate controller parametrizations included in the Pareto 

sets, with additional consideration of fulfillment of the stability criteria of the feedback 

control loop on the higher layer [11]. 

Subsequently, the controller parametrization setup will be forwarded into the 

configurable controller (GR(s)) on the lower layer. This forwarding activity is triggered by 

the mode change on the higher layer. An individual Pareto set is activated for each 
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operating mode to identify the corresponding optimal parametrization setup. In this case, 

the stability of the feedback control loop on the lower layer as a reconfigurable system 

is not considered. Thus, the stability of individual systems on the lower layer after each 

reconfiguration must still be proven [11]. Generally, it can be understood that the 

guarantee of the system stability on the lower layer is wholly delegated to the lower layer 

itself in the Pareto-optimal control system.  

2.1.3.2 Feedback Control Loop on Lower Layer 

As discussed earlier, the feedback control loop on the lower layer in the Pareto-optimal 

control is responsible for realizing the system's expected control functionality and 

stability, which refers to the feedback control loop on the lower layer, including the 

configurable controller. In this case, reconfiguration of the controller is an effective 

technique in fault-tolerant control systems to maintain stability and functionality [32].  

An approach for reconfiguring a configurable controller with a stability guarantee of the 

fault-tolerant control system is introduced by Trächtler and Gausemeier within a critical 

example of a broken actuator [11]. In this approach, the adaptation of the control 

structure or the controller parametrization can be performed to eliminate the negative 

influence of the broken actuator. 

For example, in the case of a linear modeled system, differential equations3 can be 

formulated as follows to describe the dynamic processes of the controlled system: 

𝑥𝑥𝑓̇𝑓 = 𝐴𝐴𝑥𝑥𝑓𝑓 + 𝐵𝐵𝑓𝑓𝑢𝑢𝑓𝑓 + 𝐸𝐸𝐸𝐸 (2.12) 

𝑦𝑦𝑓𝑓 = 𝐶𝐶𝑥𝑥𝑓𝑓 (2.13) 

In this case, the failure of an actuator influences the input matrix (Bf), which causes a 

column of the input matrix to consist entirely of zeros. In contrast, the system matrix (A) 

stays the same without influence. In this case, it is required to keep the trajectory of the 

system state (xf) in compliance with Equation (2.14) to realize the expected controller 

 
3 The subscript f refers to the dynamic processes in the controlled system with failures. 
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reconfiguration with a guarantee of system stability. A reconfiguration matrix K is taken 

as the solution to Equation (2.14), added to the input matrix as stated in Equation (2.15). 

𝐵𝐵𝑓𝑓𝑢𝑢𝑓𝑓 = 𝐵𝐵𝑢𝑢 (2.14) 

𝐵𝐵𝑓𝑓𝐾𝐾 = 𝐵𝐵 (2.15) 

Thus, the reconfiguration matrix K can be integrated between the nominal controller and 

the faulty model of the controlled system, as shown in the following Equation (2.16): 

𝑢𝑢𝑓𝑓 = 𝐾𝐾𝑢𝑢 (2.16) 

The control vector uf includes the reconfigured desired values of the operative actuators 

[32], which can compensate for the negative influences caused by the failed actuator 

and let the nominal controller remain unchanged in the reconfigured control loop. 

2.2 Architecture Design of Software-Intensive Systems 

A taxonomy of different control concepts in the research field of control theory proposed 

by Trächtler and Gausemeier [11], including basic control, optimal and adaptive control, 

and self-optimization control, was presented in previous sections. Based on this 

taxonomy, it is clear that the complexity of control systems is continuously growing.  

Faced with increasing system complexity, traditional design approaches of control 

theory that focus on modeling the controlled dynamic processes and deriving 

accompanying functions becomes insufficient. Instead, the architecture design 

approaches of software-intensive systems [15] become crucial for managing increasing 

complexity. Clear proof of such a trend can be found in the previously presented self-

optimization control, constructed with a naive hierarchical software architecture by 

simply superposing two concurrent closed control loops. In the following sections, 

related works about architecture design of different software-intensive systems will be 

discussed in detail, with a particular focus on intelligent control systems in control theory 

[33]–[35] and the self-adaptive systems in software engineering [25][36]. 
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2.2.1 Tree-Structured Architecture of Saridis 

The most famous hierarchical architecture is proposed by Saridis [1], focusing on the 

design of hierarchical control systems by following a principle of so-called increasing 

intelligence with decreasing precision, or increasing precision with decreasing 

intelligence (IPDI). The phrase increasing intelligence refers to the highly symbolic 

methods and fewer numeric-algorithmic methods utilized on higher than on lower levels, 

along with degrees of abstraction. Thus, the highest levels can directly interact with a 

human user (e.g., with the help of an expert system). The phrase decreasing precision 

means that the higher levels focus on the plan by considering a larger contextual horizon 

with more information (e.g., a longer time horizon with a lower interaction frequency with 

the physical world), which also means a lower system or decision rate [37]. 

     

Figure 2.7: Tree-Structured Architecture of Saridis [1][2]  

Following the IPDI principle, the control system is hierarchically decomposed into 

different levels of control (e.g., the levels of organization, coordination, and execution, 

which are also presented by Saridis in his work, as shown in Figure 2.7) [2]. Along with 

the different levels of control, the high-level control task is hierarchically decomposed 

into distinct subtasks on the next level down. A successive delegation of duties exists 
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from the upper to lower levels. The number of distinct tasks continually increases from 

the top to down, with an accompanying decrease in the hierarchical levels [37]. 

In this case, the whole control system can be seen as an integrated unit consisting of 

mathematical and linguistic methods and algorithms applied to corresponding 

subsystems and processes. This approach separates the control system into different 

levels, following the IPDI principle. Thus, the system may contain more than one layer 

of tree-structured functions, including components like knowledge-based organizers, 

dispatchers, corresponding coordinators, hardware controls, and the physical system. 

The physical system includes a set of dynamic processes in the controlled plant and its 

environment (cf. Figure 2.7). 

The level of organization performs operations like planning and high-level decision-

marking based on long-term memory with high-level information processing such as the 

probabilistic model or knowledge-based system using artificial intelligence algorithms. 

For example, the learning of large quantities of knowledge would be performed on this 

level, which can be deployed in the knowledge-based organizer. The coordination level 

as an intermediate structure works like an interface between the organization and 

execution level, which includes decision-marking and learning in short-term memory. 

Due to high-level control task decomposition, multiple coordinators responsible for the 

decomposed independent subtasks can be deployed on the coordination level. 

Subsequently, the execution level involving a set of hardware controllers is then 

responsible for the fundamental control functions (e.g., feedback control loops in other 

control concepts with lower levels of intelligence).  

2.2.2 NASREM Reference Model for Telerobot Control System Architecture 

NASREM is another famous hierarchical reference architecture of the real-time control 

system for applications like robots and intelligent machines developed by the National 

Institute of Standards and Technology (NIST) of the United States [3]. In the NASREM 

reference model, the control system is designed as a three-legged hierarchy of 

computing modules serviced by a communication system and a global memory, as 

shown in Figure 2.8. 
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Figure 2.8: NASA/NBS Standard Reference Architecture for Telerobot Control System [3] 

The first leg of the hierarchy, Task Decomposition, is responsible for the real-time 

planning and monitoring of the task, which relies on the modules Hx to plan and execute 

the spatial and temporal decomposition of high-level goals into low-level actions. In this 

case, spatial decomposition refers to the task division as concurrent actions by 

corresponding subsystems. Temporal decomposition means that the task is divided over 

time into sequential actions. Each task decomposition module at each level includes a 

job assignment manager and a set of planners and executors. 

The second leg of the hierarchy is World Modeling, which consists of the modules Mx 

for modeling and evaluating the world, focusing on its historic, current, and possible 

future states, including the states of the controlled system. For this purpose, the modules 

of world modeling work together with a knowledge base involved in the global memory 

(cf. Figure 2.8), in which maps, the lists of objects, events and their attributes, and the 

state variables are included. Based on the provided information of observed facts from 
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the sensory processing modules (Gx), the world model maintains the knowledge base 

of the global memory and delivers its predictions of expected sensory data back into the 

sensory processing modules. Additionally, the world model interacts with the planner 

and executor deployed in the task decomposition module at each level and tries to 

answer questions like “What is?” and “What if?” [3]. 

The third leg of the hierarchy, Sensory Processing, consists of the modules Gx and is 

responsible for pattern recognition and event detection through checking correlations 

and differences between the world model’s predictions and observed facts of sensory 

data. Additionally, the processes of sensory data processing like filtering and integration 

are included in these modules. Thus, newly detected or recognized events, objects, and 

relationships will be integrated into the database of the global memory, and objects or 

relationships that no longer exist will be removed [3]. The confidence factors and 

probabilities of the identified events and statistical estimates of the state variables are 

also computed within the modules. 

In addition to the three-legged hierarchy, an operator interface is also included in the 

NASREM reference architecture. It interacts with the human operator to intervene in the 

control system at any level and time. For example, some specific interventions are 

monitoring a process, inserting information, interrupting automatic operation, or even 

taking over control of a task to realize semi-autonomous control. 

Following the principle of hierarchical levels in the architecture, the range of time scale 

and thus the planning horizon and historical event summary interval under the 

consideration decrease exponentially along with the hierarchical levels from top to 

bottom in the NASREM architecture. At each level, the planners inside the task 

decomposition modules divide the task commands into strings of planned subtasks for 

execution. The strings of sensed events are summarized and integrated into single 

individual events at the next level up. In this case, each plan is constituted by at least 

two and, on average, ten subtasks. The planning horizon is extended to the future, 

considering an additional input command interval. During system operation, replanning 

can be triggered by an emergency condition or deterministic cycle time, which requires 

that the cycle time is an order of magnitude less than the planning horizon [3]. 
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Instead, the executors inside the task decomposition modules react to feedback for 

every control cycle interval. Once the feedback detects the failure of any planned 

subtask, the executor will immediately launch a preplanned emergency subtask. The 

planner will generate an error recovery sequence to replace the previous failed plan. 

In Figure 2.8, it is indicated that the lowest level is called a coordinate transform servo. 

This level can be called the servo level for short. Its design relies on the technology of 

basic feedback control. The primitive level is designed to generate a sequence of 

command specifications, which is a kind of trajectory and taken as input for the servo 

level. Once the planner at the servo level receives a new command specification, it 

transmits the information about an attention function to the world model so that the world 

model knows where to concentrate its efforts. The world model estimates the state of 

the manipulator (e.g., including values for variables like position, velocities, and joint 

torques). While the executors perform the specified commands, relevant information will 

also be transmitted to the sensory processing modules at the primitive level to monitor 

the trajectory execution [38]. 

2.2.3 Nested Hierarchical Architecture of Meystel 

Saridis’ tree-structured architecture was presented in the previous section. In this 

architecture, the high-level control task is derived as low-level subtasks, which different 

concurrent coordinators and hardware controls can perform. The Saridis’ architecture 

[1][2] focuses more on the multi-actuator control system, consisting of a tree-structured 

hierarchy including different levels of intelligence. On different levels, several units for 

decision-making are deployed. By coordinating the actions of these units, Saridis’ 

architecture [1][2] optimizes the process of goal achievement [39]. 

Unlike Saridis’ architecture, Meystel’s [39] work has proposed another nested 

architecture for intelligent control, which focuses on the case of single actuator systems 

instead of on multi-actuator systems, especially for the use cases of autonomous control 

systems without any human involvement. Unlike the tree-structured architecture in 

Saridis’ concept, the control system is designed in Meystel’s concept as a nested 

hierarchy consisting of layers with different resolutions [5][18], as shown in Figure 2.9. 

In this case, each layer corresponds to an individual resolution level. 
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Figure 2.9: Nested Hierarchical Architecture of Meystel [18][39][40] 

In Meystel’s architecture, computing processes are independently distributed on the 

hierarchical layers, on each of which a feedback control loop is deployed. Thus, each 

layer represents a different domain of the overall system. The loops on the upper and 

lower layers correspond to each other. Thus, the system behavior results from a 

superposition of the actions on every resolution level generated by similar algorithms. 

The hierarchy of knowledge representations evolves from linguistic at the top level to 

analytical at the bottom level. It is emphasized that the knowledge bases here are 

relatively independent but can communicate to realize a knowledge exchange [5]. 

A typical application example of Meystel’s architecture is the intelligent control system 

for an autonomous mobile robot, which usually includes components of planning and 

control at four levels instead of three levels, also called planner, navigator, pilot, and 

execution. The planner focuses on finding and carrying out a rough plan consisting of 

time profiles of the input variables, which are used to guarantee the expected time profile 

of the output variable. The navigator refines the initial plan and plans a more concrete 

motion trajectory. The pilot is used to realize online motion control tracking, considering 

deviation between the expected situation in the plan and the current local surrounding 

situation observed by onboard sensors. Finally, the execution level is responsible for the 
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execution and compensation of the plan delivered by the planner, the navigator, and the 

pilot [39]. 

2.2.4 Behavior-Based Subsumption Architecture of Brooks 

In the previously presented architectures, the control task is decomposed into subtasks 

on different levels of abstraction. Such a decomposition is realized by a series of vertical 

slices, including sequenced functional modules (e.g., perception, modeling, planning, 

and execution, deployed on concurrent layers in the architecture; cf. Figure 2.9) [41]. 

Thus, the slices form a chain to build up a closed feedback loop with information flows 

at different levels.  

Unlike such an approach with so-called vertical decomposition, another principle 

focuses on horizontally decomposing the problem into task-achieving behaviors. Each 

behavior means a mapping from the sensory inputs to a pattern of actuator outputs that 

aim to complete certain tasks. Thus, the whole control system is designed as a reflex 

system. The perception and the action are tightly coupled within the behavior without 

using abstract representation or temporal planning, which is an approach very similar to 

the current end-to-end learning system for autonomous driving [42].  

 

Figure 2.10: Behavior-Based Layered Subsumption Architecture by Brooks [41] 

The problem decomposition in the behavior-based architecture performs based on 

desired external manifestations of the control system. A typical example of behavior-
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based architecture following such a decomposition principle is the subsumption 

architecture developed by Brooks [41] for applications in autonomous robots, as 

illustrated in Figure 2.10. In Brooks’ architecture, different layers represent so-called 

levels of competence. Each level of competence represents an informal specification of 

the desired class of valid behaviors for the autonomous robot in all potential operating 

environments. In the system architecture, the level of competence is represented by a 

single layer. 

Compared to the lower-level layers, higher-level layers with higher levels of competence 

imply more specific desired classes of behaviors with inhibition mechanisms. They can 

subsume the roles of lower levels by suppressing their outputs. However, lower levels 

continue to function as higher levels are added [41]. Each level of competence includes 

its lower levels of competence as a subset. As presented earlier, a level of competence 

defines the desired class of valid behaviors. Thus, the level of competence above it can 

also be understood as an additional constraint of the valid behavior class. 

2.2.5 LAAS Architecture of Alami 

Another well-known architecture concept was developed by Alami et al. [43] in their 

research work, called the LAAS architecture due to the name of their laboratory. In LAAS 

architecture, the control system comprises three levels: a decision level, an execution 

control level, and a functional level, as shown in Figure 2.11. The logical system is 

designed as an independent logical level, which works as an interface between the 

technical and physical system to make the functional level as hardware-independent as 

possible. 

In LAAS architecture, the decision level is designed to take charge of the high-level 

decision-making with the requirement of deliberative capability and reaction to incoming 

events. For this purpose, the decision level is designed as a system triggered by goal 

and event, which includes a multi-layered structure, depending on concrete applications. 

The planners and supervisors are deployed on different layers, as shown in Figure 2.11. 

 

 



State of the Art 
 

 

 

32 
 

 

Figure 2.11: Reference Structure of LAAS Architecture [43] 

The execution control level plays a role as the interface between the time-consuming 

symbolic processing at the decision level and numerical data computation with a high 

frequency at the functional level. It is designed as a purely reactive system without 

considering the predictive horizon. Additionally, it takes the decided sequence of actions 

as input to correspondingly select, parametrize, and synchronize the appropriate 

functions at the lower functional level, depending on the task and current state of the 
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system, which is determined based on submitted requests and returned replies from the 

functional level. It is emphasized that replies can trigger requests delayed by the 

Executive component. As output, a report about the current state will be submitted to 

the upper decision level to enable plan supervision and choice of subsequent actions 

[43]. The executive component takes over the responsibility of control and data flow 

simultaneously. 

Generally, the functional level can be seen as a library of functions that activate 

elementary robot actions, task-oriented activities like motion planning, vision, and 

localization, or reflexes relying on predefined condition-reaction-policies. These 

functions are embedded in a set of modules. These modules are taken as the 

fundamental unit at the functional level to build dynamic networked interactions, 

depending on the task being executed and the environmental state. Communication 

between the modules is built based on the so-called request-response pattern, relying 

on the call of specified services provided by server modules to corresponding client 

modules (cf. Section 2.3.1). In this case, the server module does not know its clients in 

advance. Instead, the relationship between the client and server modules is established 

dynamically, which means that the modules can be arbitrarily included or removed from 

the system. Additionally, it is also permitted that the services of one module are used by 

other modules, relying on the design of advanced services by combining primitive 

services, which are general and reusable. 

As discussed earlier, the functional level is designed with the principle of the distributed 

system. In this case, the malfunction of any modules may lead to a failure of the whole 

system. Thus, each module is designed to check its request parameters' validity and 

applicability of the required actions. As a critical case, concurrent activities may require 

the same shared resource and thus cause a conflict of resource allocation. Thus, the 

latest request is always defined to have higher priority than previous requests to 

eliminate this critical case. 

2.2.6 Hybrid Control Architecture of Yavuz and Bradshaw 

A further well-known architecture approach to the control system is the hybrid control 

architecture proposed by Yavuz and Bradshaw [44]. They have argued that the 
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capability to work against uncertainty is one of the leading design constraints for the 

real-time control system in different applications such as mobile robotics, mainly due to 

incomplete and time-variant prior knowledge about the environment. Thus, the control 

system is required to complete its reasoning based on current information about the 

state of the controlled system. It is also crucial that the control system quickly and 

appropriately responds to an unexpected event. These expected properties require a 

vital adaptability function and a quick reaction capability for the control systems. Thus, 

a point for the system design was made by Yavuz and Bradshaw: the adaptability 

function must be based on the reaction behaviors [44]. Following this point, a concept 

of hybrid hierarchical architecture was proposed, as shown in Figure 2.12. 

 

Figure 2.12: Hybrid Control Architecture for Mobile Robot [44] 

System parts following different principles are systematically integrated into the hybrid 

hierarchical architecture. On the top of the hierarchical architecture, deliberative 

modules are deployed on upper layers, which are responsible for high-level planning 

and decision-making, relying on the benefits of included world models. In this case, the 

control task is hierarchically decomposed into different levels of abstraction. Thus, each 
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level controls the level beneath it and assumes that its commands will be executed as 

anticipated [44], following a so-called principle of top-down manner.  

Unfortunately, it is utopic that the commands can always be precisely performed as 

expected, particularly in the case of unstructured and dynamic environments. In addition, 

the deliberative modules rely on a complicated world model to complete the planning 

tasks, which causes time delay due to extensive computation effort and thus possibly 

violates the required time constraints of the control system within a concrete application 

like a mobile robot. Thus, reactive modules are deployed at the bottom of the hierarchical 

architecture instead of the deliberative modules. These reactive modules are 

responsible for reflection of and response to environmental stimuli, relying on compiled 

procedural knowledge without high-level knowledge in the world model [44]. 

In contrast to the top-down manner, the control task in the lower part of the hierarchical 

architecture is horizontally decomposed into independent behaviors. Due to the 

independencies between the behaviors, the control system can be developed in a 

bottom-up, evolutionary manner. In this case, each behavior only concerns its relevant 

context information and thus does not require a complicated world model. Relying on 

sensing at a rate high enough for impact limitation of the false sensory readings to work 

against the uncertainty in perception, the mentioned disadvantage of the deliberative 

modules thus can be compensated for [44]. Additionally, due to the loose coupling of 

the deliberative modules and the physical system by isolation of reactive modules, the 

presented critical point about time constraints can also be eliminated.  

Since the architecture of Yavuz and Bradshaw is mainly designed for a mobile robot, 

several operating modes, including manual, teaching, and playback, are included in their 

concept. The manual mode refers to teleoperation entirely controlled by the human 

operator. In mobile robot applications, a map with high complexity is usually required for 

the deliberative modules to plan the path for the robot. In the approach of Yavuz and 

Bradshaw, a simple sequential task-information set containing simple steps of a 

navigational pattern that direct the robot towards the goal (or the achievement of the 

task pattern) is applied to replace the complicated map. Thus, the robot samples and 

records the task pattern in the teaching mode, solving the task-information source 

problem. The playback mode is designed for the self-supervised goal-oriented 
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autonomous operation of the robot. In this mode, the robot evaluates the inputs from the 

user, deliberative and reactive modules, and assigns priorities to the requested actions 

[44]. 

In this case, the information from different sources with different format (e.g., the task 

plan step from the deliberative modules, the reflexive behaviors from the reactive 

modules, and the control commands from the user) must be integrated. The component 

Device Drivers are designed to preprocess the collected raw sensory data, relying on its 

embedded specific sensor-information-analysis modules. After the preprocessing, each 

input set is evaluated, decoded, or converted into standard behaviors with specific 

motion control and activation settings [44]. The component Command Arbitration is 

designed to integrate the sets of information and generate the control commands. The 

deliberative modules may cause a time delay in response due to intensive computation. 

Thus, the generated control command is checked against the sensory information 

before execution to compensate for the time delay and potentially harmful influences. A 

bypass technology is also utilized in the architecture, which means that the reflexive-

control-action requests with a high priority can bypass the control command process 

and attend to the urgent reflexive behavior control requests [44]. 

Generally, the presented architecture aims to design a goal-oriented, reactive, and 

teleoperable system. The design of modular reactive modules in the lower part of the 

architecture guarantees high flexibility for further development of the system, while the 

application of the mentioned bypass technology compensates for the disadvantages of 

the deliberative modules regarding time delay of response. The overall sensory 

processing is distributed to low-level reactive modules, allowing the developed system 

to have sensor-specific processing to guarantee its responsiveness, robustness, and 

flexibility to lower levels. From another perspective, decision-making in centralized 

modules of the developed system guarantees the system’s straightforwardness, 

modularity, and efficiency [44]. The operation of deliberative modules follows the top-

down approach, while the reactive modules follow the bottom-up approach. The 

centralized decision-making integrates both modules for the generation of control 

commands. Subsequently, the generated control commands are forwarded to the 

activation system. 
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2.2.7 IBM’s MAPE-K for Autonomic Computing 

The control systems aim to keep the current value of the controlled variable as a given 

reference value by adapting the value of the manipulated variable, respectively, 

depending on the current state of the control error. From the perspective of software 

engineering, such an adaptation feature can be interpreted as a kind of self-adaptation 

activity, which is the most significant feature of self-adaptive systems. For this reason, 

the software engineering approach for designing self-adaptive systems is also 

considered in this dissertation and taken as a reference to investigate the design of 

future control system architectures with increasingly high complexity. Since MAPE-K is 

one of the most well-known architecture concepts for self-adaptive systems in software 

engineering, it is investigated in this dissertation. In the following sections, it will be 

presented in detail.  

2.2.7.1 Autonomic Computing as a Vision of Self-Adaptive System 

In 2001, IBM reported that the crisis due to the increasing complexity of future software 

systems had become one of the most significant constraints in the further development 

of the IT industry [45]. This development trend requires millions of well-skilled IT 

professionals to develop and maintain highly complicated systems. Additionally, it 

constitutes a significant challenge for integrating heterogeneous systems and the 

internet in the future. Thus, current innovations that solely rely on programming 

languages, which have extended the size and complexity of the systems for architects 

to design, become insufficient. 

Concept Current Computing Autonomic Computing 
Self-Configuration Corporate data centers have 

multiple vendors and platforms. 
Installing, configuring, and 
integrating systems is time-
consuming and error-prone. 

Automated configuration of 
components and systems 
follows high-level policies. The 
rest of the system adjusts 
automatically and seamlessly. 

Self-Optimization Systems have hundreds of manually 
set, nonlinear tuning parameters, 
and their number increases with 
each release. 

Components and systems 
continually seek opportunities to 
improve their performance and 
efficiency. 

Self-Healing In large systems with high 
complexity, problem determination 
can take a team of programmers 
weeks. 

The system automatically 
detects, diagnoses, and repairs 
localized software and 
hardware problems. 



State of the Art 
 

 

 

38 
 

Self-Protection Detection of and recovery from 
attacks and cascading failures is 
manual. 

The system automatically 
defends against malicious 
attacks and cascading failures. 
It uses early warning to 
anticipate and prevent system-
wide failures. 

Table 2.1: Autonomic Computing for Strengthening Self-X Properties [45] 

In this case, the only remaining solution approach is autonomic computing inspired by 

the natural biological nervous system that enables self-management for high-level 

objectives provided by administrators to software systems. Thus, the software systems 

become self-managing or so-called self-adaptive systems [45]. To make the mentioned 

self-management clearer, IBM has defined four properties to specify it, including self-

configuration, self-optimization, self-healing, and self-protection, summarized as the 

well-known self-X properties as described in Table 2.1. 

Additionally, IBM has developed the autonomic computing adoption model, as shown in 

Figure 2.13, referring to a methodology for businesses to calibrate the degree of 

autonomic capability based on the following dimensions: increased functionality, control 

scope, and service flow. The dimension of functionality describes the automation degree 

of the IT and business processes with five levels. The first Manual level means that the 

IT professionals are manually responsible for system management. Different system 

management technologies can be applied at the second level of Instrument and Monitor 

to collect the information from the managed resources. Thus, some administration tasks 

like monitoring can be eliminated for human administrators. The third level is named 

Analysis, which means that the management functions like pattern recognition, 

prediction of optimal configuration, and recommendation of corresponding actions are 

automated instead of being delegated to human administrators. Subsequently, at the 

level of Closed Loop, the management system performs the actions automatically, 

relying on its available information and knowledge about the managed resources. Finally, 

the IT systems can understand the high-level objectives and business policies at the 

final level of Closed Loop with Business Priorities. Users interact with the autonomic 

technology tools to monitor business processes and alter the business processes or 

objectives [46]. 
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Figure 2.13: The Autonomic Computing Adoption Model [46] 

In addition to functionality, the second dimension is the control scope, which refers to 

coverage of the managed resources. At the first level of the Sub-Component, the 

technical system focuses on the partial system (an operating system on a server or an 

individual application within an application server) [46]. The second level is the Single 

Instance, in which case the whole standalone resource, such as a server or application 

server, is automatically managed. The next level focuses on the case with Multiple 

Instances of the Same Type as the managed resources, which means that the managed 

resources are homogeneous (e.g., a cluster of application servers). Once the managed 

resources consist of Multiple Instances of different Types, such a use case is 

categorized as the fourth level, which means that heterogeneous resources like servers 

and databases or routers and storage units are focused on. Finally, the hardware and 

software resources, which perform the business processes, are automatically managed 

by the systems at the Business System level. 

The third dimension of service flow focuses on the so-called autonomic maturity level by 

combining IT management process activities such as change management, incident 
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management, and problem management. Autonomic maturity can evolve in three 

dimensions: (1) automating more functions along with the increase in maturity, (2) 

applying automated functions to broader resource scope, and (3) automating tasks and 

activities in various IT management processes [46]. Along with the increasingly higher 

levels of autonomic maturity, automation is applied, in which case more processes of 

the managed systems are focused on within an increasingly broader scope. 

The developed adoption model enables the incremental adoption of additional 

autonomic capabilities for the evolution of autonomic computing. Thus, a solution space 

is provided for the business to determine an incremental action plan for maximizing the 

benefits of corresponding available autonomic capabilities. To realize autonomic 

computing, the topic of self-adaptive systems, which are capable of monitoring their 

operating environments and automatically adapting themselves to changes with the help 

of the mentioned self-X properties (cf. Table 2.1), has been studied by different 

researchers [36][47][48]. In this dissertation, MAPE-K, proposed by IBM as one of the 

most fundamental architecture concepts, is taken as a reference and will be discussed 

in detail in the next section. 

2.2.7.2 Overall Reference Architecture for Autonomic Computing 

As discussed earlier, autonomic computing requires the self-management capability of 

the software systems, which makes them self-adaptive systems. To design such 

systems, IBM proposed a reference architecture to describe the overall idea for the 

design of the MAPE-K concept, which is shown in Figure 2.14. This reference 

architecture consists of multiple layers, with corresponding so-called autonomic 

computing building blocks, which communicate by relying on the communication pattern 

of the enterprise service bus (e.g., via standard mechanisms like web services) [46]. 

Thus, the autonomic computing system is decomposed by building blocks (on different 

layers) within different classes: touchpoints, knowledge sources, orchestrating and 

touchpoint autonomic managers, and manual managers. 
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Figure 2.14: Reference Architecture of Autonomic Computing [46] 

The managed resources or system components that constitute IT infrastructures are 

deployed on the lowest layer of the reference architecture, possibly consisting of 

software or hardware like a server, storage unit, database, or application server. As 

shown in Figure 2.14, it is emphasized that the managed resource can also contain an 

embedded intelligent control loop. In this case, the loop can be used to realize the 

autonomic capability of self-management within the run-time environment, 

independently of the management by autonomic managers on higher layers. Such an 

embedded intelligent control loop may be deeply hidden in the managed resources, 

which are externally invisible and thus inaccessible. In some cases, the intelligent control 

loop may also be externally visible and thus can be accessed and controlled by 

autonomic managers via touchpoints and so-called manageability interfaces. In this 

case, the touchpoints are the interfaces between the autonomic managers and 

Manual
Manager

Orchestra�ng
Autonomic
Managers

Touchpoint
Autonomic
Managers

Touchpoint

Managed
Resources

Knowledge 
Sources

…

Self-Configuring Self-Healing Self-Op�mizing Self-Protec�ng

Self-
Configuring

Self-
Configuring

Self-
Configuring

Self-
Configuring

Self-
Healing

Self-
Op�mizing

Self-
Protec�ng

Orchestra�ng 
Within a 
Discipline

Orchestra�ng 
Across 
Disciplines

R R R R R
Servers Storage Network Database/

Middleware
Applica�on

ISO … …

Intelligent Control Loop

Proper�es:

Rela�onships:

Sensor Effector

Managed
Resource

Managed
Resource

Logs

Configura�on Files
APIs

Events

Iden�fica�on, Metrics,
State, Configura�on

Hosts, Users

Proper�es:

Rela�onships:

Sensor Effector

Managed
Resource

Managed
Resource

Logs

Configura�on Files
APIs

Events

Iden�fica�on, Metrics,
State, Configura�on

Hosts, Users

Proper�es:

Rela�onships:

Sensor Effector

Managed
Resource

Managed
Resource

Logs

Configura�on Files
APIs

Events

Iden�fica�on, Metrics,
State, Configura�on

Hosts, Users

Proper�es:

Rela�onships:

Sensor Effector

Managed
Resource

Managed
Resource

Logs

Configura�on Files
APIs

Events

Iden�fica�on, Metrics,
State, Configura�on

Hosts, Users

Proper�es:

Rela�onships:

Sensor Effector

Managed
Resource

Managed
Resource

Logs

Configura�on Files
APIs

Events

Iden�fica�on, Metrics,
State, Configura�on

Hosts, Users

Analyze Plan
Symptom

Change 
Request

Change 
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change 
Request

Change 
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change 
Request

Change 
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change 
Request

Change 
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change 
Request

Change 
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change 
Request

Change 
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change 
Request

Change 
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change 
Request

Change 
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change 
Request

Change 
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change 
Request

Change 
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change 
Request

Change 
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change 
Request

Change 
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change 
Request

Change 
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change 
Request

Change 
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change 
Request

Change 
Plan

Knowledge
Monitor Execute



State of the Art 
 

 

 

42 
 

managed resources. The manageability interfaces are the services provided by the 

managed resources, about which more details will be provided in Section 2.2.7.3.  

Generally, the management task of specific managed resources can be taken over by 

one or multiple touchpoint autonomic managers. Each touchpoint autonomic manager 

can be implemented as a control loop to realize specific self-X properties. On a higher 

layer, orchestrating autonomic managers, each of which is also implemented as a 

control loop with the same structure as the touchpoint autonomic manager, are deployed 

to deliver system-wide autonomic capability by coordination of multiple touchpoint 

autonomic managers. For example, a typical orchestrating autonomic manager could be 

the workload manager, which, based on specific measurement approaches and policies, 

optimizes the resource utilization across a pool of managed resources to realize policy-

based goal-oriented system management [46]. Thus, the orchestrating can be 

performed within a single discipline or across disciplines, depending on the self-X 

properties realized by the touchpoint autonomic managers, as shown in Figure 2.14.  

On the top layer of the reference architecture, a manual manager provides a standard 

system management interface for human IT professionals to perform certain 

management functions like system setup and configuration or run-time monitoring and 

control. For this purpose, an integrated management console is used, which is primarily 

designed to provide a single platform. Thus, the administrator can deal with an overall 

management solution instead of addressing individual components. The manual 

manager can cooperate with other autonomic or manual managers either on the same 

or lower layers, enabling IT professionals to delegate management functions to 

autonomic managers. 

The final kind of building block refers to the knowledge sources as repositories to deliver 

knowledge access. These knowledge sources are deployed across different layers in 

the reference architecture to guarantee that different manual and autonomic managers 

can acquire and share knowledge. The following sections will provide more details about 

essential building blocks in the reference architecture. 
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2.2.7.3 Touchpoint and Manageability Interface 

As presented before, the touchpoint is an interface component that exposes the state 

and management operations for the resource to be managed by the autonomic manager. 

In this case, the autonomic manager communicates with the touchpoint through the 

manageability interface. Figure 2.15 illustrates a touchpoint as an implementation of the 

manageability interface for a specific or a set of managed resources, typically for the 

use case of database server management. 

 

Figure 2.15: Touchpoint as Interface Between Autonomic Managers and Managed Resources [46] 

The manageability interface is divided into sensor and effector interfaces to control the 

managed resource. The touchpoint implements sensor and effector behavior for certain 

specific managed resources by mapping the standard sensor and effector interfaces to 

available manageability interface mechanisms of the managed resources, as shown in 

Figure 2.15. Such an approach massively reduces implementation complexity due to 

the avoidance of the need to specify diverse interface mechanisms for various types of 

managed resources [46]. 

The sensor interface consists of at least one of two parts. The first part deals with 

accessible properties through a standard “get” operation for exposure of the information 
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of request-response. The second part refers to management events that occur in the 

case of a state change in the managed resource, relying on the interaction mechanism 

of send-notification.  

The effector interface also contains at least one of two parts. The first part deals with a 

set of “set” operations to change the state of the managed resource, relying on the 

interaction mechanism of perform-operation. The second part focuses on other 

operations implemented by autonomic managers to enable the managed resource to 

send requests, relying on the interaction mechanism of solicit-response. 

The sensor and the effector interface are directly linked. Such an approach works as a 

reflection to enable notification through the sensor interface if the effector interface 

changes the configuration of the managed resource. The approach relies on the so-

called manageability capability of the managed resource, including a logical collection 

of manageable resource’s state information and operations as detailed properties (cf. 

Managed Resource Details in Figure 2.15). 

For example, the property of identification refers to state information and operations 

used to identify the instance of a managed resource. Instead, the metrics refer to the 

state information and operations used to measure the managed resource. For different 

manageability capabilities, the component on the client-side is forced to be able to 

acquire and control state data through the manageability interface, which includes three 

parts: (1) meta details for specifying the managed resource and its configuration, (2) 

sensor interactions for retrieving of current property values from the managed resource, 

and (3) effector interactions for changing the state of the managed resource [46].  

2.2.7.4 Knowledge Source 

The previous section described how the knowledge source is deployed in the overall 

reference architecture as a repository to access and share knowledge. Knowledge 

refers to standard data shared among different building blocks, such as autonomic 

managers. In this case, the knowledge included in the knowledge sources can be used 

to extend the available knowledge of the autonomic managers. The autonomic 

managers can load knowledge from one or multiple knowledge sources. Further, the 
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knowledge can be activated by the managers of these autonomic managers on higher 

layers. 

In the reference architecture of MAPE-K, knowledge can be acquired by following three 

approaches. The first approach is that the knowledge source directly passes the 

knowledge to the autonomic manager. The second approach refers to a case where the 

autonomic manager retrieves the knowledge from an external knowledge source (e.g., 

specific resource-specific historical knowledge, which needs to be extracted from the 

log files of a particular component or system). As a final approach, the autonomic 

manager can also create new knowledge based on current activities by logging the 

notifications provided by the managed resource [46]. In such a case, the autonomic 

manager can also update the created knowledge into the knowledge source. 

To complete the management tasks, the autonomic managers require different types of 

knowledge, as summarized in Table 2.2. Each knowledge type must be expressed by 

standard syntax and semantics [46], categorized in this dissertation as homogenous 

knowledge. The case of heterogeneous knowledge expressed by different syntax and 

semantics is excluded here and is discussed in Section 6.3.2. 

Knowledge Types Comments 
Solution Topology 
Knowledge 

The solution topology knowledge captures the components' 
construction and configuration for a solution or business system. 
Installation and configuration knowledge are captured in a 
standard installable unit format to eliminate complexity. The plan 
function of an autonomic manager can use this knowledge for 
installation and configuration planning. 

Policy Knowledge A policy is a knowledge consulted to determine whether changes 
need to be made in the system. An autonomic computing system 
requires a uniform method for defining the policies that govern the 
decision-making of autonomic managers. By defining policies in a 
standard way, they can be shared across autonomic managers to 
enable entire systems to be managed by a standard set of policies. 

Problem Determination 
Knowledge 

Problem determination knowledge includes monitored data, 
symptoms, and decision trees. The problem determination 
process also may create knowledge. As the system responds to 
actions taken to correct problems, learned knowledge can be 
collected within the autonomic manager. An autonomic computing 
system requires a uniform method for representing problem 
determination knowledge, such as monitored data (standard base 
events), symptoms, and decision trees. 

Table 2.2: Knowledge Types in Knowledge Sources [46] 
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2.2.7.5 Autonomic Manager Based on the Reference Model of MAPE-K 

The most crucial building blocks in the presented reference architecture are the 

orchestrating and touchpoint autonomic managers. As discussed earlier, each 

autonomic manager implements an intelligent control loop. In both the orchestrating and 

the touchpoint autonomic manager, the intelligent control loop is realized based on a so-

called MAPE-K reference model, which consists of five parts with different functions: 

Monitor (M), Analyze (A), Plan (P), Execution (E) and Knowledge Source (K), as shown 

in Figure 2.16 [49]. 

 

Figure 2.16: Reference Architecture of Autonomic Managers Based on MAPE-K [46][50] 

The monitor function is responsible for the collection, aggregation, filtering, and reporting 

of the managed resource details, including information like topology, metrics, 

configuration property, state, and the provided capability of the managed resource. After 

processing the collected data (e.g., filtering), the processed data is used to aggregate 

and correlate the context of events to generate a symptom related to a particular 

combination of events. The generated symptom is then forwarded to the analyze 

function, as shown in Figure 2.16. It is emphasized that the monitor part may create 

knowledge based on current activities by logging the notifications from a managed 

resource [46]. 
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The second part of the MAPE-K reference model is the analyze function, which aims to 

observe and analyze situations to determine whether a change must be performed. For 

this purpose, the analyze function includes mechanisms to correlate and model the 

situations. For example, once a particular policy is not being met, the requirement to 

enact a change is fulfilled [46]. Additionally, in some cases, the analyze function 

considers the context of the current situation and takes the future context into account 

during its processing. For this reason, the mechanisms of modeling the situations are 

also included, which allows the analyze function to complete tasks like time-series 

predictions or queuing of models.  

With the help of these mechanisms, the analyze function can understand the current 

system state and allow the autonomic manager to learn about the IT environment and 

help predict future behaviors. Once a change is required, a so-called change of request 

as a standard description of essential modifications, which the analyze function 

considers, will be generated and forwarded to the next part: the plan function. 

Once the plan function receives the change of request from the analyze function, it 

enacts a desired alteration in the managed resource by creating or selecting a procedure, 

which can be performed in diverse forms, ranging from a single command to a 

complicated workflow [46]. The output of the plan function is called a change plan, which 

includes a set of desired changes for the managed resource with certain orderings for 

the achievement of goals and objectives. The plan function uses policy information to 

guide its work [46]. 

The generated change plan still must be forwarded to the execute function, which as 

another part in the control loop of the MAPE-K reference model, is responsible for the 

execution control of the change plan. For this purpose, the execute function can 

schedule and perform the desired changes to the system. A single change plan may 

contain a series of actions that can be performed to modify the state of the managed 

resources. To perform the actions, the autonomic manager needs to use the effector 

interface of the touchpoint, which was presented in Section 2.2.7.3. Suppose the monitor 

part has created new knowledge. In that case, the execution of the generated change 

plan can also be completed by updating the created new knowledge into the final 
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knowledge source in the MAPE-K reference model, which was explicitly introduced in 

Section 2.2.7.4.  

The knowledge included in the knowledge source is required during the processes of 

other system parts, like the monitoring, analyzing, planning, and execution functions. 

For example, the monitor function can create new solution topology knowledge based 

on the observed details of the managed resource (e.g., a new configuration or the 

construction of the system). The analyze function can use the policy knowledge to 

determine whether a change request is necessary. Following a standard means to 

define the policy with a uniform method, a single autonomic manager can use the 

defined policy for its decision-making, which can also be shared across multiple 

autonomic managers in the whole system. Problem determination knowledge includes 

monitored data, symptoms, and decision trees [30]. Thus, the monitor and the plan 

function use this knowledge to generate symptoms and determine the change plan. 

2.2.8 DYNAMICO Reference Model 

Most implemented approaches as contributions to self-adaptation assume non-mutable 

adaptation goals and monitoring infrastructures, which strongly limits the applicability of 

the approaches in the case of systems within highly changing environments. For this 

purpose, Villegas et al. [51] have proposed a so-called DYNAMICO reference model for 

engineering adaptive software systems. The general concept of the DYNAMICO 

reference model is inspired by the MAPE-K and the control theory with the classical 

feedback control loop. In this sense, the DYNAMICO can also be seen as an application 

and further development of MAPE-K with the integration of control theory approaches. 

Integrating control theory approaches based on the feedback control loop and the self-

adaptive software systems is not an entirely novel idea. Its benefits have been 

investigated by different researchers [25][52]. For example, Müller et al. [53] and Kramer 

and Magee [54] said that the feedback control loops had been considered a fundamental 

design element for designing systems with self-adaptation. However, visibility of the 

adaptation controller and the control loop is still missing, which leads to a lack of explicit 

methods for analysis, validation, and verification of the system and thus makes the 

measurement of the effectiveness of the adaptation mechanisms unrealizable [53]. 
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DYNAMICO reference model aims to solve such issues by increasing the visibility of the 

feedback control loop components and making them analyzable, assessable, and 

comparable [55]. 

2.2.8.1 Fundamental Design of DYNAMICO 

As discussed with the concept of MAPE-K, the autonomic manager is a component that 

implements an intelligent control loop [46], which is realized by a set of tight-coupled 

functions (cf. Section 2.2.7.5). In this case, the separation of concerns between the 

monitoring process, the adaptation controller, and the management of control objectives 

(adaptation goals) is still missing. The lack of the separation of concerns makes the 

consistency guarantee between the adaptation mechanisms and corresponding control 

objectives while preserving the relevance of context monitoring of the adaptation 

mechanism exceedingly tricky. Thus, loose coupling is selected in the concept of 

DYNAMICO, which makes the fundamental elements in the MAPE-K loop independent. 

For example, a classical feedback control loop from the perspective of control theory, 

including corresponding components like controller and controlled system and their input 

and output, are schematically visualized in Figure 2.17. Since control theory, especially 

the classical control loop, was presented in Section 2.1.1, detailed discussion of the 

classical feedback control loop is excluded. 

 

Figure 2.17: Classical Block Diagram of a Feedback Control System [51] 

From another perspective, the control loop of the MAPE-K is realized by the monitor, 

analyze, plan, and execution functions, which were also discussed in previous sections. 
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a fundamental structure with several general components in the DYNAMICO reference 

model with loose coupling is developed by merging both previous concepts shown in 

Figure 2.18. 

 

Figure 2.18: Fundamental Structure with General Components of DYNAMICO [51] 

2.2.8.2 Hierarchical Architecture Based on Three Levels of Dynamics in DYNAMICO 

The context-driven self-adaptation of the software system is also considered to increase 

the applicability of the DYNAMICO concept. For this purpose, three levels of dynamics 

in the use case of the self-adaptive system are identified: (1) the management of 

changing control objectives, (2) the dynamic behavior of the adaptation mechanism 

controlling the target system, and (3) the management of dynamic context information 

[51], which influence each other. This means that level (2) and level (3) must be adapted 

in the case of the change of control objectives at level (1). Considering this from the 

opposite direction, a change of context situation at level (3) may also require a review 

of the control objectives to modify the adaptation mechanism at level (2), even once the 

mechanism is working correctly [51]. 

Based on the identified three levels of dynamics, a hierarchical architecture is derived 

following the idea of separation of concerns at different levels, which thus consists of 

three subsystems implemented as three concurrent feedback loops (CO-FL, A-FL, and 

M-FL), as shown in Figure 2.19. CO-FL represents the control objectives control loop, 

which controls the change in adaptation goals and monitoring requirements to guarantee 

their fulfillment. In comparison, the A-FL as the adaptation feedback loop controls the 

adaptive behavior of the controlled system and the adaptation mechanism, considering 

the control objectives from the CO-FL and the monitored context events. Finally, M-FL 
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represents the dynamic monitoring feedback loop, which manages context information 

for preserving the context relevance of the adaptation mechanism [51]. 

 

Figure 2.19: Three Levels of Dynamics in Context-Driven Self-Adaptive Software Systems [51] 

In Figure 2.19, labels (A), (B), (B), (D) are highlighted interfaces between different 

control loops, which represent interactions specified depending on the requirements of 

concrete application. The interaction (A) provides requirements derived from the current 

control objectives to the M-FL. The interaction (B) supports the CO-FL in deciding on 

changes in the control objectives if the M-FL detects the requirement to change control 

objectives. The interaction (C) guarantees that the observed context by the M-FL can 

be considered during the processing of the A-FL. The interaction (D) represents the flow 

of sensed internal context of the controlled system included on the A-FL. 

For each feedback loop, this fundamental structure with general components can be 

applied to derive concrete construction on a lower component level instead of on the 

level of the control loop. Thus, a detailed hierarchical architecture is constituted, 

including controllers on different levels of feedback loops, as shown in Figure 2.20. Each 

feedback control is comprised of a series of “MAPE” components. The A-FL and M-FL 

work together to take over the high-level objective-oriented control, which covers the 

regulation of requirements satisfaction and the preservation of adaptation properties and 

is defined as system variables: control objectives or adaptation goals [51]. 

Control Objec�ves Feedback 
Loop

Adapta�on Feedback Loop

Monitoring Feedback Loop

Reference Control 
Objec�ves (e.g., SLAs)

Sensed Context 
Informa�on

CO-FL

A-FL

M-FL

Legend:
Control/Data Flow
Feedback Loop Abstrac�on

(D)(C)(A)(B)



State of the Art 
 

 

 

52 
 

To specify the control objectives, the requirements can be either functional or non-

functional, which the target system should satisfy. The adaptation properties refer to the 

inherent properties of the self-adaptive software, which are quantitatively represented 

by quality attributes and thus can be exposed by adaptation mechanisms. As illustrated 

in Figure 2.20, the control objectives can also be modified by user-level negotiations at 

runtime, which must be addressed consistently and synchronized at the level of A-FL 

and M-FL [51]. In the case of a change of control objectives, the reference control input 

at the A-FL level and the reference context input at the level of M-FL also must be 

derived and adapted automatically and fed into corresponding feedback loops. 

 

Figure 2.20: DYNAMICO Reference Model with Controllers for the Three Levels of Dynamics [51] 

The second feedback loop A-FL follows the mechanism of control theory with 

quantitative expressions to measure the control error between the current value of the 

controlled system variables and the set value of the reference control inputs for these 
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variables. Relying on the context monitor, the A-FL can continually monitor the state of 

the controlled system, which is analyzed by the component Adaptation Analyzer, aiming 

to determine whether an adaptation is necessary. As in the case of the MAPE-K 

reference model, the planner and executer in the component System Adaptation 

Controller take over the responsibilities of determining adaptation strategy to fulfill the 

control objective by eliminating violations and performing concrete adaptation actions 

included in the strategy. 

The M-FL works as an independent feedback control loop focusing on the dynamic 

nature of the controlled system’s context information. The reference context inputs 

correspond to the reference context management objectives derived from the reference 

control objectives at the CO-FL level. The Context Monitor gathers context information 

from the internal and external environment, which is preprocessed by the component 

Context Control Output Preprocessing and used to generate symptoms, which can also 

influence the adaptation of the target system (cf. label (C)). The Context Analyzer 

analyzes the symptoms, considering the system states' past, current, and future context. 

Thus, it supports the Context Adaptation Controller to adapt the monitoring strategy (e.g., 

in the case of a change of control objectives via the user-level negotiation or evolvement 

of the adaptive system). A typical example of the adaptation monitoring strategy for the 

M-FL could be the deployment of new context management instrumentation. For the 

CO-FL, the output of the context analyzer is also derived as context symptoms to 

support the decision-making about changing the system objectives at the CO-FL level 

(cf. label (B)) [51]. The context adaptation controller defines and executes the adaptation 

plan for the Context Manager; these goals are derived from the measured control output 

and the sensed internal context of the controlled system. 

2.3 Generic Communication Architecture Patterns 

In addition to architecture design from the static view of system construction, another 

perspective on designing self-intensive systems is the dynamic view, which focuses on 

component interactions within the system. For this reason, this dissertation also focuses 

on generic communication architecture patterns, which can be applied to specify the 
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concepts of the communication between the components, primarily focusing on the use 

case of distributed systems. 

This dissertation considers the results of previous work as a reference, including a 

taxonomy of generic communication paradigms for distributed systems [48]. This 

taxonomy includes remote procedure calls (RPC), message-oriented communication, 

stream-oriented communication, and data-based communication, as shown in Figure 

2.21. Additionally, several generic communication architecture patterns are summarized 

as examples, relying on their communication paradigms as underlying technologies 

[56][57]. These communication architecture patterns will be presented in detail in the 

following sections. 

 

Figure 2.21: Taxonomy of Generic Communication Paradigms in Architecture Pattern [48] 

2.3.1 Request-Response Pattern 

The first communication architecture pattern is called the request-response pattern, also 

named the client-server pattern. It is developed based on the communication paradigm 

of remote procedure calls (RPC). RPCs refer to the process that a program on the local 

machine (client) calls a procedure located in a different address space, which means 

that the procedure is located on another machine (server) [57]. Since the client and 

server machines do not share the same address space, parameter passing by using the 

stack is unreliable for RPCs. Thus, RPCs are coded like local ones as much as possible 

so that the developer is not required to handle underlying code for remote interaction. 
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As the initialized process in an RPC, the client procedure calls a client stub, a piece of 

code for parameter conversion aiming to build a message, as illustrated in Figure 2.22. 

The message built by the client stub will be forwarded to the operating system (OS) 

deployed on the local machine, which communicates with the remote OS deployed on 

the server machine via the network. Thus, the message can be transmitted from the 

local machine to the remote machine. Another server stub on the remote machine 

unpacks the parameters from the message and calls the server procedure [57]. 

 

Figure 2.22: Process Flow of a Remote Computation through RPC [56] 

After the processing by the server procedure, the result is returned to the client 

procedure via the process flow in reverse order. It is emphasized that a RPC only 

supports the mechanism of call-by-value, which means that the client procedure copies 

the parameter values and sends this copy to the server procedure instead of directly 

sending the values. In this case, the client procedure aligns the parameter values, which 

are returned from the side of the server procedure. If necessary, the client procedure 

should also check consistency between the initially saved parameter values on the local 

machine and the returned parameter values from the remote machine. 

The RPC can still be divided into synchronized and non-synchronized RPC, as 

illustrated in Figure 2.23. A synchronized RPC means that the client stub blocks itself 

after sending the message until a reply comes back from the server procedure on the 

remote machine, and a non-synchronized RPC means that the client stub will not block 
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itself. In the non-synchronized RPC, the server procedure immediately sends a reply as 

an acknowledgment back to the client-side to confirm that the request is received. Thus, 

the client stub can immediately continue working without blocking [58]. 

 

Figure 2.23: Process Flow of Synchronized and Non-Synchronized RPC [56]  

In comparison to the synchronized RPC, the non-synchronized RPC increases overall 

system performance due to the independent parallel computation of the client and server 

procedures. However, from another perspective, in this case, there is no guarantee of 

reliability since the client never knows whether the server will process the request. 

 

Figure 2.24: Architecture of Request-Response Pattern [59] 

Based on RPC as the underlying technology, the request-response pattern is developed, 

as shown in Figure 2.24. In the request-response pattern, the client initializes an 

interaction with the server by invoking provided services of the server and subsequently 

waiting for the requested results [60]. In this case, the client and the server have ports 

to describe the services they require and provide. One server can be connected to 

multiple clients through request/reply connectors, defined as a data connector 

employing a request/reply protocol.  
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bottleneck or a single point with a high risk of failure. Additionally, system design based 

on the request-response pattern is often complicated since the component interactions 

must be individually defined. Such an approach makes the component interactions later 

cost-intensive to change once the system has been built [52] and simultaneously limits 

the number of active clients. Generally, it can be said that the request-response pattern 

is not appropriate for applications requiring transferal of data in significant volumes. 

2.3.2 Publish-Subscribe Pattern 

The second communication architecture pattern is the publish-subscribe pattern, which 

is based on the underlying technology of message-oriented communication. Message-

oriented communication refers to communication between the participating components 

relying on specified messages via an intermediate-term storage capacity for transmitting 

messages from sender components to corresponding receiver components.  

In message-oriented communication, there is a loose coupling between the sender and 

receiver, which means that it is not required that the senders and receivers are active 

during the message transmission. This loose coupling is realized by a change 

propagation infrastructure that plays the role of the intermediary, as shown in Figure 

2.25. 

 

Figure 2.25: Architecture of Publish-Subscribe Pattern [58] 
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With the help of the change propagation infrastructure, the sender only guarantees that 

message will be inserted into a logical message channel, which is also called topic (cf. 

Figure 2.25), without knowing when and whether the message will be read. Instead, the 

receiver makes decisions about reading the message. In some cases, different 

applications may have diverse message formats. Thus, the broker [61] can also be 

integrated into the change propagation infrastructure to handle the conversion between 

different message formats and temporarily store the messages, making advanced 

enterprise application integration much more effortless. Indeed, the broker is not always 

required in the communication once the message formats of the applications are 

predefined previously and thus are consistent. Generally, it is not worth agreeing with a 

standard message format in the case of communication between heterogeneous 

systems [57]. 

The information exchanged between the sender and receiver components is 

encapsulated inside events and realized as messages routed and forwarded by the 

change propagation infrastructure. In this case, sender components (called publishers) 

and receiver components (called subscribers) work independently and are not aware of 

each other’s locations and identities. The publishers disseminate events that convey 

information without concern for which subscribers are interested. The subscribers also 

do not care about the events coming from which publisher and are only interested in the 

published events, including the expected information. The communication in the publish-

subscribe-middleware is asynchronous, which means that the publishers continue their 

processing without blocking themselves after event dissemination. 

For this purpose, publishers and subscribers must register with the change propagation 

infrastructure to realize such a communication mechanism. Thus, the infrastructure can 

acquire the information about event types to be published and received and thus can 

route events from publishers via network to interested subscribers using registration 

information.  

In such publish-subscribe-middleware, concrete message formats are hidden by the 

events from the publishers, subscribers, and the change propagation infrastructure. 

Such an approach makes the modification of the message format very transparent. 

Nevertheless, from another perspective, the publish-subscribe-middleware also has 
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disadvantages. For example, the concept of anonymous communication possibly 

causes unfavorable overhead once the subscribers have limited specifications (e.g., in 

cases with very few types of events or strictly defined reaction criteria) [61]. 

Due to its loose coupling between publishers and subscribers, message-oriented 

communication has provided tremendous advantages for distributed system 

communication. On top of the message-oriented communication, the publish-subscribe 

pattern is developed and implemented as so-called publish-subscribe-based 

middleware (e.g., typical middlewares with a centralized broker like MQTT, CORBA [62], 

or ROS14). Unlike the middleware with a centralized broker, some other middleware 

relies on concurrency and networking programming patterns like DDS (data distribution 

service) products like ROS25 instead of a broker. 

2.3.3 Pipes-and-Filters Pattern 

The third communication architecture pattern focused on in this dissertation is the pipes-

and-filters pattern, which relies on the underlying technologies of stream-oriented 

communication, primarily focusing on the exchange of time-dependent information. 

Considering the previously introduced two communication paradigms, neither request-

response-pattern nor publish-subscribe-pattern focus on the timing of the 

communication, which, in cases of multimedia, plays a crucial role [56]. Different 

concepts of stream-oriented communication have been developed relying on the data 

stream, including a sequence of data units or items, to deal with the timing requirements. 

The transmission of the data stream can be categorized into three modes: asynchronous 

transmission, synchronous transmission, and isochronous transmission. 

In the asynchronous transmission mode, the data items in a stream are transmitted one 

after the other without any time constraint. For example, in the case of a file transfer, it 

is irrelevant when the transfer of each item is completed. Instead of the asynchronous 

mode, the synchronous transmission mode requires a maximal end-to-end delay for 

each item in the data stream. As a more strict concept, maximal and minimal end-to-end 

 
4 ROS1: Robot Operating System, Version 1: http://wiki.ros.org/Documentation (accessed: 4th April 2022).  
5 ROS2: Robot Operating System, Version 2: http://docs.ros.org/en/rolling/ (accessed: 4th April 2022). 

http://wiki.ros.org/Documentation
http://docs.ros.org/en/rolling/
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delay are required in the isochronous transmission mode, which is particularly 

meaningful for distributed multimedia systems and thus is included in the focus of this 

dissertation [56]. 

In isochronous transmission, the timing requirements are expressed as quality of service 

(QoS), which focuses on timeliness, volume, and reliability in the continuous data stream 

(e.g., the maximum delay variance and jitter [63]). The most effective approach in the 

isochronous transmission is the buffering for reducing jitter to enforce the QoS. Thus, 

the receiver stores packets in a buffer for a certain maximal period, aiming to keep 

regularly passing packets (to the application). In addition to buffering, other approaches 

like error compensation have been developed to deal with the issue of losing packets 

[64]. 

In some use cases of stream-oriented communication with multiple data streams (e.g., 

from different sensors) there is no need to synchronize the data streams. But in other 

use cases, the synchronization of different streams is required, particularly in the case 

of the multimedia stream like internet telephone or video conference. The 

synchronization mechanisms for stream-oriented communication can be understood as 

approaches on different levels of abstraction. For example, one of the possible 

approaches is to deploy a procedure in the application to execute read and write 

operations with consideration for timing and synchronization constraints [56]. 

Alternatively, a middleware layer with multimedia control offers a group of interfaces to 

control streams such as video and audio, and devices such as cameras and 

microphones can be deployed in the application. In this case, each device and stream 

relies on its high-level interfaces to notify the application about the event of an incoming 

stream, which is subsequently used to synchronize streams by writing handlers [65]. In 

addition to middleware, deployment of a synchronization specification containing 

required information on the receiver side has also been applied [56]. 
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Figure 2.26: Architecture of Pipes-and-Filters Pattern [61] 

Based on the underlying technologies of stream-oriented communication, the pipes-and-

filters pattern is developed; this architecture is shown in Figure 2.26. As shown in Figure 

2.26, the input device provides the input data streams, which are processed stepwise 

and forwarded as output data streams into the output device. In this case, each 
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filter components consume and then deliver the data after corresponding individual 

transformation processes. Once the filter component includes activity with a long 

execution duration, it can also integrate multiple instances for parallel computation. 

Some instances can already initialize the processing of a new data stream, even when 

the previous data stream is not yet completed. 

The pipes are deployed between the filter components, which work as connectors for 

the stream by consuming the data at the input port and subsequently forwarding the 

data to one or multiple output ports without any transformation [61]. As the intermediary 

for exchange and coordination of the data, the pipes include policies for buffering to 

guarantee a regular data rate, as discussed in the introduction to stream-based 

communication. 

Since there is no cycle in the pipes-and-filters pattern, it is not appropriate for interactive 
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have high system reliability in the case of a long-term computation since there is no 

approach for the realization of checkpoints or restoring functionality in the pattern. Thus, 

the whole system will fail if any filter has malfunctioned [61]. 

2.3.4 Shared-Repository Pattern 

The fourth communication pattern refers to the shared-repository pattern, relying on the 

underlying paradigm of data-based communication. The communication between 

components is based on the exchange of structured data [48][57]. There are multiple 

application components in the shared-repository pattern, all of which have access to a 

shared data repository, as shown in Figure 2.27. In this case, the application 

components do not know each other, and a shared data repository communicates with 

them. The communication’s control flow is triggered and coordinated by the availability, 

quality, and state of the saved data in the repository [61][66]. 

The application components can work directly on the data saved in the shared repository. 

In the case of a data change in the repository, the shared repository notifies application 

components about the data change to react to it immediately. The notification 

mechanism is realized by observer arrangement. In this case, the shared repository 

plays the role of the subject, and the application components are the observers. For 

example, once a component has created new data and inserted the created data into 

the shared repository, the other components will receive a notification from the 

repository and thus can also access the newly inserted data [61].  

 

Figure 2.27: Architecture of Shared-Repository Pattern [61][66] 
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makes the shared repository a performance and scalability bottleneck and a single point 

with a high risk of failure [60]. The saved data can be encapsulated inside managed 

objects in the shared repository. The managed objects can be implemented as domain 

objects that hide the details of concrete data structures and offer operations for their 

access and modification [61]. Nevertheless, the application components as data 

producers and consumers may still be tightly coupled through their knowledge of the 

data structure [60]. 

Generally, the notification of the shared repository in the case of data change can be 

designed to perform on different levels relying on the utilization of managed objects. The 

notification on the repository level makes the implementation easy, which could cause 

an overhead of notification and data transfer once most application components are not 

interested in the data change. From another perspective, once the notification is 

performed on the managed object level, unnecessary notifications and data transfer can 

be avoided, which leads to higher system complexity. 

2.3.5 Blackboard Pattern 

The final communication architecture pattern is the blackboard pattern, which includes 

a blackboard as a shared data repository for structured data exchange [61]. Due to this 

feature, some researchers categorize the blackboard pattern as a variant of the shared-

repository pattern [60]. The only difference is that the control flow in the shared-

repository pattern is driven by the data change in the shared repository. Instead, the 

control flow in the blackboard pattern is driven by a control component independent of 

the blackboard, which works as a shared repository. Other researchers have also 

summarized this idea in their work [61]. 

Generally, the blackboard pattern is designed to construct systems dealing with tasks 

based on uncertain, hypothetical, or incomplete knowledge and data. It is emphasized 

that there is no guarantee of a valid result, which means that the pattern is not 

appropriate for the systems with expected predictability of result quality or time 

constraints like the worst-case execution time. The core idea behind the pattern is to 

decompose the overall task into smaller, self-contained subtasks for which deterministic 

solution algorithms are known [61]. In this case, the subtasks are assigned to 
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independent knowledge sources, which can be coordinated and activated by the control 

component based on heuristic computation with an arbitrary order to gradually improve 

an intermediate solution hypothesis on the blackboard, as shown in Figure 2.28. 

 

Figure 2.28: Architecture of Blackboard Pattern [61] 
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2.4.1 Q-Learning 

Artificial intelligence and its subfield of machine learning are becoming increasingly 

attractive and have been applied to diverse applications. Generally, machine learning 

approaches can be classified into different broad categories (e.g., supervised learning 

and unsupervised learning), which are differentiated by whether training data as labels 

are available while training a machine learning model such as a neural network. Unlike 

supervised and unsupervised learning, another learning approach named reinforcement 

learning, which learns the best policy based on the environmental reward by taking 

actions with a set of trial-and-error runs [67], is applied within the application example of 

this dissertation. Figure 2.29 illustrates a general process flow of reinforcement learning. 

 

Figure 2.29: General Process Flow of Reinforcement Learning [67] 

Based on model availability, reinforcement learning can still be categorized into model-

based and model-free approaches. One of the most important breakthroughs in model-

free reinforcement learning was Q-learning [68], which is a kind of off-policy TD 

(temporal difference) control algorithm [69]. In its simplest form, one-step Q-learning is 

defined in the following equation: 

𝑄𝑄(𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡) ← 𝑄𝑄(𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡) + 𝛼𝛼 �𝑅𝑅𝑡𝑡+1 + 𝛾𝛾max
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In the equation, Q represents the learned action-value function. The action-value 

function is dependent on the variables S and A, respectively representing the state and 

action of the agent at each time point (subscript t). The variable γ represents a learning 

rate during each step in the learning process by adapting the Q-value. Based on the 

equation, it can be seen that the learned action-value function can directly approximate 

the optimal one, which is independent of the policy being followed [68].  
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𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑄𝑄(𝑠𝑠,𝑎𝑎),∀𝑠𝑠 ∈ 𝑆𝑆,𝑎𝑎 ∈ 𝐴𝐴(𝑠𝑠),𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,∙) = 0  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒): 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒): 
 𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑄𝑄 (𝑒𝑒.𝑔𝑔. , 𝜖𝜖 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑅𝑅, 𝑆𝑆′ 
𝑄𝑄(𝑆𝑆,𝐴𝐴) ← 𝑄𝑄(𝑆𝑆,𝐴𝐴) + 𝛼𝛼 �𝑅𝑅 + 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎
𝑄𝑄(𝑆𝑆′,𝑎𝑎) − 𝑄𝑄(𝑆𝑆,𝐴𝐴)� 

𝑆𝑆 ← 𝑆𝑆′ 
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑆𝑆 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
Figure 2.30: Pseudo Code of Q-Learning — An Off-policy TD Control Algorithm [69] 

Such an approach enormously simplifies the analysis of the algorithm and enables an 

early convergence, in which the mentioned parameter of learning rate also plays an 

important role. The detailed process flow of the Q-learning algorithm is illustrated in 

Figure 2.30. 

2.4.2 Kernel Density Estimator 

In machine learning, the inferential statistical method is a significant important subfield. 

It can be divided into parametric, semiparametric, and nonparametric methods. The 

parametric and semiparametric methods work based on the assumption that the data is 

drawn from one or a mixture of probability distributions of known form. The 

nonparametric methods are applied if there is no such assumption about the input 

density, and the data speaks for itself [67].  

In this dissertation, the kernel density estimator (KDE), one of the most well-known 

approaches in nonparametric methods, is used within the application example. 

Depending on variable numbers, KDE can still be categorized as monistic and 

multivariate approaches. The multivariate approach is out of the focus of this dissertation. 

The most fundamental element of KDE is a so-called Gaussian kernel, which is a 

probability density function based on Gaussian distribution, as illustrated in the first 

Equation (2.17). K(u) represents the probability density, in which u represents the 

deviation between each sample (x’) and the central data point (x) within the Gaussian 

distribution. The central data point here means the data point with the highest density. 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾: 𝐾𝐾(𝑢𝑢) =
1

√2𝜋𝜋
𝑒𝑒𝑥𝑥𝑝𝑝 �−

𝑢𝑢2

2
� (2.18) 
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The Gaussian kernel works based on the assumption that the world is smooth and all 

functions inside change slowly [67]. Thus, in the case of a parameter has acquired a 

historical value of xi (𝑖𝑖 ∈ [1 𝑛𝑛],𝑛𝑛 ∈ ℝ), during the value prediction, all neighbor values will 

receive corresponding probability densities, in which the Gaussian kernel is used as a 

smooth weight function, as shown in Figure 2.31 (cf. individual green curve). In cases 

where the parameter has acquired several historical values (x1, x2, … ,xm, … ,xn), as 

shown in Figure 2.31, multiple green curves with the historical values as their central 

data points can be found to visualize the probability density distributions.  

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊): 𝑝̂𝑝(𝑥𝑥) =
1
𝑁𝑁ℎ

�𝐾𝐾(
𝑥𝑥 − 𝑥𝑥′
ℎ

)
𝑁𝑁

𝑡𝑡=1

 (2.19) 

All density distributions can be merged using the kernel estimator, as illustrated in 

Equation (2.19). In this case, the kernel with subscript h is called the scaled kernel 

(𝐾𝐾ℎ(𝑢𝑢) = 1
ℎ
𝐾𝐾 �𝑢𝑢

ℎ
� ,𝑢𝑢 = 𝑥𝑥 − 𝑥𝑥′ ), in which h is an application parameter of bandwidth. 

Selection of an optimized bandwidth requires consideration of a tradeoff between the 

variance and bias of the overall estimator [67]. 

An overall density distribution (purple curve in Figure 2.31) can be found with an 

appropriate bandwidth. With the help of the purple curve, the next value prediction of 

the parameter x will become more precise since all historical values will be considered. 

However, from another perspective, it is emphasized here that temporal dependencies 

between the historical values are not specially considered in the approach of KDE, which 

means that the appearance sequence of the historical value does not influence the final 

prediction result. 

 

Figure 2.31: Sample Visualization of Probability Density in Kernel Density Estimator [70] 
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2.5 Summary 

Chapter 2 has introduced the theoretical basics of control theory and the architecture 

design of self-intensive systems. For the control theory, the research work of Trächtler 

and Gausemeier [11] is taken as the reference taxonomy of current control systems in 

this dissertation, which was presented in this chapter. In addition, this chapter provided 

a short overview, including different concepts of software architecture design. An 

introduction to generic communication architecture patterns and applied AI-based 

technologies in this dissertation are also included in this chapter. 

Since the main contribution of this dissertation deals with a generic architecture style for 

designing automatic control systems, a case study focusing on the architectural 

evolution of different automatic control systems is included in this dissertation, which will 

be covered in the following chapter. Additionally, this dissertation uses a vehicle’s ACC 

as an example in the case study to better illustrate the architectural evolution. Finally, 

an artificial cognitive cruise control (ACCC) to improve the current ACC variants on the 

market is implemented based on the instantiated architecture by following the generic 

architecture style.  



 
Case Study: Architecture Evolution of Automatic Control 

within the Example of Adaptive Cruise Control 

 

 

 69
 

3 Case Study: Architecture Evolution of Automatic 
Control within the Example of Adaptive Cruise 
Control 

This chapter introduces a case study focusing on the architectural evolution of automatic 

control systems based on application examples of a vehicle’s ACC. Different automatic 

control concepts applied in current ACCs are analyzed and categorized into four levels: 

basic control, naive adaptive control, controlled-plant-dependent adaptive control, and 

physical-system-dependent adaptive control, which are initially inspired by Trächtler and 

Gausemeier’s taxonomy and furtherly developed considering the perspective of 

increasing system adaptability and autonomy (cf. Chapter 2) [11][71][72]. 

In this chapter, the well-known MAPE-K model described in Section 2.2.7 is taken as a 

reference to be roughly compared with the previously mentioned four levels of control 

concepts. Technical limitations of ACCs applying these control concepts are also 

discussed in this chapter to determine existing issues with current control concepts. To 

address these issues, challenges for the architecture design of future automatic control 

systems are discussed. Finally, a future control concept named artificial cognitive control 

is defined in the summary of the illustrated architectural evolution at the end of this 

chapter. 

3.1 Basic Control in ACC 

While designing a control system, it is always challenging to take all possible operating 

situations and corresponding appropriate system behaviors at run time into account, 

particularly for systems working in an uncertain surrounding environment with high 

nondeterminism. Faced with this challenge, different automatic control concepts with 

diverse technologies have been developed. The most fundamental concept of automatic 

control is named basic control in this dissertation, referring to control systems based on 

a controller with a static parametrization at run time, as shown in Figure 3.1. 

Basic control consists of a technical system and a physical system. A controller (e.g., a 

PID controller) is implemented in the Controller component of the technical system, 



Case Study: Architecture Evolution of Automatic Control 
within the Example of Adaptive Cruise Control 

 

 

 

70 
 

relying on the static parametrization saved in a so-called Parametrization Memory 

component (cf. Figure 3.1). The controller takes a control error represented by the 

deviation between the set value of the reference variable and the controlled variable's 

current value, which as an input is provided by another component Measurement Unit, 

via a feedback loop. Another input to the controller comes from an optional Analyzer 

component, which delivers the value of the predicted variable by analyzing future 

feedback from the physical system within the following time cycle. Based on the inputs 

of control error and predicted variable, the controller makes a decision and sends a 

control command to the component Final Control Unit. Thus, the final control unit can 

manipulate the hardware actuators (A) to guarantee the user’s preferred set value. 

 

Figure 3.1: Basic Control Applied in ACC 

In addition to the actuators in Figure 3.1, different hardware sensors are deployed as 

interfaces between the technical and physical systems. For example, the current value 

of the controlled variable is collected by the component Sensor of Controlled Variable 

(SC), and the user-preferred set value of the reference variable is collected by the 

component Sensor of Reference Variable (SR). In this case, the technical system’s 

observation scope for the physical system is determined based on the data access of 

the sensor components. 

The controller parametrization in basic control is defined as a vital system configuration, 

considering system operation and corresponding environmental disturbances within a 

limited workspace. The limited workspace is determined by manual assumptions based 
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on the human engineers’ domain knowledge, usually described in the form of differential 

equations. The defined parametrization is saved in the parametrization memory 

component at design time. Such a control concept has been widely applied to ACC 

systems for a long time. 

The first generation of ACC was only utilized for luxury vehicles by automobile 

manufacturers and their suppliers to enhance driving comfort and convenience in the 

1990s. It has been over twenty years since the first ACC-equipped vehicles were 

available and over ten years since the ISO standard for vehicle systems was produced 

[73][74]. The ACC relieves the driver from routine physical tasks in driving by maintaining 

a steady headway from the last preceding vehicle or a constant cruise velocity in the 

case of no vehicle in front [74]. As the system user, the driver manually sets the headway 

and constant cruise velocity in advance in the ACC. The driver-preferred headway and 

cruise velocity are then taken as the set values (cf. Figure 3.1) of the reference variable 

in corresponding use cases of the control system. 

The controller in ACC relies on static parametrization to decide the vehicle’s acceleration 

or deceleration to fulfill the driver’s preferences. The operation of the entire control 

system relies on a feedback control loop, as shown in Figure 3.1. In the control loop, the 

physical system refers to a summary of physical processes within a limited observation 

scope (e.g., in the case of ACC with basic control, referring to the directly dependent 

processes influencing the controlled variable within the vehicle’s physical components). 

The measurement unit is used to forward the current and set value of the cruise velocity 

or headway to the controller. To distinguish from later ACCs with advanced features, an 

ACC solely based on basic control with static parametrized controller and feedback 

control loop at run time is referred to as classical ACC in this dissertation.  

As discussed earlier, the controller component in basic control is parametrized at design 

time, considering a certain workspace limited by manual assumption and aiming to 

guarantee system performance at run time within the workspace. From the view of the 

ACC application, this feature ensures that classical ACC based on basic control has 

strong robustness against disturbances coming from the driving environment, like the 

wind influences on the vehicle’s driving dynamics. From another point of view, this 

feature unfortunately also leads to disadvantages for classical ACC, especially in the 
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cases of its physical system (cf. Figure 3.1) with highly dynamic factors or the driver as 

a user with dynamically changeable preferences during the ACC’s operation.  

 

Figure 3.2: Architectural Comparison of Basic Control and MAPE-K 

Figure 3.2 illustrates component dependency between the architecture of basic control and MAPE-K (cf. 

Section 2.2.7). Relying on the technology of variable monitoring, the measurement unit in the basic 

control is responsible for the sensory data collection and preprocessing, which corresponds to the 

monitor function of the MAPE-K model. As an optional component in basic control, the analyzer 

component takes the current value of the controlled variable as input to decide whether it is necessary 

to provide a time-series prediction for the future context of the technical system. Thus, the functionality 

of the analyzer roughly corresponds to the analyze function in the MAPE-K, with the task of symptom 

evaluation and decision-making about change request, possibly considering the future context of the 

controlled system. Moreover, the controller here takes the similar responsibility of plan function in the 

autonomic manager, which is very simplified, only considering the current time point without any 

predictive time horizon. Finally, the final control unit takes a similar responsibility as the execute function 

in the MAPE-K, which performs the determined strategy by the plan function. 

For example, a vehicle controlled by an activated classical ACC moves on a mountain 

road with many curves. In this case, the ACC may determine critical control strategies 

due to the controller’s static parametrization (e.g., aggressive acceleration or 

deceleration of the vehicle). Such critical strategies may make the driver uncomfortable 

and thus violate the requirement of driving comfort. Furthermore, if the road surface is 

uneven or slippery, aggressive driving activity may even possibly lead to an accident 

risk (due to unsafe slip) in the worst case. Facing this issue, classical ACC needs to 

adjust its configuration, mainly referring to the controller parametrization. Thus, the 
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vehicle’s acceleration and deceleration strategy could be adjusted during system 

operation if necessary. Unfortunately, as discussed earlier, a change of controller 

parametrization at run time is beyond the ability of a classical ACC based on basic 

control. 

3.2 Naive Adaptive Control in ACC 

As presented in the critical scenario in the previous section, classical ACC has 

limitations due to the missing adaptation capability of the controller parametrization. 

Thus, classical ACC has been developed by integrating naive adaptive control to 

overcome this limitation. Naive adaptive control in this dissertation refers to the control 

systems with a run-time adaptation ability of controller parametrization once the user 

selects a preferred operating mode by manual intervention. Figure 3.3 shows the 

architecture of naive adaptive control. 

 

Figure 3.3: Naive Adaptive Control Applied in ACC  

An additional subsystem Adaptation Unit is integrated into the technical system to realize 

the expected adaptability. A Monitoring Component is deployed in the adaptation unit to 

catch up with user changes to system configuration, particularly referring to the system’s 

operating modes represented by different controller parametrizations and relying on the 

data collected by the component Sensor of User (SU in Figure 3.3). An Adaptation 
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Controller in the adaptation unit determines an adaptation strategy. With the help of an 

included Execution Component, the adaptation strategy is split up into individual 

adaptation activities. A new value of the adapted variable is forwarded into the 

parametrization memory component as the outcome of the execution component to 

update the current value. Thus, the originally saved controller parametrization can be 

updated at run time in the case of a user’s request.  

As presented before, the component SU represents additional data access to catch up 

with the user’s request to change the operating mode, which is not included in basic 

control. In this sense, the technical system’s observation scope for the physical system 

in naive adaptive control is increased compared to basic control.  

 

Figure 3.4: Architectural Comparison of Naive Adaptive Control and MAPE-K 

The newly integrated subsystem adaptation unit in the naive adaptive control comprises a monitoring 

component, an adaptation controller, and an execution component. Compared to the MAPE-K reference 

model, it is indicated that the monitoring component can be roughly mapped as the monitor function of 

the autonomic manager since both are responsible for data collection and preprocessing to generate the 

symptom as the same output. The adaptation controller and the execution component can then be 

roughly mapped as the autonomic manager's plan and execute function. There are two main differences 

Analyze Plan
Symptom

Change 
Request

Change 
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change 
Request

Change 
Plan

Knowledge
Monitor ExecuteX

X
Technical System in Naive Adap�ve Control

Manipulated 
Variable

Final Control 
Unit

Control 
Variable

Controller

Parametriza�on 
Memory

Predicted 
Variable

Controller 
Parametriza�on

Analyzer

Controlled Variable 
(Current Value)

Control 
Variable

Measurement 
Unit

Adapta�on Unit

Adapted Variable 

Monitored
Symptom

Adapta�on 
Strategy

Execu�on 
Component

Adapta�on 
Controller

Control Error 
( Devia�on 

between Current 
& Set Value)

Monitoring 
Component



 
Case Study: Architecture Evolution of Automatic Control 

within the Example of Adaptive Cruise Control 

 

 

 75
 

in the architectural comparison. The first difference is that the MAPE-K model includes the analyze 

function, which decides whether changes are necessary. However, the adaptation unit has no such 

decision-making mechanism, since the user makes decisions externally. The second difference is that 

the adaptation unit does not include a knowledge source function with an updatable knowledge base, 

which is a significant feature of the MAPE-K. Since the adaptation unit is deployed on a secondary 

feedback loop instead of on the primary loop, on which the mentioned controller component in the 

previous section is deployed, another independent MAPE-K structure is added in Figure 3.4. In this case, 

the primary control loop, especially including the controller component, can be interpreted as the 

managed system of the adaptation unit. 

With the application of naive adaptive control, advanced ACC variants enable the driver 

to adjust the control strategy by manual selection of provided operating modes like “Eco,” 

“Comfort,” “Efficient,” and “Sport,” which are respectively represented by different 

parametrizations of the controller [75]–[78]. For example, the operating mode “Eco” will 

make the ACC realize a consumption-optimized driving strategy once the driver 

recognizes that the vehicle does not have much remaining fuel or energy and thus 

selects the mode. The operating mode “Comfort” delivers a very conservative 

accelerating and decelerating strategy for the vehicle to maximize the driving comfort 

and thus also reduce the risk of unsafe slip. Thus, the issues presented in the previous 

critical scenarios regarding the uneven and wet road surface (cf. Section 3.1) can also 

be avoided. 

The deployment of naive adaptive control has significantly improved the ACC’s 

adaptability and flexibility. It enables the driver to change the controller parametrization 

by manually selecting operating mode at run time, which is realized by reloading 

predefined set values of different application parameters. Unfortunately, such a concept 

still has its limitations, especially due to the limited number of operating modes, which 

may not be beneficial to fulfill the driver’s preferences. 

By way of example, the driver has selected the operating mode “Comfort”. Nevertheless, 

the driver also wishes to simultaneously have a more energy-efficient driving strategy 

later, with an expectation of using the operating mode “Eco” since there is not much fuel 

remaining. The importance of the operating modes “Comfort” and “Eco” for the driver 

will still change with reducing remaining fuel or energy during the trip. Thus, selecting a 

single individual operating mode like “Comfort” or “Eco” may no longer completely fulfill 
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the driver’s diversified requirements. Another critical case may also happen when the 

vehicle moves on a mountain road with many curves, making the original set value of 

reference variable like high cruise velocity unreliable due to the high risk of unsafe slip. 

Frequent human intervention for changing operating mode or repeated adaptation of the 

set cruise velocity is required in these two critical scenarios. However, such a 

requirement overstrains the driver’s reaction capability and patience while driving. 

3.3 Controlled-Plant-Dependent Adaptive Control in ACC 

The integration of naive adaptive control enables the ACC to dynamically change the 

controller parametrization at run time by manually selecting a predefined operating 

mode according to the driver’s request. Such an approach further increases the system 

adaptability compared to the concept of basic control, which still has limitations in certain 

critical cases, as discussed at the end of Section 3.2. To overcome these limitations, 

some advanced ACCs have used a control concept with further improvement by 

integrating an additional Interpreting Component into the adaptation unit. This 

architecture is shown in Figure 3.5. 

 

Figure 3.5: Controlled-Plant-Dependent Adaptive Control Applied in ACC  
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The integrated interpreting component has access to all data forwarded by the 

monitoring component in such a control concept. As previously mentioned regarding 

naive adaptive control, the monitoring component still observes and catches up with the 

driver’s requests for changes to the operating mode collected by the component Sensor 

of User (SU in Figure 3.5) and preprocesses (e.g., aggregates and filters) the data 

collected by different sensors. Additionally, the component Sensor of Controlled 

Variables (SC in Figure 3.5) delivers current values of controlled variables that represent 

the state of the impressionable surrounding environment of the controlled plant. In this 

dissertation, such an impressionable environment is called Dependent Environment 

since it can directly be influenced by the controller’s activity (e.g., by maintaining the set 

cruise velocity and headway in the case of ACC). 

Relying on the component Sensor of Controlled Plant (SP in Figure 3.5), values of plant 

variables representing the state of the controlled plant, such as the vehicle’s engine and 

gear speed, could also be delivered to the monitoring component. In this case, it is 

emphasized that the state of the controlled plant also covers the state of its dependent 

environment, which the component SC can monitor. That means the component SP has 

a larger monitoring horizon (i.e., more sensory data access) than the component SC. 

For this reason, the technical system’s observation scope for the physical system is 

increased further compared to naive adaptive control. 

Depending on the sensory data forwarded by the monitoring component, the interpreting 

component estimates the physical system's state, and the result is used to decide 

whether it is necessary to request the processing of the adaptation controller for planning 

the control strategy. In the case of a change request, the adaptation controller 

determines a new adaptation strategy to update the previous one, for example by 

including a group of set configurations over time such as the controller parametrization 

for the future. The adaptation strategy is then forwarded to the execution component, 

which splits the strategy into individual activities consisting of individual values of the 

adapted variables. Subsequently, the execution component forwards the activities to the 

parametrization memory component. In this case, both the human user and the 

adaptation unit can change the system configuration. Such a concept is called 

controlled-plant-dependent adaptive control in this dissertation. 
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Figure 3.6: Architectural Comparison of Controlled-Plant-Dependent Adaptive Control and MAPE-K 

Roughly compared to the MAPE-K reference model, the adaptation unit in controlled-plant-dependent 

adaptive control is upgraded with a new interpreting component. The interpreting component makes 

decisions to request the planning of a new adaptation strategy and thus roughly corresponds to the 

analyze function of the MAPE-K model. Thus, the adaptation unit deployed on a secondary feedback 

loop instead of directly on the primary control loop in naive adaptive control can be roughly mapped as a 

summary of monitor, analyze, plan, and execute functions in the autonomic manager. In this case, the 

primary feedback control loop, including the controller component, can be interpreted as the managed 

system of the adaptation unit. 
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In the mode “Automatic,” it can also be understood that the ACC switches between the 

operating modes like “Eco,” “Comfort,” and “Sport” without any human involvement. For 

example, the ACC has detected that the vehicle does not have much remaining fuel or 

energy with the state estimation based on the variable monitoring. Thus, the system 

automatically adapts the controller parametrization to avoid an aggressive control 

strategy, which may cause high fuel or energy consumption. In this case, the vehicle is 

able to arrive at the planned destination as much as possible. If the driver is not satisfied 

with the ACC’s automatic decision, they can still directly change to their favorable mode. 

In another case, if a vehicle controlled by the activated ACC moves on a mountain road 

and the driver’s originally preferred driving strategy is too aggressive for the vehicle to 

move through the curves safely, by relying on the sensory data about the plant variables, 

ACC with controlled-plant-dependent adaptive control can also perceive the manual 

steering activity of the driver and thus can correspondingly adapt the controller 

parametrization to guarantee driving safety. 

Relying on the concept of controlled-plant-dependent adaptive control, the ACC 

becomes able to determine and adapt the optimal parametrization of the controller with 

consideration of the state of the controlled plant, which covers its dependent 

environment. Thus, the technical system’s observation scope for the physical system is 

increased compared to naive adaptive control. However, such a concept still has 

adaptability limitations due to missing information about the particular environment, 

which is out of the sphere of the controller’s influence. Due to this reason, such an 

environment is called Independent Environment for the ACCs within this dissertation. A 

typical example of such an independent environment would be physical disturbances 

from the driving environment like ambient temperature and wind speed.  

Without context information about the independent environment, the determined 

controller parametrization by the ACC may be extremely critical for the vehicle’s driving 

in the worst case. For example, the ACC takes over the longitudinal control of the vehicle 

moving on a mountain road. With high humidity and a low ambient temperature near 

0°C, the road surface could be slippery due to ice. An aggressive driving strategy may 

lead to a high accident risk if the ACC does not know the ambient temperature. Another 

critical example would be when the ACC controls the vehicle on a route with a temporary 
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speed limit due to reconstruction work or an accident. In this case, an ACC with a high 

cruise velocity originally set by the driver would ignore the speed limit without information 

about the independent environment and thus lead to a high accident risk. 

3.4 Physical-System-Dependent Adaptive Control in ACC 

As presented in the previous section, the ACC may make inappropriate decisions with 

a negative control strategy due to the lack of information about the independent 

environment, which is not directly influenced by the controller’s activity. Thus, controlled-

plant-dependent adaptive control has been upgraded with additional access to 

independent environmental information. In this dissertation, such a concept is called 

physical-system-dependent adaptive control. 

 

Figure 3.7: Physical-System-Dependent Adaptive Control Applied in ACC 

As shown in Figure 3.7, the control system based on physical-system-dependent 

adaptive control can make decisions considering the state of the vehicle’s physical 
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information, covering states of different environmental variables. Thus, the observation 

scope of the technical system for the physical system increases again. 

ACC with physical-system-dependent adaptive control may use the vehicle's onboard 

sensors to acquire information from the independent surrounding environment like 

ambient temperature. As known, information about the future driving environment like 

the route profile and speed limit is previously saved in the navigation map database. In 

this sense, such information can be understood as inputs from an onboard virtual sensor 

on the vehicle and be considered during the determination process of adaptation activity 

[73][79]. 

For example, a well-known advanced ACC following the concept of physical-system-

dependent adaptive control is called “InnoDrive,” developed by Porsche. In the 

“InnoDrive,” different operating modes such as “Dynamic,” “Comfort,” and “Dynamic 

Plus” can be selected by loading different value sets for the weights of criteria like driving 

comfort, energy-efficiency, and driving dynamics to adjust the style of the driving 

strategy [80]. Depending on the selected operating mode, the “InnoDrive” uses dynamic 

programming based on the vehicle's identified state and the state of the dependent and 

independent environment to repeatedly plan an optimized predictive driving strategy. 

This predictive driving strategy consists of a location-based trajectory of set cruise 

velocities for the following route with a deterministic distance horizon, considering the 

loaded values of weighted factors of criteria [78][80]. Compared to the illustrated 

architecture in Figure 3.7, the driving strategy planning can be completed, for example, 

by the adaptation controller in the adaptation unit deployed on the secondary feedback 

loop of physical-system-dependent adaptive control. 

In addition to planning the predictive driving strategy, the “InnoDrive” also includes the 

functionality of location-based driving behavioral prediction of the preceding traffic, 

depending on the identified driving style of the driver in the preceding traffic and the 

route profile. Such a prediction functionality is categorized as a high-level prediction in 

this dissertation since the high-level environmental information included in the digital 

map of the navigation system is utilized. Such high-level prediction can be deployed in 

the interpreting component of the adaptation unit compared to the architecture in Figure 

3.7, which is different from the so-called low-level prediction of the component analyzer. 
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The low-level prediction only focuses on the level of variable data like the controlled 

variable of headway without any real awareness of the system’s surrounding 

environmental context. 

 

Figure 3.8: Architectural Comparison of Physical-System-Dependent Adaptive Control and MAPE-K 

Compared to the MAPE-K, the adaptation unit in physical-system-dependent adaptive control covers the 
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significant remaining difference is that the knowledge source of the MAPE-K is still missing in the 

physical-system-dependent adaptive control. As is well known, the knowledge source is used to store 
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on higher levels of abstraction. Instead of the knowledge source, the parametrization memory component 

for storage of values of application parameters on low-level is included. Additionally, the monitor and the 

execute function in MAPE-K can create new domain knowledge and subsequently update the knowledge 

into the knowledge source, which is out of the ability of physical-system-dependent adaptive control [72]. 

Due to the reasons mentioned above, it can be said that the architecture of physical-system-dependent 
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Finally, in the “InnoDrive,” the planned driving behavior of the preceding traffic is taken 

as a constraint to correlate with the planned predictive driving strategy and then 

forwarded to the longitudinal control of the vehicle, which is deployed on the primary 

feedback loop compared to the architecture in Figure 3.7. 

With the help of physical-system-dependent adaptive control, the mentioned critical 

scenario of unsafe slip due to the slippery road surface with ice will be eliminated since 

the ACC has access to information about the ambient temperature. Thus, it can adjust 

the control strategy more conservatively by adapting the controller parametrization. 

However, in some cases, onboard sensors are also insufficient for the ACC to acquire 

required information, for example, in the mentioned scenario regarding the change of 

speed limit due to the reconstruction site on the following route. 

To work against such a challenge, ACC with physical-system-dependent adaptive 

control also has a communication ability with external resources to require the support 

of their information accesses. Thus, it can take the temporary speed limit change into 

account while planning the optimized driving strategy. With the help of physical-system-

dependent adaptive control, the adaptation unit in the ACC completes its adaptation 

considering the acquired integrated context information about the elements in the 

physical system (e.g., the controlled plant, the dependent environment, and the 

independent environment). 

3.5 Functional Vision of Future ACCs 

The evolution of ACC from the first generation to the following advanced variants with 

further improvements has been presented in previous sections of this chapter. Different 

control concepts behind these ACCs have been categorized, analyzed, and discussed 

to derive their corresponding functionalities and technical limitations. Along with the 

functional supplementation, it is indicated that the system autonomy of current ACCs, 

particularly due to stronger adaptability realized by the upgrade of the adaptation unit 

compared to the first generation, has been strongly increased in recent years. In addition, 

the technical system has acquired increasing context information about the controlled 

physical system to determine the adaptation activity, as shown in Figure 3.9. 
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Figure 3.9: Evolution of Control Concepts Applied in Current ACC Variants 

Instead of requiring the driver’s manual intervention, the latest ACCs (e.g., based on 

controlled-plant-dependent or physical-system-dependent adaptive control) can already 

automatically select the optimal operating mode (under the operating mode “Automatic”) 

from given candidate modes based on state estimation and decision-making, relying on 

the provided input data collected by the sensors from the physical system. Subsequently, 

considering the selected optimal operating mode, such ACCs can also automatically 

determine an optimized driving strategy for a certain predictive distance horizon of the 

following route, including a trajectory of location-oriented set cruise velocities. Although 

such ACCs have already become much more powerful, there are still large potentials to 

further improve their performance in the future, which will be discussed in the following 

sections through two potential future evolution directions.  

3.5.1 Personalized ACC by Learning Individual Driver Preferences 

ACC is designed to realize semi-automated driving of a vehicle since it only takes over 

longitudinal control. This means that the driver must still participate in the driving task 

by taking lateral control with manual steering. Thus, once an activated ACC controls the 

vehicle, the whole driving task can be interpreted as a process of human-machine 

collaboration, in which trust and reliance between the human driver and the ACC as 

typical issues have been investigated by various researchers [81]–[83]. 
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Unfavorable scenarios may happen once the ACC’s determined and performed 

longitudinal driving activity is out of the driver’s expectation. For example, the driver may 

be afraid of possible critical scenarios like accidents due to a lack of reliance once the 

vehicle enters a curve with a too-high cruise velocity. He may immediately take over the 

vehicle’s longitudinal control from the ACC, thus violating the ACC’s original design 

principle of relieving the driver from routine physical tasks in driving to maximize driving 

comfort [74]. Thus, how to maximize the reliance and trust between humans and 

machines becomes an interesting research question. For this purpose, one of the most 

meaningful solution approaches is to make the ACC “drive” the vehicle as much like a 

human driver as possible.  

Due to their diverse preferences, various drivers drive their vehicles very differently. For 

example, they may have different styles of acceleration and deceleration, preferred 

headways to the preceding vehicle, and preferred location-dependent driving velocities 

along with the route profile, which may even change over time along with context 

changes of the driving environment such as the weather profile. Thus, it is utopic to 

deploy the ACCs with one or deterministic numbers of static configurations and serve it 

as a generalized solution to satisfy all drivers simultaneously. Against such a 

background, a Personalized ACC, designed from completely the opposite direction to 

the generalized solution by satisfying a single individual driver instead of diverse drivers, 

becomes a potentially meaningful future solution to enable machine-automated 

longitudinal driving that is as similar as possible to a human driver. 

To realize such a personalized ACC that satisfies a single individual driver, it is 

impossible to specify an appropriate system configuration at design time due to diverse 

driving preferences. Instead, the personalized ACC is required to monitor concrete 

manual driving activities of the observed individual driver with the help of physical 

variable monitoring, and subsequently, based on the acquired sensory data about the 

monitored physical variables, to extract and learn the driver’s driving preferences on a 

higher level of abstraction at run time. Thus, the personalized ACC can automatically 

adapt the individual driver’s preferred location-dependent cruise velocity and headway. 

Additionally, preferred individual acceleration and deceleration style can be 

automatically adapted so that the driver is not required to switch between different 
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operating modes. Unfortunately, such a personalized feature is still unavailable in ACCs 

currently on the market. 

3.5.2 Experience-Dependent ACC by Learning Historical Context of Driving 

Environment 

In the previous section, personalized ACC as a potential future variant was discussed. 

Such ACC would be able to learn the high-level preferences of a single individual driver 

so that the ACC can “drive” the vehicle as similarly to the individual human driver as 

possible and thus make the semi-automated driving more reliable for the driver within 

their expectations. In addition to learning a single individual driver’s preferences, the 

learning of historical context of driving environment would be another future evolution 

direction. Such a learning feature must rely on the observed facts by the perception of 

future ACCs, which capability but has been increasingly strengthened by integrating 

other sensor accesses like LiDAR and cameras, in addition to the original radar sensor 

[73][84]–[86]. 

Considering current ACCs with the control concepts introduced in previous sections, all 

these ACCs normally determine their control activities only by considering current 

contextual information of the driving environment (e.g., the perceived input data from 

the radar sensor). Some advanced ACCs may also consider future context information, 

either provided by the pre-initialized digital map in the navigation system or possibly by 

other prediction approaches based on pre-initialized knowledge about the preceding 

traffic’s driving style and behavior. A typical example of such ACC is the “InnoDrive” by 

Porsche, as presented in Section 3.4, which repeatedly determines a location-based 

predictive driving strategy for a certain distance horizon of the following route. If 

necessary, it also adapts the planned strategy considering the predicted driving behavior 

of preceding traffic. 

In this case, each determination process of the “InnoDrive” is independent without any 

dependency on previous determination processes, which means that the observed 

historical context information of the driving environment during the trip is completely 

ignored. Such an approach is inconsistent with the temporal causality in reality, which 



 
Case Study: Architecture Evolution of Automatic Control 

within the Example of Adaptive Cruise Control 

 

 

 87
 

thus possibly leads to critical scenarios since historical context may also influence the 

current and the future context in the physical world's reality. 

For example, a vehicle is being controlled by the ACC and moving on a mountain route 

with many curves. The ACC has detected a preceding vehicle and adapted its planned 

driving strategy until the end of the considered predictive horizon represented by a GPS 

position on the following route. Once the ego-vehicle has reached the GPS position, the 

ACC again begins to plan a predictive driving strategy for the next following horizon. In 

this predictive driving strategy, the ACC will “forget” the previously detected preceding 

vehicle since the ACC, due to a curve, currently cannot perceive the preceding vehicle, 

even when it could suddenly appear again after the curve. Thus, a high risk of accident 

is created.  

To eliminate such an issue, it would be great if future ACC could “remember” its 

observed facts that happened during the trip, such as, the “disappearing” preceding 

traffic by relying on memory ability. In this dissertation, the ACC with such a feature is 

called Experience-Dependent ACC. It refers to ACC that can record the observed facts 

and, subsequently, extract knowledge on a higher level of abstraction from the observed 

facts and learn the knowledge as its own experience. Thus, the future ACC can 

continually strengthen its experience about the driving environment and thus become 

increasingly more intelligent and adaptive to the previously mentioned critical scenarios. 

Unfortunately, the features included in the described experience-dependent ACC are 

still not available in current ACCs on the market, which could be crucial to realize in the 

future. 

3.6 Opening Issues of Current Control Concepts for Future ACCs in the 
Functional Vision 

The personalized and experience-dependent ACCs were presented in previous sections 

as functional visions of future ACCs. However, such functionalities have not yet been 

covered by current published serial ACC variants on the market. Thus, this dissertation 

tries to identify the reasons for this phenomenon by investigating existing issues in the 

current concepts of automatic control behind current ACCs at the architectural level. 

More details about this investigation will be presented in this section. 
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3.6.1 Missing Knowledge Acquisition and Adaptation 

Considering the presented functionalities of personalized and experience-dependent 

ACC, it is indicated that both variants as visions require that the future ACC system be 

able to deal with high-level domain knowledge. Typical examples of such high-level 

knowledge could be the driving preferences of individual drivers and the system’s 

experienced environmental context like the previously “seen” but currently “invisible” 

preceding car on the mountain road with many curves, as previously introduced 

examples in Section 3.5.2. Most automatic control systems work fundamentally at a very 

low level of abstraction with concrete data. Thus, an appropriate representation of the 

domain knowledge and corresponding abstraction mechanism from the low level of data 

up to the higher semantic level becomes significantly important for the control systems 

in the future. 

3.6.1.1 Current Domain Knowledge Modeling in Control Systems 

Considering concepts of automatic control systems presented in Section 3.1–3.4, the 

adaptation unit, as an essential subsystem in the technical system (especially relying on 

its included interpreting component and adaptation controller), analyzes and determines 

an optimized adaptation strategy, for example in the case of ACC for adapting the 

controller parametrization. For this purpose, a physical system model, including the 

required domain knowledge, needs to be deployed in the adaptation unit to enable a 

faithful adaptation. Thus, it is aware, for example, what kind of an influence on the final 

control performance the adapted controller parametrization has. 

The interaction between technical and physical systems in automatic control strongly 

relies on physics. For this reason, physical formulas based on algebraic functions with 

the physical variables are chosen as a kind of domain knowledge representation to 

describe the behavioral relationship between input and output physical variables. This 

approach guarantees great generalization potential and is categorized as physical 

modeling in this dissertation. However, considering this from another perspective, such 

a physical modeling approach requires explicit knowledge about the domain’s physical 

behaviors at design time. Thus, the human engineers’ knowledge quality and 

completeness strongly influence the system's performance. 
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Generally, it is quite difficult for domains consisting of physical processes with high 

complexity, like in the automobile branch, to precisely model processes solely by 

following explicit physical formulas. Thus, data-driven modeling is an alternative 

approach to physical modeling, aiming to fulfill such a challenge. Data-driven modeling 

tries to describe relationships between related variables directly based on available real 

data points and corresponding human mathematical approximation for data interpolation 

within the covered value range of the data points (e.g., by using the characteristic 

diagram as a simplification with assumed deterministic behavioral representation). An 

explicit understanding of the physical processes is not required in data-driven modeling, 

which makes the modeling much easier. However, from another perspective, such a 

modeling approach has a limited generalization potential due to its properties of 

approximated interpolation between the data points. In addition, a deviation of the 

modeled behaviors to the ground truth behaviors (in reality) is inevitable, particularly in 

the data’s extrapolation area where the value range of the measurement data is not 

covered. 

Both physical and data-driven modeling formulate domain knowledge by following the 

so-called closed-world assumption, which assumes a quasi-static or at least predictable 

world between sensing and acting [87] and assumes that the models contain all required 

knowledge about the physical system. Along with the expected higher system 

complexity and flexibility, the complexity of the physical system to be considered in the 

system design also increases, which strongly challenges the knowledge reserve of 

development engineers.  

Looking at the presented personalized and experience-dependent ACC, such a closed-

world assumption is utopic in future system design. The development engineers cannot 

know a single driver’s driving preferences or the individual system’s experienced driving 

environmental context in advance. Additionally, the model behavior (due to the closed-

world assumption after the system development at design time) remains static. Such a 

feature makes the model unable to update at run time. Thus, different time-dependent 

behavioral changes of the modeled physical system (e.g., due to aging of the vehicle or 

season-dependent vehicle modification like tire changes) would be ignored. Against 
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such a background, the conventional modeling approaches for the physical system 

based on the closed-world assumption reach their limit and become slowly unfavorable.  

3.6.1.2 Essential Knowledge Acquisition and Adaptation as Vision 

To overcome the modeling limitations of the closed-world assumption, an approach for 

knowledge acquisition and adaptation by following the open-world assumption, which 

enables the system to update its available domain knowledge, becomes increasingly 

important. From the viewpoint of software engineering, knowledge acquisition and 

adaptation can be interpreted as a kind of configuration adaptation activity by the control 

system itself. This expected property of self-adaptation is exactly the strength of MAPE-

K, which relies on its monitor, execute function, and knowledge source that are 

responsible for knowledge creation, updating, and storage respectively [46]. 

As discussed earlier, current control systems already include monitoring and the 

execution components, which means that an additional component for knowledge 

storage must still be integrated into the adaptation unit. With the help of this component 

for knowledge storage, it is emphasized that the acquired and adapted knowledge is no 

longer limited to the concrete level of sensory data, which could also exist on higher 

levels of abstraction. Thus, the other components like the interpreting component and 

adaptation controller must also be upgraded to utilize higher-level knowledge. 

Compared to the MAPE-K, it can be deduced that future control systems with the 

properties of knowledge acquisition and adaptation will acquire properties of the real 

MAPE-K, covering all monitor, analyze, plan, execute, and knowledge source functions. 

In the architectures of current control systems, the primary control loop (including the 

controller) is responsible for the real-time interaction with the physical world (e.g., the 

vehicle’s longitudinal control in the case of ACC). In the worst case, it would quickly 

become critical for the control task even within milliseconds if driving safety is violated. 

For this reason, the primary control loop usually works within the millisecond range with 

strictly limited timing constraints. Thus, its observation scope of information is also 

limited, only focusing on determining the control activity for the current time point or a 

certain limited predictive time horizon.  
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Independently of the primary control loop, the adaptation unit is deployed on a parallel 

secondary control loop with another cycle time. Without the requirements of real-time 

interaction with the physical world, the secondary control loop is not as time-sensitive 

as the primary loop. With such understanding in mind, the secondary loop for knowledge 

acquisition and adaptation can be designed to work with a much longer cycle time and 

lower time resolution, possibly considering a larger observation scope of information. 

On a lower component level, knowledge acquisition and adaptation means that the 

physical system’s model must be retrained repeatedly at run time. In this dissertation, 

such a property of repeatedly retraining the model is called self-learning, which is 

unfortunately still beyond the ability of current control systems. Aiming to realize the self-

learning property of the physical system’s model, artificial intelligence (AI) approaches, 

especially from the subfield of machine learning (ML), came into the investigation focus 

of researchers due to their strong data-driven learning capability for the model. In these 

approaches, the self-learning process is driven by an appropriate training algorithm (e.g., 

in the case of a neural network model).  

Along with the further development of artificial intelligence, researchers have already 

tried to apply different machine learning approaches in the control systems, such as 

neural networks [88][89]. As a common understanding in the control theory, such control 

concepts with artificial intelligence are roughly categorized into the subfield of intelligent 

control [34][90]. Still, they have yet to be deployed in the current ACCs on the market. 

3.6.2 Limited System Scalability against Fixed Boundary Conditions 

In addition to knowledge acquisition and adaptation, the presented personalized and 

experience-dependent ACCs also constitute other present issues for the system 

concept. Both variants of future ACC should be able to deal with high-level domain 

knowledge. Since high-level knowledge depends on diversified low-level sensory data, 

the future ACC system requires increased sensor access to gather more contextual 

information about the entire physical system for the adaptation unit. However, the 

system’s boundary conditions, especially the available hardware infrastructures like the 

engine control unit’s (ECUs’) computation capability, are also fixed from another 

perspective.  
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Along with the integration of increased sensor access, it can be understood that the 

secondary control loop in the future personalized and experience-dependent ACC, 

where the adaptation unit is deployed, will have much more sensory data to be 

processed. Additionally, the expected processing capability with high-level domain 

knowledge also requires that the secondary control loop include appropriate 

mechanisms relying on heuristic or linguistic methods, which means that the worst-case 

computation time would become longer and nondeterministic. Thus, it would become 

very difficult for development engineers to design the system scheduling. 

As presented earlier, automatic control systems like the ACC on a vehicle, which require 

real-time processing capability, are designed as pure embedded systems. In this case, 

such systems react to changes in their surrounding environments, and their 

corresponding components can be denoted as independent “active objects” or 

processes with a particular running cycle time [20]. For this reason, the synchronized 

method calls for communication with external domains is rather used somewhat rarely. 

Although in such a case, it does not mean that there is no interdependency between 

different control loops. The lower primary control loop where the controller is deployed 

still relies on the inputs provided by the upper secondary control loop, where the 

adaptation unit is deployed (cf. architectures in Section 3.1–3.4). For this reason, an 

excessive long worst-case computation time of the secondary control loop strongly 

influences the scheduling of the primary control loop. It may limit the lower bound of the 

primary control loop’s permitted cycle time, which thus negatively influences the real-

time interaction with a minimum required frequency between the primary control loop 

and the physical world (e.g., in the case of the vehicle driving). 

Additionally, the excessive long computation time may also limit the connectivity of the 

primary control loop with the outside world. Thus, the system cannot acquire essential 

external sensory data with the required high time resolution due to the limited lower 

bound of the cycle time. Further, the control performance of the overall control system 

may also be negatively limited once there are no sufficient sensory data inputs. Such a 

case only describes a critical situation between two concurrent control loops in the 

architecture. If the system includes more than two control loops, interdependencies 

between the control loops would be much more complicated. The constraints of system 
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connectivity for the lowest loop, which come from the multiple upper loops, would also 

become much more critical. 

As a pure embedded system, a control system like the ACC is deployed on the vehicle’s 

ECU with limited computational resources. One potential solution is to eliminate the 

excessive long computation time barrier by integrating more powerful hardware 

computation units like a high-end graphics processing unit (GPU) and field-

programmable gate array (FPGA). Thus, more-complicated computation processes on 

the upper control loops based on the heuristic and linguistic methods could be 

completed within an expected cycle time. 

However, from another perspective, the system complexity and flexibility of the ACC are 

also continually increasing, although computing capability (following Moore’s law) has 

massively improved in recent years. In this case, a conflict between the fixed system 

boundary, particularly the limited onboard computing resource, and expected stronger 

computing and connectivity slowly becomes a significant bottleneck in further 

development. Against such a background, the external support of offboard computing 

resources like cloud computing could be an alternative approach, which researchers 

have already investigated, but which still has not been deployed in ACCs on the market 

[91]–[94]. 

Generally, from the viewpoint of software engineering, the issues mentioned above can 

be interpreted as a conflict between the expected high system scalability of the future 

control system and its fixed boundary conditions. The hardware solution mentioned 

earlier of integrating more powerful computing devices, aims to improve the boundary 

conditions directly. Another potential solution would be to improve the software system's 

architecture, aiming to reduce the interdependencies between the loops by loose 

coupling instead of focusing only on the hardware environment. Unfortunately, such a 

solution increases system scalability but may also constitute further challenges for the 

system’s architecture design. For this reason, this dissertation focuses on a higher meta-

level of system architecture design and tries to identify relevant challenges, which will 

be covered in the next section. 
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3.7 Challenges for Architecture Design of Future Control Systems 

3.7.1 Current Design of Hierarchical Control System Architecture 

The introduced architectures of current automatic control systems (e.g., in the case of a 

vehicle’s ACC variants) clearly indicate that the whole system consists of several 

concurrent control loops. In this case, each control loop can be interpreted as an 

individual layer. Thus, considering the viewpoint of software engineering, current 

automatic control systems are built based on the well-known hierarchical layered 

architecture pattern [61], which is not actually a completely new topic for the field of 

control theory. 

To deal with increasing system complexity, the field of control theory has proposed 

approaches of hybrid hierarchical architecture for advanced control systems with 

sophisticated world models since the 1990s (e.g., for autonomous robots). In these 

approaches, the field focuses more on controlling technical processes than on 

configuration control6 [95][96]. By following the principle of increasing intelligence with 

decreasing precision, the top-level control task is hierarchically decomposed into a 

group of distinct subtasks on the next lower level, relying on the assumption that the 

dynamics of the world decrease with the level of abstraction [2][87]. Thus, a successive 

delegation of duties by determining and forwarding the reference control strategy exists 

from the upper to lower levels. 

Such hybrid hierarchical architecture of advanced control systems normally consists of 

three parts with different mechanisms for deliberative computation, reactive plan 

execution, and reactive feedback control, from the top layer to the lowest, respectively 

[97]–[100]. The whole system construction is similar to the three levels (skill-, rule-, and 

knowledge-based) of the cognitive model of Rasmussen for explaining human 

interaction behaviors [101][102]. Some typical examples introduced in this dissertation 

are the LAAS architecture [43] and the hybrid control architectures of Yavuz and 

Bradshaw [44] (cf. Section 2.2).  

 
6 Configuration control refers to the processes of configuration (e.g., during initial control application set up) 
and reconfiguration (e.g., when a control application is changed) [95], in which adaptation of component 
configuration, like controller parametrization or knowledge acquisition and adaptation is included.  
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The reactive feedback control at the bottom of the architecture computes based on non-

symbolic algorithmic methods and thus is designed as a reactive layer in the system 

architecture. The system part with deliberative computation possibly includes one or 

several upper layers at the top of the whole architecture based on highly symbolic 

computation, focusing on physical system behaviors at different levels of abstraction. A 

sequencing middle layer involving a reactive planner is deployed to realize seamless 

communication between the bottom and upper layers. It selects and executes 

appropriate tactics, including a group of pre-written ordered sets of actions. Based on 

the execution of the actions, appropriate behaviors to accomplish the subtasks are either 

de- and activated or terminated [103]. 

 

Figure 3.10: Knowledge Coupling on Different Layers within Current Hierarchical System Architecture 
Design [18][39][40] 

Along with the hierarchical layers in the system architecture, the world model is also 

separated as concurrent parts to model the physical system behaviors on different levels 

of abstraction (e.g., deployed in hierarchical knowledge bases of Meystel’s hierarchical 

nested architecture) [18]. In this dissertation, such an approach to knowledge 

decoupling significantly reduces the complexity of the world model on each layer by 

eliminating the need for a sophisticated “monster” world model with incredible high 

complexity. Thus, a long processing time and the risk of violating corresponding time 
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constraints for the fulfillment of the system’s required real-time capability are effectively 

avoided, as shown in Figure 3.10. 

3.7.2 Limitations of Knowledge Decoupling Approach in Current Design 

As presented earlier, the sophisticated “monster” world model is avoided through 

knowledge decoupling by division into multiple world models, which are correspondingly 

deployed on different layers in the hybrid hierarchical architecture and describe physical 

system behaviors at different levels of abstraction. Thus, relying on parallel 

computations of the concurrent layers, the timing performance of the whole control 

system can be increased. However, from another perspective, such an approach still 

has strong limitations for expected future features.  

Considering the hybrid hierarchical architecture, the world models on different layers 

describe the physical system behaviors on different levels of abstraction. Due to required 

levels of abstraction, they may rely on different knowledge representations, varying from 

modeling with linguistic methods like formal languages to the previously mentioned 

explicit physical modeling or implicit data-driven modeling such as a neural network. In 

this case, the expected feature of knowledge acquisition and adaptation constitutes 

challenges for system architecture.  

For example, it is known that knowledge acquisition and adaptation extract new domain 

knowledge based on newly observed facts and subsequently integrate the new 

knowledge into the world models through learning processes. In this case, the learning 

process can be realized by adapting the data field in the knowledge base of the 

knowledge component on a certain layer. Since the world models are deployed and work 

independently on different concurrent layers, as shown in Figure 3.10, their learning 

processes are independent.  

Nevertheless, a knock-on effect of the newly learned knowledge on a certain layer to 

the validity of domain knowledge included in the world models on neighbor layers (upper 

and lower) may exist. The layer-independent learning processes become idealized since 

the domain knowledge may still have a strong working dependency across different 

layers. In such a case, vertical adaptation of all knowledge components through all 

layers is required, leading to an unfavorably high computation effort for the control 



 
Case Study: Architecture Evolution of Automatic Control 

within the Example of Adaptive Cruise Control 

 

 

 97
 

system. Thus, a strong challenge to the limited computation resources of control 

systems deployed in an embedded running environment is raised (e.g., for the vehicle’s 

ECU in the case of an ACC system). To work against such a challenge, how to enable 

an efficiently interactive self-learning process between neighbor layers becomes a 

meaningful research topic for system architecture design.  

In addition to the challenge of unfavorable required vertical adaptation through all layers, 

another challenge relates to increased computation time. Adapting the world model for 

learning the knowledge included in the newly observed facts may further increase the 

model complexity. Higher model complexity may require a larger knowledge base in the 

knowledge component and a longer accompanying inference process relying on the 

knowledge base. Thus, the longer inference process limits the permitted processing time 

of other components on the loop and may negatively influence computation performance 

of the whole closed control loop since the overall computation time of the loop, due to 

interaction with the physical world is always limited. Against such a background, 

enabling knowledge acquisition and adaptation without negative influences on the 

computation of the closed control loop in the system architecture design becomes an 

interesting research topic. 

3.7.3 A Vision of Architecture Design for Future Control Systems  

Considering the challenges discussed in Section 3.7.2, especially for integrating the 

knowledge acquisition and adaptation, the most serious pain point lies in the deployment 

of the knowledge component, including its corresponding knowledge base and world 

model on the closed control loop of each layer. Thus, the deployment concept of the 

knowledge components needs to be rethought to fulfill the previously mentioned 

challenges, considering the influences of knowledge acquisition and adaptation.  

Aiming to fulfill the challenges introduced in the previous section, one of the best 

approaches in designing future control system architecture is to remove the knowledge 

component from the closed control loop. Thus, the knowledge component has a loose 

coupling with the closed control loop, and acquisition and adaptation regarding the 

knowledge component can perform independently. In this case, the knowledge 

component is deployed as an interface between every two layers. The original closed 
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control loop, consisting of components for the technical process control, is still deployed 

on each layer. Thus, the basic control cycle, referring to information flow on the closed 

control loop for the technical process control, is separated from the so-called knowledge 

cycle. The knowledge cycle here refers to the information flow for the knowledge 

acquisition and adaptation in this dissertation, covering sensory data acquisition, 

extraction of new domain knowledge based on the acquired data, integration, and 

deployment of the new domain knowledge. 

As shown in Figure 3.11, each two neighbor layers have a shared knowledge base, 

which means that each knowledge component may contain domain knowledge on two 

different levels of abstraction. As interfaces between each two neighbor layers, the 

knowledge components may also allow direct exchanges of data or domain knowledge 

mutually, relying on underlying communication paradigms of distributed systems. Such 

a design fulfills the previously discussed challenge of knock-on effect due to newly 

learned knowledge on one layer for domain knowledge validity on corresponding 

neighbor layers.  

 

Figure 3.11: Preliminary Idea of Multidimensional Networked Architecture for Future Automatic Control 
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Following the concept illustrated in Figure 3.11, it is indicated that the hierarchical layers 

(grey layers), including closed control loops consisting of a group of components for 

technical process control, are networked through corresponding knowledge components 

(green components) in the overall unified system architecture. Since a loose coupling 

between the layers relying on the isolation of knowledge components has been realized, 

such system architecture can be interpreted with a networked topology. Each previous 

layer can be generalized as a node in the network, and the knowledge components play 

the role of interfaces between the nodes. In this sense, the hierarchical layered topology 

is only considered an instance of the networked system architecture in this dissertation. 

For this reason, the previous terminology of “layers” is replaced by “nodes” in the 

following paragraphs. 

This concept of system architecture design can be further generalized. The group of 

components for control processing on the closed control loop can be interpreted more 

abstractly as a software module. In this dissertation, each software module is defined 

as a functionally closed unit consisting of single or multiple building blocks in a software 

system, solely completing a certain functionality from the viewpoint of software 

engineering [15]. Thus, seamless integration of different functions within an overall 

software architecture can also be realized by the proposed preliminary ideas in Figure 

3.11. The system decomposition following the illustrated preliminary idea of architecture 

design in Figure 3.11 can consist horizontally of different components and consist 

vertically of different modules realizing corresponding functionalities. From this point of 

view, the proposed concept and its preliminary ideas can be illustrated as a kind of 

multidimensional networked architecture. 

However, many detailed questions must still be answered to design such a sophisticated 

system architecture with the proposed networked construction. For example, the 

knowledge component in the current architecture design is applied to complete an 

inference process. Thus, the control system can make decisions for control activities by 

relying on the observed facts and the domain knowledge included in the world model of 

the knowledge component. Since the knowledge component does not directly 

participate in the closed control loop in the proposed new architecture design concept, 

its original inference task should be taken over by other appropriate components in the 
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control loop to complete the technical process control. Thus, the functionalities of the 

components staying on the closed control loop must be reconsidered during the system 

design.  

Additionally, some typical questions for the design of hierarchical system architecture 

may also need to be reconsidered. For example, a tradeoff decision between precision 

and level of abstraction of the domain knowledge included in different knowledge 

components must be made. Along with a higher level of abstraction, the precision of the 

domain knowledge decreases. The decreased precision may limit the performance of 

the planning control activity, depending on the context of expected control tasks of 

different nodes.  

Further, a similar architecture design challenge exists for determining the observation 

scope of information on different nodes (e.g., the time horizon of the control strategy). A 

longer time horizon due to included extensive information guarantees that the planned 

control activity has a greater performance potential for the control system, which but due 

to a higher risk of uncertainties in the future leads to a risk of performance violation.  

The distribution of sensor access on different nodes must also be a focus during the 

architecture design of hierarchical control systems. More access to sensory data helps 

the nodes acquire more information about context but strongly challenges computation 

capacity limits. Against such a background, identifying the global optimum for the design 

of the overall architecture with consideration for different influencing factors together still 

represents a challenge.  

3.8 Summary: Future Automatic Control—Artificial Cognitive Control 

In previous sections, current control concepts applied in ACC examples were introduced, 

which are used to derive functional visions for the future. The existing issues with current 

control concepts for realizing functional visions were discussed from the perspectives: 

(1) missing knowledge acquisition and adaptation, and (2) the limited scalability against 

fixed boundary conditions. Limitations of current approaches for architecture design of 

hierarchical control systems were also discussed, aiming to investigate the root causes 
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of these issues. Finally, a vision of future architecture design with some preliminary 

ideas was given, in which some detailed initial questions were also discussed. 

In this dissertation, a new category of automatic control named Artificial Cognitive 

Control is proposed to better understand future control systems following from 

preliminary ideas. The term artificial cognitive control is originally inspired by the human 

cognition process, referring to the mental action or process of acquiring knowledge and 

understanding through thought, experience, and the senses [104].  

The term “cognitive control” is not completely new in research. In the fields of psychology 

and neuropsychology, diverse definitions for this term have been published from 

different perspectives over a long period [105]–[107]. One of these definitions, proposed 

by Feldman and Friston [108], is concluded from the probabilistic view of the 

environment. These researchers defined the cognitive control of the human as using the 

brain to continually optimize the probabilistic representation of the environment, relying 

on attention, which refers to a perception system for extraction of available information 

out of noisy sensory measurements. From the viewpoint of information theory, cognitive 

control thus can be understood as an activity aiming to minimize the information entropy 

since entropy is a measurement of the uncertainty of a variable [109][110]. 

Based on the perspective of information theory, another definition of cognitive control 

from the engineering perspective was proposed by Haykin et al. [111]. In this dissertation, 

this definition is taken as a reference. Haykin et al. [111] define cognitive control as 

adapting the directed flow of information from the perceptual part of the system to its 

executive part to reduce the information gap. Thus, reducing the information gap is 

equivalent to reducing the properly defined risk functional for the task at hand, with the 

reduction having a probability of close to one. Here, the information gap is generally 

understood as the lack of contextual information and domain knowledge about the 

physical system, which is also directly relevant to information entropy.  

Following this understanding, the expected integration of knowledge acquisition and 

adaptation in future automatic control systems with stronger system scalability and 

connectivity can thus be understood as approaches to reduce entropy by 

supplementation and augmentation of domain knowledge and context data or 

information about the physical system. Such a feature clearly shows that the term 
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“cognitive control” is appropriate for the definition of a future control system. In this 

dissertation, the following functional requirements are defined to provide a better 

understanding of artificial cognitive control: 

• Artificial cognitive control shall be able to acquire low-level context 

data and high-level context information about the physical system 

(including user, controlled plant, and environment), relying on system 

connectivity to communicate with available distributed (onboard and 

offboard) perception resources7 (e.g., sensors or perception systems 

with appropriate interpretation mechanisms). 

• Artificial cognitive control shall be able to make decisions to 

determine control strategy by analysis of acquired context data and 

information and by manipulating actuators to complete the required 

tasks for the control of the technical process. 

• Artificial cognitive control shall be able to automatically analyze and 

identify the current situation based on acquired context data or 

information. Further, it shall be able to utilize its available domain 

knowledge to adapt its configuration (i.e., changing system 

configuration like component connections or component 

configuration like values of application parameters to guarantee the 

performance of the technical process control). 

• Artificial cognitive control shall be able to acquire8 and automatically 

adapt its domain knowledge about the physical system. Thus, it can 

continually improve the performance of technical process control. 

In Section 3.6, it was already stated that artificial cognitive control systems would acquire 

the properties of a real MAPE-K by integrating knowledge acquisition and adaptation, 

which will then roughly cover all MAPE-K functions: monitor, analyze, plan, execute, and 

 
7 The perception resources can be data providers like pure sensors, but they also be data service providers 
that strongly rely on the interpretation mechanisms deployed on the sensors (e.g., object-recognition 
algorithms). 
8 The domain knowledge could be either self-created based on acquired context information or directly 
obtained from external domains. 
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knowledge source. Thus, it can be concluded that the automatic control system is 

increasingly evolving as a self-adaptive system with the properties of autonomic 

computing (cf. Section 2.2.7).  

The software engineering field has proposed holistic approaches for designing self-

adaptive systems with sophisticated architectures. Against such a background, this 

dissertation takes the field of control theory and software engineering together, aiming 

to investigate how software engineering approaches can benefit the architecture design 

of future sophisticated automatic control systems. Thus, the architecture design 

challenges mentioned above (cf. Section 3.7) can be overcome. Finally, a generic 

architecture style for the architecture design of automatic control systems, covering 

current control concepts and particularly artificial cognitive control, is proposed from the 

viewpoint of software engineering as the main contribution of this dissertation. A more 

comprehensive introduction to the generic architecture style will be provided in Chapter 

4. Based on this generic architecture style, an example architecture for artificial cognitive 

control will be further derived as an instance in more detail in Chapter 4. 
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4 A Generic Architecture Style for Designing Automatic 
Control Systems 

In Chapter 3, current concepts of automatic control were introduced based on a case 

study with application examples of ACC. Issues with current concepts due to two 

perspectives, including missing knowledge acquisition and adaptation, which is 

interpreted as a kind of self-adaptation activity in this dissertation, and the limited system 

scalability against fixed boundary conditions, were discussed. Based on the issues 

regarding both perspectives above, architecture design challenges for future control 

systems with sophisticated architectures were also discussed. A vision with preliminary 

ideas for future automatic control systems’ architecture design was introduced to 

address the challenges. Finally, artificial cognitive control by following the preliminary 

ideas, aiming to eliminate the issues facing current concepts, is briefly defined as the 

concept of future automatic control in the next generation at the end of Chapter 3. 

As discussed at the end of Chapter 3, the artificial cognitive control system is evolving 

toward a self-adaptive system that the software engineering field has focused on for a 

long time. Thus, the architecture design of automatic control systems can benefit from 

relying on established holistic approaches for designing sophisticated self-adaptive 

systems. For this reason, this dissertation takes the fields of control theory and software 

engineering together and tries to understand automatic control systems from the 

viewpoint of software engineering. Finally, a generic architecture style considering 

software engineering is proposed as the main contribution in this dissertation, which is 

also included in this chapter. 

4.1 Control Theory Meets Software Engineering 

Examining the research work of recent years reveals that it is not a completely new idea 

to bring control theory and software engineering together. Researchers have 

investigated how software engineering approaches and control theory concepts could 

mutually benefit. For example, some researchers studied on the development process 

level in a dissertation on how to design self-adaptive software systems with formal 
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guarantees on desired properties and behaviors, which are available in the design of 

conventional feedback control systems [112]. 

Another dissertation focused on the control-theoretical software adaptation [113]. It 

found that linear models are mostly used to represent the behavior of the software. 

However, the behavior is considered highly nonlinear, far from real-world applications. 

Furthermore, the dissertation argued that classic controller guarantees are poorly 

exploited when engineering control-based solutions to guarantee the adaptation goals. 

Thus, appropriately linking control-theoretic concepts to guarantee software quality is 

still a challenging research topic. The same statement is also included in another paper 

[71], in which the feedback control loops were interpreted as the MAPE-K loop for 

autonomic computing. This research noted that the mapping from high-level adaptation 

objectives in terms of QoS9 or SLO10 and abstract models towards lower-level effective 

actions on the managed system is still missing. Additionally, a more complicated system 

involving multiple control loops, which may have intertwined interferences due to 

composition and coordination, is also a difficult and hardly tackled question. 

In addition to the theoretical investigation of the system architecture, control theory 

approaches have also been applied in software engineering of self-adaptive systems 

within diverse applications. For example, the closed feedback control loop was applied 

in the database system to realize self-tuning memory management with dynamic 

resource allocations [114]. Another application uses a model-based control-theoretic 

solution combined with the MAPE-K control loop for the resilience management of cloud 

computing resource services [115][116]. Unlike other use cases of control theory in 

MAPE-K, some researchers used the MAPE-K control loop to optimize the classical 

controller based on fuzzy logic. Additionally, they integrated the property of online 

learning to modify the fuzzy rules at runtime, which is also evaluated in an application of 

cloud architecture adaptation [116]. 

The research works mentioned above have shown significant benefits by combining 

software engineering approaches, especially for the self-adaptive systems (e.g., by 

 
9 Quality of service. 
10 Service level objectives. 
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following MAPE-K for autonomic computing with control theory). Most of the related 

works mentioned focus on the benefits of a self-adaptive system by utilizing the principle 

of control theory. A paper focused on applying MAPE-K to improve the classical 

feedback controller but only considered the cloud architecture adaptation without strict 

timing requirements and constraints [116]. As is well known, this is not the same use 

case as for artificial cognitive control systems like future ACC, which are required to 

interact with the physical world in real-time. In this case, it is important not only to 

consider the self-adaptation capability of the system but also concurrently to consider 

the time-computation-dependency due to the requirement of real-time interaction with 

the physical world. Such a requirement constitutes challenges for the design of system 

architecture, especially regarding the deployment of time-consuming computing 

processes (e.g., knowledge acquisition and adaptation). 

This dissertation aims to find a holistic concept for the architecture design of artificial 

cognitive control systems to address the aforementioned requirements, especially 

considering the architecture challenges introduced in Section 3.7. For this purpose, 

fundamental disciplines for designing software architecture, including relevant 

components and their relationships and interfaces, will be defined and summarized 

together as a concept of a generic architecture style for automatic control systems. The 

next section introduces these fundamental ideas about this generic architecture style. 

4.2 Fundamental Design of Generic Architecture Style 

Section 4.1 presents a brief introduction to related works on conceptual integration of 

control systems in control theory and self-adaptive systems in software engineering. As 

introduced, the design of the control system in control theory and the design of the self-

adaptive system in software engineering benefit from each other mutually, relying on the 

design disciplines and concepts from both fields. 

At the end of Section 4.1, it is noted that this dissertation aims to find a holistic concept 

for architecture design of sophisticated control systems, especially for the artificial 

cognitive control that is defined in this dissertation as a next-generation automatic 

control concept. For this purpose, this dissertation investigates the architecture design 

of control systems relying on software engineering approaches. Against such a 
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background, a generic architecture style with logical components from the viewpoint of 

software engineering is proposed in this dissertation, which can be applied as a template 

to design the architecture of different control systems. Subsequently, the architecture 

pattern is used to instantiate architectures of the introduced current control systems, 

aiming to deeply understand and validate the control systems from another perspective, 

thus contributing to the development of the mentioned networked architecture of artificial 

cognitive control (cf. Section 3.7–3.8). 

4.2.1 Preliminaries of the Design of the Generic Architecture Style  

Current control systems are designed as pure embedded systems to guarantee real-

time interaction with the physical world. In such systems, each component is designed 

to work as a single independent and active process with a particular cycle time [48]. 

However, such a design concept strongly challenges artificial cognitive control, which 

includes multiple world models distributed in different nodes of the networked 

architecture (cf. Section 3.7.3). As a potential instance derived from the networked 

architecture, each node, including a single world model, can be instantiated as a 

hierarchical deliberative upper layer, combined with the lowest layer with the real-time 

control loop (also as a node), including the controller, to form a system architecture 

instantiated with multiple hierarchies. As discussed earlier, knowledge acquisition and 

adaptation properties require a nondeterministic processing time. Thus, there is a high 

risk of violating the required real-time capability of the embedded control system based 

on deterministic scheduling. From another perspective, the complexity of distributed 

world models is increasing due to increasing sensor access. The accompanying 

increasing data volume to be processed therefore further increases the risk of timing-

constraint violation, particularly in the case of upper layers due to their larger observation 

scope for the physical system. 

Against such a background, the deliberative part of the hierarchical architecture must be 

designed with an event-triggered computation mechanism like an information system 

instead of the previous design as a pure time-triggered embedded system relying on its 

strong information processing capability and mechanism without timing constraint. Thus, 

knowledge acquisition and adaptation with a long processing time would become 
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uncritical for the basic control task of the control system since the reactive part, including 

the feedback control loop with the controller, stays independently on the lowest layer.  

In this case, the hierarchical architecture leads to a hybrid system design consisting of 

an information system and an embedded system. This trend makes the whole automatic 

control system evolve as a cyber-physical system, including heterogeneous 

computation mechanisms according to the formal definition in previous related work of 

Rehfeldt [20]. For this reason, this dissertation puts the focus on the architecture pattern, 

which is not limited to a self-adaptive system designed as a pure information system, 

but also considers hybrid system construction with heterogeneous computation 

mechanisms. The focused systems with such properties are called self-adaptive cyber-

physical systems in this dissertation. 

In Chapter 3, control systems within different categories were introduced. The MAPE-K 

for designing the self-adaptive system with the property of autonomic computing was 

used as a reference architecture to roughly identify corresponding functional similarities 

between components in the architectures from the viewpoint of control theory and 

software engineering, respectively. Thus, a basic understanding of different control 

systems from a software engineering perspective was derived. 

The MAPE-K architecture is a well-known reference architecture for the self-adaptive 

system, particularly with consideration for the property of autonomic computing, and it 

has already been utilized in different applications (cf. Section 2.2.7). However, in this 

dissertation, it is not directly taken as the architecture solution for several reasons.  

The first reason lies with the fundamental idea of MAPE-K, which is designed for self-

adaptive IT systems like databases and servers. As noted earlier, such information 

systems focus on the sequence of events instead of physical execution time. That 

means there is no guarantee in this case that all activities included in the functions of 

MAPE-K like monitor, analyze, plan, and execution can be completed under 

deterministic time constraints. However, this is very important for control systems 

designed as cyber-physical systems requiring real-time interaction with the physical 

world. For example, in the case of ACC, the vehicle’s longitudinal control could even 

completely fail due to the violation of the timing constraints in the worst case, which is 

definitively not permitted to happen in reality. Thus, it can be said that the MAPE-K works 
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well for the “cyber” part; however, unfortunately, it is not exactly appropriate for the 

“physical” part of automatic control, particularly in artificial cognitive control. 

Another reason relates to the differences about sensors and actuators (also called 

effectors in MAPE-K). The sensor and actuator in MAPE-K are deployed as interfaces 

in a software component touchpoint, which exposes the state and management 

operations to a resource in the system [46]. The sensor and actuator, categorized as 

manageability interfaces in MAPE-K, deliver the autonomic manager a standard 

interface rather than the diverse interface mechanisms associated with various 

managed resource types. In this case, the sensor and actuator are responsible for 

requesting and sending messages without additional functions (details cf. Section 2.2.7).  

However, in the case of an automatic control system, the sensor and actuator are not 

only interfaces for information exchange between the technical and physical systems. 

Additionally, they also include hardware mechanisms and corresponding basis software 

components to manipulate the hardware infrastructure, which thus enables the sensor 

and actuator to influence the controlled plant and the environment directly. For example, 

in some advanced ACCs, LiDAR is utilized instead of the radar sensor to track multiple 

preceding obstacles [86]. In such ACCs, the software component for control of LiDAR 

also relies on the sophisticated numeric-algorithmic approach, possibly including a 

configuration with application parameters (e.g., the rotation speed of the LiDAR). The 

configuration may need to situationally adapt to guarantee the lowest acceptable 

sensing performance if the original sensing reliability is limited due to the environment, 

such as under extreme weather conditions like fog or heavy rain. 

Another significant difference is that the sensor and actuator or effector in the MAPE-K 

model are linked together. Such a concept guarantees that a configuration change 

caused by the effector can be reflected as a notification through the sensor interface. 

However, this reflection is not included in the case of the automatic control system since 

the sensor and actuator are independent components linked via the controller and the 

measurement unit (cf. Figure 3.1). Due to these differences, the reference model of 

MAPE-K cannot be directly taken as an architecture solution for the design of future 

control systems. 
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The final reason lies with the architecture concept regarding system decomposition. In 

the MAPE-K, autonomic managers can also constitute a layered architecture, which 

includes a group of several touchpoint autonomic managers (on the lower layer) and an 

orchestrating autonomic manager (on the higher layer). Each touchpoint autonomic 

manager only concerns its managed resources, which may be only a part of the whole 

system. Instead, the orchestrating autonomic manager is deployed to coordinate the 

touchpoint autonomic managers to guarantee system-wide autonomic computing 

behavior (e.g., in the case of workload management) [46]. Thus, the task of self-

management is horizontally decomposed into concurrent subtasks, which are 

respectively taken over by each touchpoint autonomic manager. However, in the case 

of an automatic control system, the hybrid hierarchical architecture still requires a 

hierarchical decomposition of the control task on different levels of abstraction, in 

addition to the horizontal decomposition. Such decomposition has not yet been exactly 

specified in the MAPE-K reference architecture. 

For these reasons, the MAPE-K reference model is not directly taken as a solution for 

designing the architecture of automatic control. Instead, a completely new architecture 

concept more appropriate for the design of sophisticated architectures for future control 

systems is proposed in this dissertation. Details of this new architecture concept will be 

introduced in the following sections. 

4.2.2 Fundamental Component Structure within Generic Architecture Style 

Since the MAPE-K reference architecture is not exactly appropriate for the design of 

automatic control, another architecture pattern consisting of a fundamental component 

structure of “SICAP-K” is proposed in this dissertation, as shown in Figure 4.1. The 

fundamental component structure includes a technical system and a physical system, 

respectively marked in yellow and green, which has the same system construction as 

the architecture of current control systems applied in the ACCs, as illustrated in Chapter 

3. 
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Figure 4.1: Fundamental Component Structure in Generic Architecture Style 

The physical system refers to a summary of the user, controlled plant, and surrounding 

environment. From the viewpoint of software engineering, the technical system 

architecture here looks slightly different from the technical systems in the architectures 

of current control systems based on the block (plugging) diagram from the control theory 

viewpoint. The architectures in the control theory focus strongly on the technical 

process's control flow with corresponding physical variables on a very concrete level. 

The architecture derived from the software engineering viewpoint focuses instead on 

static system construction, with components, their relationships, and logical 

functionalities on a meta-level. Thus, such architecture is also called logical or functional 

architecture in software engineering. Since the control system needs to interact with the 

physical world to complete its control task, hardware sensors and actuators, including 

pieces of basis driver software deployed on them, work as interfaces between the 

technical system and the physical system. Since the sensors and actuators are not a 

part of the software system to be designed, they are hidden in the logical architecture of 

Figure 4.1. 

In the “SICAP-K” structure, the component “P” refers to the Physical System, including 

the user, the controlled plant, and the environment. The component “S” refers to a 

Sensing Component responsible for the data preprocessing (e.g., collecting, 

aggregating, and filtering the raw data collected by the hardware sensors from the 

physical system). The output of the sensing component is the structured data, which is 

called a “symptom” in this dissertation, similar to the case of monitor function in the 

reference architecture of MAPE-K. The symptom is forwarded by the sensing 

component into three other components, “C”, “I”, and “K”, respectively referring to 

Control Component, an Interpreting Component, and a Knowledge Component. 
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Based on the symptom, which describes the current context of the physical system on 

a concrete level of sensory data, the control component “C” determines a control 

strategy. The determined strategy can be transient like the case of a conventional 

feedback controller, similar to a reflect system without consideration of future time 

horizons. Alternatively, the determined control strategy can also be predictive 

(considering a future time horizon), in which case the interpreting component “I” is 

required. Subsequently, the control strategy is forwarded to an Actuating Component 

“A”, which decomposes the strategy into individual activities to manipulate the actuators. 

Unlike the sensing component describing the physical system's current context on a 

concrete data level, the interpreting component identifies the current control problem 

using an inference engine. It evaluates the current context on a higher level of 

abstraction by checking correlations of observed facts included in the symptom and the 

constraints and properties predefined in the problem catalog. Optionally, the observed 

facts included in the symptom are also used to predict future context, and thus the future 

context can also be evaluated. Once the problem is identified, the interpreting 

component sends a change of request to the control component. Thus, the control 

component will update the control strategy for realizing adaptation. If the problem cannot 

be identified, the interpreting component acquires the knowledge support (e.g., from a 

knowledge component “K”).  

The knowledge component “K” is responsible for the storage of the control system’s 

domain knowledge. Additionally, knowledge exchange with the outside world, like 

acquiring and sharing to and from external knowledge sources, also happens inside the 

knowledge component. The processing in other “SICA” components relies on the 

domain knowledge included in the knowledge component. The knowledge component 

initializes the domain knowledge for the other components in the first system operation. 

The other components also adapt the knowledge included in the knowledge component 

from the opposite side. More detailed processes of knowledge-relevant system 

behaviors will be explained in Section 4.2.5. 

Generally, it can be understood that a fundamental feedback control loop based on the 

component cycle of “SCAP” is constituted. The interpreting component “I” is also 

involved in the fundamental structure, playing the role of an optional component 
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participating in the feedback control loop. Thus, the control system can understand and 

analyze the context information and knowledge on a higher level of abstraction. With the 

support of the knowledge component “K”, a complete fundamental structure of “SICAP-

K” is constituted. 

4.2.3 Structural Adaptation Composition in Generic Architecture Style 

After introducing the fundamental component structure, which is seen as the 

fundamental building block for representing a closed control loop, the next question is 

how to organize different component structures to construct a more sophisticated 

system architecture, including multiple control loops.  

In Section 3.7, it was discussed that the current architecture design of sophisticated 

control systems proposed by the intelligent control field follows the idea of hierarchical 

decomposition of the control task into different subtasks, vertically on different levels of 

abstraction or horizontally on different levels of competence. Different limitations of such 

architecture design approaches have also been discussed. For example, the system 

design aims to adapt the control activities on lower levels to complete the original control 

task on the highest level, which refers to the technical process control in this dissertation. 

However, configuration control [95] (cf. Section 3.6.2) is neglected, which refers to the 

adaptation of component configuration (e.g., the controller parametrization or the 

domain knowledge in the knowledge component).  

This dissertation has introduced preliminary ideas of architecture design based on the 

proposed multidimensional networked topology to overcome the limitations mentioned 

above, as illustrated in Figure 3.11. As discussed earlier, artificial cognitive control as 

the future control system in the next generation is continually evolving into a self-

adaptive cyber-physical system with the property of so-called autonomic computing. 

Autonomic computing typically refers to the well-known self-X properties covering self-

configuration, self-optimization, self-healing, and self-protection [46]. Thus, following 

these preliminary ideas, the configuration control and the component adaptation are 

taken as the focus in developing the generic architecture style in this dissertation. 

The fundamental component structure includes a basic feedback control loop, 

represented by the “SCAP” component cycle. Optionally, the interpreting component “I” 
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and knowledge component “K” can also participate in the loop. In this case, the primary 

feedback control loop, including the controller based on linear robust control theory and 

previously deployed on the lowest layer in the hierarchical architecture design by the 

field of intelligent control, can be represented by a proposed fundamental component 

structure of “SICAP-K” and deployed as a node in the networked system architecture. 

Once a controller with static parametrization becomes insufficient, due to variations in 

the behavior of the physical system, the adaptive control technique is required. Adaptive 

control technologies allow, for example, controller parametrization to be adapted by the 

adaptation unit, as discussed in Chapter 3. In this case, another adaptation unit as a 

complete autonomic manager can be deployed on a secondary control loop. It takes the 

primary feedback control loop, including the controller based on robust control theory as 

its managed system. The deployment of the secondary control loop means that another 

fundamental component structure of “SICAP-K” is deployed in the networked 

architecture, as introduced in Figure 3.11 of Section 3.7.3.  

 

Figure 4.2: Structural Paradigm of Adaptation Composition for Networked Architecture of Future Control 

System  

In this case, these two “SICAP-K” component structures are linked. Each “SICAP-K” 

structure represents a node, considered the fundamental computing element. Thus, a 

networked system architecture can be constituted once multiple “SICAP-K” component 
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structures are linked mutually in any arbitrary form, as shown on the left side of Figure 

4.2. As mentioned earlier, the secondary feedback control loop works as the adaptation 

manager and takes the primary feedback control loop as its managed system. Such a 

management relationship can also be transferred to the other nodes in the networked 

architecture.  

On the right side of Figure 4.2, an example of two arbitrary nodes from the networked 

system architecture is illustrated. The superscripts n and n+1 represent the index of 

different nodes. As shown in Figure 4.2, node n+1 has a larger observation scope of 

information about the physical system than node n. Thus, the adaptation level decreases 

from node n+1 to node n, which means that node n+1 is a so-called “adaptation manager” 

of node n. Each node can be designed with an appropriate triggering mechanism (event-

triggered or time-triggered, cf. Section 4.2.4). If necessary, these two nodes can also be 

instantiated as two layers to constitute a two-layered architecture. Thus, this dissertation 

interprets such layered architecture as an instance derived from the networked system 

architecture. 

As discussed in Section 3.7, the hybrid hierarchical architecture in intelligent control 

follows the closed-world assumption. This means that it is assumed that the system has 

all the needed domain knowledge about the world (on different levels of abstraction) to 

accomplish the determined control tasks. Unfortunately, such an assumption is utopian 

for the case of future control systems like artificial cognitive control due to the world’s 

nondeterministic aspects, which has been demonstrated by diverse negative examples, 

particularly in the field of autonomous driving safety [117]–[119]. Some other critical 

scenarios are also discussed in Section 3.6. Instead of the closed-world assumption, 

this dissertation takes an open-world assumption during the architecture design and 

aims to avoid the previously mentioned critical scenarios. The open-world assumption 

holds that the control system does not have all the required domain knowledge about 

the world. Additionally, it allows self-adaptation activities like knowledge acquisition and 

adaptation, relying on the knowledge component and interpreting component in the 

proposed fundamental component structure shown in Figure 4.1. 
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Figure 4.3: Coordination of Nodes’ Adaptation Composition in Networked System Architecture 

Following the principle of open-world assumption, a compositional system design 

approach is selected instead of the decomposition approach, which means that the 

system construction begins from one node to multiple nodes. As presented earlier, each 

node represents a closed control loop with the “SICAP-K” structure. In the case of 

extensive sensor access, the processing tasks of the sensory data context analyzing 

and inferencing become more time-consuming and thus hard to complete within a limited 

cycle time. Against such a background, it is utopic to expect that only a single adaptation 

unit with the “SICAP-K” structure can handle all collected sensor data. Thus, more 

adaptation units must be deployed on additional control loops, which leads to an 

architecture consisting of multiple nodes connected as a network (cf. left side in Figure 

4.3). With this idea in mind, an architecture paradigm of so-called adaptation 

composition is proposed in this dissertation, which can be applied to interconnect 

increasing nodes to construct a more sophisticated system architecture continuously. 

The right side of Figure 4.3 illustrates different cases of coordination of the nodes’ 

adaptation composition in the networked system architecture. 

4.2.3.1  Vertical Coordination of Adaptation Composition 

If necessary, the networked nodes can be grouped as different communities in the 

networked architecture. Unlike the nodes as the fundamental building blocks in the 
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system architecture, this community can be understood as an overarching unit like a 

software module consisting of single or multiple building blocks. Some nodes are so-

called “adaptation managers” and take other corresponding nodes as their managed 

systems. Thus, the nodes can be classified as “manager nodes” and “managed nodes.”  

In most cases, the manager nodes have larger scopes of information observation about 

the physical system than managed nodes. Thus, adaptation relationships between the 

nodes can be organized hierarchically with multiple layers (cf. Case 1 in Figure 4.3). A 

node on a higher layer coordinates the adaptation of multiple nodes on a lower layer. 

Nodes on the same layer can communicate interactively but do not have any adaptation 

relationship.  

Once a system architecture includes multiple nodes, a significant point for the 

architecture design is distributing the effort of acquiring and processing sensory data 

and knowledge basis to different nodes and knowledge components between them. For 

example, several nodes are instantiated as layers within a hierarchical architecture. 

Different adaptation units are deployed on different layers, along with increasing 

observation scopes for the physical system from lower to upper layers, to guarantee the 

self-adaptability of the system, as is roughly described in the case study of architectural 

evolution in Chapter 3.  

In this case, the adaptation units on lower layers need to handle fewer sensory data, but 

they must do so with high precision to frequently determine precise and short-term 

adaptation strategies on a concrete level. The adaptation units on higher layers must 

handle much more sensory data. Nevertheless, since higher layers do not require such 

high time resolutions of adaptation activity as lower layers, they only need to focus on 

determining long-term adaptation strategies on higher abstraction levels with less 

precision. Thus, considering more context about the physical system becomes reliable 

for the adaptation units on higher layers. 

Along with this idea, the deployment of adaptation units can be extended to arbitrary 

nodes. Thus, a networked architecture, including multiple nodes with different 

adaptation levels, is constituted, as shown in Figure 4.2. Each adaptation unit in a certain 

node is responsible for adapting its neighbor nodes on a lower adaptation level via 
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corresponding knowledge components. Thus, all adaptation units in different nodes with 

nested observation scopes work together to determine adaptation strategies on different 

levels.  

With the help of the parallel computations of multiple adaptation units, processing efforts 

for all collected sensory data can be distributed into different nodes to guarantee timing 

constraints, such as a limited cycle time, are met. Additionally, a world model with 

incredibly high complexity is avoided, and instead, distributed world models are 

deployed in corresponding knowledge components between the nodes. Thus, based on 

the paradigm of adaptation composition, the self-adaptability of future control systems 

is particularly considered, which is beneficial for the architecture design of artificial 

cognitive control with the property of knowledge acquisition and adaptation. 

4.2.3.2 Horizontal Coordination of Adaptation Composition 

In the last section, the vertical coordination of adaptation composition was introduced. 

In vertical coordination, the control system is decomposed into different nodes with 

different levels of abstraction. In such a case, the nodes following the adaptation chain 

from higher to lower levels of abstraction have strong dependencies mutually. They can 

be seen as several building blocks in a software module for realizing a certain function, 

defined as a functionally closed unit in the overall system [15].  

For example, in the case of the multi-layered planning function of an autonomous robot, 

the planning on the highest level of abstraction may focus on the mission from a point A 

to another point B without focusing on concrete behaviors for realizing the robot’s 

movement from A to B. However, like the set profile of travel time, its planned mission 

is taken as a specification during the behavioral planning at a lower level of abstraction. 

In this case, both nodes for the planning at different levels simultaneously complete the 

autonomous robot's planning task. 

Nevertheless, nodes with adaptation relationships may not be considered within a 

software module with strong dependencies in some other cases. Instead, their 

adaptations may be across different software modules with loosely coupled 

functionalities. Since such decomposition follows in an orthogonal direction compared 

to vertical coordination, the coordination between the nodes in such a case is called 
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horizontal coordination in this dissertation, as illustrated in Case 2 (cf. Figure 4.3), for 

example, in a case where there are several driving modes like “Eco,” “Comfort,” and 

“Sport” available in a vehicle. The driving mode’s change by the ACC may cause the 

adaptation of other loose-coupled functions’ configurations such as the vehicle’s 

steering and gearbox.  

In such a case, the community of nodes may include building blocks in multiple software 

modules from the viewpoint of software engineering. The manager nodes may publish 

their adaptation requests by sending adaptation triggers as commands via an 

intermediate information flow. Thus, corresponding managed nodes can subscribe to 

the adaptation commands and subsequently realize their adaptations. Compared to 

vertical coordination, no node has a global view of the whole community in the case of 

horizontal coordination.  

4.2.4 Applying Triggering Mechanisms for Nodes with Fundamental Component 

Structure 

Following the paradigm of structural adaptation composition mentioned in the previous 

section, multiple fundamental component structures can be organically constructed to 

build a sophisticated system with a unified networked architecture. Each fundamental 

component structure is interpreted as a node within the architecture. 

As introduced in Section 3.7.1, the current design approach of hierarchical control 

system architectures by the intelligent control field focuses on a system construction 

with several hierarchical layers. Each layer can be implemented as a subsystem with an 

appropriate triggering mechanism (either time- or event-triggered), and thus makes the 

overall system become a hybrid system, including both triggering mechanisms. 

This dissertation supports these triggering mechanisms in its proposed generic 

networked architecture style. Different nodes with their fundamental component 

structures in networked system architecture can be designed as time-triggered or event-

triggered by applying the proposed generic architecture style. Each node is permitted to 

have its unique triggering mechanism, and multiple nodes can be deployed within a 

single subsystem, which thus leads to a hybrid subsystem with different computation 

mechanisms.  
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Depending on concrete applications, the time-triggered mechanism can be applied for 

the system parts with critical time-relevant requirements to realize the real-time 

interaction with the physical world. From another perspective, the event-triggered 

mechanism is also appropriate for system parts without any time-dependent 

requirement (e.g., the inferencing process for state identification of the physical system, 

which is deployed in the control loop without direct connection with the physical world). 

Since the knowledge components play the roles of interfaces to isolate the nodes with 

different computation mechanisms, loose coupling is realized, and the computation 

mechanisms will not negatively influence each other. During system operation, the 

knowledge components are responsible for fulfilling timing constraints in the case of 

communication across nodes. Different timing requirements at the system level or 

corresponding lower levels (e.g., at the node level) can also be seen as a kind of domain 

knowledge saved in the knowledge components. 

4.2.5 Applying Communication Architecture Patterns for the Design of Dynamic 

System Behaviors 

In addition to the static system construction, which was introduced in the previous 

section from the perspective of structural adaptation composition, another perspective 

of the generic architecture style focuses on dynamic system behaviors, which more 

concretely refers to the component interactions via appropriate interfaces within the 

system architecture. Figure 4.4 illustrates an overview of communication paths between 

the components via different interfaces, which provides a framework for designing 

component interactions. 

In this dissertation, the component interactions are not limited by using a certain 

specified communication paradigm to retain the generalization capability of the generic 

architecture style. Instead, several standard communication architecture patterns are 

taken as candidate solutions for specifying the roles of components in the 

communication of defined use cases. Theoretical fundamentals of these communication 

architecture patterns were introduced in Section 2.3, including the request-response 

pattern, the publish-subscribe pattern, the pipes-and-filters pattern, the shared-

repository pattern, and the blackboard pattern.  
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Figure 4.4: Component Interfaces within the Generic Architecture Style 

Through selection of appropriate communication paradigms from the candidates of 

standard communication architecture patterns, the component interactions for a 

concrete instantiated system architecture can be reliably implemented, depending on 

the concrete boundary conditions of required system communication. In this dissertation, 

several use cases (UCs) are defined to understand these interactions via the interfaces 

better. More details of these UCs will be introduced in the following section in detail. 

Additionally, some of these standard communication architecture patterns will be taken 

to apply within a concrete architecture of an artificial cognitive cruise control system, 

which construction is also instantiated from the generic architecture style and taken as 

an evaluation example in this dissertation.  

4.2.6 Dynamic System Behaviors as Use Cases in Generic Architecture Style  

In addition to the static system construction, another view of architecture design lies with 

the dynamic system behavior, which refers to the interaction of components in the 

architecture pattern. In this dissertation, four uses cases (UCs) are proposed. To 

symmetrically describe the component interactions: technical process control in a single 

node (UC1); knowledge initialization, retrieval, and update in a single node (UC2); 

adaptation control across multiple nodes (UC3); and knowledge sharing across multiple 

nodes (UC4). These use cases will be introduced in detail in the following sections. 
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4.2.6.1 UC1: Technical Process Control in a Single Node 

The first use case refers to technical process control relying on a closed control loop in 

each node of the networked architecture. In Section 4.2.2, the basic closed control loop 

consisting of “SCAP” components was presented. The interpreting component “I” as an 

additional component can also participate in the control loop if necessary and thus 

constitutes a closed loop of “SICAP”.  

To provide a better understanding of the process flow, detailed processes within the use 

case are listed as follows11: 

1. The sensing component “S*” retrieves the data collected by hardware sensors 

from the observed physical system. The sensing component further processes 

all the retrieved sensory data such as aggregation, correlation, or filtering, based 

on the respective desired requirements. Thus, processed data with an expected 

structure can constitute a symptom that is a predefined standard description of 

the current context of the physical system based on the observed facts 

represented by the sensory data, including the structured sensory data 

themselves. 

2. Optional: Based on the symptom provided by the sensing component “S*,” the 

interpreting component “I*” evaluates the current of the physical system context 

by searching for the relevance with its available symptoms as domain knowledge. 

Once the relevance of one of the available symptoms can be found, the 

interpreting component relies on an inference engine to identify the current 

problem. If necessary, the predicted future context of the physical system relying 

on prediction algorithms can also be considered here. Finally, the interpreting 

component can determine a change of request based on its policy knowledge 

and forward it to the control component “C*”. It is emphasized that the 

interpreting component is an additional component in the use case. 

3. The control component “C*” takes the change of request and the symptom from 

the interpreting and sensing components respectively as inputs to determine an 

 
11 The superscript “*” is used here to describe the index of arbitrary nodes in the networked architecture of 
the control system. 
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adaptation strategy, relying on its domain knowledge included in a decision tree. 

If the interpreting component is not deployed, the control component reflects on 

the delivered symptom directly without considering the change of request. 

4. The adaptation strategy determined by the control component is forwarded to 

the actuating component, which splits up the strategy as individual adaptation 

activity. The actuating component forwards the individual adaptation activity 

further to the hardware actuators. Thus, the actuators can execute the activity to 

interact with the physical system. 

 

Figure 4.5: Technical Process Control in a Single Node (UC1) 

Such a control loop exists in each node of the networked architecture, as shown in 

Figure 4.5. The proposed generic architecture style mainly focuses on the self-

adaptation of the control system across different nodes. However, it also supports 

concurrent interactions of different nodes directly with the physical system. This is 

appropriate, for example, for the case of a control system with multiple actuators 

independently influencing the physical system within different observation scopes. 

4.2.6.2 UC2: Knowledge Initialization, Retrieval, and Update in a Single Node 

The second use case focuses especially on knowledge flow within the architecture 

pattern, including knowledge initialization, retrieval, and update, as shown in Figure 4.6. 

As introduced in the previous use case, the “SICAP” components constitute a closed 
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control loop to interact with the physical system with different observation scopes within 

corresponding nodes. To guarantee the basic functionality of the control loop, the 

components “SICA” must complete the tasks introduced in Section 4.2.6.1, for which 

they still need domain knowledge provided by the knowledge component “K*”12. 

 

Figure 4.6: Knowledge Initialization, Retrieval, and Adaptation (UC2) 

For example, the sensing component “S*” collects and processes sensory data to 

generate the symptom. In this case, it needs the knowledge about the symptom’s 

configuration, which is called sensing knowledge in this dissertation, including 

specifications like the naming format of the symptom, required resolutions of sensory 

data values, and configurations of data aggregation and filtering. Thus, the symptom 

can be described systematically, which the inference engine can process in the 

interpreting component. 

Similarly, the interpreting component “I*” also relies on the so-called interpreting 

knowledge provided by the knowledge component. As presented earlier, the 

interpretation component's functionality can be briefly categorized as several processes: 

(1) prediction of future context of the physical system based on the current context, (2) 

problem identification based on evaluation of both contexts by searching relevance to 

 
12 The superscript “*” is used here to describe the index of arbitrary node in the networked architecture of 
the control system. 
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known symptoms and facts, and (3) reasoning for determination of the change of request. 

In these processes, the approach for future context prediction, like a data-driven 

machine learning algorithm, relies on configuration of relevant application parameters. 

The problem identification needs the domain knowledge about known symptoms and 

facts of the physical system, which are saved in a systematic format. Additionally, the 

reasoning process also relies on policy knowledge to determine whether the change of 

request is necessary.  

The same case also exists for the control and the actuating component. The control 

component must know what kind of control decision is appropriate for which symptom 

and what kind of consequence the control decision has in order to determine the control 

strategy. For this purpose, it requires knowledge about the symptom, including the 

monitored sensory data and the decision tree, which is categorized as the control 

knowledge in this dissertation. Finally, the actuating component is required to split up 

the control strategy as a sequence of individual activities, relying on the knowledge 

about the construction of the control strategy. Additionally, knowledge about time-

relevant constraints may also be an important part of knowledge in this case since some 

control systems also have critical requirements for interaction with physical systems in 

real time. 

The knowledge component serves as a knowledge repository and provider to guarantee 

that all “SICA”-components can complete their tasks. After the system design, the 

knowledge component initializes the required domain knowledge for the other 

components, called knowledge initialization in this dissertation. During the computation 

processes in the components, they are also able to request support from the knowledge 

component for the domain knowledge delivery. For example, the interpreting component 

can request policy knowledge for problem identification if it cannot identify the current 

problem by itself. In this case, the knowledge component plays the role of a consultant.  

From the opposite side, it is also possible that new domain knowledge is created during 

the control process. For example, the control component determines a control strategy 

with the expectation of certain control performance. However, due to the time-relevant 

behavioral change, the physical system has a different reaction than expected. The 
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control component can also create new domain knowledge and update the newly 

created knowledge into the knowledge component. 

Similarly, the same knowledge update can also be completed by other components in 

the generic architecture style if necessary. Based on such a mechanism, the mentioned 

property of knowledge acquisition and adaptation in current control systems is realized 

in this dissertation by the proposed generic architecture style. Generally, the previously 

mentioned adaptation within the architecture pattern can be understood as a knowledge- 

or a data-driven process. Once a component (either the knowledge component or one 

of the other components) has a change of knowledge, it can disseminate the change to 

other components. Thus, knowledge within the knowledge component and other 

components can always be synchronized.  

During the design of concrete application of control systems, detailed description 

formats of the domain knowledge must still be specified. This dissertation does not 

define any concrete description format, aiming to retain the generalization capability of 

the proposed generic architecture style. From another perspective, it is also an outlook 

for this dissertation, which can be further investigated in the future to find out which 

formats are appropriate for what kind of applications. 

4.2.6.3 UC3: Adaptation Control across Multiple Nodes 

The third use case in the generic architecture style focuses on the process flow of 

adaptation control across multiple nodes. In UC3, one node in the networked 

architecture adapts the managed subsystem deployed in other nodes, following the 

introduced paradigm of adaptation composition in Section 4.2.3 (cf. Figure 4.7). A single 

subsystem in a node can adapt to several subsystems in other nodes due to distributed 

scalability of the generic architecture style, as illustrated in Figure 4.7, focusing on the 

case with only one additional subsystem in a secondary node. 
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Figure 4.7: Adaptation Control across Multiple Nodes (UC3) 

The process flow of adaptation control across multiple nodes is similar to the use case 

of technical process control in a single node, as introduced in Section 4.2.6.1. There are 

only two differences between the use cases. The first is that the interpreting component 

for high-level analysis and reasoning is involved regardless. Thus, the component in the 

corresponding node can determine the adaptation strategy on a higher level of 

abstraction. The second difference is that the actuating component does not forward the 

control activity to the actuators to interact with the physical system. Instead, it forwards 

individual adaptation activity split from the high-level adaptation strategy to the 

knowledge component in the node that includes the managed subsystem (so-called 

“managed” node). In this case, another mechanism to realize the knowledge acquisition 

and adaptation in the managed node is involved in the architecture pattern. 

4.2.6.4 UC4: Knowledge Acquisition and Sharing across Multiple Nodes 

In the previous use cases, the knowledge flow focuses on the interaction between the 

knowledge component and other functional components like “SICA” in the architecture 

pattern. The final use case, knowledge acquisition and sharing across multiple nodes, 

focuses on the knowledge flow between knowledge components deployed in different 

nodes of the networked system architecture, as shown in Figure 4.8. 
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Figure 4.8: Knowledge Acquisition and Sharing across Multiple Nodes (UC4)

In this dissertation, knowledge acquisition and sharing happen when the interpreting 

component lacks domain knowledge. The other components like “SCA” do not have 

any requirement for knowledge acquisition and sharing since they rely on the 

knowledge to complete the tasks, in which a solution can be found in any case. For 

example, the sensing component follows certain configurations to generate 

symptoms. The control component relies on its knowledge to identify the best solution 

of control strategy within the search space of its decision tree.  

The standard processes within this use case are summarized as follows: 

1. The sensing component “S*” collects the sensory data from the physical system 

and processes the data to generate the symptom, which is then forwarded to the 

interpreting component “I*”.

2. The interpreting component “I*” evaluates the physical system's current (and 

future) context by trying to find relevance with one of its known symptoms (which 

is saved as domain knowledge) to identify the current problem. Due to the lack 

of knowledge, the problem cannot be reliably identified. Thus, the interpreting 

component cannot generate the change of request.

3. The interpreting component requests support from the knowledge component 

“K*”. Since the knowledge component “K*” has the same domain knowledge as
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the interpreting component, it also cannot identify the problem. Thus, it forwards 

the request to other knowledge components, such as the knowledge component 

“K*+1” in other neighbor nodes. 

4. The knowledge component “K*+1” shares its domain knowledge with the 

knowledge component “K*” in the neighbor node (e.g., its known symptom). The 

component “K*” forwards the received domain knowledge to the interpreting 

component “I*”. 

5. The interpreting component “I*” accesses the new domain knowledge and tries 

to determine whether the problem can be identified. If the problem can be 

identified, the interpreting component “I*” uses its training algorithm to integrate 

the new domain knowledge into the knowledge base included in the knowledge 

component “K*”. If the problem cannot be identified, the interpreting component 

“I*” requests the knowledge component “K*” again. Processes 3 and 4 will be 

repeated with the interaction of other available knowledge components until the 

solution can be found. 

4.3 Instantiation of Generic Architecture Style for Different Control Systems 

After introducing the generic architecture style as the main contribution of this 

dissertation, from the perspectives of the static system construction and dynamic system 

behavior respectively, it is necessary to investigate the generalization potential of the 

proposed generic architecture style. For this purpose, the architecture pattern is further 

instantiated as logical architectures from software engineering for the cases of 

introduced control concepts with the architectures from the control theory viewpoint (cf. 

Chapter 3). Thus, the architectures from both viewpoints can be compared to examine 

whether the proposed generic architecture style is consistent on the architecture level 

with current control systems. 

4.3.1 Basic Control following the Generic Architecture Style 

The first instantiation focuses on basic control architecture from the view of control 

theory, which is shown again as the blue-grey architecture at the bottom of Figure 4.9. 

There is no adaptation unit as a secondary layer to build a hierarchical system 
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architecture in basic control. Thus, the architecture pattern is instantiated only with one 

layer illustrated at the top of Figure 4.9 as a yellow-green architecture from the view of 

software engineering. By comparing “blue-grey” and “yellow-green” architectures, 

relationships between the corresponding components included in the architectures can 

be mapped. 

 

Figure 4.9: Instantiation of Architecture Pattern for Basic Control System 

In the following sections, the word “blue-grey architecture” is used to represent the 

architecture from the control theory viewpoint to reduce description complexity. Similarly, 

the word “yellow-green architecture” is used to represent the instantiated logical 

architecture from the view of software engineering derived from the architecture pattern.  

Firstly, the physical system and the hardware sensors and actuators (SC, SR, and A) 

as its provided interfaces for the interaction with the technical system can be mapped 

precisely as component “P0” in the yellow-green architecture. The subscript “0” here 

stands for node zero, which can also be instantiated as a layer if necessary. 
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Since the measurement unit in the blue-grey architecture is responsible for collecting 

and preprocessing the sensory data, which is also covered by the sensing component 

in yellow-green architecture, another mapping relationship can be found. Additionally, it 

is very clear that the controller and the parametrization memory component respectively 

correspond to the control and knowledge components (“C0” and “K0”) in the yellow-green 

architecture. Since the actuating component (“A0”) converts the determined control 

strategy into individual control activities, which are then forwarded into the physical 

system through actuators, it can be mapped by the final control unit in the blue-grey 

architecture. Finally, an additional component analyzer in the blue-grey architecture is 

used to predict the future context of the physical system. It can be interpreted as a 

simplified interpreting component (“I0”) since it also covers the functionality for evaluation 

of the future context of the physical system (“P0”). Thus, it can be said that from the view 

of software engineering the instantiated architecture, which is derived from the generic 

architecture style, is consistent with the architecture of basic control from the viewpoint 

of control theory.  

4.3.2 Naive Adaptive Control following the Generic Architecture Style 

After the architecture comparison for basic control, this dissertation continues its 

investigation by focusing on naive adaptive control. The architecture of the naive 

adaptive control is illustrated as blue-grey architecture from the view of control theory 

again at the bottom of Figure 4.10. Since naive adaptive control includes an adaptation 

unit deployed on a secondary control loop, an architecture including two nodes is 

instantiated from the architecture pattern. Since these two nodes can then be 

instantiated as two hierarchical layers, as presented earlier, a two-layered hierarchical 

yellow-green architecture is thus constituted. Different layers are represented by 

superscripts “0” and “1”. 

In comparison to the blue-grey architecture for basic control, it can be seen that the 

adaptation unit deployed on the secondary control loop includes several components: a 

monitoring component, an adaptation controller, and an execution component. The 

monitoring component is responsible for data collection and preprocessing, which 

generates a symptom based on the standard data formats. The adaptation controller is 
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designed to determine an adaptation strategy, which is understood as high-level 

specifications for the adapted variable to adapt the saved values of application 

parameters in parametrization memory. The execution component takes the determined 

adaptation strategy as input to derive individual values of the adapted variable, which 

are forwarded to the parametrization memory.  

 

Figure 4.10: Instantiation of Architecture Pattern for Naive Adaptive Control 

Compared to the yellow-green architecture, it can be observed that the functionalities of 

the introduced components in blue-grey architecture correspond to the sensing, control, 

and actuating components within the generic architecture style. Since the components 

in blue-grey architecture are deployed on the secondary control loop, the corresponding 
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components in yellow-green architecture are described as “S1”, “C1” and “A1”. 

Superscript “1” means the index of the higher layer in the hierarchical architecture, as 

shown in Figure 4.10. 

4.3.3 Controlled-Plant-Dependent Adaptive Control following the Generic Architecture 

Style 

The architecture of controlled-plant-dependent adaptive control will now be taken as a 

further investigation object. The blue-grey architecture from the view of control theory, 

as previously introduced, is shown at the bottom of Figure 4.11. In comparison to the 

blue-grey architecture of naive adaptive control, an additional interpreting component is 

deployed on the secondary control loop, which takes the responsibility for evaluating the 

generated symptom and thus provides a change of request for adaptation activity to the 

adaptation controller. The functionality of the interpreting component in the blue-grey 

architecture corresponds exactly to the interpreting component in the yellow-green 

architecture, which builds a clear mapping relationship. The remaining components stay 

the same as in the case of naive adaptative control. 

In addition to the interpreting component, another supplement compared to naive 

adaptive control is that controlled-plant-dependent adaptive control has access to the 

component sensor of controlled plant (SP) for providing additional context information 

to the adaptation unit. In this case, it can be said that the observation scope of the 

technical system (yellow part of the yellow-green architecture) for the physical system 

is further increased, which is represented by the integration of the sensor of controlled 

plant. The knowledge component “K1” is still missing since there is no knowledge 

management component similar to the parametrization memory component in the 

adaptation unit of the blue-grey architecture. 
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Figure 4.11: Instantiation of Architecture Pattern for Controlled-Plant-Dependent Adaptive Control 

4.3.4 Physical-System-Dependent Adaptive Control following the Generic Architecture 

Style 

The next investigated concept of current control systems is called physical-system-

dependent adaptive control. The architecture considering control theory is illustrated as 

the blue-grey architecture in Figure 4.12. 
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Figure 4.12: Instantiation of Architecture Pattern for Physical-System-Dependent Adaptive Control 

In the blue-grey architecture, the component sensor of environment (SE) is also 

connected to the adaptation unit on the secondary loop. Thus, it is also mapped to the 

physical system “P1” on the higher layer of the hierarchical architecture. Unfortunately, 

the knowledge component “K1” is still missing, similar to the case of controlled-plant-

dependent adaptive control. 

Technical System Physical System

Manipulated 
Variable

Controlled Variable (Current Value)

Controlled Variable  
(Current Value)

AFinal Control Unit

Control 
Variable

Controller

Parametriza�on 
Memory

Predicted 
Variable

Controller 
Parametriza�on

SR

SC

Analyzer

Reference 
Variable  
(Set Value)

Environment

Disturbance 
Variable
(Physical 
Signal)

Controlled Variable 
(Current Value)

Control 
Variable

Measurement Unit

Adapta�on Unit

Adapted Variable 

Monitored
Symptom

Execu�on 
Component

Adapta�on 
Controller

Interpre�ng 
Component

SU
Reference 
Configura�on
(Set Opera�ng 
Mode)

SP
Plant 

Variable

Legend
A

Sensor of Controlled VariableSC
Actuator

Op�onal

SR Sensor of Reference Variable

SP Sensor of Controlled Plant

SU Sensor of User

SE Sensor of Environment

Environment 
Variable
(Current Value)

SE

Monitoring 
Component

Control Error 
( Devia�on 

between 
Current & Set 

Value)

Adapta�on 
Strategy

Change 
Request

Adapta�on 
Strategy

Controlled Plant

User

A1 C1

S1
P1

P0 P0

P0

A0

I0

S0

C0

K0

P1

I1

P1

P1

A1

P0

K0 A0S0

I0
C0

S1 K1

I1
C1

X



 
A Generic Architecture Style for Designing Automatic 

Control Systems 

 

 

 137
 

4.3.5 Artificial Cognitive Control following the Generic Architecture Style 

After instantiating the generic architecture style for current control systems, it is also 

important to check whether the proposed architecture pattern is consistent with artificial 

cognitive control, defined in this dissertation as the next generation of control systems 

(cf. Section 3.8).  

In Section 3.6, it is clearly stated that current control systems have existing issues from 

two perspectives: (1) missing property of knowledge acquisition, and (2) adaptation and 

limited system scalability against fixed boundary conditions. Different challenges for the 

system architecture design of artificial cognitive control are constituted to eliminate these 

issues by integrating knowledge acquisition and adaptation and strengthening system 

scalability and connectivity. For this purpose, the artificial cognitive control system needs 

to include increasingly complicated knowledge basis as its world model and greater data 

processing, along with increasing offboard sensor access. However, such a requirement 

leads to a very high computation effort and long computation duration, thus strongly 

challenging performance, especially regarding the timing perspective of the control loop. 

Against such a background, the design of networked system architecture, including 

multiple nodes as subsystems, is proposed as a solution. It aims to distribute the 

computations of control loops into different nodes included in the architecture. Thus, the 

bottleneck of high computation effort and duration can be overcome, relying on parallel 

computations of the nodes. Different knowledge components are then deployed as 

interface components between the nodes to isolate them and thus realize a loose 

coupling. They can also serve as knowledge repositories to deploy corresponding 

knowledge bases with limited complexity distributed from the previously highly 

complicated knowledge basis. 

Following the paradigm of structural adaptation composition in the proposed generic 

architecture style, a networked architecture including multiple nodes can be constituted. 

Each node can be instantiated as a layer, and the layers can be hierarchically connected. 

Thus, a two-layered hierarchical yellow-green architecture can be derived as an 

example to describe an instantiated artificial cognitive control system from the view of 

software engineering, as shown at the top of Figure 4.13. It should be emphasized that 

the artificial cognitive control system is not limited to two hierarchical layers. Instead, it 
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can also be constructed with arbitrary hierarchical layers that can be separately 

deployed on different distributed domains if necessary. 

 

Figure 4.13: Instantiation of Architecture Pattern for Two-layered Artificial Cognitive Control System  

Unlike the physical-system-dependent adaptive control, the final missing knowledge 

component (“K1”) is now included in the higher layer of the yellow-green architecture. 

Thus, knowledge acquisition and adaptation can be realized in artificial cognitive control, 

relying on the knowledge component. In the case of a more complicated knowledge 

basis or more data flow from offboard sensors, higher layers can also be constructed in 

the system architecture; these layers are not shown in the simplified illustration of Figure 

4.13. 
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The blue-grey architecture is derived from the blue-grey architecture of physical-system-

dependent adaptive control. A knowledge component (dark yellow box representing “K1”) 

is added to the adaptation unit. This knowledge component communicates with the 

monitoring, interpreting, and execution component, and with the adaptation controller to 

initialize their required domain knowledge. From the opposite direction, they can also 

acquire new domain knowledge and update it into the knowledge component to realize 

the knowledge acquisition and adaptation, as described in use case 2 (UC2) of the 

dynamic system behaviors (cf. Section 4.2.6.2).  

Another difference in the blue-grey architecture of physical-system-dependent adaptive 

control is that the knowledge component “K1” on the higher layer is evolved from a pure 

knowledge repository for storage into a component for knowledge management 

covering more functionalities. Thus, in artificial cognitive control, the knowledge 

component “K1” can communicate with the parametrization knowledge component “K0” 

on the lower layer to realize the use case 4 (UC4): knowledge acquisition and sharing 

across multiple nodes (detailed process flow cf. Section 4.2.6.4).  

4.4 Summary 

Since automatic control systems become increasingly more complicated, system design 

becomes an issue with greater challenges, particularly in the case of a sophisticated 

system architecture with hybrid computation mechanisms, which is exactly what is 

required in next-generation artificial cognitive control. This dissertation combines control 

theory and software engineering, aiming to acquire another view of the automatic control 

system and thus contribute to system design with the help of established software 

engineering approaches. 

With this idea in mind, this chapter first provides a short research overview of related 

works about combining approaches of control theory and software engineering. Based 

on the understanding of the related works, the main contribution of this dissertation is 

introduced in detail, which consists of a generic architecture style for the design of 

different automatic control systems. The fundamental design of the generic architecture 

style, including the fundamental component structure and the system construction 

paradigm of adaptation composition, is introduced. In addition to the view of static 
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system construction, this chapter also introduces different standard communication 

architecture patterns and triggering mechanisms that can be taken to define concrete 

component interactions within several defined use cases of dynamic system behaviors. 

Finally, to evaluate the generic architecture style, the generic architecture style is used 

to instantiate logical architectures (from the view of software engineering) as concrete 

examples for different control systems. Thus, the logical architectures can be compared 

with the architectures from the view of control theory to check constructional consistency. 
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5 Artificial Cognitive Cruise Control as Experimental 
Application of Generic Architecture Style 

Addressing the trend that automatic control systems are growing increasingly more 

complicated, the approaches of hierarchical system architecture and the corresponding 

challenges of system design were presented in Chapter 3. Aiming to fulfill the challenges 

due to the more complicated system architecture, the main contribution of this 

dissertation, a generic architecture style for designing automatic control systems from 

the view of software engineering, was proposed and introduced in detail within Chapter 

4. An overview of related works by combining control theory and software engineering 

approaches was described.  

Subsequently, the fundamental design of the generic architecture style was introduced, 

including the paradigm of adaptation composition for system construction and 

fundamental component structure. Different triggering mechanisms for the design of 

system computation were also introduced. Additionally, a short introduction to different 

generic communication architecture patterns (cf. Section 2.3), which can be applied to 

specify the component interactions consisting of dynamic system behaviors, is also 

included. Several use cases with different component interactions were also presented 

to describe the dynamic system behaviors.  

To validate the proposed generic architecture style, several architectures from the 

perspective of software engineering were derived as instantiations and compared with 

architectures of current control systems from the control theory viewpoint, with the aim 

of investigating architectural consistency. A two-layered example architecture of artificial 

cognitive control as a generally simplified instance was also included in the investigation.  

Further, the generic architecture style is taken again to derive an example architecture 

of the artificial cognitive control and applied within the vehicle’s ACC function as a 

practical application called artificial cognitive cruise control (ACCC) in this dissertation. 

This chapter will introduce the detailed architecture of the ACCC and an implemented 

prototype. Additionally, the technical performance of the implemented prototype will also 

be evaluated. 
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5.1 Preliminary Design of Artificial Cognitive Cruise Control 

The reviewed architectures of current ACC variants (cf. Section 4.3) indicate that most 

of these architectures include a two-layered construction. While the lowest layer is 

responsible for the real-time control to interact with the physical world within milliseconds, 

the higher layer is responsible for determining a high-level context-based adaptation 

strategy with a longer cycle time. In this sense, it can be said that current ACC variants 

with two-layered architectures (cf. Section 4.3.2–4.3.4) are extended gradually based 

on the classical ACC with a single-layered architecture (cf. Section 4.3.1). As introduced 

earlier, the architecture design of artificial cognitive control systems in next generation 

should follow the proposed ideas of adaptation composition in the generic architecture 

style. With this idea in mind, the layer design in the system architecture of ACCC as an 

empirical application example of artificial cognitive control system needs to be 

reconsidered. 

As presented earlier, ACC is designed as a driving comfort assistance system to take 

over the vehicle’s longitudinal control during a trip to realize so-called semi-automated 

driving. In this case, the driver must still participate in the driving task by steering the 

vehicle. Following the generic architecture style, different nodes have different 

observation scopes. Since current ACCs have layered architectures, the architecture of 

ACCC is also instantiated to include a multi-layered topology. Thus, it is obvious that the 

largest scope could be assigned to the highest layer, which in the case of ACC refers to 

the complete remaining trip, considering the whole route between the origin where the 

vehicle is currently located and the desired destination. 

In this case, the highest layer would focus more on the so-called global planning of 

driving strategy. However, global planning cannot foresee every event during the trip in 

advance due to nondeterministic in reality. Thus, other traffic participants on the route 

that could be obstacles for the ego-car, such as moving vehicles or pedestrians, will be 

completely ignored. For this reason, current ACCs’ original task of planning driving 

strategy on a lower level of abstraction such as a set of cruise velocities for the whole 

route is not worth being included on the highest layer. 
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Instead, the highest layer would work on a similar level of abstraction to the vehicle’s 

navigation system. The difference is that the navigation system focuses on driving 

behavior planning like turning left or right, with a set of intermediate points like 

intersections as nodes on the route. However, the highest layer of the ACCC plans a 

high-level set travel profile (like the expected travel time and energy consumption) from 

the origin until each intermediate point on the following route. Thus, specific high-level 

domain knowledge about the physical system, such as the driver-preferred average 

travel time or average energy consumption, can be extracted based on the observed 

facts during the whole trip and learned by the technical system to realize the proposed 

personalized ACC (cf. Section 3.5.1). Since such planning of the high-level set travel 

profile is not required to be performed regularly, the highest layer can be designed as 

event-triggered (cf. Section 4.2.4). 

Considering another perspective, the ACCC still needs to interact with the physical world 

while driving. As a real-time automatic control system, the lowest layer in the architecture 

of ACCC is thus required to deploy a well-known traditional closed control loop, as 

previously introduced in the concept of basic control (cf. Section 3.1). Thus, it means 

that the lowest layer is still required to focus on the determination of concrete low-level 

control activity like cruise velocity or headway within the range of milliseconds. Since 

the lowest layer is required to guarantee real-time interaction with the physical world, it 

can be designed to be time-triggered (cf. Section 4.2.4) to fulfill timing requirements. 

Compared with the high-level personalized set travel profile mentioned before, it is 

indicated that the high-level personalized set travel profile (e.g., the driver’s expected 

average travel time and the energy consumption) is still out of touch with the concrete 

control activity within the range of milliseconds. This also means that the set travel profile 

cannot directly be decomposed as individual concrete control activities due to the 

absence of an appropriate intermediate level of abstraction between them. Thus, an 

additional middle layer is required. A three-layered architecture for the preliminary 

design of artificial cognitive cruise control was conceived with this idea in mind, as shown 

in Figure 5.1. 
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Figure 5.1: Preliminary Design of Three-Layered Architecture of Artificial Cognitive Cruise Control (ACCC) 

The highest layer's planned high-level personalized set travel profile would be 

transferred into the middle layer in the architecture. The middle layer is responsible for 

deriving the set travel profile as a situation-aware middle-level driving strategy. The 

middle-level driving strategy includes a set trajectory of cruise velocity or headway, 

focusing on a certain following route segment with a limited distance horizon instead of 

focusing on the whole route. Since the middle-level driving strategy is situation-aware, 

the middle layer needs to be designed as event-triggered. The high-level set profiles of 

travel time and energy consumption can be understood as specifications for the middle 

layer to take as constraints during trajectory planning. Subsequently, the lowest layer 

can take the trajectory coming from the middle layer further as a specification in its 

determination of low-level control activity with concrete set value of cruise velocity or 

headway, which is called the set parameter profile in this dissertation. 

By applying such a concept, three different hierarchically connected layers as three 

instantiated networked nodes would have three different observation scopes. The 

observation scopes vary from the whole route, to a route segment, to a certain limited 

time horizon, depending on the required cycle time of the closed control loop. Thus, the 

increasing observation scopes are consistent with the ideas of the proposed generic 

architecture style. The higher two layers are triggered by events since they work on 

higher semantic levels and include higher-level domain knowledge like the individual 
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level of variable monitoring and precise actuator manipulation, without any semantic 

understanding of the physical system regarding the driver or the driving environment. 

5.2 Instantiation of Generic Architecture Style for ACCC System Architecture: 
Static System Construction 

After a short introduction in the previous section, a preliminary design for a three-layered 

architecture of the ACCC was introduced. To further flesh out this preliminary design, 

the proposed generic architecture style is applied to instantiate an example of logical 

architecture on a lower component level from the viewpoint of software engineering, 

illustrated as the yellow-green architecture in Figure 5.2. Subsequently, another 

example of architecture (blue-grey) from the view of control theory can also be derived, 

as illustrated at the bottom of Figure 5.2. 

In Figure 5.2, it is indicated that the ACCC has a hierarchical architecture (blue-grey) 

with three layers. On the layers, a route-based adaptation unit, a route-segment-based 

adaptation unit, and a cycle-time-based control unit are deployed as three subsystems 

within the technical system. With the help of different sensors, different units in the 

technical system acquire increasing observation scopes of the physical system from 

bottom to up, along with the hierarchical layers. The fundamental component structures 

consisting of “SICAP-K” exist on each layer in the hierarchical architecture, illustrated 

as color boxes inside the subsystems of the three units in Figure 5.2. 

As presented in the previous section, the observation scopes of the physical system by 

different units on different layers must be predefined. The route-based adaptation unit 

on the highest layer makes adaptation decisions considering the whole route profile. 

However, the route-segment-based adaptation unit on the middle layer considers only 

the following section of the route, which is called the route segment in this dissertation. 

Unlike the route-based and route-segment-based adaptation unit, the cycle-time-based 

control unit on the lowest layer has an observation scope from the time perspective 

instead of the spatial perspective of the physical driving environment. It focuses on the 

determination of control activity for the following cycle time within milliseconds. In the 

following sections, more details about these units and other subsystems in the 

architecture of ACCC will be provided. 
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Figure 5.2: Instantiated Architecture of Artificial Cognitive Cruise Control (ACCC) from the Generic 
Architecture Style 

5.2.1 Physical System 

As stated in Figure 5.2, similarly to current ACCs (cf. Section 3.1–3.4), the ACCC 

consists of two major parts: a technical system and a physical system. The physical 

system consists of the driver, the controlled plant referring to the ego-car’s physical 

components like the car body and powertrain, and the surrounding driving environment 

(cf. Figure 5.3). As presented earlier, the sensors and actuators play roles as interfaces 

to enable interaction between the technical and physical system, which are also 
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illustrated in Figure 5.3 and categorized into three classes (“P0”, “P1”, and “P2”). The 

superscripts correspond to three layers with different observation scopes in the 

hierarchical architecture instantiated from the generic architecture style. 

On the highest layer, the component sensor of user (SU), the component route-oriented 

sensor of controlled plant (RSP), and the component route-oriented sensor of 

environment (RSE) are responsible for the delivery of sensory data for the route-based 

adaptation unit. The data coming from the RSE and RSP include context information 

about the vehicle and its driving environment. Unlike these two sensors, the sensor SU 

interacts with the driver. 

Figure 5.3: Physical System in Artificial Cognitive Cruise Control 

This dissertation defines the quality of the set travel profile with a cost function influenced 

by travel time, the vehicle’s fuel/energy consumption, and the driving comfort 

represented by the vehicle’s acceleration/deceleration. In this cost function, different 

weights of influence factors are required. The driver can manually adjust the weights of 
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the influence factors through the SU if necessary (e.g., via a human-machine interface 

(HMI) of the vehicle’s entrainment system). In this case, the HMI can also be interpreted 

as a special actuator and sensor simultaneously. Since HMI only indirectly instead of 

directly influences the technical process, which refers to the physical processes for the 

vehicle’s driving, it is excluded from the system design of ACCC in this dissertation and 

thus is not visualized in the system architecture of Figure 5.3. 

A significant point that must be emphasized is that all these mentioned sensors are not 

limited to explicit physical sensors. For example, the SU possibly consists of a group of 

independent physical sensors, which are all responsible for delivering driver-relevant 

sensory data since the driver is the system user in this case. In addition to driver-relevant 

data, the sensors RSP and RSE provide vehicle- and route-relevant data (e.g., the 

driver’s accumulated travel time for the whole route and the GPS position of the ego-

car). 

Instead of focusing on the whole route, the segment-oriented sensor of environment 

(SSE) and the segment-oriented sensor of controlled plant (SSP) on the middle layer of 

the hierarchical architecture focus on providing the data within the observation scope of 

individual route segment (e.g., the driver’s preferred cruise velocity and headway to the 

preceding car within the route segment). Along with the car’s movement during the trip, 

the observation scope of the sensors is also moving towards the following route segment 

like a sliding window, depending on the current GPS position of the ego-car and its 

located route segment respectively. 

On the lowest layer, the component sensor of controlled variable (SC) and the 

component sensor of reference variable (SR) provide sensory data about current and 

the driver-preferred set cruise velocity and headway, respectively, as in the case of 

current ACCs (cf. Chapter 3). Additionally, the actuators (A) receive the current value of 

manipulated variables to manipulate hardware in the ego-car’s engine and brake system. 

In this case, both sensors and actuators on the lowest layer only focus on concrete 

activities for the current time point without considering the following route or route 

segments. 
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5.2.2 Route-Based Adaptation Unit in the Technical System 

As indicated in Figure 5.2, the route-based adaptation unit is designed as a subsystem 

triggered by trip-relevant events. It works only when trip-related requirements have been 

fulfilled. For example, it plans the driver’s individual personalized global travel profile, 

including set travel time, set energy consumption or set driving comfort, at the beginning 

of the trip. Additionally, it updates the personalized travel profile once the planned trip 

has been changed or strongly violated while driving. For instance, in the case of a traffic 

jam, the vehicle’s navigation system would normally react, and thus this can be seen as 

a potential trigger for the route-based adaptation unit to update the set travel profile.  

Once the ego-car has reached the planned destination and the trip is finished, the route-

based adaptation unit stops the data collection. It then triggers the process of learning 

high-level route-based driver preferences like the driver’s preferred travel time or energy 

consumption as high-level domain knowledge based on the newly observed facts of 

sensory data during the whole trip. 

 

Figure 5.4: Route-Based Adaptation Unit in Artificial Cognitive Cruise Control (Detailed View cf. Appendix 

A.1) 
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The route-based adaptation unit (RAU) follows the proposed generic architecture style 

to realize the aforementioned functionalities. It means that the RAU is constructed by 

following the “SICAP-K” fundamental component structure consisting of five 

components: Driver Preference Monitor (“S2”), Driver Preference Analyzer (“I2”), Driver 

Preference Planner (“C2”), Driver Preference Executor (“A2”) and Driver Preference 

Knowledge (“K2”), as illustrated in Figure 5.4. Detailed dynamic behaviors of these 

components will be presented in Section 5.3 based on different predefined use cases. 

The driver preference knowledge component is a centralized knowledge repository to 

initialize the required domain knowledge for the other four components. It can also 

support other knowledge components in the other two units by providing its available 

domain knowledge. More detailed processes about this support of domain knowledge 

will be presented in Section 5.3.4. 

The driver preference monitor generates the symptom defined as well-structured 

sensory data in this dissertation. As illustrated in Figure 5.4, the included data in the 

symptom come from different sensors (SU, RSP, and RSE), which were presented in 

Section 5.2.1. The driver preference monitor preprocesses and also, if necessary, 

aggregates the collected sensory data. In addition, the collected sensory data may 

include a slight temporal offset due to the computing frequencies of different sensors. In 

this case, the driver preference monitor also completes the time synchronization of the 

input data. Aiming to complete the aforementioned tasks, the driver preference monitor 

needs related domain knowledge. For example, a data specification is required while 

preprocessing and aggregating the input sensory data. Thus, the generated symptom 

conforms to the data structure expected by the other components in the route-based 

adaptation unit. 

The driver preference analyzer is designed to analyze the physical system’s current and 

future context information as an interpreting component. For this purpose, the observed 

facts (included in the symptom) like the ego-car’s current location will be compared with 

a catalog of previously available symptoms to represent the system’s known situations 

like trip origin and destination. Thus, the driver preference analyzer could know whether 

the trip has begun and ended and thus whether a request for (re-)planning the driver’s 

personalized set travel profile is essential. In this sense, it can be said that the route-
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based adaptation unit is aware of the driving situation and works on an interpreted higher 

semantic level instead of the low data level. 

The driver preference planner aims to find an optimized set travel profile to satisfy the 

driver’s route-based preferences as far as possible if the driver preference analyzer 

generates the request. The planning strategy is an optimization process. For this 

purpose, an appropriate optimization algorithm and an accompanying decision tree for 

describing the solution space of the candidate set travel profiles must be implemented 

in the driver preference planner. In addition, the evaluation criteria and the interpretation 

mechanism for identifying qualities of different strategies, like a cost function consisting 

of a mathematical formula and the weights of the criteria, are required. In the 

implemented prototype, the weights of factors influencing the route-based preferences 

(collected by the sensor SU, cf. Section 5.2.1) are taken and considered as application 

parameters of the optimization algorithm. 

The planned optimized set travel profile aims to fulfill the individual driver’s route-based 

driving preferences as much as possible. For this reason, the driver’s average profile is 

taken as a reference to define the evaluation criteria by following rules: 

• Travel time shall be as short as possible, with a soft constraint of the driver’s 

average travel time as the maximal acceptable deviation. 

• Energy consumption shall be as little as possible, with a soft constraint of the 

driver’s average energy consumption as the maximal acceptable deviation. 

• Driving comfort shall be as great as possible, which means that the ego-car’s 

acceleration shall be as gentle as possible with the maximal driver-acceptable 

acceleration rates (positive and negative) as soft constraints. 

A concrete example of the cost function is implemented in this dissertation and will be 

further introduced in Section 5.5. Considering that the route is divided by significant 

intermediate route points like intersections as route segments, the implemented cost 

function includes three terms: (1) the driver-preferred accumulated travel time from the 

origin until each following route point, (2) accumulated fuel/energy consumption from 

the origin until each route point, and (3) the vehicle’s average acceleration for 

representing the required driving comfort from the origin until each route point. 
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The driver preference executor decomposes the accumulated set profiles into a group 

of partial set profiles for route segments between each two neighbor route points. For 

this purpose, the driver preference executor requires domain knowledge like the route 

profile and specification of the route-segment-based partial set profiles provided by the 

driver preference knowledge component. Thus, the partial strategies can be taken as 

specifications during the planning strategy on a lower layer. 

5.2.3 Route-Segment-Based Adaptation Unit in the Technical System 

In addition to the route-based adaptation unit, another subsystem deployed on a lower 

layer is the route-segment-based adaptation unit. Like the route-based adaptation unit, 

the route-segment-based adaptation unit is also designed as an event-triggered 

subsystem. However, it is triggered either by events with dependence upon state change 

of the route segment or by events about the preceding obstacle’s availability of the ego-

car. 

As presented earlier, the whole route has previously been decomposed as a sequence 

of route segments. Unlike the route-based adaptation unit, which focuses on the set 

travel profile for the whole route (until the destination), the route-segment-based 

adaptation unit takes the set travel profile as a specification to derive a so-called 

situation-aware middle-level driving strategy on a lower level of abstraction. This middle-

level driving strategy includes a location-based set trajectory of cruise velocity (in the 

case of no preceding car) and headway (in the case of a preceding obstacle) for a limited 

distance horizon on the route.  

For this purpose, each route segment is further divided into a set of subsections through 

further intermediate route points, which have a standard variable distance between each 

other, depending on the respective geographical profiles of the route like curvature and 

altitude. In the implemented ACCC example (cf. Section 5.5), this standard variable 

distance is simplified as a fixed distance of one meter to reduce the implementation’s 

complexity. Thus, the trajectory of cruise velocity and headway includes a sequence of 

set values for these two variables that the vehicle should realize once it moves through 

each route segment's starting point and endpoint and its included intermediate route 

points. 
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As an event-triggered subsystem, the route-segment-based adaptation unit has two 

independent triggering conditions: (1) the state change of the route segment and (2) the 

state change of the preceding obstacle. The adaptation unit is activated to determine 

the driving strategy if any condition is fulfilled. Whether the trajectory of cruise velocity 

or headway will be planned depends on whether the radar sensor detects an obstacle 

ahead. 

The first triggering condition means a state change when the ego-car leaves the 

previous route segment and enters following one. Thus, the driving strategy 

determination process repeats during the whole trip as the ego-car enters each segment. 

The route-segment-based adaptation unit repeatedly has an observation scope 

dynamically limited by the horizon of the following route segment, which works like a 

sliding window moving along the route.  

The second triggering condition relates to the preceding obstacle’s state. Current ACC 

variants (cf. Section 3.1–3.4) detect this solely by relying on the radar sensor's current 

state of sensory data. For this reason, the lack of so-called memory ability as a 

significant limitation of the ACC leads to critical scenarios, particularly in the case of a 

route with many curves (cf. Section 3.5.2). In the design of ACCC, this memory ability is 

considered in order to eliminate critical scenarios. The ACCC detects the preceding 

obstacle’s availability based on the current sensory data and the dependency on the 

previously experienced driving context. 

For example, a “virtual” preceding obstacle will be considered during planning the 

following driving strategy, even once the radar sensor cannot “see” a previously 

appeared but currently disappeared obstacle due to a curve. When two conditions are 

fulfilled, such “virtual” preceding obstacles would only be removed from the ACCC’s 

memory. The first condition is that the full sensing range of the radar sensor is 

overlapped with the following route (from another perspective, this also means a limited 

lateral curvature of the following route). The second condition is that the obstacle is no 

longer located within the full sensing range. For this purpose, the detailed map data for 

each route segment is required by the route-segment-based adaptation unit, as 

illustrated in Figure 5.5. 
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Figure 5.5: Route-Segment-Based Adaptation Unit in Artificial Cognitive Cruise Control (Detailed View cf. 

Appendix A.2) 
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Like the route-based adaptation unit, the route-segment-based adaptation unit is also 

constructed by following the proposed generic architecture style, which means that it is 

designed with a fundamental component structure of “SICAP-K” consisting of five 

components: Driving Strategy Monitor (“S1”), Driving Strategy Analyzer (“I1”), Driving 

Strategy Planner (“C1”), Driving Strategy Executor (“A1”) and Driving Strategy 

Knowledge (“K1”), as illustrated in Figure 5.5. More details of these components’ 

dynamic behaviors will be introduced in Section 5.3.2 and Section 5.3.4. 
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The driving strategy knowledge component plays the role of the centralized knowledge 

repository that initializes the required domain knowledge for the other four components. 

In addition, it also requests knowledge support from and provides knowledge support to 

other knowledge components in the ACCC. Mode detailed processes about the dynamic 

behaviors of the driving strategy knowledge component will be presented in Section 

5.3.2 and Section 5.3.4. 

The driving strategy monitor is designed to generate the symptom by preprocessing and, 

if necessary, aggregating the received sensory data. For this purpose, the driving 

strategy monitor requires knowledge like data specification to preprocess the sensory 

data. Thus, the generated symptom’s structure conforms to the preferred data 

specification.  

The driving strategy analyzer includes the triggering conditions mentioned above to 

decide whether it is necessary to request the driving strategy planner to plan the middle-

level driving strategy. For this purpose, an inference engine and a state machine must 

be implemented in the driving strategy analyzer. Since the memory ability is considered 

in the design of the route-segment-based adaptation unit, the driving strategy analyzer 

also includes functionality for predicting future driving behaviors like the preceding 

obstacle’s velocity trajectory, which is also considered while planning the driving strategy. 

The driving strategy planner aims to determine an optimized middle-level driving 

strategy consisting of the set trajectory of cruise velocity and headway. An optimization 

algorithm must be implemented in the driving strategy planner to complete the strategy 

determination. Additionally, a decision tree is required to describe the solution space 

comprising all candidate cruise velocities and headways. In the ACCC, the decision tree 

is derived from the previously observed facts about the driver’s manual driving behaviors. 

Thus, the decision tree will be continuously extended and updated along with the 

knowledge acquisition and adaptation once a novelty is identified due to newly observed 

facts.  

Generally, the optimized middle-level driving strategy used by the route-segment-based 

adaptation unit, which consists of the location-based set trajectory of cruise velocity and 

headway, should fulfill the driving preferences of the individual driver as much as 

possible. For this reason, the driver-preferred average profile of cruise velocity and 
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headway is taken as a reference to define the evaluation criteria through the following 

rules within the implementation example: 

• In the case of no preceding obstacle, the planned cruise velocity shall be as 

equal as possible to the driver’s average profile. 

• In the case of a preceding obstacle, the planned headway shall be as equal as 

possible to the driver’s average profile. 

• The planned middle-level driving strategy, including the set trajectory of cruise 

velocity or headway, shall fulfill the specifications of the planned set travel profile, 

which is the high-level personalized strategy planned by the route-based 

adaptation unit. 

Following the rules above, a cost function consisting of influencing factors and 

accompanying weights must also be defined in the driving strategy planner. This 

dissertation uses the same cost function to identify qualities of the candidate set 

trajectories in the decision tree (cf. Section 5.2.2), as in the case of the route-based 

adaptation unit. Three influencing factors regarding the travel time, the required 

fuel/energy consumption, and the driving comfort represented by the vehicle’s 

acceleration and their weights (customized by the driver, cf. the sensor SU in Section 

5.2.1), are considered in the cost function. Thus, the cost function can quantitatively 

evaluate the quality of candidate middle-level driving strategies. A concrete example of 

this cost function is implemented in this dissertation, which will be introduced in Section 

5.5. 

Once the optimized middle-level driving strategy has been defined, it will be forwarded 

to the component driving strategy executor (“A1”). The set trajectory planned by the 

driver strategy planner consists of the set values of cruise velocity and headway for 

certain intermediate route points in each route segment. The driver strategy executor 

works similarly to the driver preference executor (cf. Section 5.2.2). It decomposes the 

location-based set trajectory into different partial sub-trajectories (e.g., the required 

cruise velocity or headway for each intermediate route point within each route segment). 

In the decomposition process, domain knowledge like the individual route segment’s 

profile is required. Finally, sub-strategies are forwarded to the cycle-time-based control 

unit. 
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5.2.4 Cycle-Time-Based Control Unit in the Technical System 

In Figure 5.2, it is indicated that the only time-triggered subsystem in the ACCC is called 

cycle-time-based control unit. As the name suggests, the cycle-time-based control unit 

repeatedly works with a deterministic cycle time, which means that each component 

inside works as an independent and active process with its scheduling, as introduced in 

Section 4.2.1. Such a computation mechanism aims to realize the real-time interaction 

with the physical world while driving. Thus, concrete cycle time for each component and 

the whole subsystem of the cycle-time-based control unit must be specified at design 

time, considering timing requirements in concrete applications.  

As a subsystem deployed on the lowest layer in the ACCC, the cycle-time-based control 

unit takes over the responsibility of real-time feedback control to interact with the 

physical world. Such real-time feedback control as the most fundamental functionality in 

the control system is already included in current ACC variants. As noted earlier, the 

location-based set trajectory of cruise velocity and headway covering an individual route 

segment is provided by the route-segment-based adaptation unit. Each route segment 

is decomposed into different sections. Thus, the set trajectory is decomposed into a 

sequence of sub-trajectories for the sections in the route segment. Thus, each sub-

trajectory includes two set values of cruise velocity and headway and accompanying 

GPS positions of two route points. With consideration of the distance profiles between 

the route points, the decomposed location-based sub-trajectories will then be converted 

into time-dependent sub-trajectories consisting of the set values of cruise velocity and 

headway. Thus, the control system uses the quantitative set values as dynamically 

changeable desired values of the reference variable (cf. Section 2.1.1). In this case, the 

cruise velocity and headway are taken as the ego-car’s states expected by the driver 

once the ego-car moves through corresponding geographical route points within the 

route segment.  

The cycle-time-based control unit relies on variable monitoring and tries to maintain the 

set values, depending on the current location of the ego-car. Compared to the route-

based and route-segment-based adaptation unit, the most significant difference 

between the cycle-time-based control unit is that it works on the low data level instead 

of a higher semantic level. For this reason, the control unit does not request access to 
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map data for environmental perception. Instead, the current location of the ego-car 

represented by the GPS data only means a group of quantitative values of 

corresponding variables without any interpreted semantic meaning such as longitude, 

latitude, or altitude, since the map data is not considered in the cycle-time-based control 

unit.  

Like the route-based and the route-segment-based adaptation unit, the cycle-time-

based control unit (CTCU) also has a learning ability to realize knowledge acquisition 

and adaptation (cf. Section 3.6.1). The other two adaptation units focus on learning the 

driver’s driving preferences on different levels of abstraction. The control unit focuses 

on the vehicle’s internal operating strategy (e.g., to accelerate or decelerate the ego-car 

as much like the human driver as possible under the same boundary conditions, such 

as set cruise velocity and set headway). Although the learning ability of CTCU is 

supported by the ACCC’s design, this dissertation removes it from the implementation 

to reduce complexity. 

 

Figure 5.6: Cycle-Time-Based Control Unit in Artificial Cognitive Cruise Control (Detailed View cf. 

Appendix A.3) 
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The system construction of the cycle-time-based control unit follows the proposed 

generic architecture style. This means that the cycle-time-based control unit is designed 

with the fundamental component structure of “SICAP-K”, including five components: 

Measurement Component (“S0”), Analyzer (“I0”), Controller (“C0”), Final Control 

Component (“A0”) and Parametrization Knowledge (“K0”), as illustrated in Figure 5.6. 

The measurement component generates the symptom by preprocessing the collected 

sensory data. In the case of a detected preceding obstacle, the analyzer will forecast its 

future velocity trajectory. Unlike the prediction in the driving strategy analyzer, the 

prediction only forecasts the trajectory of the variable’s values for a limited time horizon 

instead of the horizon of the route segment, without high-level semantic interpretation 

like environmental perception. The prediction’s time horizon depends on the component 

controller's working horizon. The predicted velocity trajectory will consider the individual 

cycle time once the component controller generates the control command only for the 

next cycle time. Otherwise, a period of multiple following cycles will be considered. 

The analyzer’s output variable's values representing the predicted velocity are directly 

taken as a state identifier of the current control task. The controller component relies on 

variable monitoring to know whether a preceding obstacle is visible and whether it 

should maintain the set value of cruise velocity or headway. Different classical control 

theory approaches for designing the controller, like the PID control and the model 

predictive control (MPC), can be applied to implement the component controller (cf. 

Section 2.1). 

Lastly, the final control component converts the control variable to the manipulated 

variable to directly manipulate the actuator. If the controller only focuses on the individual 

following cycle time (e.g., using PID control instead of MPC), the final control component 

directly forwards the control command generated by the controller to the actuator to 

interact with the physical system. Otherwise, it also decomposes the control command 

into a sequence of sub-commands for individual cycle time and sequentially forwards 

them to the actuator.  

In the ACCC prototype of this dissertation, the PID control was implemented to reduce 

implementation complexity. This means that the implementation of the analyzer was 
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also strongly simplified by removing forecast function. Only the detection of preceding 

obstacle was implemented in the analyzer. 

5.3 Instantiation of Generic Architecture Style for ACCC System Architecture: 
Dynamic Behaviors in Use Cases (UCs) 

After introducing the ACCC’s static system construction with several subsystems, the 

predefined four use cases (UCs) from Section 4.2.6 are used again in this section to 

describe the ACCC’s dynamic system behaviors in different situations. Although the 

proposed generic architecture style allows component interactions for all four of these 

use cases, it should be emphasized that not all use cases are relevant for all subsystems 

and their included components in the implemented ACCC prototype. Due to the design 

of the ACCC, only use cases with relevant subsystems will be included in the following 

sections. 

5.3.1 Dynamic Behaviors of ACCC in UC1 

The first use case focuses on the technical process control in a single node of the 

networked system architecture, as introduced in Section 4.2.6.1. In the ACCC, the 

networked architecture style is instantiated as a three-layered architecture. Each layer 

includes a subsystem and represents a single node. Thus, UC1 not only relates to the 

route-based and the route-segment-based adaptation unit but also the cycle-time-based 

control unit. As presented earlier, the so-called “SICAP-K” component structure is 

deployed on each layer of the ACCC. In the ACCC’s UC1, the technical process control 

means that the component structure on each layer directly manipulates actuators to 

interact with the physical system.  

Although the generic architecture style allows such direct actuator manipulation, it is 

excluded in the design of the route-based and the route-segment-based adaptation unit 

in ACCC. This point can be identified through the fact that both adaptation units 

deployed on the upper two layers have no direct connection to the physical system, as 

shown in Figure 5.2. Nevertheless, the route-based adaptation unit also has other ways 

to interact with the physical system. For example, the planned high-level strategy can 

be visualized via human-machine interfaces (HMI) on the vehicle as a suggestion to 
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request the driver’s confirmation, in which case HMI can also be interpreted as a kind of 

special actuator and sensor simultaneously. Since HMI only indirectly instead of directly 

influences the technical process, which refers to the physical processes for the vehicle’s 

driving, it is excluded in the system design of ACCC in this dissertation and thus is not 

visualized in the system architecture of Figure 5.2. 

Figure 5.7 provides an overview of the components that participated in UC1 and their 

interactions. As presented earlier, the route-based and route-segment-based adaptation 

units do not interact directly with the physical world. Thus, it can be seen in Figure 5.7 

that no feedback is forwarded by the final component in the effect chain of the technical 

process control to the physical system. However, this is not the case with the cycle-time-

based control unit. 

In the cycle-time-based control unit, UC1 means the control for the ego-car’s longitudinal 

movement in real-time. Generally, the control concept here has no difference compared 

to concepts of current ACC variants. Firstly, the measurement component is responsible 

for collecting the raw sensory data and subsequent data preprocessing, aiming to 

generate a symptom, which only includes current value profiles of relevant variables 

(e.g., the velocity and headway and the GPS position of the ego-car). 

In the case of no preceding vehicle, the analyzer estimates the current context 

information and forwards it to the controller. Additionally, the symptom generated by the 

measurement component is also forwarded to the controller component. Thus, the 

controller component can determine an optimized value of the control variable to 

accelerate and decelerate the ego-car. In this case, the controller's target is to guarantee 

that the velocity of the ego-car is as close as possible to a corresponding set value, 

which is selected from the set trajectory of cruise velocity, depending on the ego-car’s 

current GPS position. For this purpose, the set trajectory should be guaranteed as much 

as possible during the determination process. Relying on the final control component, 

the input of the control variable is then transferred into the output of the manipulated 

variable used to manipulate the hardware actuators directly. For example, in the case of 

a car with an internal combustion engine (ICE), the control variable could be the 

acceleration, and the manipulated variable for acceleration could be the throttle position 

[84][9]. 
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Figure 5.7: Component Interactions of ACCC in UC1 
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provides its symptom to the controller and the analyzer. Thus, the analyzer takes the 

current headway and current velocity of the ego-car from the symptom as its inputs, 

which the analyzer uses to estimate the current velocity of the preceding vehicle.  

Generally, the analyzer (“I0”) works similarly to the interpreting components (“I2” and “I1”) 

on other layers, aiming to identify the current context situation by comparing the known 

symptoms included in its configuration with the newly observed facts included in the new 

symptom, which is provided by the measurement component. The only difference in the 

analyzer compared to the interpreting components on other layers is that the interpreting 

components, in the case of fulfilled requirements, would trigger the other components to 

continue further computation processes on the closed control loop to realize the 

adaptation control. Thus, these interpreting components are essential in participating in 

the control loop.  

Although the analyzer (“I0”) is defined as an optional component in the fundamental 

component structure of “SICAP-K”, the design of the cycle-time-based control unit in this 

dissertation still considers the analyzer in the architecture of the implemented ACCC 

prototype. As explained in Section 4.2.2, the analyzer is responsible for evaluating the 

physical system's current and future context since it plays the role of the interpreting 

component (“I0”) on the lowest layer. It sends its analysis results to the controller. If a 

preceding vehicle is detected (still existing in the ACCC’s memory, cf. Section 5.2.3), 

the results include a predictive velocity trajectory of the preceding vehicle with a limited 

time horizon. Otherwise, there is no such trajectory. The predictive velocity trajectory is 

then forwarded to the controller as the analyzer's output. Thus, controller takes this 

trajectory as future environmental disturbances during its decision-making of control 

activity. In addition, it knows the current control task is to maintain the set value of the 

cruise velocity or headway based on the states of the variables related to the previously 

mentioned trajectory. 

5.3.2 Dynamic Behaviors of ACCC in UC2 

The second use case generally deals with the initialization, retrieval, and updating of 

domain knowledge about the physical system behaviors on a single layer, as presented 

in Section 4.2.6.2. In the designed ACCC prototype, UC2 exists on each layer, which 
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means that all the route-based and the route-based adaptation unit and the cycle-time-

based control unit are involved. 

 

Figure 5.8: Component Interactions of ACCC in UC2 
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The components that participate in the system’s dynamic behaviors in UC2 are colored 

in Figure 5.8. The other components are marked grey. On each layer, interactions are 

performed between the knowledge component (“K” in the “SICAP-K” structure) and the 

other four components (“SICA” in the “SICAP-K”) on the same layer. As discussed in 

Section 4.2.6.2, all interactions (such as knowledge initialization, retrieval, and updating) 

are designed as knowledge- or data-driven processes. Once a component (either the 

knowledge component or one of the other components) has a change of knowledge, it 

disseminates the change and the updated knowledge to other corresponding 

components. Thus, the knowledge within the knowledge component and other 

components can always be synchronized. The following subsections will introduce 

concrete domain knowledge of the components in different subsystems and their 

detailed process flows. 

5.3.2.1 UC2 in the Route-Based Adaptation Unit 

As presented earlier, the driver preference knowledge component (“K2”) serves as a 

central knowledge repository on its corresponding layer. While implementing this 

component, development engineers must manually initialize some domain knowledge 

for the system's first operation. In the process of knowledge initialization, the driver 

preference knowledge component initializes other components by pushing its included 

domain knowledge to them. Thus, this means that the driver preference knowledge 

component is also aware of the system’s internal knowledge, such as topology and the 

mapping relationships between the components and their corresponding required 

domain knowledge. The same pushing process for updating domain knowledge also 

happens if there is a domain knowledge change in the driver preference knowledge 

component, for example, when the driver preference knowledge component has 

acquired knowledge support from knowledge components on other layers (UC4).  

From the opposite direction, the other components (“S2”, “I2”, “C2”, “A2”) are also allowed 

to push their newly observed facts and corresponding extracted domain knowledge into 

the driver preference knowledge component. Such a process happens once these 

components detect an inconsistency between their currently available domain 

knowledge and newly observed facts during manual control by the driver.  
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For example, the component driver preference monitor can update the map knowledge 

about the intermediate GPS points for route segmentation once a lane changes due to 

a reconstruction site. As another example, the driver preference planner can also update 

its knowledge of the decision tree once the observed data lies in the extrapolation value 

range due to a time-variant change of the driver’s preferences. In another case, the 

knowledge about the interpretation mechanism (the cost function) for identifying 

qualities of different candidate strategies can also be updated once the driver preference 

planner has detected an inconsistency between the expected and realistic effect of the 

planned strategy. 

Generally, it can be understood that processes in UC2 are directly driven by the input of 

sensory data or knowledge, which can be triggered either by the driver preference 

knowledge component or the other components. In the case of a detected inconsistency 

between the available domain knowledge and the newly observed facts, a process for 

knowledge synchronization will be immediately activated. After the knowledge 

initialization for the first system operation, the later process of knowledge 

synchronization can be understood as a process of component adaptation regarding 

domain knowledge. 

5.3.2.2 UC2 in the Route-Segment-Based Adaptation Unit 

The knowledge discussed above is initialized manually by development engineers in the 

driving strategy knowledge (“K1”) component that plays the role of a central knowledge 

repository on the middle layer. Subsequently, the driving strategy knowledge component 

pushes its available domain knowledge to other components on the same layer, aiming 

to initialize them for the first operation of the ACCC. The same process of pushing 

knowledge also happens once the domain knowledge in the driving strategy knowledge 

component or other components has been changed, which thus can be understood as 

a process of knowledge synchronization driven by sensory data or knowledge input. 

For example, the route-based adaptation unit provides the planned set travel profile to 

the route-segment-based adaptation unit, as presented earlier. Such a process is 

interpreted as a change of domain knowledge in the driving strategy knowledge 

component. In this case, the driving strategy knowledge component pushes the updated 
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knowledge to the driving strategy planner. Thus, the driving strategy planner can take 

the set travel profile as a new specification during the planning of the middle-level driving 

strategy. 

Considering the ACCC’s logical system architecture (cf. Figure 5.8), there is no 

significant difference of dynamic behaviors within UC2 between components in the 

route-based adaptation unit and the route-segment-based adaptation unit. Once any 

component has detected an inconsistency between newly observed facts and its 

available knowledge, it triggers a new process of knowledge synchronization by pushing 

the new knowledge extracted from the new facts to other corresponding components. 

5.3.2.3 UC2 in the Cycle-Time-Based Control Unit 

In the case of the cycle-time-based control unit, UC2 refers to the interaction between 

the parametrization knowledge component (“K0”) and the other four components (“S0,” 

“I0”, “C0”, “A0”). All components except the knowledge component require relevant 

domain knowledge to complete their tasks. More details about the required knowledge 

have been illustrated in Figure 5.6 (cf. Section 5.2.4). 

For example, the measurement component generates the symptom defined as well-

structured data conformed to a specific meta specification. In this case, the meta 

specification represents a kind of component configuration and is seen as domain 

knowledge. In another case, the controller in the evaluation example of this dissertation 

(cf. Section 5.5) is implemented using PID control. Thus, another typical example of 

domain knowledge is the parametrization of P-, I- and D-variables regarding their values. 

A similar case exists for the analyzer and the final control component, which rely on their 

corresponding internal processing mechanisms and the knowledge of parametrizations 

to process the received inputs and generate the expected outputs. 

As with both adaptation units, development engineers must initialize the domain 

knowledge during the development of the parametrization knowledge component that 

serves as a central knowledge repository in the cycle-time-based control unit. The same 

synchronization process of pushing new knowledge between the parametrization 

knowledge (“K0”) and the other four components (“S0,” “I0”, “C0”, “A0”) in the control loop 

also exists, triggered by the component that first discovers an inconsistency between 
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available knowledge and newly observed facts. Although the ACCC’s design supports 

the knowledge synchronization between different components, this dissertation only 

considers the process between the parametrization knowledge component and the 

controller. Once the location-based set trajectory of cruise velocity and headway as the 

middle-level driving strategy is provided by the route-segment-based adaptation unit to 

the parametrization knowledge component, it pushes the set trajectory to the controller. 

Other processes in UC2, like knowledge retrieval and knowledge update are excluded 

in the implemented ACCC example to reduce implementation complexity. 

5.3.3 Dynamic Behaviors of ACCC in UC3 

The third use case deals with adaptation control across multiple networked nodes that 

are instantiated as hierarchical layers in the system architecture of ACCC, as introduced 

in Section 4.2.6.3. As discussed earlier, the designed ACCC prototype has a three-

layered architecture, as shown in Figure 5.9. 

In the figure, the components involved in UC3 are colored, and the components not 

participating in UC3 are marked grey. Thus, the ACCC has two communication paths 

for adaptation control in UC3 (cf. Figure 5.9, marked with blue and red arrows). The first 

one exists between (1) the route-based adaptation unit (on the highest layer) and the 

route-segment-based adaptation unit (on the middle layer). The second adaptation 

control path happens between (2) the route-segment-based adaptation unit (on the 

middle layer) and the cycle-time-based control unit (on the lowest layer). These two 

communication paths will be introduced in the following subsections. 
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Figure 5.9: Component Interactions of ACCC in UC3 

5.3.3.1 Adaptation Control Across the Highest and Middle Layers 

As presented earlier, the route-based adaptation unit aims to plan a personalized route-

based strategy. This personalized route-based strategy includes set travel profiles such 
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as accumulated travel time, accumulated energy consumption, and average 

acceleration13 of the vehicle, from the origin until the end of each route segment and the 

destination, aiming to fulfill the preferences of a single individual driver. In this case, 

route segmentation is realized using a sequence of predefined geographical points 

representing significant intersections on the route. After determining the strategy, the 

route-based adaptation unit transfers the set travel profiles to the route-segment-based 

adaptation unit. In this case, the route-based adaptation unit plays the role of an 

adaptation manager to adapt its managed system, which is the route-segment-based 

adaptation unit. 

The components that participated in the process of adaptation control between the 

route-based and the route-segment-based adaptation unit are colored and connected 

with blue arrows in Figure 5.9. In this process, the Driver Preference Monitor, Driver 

Preference Analyzer (“I2”) and Driver Preference Planner (“C2”) complete their tasks of 

symptom generation, decision making for the request of strategy planning and planning 

of the optimized high-level route-based strategy, as introduced at the beginning of 

Section 5.2.2. Compared to UC1, the only behavioral difference of the route-based 

adaptation unit in UC3 is that the planned route-based strategy by the Driver Preference 

Planner (“C2”) is split up into partial strategies for each route segment. Subsequently, 

the partial strategies are forwarded to the route-segment-base adaptation unit on a lower 

layer instead of directly manipulating the actuators for interaction with the physical 

system. 

In the route-segment-based adaptation unit, the Driving Strategy Knowledge (“K1”) 

component receives the input of split individual strategies to replace the previously 

saved strategies in its knowledge repository. As presented earlier, these strategies are 

taken as specifications during the planning of middle-level driving strategy for the route-

segment-based adaptation unit. Thus, it can be understood that the domain knowledge 

in the driving strategy knowledge (“K1”) component is adapted by its higher layer, 

 
13 In this dissertation, driving comfort is naively defined, which is directly represented by the ego-car’s 
longitudinal acceleration. In fact, the driving comfort can be formulized with representative variables by 
applying different complicated formulas (e.g., based on the vehicle’s vibration and acceleration) [132][133].  
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following the paradigm of adaptation composition in the proposed generic architecture 

style of this dissertation (cf. Section 4.2.3). 

5.3.3.2 Adaptation Control Across the Middle and Lowest Layer 

The second adaptation control happens between the route-segment-based adaptation 

unit and the cycle-time-based control unit. In this case, the route-segment-based 

adaptation unit is the adaptation manager, and the cycle-time-based control unit is its 

managed system. 

As presented earlier, the route-segment-based adaptation unit as an event-triggered 

subsystem aims to determine the so-called middle-level driving strategy. The middle-

level driving strategy includes a driver-preferred location-based set trajectory of cruise 

velocity or headway, depending on whether a preceding vehicle is recognized or not. A 

particular feature of the route-segment-based adaptation unit is that its identification of 

the preceding vehicle does not purely rely on the low-level sensory input data like in 

extant ACC variants already presented (cf. Section 3.1–3.4). In addition, it also relies on 

semantic interpretation on a higher level of abstraction and memory ability. 

As illustrated in Figure 5.9 with red arrows, the driving strategy monitor in the route-

segment-based adaptation unit firstly preprocesses the raw sensory data to generate 

the expected symptom. Subsequently, the driving strategy analyzer takes the symptom 

as its newly observed facts to compare with its known symptoms, based on their 

relevance aiming to identify the current situation. In the case of a known symptom and 

thus a successfully identified situation, the Driving Strategy analyzer triggers the driving 

strategy planner to determine an optimized set trajectory of cruise velocity or headway 

for the route segment that is current focus.  

During the determination process, the provided high-level personalized strategy, 

including the set travel profiles by the route-based adaptation unit, is taken as a 

specification and required to be guaranteed as much as possible. Thus, an optimized 

set trajectory of cruise velocity or headway focusing on the following individual route 

segment would be planned based on the evaluation criteria and cost function mentioned 

earlier. The set trajectory consists of a sequence of quantitative values of the cruise 

velocity or the headway. The values represent the expected set states of the ego-car 
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when it moves through corresponding geographical route points within the route 

segment. 

Finally, the set trajectory is forwarded again into the driving strategy executor, which 

decomposes the set trajectory as partial set trajectories consisting of value pairs of the 

cruise velocity or the headway for each two neighbor route points. The geographical 

profiles of the route points are also included in the partial set trajectories. Thus, the 

decomposed partial set trajectories are forwarded to the Parametrization Knowledge 

(“K0”) component in the cycle-time-based control unit to complete the whole adaptation 

control process. In this case, the partial set trajectories are seen as the domain 

knowledge of the cycle-time-based control unit adapted by the route-segment-based 

adaptation unit. Further details about the communication between the participated 

components in this process will be presented in Section 5.5. 

In the ACCC, UC3 refers to a subsystem or component on a higher layer adapting 

another subsystem or component on a lower layer. Since the cycle-time-based control 

unit is deployed on the lowest layer of the ACCC’s system architecture, it has no lower 

layer. Thus, UC3 of the cycle-time-based control unit is neglected in the ACCC’s design. 

5.3.4 Dynamic Behaviors of ACCC in UC4 

The final use case refers to knowledge acquisition and sharing across multiple nodes, 

which happens when the available domain knowledge in a certain node is insufficient to 

identify and solve the current control problem. As presented earlier, this dissertation 

instantiates the nodes as hierarchical layers in the ACCC’s design. 

Since a higher layer has a larger observation scope of context information about the 

physical system, the ACCC’s higher layer can provide knowledge support to the lower 

layers. As a system with three-layered architecture, the ACCC’s dynamic behaviors in 

UC4 are described with two sub-cases: (1) knowledge acquisition and sharing across 

the route-based adaptation unit and the route-segment-based adaptation unit and (2) 

knowledge acquisition and sharing across the route-segment-based adaptation unit and 

the cycle-time-based control unit. In Figure 5.10, the components that participate in 

these sub-cases are colored. The irrelevant components are marked grey. The following 

subsections will present more detail about the component interactions in the sub-cases. 
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Figure 5.10: Component Interactions of ACCC in UC4 

5.3.4.1 Knowledge Acquisition and Sharing Across the Highest and Middle Layers 

Knowledge acquisition and sharing across the highest and middle layers of the ACCC 

means that the route-segment-based adaptation unit requires support from the route-
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based adaptation unit. The related communication path between the components is 

illustrated with blue arrows in Figure 5.10. 

For example, the driving strategy analyzer (“I1”) in the ACCC has identified that its 

received symptom cannot be matched to any known situation. Thus, the available 

domain knowledge about the known situations is insufficient, and the current symptom 

is identified as a novelty. In this case, the driving strategy planner will not be triggered. 

Instead, the driving strategy analyzer requests the support of the driving strategy 

knowledge component. As defined in UC2 (cf. Section 5.2.3.2), the domain knowledge 

between the driving strategy knowledge (“K1”) component and the other four 

components (“S1”, “I1”, “C1”, “A1”) on the same layer is always synchronized. Thus, this 

means that the driving strategy knowledge component also does not include the required 

domain knowledge. However, it plays its designed role of an interface component to 

communicate with other knowledge components deployed on other layers or even in 

other cars and request their support.  

A typical example is as follows. Due to construction work on the road, the route 

segmentation may have some changes and thus lead to several new route segments, 

which are still unknown for the route-segment-based adaptation unit. In the case of such 

unknown route segments, the driving strategy knowledge component may request the 

support of the driving preference knowledge component in the route-based adaptation 

unit. Since the driving preference knowledge component focuses on the complete route 

instead of a single individual route segment, it may have the required domain knowledge 

about the profiles of these new route segments when it receives the information of route 

planning (e.g., from the navigation system). Thus, the driving preference knowledge 

component can share its knowledge with the driving strategy knowledge component. 

In addition to the knowledge acquisition and sharing across the layers deployed on the 

same car, the driving strategy knowledge component may also request support from the 

route-based adaptation unit deployed on other surrounding cars by relying on the Car2X-

communication capabilities. Thus, a “transfer learning” process can be realized between 

ACCCs on different cars. Considering a more general viewpoint, so-called fleet-based 

learning of driving strategy on the same route, which may benefit traffic management, 

would thus be realized. The developed system architecture style theoretically allows 
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such fleet-based knowledge acquisition and sharing. However, since this dissertation 

mainly focuses on the system design of ACCC on a single individual car, this cooperative 

knowledge acquisition and sharing across multiple cars is excluded. 

5.3.4.2 Knowledge Acquisition and Sharing Across the Middle and Lowest Layers 

Knowledge acquisition and sharing across the middle and lowest layers in the ACCC 

means that the cycle-time-based control unit requires support from the route-segment-

based adaptation unit. The related communication path between the components is 

illustrated with red arrows in Figure 5.10. 

In the case of the cycle-time-based control unit, UC4 happens once the currently 

available knowledge is insufficient to find a solution and thus needs to request 

knowledge support from other knowledge components located on other layers or 

domains. Such a case may happen if the analyzer lacks knowledge (e.g., if current 

values of variables included in the newly observed facts about the preceding vehicle’s 

behavior included in the symptom are out of the analyzer’s known value range). Thus, 

the analyzer would communicate with the parametrization knowledge component to 

eliminate the knowledge lack. The parametrization knowledge component then 

communicates with the driving strategy knowledge component on the higher layer to 

request further support.  

Since the route-segment-based adaptation unit has a memory ability and can learn the 

driving preferences of obstacles ahead during previous trips, it may have “seen” much 

more preceding obstacles than the cycle-time-based control unit. Thus, the driving 

strategy knowledge component in the route-segment-based adaptation unit could 

provide the parametrization knowledge component its required knowledge. In the 

implemented ACCC example (cf. Section 5.5), UC4 is excluded to reduce 

implementation complexity, although the system’s architecture design allows such a 

component interaction. 

5.4 Applying Communication Architecture Patterns for Component Interactions 
in Artificial Cognitive Cruise Control 

In the previous section, an architecture of artificial cognitive cruise control (ACCC) that 

illustrates the system’s static construction is instantiated from the generic architecture 
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style. As introduced in Section 4.2, another important perspective to illustrate the system 

is the view of dynamic system behaviors, from which four use cases (UC1–UC4) were 

previously defined. As introduced in Section 4.2.5, generic communication architecture 

patterns can be applied to specify the interactions between components and thus to 

describe dynamic system behaviors.  

In this dissertation, it is emphasized that the application of the mentioned generic 

communication patterns within the use cases is unlimited. It means either one 

communication pattern or different patterns can be applied within one use case. Since 

there is no preference for certain generic communication patterns, several example 

patterns are selected in this section to apply within the four predefined use cases. All 

these examples will be introduced in more detail in the following sections in order to 

derive a more concrete understanding of the design of dynamic system behaviors. 

5.4.1 Publish-Subscribe Pattern for UC1 

The first use case refers to technical process control on a single layer, which describes 

the technical process flow of independent control loops on each layer of the hierarchical 

architecture, as illustrated in Figure 5.11. On the top of Figure 5.11, a logical architecture 

from the view of software engineering is instantiated based on the generic architecture 

style. The fundamental component structure of “SICAP-K” is deployed on each layer in 

the logical architecture. The process flow of UC1 is illustrated with arrows, with three 

colors (blue, red, and brown) to identify different layers. 

In Figure 5.11, it can be seen that all sensors (SC, SU, SR, SSP, SSE, RSP, and RSE) 

play the roles of publishers since they are responsible for data delivery. Unlike the 

sensors, the actuator (A) is a pure subscriber who only receives the message from the 

final control component in the technical system. Except for the sensors and actuators, 

all other components simultaneously play the roles of publishers and subscribers, 

depending on the context of the concrete communication path. 

For example, the driver preference monitor generates the symptom and forwards the 

symptom to the driver preference analyzer and the driver preference planner. In this 

case, the driver preference monitor is the publisher, and the other components are the 

subscribers. On the middle layer, the driving strategy planner publishes the message 
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about middle-level driving strategy, to which the driving strategy executor will then 

subscribe. 

 

Figure 5.11: Component Roles within Interactions of UC1 

All publishers and subscribers must register with a so-called change propagation 

infrastructure in the publish-subscribe pattern. Thus, the change propagation 

infrastructure can route the messages from publishers to interested subscribers [58]. As 

discussed earlier, the ACCC can also be designed as a distributed instead of a 
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centralized system. Thus, the route-based adaptation unit and the route-segment-

based adaptation unit are not limited to being deployed on a single car. They can also 

be deployed on different domains. Additionally, the ACCC relies on the data delivery of 

offboard sensors, which are also not deployed on the local domain of car. In this case, 

the application of publish-subscribe-pattern guarantees great system scalability for the 

artificial cognitive cruise control.  

5.4.2 Shared-Repository Pattern for UC2 

The second use case (UC2) describes the process of knowledge initialization, retrieval, 

and updating on a single layer of the ACCC’s hierarchical architecture, which refers to 

the interaction between the component “K*” and the other components (“S*”, “I*”, “C*”, 

and “A*”) on the corresponding layer, as illustrated at the top of Figure 5.12. Based on 

the previous introduction to UC2 in Section 4.2.5, it is known that the component “K*” 

plays the role of a knowledge repository to provide the domain knowledge about the 

physical system to other components. From the opposite direction, the other 

components can also update their learned knowledge into the component “K*”, which 

means that the component “K*” is accessible for the other components. 

The shared-repository pattern is selected as an example to be applied within UC2, as 

illustrated at the bottom of Figure 5.12. Thus, the components of driver preference 

knowledge, driving strategy knowledge, and parametrization knowledge are defined as 

shared repositories on different hierarchical architecture layers. 

In addition to the shared repository, other components in the technical system play the 

roles of application components. For example, the driver preference monitor and the 

driver preference analyzer are the application components, which can access the driver 

preference knowledge as the central shared repository. From the opposite direction, 

once the driver preference knowledge triggers any update, it can also disseminate 

knowledge to the driver preference monitor and the driver preference analyzer, which 

play the roles of application components, relying on the notification mechanism (cf. 

Section 2.2.7). 

178 
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Figure 5.12: Component Roles within Interactions of UC2 

5.4.3 Request-Response Pattern for UC3 

UC3 refers to the hierarchical control flow across layers, which focuses on how the 

subsystem on a higher layer determines a high-level strategy to adapt a subsystem 

deployed on a lower layer, following the introduced paradigm of adaptation composition, 

as introduced in Section 4.2.3. Detailed communication paths between the components 

within UC3 have been illustrated with arrows at the top of Figure 5.13. 

To specify the communication paradigms within UC3, two communication patterns, 

including the publish-subscribe pattern and the request-response pattern, are selected 
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as examples. As shown at the bottom of Figure 5.13, the communication between 

sensors and subsystems in the technical system relies on the publish-subscribe pattern. 

In this case, the sensors are the publishers, and the components in the subsystems like 

the driver preference monitor and the driving strategy monitor are the subscribers. The 

publish-subscribe pattern realizes a loose coupling between the sensors and 

components for monitoring sensory data, relying on high system scalability. In this case, 

the sensors as publishers and the monitoring components as subscribers work 

completely independently, and the specified topics of the messages realize all 

communication identification. Thus, further development of the whole system becomes 

much easier (e.g., integrating more sensor accesses for the technical system). 

 

Figure 5.13: Component Roles within Interactions of UC3 
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In addition to the publish-subscribe pattern, the request-response pattern (also called 

the client-server pattern) is also selected to specify communication paths between 

components inside the technical system. For example, on the highest layer of the 

hierarchical architecture, the driver preference monitor provides its generated symptom 

to the driver preference analyzer. In this case, the driver preference monitor as the client 

initiates the interaction with the driver preference analyzer, which plays the role of a 

server. In this case, the client component invokes the services provided by the server 

component (e.g., which also happens between the driver preference executor in the 

route-based adaptation unit and the driving strategy knowledge component of the route-

segment-based adaptation unit). 

As introduced in Section 2.3.1, the communication paradigm behind the request-

response pattern (also called the client-server pattern) is the remote procedure call 

(RPC), which can still be categorized as synchronized and asynchronized. In the ACCC, 

it is recommended to use the asynchronized RPC due to the feature of a distributed 

system, especially when the route-based adaptation unit and the route-segment-based 

adaptation unit are deployed on two different domains. In this case, the component of 

driving preference executor can keep working in parallel if there is no reply from the 

driving strategy knowledge component in the route-segment-based adaptation unit.  

5.4.4 Blackboard Pattern for UC4 

The final use case (UC4) refers to hierarchical knowledge acquisition and sharing across 

layers in the ACCC, which happens when the interpreting component on a certain layer 

such as “I1” cannot identify the problem due to a lack of knowledge. In this case, the 

interpreting component “I1” will communicate with the knowledge component “K1” on the 

same layer to request support. Since knowledge between the “I1” and “K1” is always 

synchronized, the “K1” cannot directly support the “I1”. However, it can communicate 

knowledge components on neighbor layers (“K2” and “K0”) of the hierarchical 

architecture, as illustrated at the top of Figure 5.14. 

To specify the component interactions within UC4, two different communication patterns, 

including the shared-repository-pattern and the blackboard pattern, are selected as 

examples in this section. As presented in UC2, the communication between the 
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knowledge component and the other component like the sensing, interpreting, control, 

and actuating component on each layer can be realized based on the shared-repository 

pattern. The interpreting and the knowledge component (“I1” and “K1”) also participate in 

UC4. Thus, the shared-repository pattern is applied to specify their communication. 

 

Figure 5.14: Component Roles within Interactions of UC4 

In UC4, it can be understood that the subsystem on one layer of the hierarchical 

architecture with its knowledge base is required to solve a task based on incomplete 

knowledge and data and thus requires the support of knowledge bases on neighbor 
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pattern. Thus, the blackboard pattern is selected to specify communication of the 

knowledge components (“K0” vs. “K1” or “K1” vs. “K2”) on each two hierarchical neighbor 

layers. In this case, the knowledge component requesting support plays the role of 

controller and blackboard. The knowledge component providing the support plays the 

role of knowledge source, which the controller activates and operates on the blackboard 

to contribute its knowledge (cf. Section 2.3.5). 

As shown at the bottom of Figure 5.14, the driving strategy knowledge component works 

as the blackboard and controller in the case of communication with the driver preference 

knowledge component on the highest layer. Additionally, it also plays the role of 

knowledge source while communicating with the parametrization knowledge component 

on the lowest layer. Following this idea, the knowledge component may be further 

decomposed as two subcomponents, which are responsible for a pure knowledge 

database and its corresponding management mechanisms, respectively. Due to the 

limited scope of this dissertation, further details about this idea will be discussed in 

Section 6.3. 

5.5 Implementation of Artificial Cognitive Cruise Control 

After introducing the system design, a prototype implementation is planned in this 

dissertation in order to evaluate the ACCC’s performance. The implementation strictly 

follows the designed architecture of the ACCC, consisting of the technical and physical 

system. In the technical system, the subsystems, namely the route-based adaptation 

unit (RAU), the route-segment-based adaptation unit (RSAU), and the cycle-time-based 

control unit (CTCU) are also implemented. In the following sections, more details about 

the implementation will be presented. 

5.5.1 Implementation Overview 

Figure 5.15 indicates an implementation overview of the ACCC prototype. The technical 

system in the ACCC, including three subsystems (RAU, RSAU, and CTCU) and their 

corresponding components, is implemented using Python. 
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The physical system is implemented in a hybrid manner. The well-known simulator 

SUMO14, based on C++, is applied to simulate the ego-car’s driving environment. Since 

SUMO primarily focuses on a macro simulation of traffic flow instead of a detailed 

simulation of a single car’s internal physical processes, the car's realistic driving 

dynamics model is missing. Thus, an additional Python implementation of the ego-car’s 

physical components for simulating driving dynamics was also completed. In addition, 

the human driver in the physical system is modeled based on the real driving data with 

Python. 

 

Figure 5.15: Overview of the Co-Simulation Platform in the Implementation of ACCC Prototype 

 
14 SUMO (Simulation of Urban Mobility) is an Eclipse Foundation project and stands for an open-source 
traffic simulation platform developed by the German Aerospace Center and its community users. Link: 
https://www.eclipse.org/sumo/ (accessed on 26th Apr. 2022).  
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After implementing the technical and physical systems, they are integrated to build a co-

simulation platform to evaluate the ACCC’s performance. The SUMO and Python 

simulation communicate via a traffic control interface (TraCI15). In Figure 5.15, the 

actuators (component A, cf. Figure 5.15) and the sensors (components: SC, SU, RSP, 

RSE, SSE, and SSP, cf. Figure 5.15) are designed as the interfaces between the 

physical and technical systems. These actuators and sensors are not explicitly 

implemented as additional software components in the implemented co-simulation. 

Instead, they are implicitly represented by methods calls via TraCI. More concrete 

implementation details of the components will be introduced in the following subsections.  

5.5.2 Implemented Physical System 

In the built co-simulation platform, the implemented physical system covers the 

simulation of the human driver’s activities, physical components, and driving dynamics 

of the ego-car and its interaction with the surrounding driving environment. These 

simulated processes will be introduced in more detail in the following subsections. 

5.5.2.1 Driver 

The first Driver component implements a driver model to simulate the human driver’s 

driving activities using the ACCC. As illustrated in Figure 5.3 (cf. Section 5.2.1), the 

human driver is not required to control the ego-car’s longitudinal movement. Instead, 

they need to specify a reference configuration of their preferences, including different 

weights of optimization criteria for planning the driving strategy, as illustrated in Figure 

5.3 within Section 5.2.1. Thus, the ACCC can evaluate the qualities of different 

candidate high-level set travel profiles and middle-level driving strategies (cf. Figure 5.1) 

and plan an optimized set travel profile and driving strategy for the driver.  

In the original design of the ACCC, the driver can change the values of the initialized 

criteria weights while the ego-car is driving so that the ACCC can adjust its planned 

driving strategy. In addition to the manual adjustment, the criteria weights would also be 

automatically adjusted by machine learning algorithms based on the observed manual 

 
15 TraCI is an API provided by SUMO-community to access its simulated objects like cars and pedestrians 
and manipulate their behaviors. Link: https://sumo.dlr.de/docs/TraCI.html (accessed on 28th Apr. 2022). 

https://sumo.dlr.de/docs/TraCI.html
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driving behaviors of the human driver. Nevertheless, in the implemented co-simulation 

for the ACCC’s evaluation, the initialized weights are kept the same in the evaluation of 

this dissertation to reduce problem complexity. The criteria and their weights are defined 

and initialized as follows: 

Criteria Meaning Weights Symbol 
Travel Time Accumulated travel time of the ego-car from 

its current location until the end of each 
following route segment and the destination  

0.4 𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

Energy 
Consumption 

Accumulated energy consumption of the 
ego-car from its current location until the 
end of each following route segment and the 
destination 

0.4 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Driving Comfort Average acceleration of the ego-car from its 
current location until the end of each 
following route segment and the destination 

0.2 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Table 5.1: Criteria and their Weights for Planning the Set Travel Profile and Middle-level Driving Strategy 

In addition to setting preferred criteria weights, the driver may also change their desired 

velocity and headway by human intervention. Such a case may happen, for example, if 

the driver is unsatisfied with the ACC and ACCC’s automated driving due to a too high 

deviation between the current and desired profiles of the ego-car’s velocity and headway. 

Figure 5.16: Human Driver’s Recorded Sample Driving Data with Location-based Speed Profiles 
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For this purpose, the human driver model requires a reference profile of the driver-

preferred cruise speed and headway. In the implemented ACCC, this reference profile 

is taken as the driver’s average driving profile derived from historical trips with manual 

driving. For this purpose, a pool of recorded real driving data of an anonymous driver is 

integrated into the implemented human driver model. This data pool includes the driver’s 

driving behavioral data during 600 repeated trips on the federal highway B241 in both 

directions between Clausthal-Zellerfeld (CLZ) and Goslar (GS) in Germany. As an 

example, Figure 5.16 shows some sample data describing speed profiles in the recorded 

trips from Clausthal-Zellerfeld to Goslar. 

5.5.2.2 Environment 

The implemented Environment component in the physical system is responsible for 

simulating the driving environment. Since the recorded driving data on the federal 

highway B241 is used in the implemented human driver model, this highway is chosen 

as the simulated driving environment during implementation. For this purpose, the traffic 

simulator SUMO is applied to build a realistic simulated environment. Furthermore, the 

simulation of traffic participants on highway B241 is also included in SUMO to make the 

simulation more realistic. 

During implementation, the geographic route profile of B241 derived from 

OpenStreetMap16 (OSM) is integrated into the SUMO simulation. Different cars as the 

traffic participants and their trips are randomly initialized based on a predefined catalog 

(including 200 diverse trips with different origins and destinations) to generate an 

expected nondeterministic capability in the simulation. A certain single car is selected 

from the catalog as the ego-car. In the SUMO simulation, the ego-car and other cars' 

movements in the traffic are also visualized. Figure 5.17 compares the simulated track 

in SUMO and the highway B241 in reality. The ego-car is visualized as the red car with 

a highlighted green circle in SUMO. The other cars as traffic participants are colored 

yellow. 

 
16  OpenStreetMap is a geographic database of the real world that provides diverse free map- and 
navigation-relared APIs and services. Link: https://www.openstreetmap.org/ (accessed on 28th Apr. 2022). 

https://www.openstreetmap.org/
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Figure 5.17: SUMO-simulated Track (left) of Germany Federal Highway B241 (right)17  

5.5.2.3 Physical Components of Ego-car 

As introduced previously, SUMO is a macro traffic simulator focusing on overall traffic 

flow and thus does not have detailed physical modeling for a single car, particularly a 

model of realistic driving dynamics. For this reason, this dissertation has developed a 

model of a battery electric vehicle (BEV), including the car’s different drive components 

and driving dynamics, to simulate the ego-car for implementing the component Physical 

Components of Ego-Car (cf. Figure 5.15). The implemented BEV model is developed 

based on a reference implementation taken from an open-source repository18 on GitHub. 

Figure 5.18 illustrates an overview of this BEV model with a class diagram, in which 

drive components of the car like the traction battery, electric motor, gear box, front and 

rear brakes, front and rear wheels, and chassis are included. Several classes with 

attributes representing the drive components are defined on a meta-level. Due to high 

 
17 The right-side figure: Direction for Driving from Clausthal-Zellerfeld to Goslar, Germany, Google Maps, 
2022, maps.google.com. 
18 Link: https://github.com/bjyurkovich/vehicle-model-python (accessed on 28th Apr. 2022). 

https://github.com/bjyurkovich/vehicle-model-python
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implementation complexity, detailed attributes of the classes are not visualized in the 

class diagram. The defined classes are then instantiated to model the concrete drive 

components in the simulated BEV. 

Figure 5.18: Class Diagram for the Construction of BEV Model 

In each defined class, methods for updating the drive components’ states during the 

BEV’s driving are created. The built BEV model is taken to simulate the ego-car. Thus, 

the ego-car’s overall state can be updated by calling the method ego_vehicle_update(), 

which then calls the previously mentioned methods for updating individual drive 

components’ states like battery_update() and chassis_update(). In Figure 5.18, only the 

abstract methods are presented. Detailed input and output parameters are not listed to 

reduce the visualization complexity. More details about the attributes and the methods 

can be found in the accompanying code implementation. 

Based on the defined classes, the ego-car’s driving dynamics can be simulated by 

calling the methods defined in the classes of drive components. Figure 5.19 shows a 

process flow of the driving dynamics simulation. 
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Figure 5.19: Driving Dynamics Simulation in the BEV Model 

Since the BEV model is built based on the physical modeling approach, the interactions 

between the models of the drive components are realized by parameter passing of 

relevant data values. Table 5.2 provides an overview of these physical parameters. 

Parameter Meaning Physical 
Unit 

𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 Controller’s command for the ego-car’s acceleration, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∈ [0 1] 

[-] 

𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 Controller’s command for the ego-car’s acceleration, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∈ [−1 0] 

[-] 

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Required power from the battery for the ego-car’s 
acceleration 

[w] 

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

Voltage of the cell/package in the battery [V] 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Provided power by battery for the ego-car’s acceleration [m/s2] 
𝑇𝑇𝑒𝑒𝑒𝑒 Torque of electric motor [Nm] 
𝑇𝑇𝑔𝑔𝑔𝑔_𝑜𝑜𝑜𝑜𝑜𝑜 Output torque of gearbox after transmission [Nm] 
𝑇𝑇𝑔𝑔𝑔𝑔_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑇𝑇𝑔𝑔𝑔𝑔_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

Distributed torque of the gearbox to front and rear axis [Nm] 

𝑇𝑇𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑇𝑇𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

Drive torque of front/rear wheels [Nm] 

𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

Angular velocity of front/rear wheels [rad/s] 

𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 Total brake force [N] 
𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

Distributed brake force to front/rear axis [N] 
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𝑇𝑇𝑢𝑢𝑎𝑎_ 𝑎𝑎𝐼𝐼𝑎𝑎𝑎𝑎

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘𝐼𝐼 _𝑓𝑓𝑎𝑎𝑓𝑓𝐼𝐼𝑡𝑡

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘𝐼𝐼 _𝑎𝑎𝐼𝐼𝑎𝑎𝑎𝑎

chassis_update()

𝑗𝑗𝑗𝑗ℎ𝐼𝐼𝐼𝐼𝐼𝐼 _𝑓𝑓𝑎𝑎𝑓𝑓𝐼𝐼𝑡𝑡

𝑇𝑇𝑗𝑗ℎ𝐼𝐼𝐼𝐼𝐼𝐼 _𝑎𝑎𝐼𝐼𝑎𝑎𝑎𝑎

𝐹𝐹𝑎𝑎𝑡𝑡 _𝑗𝑗ℎ𝐼𝐼𝐼𝐼𝐼𝐼 _𝑓𝑓𝑎𝑎𝑓𝑓𝐼𝐼𝑡𝑡 𝐹𝐹𝑎𝑎𝑡𝑡 _𝑗𝑗ℎ𝐼𝐼𝐼𝐼𝐼𝐼 _𝑎𝑎𝐼𝐼𝑎𝑎𝑎𝑎

𝑑𝑑𝐼𝐼𝑢𝑢𝑓𝑓 _𝑒𝑒𝑎𝑎𝑎𝑎

𝑇𝑇𝑗𝑗ℎ𝐼𝐼𝐼𝐼𝐼𝐼 _𝑓𝑓𝑎𝑎𝑓𝑓𝐼𝐼𝑡𝑡

𝑗𝑗𝑗𝑗ℎ𝐼𝐼𝐼𝐼𝐼𝐼 _𝑎𝑎𝐼𝐼𝑎𝑎𝑎𝑎

𝑑𝑑𝐼𝐼𝑢𝑢𝑓𝑓 _𝑒𝑒𝑎𝑎𝑎𝑎front_wheels_
update()

rear_wheels_
update()

gearbox_update()
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𝐹𝐹𝑎𝑎𝑎𝑎_𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
𝐹𝐹𝑎𝑎𝑎𝑎_𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

Drive force at front/rear wheels [N] 

𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐 Ego-car’s velocity [m/s] 

Table 5.2: Table of Physical Parameters in the BEV Model 

In the BEV model, the traction battery is simulated using a well-known simulation 

approach with a so-called second-order equivalent circuit model (with two RC elements) 

[120], as illustrated in Figure 5.20. The equivalent circuit model simulates a single cell's 

charging and discharging process in the battery. The simulated battery includes three 

packages, and each package includes 120 cells. All cells are interpreted to be serially 

connected within the battery instead of in parallel. The inputs of the whole BEV model 

are 𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, representing the controller’s output control commands for 

accelerating and decelerating the ego-car. Based on these two inputs and the maximal 

power of the battery, a provided output power of the battery is calculated and transferred 

to the next instantiated electric motor model. 

 

Figure 5.20: Lithium-Ion Traction Battery Model Based on the Second Order Equivalent Circuit Model 

[120] 

The electric motor model relies on an implemented characteristic diagram regarding the 

provided power (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) of the traction battery and the motor’s output torque (𝑇𝑇𝑒𝑒𝑒𝑒). 

With the help of the electric motor’s output torque, the gearbox model calculates its 

output torque based on a predefined static transmission ratio. Both electric motor and 

gearbox models include application parameters to simulate the machine’s working 

efficiencies (electric motor: 0.95, gearbox: 0.9). Fixed ratios for the distribution of total 

brake torque and the gearbox’s total output torque to the car’s front and rear axis are 

𝑅𝑅0

𝑅𝑅1 𝑅𝑅2

𝐶𝐶1 𝐶𝐶2

𝐼𝐼

𝐼𝐼𝑓𝑓
𝑎𝑎𝑑𝑑

𝑒𝑒ℎ
𝑎𝑎𝑎𝑎
𝑢𝑢𝐼𝐼
𝑎𝑎

𝑈𝑈𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝐼𝐼𝑎𝑎𝑦𝑦 = 𝑓𝑓(𝑆𝑆𝑓𝑓𝐶𝐶)

𝑈𝑈2𝑈𝑈1
𝑈𝑈0

𝑈𝑈𝑅𝑅𝑎𝑎𝑓𝑓𝑑𝑑𝐼𝐼𝑑𝑑𝐼𝐼𝑑𝑑
𝑈𝑈:       Voltage
𝑅𝑅:       Resistance
𝐶𝐶:       Coil
 𝐼𝐼:       Current
𝑆𝑆𝑓𝑓𝐶𝐶 : State of Charge
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also included in the BEV model. Thus, the front and rear wheels models can use the 

distributed torque to simulate the wheels’ rotation dynamics. The outputs of the drive 

forces acting on the wheels (𝐹𝐹𝑎𝑎𝑎𝑎_𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ,𝐹𝐹𝑎𝑎𝑎𝑎_𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) will be then provided. While 

simulating such a process, application parameters like tire radius are specified in the 

model. The chassis model focuses on the car’s body and movement modeling. In this 

model, the ego car’s driving resistance is calculated following the approach published in 

[121]. Finally, the ego-car’s velocity (𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐) for the next timestamp can be determined. 

This determined velocity is then used to update the models’ internal parameters like the 

wheels’ angular velocities (𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟).  

After the physical processes in the ego-car’s drive components are simulated, the 

determined ego-car’s velocity (𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐) will be transferred via TraCI into the SUMO 

simulation by calling the method traci.vehicle.setSpeed()19. Thus, SUMO can update the 

ego-car’s visualization in SUMO by moving it to the following corresponding geographic 

location along the route. Visualization of the other traffic participants’ movements will 

automatically be updated without a realistic underlying driving dynamics simulation. Due 

to high implementation complexity, detailed physical equations implemented for the 

driving dynamics simulation are not intensively introduced in this section. However, they 

can be found in the submitted accompanying code implementation. 

5.5.3 Route-Based Adaptation Unit (RAU) in Implemented Technical System 

As introduced in Section 5.1, the ACCC following the proposed architecture style is 

constructed with a hierarchical architecture including three layers. On each layer, a 

“SICAP-K” component structure is deployed. The “P” refers to the physical system that 

has been introduced previously. The other four “SICA-K” components (cf. Figure 5.15) 

on three layers are deployed as three subsystems in the technical system. The first 

subsystem on the highest layer of the hierarchical architecture is the route-based 

adaptation unit (RAU). 

 
19 This is a method defined in TraCI to manipulate the state of certain vehicle in the simulation. Link: 
https://sumo.dlr.de/docs/TraCI/Change_Vehicle_State.html (accessed on 28th Apr. 2022).  

https://sumo.dlr.de/docs/TraCI/Change_Vehicle_State.html


 
Artificial Cognitive Cruise Control as Experimental 

Application of Generic Architecture Style 

 

 

 193
 

 

Figure 5.21: Class Diagram for the Construction of Route-Based Adaptation Unit 

The RAU aims to observe the driving behaviors of the human driver while manual driving 

and learn their high-level driving preferences. The high-level preferences are defined in 

this dissertation as preferred travel time, energy consumption, and driving comfort during 

the previous trips on the same route. Thus, the RAU can automatically plan an optimized, 

high-level personalized route-based set travel profile for the driver before the trip once 

it is activated to take over the ego-car’s longitudinal control. For this purpose, learning() 

and calling() are defined in the class RouteBasedAdaptationUnit to realize the 

functionalities of learning driving preferences and planning set travel profiles, as 

illustrated in Figure 5.21. Additionally, other classes with aggregation relationships with 

the class RouteBasedAdaptationUnit are defined to implement the “SICA-K” 

components in the RAU. Figure 5.21 provides an overview of these classes. The 

following sections will introduce more details of the classes and their instantiations 

representing the “SICA-K” components. 

A significant point that needs to be emphasized here is that the functionality of learning 

driving preferences was implemented with a small difference compared to the original 

design of the ACCC. In the original design, the learning process can also be triggered 
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by the “SICA” components once they have identified a difference between the observed 

input facts and their available domain knowledge (cf. Section 5.3.2). After learning, these 

components push the updated domain knowledge to the “K” component for 

synchronization (cf. Section 4.2.6.2). Nevertheless, in the implementation of this 

dissertation, the learning process of the domain knowledge is only triggered by the “K” 

component (e.g., driver preference knowledge component). Then the updated 

knowledge is pushed to the “SICA” components for knowledge synchronization. The 

same implementation approach is also applied to the learning processes in the route-

segment-based adaptation unit (RSAU) and the cycle-time-based control unit (CTCU). 

5.5.3.1 Driver Preference Knowledge 

As introduced in Section 5.2.2, the Driver Preference Knowledge component plays the 

role of a knowledge repository. It communicates with other components (“S2”, “I2”, “C2”, 

“A2”) in the RAU to provide them required domain knowledge. For this purpose, 

appropriate technologies like the database can be applied to implement the knowledge 

repository to store huge vehicle data. However, the ACCC’s implementation in this 

dissertation focuses on a co-simulation instead of the real hardware. Thus, domain 

knowledge is represented by different attributes in the class 

DriverPreferenceKnowledge (cf. Figure 5.21). 

Domain Knowledge 
Attributes in the class 

DriverPreferenceKnowledge 
Sub-Attributes 

+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑥𝑥_𝑝𝑝𝑝𝑝𝑝𝑝 
+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑦𝑦_𝑝𝑝𝑝𝑝𝑝𝑝 
+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  

+𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡 +𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 
+𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡  
+𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡  

+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

+𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 - 

Table 5.3: Defined Attributes of Domain Knowledge in the Class DriverPreferenceKnowledge 

Subsequently, the instantiated objects are saved as individual “.npy” files in a folder of 

the local project repository, which is interpreted as the ACCC’s knowledge base. The 
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attributes representing the domain knowledge are called “domain knowledge attributes” 

in this section. Table 5.3 provides an overview of more details about these attributes. 

The first domain knowledge refers to a high-level reference route profile. As introduced 

in the ACCC’s preliminary design, the ACCC needs the route profile saved in the 

navigation system to plan the high-level set travel profile and the middle-level driving 

strategy. For this purpose, the route needs to be segmented by a group of intermediate 

route points. For example, the simulated route from GS to CLZ is represented by 27663 

intermediate route points in the implementation, and the simulated route from CLZ to 

GS includes 28250 route points. Since the RAU focuses on the high-level route profile, 

not all these intermediate route points are interesting. Instead, only significant route 

points representing the intersections are important for the planning high-level set travel 

profile. 

During the ACCC prototype implementation, the resolution of the route points 

representing a so-called high-level reference route profile was thus massively reduced. 

Following the original order of the points, one route point is taken out of every 1000 route 

points to represent the intersections on the route. Several sub-attributes like .x_pos 

and .y_pos are defined to describe the features of the attribute + 

reference_high_level_route_profile. The sub-attribute .accumulated_distance relates to 

the accumulated distance from the first route point (the trip’s origin) to each following 

route point. 

In addition to the high-level reference route profile, another domain knowledge refers to 

the driver’s preferred criteria weights of their driving preferences, as mentioned in Table 

5.1. Three sub-attributes (.time_weight, .comfort_weight, and .consumption_weight) are 

thus defined to represent the three criteria weights. During the class instantiation, these 

weights are initialized by normalized values with a sum of one. Thus, the weights can 

represent the criteria’s importance for the driver from different perspectives. 

As illustrated in Figure 5.21, the class RouteBasedAdaptationUnit includes a method 

learning(). While calling this method, the method update_knowledge() in the class 

DriverPreferenceKnowledge will be called. Such a case happens once the human driver 

completes a trip with the ego-car by manual driving. Based on the observed and 
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collected driving data during the trip (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), the RAU will try to learn 

the driver’s preferred average travel profile by updating the currently saved average 

travel profile ( 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ) to an updated profile 

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙).  

The final attribute in the class RouteBasedAdaptationUnit represents a learning rate for 

learning the driver’s average travel profile (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), which is used to control the 

learning process and initialized with 0.08 in the implemented instance. The learning 

process can be generalized by equation (5.1) as follows: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

∙ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) 

(5.1) 

Either the current or the average travel profile still includes sub-profiles from three 

perspectives, including trajectories of the accumulated average travel time, the 

accumulated average energy consumption of the ego-car, and its accumulated average 

acceleration (representing the driving comfort), along with the route points in the high-

level reference profile for representing the intersections on the route. Updating the 

profiles regarding the travel time, energy consumption, and acceleration (representing 

driving comfort) needs to be calculated separately by following Equation (5.1).  

Figure 5.22 shows a visualization example of the learning process of the human driver’s 

high-level average profile within several learning cycles. It is indicated in the figure that 

the average profile of the travel time and the energy consumption is continually changed 

along with the learning cycles. 

Another method, share_knowledge(), is also defined in this class. This method is 

implemented to realize the knowledge sharing between multiple knowledge components 

across different layers in the ACCC’s architecture (cf. Section 4.2.6.4). In the 

implemented co-simulation, such a process can easily be realized by exchanging the 

variables’ values initialized in different class instances. In the following Section 5.5.4, 

more details about this process will be introduced. 
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Figure 5.22: Example of Learning the Human Driver’s High-Level Average Profile with Multiple Learning 

Cycles 

5.5.3.2 Driver Preference Monitor 

The component Driver Preference Monitor is designed to collect the sensory data from 

the physical system and generate a symptom (defined as structured data). For this 

purpose, the driver preference monitor needs to preprocess and aggregate the sensory 

data if necessary. The class DriverPreferenceMonitor defines a method 

generate_high_level_symptom() to complete the preprocessing and aggregation tasks. 

In this method, two input parameters are required: trip and ego_pos_xy. The parameter 

trip includes the current trip profile like the trip name, the origin, and the destination. With 

the help of the parameter trip as an indicator, the ACCC knows which reference route 

profile should require from the ego-car’s navigation system. The parameter ego_pos_xy 

is used to indicate the ego-car’s current location. The data of both input parameters are 

then allocated to form the symptom. 

5.5.3.3 Driver Preference Analyzer 

In the ACCC’s design, the component Driver Preference Analyzer takes the symptom 

provided by the driver preference monitor as input to decide whether it is necessary to 

request the (re-)planning of a high-level set travel profile. For this purpose, a method 

analyze_high_level_symptom() is defined in the class DriverPreferenceAnalyzer (cf. 

Figure 5.21).  
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In the original design, the RAU plans the high-level personalized set travel profile in two 

cases: (1) at the beginning of the trip or (2) when the planned set travel profile 

significantly deviates from the current performed trip profile. In this dissertation, a 

simplified implementation only focusing on the first case is completed. The method 

analyze_high_level_symptom() compares the ego-car’s current location with the trip’s 

origin to identify whether the ego-car is at the beginning of the trip. In the case of the 

beginning of the trip, the method analyze_high_level_symptom() generates an output to 

request the planning of the high-level set travel profile. 

5.5.3.4 Driver Preference Planner 

The fundamental functionality of the Driver Preference Planner is to plan a driver-

individual high-level set travel profile once the ACCC is activated. For this purpose, a 

method plan_set_travel_profile() is defined in the class DriverPreferencePlanner (cf. 

Figure 5.21) to complete the planning task. The set travel profile includes several sub-

profiles regarding different perspectives: travel time, energy consumption, and the 

driving comfort represented by the ego-car’s acceleration. Some examples of the sub-

profiles have been illustrated in Figure 5.22. The individual values on the figure’s y-axis 

refer to the accumulated travel time and energy consumption that the ego-car needs to 

reach the corresponding intermediate route points considering the trip starting from the 

origin. 

In the method plan_set_travel_profile(), it is possible to deploy machine learning or 

classical optimization algorithms to complete the planning task. In such a case, criteria 

and weights would be required to evaluate the qualities of candidate set travel profiles, 

which massively increases implementation complexity. In the implemented ACCC 

prototype, this method is implemented more simply. During the ACCC’s learning process, 

by calling the method learning(), the learned average travel profile (cf. Section 5.5.3.1) 

is updated and saved in the ACCC’s knowledge base as a “.npy” file. In the method 

plan_set_travel_profile(), the saved average travel profile is extracted from the 

knowledge base and taken as the method's output. 
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5.5.3.5 Driver Preference Executor 

The final Driver Preference Executor in the RAU is designed to decompose the planned 

set travel profile provided by the driver preference planner. Another method 

decompose_set_travel_profile() is defined in the class DriverPreferenceExecutor to 

complete the decomposition task, as illustrated in Figure 5.21. As introduced in Section 

5.2.3, the decomposed set travel profile should be used as specifications for the route-

segment-based adaptation unit (RSAU) deployed on the lower layer of the ACCC’s 

architecture. Since the RSAU focuses on planning the middle-level strategy only for 

individual route segments, the method decompose_set_travel_profile() here tries to 

convert the planned travel profile into segment-wise specifications.  

For example, a planned set travel profile includes a trajectory of the accumulated set 

travel time for 27 high-level intermediate route points representing intersections (cf. 

Figure 5.22). This means the whole route has 26 route segments, and thus 26 different 

partial profiles of set travel time for individual segments can be decomposed based on 

the travel time trajectory for the whole route. The same decomposition can also be 

performed for the trajectory of set consumption and set acceleration representing driving 

comfort. All the calculated partial set profiles for individual segments are then taken as 

specifications and provided to the RSAU. 

5.5.4 Route-Segment-Based Adaptation Unit in Implemented Technical System 

The second subsystem in the technical system is the RSAU. Like in the RAU, another 

“SICA-K” component structure is deployed in the RSAU. For this reason, five classes 

and their corresponding methods are defined to implement the RSAU, as illustrated in 

the class diagram in Figure 5.23. 

The RSAU also has two functionalities: planning the middle-level driving strategy and 

learning the driver’s middle-level preferences. Thus, the class 

RouteSegmentBasedAdaptationUnit defines two methods: calling() and learning(). The 

same implementation approach used in the RAU to deal with the learning process is 

also applied here. It means that the learning process of the implemented prototype is 

triggered by the instance of the class DriverStrategyKnowledge using its included 

methods: update_average_profile(), update_decision_trees(), and 
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update_distribution_pred_behaviors(). The following sections will provide more 

implementation details about these classes and their instantiation. 

 

Figure 5.23: Class Diagram for the Construction of Route-Segment-Based Adaptation Unit 

5.5.4.1 Driving Strategy Knowledge 

In the ACCC’s design, the Driving Strategy Knowledge component plays the role of a 

knowledge repository in the RSAU to store domain knowledge. Thus, the class 

DrivingStrategyKnowledge includes different attributes to deal with different knowledge 

types. Like the class DriverPreferenceKnowledge (cf. Section 5.5.3.1), different domain 

knowledge after the class instantiation is also saved as individual “.npy” files in a folder 

of the local project repository that serves as the knowledge base. After each learning 

process, these “.npy” files will be updated. Several sub-attributes are defined to acquire 

appropriate data structures for some of these attributes. Table 5.4 provides an overview 

of the defined attributes and their sub-attributes representing different domain 

knowledge. 

The first attribute, reference_middle_level_route_profile, deals with the domain 

knowledge about the reference route profile in each segment, which is called the middle-

level route profile in this dissertation. As presented earlier, the highway’s route profile 
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from GS to CLZ includes 27663 intermediate route points. From these route points, 27 

significant route points representing the intersections are selected from these 

intermediate route points to form the high-level route profile, including 26 route segments 

(cf. Figure 5.22). These route points are interpreted as each route segment's beginning 

and endpoints. Thus, a reference middle-level route profile is defined as an array with 

26 elements. Each element represents a single route segment and includes a group of 

intermediate route points to describe a more detailed route segment profile. Several sub-

attributes like .x_pos, .y_pos, and .accumulated_distance are then defined to describe 

the route segment profile, as indicated in Table 5.4. 

Domain Knowledge 
Attributes in the class 

DriverStrategyKnowledge 
Sub-Attributes 

+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑥𝑥_𝑝𝑝𝑝𝑝𝑝𝑝 
+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑦𝑦_𝑝𝑝𝑝𝑝𝑝𝑝 
+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  

+𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡 +𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡. 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 
+𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡  
+𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡  

+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 - 
+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 - 
+𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 - 
+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 - 
+ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑠𝑠𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑠𝑠𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑠𝑠𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

+ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑠𝑠𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑠𝑠𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
+ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑠𝑠𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑠𝑠𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
 

Table 5.4: Defined Attributes of Domain Knowledge in the Class DriverPreferenceKnowledge 

The RSAU is designed to plan the optimized (i.e., driver-preferred) middle-level driving 

strategy. The middle-level driving strategy includes a location-based trajectory of cruise 

speed or headway for a single following route segment. Domain knowledge manifested 

by several attributes is thus required since the planning task can be interpreted as an 

optimization process.  

The first preference_weights attribute refers to the weights of driver’s preferences 

describing the importance of different criteria like travel time and energy consumption 
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(cf. Table 5.1), defined similarly in comparison to the case of class 

DriverPreferenceKnowledge. Another attribute refers to the driver’s middle-level 

average profile, which is taken as a reference to evaluate the qualities of different 

candidate driving strategies. Compared to the attribute high_level_average_profile in 

the class DriverPreferenceKnowledge, the high_level_set_travel_profile is defined 

similarly. It is used to save the provided high-level average profile provided by the RAU. 

The attribute decision_tree describes the search space of candidate cruise speeds and 

headways while planning the strategy. The final two learning_rate and discount_factor 

attributes represent two application parameters: the learning rate and discount factor. 

Both parameters will then be used in a reinforcement learning (RL-) algorithm, which 

learns the driver-preferred middle-level driving strategy, namely their preferred location-

dependent trajectory of cruise speed and headway for the intermediate route points. 

Since the RSAU requires diverse domain knowledge to complete its tasks, different 

methods are defined to complete the learning process. The first learning process 

focusing on the segment-wise average driving profile of the human driver is realized by 

the method update_average_profile(). For example, the whole route is divided into 26 

route segments, as introduced previously. The segment-wise average profile includes 

three sub-profiles representing the travel time, the ego-car’s energy consumption, and 

the acceleration. Each sub-profile is implemented as an array with 26 elements 

representing the 26 route segments. The currently saved average profile 

( 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ) will be updated ( 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ) via 

update_average_profile() during the learning process by following the same calculation 

principle in Equation (5.1) with the learning rate (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ) and inputs of the 

recorded profile (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙). Each average and current profile can still 

further be split into three terms regarding travel time, consumption, and driving comfort 

as follows: 

• 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

• 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

• 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
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Due to the high similarity of the calculation approach compared to Equation (5.1), a new 

equation is not listed in this section. 

Another method used in the learning process is the update_decision_trees(). This 

method is implemented to update decision trees. Since the RSAU plans a trajectory of 

cruise speed in the case of no preceding car and plans a trajectory of headway once a 

preceding car is available as the middle-level driving strategy, two decision trees are 

defined. In the decision trees, the candidate driving strategies are not directly saved. 

Instead, a matrix of scores representing the strategies’ qualities is included in the trees. 

The candidate driving strategies are represented by the data structure of the 

implemented decision trees in Python. 

 

Figure 5.24: Data Structure of the implemented Decision Trees in the RSAU of ACCC 

Figure 5.24 illustrates an overview of the data structure of the implemented decision 

trees. Each decision tree is defined as a 3D array (cf. attribute: decision_trees in Table 

5.4). The three dimensions of the array, relate to the route segments, the index of 

intermediate route points within the segment, and the candidate cruise speed, 

respectively. For example, the whole route includes 26 route segments. Each route 

segment includes 200 route points. Due to the ego-car’s maximum speed of 140 km/h, 

there are 141 candidate cruise speeds once the resolution is set to 1 km/h. Thus, a 

26x200x141 array can describe the decision tree of candidate cruise speed. Following 
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a similar principle, the 3D array of the candidate headway can be defined. This 

dissertation sets the valid value range of the headway from 1.5 to 4.0 seconds, and the 

value resolution for headways’ state segmentation is set to 0.1 seconds. Thus, the 

scores representing the qualities of candidate driving strategies can be saved as an 

element in the 3D array, as illustrated in Figure 5.24. 

Learning the human driver’s driving preferences for cruise speed and headway is 

realized by updating the saved scores in the 3D array. The Q-learning algorithm (cf. 

Section 2.4.1) for reinforcement learning is applied to realize this learning process. The 

previously mentioned learning rate and discount factor are also used in the Q-learning 

algorithm.  

Generally, it can be understood that the Q-learning algorithm builds a function for 

updating the score (𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) based on the original score (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) saved in 

the array and a calculated reward. In addition, two application parameters, learning rate 

and discount factor (cf. Table 5.4) will also be used as follows: 

𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

∙ �𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∙  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚

− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� 

(5.2) 

The reward calculation is completed based on three terms: travel time, consumption, 

and driving comfort. For calculating the terms, the driver’s preference weights (𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 

𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, cf. Table 5.1) are used. Since fundamental theories about the 

Q-learning algorithm have been introduced in Section 2.4.1, a detailed calculation path 

for updating the score will not be introduced in this section. However, it was well-

formulated in a previously published paper [122]. 

As introduced in Section 5.2.2, the RSAU (route-segment-based adaptation unit) 

includes the functionality of predicting the future context of the driving environment. For 

this purpose, a machine learning-based prediction approach relying on kernel density 

estimation (KDE) is applied in the RSAU (cf. Section 2.4.2). 

Since the KDE’s prediction relies on a density distribution of the preceding cars’ 

behaviors, an attribute distribution_pred_behaviors (cf. Table 5.4) is defined in the class 
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DrivingStrategyKnowledge to save the distribution. In the implementation, this 

distribution is defined as a 3D array. Figure 5.25 provides an overview of the data 

structure of the 3D array. The 3D array for storing the preceding cars’ behavioral density 

distribution differs from the 3D array for storing the scores of candidate driving strategies. 

This array is constructed by concatenating several sub-arrays representing the density 

distribution for individual route segments, marked in different colors within Figure 5.25. 

Figure 5.25: Data Structure of the Implemented Preceding Car’s Behavioral Density Distribution

For example, a route includes 26 route segments separated by several route points 

representing the intersections. The 3D array will then include 26 colored sub-arrays. 

Since there are still many route points to form sub-segments within each segment, the 

sub-array can be further divided into several 2D arrays. Each 2D array corresponds to 

the distribution for a single route point. The state-space of the preceding car’s speed is 

divided into 141 states, representing 0 km/h to 140 km/h (with a resolution of 1 km/h). 

Thus, a density distribution regarding the preceding car’s speed for the next route point 

depending on its current speed for the actual route point can be formulated and saved 

in the 2D array. In this 2D array, the density values in corresponding speed-dependent 
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contexts are located. A method update_distribution_pred_behaviors() is defined in the 

class DrivingStrategyKnowledge to implement the learning of the preceding car’s 

behavior distribution by updating the densities in the array.  

The concrete calculation path for this update process was already included in the 

theoretical fundamentals of KDE (cf. Section 2.4.2) and thus will not be introduced in 

this section. Compared to the original KDE, the only implementation difference is that 

the overall density distribution is normalized (to keep the maximal density value in the 

distribution always equal to one) after each learning process. Thus, the influence of the 

new upcoming density distribution will be appropriately considered.  

In this implementation of this dissertation, the KDE prediction is strongly simplified by 

considering a single influencing parameter of the distribution (i.e., the preceding car’s 

current speed) to reduce implementation complexity. Theoretically, more input 

parameters can also be considered. A previously published paper can provide more 

details about the KDE-based prediction with multiple influence parameters like the 

preceding car’s previous acceleration and speed [70]. 

The final method, request_knowledge(), is defined as an example in this dissertation to 

demonstrate UC4: knowledge sharing between knowledge components across layers 

(cf. Section 5.3.4). The RSAU calls this method to acquire the previously mentioned 

driver’s preference weights (cf. Table 5.1). On the other side, the defined method 

share_knowledge() in the class DriverPreferenceKnowledge of RAU is responsible for 

answering the request from the RSAU. 

5.5.4.2 Driving Strategy Monitor 

After introducing the class DrivingStrategyKnowledge, the next defined class is 

DrivingStrategyMonitor, which is applied to generate a symptom for the RSAU after 

instantiation. For this reason, a method generate_middle_level_symptom() is defined in 

this class. A sub-class Symptom is defined to specify the data structure of the symptom. 

5.5.4.3 Driving Strategy Analyzer 

The next class, DrivingStrategyAnalyzer, is defined in the RSAU to analyze the current 

context manifested by the symptom. For this purpose, a method 
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analyze_middle_level_symptom() is defined in this class. In this method, several 

subtasks are completed. As presented earlier, the route is divided into different route 

segments by significant route points representing intersections. Since the RSAU 

focuses on planning the driving strategy for individual route segments, it only plans a 

trajectory of cruise speed and headway as the middle-level driving strategy until the end 

of the following segment. Thus, it is required that the RSAU knows which route segment 

the ego-car is facing. This is completed by an internal method defined in the method 

analyze_middle_level_symptom() based on the reference middle-level route profile (cf. 

Table 5.4) and the ego-car’s current location. 

After identifying the current route segment, the driving strategy analyzer aims to identify 

whether it is necessary to request (re-)planning the middle-level driving strategy. In the 

implemented driving strategy analyzer, a state machine including three states and 

corresponding transition conditions is defined, as illustrated in Figure 5.26. 

 

Figure 5.26: State Machine Implemented in the Method analyze_middle_level_symptom() of Driving 

Strategy Analyzer 

With the help of this state machine, the driving strategy analyzer can identify the current 

state regarding the preceding obstacle, which in the built co-simulation is represented 

by the preceding car. Other traffic participants like pedestrians are not considered in the 

simulation. There are three cases where the driving strategy analyzer would request 

(re-)planning of the middle-level strategy: 

• The ego-car enters the next route segment. 

• The radar sensor detects a visible preceding car. 

No preceding
obstacle is available.

A virtual preceding
obstacle is available.

A visible preceding
obstacle is available. 

Initialize
Radar sensor has 

detected a preceding 
obstacle.

Radar sensor hasn’t detected a 
preceding obstacle within its 

full sensing range. && 
The ego-car’s orientation is 
overlapped with the route 

orientation.

Radar sensor has lost 
the detected 

preceding obstacle.

Radar sensor has 
detected a preceding 
obstacle.
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• The ACCC has confirmed that the previously detected invisible virtual preceding 

obstacle is gone. 

For example, the RSAU would be initialized with the state “No preceding obstacle is 

available” at the beginning of the trip. In this case, once the ego-car enters a new route 

segment, a middle-level strategy consisting of the trajectory of cruise speed until the end 

of the route segment would be (re-)planned. Once the radar sensor has detected a 

preceding car, which in this dissertation is called a “visible preceding obstacle” (cf. 

Figure 5.26), a replanning of strategy would be performed since a trajectory of headway 

until the end of the route segment is required. In the case of such a visible preceding 

obstacle, the trajectory would also be updated once the ego enters a new route segment.  

Compared to classical ACC and its variants currently on the market, a significant 

difference in ACCC is its memory capability. As introduced in Section 3.5.2, current 

ACCs may accelerate the ego-car before a curve once a previously detected preceding 

car becomes invisible due to the curve for the radar sensor. Thus unfavorable 

deceleration after the curve may be caused.  

The ACCC deals with such an invisible preceding car in another way. Instead of 

forgetting it, the ACCC keeps the previously detected preceding car in memory as a 

virtual obstacle and considers its influence while (re-)planning the headway. For this 

purpose, another method, predict_pred_behaviors(), is defined in the class 

DrivingStrategyAnalyzer. In this method, the KDE algorithm (cf. Section 2.4.2) is applied 

to forecast a location-based trajectory of the preceding car’s speed along with the 

intermediated route points in the focusing route segment until its endpoint. Since the 

underlying principle of the algorithm has been introduced in Section 2.4.2, more detail 

will not be included in this subsection. Generally, it can be understood that the prediction 

is completed relying on the saved density distribution in the ACCC’s knowledge base, 

as introduced in Figure 5.25. The speed profiles with the highest density values for 

individual route points will be taken and combined as a trajectory to describe the 

predicted preceding obstacle’s driving behaviors. 

The virtual obstacle would be deleted from the ACCC’s memory only when two 

conditions are fulfilled:  
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• The radar sensor cannot detect the preceding obstacle within its full sensing 

range (implemented configuration: 400 m, ±15°),  

• The ego-car’s orientation overlaps with the route’s orientation (evaluated by a 

threshold value of orientation difference: ±10°).  

In such a case, the ACCC would assume that the previously detected preceding 

obstacle is no longer relevant for planning the middle-level driving strategy. 

5.5.4.4 Driving Strategy Planner 

If the driving strategy analyzer requests the planning of the middle-level driving strategy, 

the driving strategy planner would be activated to complete the planning task. 

Depending on the current state regarding the preceding obstacle, the driving strategy 

includes either a location-based trajectory of cruise speed or headway. Once the 

preceding obstacle is available (either visible or virtual), its predicted driving behaviors 

will also be taken as inputs during the planning of the driving strategy. 

The class DrivingStrategyPlanner defines a method generate_driving_strategy() to deal 

with the planning task. As presented earlier, a Q-learning algorithm is applied to learn 

the driver’s middle-level driving preferences, which refers to their preferred cruise 

speeds and headways for different intermediate route points. The candidate cruise 

speeds and headways are quantitatively evaluated with scores and saved in the ACCC’s 

knowledge base (cf. Figure 5.24). Based on these scores, the planning task becomes 

substantially simpler. The candidate cruise speed and headway with the highest score 

for each intermediate route point within the current route segment will be taken and 

combined into a trajectory. While planning the trajectory of headway for the ego-car, the 

predicted preceding car’s driving behaviors in the form of a location-based speed 

trajectory will also be taken as output to transfer into the driving strategy executor. 

5.5.4.5 Driving Strategy Executor 

As introduced in the ACCC’s design, the driving strategy executor is applied to 

decompose the planned middle-level driving strategy and convert it into an appropriate 

form. For this purpose, a method decompose_driving_strategy() is defined within the 

class DrivingStrategyExecutor. 
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Within this method, interpolation functions are generated based on the planned driving 

strategy of the ego-car: 

• 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑓𝑓�𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐, 𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐�,  with  𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐,  𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 

representing the ego-car’s current location 

• ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓�𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐, 𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐�,  with  𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐,  𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 

representing the ego-car’s current location 

Additionally, the predicted preceding car’s location-based future speed trajectory is 

converted into a time-dependent interpolation function:  

• 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑐𝑐𝑐𝑐𝑐𝑐 =

𝑓𝑓�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐�,  with 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐  representing the accumulated 

disappeared time duration of the preceding car, which is derived from the 

predicted preceding car’s speed profile and the reference middle-level route’s 

distance profile 

In the implemented ACCC prototype, these interpolation functions replace the 

decomposed middle-level driving strategy in the original design. After the interpolation 

functions are built, they are taken as outputs to transfer into the subsystem cycle-time 

based control unit (CTCU) deployed on the lowest layer of the ACCC’s hierarchical 

architecture. 

5.5.5 Cycle-Time-Based Control Unit in Implemented Technical System 

The cycle-time-based control unit (CTCU), as the subsystem deployed on the lowest 

layer of the ACCC’s hierarchical architecture, is designed to realize interactions with the 

physical world by taking over its longitudinal control while the ego-car is driving. A class 

CycleTimeBasedControlUnit is defined to implement the prototype. Since the CTCU 

also follows the design principle based on the same “SICA-K” component structure, five 

additional classes for the CTCU’s included components are defined. Figure 5.27 

provides an overview of these classes and their included accompanying methods. 
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Figure 5.27: Class Diagram for the Construction of Cycle-Time-Based Control Unit 

Although the CTCU in the original design of the ACCC includes a learning ability, such 

ability is excluded in the implemented prototype of this dissertation to reduce 

implementation complexity. Thus, unlike the other two subsystems, the class 

CycleTimeBasedControlUnit only has a defined method calling() without the method 

learning(). When calling the method calling() is called, the other classes and particularly 

their included methods will be called to complete the control task. The following sections 

will introduce more details about these classes and their methods.  

5.5.5.1 Parametrization Knowledge 

Like the driver preference knowledge and the driving strategy knowledge components, 

there is also a Parametrization Knowledge component in the CTCU that plays the role 

of the knowledge repository. Several attributes are defined within the class 

ParametrizationKnowledge to specify different domain knowledge data structures.  

Since the CTCU controls the ego-car in its longitudinal direction, a PID controller is 

implemented in the CTCU prototype. Thus, the CTCU requires an appropriate 

parameterization for P-, I-, and D-elements. For this reason, the attributes k_p, k_i, and 

k_d are defined and will be initialized during class instantiation. As previously discussed, 

the learning ability is excluded in the implemented CTCU. Thus, the controller 
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parametrization would always stay the same in the whole evaluation based on the built 

co-simulation. 

As introduced in Section 5.2.4, the CTCU is designed as a time-triggered subsystem. 

Thus, another attribute, delta_t_for_decomposition, is defined in the class 

Parametrization Knowledge to specify CTCU’s cycle time knowledge. During the class 

instantiation, this attribute is initialized with the cycle time of the overall co-simulation. 

The final attribute, middle_level_set_travel_profile, is defined to deal with the provided 

inputs by the RSAU. The three interpolation functions mentioned in the previous 

subsection will be assigned to this attribute in the implemented prototype. 

5.5.5.2 Measurement Component 

The second defined class is the MeasurementComponent, including a method 

generate_symptom(). This method is designed to preprocess and aggregate the 

acquired sensory data. In the implemented prototype, the method is realized more 

simply by only assigning acquired data values to corresponding variables to form the 

symptom with an appropriate data structure. 

5.5.5.3 Analyzer 

The Analyzer in the CTCU is designed to analyze the context included in the acquired 

symptom to decide whether it is required to take the set cruise speed or the set headway 

as its reference variable. Thus, an internal algorithm to detect the preceding car is 

implemented in the method analyze_low_level_symptom(). In this algorithm, a 

preceding car will be detected as visible by the radar sensor once it is located within its 

sensing range (400 m) and sensing angle (±15°). The preceding car’s availability will 

then be included in the Analyzer’s output and sent to the Controller. 

5.5.5.4 Controller 

As illustrated in Figure 5.27, a further class Controller is defined for implementing the 

CTCU. Since the controller works based on the classical feedback control approach, an 

algorithm for realizing PID control is implemented within an included method 

update_control_strategy(). In the implementation, the D-element is eliminated by 
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initializing with zero since the PI controller is widely used as a classical approach in ACC 

variants [77][123]. 

The input of the update_control_strategy() is the planned middle-level driving strategy 

from the RSAU. As introduced in Section 5.5.4.5, three interpolation functions are 

included as implementation examples in the planned middle-level driving strategy. 

These interpolation functions are used here to generate the set values of the reference 

variable. For example, the function 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑓𝑓�𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐, 𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐� 

can provide a set value of the driver-preferred cruise speed depending on the ego-car’s 

current location. The function ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓�𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐, 𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑟𝑟�  can 

generate a set value of the driver-preferred headway.  

Following the basic control concept (cf. Section 2.1.1), the PI controller works based on 

the input of control error, calculated as the deviation between the set value of the 

reference variable and the current value of the controlled variable (cf. Figure 2.2). There 

is no problem getting the controlled variable's current value in the case of a visible 

preceding car by the radar sensor since the current headway can be acquired. However, 

suppose the preceding car is not visible and virtually “saved” in the ACCC’s memory. In 

that case, the radar sensor cannot “see” the preceding car, and thus is impossible to 

provide the current headway.  

Facing this issue, the final interpolation function 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐 =

𝑓𝑓�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐�  is designed and integrated into the 

RSAU’s planned middle-level driving strategy. During the CTCU’s operation, the time 

point when the preceding car disappears would be recorded to calculate the preceding 

car's accumulated disappeared time duration. Once a preceding virtual car becomes 

visible by the radar sensor, the recorded accumulated disappeared time will be reset to 

zero. The calculated disappeared time duration will then be taken as input to calculate 

the invisible preceding car’s travel distance during its invisible period. From another 

perspective, the ego-car’s travel distance during this period can also be calculated with 

the help of its speed profile. Thus, current headway can be derived from the deviation 

between both cars’ travel distances. 
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After the control error is determined, it will then be transferred into the implemented 

function of the PI controller. Since the underlying algorithm of the PI controller is already 

well-known, its detailed calculation processes will not be described in this subsection. 

More details can be found in relevant literature [9][124]. 

5.5.5.5 Final Control Component 

A class FinalControlUnit with a method decompose_control_strategy() is defined in the 

implementation. The Final Control Unit serves to decompose the determined control 

strategy by the Controller. In the implemented prototype, the method 

decompose_control_strategy() forwards the determined values of manipulated variables 

for controlling the ego-car’s acceleration and deceleration (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑐𝑐𝑐𝑐 ) 

directly to the ego-car’s model built in the physical system (cf. Section 5.5.2.3) due to 

the lack of predictive planning of the implemented prototype of Controller. Once the 

controller is implemented, e.g., based on the model predictive control (MPC) concept, it 

will provide a value trajectory of manipulated variables instead of individual value. Thus, 

the method decompose_control_strategy() could then include a more complicated 

algorithm to decompose the trajectory into single values for each running cycle of the 

feedback control loop.  

5.6 Evaluation of Artificial Cognitive Cruise Control 

In the previous section, implementation details of the ACCC prototype were intensively 

discussed. As presented at the beginning of Section 5.5, this dissertation aims to build 

a co-simulation platform to evaluate the ACCC prototype’s performance after 

implementing the prototype. In this section, more detail about the evaluation work will 

be provided. 

5.6.1 Hypotheses 

For evaluation of the implemented ACCC prototype, this dissertation has selected 

several alternative approaches as candidates to build a performance benchmark. Since 

the ACCC aims to learn the preferences of a human driver, manual driving is taken as 

one reference approach. In addition, the classical ACC based on the basic control is 

also selected as a further candidate approach in the benchmark since the ACCC can 
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also be interpreted as a further improvement of the classical ACC. Thus, two hypotheses 

are proposed based on the candidate approaches in the dissertation, which will then be 

validated within the following evaluation work: 

• Hypothesis 1: The ACCC realizes a higher performance quality of the ego-car’s 

longitudinal control than the classical ACC based on a statically parametrized 

PID controller. 

• Hypothesis 2: The ACCC shows a higher performance quality in the ego-car’s 

longitudinal control than the human driver’s manual driving. 

After proposing the hypotheses to be validated, a systematical quantitative evaluation 

of different approaches’ control performances must still be performed. Thus, this 

dissertation has used the previously mentioned criteria regarding travel time, energy 

consumption and driving comfort (represented by the ego-car’s acceleration), and their 

weights (𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.4, 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 = 0.4, 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.2, cf. Table 5.1) were used while 

learning the driver’s preferences and planning strategy by the ACCC to complete the 

benchmark. A cost function to quantitatively evaluate the performed strategy’s quality 

after each trip by using three candidate approaches is built as follows: 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∙ 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (5.3) 

Equation (5.3) states that the final quality depends on a basic quality (initialized with a 

constant of 100 in the implementation) and a so-called quality coefficient. The quality 

coefficient describes the fulfillment of the driver’s preferences, which thus takes the 

preference weights into account during the calculation as follows:  

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
= 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

(5.4) 

As illustrated in Equation (5.4), the quality coefficient consists of three terms: 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , which are respectively calculated by 

following equations as follows: 
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𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 2 ∙ (
1

1 + 𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
− 0.5) (5.5) 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 2 ∙ (
1

1 + 𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

− 0.5) 

(5.6) 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 2

∙ (
1

1 + 𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜) − 𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

− 0.5) 

(5.7) 

In the equations above, all profiles (𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥) represent 

a value trajectory of corresponding variables. The deviation between two profiles means 

the average value derived from both trajectories' deviations of values. The designed 

equations above guarantee that the output values are always normalized between -1 

and 1. The preference weights (𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, and 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) are also normalized 

with a sum of 1. Thus, the calculated quality coefficient will always stay within the value 

range between -1 and 1. 

5.6.2 Alternative Candidate Approaches within the Benchmark 

As introduced in the previous section, two additional candidate approaches are planned 

within the performance benchmark to evaluate the implemented ACCC prototype. For 

this purpose, a classical ACC with the basic control (cf. Section 3.1), including a PI 

controller (without planning and prediction functionalities), and a human driver model for 

simulating manual driving were also implemented. The following sections will introduce 

more implementation details about both candidate approaches. 

5.6.2.1 Manual Driving with Human Driver Model 

The SUMO community has developed various human driver models, like Kauss’s car-

following model [125] and Erdmann’s lane-change model [126]. Since the ACCC only 

focuses on the ego-car’s longitudinal control, Treiber et al.’s intelligent driver model 
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(IDM), a well-known car-following model, is used to implement the human driver model 

in this dissertation [127]. The IDM describes the driving dynamics of a single car by 

calculating the car’s set acceleration (i.e., the human driver’s preferred 

acceleration/deceleration) for the next time step based on the current context regarding 

the preceding car. In this case, the human driver’s driving activities in the ego-car’s 

longitudinal direction are simplified as a decision-making process of the car’s 

acceleration. Several fundamental equations as follows are defined in the IDM. 

Equation (5.8) aims to calculate the ego-car’s acceleration in the case of an open road 

without any preceding car as an obstacle. Nevertheless, an additional interaction term 

represented by Equation (5.9) must be considered when a preceding car is available. In 

this case, the ego-car’s acceleration can be calculated by integrating both previous 

equations (cf. Equation (5.10)). 

𝑣̇𝑣𝑒𝑒𝑒𝑒𝑒𝑒
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(1− (

𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒
𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

)𝛿𝛿) (5.8) 

𝑣̇𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(
𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑒𝑒𝑔𝑔𝑜𝑜
+

𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒 ∙ ∆𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒
2�𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

) (5.9) 

𝑣̇𝑣𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑣̇𝑣𝑒𝑒𝑒𝑒𝑒𝑒
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑣̇𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (5.10) 

The variables included in the equations above are illustrated as follows in Table 5.5: 

Variable Meaning Physical 
Unit 

𝑣̇𝑣𝑒𝑒𝑒𝑒𝑒𝑒
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 Ego-car’s set acceleration in the case of an open road (without 

a preceding car) 
[m/s2] 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 Ego-car’s maximal acceleration [m/s2] 
𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒 Ego-car’s current velocity [m/s] 

𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 Ego-car’s desired velocity (e.g., preferred by the human driver) [m/s] 
𝛿𝛿                        Acceleration exponent (as an application parameter, usually set 

to 4) 
[-] 

𝑣̇𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 Reduction of ego-car’s acceleration due to interaction with a 
preceding obstacle (e.g., a preceding car) 

[m/s2] 

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 Minimum spacing (ego-car is not permitted to move forward 
once its distance to the preceding car is lower than the minimum 
spacing.) 

[m] 

𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Ego-car’s desired headway to the preceding obstacle (e.g., 
preferred by the human driver) 

[s] 
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𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Ego-car’s current distance to the preceding car (the ego-car’s 
length shall be excluded in this distance) 

[m] 

∆𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒 Velocity difference of ego-car and the preceding car [m/s] 

𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Ego-car’s comfortable braking deceleration (a positive number, 
e.g., preferred by the human driver) 

[m/s2] 

𝑣̇𝑣𝑒𝑒𝑒𝑒𝑒𝑒 Ego-car’s set acceleration [m/s2] 

Table 5.5: Variables and Their Meanings in the Equations of Intelligent Driver Model (IDM) [127] 

Equation (5.10) illustrates that the original IDM’s output is the ego-car’s set acceleration. 

Finally, the determined set acceleration of the ego-car is used in the implementation to 

calculate representative control commands (𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  and 𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) so that the ego-

car’s model can provide a final set speed for the ego-car. For this purpose, the 

predefined maximal acceleration (+2.8 m/s2) and deceleration (-2.6 m/s2) of the ego-car 

are used to ensure that the control commands’ values can be normalized between [0 1] 

and [-1 0] (cf. Table 5.2). Subsequently, the set speed is forwarded to the SUMO 

simulation since SUMO provides a method traci.vehicle.setSpeed() in its interface to 

visualize the ego-car’s movement (cf. Section 5.5.2.3).  

As indicated in Table 5.5, values of several application parameters in the equations like 

𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are driver-dependent, which means that different drivers may have 

different value configurations. Thus, this dissertation extends the original IDM by 

integrating a recorded real driving data pool, covering an anonymous driver’s driving 

behaviors during 600 repeated trips on the federal highway B241 in both directions 

between the city CLZ and GS in Germany. 

5.6.2.2 Longitudinal Automated Driving with Classical ACC 

In addition to the IDM, a classical ACC based on the PI controller was also implemented. 

Compared to the controller in the implemented ACCC prototype, there is no significant 

difference in the ACC’s implementation. The only difference is that the ACCC’s controller 

generates the set values of cruise speed or headway by itself, relying on the learned 

preferences of the human driver. However, in the case of classical ACC, these set 

values are directly generated from the recorded driving data (cf. Figure 5.16). Since the 

recorded driving data includes paired speed and location of the ego-car (represented by 

GPS positions), the speed value with the minimal distance compared to the simulated 

ego-car’s current location is taken as the human driver’s preferred set cruise speed. 
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Since the driving data does not include the headway profile, the driver-preferred set 

value of headway is derived relying on an interpolation function as follows: 

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐

=
ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 − ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐

∙ �𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑒𝑒𝑒𝑒𝑜𝑜−𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐� + ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 

(5.11) 

In Equation (5.11), the application parameters ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐  and ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 

are initialized with 1.5 and 4.0 seconds. The 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 are initialized with 0 

and 140 km/h. 

Subsequently, the generated set values of the cruise speed and headway are 

transferred into the implemented algorithm in the PID controller. This dissertation will 

not include more details since such an algorithm in the PID controller is already well-

known. It is emphasized that the PID controller has the same parametrization compared 

to the controller in the CTCU of the ACCC. Such an approach guarantees that the ACCC 

and the classical ACC can have a more comparable basis within the benchmark and 

thus makes the evaluation results more meaningful. 

5.6.3 Evaluation Framework 

After introducing the implementation details of alternative candidate approaches in the 

benchmark, it is necessary to provide an overview of the evaluation framework. This 

section describes the test scenarios and the design of experiments included in the 

evaluation work. 

As introduced in Section 5.5.1, the federal highway B241 between the city CLZ and GS 

(cf. Figure 5.17) is simulated within the built co-simulation platform to evaluate the 

ACCC’s performance. For this reason, the implemented driver model representing the 

human driver’s manual driving and the classical ACC is also evaluated with the help of 

this simulated highway.  

Since the anonymous driver's recorded manual driving data pool (cf. Figure 5.16) 

contains 600 trip profiles (including 300 trips from GS to CLZ and 300 trips from CLZ to 
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GS), the planned test scenarios in the simulation address these trips. A user story is 

summarized to describe an overview of the simulation as follows: 

A human driver lives in the city GS and works in the city CLZ in Germany. 

The driver frequently drives from home to his workplace at 8 a.m. and 

drives back home after work every day on the weekdays. If the driver 

drives the ego-car manually, the ACCC observes the driver’s manual 

driving. After each trip, the ACCC learns the driver’s driving preferences 

based on the observed driving profile during trips. Once the driver wants 

to be released from the routine driving task, the ACCC is activated to take 

over the ego-car’s longitudinal control. In such a case, the ACCC tries to 

fulfill the learned preferences as much as possible. Alternatively, the 

driver can also activate the classical ACC to control the ego-car.  

Two separate experiments were designed for the ACCC’s evaluation with this user story 

in mind. Each experiment focuses on simulating 300 one-way trips either from GS to 

CLZ or from CLZ to GS. Figure 5.28 indicates the process flow of each experiment. 

 

Figure 5.28: Process Flow of the Evaluation Work for the Performance Benchmark 
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As illustrated in Figure 5.28, multiple simulation cycles, including individual trip 

simulations with different candidate approaches using the human driver model, the 

ACCC, and the classical ACC, are planned. After each simulation with the human driver 

model, the ACCC would be triggered to learn the driver’s preferences. After each trip is 

simulated with all three candidate approaches, a single simulation cycle is completed. 

Qualities of different performed control strategies will be calculated based on Equation 

(5.3) and compared to complete the performance benchmark. Thus, the best candidate 

approach can be identified. 

5.6.4 Analysis 

After designing the experiments, this dissertation has simulated the planned 600 trips 

with the help of the developed co-simulation platform to evaluate the performance of the 

implemented ACCC prototype. The evaluation results will be illustrated and analyzed in 

detail in this section. 

Before introduction of the final evaluation results of the performance benchmark 

between the human driver model, the classical ACC, and the ACCC, it is meaningful first 

to evaluate the performance of applied individual machine learning algorithms (e.g., the 

Q-learning algorithm and the KDE) in the ACCC. Applying these two algorithms for 

planning the ego-car’s driver-preferred driving strategy and predicting the preceding 

car’s driving behaviors in the implementation of this dissertation is not a blind decision. 

Instead, this decision is based on the previous papers’ research results [70][122], which 

are the basis of this dissertation. Thus, this dissertation did not separately evaluate the 

algorithms again.  

Instead, the following sections will briefly summarize previous research work to explain 

why these two algorithms are selected for implementation in this dissertation. The final 

performance benchmark results between the manual driver, the classical ACC, and the 

ACCC based on the built co-simulation platform implemented in this dissertation will 

subsequently be introduced at the end of this section. 

5.6.4.1 Performance of Planning Driving Strategy by Q-Learning Algorithm 

The previous research [122] evaluated the Q-learning algorithm based on a simulation 

environment in three different test scenarios: (1) urban areas, (2) extra-urban areas, and 
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(3) motorways. Inspired by Porsche’s “InnoDrive” (cf. Section 3.4), dynamic 

programming (DP) was selected as an alternative approach to complete the 

performance benchmark with the Q-learning algorithm. Since detailed concepts have 

been introduced in [123], this dissertation will not present all detail. Both candidate 

approaches in the benchmark were designed to plan an optimized driving strategy 

consisting of a location-based trajectory of set speed for a sequence of predefined 

intermediate geographical points on a given route, similar to the concept of this 

dissertation. Following the planned strategy, the ego-car aims to arrive at the destination 

under a given constraint of travel time by saving energy consumption as much as 

possible. Other traffic (e.g., a preceding obstacle) was ignored in the simulation. 

The previous research [122] used a statistical driver model called “Move3F” to generate 

the human driver’s driving behaviors in the simulation environment. A total of 900 trips 

(300 trips in urban areas, 300 trips in extra-urban areas, and 300 trips on motorways) 

were simulated. After each trip, the Q-learning and DP algorithms were (re-)trained to 

plan a driving strategy with the highest quality.  

   

Figure 5.29: Performance Benchmark of Dynamic Programming (DP) and Q-learning (learning rate: 

0.001, discount factor: 0.001) for Extra-Urban Areas [122] 

Figure 5.29 shows an overview of the evaluation results for the test scenario of extra-

urban areas. The left-side figure indicates that either the Q-learning or the DP algorithm 

guaranteed the fulfillment of the timing constraint, which was taken as the human driver’s 

average travel time. The figure on the right shows that the ego-car could also save 

energy consumption by relying on the planned driving strategy. For the extra-urban 

scenario, almost 9.8% of the energy consumption can be saved using DP compared to 
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the driver’s average profile. However, the Q-learning algorithm's saving potential is up 

to 16.5%, namely 6.7% higher than the DP algorithm. 

Similar evaluation results were also found for the test scenarios of urban areas and 

motorways. Ater 300 learning iterations, the DP algorithm achieved an energy-saving 

potential of nearly 20% (cf. Figure 5.30, the blue line in the left-side figure) in the urban 

scenario. Compared to the DP algorithm, the Q-learning algorithm achieved a higher 

saving potential of 26%. In the motorway test scenario, the Q-learning algorithm also 

achieved a higher potential of 11% for saving energy consumption than the DP (6.5%). 

    

Figure 5.30: Performance Benchmark of Dynamic Programming (DP) and Q-learning (learning rate: 

0.001, discount factor: 0.001) for Urban Areas and Motorways [122] 

Evaluation results in previous research [122] indicated that the Q-learning algorithm is 

meaningful for planning the driving strategy with great optimization potential. Thus, this 

dissertation has used Q-learning again in the ACCC since one of its core functionalities 

is designed to plan the driver-preferred optimized driving strategy. The only difference 

compared to the previous research is that the cost function for the optimization process 

has changed. The same cost function introduced in Section 5.6.1 (cf. Equations (5.3)–

(5.7)) was used in the Q-learning algorithm. 

5.6.4.2 Performance in Predicting Preceding Car’s Behaviors by Kernel Density 

Estimator (KDE) 

Similar to the case of Q-learning, the decision to apply KDE for predicting the preceding 

car’s driving behaviors in the ACCC is made based on another research work [70] as 

the basis of this dissertation. This previous research implemented four candidate 
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approaches: (1) KDE, (2) NARX (recurrent neural network), (3) clustering of driving 

styles with polynomial approximation, and (4) clustering of driving styles with the 

average profile. 

For the candidate approaches (3) and (4), the recorded driving behaviors consisting of 

location-based speed trajectories of the preceding cars are firstly categorized into three 

classes using the ML-based clustering algorithm k-means, as illustrated on the left side 

of Figure 5.31 (green, red, and blue). The categorized speed profiles in each class can 

further be processed to determine a standard profile, which can subsequently be used 

for speed prediction. For example, in approach (4), all included speed profiles were used 

to derive an average speed profile. Instead, approach (3) used the polynomial 

approximation to derive the standard profile, as illustrated on the right side of Figure 

5.31. During prediction, it is required to classify which category the current detected 

preceding car belongs to and thus decide which standard profile should be used to 

derive the future speed of the preceding car. 

  

Figure 5.31: Clustering of Preceding Car Behaviors with k-means (left-side) and Polynomial 

Approximation and Average Profile (right-side) [70] 

Unlike approaches (3) and (4), approaches (1) and (2) rely on a learned model of the 

preceding car’s behaviors. In approach (2), a neural network (input: the preceding car’s 

speed for previous route points, output: the preceding car’s speed for the next route 

point) is trained based on the recorded speed data. In approach (1), the statistical 

density model is built based on the KDE algorithm. This dissertation will not introduce 

more details since detailed concepts have been published in previous research papers 

[71]. As illustrated in Figure 5.31, all approaches aim to predict a location-based speed 

trajectory. The locations are again determined by a sequence of predefined route points. 
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Figure 5.32: Performance of Candidate Approaches for One-Step Prediction of Preceding Car’s Driving 

Behaviors [70] 

Another point that needs to be emphasized is that the KDE algorithm considers three 

influencing factors (the preceding car’s current acceleration, previous speed, and 

current speed) to predict future speed for the following route point. However, this 

dissertation reduces implementation complexity by using only one influencing factor: the 

preceding car’s current speed. The evaluation results of the previous research [70] 

showed that the KDE has a better prediction performance than the other candidate 

approaches. It has significantly fewer predicted speed deviations in one-step prediction 

(i.e., predicting the preceding car’s speed for a single following route point) than others. 

 

Figure 5.33: Performance of Candidate Prediction Approaches with Multiple Step Sizes of Prediction [70] 

In addition, a benchmark of multi-step prediction was also performed in the previous 

research work. The results showed that the deviations increase along with the increasing 
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prediction horizon. However, the KDE still showed a great performance in the task of 

multi-step prediction, as illustrated in Figure 5.3320. For this reason, KDE was chosen 

as the prediction approach implemented in the ACCC of this dissertation for predicting 

the preceding car’s speed. 

5.6.4.3 Performance Benchmark between the Human Driver Model, ACC, and ACCC 

After introducing the separate performance evaluation of the applied machine learning 

algorithms in the previous research works, the performance of the overall ACCC will be 

introduced in this section. As introduced in Figure 5.28, the ACCC’s evaluation is 

completed based on a simulation of 600 trips on the federal highway B241 between the 

city Clausthal-Zellerfeld (CLZ) and Goslar (GS) in Germany (300 trips from CLZ to GS, 

300 trips from GS to CLZ). Depending on the directions of the trips, they are named 

“GS2CLZ” and “CLZ2GS”. 

          

Figure 5.34: Learning of High-level Average Driver Profile in ACCC for the Trip “CLZ2GS” 

Along with the simulation of these 600 trips, the ACCC learns the driver’s average trip 

profiles. Figure 5.34 shows an example of this learning process, considering the 300 

trips from CLZ to GS. The figure indicates that the initialized high average energy 

 
20 The black line without a label is the average deviation considering predicted speed profiles using all 
candidate approaches. 
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consumption and average travel time converged along with the learning iterations. Since 

the 50th trip, the average profiles begin to remain within a quite stable value range. 

In addition to learning the driver’s average profile, the ACCC is also designed to take 

over the ego-car’s longitudinal control and guide it to the destination considering its 

planned optimized driving strategy and predicted preceding car’s behaviors. After the 

simulation of all 600 trips, the qualities of performed strategies by the human driver 

model, the classical ACC, and the ACCC are quantitatively calculated with the help of 

the cost function introduced in Section 5.6.1 (cf. 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 in Equation (5.3)). 

The calculated final quality of the performed strategies is illustrated in Figure 5.35. It is 

indicated that the quality of all performed strategies was reduced during the simulation 

of the first 50 trips. Such a phenomenon arises because the high-level driver’s average 

profile, taken as the set travel profile for the ACCC, has changed significantly due to the 

learning process illustrated in Figure 5.34. 

   

  Figure 5.35: Quality Benchmark of Manual Driver, classical ACC, and ACCC for the Trip CLZ2GS (left 

side) and CLZ2GS (right side) 

After that, the quality of the performed strategies performed by the human driver model, 

the classical ACC, and the ACCC changed due to the nondeterministic property of traffic 

simulation. However, the changes converge and stay within limited value ranges. For 

the trip “CLZ2GS”, although the ACCC does not always realize a better-qualified driving 

strategy than the human driver and the classical ACC, it still has a clear potential for 

optimizing the driving strategy’s quality. Compared to the human driver model and the 

classical ACC, the ACCC has achieved a better quality for around 35.2% of 300 trips. 
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The average quality of the human driver model and the classical ACC is quite similar: 

around 112.1 and 112.9. Instead, the average quality of the ACCC is lower than the 

others (around 100.2). However, for the trip “GS2CLZ”, the ACCC shows a significantly 

better quality profile than the human driver and the classical ACC (for around 98.5% of 

300 trips). In this case, the average quality of the human driver and the classical ACC is 

around 111.2 and 72.9. Compared to them, the average quality of the ACCC is much 

higher and around 128.5.  

Based on the discovery above, the proposed hypotheses summarized in Section 5.6.1 

can be confirmed. The implemented ACCC can realize a higher performance quality of 

longitudinal control than the classical ACC and the human driver’s manual driving. 

Although the evaluation results for the trip “CLZ2GS” are not idealized, it does not mean 

that the ACCC works definitively worse than the classical ACC and the human driver. 

Since the ACCC is designed as a self-learning system, the illustrated potential of 

increasing the quality of longitudinal control has still not reached its limitation. By 

learning more diversified profiles of the human driver’s manual driving, the quality of the 

ACCC’s performed control strategy may further increase. However, such a plan requires 

a more comprehensive data recording for the human driver’s driving behaviors and is 

thus excluded from this dissertation's evaluation. 

5.7 Summary 

After evaluating the generalization capability of the proposed generic architecture style, 

it is meaningful to evaluate its feasibility in concrete applications. For this purpose, a 

further ACC variant called artificial cognitive cruise control (ACCC) is designed and 

implemented in this dissertation. This chapter focuses on the introduction to the ACCC. 

First, some preliminary ideas about the system design of the ACCC were introduced in 

this chapter. Subsequently, the generic architecture style was applied to instantiate a 

system architecture. Subsystems like the physical system, the route-based adaptation 

unit, the route-segment-based adaptation unit, and the cycle-time-based control unit 

included in the system architecture were presented in detail. Different generic 

communication patterns are allocated to appropriate use cases to evaluate the dynamic 

system behaviors. 
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The designed ACCC was also implemented as a simplified prototype in this dissertation. 

The implemented prototype is subsequently evaluated within a co-simulation 

environment based on an anonymous human driver's previously recorded driving data. 

A benchmark compared to the classical ACC and the human driver was also included 

and introduced in this chapter. The benchmark results showed that the ACCC could 

learn and fulfill the driving preferences of the human driver. Compared to the standard 

ACC and the human driver, there is a significant performance improvement in satisfying 

the driving preferences of the human driver. 

Since the driver during the ACC’s operation is still required to participate in the driving 

task by steering the car, such a concept can massively increase the driver’s reliance on 

the ACC and the performance of the overall semi-automated driving. In a more general 

sense, the concept of ACCC makes the driver more able to take over vehicle control in 

urgent cases that the (semi-)automated system cannot handle. Thus, the concept of 

such a driver-individual self-learning system may also be meaningful in developing the 

autonomous driving system with an automation level of L3+. 
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6 Conclusion 

Chapter 6 aims to conclude the whole dissertation. A summary of the dissertation will 

first be first provided. Limitations of the dissertation are then discussed, identifying 

concrete pain points, and, if necessary, presenting corresponding potential approaches 

to eliminate them. Since this dissertation can inspire and contribute to far future work in 

other research directions, recommendations for future research are also included at the 

end of this chapter. 

6.1 Summary of this Dissertation 

This dissertation addresses the current problems and challenges in designing automatic 

control systems. Automatic control is a well-known technology applied almost 

everywhere. The automated control mechanisms behind automatic control systems 

have also progressively evolved from relying on traditional pure mechanical control 

elements to combining the mechanical with increasing numbers of electronic/electric 

control elements and accompanying software implementations. The complexity of 

automatic control systems grows along with expected increases in autonomy and 

adaptability to work appropriately under diversified operation conditions. 

This dissertation has systematically reviewed the current concepts of automatic control 

systems based on concrete examples of the current ACC variants. This review has 

analyzed the architectures of different automatic control systems from the control theory 

viewpoint. A taxonomy of these concepts was identified in the dissertation. Additionally, 

a functional vision of the future ACC variants was postulated to derive issues facing the 

current concepts, covering two perspectives: (1) missing knowledge acquisition and 

adaptation and (2) limited system scalability against fixed boundary conditions (cf. 

Section 3.6). Since the current system architecture design approaches reached limits to 

the elimination of the previously mentioned issues, this dissertation focused on 

improving the architecture design of automatic control systems.  

Along with integrating more complicated algorithms on higher levels of abstraction and 

their accompanying required computation mechanisms, automatic control systems are 

becoming so-called cyber-physical systems with heterogeneous computation 
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mechanisms. Additionally, they are acquiring properties of other software-intensive 

systems like the self-adaptive system from the research field of software engineering. 

Thus, this dissertation has focused on the architecture design of future automatic control 

systems designed as so-called self-adaptive cyber-physical systems. A new concept for 

such future automatic control systems called artificial cognitive control is defined in this 

dissertation to extend the previously mentioned taxonomy. 

Against such a background, this dissertation has combined control theory and software 

engineering approaches and developed a generic architecture style for automatic 

control systems. The developed architecture style can be used to design different 

automatic control systems for diverse applications. A fundamental component structure 

with static construction is designed. Each fundamental component structure represents 

a node. Thus, an arbitrary networked system architecture can be constructed by 

connecting multiple nodes, following the design principle of so-called structural 

adaptation composition. The networked system architecture can be instantiated in more 

concrete examples like system architecture with multiple hierarchies. The generic 

architecture style also supports the application of different triggering mechanisms and 

generic communication patterns and paradigms. 

In this dissertation, the current concepts of automatic control systems are used to 

evaluate the generalization capability of the developed generic architecture style. For 

this purpose, the derived logical architectures for the current automatic control systems 

are compared with architectures from the control theory viewpoint that focus more on 

control flow than system construction with components and accompanying responsibility 

assignment.  

A concrete prototype called artificial cognitive cruise control (ACCC) was designed 

following the generic architecture style to evaluate the architecture style’s feasibility. The 

previously mentioned issues regarding knowledge acquisition and adaptation and the 

limited system scalability are overcome by ACCC. Unlike current ACC variants on the 

market, ACCC learns the driving preferences of a single individual driver and satisfies 

this driver instead of satisfying different drivers simultaneously. In addition, it also has a 

memory ability to remember the previously experienced environmental driving context 

during the trip and learn the context as its experience.  
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Based on the evaluation results, ACCC has significantly improved performance 

compared to the human driver and the standard ACC on the market. It is emphasized 

that certain features of the ACCC are simplified to reduce the implementation complexity 

of this dissertation. For example, this dissertation only considers the preceding car as 

an example of the driving context. The implemented ACCC prototype can still be 

extended in the future, relying on the generic architecture style’s benefit of great system 

scalability. 

6.2 Limitations of this Dissertation 

In this dissertation, the proposed generic architecture style has massively improved the 

architecture design of complicated automatic control systems in the future. In addition, 

the designed ACCC as a further ACC variant has shown significant performance 

improvement over the current ACC variant. However, there are always limitations in 

research work, which is also the case in this dissertation. In the following sections, the 

limitations of this dissertation will be discussed from different perspectives.  

6.2.1 Limited Separation of Concerns in Knowledge Component of the Generic 

Architecture Style 

The first limitation of this dissertation refers to the limited separation of concerns in the 

knowledge component (“K*”) of the fundamental component structure defined in the 

generic architecture style. The generic architecture style derives a system architecture 

consisting of multiple networked nodes, each of which includes a fundamental 

component structure (cf. Section 4.2). In the fundamental component structure, the 

knowledge component is defined as a knowledge repository for storing the domain 

knowledge like the symptom, which includes structured data about observed facts of the 

physical system. As introduced earlier, the knowledge component is required by the 

other four components (“S*”, “C*”, “A*”, and “I*”). In this sense, the knowledge 

component can be implemented as a reactive database or knowledge base that other 

components can access to fetch the required data or knowledge with an appropriate 

representation format. 
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However, the knowledge component also communicates other components by pushing 

domain knowledge to them, considering UC2 and UC4 from another perspective. In this 

case, the knowledge component remains proactive and triggers the communication itself. 

In this sense, the knowledge component plays the role of a knowledge management 

system responsible for knowledge synchronization across the overall fundamental 

component structure.  

Based on the understanding above, it is clear that the knowledge component is currently 

designed as a single centralized point responsible for diversified knowledge-relevant 

processes. Such a design concept would make the responsibility assignment unclear 

and thus violate the general architecture design principle of separation of concerns. A 

concrete example can be found once the blackboard pattern is applied within UC4. 

Suppose the interpreting component cannot identify the current problem and requests 

support from the knowledge component. In such a case, the knowledge component (“K*”) 

forwards the request to other knowledge components (“K*+1”, “K*-1”) in neighbor nodes 

and asks for their support. Thus, the knowledge component that requests the support 

plays two different roles of controller and blackboard simultaneously in the backboard 

pattern (cf. Figure 5.14). Such an unfavorable responsibility assignment makes the 

communication between the components more complicated. 

In this dissertation, all knowledge-relevant responsibilities like storage and management 

are assigned to a single component. Following the concept of separation of concerns in 

software architecture design, these responsibilities may need to be separated in the 

future. For example, knowledge storage and management can be assigned to two 

different components. These two components must not be designed on the same level 

of abstraction as the components in the fundamental component structure. Instead, they 

could also be the subcomponents of the knowledge components. Thus, the case where 

a single component plays multiple roles simultaneously in the blackboard pattern can be 

eliminated. Generally, there is still great potential to further develop the presented 

generic architecture style. 
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6.2.2 Missing Impact Investigation on Applying Communication Architecture Pattern 

Another limitation of this dissertation is applying generic communication architecture 

patterns and their underlying communication paradigms, as introduced in Section 4.2.5. 

In this dissertation, the choice of an appropriate generic communication architecture 

pattern for a certain use case (UC) is not limited in the current design of the generic 

architecture style. The developers must consider the requirements and constraints of 

their specific applications and decide the appropriate communication paradigm with the 

consideration of corresponding boundary conditions. However, different communication 

paradigms due to their features may also influence the final performance of an automatic 

control system. Thus, an impact investigation on applying communication architecture 

patterns and accompanying underlying paradigms is still missing.  

Against such a background, it may be meaningful to perform a comprehensive case 

study to achieve such a target. Different applications of automatic control systems could 

be investigated and categorized, considering their boundary conditions, requirements, 

and constraints in the use cases. From another perspective, the features of the 

communication patterns and their underlying communication paradigms, including 

advantages and disadvantages, may also be analyzed. Thus, an allocation between the 

communication problems and accompanying solutions might be found and serve as a 

template solution. Thus, the developers can easily identify an appropriate 

communication pattern and apply it to design automatic control systems for concrete 

use cases. 

6.2.3 Uncomprehensive Evaluation of Generic Architecture Style 

In this dissertation, the generalization capability and feasibility of the generic architecture 

style are empirically evaluated. For example, the logical architectures derived from the 

architecture style are compared with accompanying architectures of current automatic 

control systems from the control theory viewpoint to check the architectural consistency. 

In addition, the architecture style is also applied to design the ACCC that serves as an 

empirical prototype to evaluate the feasibility of the architecture style. 

Although this dissertation has empirically evaluated the generic architecture style, a 

more comprehensive evaluation can still be planned in the future. For example, the well-
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known architecture tradeoff analysis method (ATAM) [59], designed to help determine 

an appropriate software system architecture by focusing on risks and sensitive pain 

points, may be helpful for a comprehensive evaluation.  

In addition to applying standard methods to evaluate the architecture pattern, it may also 

be meaningful to evaluate the architecture style in more different applications. The ACC 

and its variants are taken as the main application examples in this dissertation. However, 

in reality, there are thousands of different applications requiring automatic control 

systems. Due to the diversity of these applications, it may also be helpful to evaluate the 

architecture style in applications with completely different boundary conditions to 

increase the plausibility of the evaluation results. 

6.2.4 Missing Extensive Evaluation of Artificial Cognitive Cruise Control 

The final limitation of this dissertation deals with the evaluation of the ACCC. As 

introduced in Section 5.6, the ACCC is designed as an advanced driver assistance 

system (ADAS) deployed on the vehicle. In this dissertation, the evaluation of the ACCC 

is completed within a co-simulation environment. Although fundamental functionalities 

of the ACCC have been evaluated, non-functional performance (e.g., against timing 

constraints) is still unknown. Thus, as a potential improvement in the future, a more 

extensive evaluation of the ACCC could be performed in reality. 

For this purpose, the implemented system must be deployed on a real car or a 

comparable physical prototype environment. As introduced in Section 5.5, some code 

is currently implemented with programming language Python, which does not have great 

timing performance for real-life applications. Thus, the implementation still needs to be 

revised considering timing performance. 

Another potential improvement for the evaluation deals with applying generic 

communication patterns and underlying paradigms. As is well known, the performance 

of different communication patterns cannot be evaluated well within a simulation 

environment since the boundary conditions in the simulation are not comparable with 

reality. Thus, an intensive evaluation of different communication patterns’ influences on 

the ACCC’s final performance could also be meaningful in future work. 
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6.3 Recommendation for Future Research 

In the previous section, the limitations of this dissertation are introduced. Suggestions 

for further improvements to eliminate their limitations were also proposed. In addition to 

the limitations, this dissertation can also guide further research work in different 

directions. For this purpose, some recommendations with potential future research 

directions are identified in this section. 

6.3.1 Architecture Design from the Viewpoint of Multi-Agent Systems 

In this dissertation, the developed generic architecture style focuses on designing an 

automatic control system with a networked architecture consisting of a set of nodes. 

Each node includes a fundamental component structure comprising several standard 

components (“SICAP-K”). The connections of nodes are built following the design 

principle of structural adaptation composition, considering the node level of the overall 

architecture. It means that for every two connected nodes, there is always a “manager 

node” and a “managed node”, and the “manager node” is able to adapt the “managed 

node”. 

In this dissertation, the design of the generic architecture style relies on software 

engineering approaches for the self-adaptive system. In other words, the architecture 

design focuses especially on the perspective of adaptation between nodes. Each node 

has a complete fundamental component structure, which means that it can work 

independently. Thus, each node can be seen as an independent subsystem in the 

overall system. They cooperate mutually to complete the overall control task. Thus, it is 

indicated that automatic control systems with such networked architectures acquire 

similar features as so-called multi-agent systems [107] [108].  

With this understanding in mind, the design of nodes and their relationships could be 

diversified. The automatic control systems with networked architectures would acquire 

the properties of distributed artificial intelligence. For example, notions like deliberative 

and reactive agents or passive, active and cognitive agents have been proposed in 

related works of distributed artificial intelligence [96][128], and these can be applied in 

the future design of automatic control systems. Instead of only focusing on adaptation, 

the roles of nodes and their relationships can be designed differently. Thus, a meaningful 
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research direction for this dissertation in the future is combining software engineering 

approaches regarding multi-agent systems and control theory to further develop the 

generic architecture style. 

6.3.2 Heterogeneous Knowledge Acquisition and Adaptation 

The final recommendation for future research deals with the update process of domain 

knowledge. As presented earlier, the domain knowledge in the generic architecture style 

needs to be described in an appropriate uniform representation format. In this 

dissertation, only the case of homogenous domain knowledge is considered (cf. Section 

2.2.7.4). This means that the knowledge representation and the allocations between the 

notions and their underlying meanings are specified in advance and remain static. 

However, in reality, automatic control systems are increasingly relying on system 

connectivity. The systems would acquire high-level domain knowledge (e.g., by relying 

on linguistic methods direct from external domains). In this case, there is no guarantee 

that the knowledge representations and the allocations will always remain the same. 

Suppose the acquired domain knowledge is described in another format, or the same 

meaning is described with unknown notions. In such a case, identifying the underlying 

meaning and integrating the received knowledge on a higher semantic level into the 

system’s knowledge base is still a great challenge for designing the automatic control 

system. Thus, heterogeneous knowledge acquisition and adaptation may be another 

meaningful research direction for future automatic control systems. 

Fortunately, such high-level semantic fusion of heterogeneous knowledge is not a 

complete novelty in computer science. In web applications, the topic of integrating 

human knowledge represented by different natural languages is very common. Different 

mature approaches for so-called knowledge fusion based on the technologies such as 

ontology have been proposed [130][131]. In the future, it may be meaningful to integrate 

the capability of heterogeneous knowledge fusion into automatic control systems. Such 

a capability would particularly benefit the research work of the multi-agent system to 

realize a high-level distributed artificial intelligence. 
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Appendix 

A.1 Detailed View of Route-Based Adaptation Unit in Artificial Cognitive 
Cruise Control 
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A.2 Detailed View of Route-Segment-Based Adaptation Unit in Artificial 
Cognitive Cruise Control 
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A.3 Detailed View of Cycle-Time-Based Control Unit in Artificial Cognitive 
Cruise Control 
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