
A Generic Architecture Style for
Self-Adaptive Cyber-Physical

Systems

Doctoral Thesis
(Dissertation)

to be awarded the degree of

Doctor of Engineering
(Dr.-Ing.)

submitted by

Meng Zhang
from Hefei, China

approved by
the Faculty of Mathematics/Computer Science and Mechanical Engineering,

Technische Universität Clausthal

Date of Oral Examination: March 1, 2023

Dissertation Clausthal, ISSE-Dissertation 26, 2023

Chairperson of the Board of Examiners

Prof. Dr. Thorsten Grosch

Chief Reviewer

Prof. Dr. Andreas Rausch

2. Reviewer

Prof. Dr.-Ing. Gert Bikker

3. Reviewer

Prof. Dr. Christian Siemers

To my parents

I

Acknowledgment

Throughout the writing of this dissertation, I have received a great deal of support and

assistance.

I would first like to thank my supervisor, Prof. Dr. Andreas Rausch, whose expertise was

invaluable in formulating the research questions and methodology. Additionally, I would

like to thank the other supervisors, Prof. Dr.-Ing. Gert Bikker and Prof. Dr. Christian

Siemers, for the patient support and feedback about this dissertation. Insightful feedback

from both of you pushed me to sharpen my thinking and brought my work to a higher

level.

In addition, I would like to thank my parents for their wise counsel and sympathetic ear,

particularly for their continuous support and understanding when undertaking my

research and writing my dissertation. Your understanding was what sustained me this

far.

I could not have completed this dissertation without my dear former and current

colleagues at the institute like Mirco Schindler, Dirk Kluge, Marco Körner, Jörg Grieser,

Tim Warnecke, Karina Rehfeldt, Peter Engel, and Andreas Vorwald. They provided

stimulating discussions and happy distractions to rest my mind outside of my research.

Finally, I would like to thank all other colleagues, who have not been listed in previous

sections, but always ensured a pleasant working time and supported me with advice

and contributions during the preparation of this dissertation.

Clausthal-Zellerfeld, March 1, 2023 Meng Zhang

III

Abstract

Current concepts of designing automatic control systems rely on dynamic behavioral

modeling by using mathematical approaches like differential equations to derive

corresponding functions [1], and slowly reach limitations due to increasing system

complexity. Along with the development of these concepts [1]–[5], an architectural

evolution of automatic control systems is raised.

This dissertation defines a taxonomy to illustrate the aforementioned architectural

evolution relying on a typical example of control application: adaptive cruise control

(ACC). Current ACC variants, with their architectures considering control theory, are

analyzed. The analysis results indicate that the future automatic control system in ACC

requires more substantial self-adaptation capability and scalability. For this purpose,

more complicated algorithms requiring different computation mechanisms must be

integrated into the system and further increase system complexity. This makes the future

automatic control system evolve into a self-adaptive cyber-physical system and

constitutes significant challenges for the system’s architecture design.

Inspired by software engineering approaches for designing architectures of software-

intensive systems, a generic architecture style is proposed. The proposed architecture

style serves as a template by following the developed design principle to construct

networked architectures not only for the current automatic control systems but also for

self-adaptive cyber-physical systems in the future. Different triggering mechanisms and

communication paradigms for designing dynamic behaviors are applicable in the

networked architecture.

To evaluate feasibility of the architecture style, current ACCs are retaken to derive

corresponding logical architectures and examine architectural consistency compared to

the previous architectures considering the control theory (e.g., in the form of block

diagrams). By applying the proposed generic architecture style, an artificial cognitive

cruise control (ACCC) is designed, implemented, and evaluated as a future ACC in this

dissertation. The evaluation results show significant performance improvements in the

ACCC compared to the human driver and current ACC variants.

 V

Table of Contents

ACKNOWLEDGMENT .. I

ABSTRACT .. III

TABLE OF CONTENTS .. V

LIST OF FIGURES ... XI

LIST OF TABLES ... XVII

USED ABBREVIATIONS ... XIX

1 INTRODUCTION ... 1

1.1 MOTIVATION .. 1

1.2 OBJECTIVES OF THIS DISSERTATION.. 4

1.3 CONTRIBUTIONS OF THIS DISSERTATION .. 5

1.4 CONTENT AND STRUCTURE .. 6

2 STATE OF THE ART .. 9

2.1 CONTROL THEORY ... 9

2.1.1 Basic Control ... 10

2.1.2 Optimal and Adaptive Control .. 14

2.1.3 Self-Optimization Control .. 17

2.2 ARCHITECTURE DESIGN OF SOFTWARE-INTENSIVE SYSTEMS 23

2.2.1 Tree-Structured Architecture of Saridis ... 24

2.2.2 NASREM Reference Model for Telerobot Control System Architecture . 25

2.2.3 Nested Hierarchical Architecture of Meystel .. 28

2.2.4 Behavior-Based Subsumption Architecture of Brooks 30

2.2.5 LAAS Architecture of Alami ... 31

2.2.6 Hybrid Control Architecture of Yavuz and Bradshaw 33

2.2.7 IBM’s MAPE-K for Autonomic Computing .. 37

VI

2.2.8 DYNAMICO Reference Model ... 48

2.3 GENERIC COMMUNICATION ARCHITECTURE PATTERNS 53

2.3.1 Request-Response Pattern ... 54

2.3.2 Publish-Subscribe Pattern ... 57

2.3.3 Pipes-and-Filters Pattern ... 59

2.3.4 Shared-Repository Pattern .. 62

2.3.5 Blackboard Pattern .. 63

2.4 APPLIED AI-BASED TECHNOLOGIES IN THIS DISSERTATION 64

2.4.1 Q-Learning .. 65

2.4.2 Kernel Density Estimator ... 66

2.5 SUMMARY .. 68

3 CASE STUDY: ARCHITECTURE EVOLUTION OF AUTOMATIC CONTROL
WITHIN THE EXAMPLE OF ADAPTIVE CRUISE CONTROL 69

3.1 BASIC CONTROL IN ACC .. 69

3.2 NAIVE ADAPTIVE CONTROL IN ACC ... 73

3.3 CONTROLLED-PLANT-DEPENDENT ADAPTIVE CONTROL IN ACC 76

3.4 PHYSICAL-SYSTEM-DEPENDENT ADAPTIVE CONTROL IN ACC 80

3.5 FUNCTIONAL VISION OF FUTURE ACCS ... 83

3.5.1 Personalized ACC by Learning Individual Driver Preferences 84

3.5.2 Experience-Dependent ACC by Learning Historical Context of Driving

Environment .. 86

3.6 OPENING ISSUES OF CURRENT CONTROL CONCEPTS FOR FUTURE ACCS IN THE

FUNCTIONAL VISION ... 87

3.6.1 Missing Knowledge Acquisition and Adaptation 88

3.6.2 Limited System Scalability against Fixed Boundary Conditions 91

3.7 CHALLENGES FOR ARCHITECTURE DESIGN OF FUTURE CONTROL SYSTEMS 94

3.7.1 Current Design of Hierarchical Control System Architecture 94

3.7.2 Limitations of Knowledge Decoupling Approach in Current Design 96

3.7.3 A Vision of Architecture Design for Future Control Systems 97

3.8 SUMMARY: FUTURE AUTOMATIC CONTROL—ARTIFICIAL COGNITIVE CONTROL 100

 VII

4 A GENERIC ARCHITECTURE STYLE FOR DESIGNING AUTOMATIC
CONTROL SYSTEMS .. 105

4.1 CONTROL THEORY MEETS SOFTWARE ENGINEERING 105

4.2 FUNDAMENTAL DESIGN OF GENERIC ARCHITECTURE STYLE 107

4.2.1 Preliminaries of the Design of the Generic Architecture Style 108

4.2.2 Fundamental Component Structure within Generic Architecture Style . 111

4.2.3 Structural Adaptation Composition in Generic Architecture Style 114

4.2.4 Applying Triggering Mechanisms for Nodes with Fundamental

Component Structure .. 120

4.2.5 Applying Communication Architecture Patterns for the Design of

Dynamic System Behaviors ... 121

4.2.6 Dynamic System Behaviors as Use Cases in Generic Architecture Style

 122

4.3 INSTANTIATION OF GENERIC ARCHITECTURE STYLE FOR DIFFERENT CONTROL

SYSTEMS ... 130

4.3.1 Basic Control following the Generic Architecture Style 130

4.3.2 Naive Adaptive Control following the Generic Architecture Style 132

4.3.3 Controlled-Plant-Dependent Adaptive Control following the Generic

Architecture Style .. 134

4.3.4 Physical-System-Dependent Adaptive Control following the Generic

Architecture Style .. 135

4.3.5 Artificial Cognitive Control following the Generic Architecture Style 137

4.4 SUMMARY .. 139

5 ARTIFICIAL COGNITIVE CRUISE CONTROL AS EXPERIMENTAL
APPLICATION OF GENERIC ARCHITECTURE STYLE ... 141

5.1 PRELIMINARY DESIGN OF ARTIFICIAL COGNITIVE CRUISE CONTROL 142

5.2 INSTANTIATION OF GENERIC ARCHITECTURE STYLE FOR ACCC SYSTEM

ARCHITECTURE: STATIC SYSTEM CONSTRUCTION .. 145

5.2.1 Physical System .. 146

5.2.2 Route-Based Adaptation Unit in the Technical System 149

5.2.3 Route-Segment-Based Adaptation Unit in the Technical System 152

5.2.4 Cycle-Time-Based Control Unit in the Technical System 157

VIII

5.3 INSTANTIATION OF GENERIC ARCHITECTURE STYLE FOR ACCC SYSTEM

ARCHITECTURE: DYNAMIC BEHAVIORS IN USE CASES (UCS) 160

5.3.1 Dynamic Behaviors of ACCC in UC1 ... 160

5.3.2 Dynamic Behaviors of ACCC in UC2 ... 163

5.3.3 Dynamic Behaviors of ACCC in UC3 ... 168

5.3.4 Dynamic Behaviors of ACCC in UC4 ... 172

5.4 APPLYING COMMUNICATION ARCHITECTURE PATTERNS FOR COMPONENT

INTERACTIONS IN ARTIFICIAL COGNITIVE CRUISE CONTROL....................................... 175

5.4.1 Publish-Subscribe Pattern for UC1 .. 176

5.4.2 Shared-Repository Pattern for UC2 ... 178

5.4.3 Request-Response Pattern for UC3 .. 179

5.4.4 Blackboard Pattern for UC4 ... 181

5.5 IMPLEMENTATION OF ARTIFICIAL COGNITIVE CRUISE CONTROL 183

5.5.1 Implementation Overview .. 183

5.5.2 Implemented Physical System .. 185

5.5.3 Route-Based Adaptation Unit (RAU) in Implemented Technical System

 192

5.5.4 Route-Segment-Based Adaptation Unit in Implemented Technical

System 199

5.5.5 Cycle-Time-Based Control Unit in Implemented Technical System 210

5.6 EVALUATION OF ARTIFICIAL COGNITIVE CRUISE CONTROL 214

5.6.1 Hypotheses ... 214

5.6.2 Alternative Candidate Approaches within the Benchmark 216

5.6.3 Evaluation Framework ... 219

5.6.4 Analysis ... 221

5.7 SUMMARY .. 228

6 CONCLUSION .. 231

6.1 SUMMARY OF THIS DISSERTATION ... 231

6.2 LIMITATIONS OF THIS DISSERTATION ... 233

6.2.1 Limited Separation of Concerns in Knowledge Component of the Generic

Architecture Style .. 233

 IX

6.2.2 Missing Impact Investigation on Applying Communication Architecture

Pattern 235

6.2.3 Uncomprehensive Evaluation of Generic Architecture Style 235

6.2.4 Missing Extensive Evaluation of Artificial Cognitive Cruise Control 236

6.3 RECOMMENDATION FOR FUTURE RESEARCH ... 237

6.3.1 Architecture Design from the Viewpoint of Multi-Agent Systems.......... 237

6.3.2 Heterogeneous Knowledge Acquisition and Adaptation 238

BIBLIOGRAPHY .. 239

APPENDIX ... 253

A.1 DETAILED VIEW OF ROUTE-BASED ADAPTATION UNIT IN ARTIFICIAL COGNITIVE

CRUISE CONTROL ... 253

A.2 DETAILED VIEW OF ROUTE-SEGMENT-BASED ADAPTATION UNIT IN ARTIFICIAL

COGNITIVE CRUISE CONTROL ... 254

A.3 DETAILED VIEW OF CYCLE-TIME-BASED CONTROL UNIT IN ARTIFICIAL COGNITIVE

CRUISE CONTROL ... 255

 XI

List of Figures

Figure 2.1: Exemplary Assignment of Automatic Control Systems to the Stage Model

and its Derived Categories [11] .. 10

Figure 2.2: Block Diagram of Fundamental Feedback Control Loop [11] 11

Figure 2.3: Block Diagram State-Space Control with State Observer [11] 14

Figure 2.4: Block Diagram of Model Predictive Control [11] .. 16

Figure 2.5: Block Diagram of Pareto-Optimal Control [11] .. 18

Figure 2.6: Determination of Reference Relative Weight αref (a) and Logic of Mode-

Switch (b) in Objective Space [11] .. 20

Figure 2.7: Tree-Structured Architecture of Saridis [1][2] .. 24

Figure 2.8: NASA/NBS Standard Reference Architecture for Telerobot Control System

[3] ... 26

Figure 2.9: Nested Hierarchical Architecture of Meystel [18][39][40] 29

Figure 2.10: Behavior-Based Layered Subsumption Architecture by Brooks [41] 30

Figure 2.11: Reference Structure of LAAS Architecture [43] 32

Figure 2.12: Hybrid Control Architecture for Mobile Robot [44] 34

Figure 2.13: The Autonomic Computing Adoption Model [46] 39

Figure 2.14: Reference Architecture of Autonomic Computing [46]............................. 41

Figure 2.15: Touchpoint as Interface Between Autonomic Managers and Managed

Resources [46] ... 43

Figure 2.16: Reference Architecture of Autonomic Managers Based on MAPE-K [46][50]

 ... 46

Figure 2.17: Classical Block Diagram of a Feedback Control System [51] 49

Figure 2.18: Fundamental Structure with General Components of DYNAMICO [51] ... 50

Figure 2.19: Three Levels of Dynamics in Context-Driven Self-Adaptive Software

Systems [51] .. 51

XII

Figure 2.20: DYNAMICO Reference Model with Controllers for the Three Levels of

Dynamics [51] .. 52

Figure 2.21: Taxonomy of Generic Communication Paradigms in Architecture Pattern

[48] ... 54

Figure 2.22: Process Flow of a Remote Computation through RPC [56] 55

Figure 2.23: Process Flow of Synchronized and Non-Synchronized RPC [56] 56

Figure 2.24: Architecture of Request-Response Pattern [59] 56

Figure 2.25: Architecture of Publish-Subscribe Pattern [58] .. 57

Figure 2.26: Architecture of Pipes-and-Filters Pattern [61] ... 61

Figure 2.27: Architecture of Shared-Repository Pattern [61][66] 62

Figure 2.28: Architecture of Blackboard Pattern [61] .. 64

Figure 2.29: General Process Flow of Reinforcement Learning [67] 65

Figure 2.30: Pseudo Code of Q-Learning — An Off-policy TD Control Algorithm [69] . 66

Figure 2.31: Sample Visualization of Probability Density in Kernel Density Estimator [70]

 ... 67

Figure 3.1: Basic Control Applied in ACC ... 70

Figure 3.2: Architectural Comparison of Basic Control and MAPE-K 72

Figure 3.3: Naive Adaptive Control Applied in ACC .. 73

Figure 3.4: Architectural Comparison of Naive Adaptive Control and MAPE-K 74

Figure 3.5: Controlled-Plant-Dependent Adaptive Control Applied in ACC 76

Figure 3.6: Architectural Comparison of Controlled-Plant-Dependent Adaptive Control

and MAPE-K .. 78

Figure 3.7: Physical-System-Dependent Adaptive Control Applied in ACC 80

Figure 3.8: Architectural Comparison of Physical-System-Dependent Adaptive Control

and MAPE-K .. 82

Figure 3.9: Evolution of Control Concepts Applied in Current ACC Variants 84

 XIII

Figure 3.10: Knowledge Coupling on Different Layers within Current Hierarchical

System Architecture Design [18][39][40] ... 95

Figure 3.11: Preliminary Idea of Multidimensional Networked Architecture for Future

Automatic Control ... 98

Figure 4.1: Fundamental Component Structure in Generic Architecture Style 112

Figure 4.2: Structural Paradigm of Adaptation Composition for Networked Architecture

of Future Control System .. 115

Figure 4.3: Coordination of Nodes’ Adaptation Composition in Networked System

Architecture .. 117

Figure 4.4: Component Interfaces within the Generic Architecture Style 122

Figure 4.5: Technical Process Control in a Single Node (UC1) 124

Figure 4.6: Knowledge Initialization, Retrieval, and Adaptation (UC2) 125

Figure 4.7: Adaptation Control across Multiple Nodes (UC3) 128

Figure 4.8: Knowledge Acquisition and Sharing across Multiple Nodes (UC4) 129

Figure 4.9: Instantiation of Architecture Pattern for Basic Control System 131

Figure 4.10: Instantiation of Architecture Pattern for Naive Adaptive Control 133

Figure 4.11: Instantiation of Architecture Pattern for Controlled-Plant-Dependent

Adaptive Control ... 135

Figure 4.12: Instantiation of Architecture Pattern for Physical-System-Dependent

Adaptive Control ... 136

Figure 4.13: Instantiation of Architecture Pattern for Two-layered Artificial Cognitive

Control System ... 138

Figure 5.1: Preliminary Design of Three-Layered Architecture of Artificial Cognitive

Cruise Control (ACCC) ... 144

Figure 5.2: Instantiated Architecture of Artificial Cognitive Cruise Control (ACCC) from

the Generic Architecture Style .. 146

Figure 5.3: Physical System in Artificial Cognitive Cruise Control 147

XIV

Figure 5.4: Route-Based Adaptation Unit in Artificial Cognitive Cruise Control (Detailed

View cf. Appendix A.1) ... 149

Figure 5.5: Route-Segment-Based Adaptation Unit in Artificial Cognitive Cruise Control

(Detailed View cf. Appendix A.2) .. 154

Figure 5.6: Cycle-Time-Based Control Unit in Artificial Cognitive Cruise Control (Detailed

View cf. Appendix A.3) ... 158

Figure 5.7: Component Interactions of ACCC in UC1 ... 162

Figure 5.8: Component Interactions of ACCC in UC2 ... 164

Figure 5.9: Component Interactions of ACCC in UC3 ... 169

Figure 5.10: Component Interactions of ACCC in UC4 ... 173

Figure 5.11: Component Roles within Interactions of UC1 .. 177

Figure 5.12: Component Roles within Interactions of UC2 .. 179

Figure 5.13: Component Roles within Interactions of UC3 .. 180

Figure 5.14: Component Roles within Interactions of UC4 .. 182

Figure 5.15: Overview of the Co-Simulation Platform in the Implementation of ACCC

Prototype .. 184

Figure 5.16: Human Driver’s Recorded Sample Driving Data with Location-based Speed

Profiles ... 186

Figure 5.17: SUMO-simulated Track (left) of Germany Federal Highway B241 (right)

 ... 188

Figure 5.18: Class Diagram for the Construction of BEV Model 189

Figure 5.19: Driving Dynamics Simulation in the BEV Model 190

Figure 5.20: Lithium-Ion Traction Battery Model Based on the Second Order Equivalent

Circuit Model [120] ... 191

Figure 5.21: Class Diagram for the Construction of Route-Based Adaptation Unit 193

Figure 5.22: Example of Learning the Human Driver’s High-Level Average Profile with

Multiple Learning Cycles .. 197

 XV

Figure 5.23: Class Diagram for the Construction of Route-Segment-Based Adaptation

Unit ... 200

Figure 5.24: Data Structure of the implemented Decision Trees in the RSAU of ACCC

 ... 203

Figure 5.25: Data Structure of the Implemented Preceding Car’s Behavioral Density

Distribution ... 205

Figure 5.26: State Machine Implemented in the Method

analyze_middle_level_symptom() of Driving Strategy Analyzer 207

Figure 5.27: Class Diagram for the Construction of Cycle-Time-Based Control Unit . 211

Figure 5.28: Process Flow of the Evaluation Work for the Performance Benchmark 220

Figure 5.29: Performance Benchmark of Dynamic Programming (DP) and Q-learning

(learning rate: 0.001, discount factor: 0.001) for Extra-Urban Areas [122] 222

Figure 5.30: Performance Benchmark of Dynamic Programming (DP) and Q-learning

(learning rate: 0.001, discount factor: 0.001) for Urban Areas and Motorways [122] . 223

Figure 5.31: Clustering of Preceding Car Behaviors with k-means (left-side) and

Polynomial Approximation and Average Profile (right-side) [70] 224

Figure 5.32: Performance of Candidate Approaches for One-Step Prediction of

Preceding Car’s Driving Behaviors [70] .. 225

Figure 5.33: Performance of Candidate Prediction Approaches with Multiple Step Sizes

of Prediction [70] .. 225

Figure 5.34: Learning of High-level Average Driver Profile in ACCC for the Trip “CLZ2GS”

 ... 226

Figure 5.35: Quality Benchmark of Manual Driver, classical ACC, and ACCC for the Trip

CLZ2GS (left side) and CLZ2GS (right side) .. 227

 XVII

List of Tables

Table 2.1: Autonomic Computing for Strengthening Self-X Properties [45] 38

Table 2.2: Knowledge Types in Knowledge Sources [46] ... 45

Table 5.1: Criteria and their Weights for Planning the Set Travel Profile and Middle-level

Driving Strategy .. 186

Table 5.2: Table of Physical Parameters in the BEV Model 191

Table 5.3: Defined Attributes of Domain Knowledge in the Class

DriverPreferenceKnowledge ... 194

Table 5.4: Defined Attributes of Domain Knowledge in the Class

DriverPreferenceKnowledge ... 201

Table 5.5: Variables and Their Meanings in the Equations of Intelligent Driver Model

(IDM) [127] ... 218

 XIX

Used Abbreviations

ACC Adaptive Cruise Control

ACCC Artificial Cognitive Cruise Control

ADAS Advanced Driver Assistance System

A-FL Adaptation Feedback Loop

AI Artificial Intelligence

BEV Battery Electric Vehicle

CLZ Clausthal-Zellerfeld

CO-FL Control Objectives Feedback Loop

CORBA Common Object Request Broker Architecture

CTCU Cycle-Time-based Control Unit

DAG Directed Acyclic Graph

DDS Data Distribution Service

DP Dynamic Programming

ECU Engine Control Unit

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

GS Goslar

HMI Human Machine Interfaces

ICE Internal Combustion Engine

IDM Intelligent Driver Model

IPDI Increasing Precision with Decreasing Intelligence

KDE Kernel Density Estimator

M-FL Monitoring Feedback Loop

XX

MIAC Model Identification Adaptive Control

MIMO Multiple-Input and Multiple-Output

ML Machine Learning

MPC Model Predictive Control

MQTT MQ Telemetry Transport

MRAC Model Reference Adaptive Control

NARX Nonlinear Autoregressive Network with Exogenous

NIST National Institute of Standard and Technology

OS Operating System

QoS Quality of Service

RAU Route-based Adaptation Unit

RL Reinforcement Learning

ROS Robot Operating System

RPC Remote Procedure Call

RSAU Route-Segment-based Adaptation Unit

SC Sensor of Controlled Variable

SE Sensor of Environment Variable

SISO Single-Input and Single-Output

SP Sensor of Controlled Plant

SR Sensor of Reference Variable

SU Sensor of User

SUMO Simulation of Urban Mobility

TD Temporal Difference

TraCI Traffic Control Interface

 Introduction

 1

1 Introduction

This chapter presents a short introduction to the whole dissertation. First, the motivation

behind the dissertation is presented. The objective of the dissertation is also included in

this chapter. Subsequently, the concrete contributions of the dissertation are

summarized. Finally, this chapter ends with the content and structure of the dissertation.

1.1 Motivation

Automatic control systems have been increasingly deployed in diverse applications

covering almost every area in daily life, ranging from an ordinary oven in the kitchen to

significant industrial devices like production machines and mobilities like cars and

drones [6]–[8]. Generally, the automatic control system is designed to fulfill predefined

control targets through automated control of dynamic technical processes, particularly

against different disturbances and influences from the surrounding system environment

[9].

Traditional design approaches to such automatic control systems, like classical and

modern control theory, rely on mathematical modeling using differential and state-space

equations to derive dynamic behavioral functions of the controlled technical processes

[10]. In such approaches, development engineers must have the explicit domain

knowledge to model the controlled processes at the design time. Thus, they can

parametrize a controller to keep it working as expected within a limited working range,

considering bounded uncertainties like environmental disturbances. After the system

design, the controller parametrization remains static at run time.

Due to the limited working range, static parametrization of the controller limits the control

system’s performance in diversified operating situations at run time, which hinders

system flexibility. Thus, the reconfigurable controller is applied to enable the system to

work appropriately in more diversified operational cases [9][11]. For this purpose, a

secondary control loop relying on the technology of variable monitoring is deployed on

top of the primary control loop to estimate the current situational context of the controlled

Introduction

2

processes and accordingly make decisions to adapt the controller parametrization at run

time [12].

However, the diversity required in the operational cases of automatic control systems is

still increasing. Rapidly developing sensor technologies increase context data for the

controlled technical processes, and accompanying complicated algorithms for data

interpretation on higher levels of abstraction are integrated into the secondary control

loop to make the system operate appropriately in diversified operating situations [13][14].

In this sense, the complexity of automatic control systems is increasing continuously.

Such a development trend constitutes significant challenges for the design of automatic

control systems. As discussed earlier, the field of control theory initially focuses on the

control flow of dynamic processes. With this idea in mind, system design focuses on the

conception of a pure embedded system, and takes scheduling for fulfilling real-time

interaction with the physical world as the most crucial constraint. Thus, required real-

time interaction with the system’s surrounding physical world generates a hard timing

constraint for the cycle time of the whole control loop. All system parts on the control

loop perform under the consideration of this timing constraint. This constraint may

become a bottleneck that limits the complexity of the system during the overall system

design.

For example, it may conflict with the high complexity of the previously mentioned

complicated algorithms due to their long (and even possibly non-deterministic)

computation time. Thus, a tradeoff between algorithm complexity and the required cycle

time to guarantee reliable system scheduling must be considered while designing the

system. Along with the increasing system complexity in the future, such tradeoffs will

increasingly arise in system design and become much more difficult to manage. Thus,

traditional design approaches of control theory that primarily focus on modeling the

controlled technical processes to derive dynamic behavioral functions with mathematical

equations have reached their limitations.

Against such a background, system architecture design from the software engineering

research field that considers system construction and makes the software-intensive

system’s complexity manageable, becomes crucial [15]. Unlike control theory, software

engineering focuses on organizing fundamental software building blocks, including their

 Introduction

 3

functionalities and behavioral interactions in an overall system architecture [16][17].

Instead of a simplified superposition of the primary and secondary control loops,

hierarchical architectures with multiple layers are proposed [2][15][18][19]. These

architectures roughly derive an implicit design paradigm about the responsibility

assignment of different hierarchical layers. However, a generic concept of architecture

design on a higher meta-level that can be applied to systematically design different kinds

of automatic control systems with high complexity is still missing.

Without such a generic concept, the architecture design of automatic control systems

with increasing complexity is becoming more challenging. Integrating algorithms with

high complexity (e.g., by using heuristic, linguistic, or artificial intelligence (AI)

approaches) would deteriorate the system's scheduling issues. In addition, such

integration may make the system include heterogeneous parts with different expected

computation mechanisms. Thus, the automatic control system evolves from a pure

embedded system into a so-called cyber-physical system with a hybrid construction

[20][21]. A typical cyber-physical system is a vehicle’s autonomous driving system [22].

It includes the system parts with interpretation on a high semantic level like perception

and decision-making. But it also includes system parts processing on a low data level,

like real-time feedback control [23]. Along with further development in the future, the

requirements of such cyber-physical systems with higher complexity will increase more

progressively than in the past.

The evolution of the automatic control system as the cyber-physical system causes the

system to acquire features of other software-intensive systems [15] (e.g., the self-

adaptive system with a so-called self-adaptation capability established by the software

engineering field [24][25]). In this sense, it can be said that control theory and software

engineering are converging due to the similarity of their investigated systems’ features

(cf. Section 4.1). Such a background motivates the reconsideration of the architecture

design concept of automatic control systems from the view of software engineering,

particularly in the case of future self-adaptive cyber-physical systems. Thus, the system

architecture design can benefit from mature software engineering approaches for the

architecture design of software-intensive systems.

Introduction

4

1.2 Objectives of this Dissertation

As discussed in the previous section, system architecture design will become a

meaningful and increasingly important research topic in the future. Thus, this

dissertation takes as a main objective the development of a generic concept for the

architecture design of different automatic control systems, particularly for future

automatic control systems with high complexity designed as self-adaptive cyber-

physical systems [20]. For this purpose, it is necessary to investigate current design

concepts of automatic control systems, primarily aiming to analyze their established

underlying architectures. This dissertation takes a vehicle’s original adaptive cruise

control (ACC) and its current variants by applying the previously mentioned automatic

control concepts as concrete application examples to analyze the current technical

limitations and derive a functional vision for the future.

The functional vision of the ACC would constitute further challenges for the architecture

design of future automatic control systems, which the expected generic concept of

architecture design must address. Since the expected concept will be applicable to

different automatic control systems, particularly for the future self-adaptive cyber-

physical system, this dissertation aims to define a generic architecture style. This

generic architecture style will be applicable as a template to derive the appropriate

architectures of different automatic control systems while considering their boundary

conditions in concrete applications. In particular, the architecture style shall also cover

the use case of designing self-adaptive cyber-physical systems. In this architecture style,

architectural paradigms from different perspectives as further sub-objectives of the

dissertation will be defined.

Considering a static view of system construction, a pattern of the fundamental

component structure must first be developed, defining a set of components and their

corresponding functionalities as basic building blocks in the overall architecture.

Subsequently, a paradigm of system construction must also be determined to build more

complicated system architectures based on the fundamental component structure. In

addition to the static view of system construction, the dynamic view that focuses on the

run-time behaviors of the components and their interactions is also crucial for developing

the generic architecture style. For this purpose, use cases for the whole architecture

 Introduction

 5

must be defined, describing communication paths between the components in

corresponding scenarios. To realize concrete communication between related

components on the communication path, it is also still necessary to define potential

concrete communication paradigms, which requires an investigation of common

communication architecture patterns (cf. Section 2.2.7).

After developing the generic architecture style, this dissertation shall evaluate its

feasibility and generalization potential. For this purpose, it is essential to derive instance

architectures for the current ACC variants by applying the developed generic

architecture style. The derived instance architectures must be compared with previous

architectures concerning the control flow of dynamic processes from the view of control

theory to check the generalization potential of the architecture style based on

architectural consistency. In addition, an example architecture for a potential future ACC

variant named artificial cognitive cruise control (ACCC), with improvements for

overcoming the previously analyzed technical limitations, must be derived. This will be

used to evaluate the feasibility of the generic architecture style. As a further objective in

this dissertation, the mentioned technical limitations of current ACC variants must be

overcome by the ACCC, and this must be evaluated quantitatively.

1.3 Contributions of this Dissertation

The main contributions of this dissertation are as follows:

• A comprehensive architectural taxonomy of current automatic control

concepts is proposed considering the relationship between the included

technical system and its managed physical system (primarily referring to

controlled dynamic processes in the physical world). Based on this

comprehensive taxonomy, current ACC variants on the market as concrete

application examples of the control concepts are categorized and analyzed

to derive a functional vision for the future.

• Based on the functional vision, existing challenges are summarized and a

vision for the architecture design of future automatic control systems is

presented. Artificial cognitive control is defined as a control concept for the

Introduction

6

next generation of automatic control systems that must be designed as self-

adaptive cyber-physical systems.

• As the most significant contribution of this dissertation, a generic architecture

style including a fundamental component structure and accompanying

paradigm for the system construction is proposed to address the pain points

of current system architecture design. This architecture style can be applied

as a template to design architectures for different automatic control systems,

particularly for future self-adaptive cyber-physical systems.

• As a concrete potential future ACC variant following the concept of artificial

cognitive control, an innovative so-called artificial cognitive cruise control

(ACCC) that works by learning and satisfying a single driver’s driving

preferences is proposed. In addition, the ACCC also learns the experienced

historical context of driving environment.

• Recommendations are made for meaningful future research directions to

improve the system’s scalability and cognition or, more generally, to improve

intelligence capability.

1.4 Content and Structure

This dissertation consists of six chapters. Chapter 1 briefly introduces the framework of

this dissertation, including its motivation, objectives, and contributions. Chapter 2

focuses on the state of the art in relevant fundamental theories, these are, generally

divided into control theory, software engineering for architecture design of software-

intensive systems, generic communication architecture patterns, and application of

underlying AI-based technologies in the dissertation’s implementation.

The third chapter deals with a case study about the architectural evolution of the

automatic control systems mentioned above with the help of concrete examples of ACC

variants. In the case study, the functionalities of these ACC variants and their technical

limitations (particularly their underlying architectures) are systematically analyzed to

review the architectural evolution of recent years. Along with this evolution, a functional

vision of ACC in the future is then illustrated based on two postulated future variants,

which would make the original pure embedded systems become self-adaptive cyber-

 Introduction

 7

physical systems with significantly higher architectural complexity. Thus, existing

challenges for architecture design of underlying automatic control systems are

constituted. Finally, a future concept of the automatic control system, which aims to fulfill

expected features of the ACC variants, is roughly defined and named artificial cognitive

control.

Chapter 4 introduces a generic architecture style serving as a template for the

architecture design of different automatic control systems. This architecture style

particularly considers the artificial cognitive control system designed as a self-adaptive

cyber-physical system to fulfill the previously mentioned existing challenges.

Fundamental component structure and different design paradigms are introduced as

parts of the architecture style. The proposed architecture style is applied to instantiate

example logical architectures of current automatic control systems by applying software

engineering approaches, particularly considering the previously presented concrete

examples of ACC variants. The instantiated logical architectures are then compared with

architectures from the view of control theory to evaluate the architecture style’s

generalization potential by checking the architectural consistency.

To further evaluate the feasibility of the proposed architecture style, a future ACC variant

called artificial cognitive cruise control, which realizes both previously postulated future

ACC variants in the functional vision, is designed and implemented by applying the

architecture style, as presented in Chapter 5. A systematic performance evaluation of

ACCC is also included in this chapter.

Finally, a summary of this dissertation is provided in Chapter 6. In this chapter, the

limitations of the dissertation are also discussed, which can be taken as indications of

future research activity. In addition, some recommendations indicating potential future

research directions in the long term (after this dissertation) are also summarized.

 State of the Art

 9

2 State of the Art

This chapter introduces all related theoretical fundamentals in the scope of this

dissertation, which mainly involves three fields: control theory, architecture design of

software-intensive systems, and generic communication architecture patterns for

defining dynamic system behaviors. Additionally, related underlying AI-based

technologies utilized in the practical application for evaluating the proposed architecture

style in this dissertation are also presented in this chapter.

2.1 Control Theory

The research field of control theory focuses on systems for automatic control of technical

processes (e.g., within industrial machines or applications) which have been widely

applied almost everywhere in the world. For this purpose, models and algorithms must

be developed to regulate the system inputs so that the system outputs can be

maintained within a desired state, considering additional factors like time delay, system

stability, and optimality in parallel [26][27].

Since this dissertation focuses on developing a generic architecture style that serves as

a template for the architecture design of automatic control systems, a taxonomy covering

different automatic control systems is required. However, current well-known

taxonomies like classical1 and modern2 control theory focus intensively on underlying

mathematical approaches instead of system architectures [10]. Thus, this dissertation

takes as a reference another taxonomy derived from a stage model proposed by Iwanek

within his dissertation and further developes this taxonomy [28].

In Iwanek’s proposed stage model, different functional areas are defined and then used

as different perspectives to categorize intelligence levels of diverse mechatronic

systems. In these functional areas, it is emphasized that “control and feedback control”

1 Classical control theory relies on mathematical approaches like Laplace or z-transform to convert
differential equations for modeling the physical system from the time domain into the frequency domain,
aiming to reduce mathematical complexity.
2 Modern control theory relies on time-domain analysis and converts differential equations into state
equations based on state variables, which can be further processed by using linear algebra approaches.

State of the Art

10

is one of the most important, which points precisely to the topic of automatic control and

thus is of interest for this dissertation. Based on the stage model of Iwanek, other

researchers have attemped to assign automatic control approaches to different

intelligence levels within the stage model, as shown in Figure 2.1.

Figure 2.1: Exemplary Assignment of Automatic Control Systems to the Stage Model and its Derived
Categories [11]

Based on the assignment results, different automatic control systems, including feed-

forward and feedback control, are divided by Trächtler and Gausemeier [11] into three

categories along with increasing performance stages regarding the level of intelligence:

(a) fundamental control, which is called basic control in this dissertation, (b) optimal and

adaptive control, and (c) self-optimization control. Since this dissertation primarily

focuses on feedback control systems, more details of these systems will be provided in

the following sections. In this dissertation, the categories based on the increasing

performance stages are taken as a reference to derive the taxonomies of this

dissertation from the perspective of system architecture evolution, which will be

discussed in Chapter 3.

2.1.1 Basic Control

The first category in the lowest performance stage refers to basic control systems.

Control engineering aims to realize the automated goal-oriented influence of a dynamic

process during operation. In this case, the behaviors of the focused dynamic process as

a controlled system must usually be explicitly known in advance and thus modeled using

mathematical differential equations to derive corresponding functions. The designed

control system takes the current value of the system’s output variable as the controlled

PID-Control State-space
Control

Model Predic�ve
Control

Parameter-
adap�ve Control

Pareto-op�mal
Control

Binary Control Inverse Dynamic Op�mal Control

Feedback
Control

Feed-forward
Control

Adapta�on Op�miza�on

Lower Intelligence Performance Stages Higher Intelligence

Basic Control Op�mal and Adap�ve Control Self-Op�miza�on Control

 State of the Art

 11

variable (y(t)). It aims to maintain the controlled variable as a given set value of the

reference variable (w(t)) as much as possible, as shown in Figure 2.2.

Since the behaviors of the controlled system can be influenced by disturbance variables

(z(t)) from the system environment, the control system also focuses on compensation

for environmental disturbances. If disturbances from the environment and system

behavior are precisely known, the technologies of feed-forward control can be applied

to set the value of the reference variable. However, in the case of unknown disturbances

and uncertain parameters, the approaches of control engineering, like feed-forward

control with an opening chain of effect, become insufficient [11]. Instead, feedback

control is able to compensate for uncertainties by relying on a closed control loop. It

calculates a deviation (so-called control error: e(t)) between the current value of the

controlled variable (y(t)) and the set value of the reference variable (w(t)). A controller

subsequently determines a control activity aiming to minimize this deviation. Based on

the controller activity, the final control element manipulates the value of the manipulated

variable (u(t)) to influence the dynamic processes of the controlled system. Figure 2.2

shows the process flow of such a closed control loop with a block diagram.

Figure 2.2: Block Diagram of Fundamental Feedback Control Loop [11]

As shown in Figure 2.2, the most crucial component in the feedback control system is

the controller. In the design of the controller, it is necessary to model the dynamic

processes of the controlled system, which can be accomplished using mathematical

differential equations, as discussed previously.

In this design process, the Laplace- or z-transform (appropriate for continuous and

discrete systems, respectively) for reducing the complexity of the design problem is often

used to investigate system behaviors in the frequency domain. These transforms

Control Device

Controller Final Control
Element

Measurement
Element

Controlled
System-

w(t) e(t)

r(t)

u(t) y(t)

z(t)

State of the Art

12

convert the differential equations in the time domain into a transfer function (G(s)) in the

frequency domain, which describes the relationship between the input (U(s)) and output

(Y(s)) of the controlled system with algebraic equations [11]. In the case that the

behavior of the controlled system is linear and time-invariant, the differential equation in

the time domain would also be linear with constant coefficients, for which standard

transfer functions such as a PT1- or PT2-element with application parameters like a so-

called time constant can be used [9]. These time constants play an essential role in the

controller's design while determining the optimized values of corresponding application

parameters.

The controller design strongly influences the performance of the whole control system.

During the design stage, different criteria like the system’s reaction time to the

environmental change, damping of the system’s response, and its stationary accuracy

after the damping process must be considered [11]. In particular, system stability must

be evaluated. Otherwise, unstable oscillations in unfavorable cases may even cause the

failure of the whole control system. For this purpose, different approaches addressing

system stability, such as NYQUIST and HURWITZ, have been developed [29][30].

The most significant and well-known approach is the proportional-integral-derivative

controller (PID controller), which works based on a parallel connection consisting of a

proportion-element (P), an integrator (I), and a differentiator (D), as shown in the

following equation. The P-element is responsible for adjusting the value of the

manipulated variable (u(t)), aiming to align with the control error (e(t)), while the

integrator is responsible for stationary accuracy. The differentiator arranges for the

reaction time and the response damping of the controlled system. The control effects of

the P-element, the integrator, and the differentiator are influenced by the value

configuration of corresponding application parameters: Kp, KI, and KD (cf. Equation (2.1)).

In some cases, certain parts of the PID controller can also be removed to build variants

like the P controller, PI controller, or PD controller [11].

𝑈𝑈(𝑠𝑠 = 𝑗𝑗𝑗𝑗) = �𝐾𝐾𝑃𝑃 + 𝐾𝐾𝐼𝐼
1
𝑠𝑠

+ 𝐾𝐾𝐷𝐷
𝑠𝑠

1 + 𝑇𝑇𝑁𝑁𝑠𝑠
� ∙ 𝑌𝑌(𝑠𝑠) (2.1)

 State of the Art

 13

 = 𝐾𝐾𝑅𝑅
(1 + 𝑇𝑇𝑅𝑅1𝑠𝑠)(1 + 𝑇𝑇𝑅𝑅2𝑠𝑠)

𝑠𝑠(1 + 𝑇𝑇𝑁𝑁𝑠𝑠) ∙ 𝑌𝑌(𝑠𝑠)

The first step in designing a controller is to decide on an appropriate variant.

Subsequently, it is also essential to determine the parametrization of the controller by

adjusting the values of corresponding parameters: TR1, TR2, and KR. In this case, TR1 and

TR2 as time constants can be applied to compensate for the slowest sub-processes in

the controlled system, and KR is used to realize an expected response damping [11].

The control approach based on a conversion from the time domain into the frequency

domain is appropriate for single-input and single-output (SISO) systems. However, it

reaches its performance limit in the case of multiple-input and multiple-output (MIMO)

systems. Thus, an intermediate parameter between the input and output variables of the

system is developed to describe the system’s internal state, which is named state

variable (x). In this case, a complicated high-order differential equation can be avoided

by decomposing it into multiple differential equations of the first order. Thus, a state-

space Equation (2.2) and an output differential Equation (2.3), including multiple

matrices, are constituted. The matrices in the equations covering a state matrix (A), a

feedthrough matrix (D), an input (B), and an output matrix (C) are used to describe the

behavior of the controlled system, as shown below:

𝑥̇𝑥(𝑡𝑡) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡); 𝑥𝑥 = [𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛] (2.2)

𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝐶𝐶(𝑡𝑡) + 𝐷𝐷𝐷𝐷(𝑡𝑡);𝑦𝑦 = �𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑞𝑞� (2.3)

The eigenvalues (λ) of the state matrix (A) can be calculated to analyze the dynamics of

the controlled system. Further, they can also be used as specifications to design the

state controller represented by a controller matrix (R), following the rules included in the

following Equation (2.4). Thus, an updated system matrix (AR) for the whole system can

be constituted as follows:

𝑢𝑢 = −𝑅𝑅𝑅𝑅 (2.4)

𝐴𝐴𝑅𝑅 = 𝐴𝐴 − 𝐵𝐵𝐵𝐵 (2.5)

State of the Art

14

Controllability and observability are two additional system properties that must still be

considered for designing an appropriate state space control. Controllability implies that

the state variable (x) can be steered by adjusting the manipulated variable (u) from an

initial value to any final value within a finite time duration. Observability refers to the fact

that the system's internal state, represented by the non-measurable state variable (x),

can be reconstructed by measuring the output variable (y). For this purpose, the concept

of state space control based on the so-called Luenberger-observer is developed, as

shown in Figure 2.3.

Figure 2.3: Block Diagram State-Space Control with State Observer [11]

In this concept, the observer aims to determine the state variables as a vector (x�). Thus,

a model of the controlled system’s dynamics can be constructed relying on the observed

input and output variables of the controlled system (u(t) and y(t)). The observer

compares the actual output of the controlled system and the model's output to balance

the deviation due to unknown disturbances from the system environment and initial

system state so that the estimation error by the model can be minimized.

2.1.2 Optimal and Adaptive Control

The second category in the following performance stage refers to control-engineering

concepts, which either rely on optimization approaches to optimize the control

performance, or on adaptation of the control system to work against changeable

environmental conditions [11]. A typical example approach in this category is optimal

control. The controller’s design in previously mentioned control concepts primarily relies

on the human engineers’ experiences, particularly in state-space control. In this case,

Feedforward

Fu

Fu

u*(t)w(t)

Controller

Controlled System
u(t) y(t)

x*(t)

x0

x(t)

x0

x = Ax + Bu + L(y- ŷ)
ŷ = Cx-+

+

Luenberger -Observer

 State of the Art

 15

human engineers must iteratively adjust controller parametrization to guarantee the

expected system performance represented by the eigenvalues of the state matrix.

Unlike such an approach, optimal control relies on a cost function consisting of multiple

criteria and corresponding weights, as shown in equation (2.6).

𝐽𝐽 =
1
2
� (𝑥𝑥𝑇𝑇(𝑡𝑡)𝑄𝑄𝑄𝑄(𝑡𝑡) + 𝑢𝑢𝑇𝑇(𝑡𝑡)𝑆𝑆𝑆𝑆(𝑡𝑡))𝑑𝑑𝑑𝑑
∞

0
 (2.6)

Different criteria for evaluating control performance, such as high response speed and

low oscillation (which also means less energy consumption), are considered and

represented by different terms in the equation. Additionally, corresponding weighting

matrices (Q and S) are also included in the equation. By minimizing the final cost function

(J), the optimal control parametrization can be determined, and thus the design of the

controller becomes an optimization problem. Since the solution of this optimization

problem leads to a non-linear matrix equation, which is also called an algebraic Riccati

equation, the controller designed by following such an approach is called a Riccati

controller [29]. In this approach, control performance is represented by the weighting

matrices (Q and S) instead of the eigenvalues of the state matrix.

In addition to optimal control, another example concept included in the category of

optimal and adaptive control is model predictive control (MPC). MPC relies on the idea

of prediction of system behavior by a time-discrete model of the dynamic processes

included in the linear or non-linear controlled system [11], as illustrated in the following

Equation (2.7) and Equation (2.8).

𝑥𝑥(𝑘𝑘 + 1) = 𝐴𝐴𝐴𝐴(𝑘𝑘) + 𝐵𝐵𝐵𝐵(𝑘𝑘) (2.7)

𝑦𝑦(𝑘𝑘) = 𝐶𝐶𝐶𝐶(𝑘𝑘) (2.8)

Unlike the Riccati controller’s offline optimization, which means that the optimization

process must be completed before system operation, MPC includes online optimization

that is live during system operation. Its block diagram is illustrated in Figure 2.4.

State of the Art

16

Figure 2.4: Block Diagram of Model Predictive Control [11]

In MPC, the optimizer is initialized by an initial value of the system’s input and output.

The optimizer in MPC performs an optimization process, aiming at minimizing a cost

function (J) with consideration of a finite time horizon. The model is responsible for

predicting the future outputs (y) of the controlled system until the end of the considered

finite horizon, which is then compared with the reference trajectory of the output variable

(yref) to estimate the deviation. The optimizer takes the deviation as its input. Thus, the

optimizer can determine the optimal system input for the current time point (u*(k)) and

forward it into the controlled system.

As discussed above, a cost function is required for the optimizer in MPC to identify the

optimal solution for the controlled system's input variable (u*). For this purpose,

considering the prediction model, the cost function should describe the system state

within the finite time horizon. A typical example cost function is shown in Equation (2.9),

in which the weighting matrices (Q and S) are applied again. In this case, the optimizer

attempts to determine the optimal system input (u) considering the accuracy of the

output variable's predicted trajectory compared to the reference trajectory and the

oscillation of the system input, which also relates to the required energy consumption.

𝐽𝐽�𝑌𝑌(𝑘𝑘),𝑈𝑈(𝑘𝑘)� = (𝑌𝑌(𝑘𝑘)− 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘))𝑇𝑇𝑄𝑄�𝑌𝑌(𝑘𝑘) − 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘)� + 𝑈𝑈𝑇𝑇(𝑘𝑘)𝑆𝑆𝑆𝑆(𝑘𝑘) (2.9)

MPC shows remarkable advantages by considering constraints of the system state and

the system’s input and output simultaneously, covering the controlled system's technical

and physical limitations [11]. However, from the opposite perspective, such an approach

also strongly increases the non-linearity of the optimization problem and thus makes

MPC possibly require greater computational effort.

Controlled System
y(k)

Model

Op�mizer

y(k+i) yref(k+i)

u(k+i)

u*(k)
-

 State of the Art

 17

The previously presented control concepts all rely on modeling of the controlled system,

which requires precisely describing the system’s dynamic behaviors but does not involve

consideration of time-dependent behavioral changes. Instead, the control engineering

approaches with an adaptation of the controller parametrization at runtime are

developed to deal with the controlled system with time-dependent behavioral changes,

which are also categorized as adaptive control in the control theory [30] (e.g., the

parameter-adaptive control in Figure 2.1).

Different strategies for adaptation of controller parametrization have been developed in

the parameter-adaptive control, depending on whether feedback of system dynamics is

available or not available, respectively. In the case of unavailable feedback, the

adaptation process can be understood as a pure feed-forward control task. In this case,

an approach like gain scheduling can be applied, which linearizes the nonlinear model

of the controlled system under different boundary conditions as operating points with

corresponding assumed linear behaviors. Subsequently, the controller parametrizations

such as gains are determined and assigned to the operating points. Thus, gain

scheduling can be completed with the help of a scheduling variable, which aims to

identify the system’s state or the output. In this case, since the stability of the nonlinear

system cannot be analytically guaranteed, a simulation-based evaluation of the system

stability is required [11].

If time-dependent environmental disturbances or system dynamics must be considered

in the adaption of the controller parametrization, feedback for continuous variable

monitoring of the system is required. For example, in model reference adaptive control

(MRAC), a reference model is deployed in parallel to estimate a reference output of the

system so that controller adaptation can be completed, aiming at approximating the

reference output and the actual output of the controlled system. Unlike MRAC, model

identification adaptive control (MIAC) relies on model-based estimation approaches to

identify the system parameters' states and thus adjust the controller parametrization.

2.1.3 Self-Optimization Control

The final category in the highest performance stage defined by Trächtler and

Gausemeier [11] is self-optimization control. The self-optimization system is defined as

State of the Art

18

a system with a capability for automatic adaptation to changes in the environment and

user profile. The intelligent mechatronic system is defined as a system with an automatic

adaptation of its system structure and parameters at runtime in changeable

environments or under different operating modes [11]. Based on these two definitions,

the self-optimization control is defined by Trächtler and Gausemeier [11] as a control

system with the capability for situational adaptation of its system configuration to the

optimal setup with the help of a controller, which is further developed based on the

concept of adaptive control [28].

To realize self-optimization control, the approaches of multi-objective optimization and

reconfiguration of the controller are essential. Multi-objective optimization is responsible

for identifying the optimal system configuration considering corresponding constraints

and criteria, which are typically in conflict. The second required approach for

reconfiguring the controller aims to guarantee the stability and functionality of the fault-

tolerant system by adapting the system structure or the controller’s application

parameters. A typical example of self-optimization control is the concept of Pareto-

optimal control based on the so-called approach of Pareto sets [31], which has been

listed as an example included in the category of self-optimization control in Figure 2.1.

A block diagram of Pareto-optimal control is illustrated in Figure 2.5.

Figure 2.5: Block Diagram of Pareto-Optimal Control [11]

In Figure 2.5, it is indicated that Pareto-optimal control has a two-layered hierarchical

architecture, including two feedback control loops, on which a goal-oriented controller

Dynamic System

Configurable Controller

Objec�ve Evalua�onEnvironment

Objec�ve Space

Goal-oriented
Controller

GR(s)

Pareto Sets

α

p1

p2

p3

J1

J2α

p*

u
z ye

yR

J(p*)

αdes

Jlimαref

αcur

αuse

Controlled System

 State of the Art

 19

and a configurable controller are deployed. The lower layer focuses on realizing the

adaptation of the configurable controller’s parameters and structure so that the controller

can guarantee the stability of the system and its expected functionalities.

Unlike the lower layer, the higher layer in the hierarchical architecture, including the goal-

oriented controller, aims to figure out the optimal parameter setup for the (re-

)configurable controller on the lower layer without solving the multi-objective

optimization problem at runtime during the system operation and thus is different from

the MPC [11]. Instead of the online optimization at runtime, characteristic diagrams

illustrated as Pareto fronts are defined and deployed in the components Pareto Sets and

Objective Space in advance. The feedback control loops on the higher and lower layers

are discussed in detail in the following sections.

2.1.3.1 Feedback Control Loop on Higher Layer

As illustrated in Figure 2.5, unknown environmental disturbances (z) influence the

system’s output (ye) and subsequently influence the output of a predefined cost function

(J(p*)). This cost function is used to evaluate the fulfillment of the control objective. The

parameter p* stands for the current configuration of the configurable controller (e.g., the

value setup of the controller’s application parameters). Due to the mentioned multi-

objective optimization, the cost function is defined as a vector consisting of a set of sub-

functions in parallel, which can respectively provide corresponding evaluation results

(J1(p*), J2(p*), …, Jn(p*)) from the perspectives of different objectives.

As discussed earlier, the Pareto-optimal control needs to realize a situational adaptation

of its system configuration to the optimal setup. For this purpose, the higher layer aims

to figure out the optimal parameter setup for the reconfigurable controller on the lower

layer in different situations, which also means that the functionalities of situation

identification and corresponding mode change are required.

To realize the situation identification and corresponding mode, a relative weight (α),

representing the relative importance of different objectives, is applied in the component

objective space on the higher layer. Figure 2.6 shows an example of the objective space

considering the case with two different objectives. The calculated evaluation results of

the fulfillment of the objectives (J1,cur, J2,cur) are taken as inputs of the objective space.

State of the Art

20

Additionally, maximal limited values of the cost function (J1,lim in Figure 2.6) and a desired

relative weight (αdes) are given in advance as constraints by external sources (e.g.,

predefined by the user). They are also taken as inputs of the objective space.

(a)

(b)

Figure 2.6: Determination of Reference Relative Weight αref (a) and Logic of Mode-Switch (b) in Objective
Space [11]

Based on the cost function’s current output (J1,cur , J2,cur), it is possible to identify a red

point in the objective space, as shown in Figure 2.6. The red point is assumed to be

located on an approximated Pareto front illustrated by a dotted line. Based on the

position of the red point, the current relative weight (αcur) can be determined, which is

understood as an angle in the objective space. As presented earlier, characteristic

diagrams referring to the smoothed Pareto fronts in the diagram (a) of Figure 2.6 are

predefined in the objective space. Thus, a target value (J*1,cur) located on the smoothed

Pareto front can be found based on the identified red point and the current relative

weight (αcur).

In the case of great environmental disturbances (z), the current value of the cost function

would become very high to work against the disturbances. The determined target value

(J*1,cur) with current relative weight would become higher and violate the constraint of

the limited value (J1,lim), which triggers the objective space to switch into Mode 2. In this

case, the current relative weight cannot be taken as the referenced relative weight (αref).

Objec�ve Space
J1

J2

smoothed Front
approx. Front

αref

αcur

J1,lim

J*1,lim

J*1,cur

J1,cur

αref ≥αdes

J1,cur>J1,lim

αref =αdes αref =s-1(J*1,lim)

Mode 1 Mode 2

αdes
αref

J1,lim J1,lim

 State of the Art

 21

Thus, it is required to determine a new referenced relative weight, which is under the

constraint regarding the limited value of the cost function. For this purpose, a value of

J*1,lim for determining the referenced relative weight located on the smoothed Pareto

front as shown in diagram (a) of Figure 2.6, can be calculated following Equation (2.10).

𝐽𝐽1,𝑙𝑙𝑙𝑙𝑙𝑙
∗ = 𝐽𝐽1,𝑙𝑙𝑙𝑙𝑙𝑙

𝐽𝐽1,𝑐𝑐𝑐𝑐𝑐𝑐
∗

𝐽𝐽1,𝑐𝑐𝑐𝑐𝑐𝑐
 (2.10)

Subsequently, the referenced relative weight (αref) under the constraint of the maximal

limited value of the cost function (J*1,lim) can be determined as follows:

𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑓𝑓(𝐽𝐽1,𝑙𝑙𝑙𝑙𝑙𝑙
∗) (2.11)

If the environmental disturbances (z) become weaker, the current value of the cost

function (J1,cur) will be lower than the maximal limited value (J1,lim). Thus, the referenced

relative weight will equal or be greater than the desired relative weight. In this case, the

current relative weight can be directly taken as the referenced relative weight, and the

objective space will switch into Mode 1. With such a switch mechanism, the mentioned

situational change of operating modes can be realized by corresponding trigger

conditions, as shown in diagram (b) of Figure 2.6.

Based on the calculated current and referenced relative weights from the objective

space as inputs, the goal-oriented controller (e.g., one possibly designed as a linear PI

controller) determines a current relative weight (αuse). In this case, the optimal candidate

setup of the controller parameters (p*) can be selected from the Pareto sets to adapt the

parametrization of the configurable controller on the lower layer. It is emphasized that

the reliability of the parametrization solution is not explicitly considered during the

selection of the optimal controller parameters. Instead, it is guaranteed by the previously

defined value range of the candidate controller parametrizations included in the Pareto

sets, with additional consideration of fulfillment of the stability criteria of the feedback

control loop on the higher layer [11].

Subsequently, the controller parametrization setup will be forwarded into the

configurable controller (GR(s)) on the lower layer. This forwarding activity is triggered by

the mode change on the higher layer. An individual Pareto set is activated for each

State of the Art

22

operating mode to identify the corresponding optimal parametrization setup. In this case,

the stability of the feedback control loop on the lower layer as a reconfigurable system

is not considered. Thus, the stability of individual systems on the lower layer after each

reconfiguration must still be proven [11]. Generally, it can be understood that the

guarantee of the system stability on the lower layer is wholly delegated to the lower layer

itself in the Pareto-optimal control system.

2.1.3.2 Feedback Control Loop on Lower Layer

As discussed earlier, the feedback control loop on the lower layer in the Pareto-optimal

control is responsible for realizing the system's expected control functionality and

stability, which refers to the feedback control loop on the lower layer, including the

configurable controller. In this case, reconfiguration of the controller is an effective

technique in fault-tolerant control systems to maintain stability and functionality [32].

An approach for reconfiguring a configurable controller with a stability guarantee of the

fault-tolerant control system is introduced by Trächtler and Gausemeier within a critical

example of a broken actuator [11]. In this approach, the adaptation of the control

structure or the controller parametrization can be performed to eliminate the negative

influence of the broken actuator.

For example, in the case of a linear modeled system, differential equations3 can be

formulated as follows to describe the dynamic processes of the controlled system:

𝑥𝑥𝑓̇𝑓 = 𝐴𝐴𝑥𝑥𝑓𝑓 + 𝐵𝐵𝑓𝑓𝑢𝑢𝑓𝑓 + 𝐸𝐸𝐸𝐸 (2.12)

𝑦𝑦𝑓𝑓 = 𝐶𝐶𝑥𝑥𝑓𝑓 (2.13)

In this case, the failure of an actuator influences the input matrix (Bf), which causes a

column of the input matrix to consist entirely of zeros. In contrast, the system matrix (A)

stays the same without influence. In this case, it is required to keep the trajectory of the

system state (xf) in compliance with Equation (2.14) to realize the expected controller

3 The subscript f refers to the dynamic processes in the controlled system with failures.

 State of the Art

 23

reconfiguration with a guarantee of system stability. A reconfiguration matrix K is taken

as the solution to Equation (2.14), added to the input matrix as stated in Equation (2.15).

𝐵𝐵𝑓𝑓𝑢𝑢𝑓𝑓 = 𝐵𝐵𝑢𝑢 (2.14)

𝐵𝐵𝑓𝑓𝐾𝐾 = 𝐵𝐵 (2.15)

Thus, the reconfiguration matrix K can be integrated between the nominal controller and

the faulty model of the controlled system, as shown in the following Equation (2.16):

𝑢𝑢𝑓𝑓 = 𝐾𝐾𝑢𝑢 (2.16)

The control vector uf includes the reconfigured desired values of the operative actuators

[32], which can compensate for the negative influences caused by the failed actuator

and let the nominal controller remain unchanged in the reconfigured control loop.

2.2 Architecture Design of Software-Intensive Systems

A taxonomy of different control concepts in the research field of control theory proposed

by Trächtler and Gausemeier [11], including basic control, optimal and adaptive control,

and self-optimization control, was presented in previous sections. Based on this

taxonomy, it is clear that the complexity of control systems is continuously growing.

Faced with increasing system complexity, traditional design approaches of control

theory that focus on modeling the controlled dynamic processes and deriving

accompanying functions becomes insufficient. Instead, the architecture design

approaches of software-intensive systems [15] become crucial for managing increasing

complexity. Clear proof of such a trend can be found in the previously presented self-

optimization control, constructed with a naive hierarchical software architecture by

simply superposing two concurrent closed control loops. In the following sections,

related works about architecture design of different software-intensive systems will be

discussed in detail, with a particular focus on intelligent control systems in control theory

[33]–[35] and the self-adaptive systems in software engineering [25][36].

State of the Art

24

2.2.1 Tree-Structured Architecture of Saridis

The most famous hierarchical architecture is proposed by Saridis [1], focusing on the

design of hierarchical control systems by following a principle of so-called increasing

intelligence with decreasing precision, or increasing precision with decreasing

intelligence (IPDI). The phrase increasing intelligence refers to the highly symbolic

methods and fewer numeric-algorithmic methods utilized on higher than on lower levels,

along with degrees of abstraction. Thus, the highest levels can directly interact with a

human user (e.g., with the help of an expert system). The phrase decreasing precision

means that the higher levels focus on the plan by considering a larger contextual horizon

with more information (e.g., a longer time horizon with a lower interaction frequency with

the physical world), which also means a lower system or decision rate [37].

Figure 2.7: Tree-Structured Architecture of Saridis [1][2]

Following the IPDI principle, the control system is hierarchically decomposed into

different levels of control (e.g., the levels of organization, coordination, and execution,

which are also presented by Saridis in his work, as shown in Figure 2.7) [2]. Along with

the different levels of control, the high-level control task is hierarchically decomposed

into distinct subtasks on the next level down. A successive delegation of duties exists

Other Systems or Human Operator

Physical System

Knowledge-based
Organizer

Dispatcher

Coordinator 1 Coordinator n…

Hardware Control Hardware Control

Process 1 Process n

Execu�on Level

Coordina�on Level

Organiza�on Level

In
cr

ea
sin

g
In

te
lli

ge
nc

e

Increasing Precision

 State of the Art

 25

from the upper to lower levels. The number of distinct tasks continually increases from

the top to down, with an accompanying decrease in the hierarchical levels [37].

In this case, the whole control system can be seen as an integrated unit consisting of

mathematical and linguistic methods and algorithms applied to corresponding

subsystems and processes. This approach separates the control system into different

levels, following the IPDI principle. Thus, the system may contain more than one layer

of tree-structured functions, including components like knowledge-based organizers,

dispatchers, corresponding coordinators, hardware controls, and the physical system.

The physical system includes a set of dynamic processes in the controlled plant and its

environment (cf. Figure 2.7).

The level of organization performs operations like planning and high-level decision-

marking based on long-term memory with high-level information processing such as the

probabilistic model or knowledge-based system using artificial intelligence algorithms.

For example, the learning of large quantities of knowledge would be performed on this

level, which can be deployed in the knowledge-based organizer. The coordination level

as an intermediate structure works like an interface between the organization and

execution level, which includes decision-marking and learning in short-term memory.

Due to high-level control task decomposition, multiple coordinators responsible for the

decomposed independent subtasks can be deployed on the coordination level.

Subsequently, the execution level involving a set of hardware controllers is then

responsible for the fundamental control functions (e.g., feedback control loops in other

control concepts with lower levels of intelligence).

2.2.2 NASREM Reference Model for Telerobot Control System Architecture

NASREM is another famous hierarchical reference architecture of the real-time control

system for applications like robots and intelligent machines developed by the National

Institute of Standards and Technology (NIST) of the United States [3]. In the NASREM

reference model, the control system is designed as a three-legged hierarchy of

computing modules serviced by a communication system and a global memory, as

shown in Figure 2.8.

State of the Art

26

Figure 2.8: NASA/NBS Standard Reference Architecture for Telerobot Control System [3]

The first leg of the hierarchy, Task Decomposition, is responsible for the real-time

planning and monitoring of the task, which relies on the modules Hx to plan and execute

the spatial and temporal decomposition of high-level goals into low-level actions. In this

case, spatial decomposition refers to the task division as concurrent actions by

corresponding subsystems. Temporal decomposition means that the task is divided over

time into sequential actions. Each task decomposition module at each level includes a

job assignment manager and a set of planners and executors.

The second leg of the hierarchy is World Modeling, which consists of the modules Mx

for modeling and evaluating the world, focusing on its historic, current, and possible

future states, including the states of the controlled system. For this purpose, the modules

of world modeling work together with a knowledge base involved in the global memory

(cf. Figure 2.8), in which maps, the lists of objects, events and their attributes, and the

state variables are included. Based on the provided information of observed facts from

G1

G2

G3

G4

G5

G6 M6

M5

M4

M2

M3

M1

H6

H5

H4

H3

H2

H1

O
perator Interface

Global Memory

Maps
Object Lists

State Variables
Evalua�on FCNs

Program Files

Sense Ac�on

Sensory Processing World Modeling Task Decomposi�on
Detect

Integrate
Model

Evaluate
Plan

Execute
Goal

Service
Mission

Service
Bay

Task

E-Move

Primi�ve

Coordinate
Transform
Servo

 State of the Art

 27

the sensory processing modules (Gx), the world model maintains the knowledge base

of the global memory and delivers its predictions of expected sensory data back into the

sensory processing modules. Additionally, the world model interacts with the planner

and executor deployed in the task decomposition module at each level and tries to

answer questions like “What is?” and “What if?” [3].

The third leg of the hierarchy, Sensory Processing, consists of the modules Gx and is

responsible for pattern recognition and event detection through checking correlations

and differences between the world model’s predictions and observed facts of sensory

data. Additionally, the processes of sensory data processing like filtering and integration

are included in these modules. Thus, newly detected or recognized events, objects, and

relationships will be integrated into the database of the global memory, and objects or

relationships that no longer exist will be removed [3]. The confidence factors and

probabilities of the identified events and statistical estimates of the state variables are

also computed within the modules.

In addition to the three-legged hierarchy, an operator interface is also included in the

NASREM reference architecture. It interacts with the human operator to intervene in the

control system at any level and time. For example, some specific interventions are

monitoring a process, inserting information, interrupting automatic operation, or even

taking over control of a task to realize semi-autonomous control.

Following the principle of hierarchical levels in the architecture, the range of time scale

and thus the planning horizon and historical event summary interval under the

consideration decrease exponentially along with the hierarchical levels from top to

bottom in the NASREM architecture. At each level, the planners inside the task

decomposition modules divide the task commands into strings of planned subtasks for

execution. The strings of sensed events are summarized and integrated into single

individual events at the next level up. In this case, each plan is constituted by at least

two and, on average, ten subtasks. The planning horizon is extended to the future,

considering an additional input command interval. During system operation, replanning

can be triggered by an emergency condition or deterministic cycle time, which requires

that the cycle time is an order of magnitude less than the planning horizon [3].

State of the Art

28

Instead, the executors inside the task decomposition modules react to feedback for

every control cycle interval. Once the feedback detects the failure of any planned

subtask, the executor will immediately launch a preplanned emergency subtask. The

planner will generate an error recovery sequence to replace the previous failed plan.

In Figure 2.8, it is indicated that the lowest level is called a coordinate transform servo.

This level can be called the servo level for short. Its design relies on the technology of

basic feedback control. The primitive level is designed to generate a sequence of

command specifications, which is a kind of trajectory and taken as input for the servo

level. Once the planner at the servo level receives a new command specification, it

transmits the information about an attention function to the world model so that the world

model knows where to concentrate its efforts. The world model estimates the state of

the manipulator (e.g., including values for variables like position, velocities, and joint

torques). While the executors perform the specified commands, relevant information will

also be transmitted to the sensory processing modules at the primitive level to monitor

the trajectory execution [38].

2.2.3 Nested Hierarchical Architecture of Meystel

Saridis’ tree-structured architecture was presented in the previous section. In this

architecture, the high-level control task is derived as low-level subtasks, which different

concurrent coordinators and hardware controls can perform. The Saridis’ architecture

[1][2] focuses more on the multi-actuator control system, consisting of a tree-structured

hierarchy including different levels of intelligence. On different levels, several units for

decision-making are deployed. By coordinating the actions of these units, Saridis’

architecture [1][2] optimizes the process of goal achievement [39].

Unlike Saridis’ architecture, Meystel’s [39] work has proposed another nested

architecture for intelligent control, which focuses on the case of single actuator systems

instead of on multi-actuator systems, especially for the use cases of autonomous control

systems without any human involvement. Unlike the tree-structured architecture in

Saridis’ concept, the control system is designed in Meystel’s concept as a nested

hierarchy consisting of layers with different resolutions [5][18], as shown in Figure 2.9.

In this case, each layer corresponds to an individual resolution level.

 State of the Art

 29

Figure 2.9: Nested Hierarchical Architecture of Meystel [18][39][40]

In Meystel’s architecture, computing processes are independently distributed on the

hierarchical layers, on each of which a feedback control loop is deployed. Thus, each

layer represents a different domain of the overall system. The loops on the upper and

lower layers correspond to each other. Thus, the system behavior results from a

superposition of the actions on every resolution level generated by similar algorithms.

The hierarchy of knowledge representations evolves from linguistic at the top level to

analytical at the bottom level. It is emphasized that the knowledge bases here are

relatively independent but can communicate to realize a knowledge exchange [5].

A typical application example of Meystel’s architecture is the intelligent control system

for an autonomous mobile robot, which usually includes components of planning and

control at four levels instead of three levels, also called planner, navigator, pilot, and

execution. The planner focuses on finding and carrying out a rough plan consisting of

time profiles of the input variables, which are used to guarantee the expected time profile

of the output variable. The navigator refines the initial plan and plans a more concrete

motion trajectory. The pilot is used to realize online motion control tracking, considering

deviation between the expected situation in the plan and the current local surrounding

situation observed by onboard sensors. Finally, the execution level is responsible for the

Behavioral Genera�onWorld ModelingSensory Processing

High-level Percep�on

Middle-level
Percep�on

Low-level Percep�on

High-level
Knowledge Based on

Middle-level
Knowledge Base

Low-level Knowledge
Base

… …

High-level Planning
and Control

Middle-level
Planning and Control

Low-level Planning
and Control

Physical System AS

…

State of the Art

30

execution and compensation of the plan delivered by the planner, the navigator, and the

pilot [39].

2.2.4 Behavior-Based Subsumption Architecture of Brooks

In the previously presented architectures, the control task is decomposed into subtasks

on different levels of abstraction. Such a decomposition is realized by a series of vertical

slices, including sequenced functional modules (e.g., perception, modeling, planning,

and execution, deployed on concurrent layers in the architecture; cf. Figure 2.9) [41].

Thus, the slices form a chain to build up a closed feedback loop with information flows

at different levels.

Unlike such an approach with so-called vertical decomposition, another principle

focuses on horizontally decomposing the problem into task-achieving behaviors. Each

behavior means a mapping from the sensory inputs to a pattern of actuator outputs that

aim to complete certain tasks. Thus, the whole control system is designed as a reflex

system. The perception and the action are tightly coupled within the behavior without

using abstract representation or temporal planning, which is an approach very similar to

the current end-to-end learning system for autonomous driving [42].

Figure 2.10: Behavior-Based Layered Subsumption Architecture by Brooks [41]

The problem decomposition in the behavior-based architecture performs based on

desired external manifestations of the control system. A typical example of behavior-

Level of Competence 0

Level of Competence 1

Level of Competence 2

Level of Competence 3

…

Physical System AS

Level of Competence N

 State of the Art

 31

based architecture following such a decomposition principle is the subsumption

architecture developed by Brooks [41] for applications in autonomous robots, as

illustrated in Figure 2.10. In Brooks’ architecture, different layers represent so-called

levels of competence. Each level of competence represents an informal specification of

the desired class of valid behaviors for the autonomous robot in all potential operating

environments. In the system architecture, the level of competence is represented by a

single layer.

Compared to the lower-level layers, higher-level layers with higher levels of competence

imply more specific desired classes of behaviors with inhibition mechanisms. They can

subsume the roles of lower levels by suppressing their outputs. However, lower levels

continue to function as higher levels are added [41]. Each level of competence includes

its lower levels of competence as a subset. As presented earlier, a level of competence

defines the desired class of valid behaviors. Thus, the level of competence above it can

also be understood as an additional constraint of the valid behavior class.

2.2.5 LAAS Architecture of Alami

Another well-known architecture concept was developed by Alami et al. [43] in their

research work, called the LAAS architecture due to the name of their laboratory. In LAAS

architecture, the control system comprises three levels: a decision level, an execution

control level, and a functional level, as shown in Figure 2.11. The logical system is

designed as an independent logical level, which works as an interface between the

technical and physical system to make the functional level as hardware-independent as

possible.

In LAAS architecture, the decision level is designed to take charge of the high-level

decision-making with the requirement of deliberative capability and reaction to incoming

events. For this purpose, the decision level is designed as a system triggered by goal

and event, which includes a multi-layered structure, depending on concrete applications.

The planners and supervisors are deployed on different layers, as shown in Figure 2.11.

State of the Art

32

Figure 2.11: Reference Structure of LAAS Architecture [43]

The execution control level plays a role as the interface between the time-consuming

symbolic processing at the decision level and numerical data computation with a high

frequency at the functional level. It is designed as a purely reactive system without

considering the predictive horizon. Additionally, it takes the decided sequence of actions

as input to correspondingly select, parametrize, and synchronize the appropriate

functions at the lower functional level, depending on the task and current state of the

Plan Supervisor Mission Planner

Task RefinementTask Supervisor

Executive

Modules

Operator

Mission Reports

10s

1s

0.1s

Requests State

Modelling
Reflex Actions
Monitoring
Servo-Control
Control

ReportsRequests

Environment

Sensor and Effector Interface

Perception Control

Ph
ys

ic
al

Sy

st
em

Lo
gi

ca
l

Sy
st

em
Fu

nc
tio

na
lL

ev
e l

Ex
ec

ut
io

n
Co

nt
ro

lL
ev

el
De

ci
si

on
al

Le
ve

l

 State of the Art

 33

system, which is determined based on submitted requests and returned replies from the

functional level. It is emphasized that replies can trigger requests delayed by the

Executive component. As output, a report about the current state will be submitted to

the upper decision level to enable plan supervision and choice of subsequent actions

[43]. The executive component takes over the responsibility of control and data flow

simultaneously.

Generally, the functional level can be seen as a library of functions that activate

elementary robot actions, task-oriented activities like motion planning, vision, and

localization, or reflexes relying on predefined condition-reaction-policies. These

functions are embedded in a set of modules. These modules are taken as the

fundamental unit at the functional level to build dynamic networked interactions,

depending on the task being executed and the environmental state. Communication

between the modules is built based on the so-called request-response pattern, relying

on the call of specified services provided by server modules to corresponding client

modules (cf. Section 2.3.1). In this case, the server module does not know its clients in

advance. Instead, the relationship between the client and server modules is established

dynamically, which means that the modules can be arbitrarily included or removed from

the system. Additionally, it is also permitted that the services of one module are used by

other modules, relying on the design of advanced services by combining primitive

services, which are general and reusable.

As discussed earlier, the functional level is designed with the principle of the distributed

system. In this case, the malfunction of any modules may lead to a failure of the whole

system. Thus, each module is designed to check its request parameters' validity and

applicability of the required actions. As a critical case, concurrent activities may require

the same shared resource and thus cause a conflict of resource allocation. Thus, the

latest request is always defined to have higher priority than previous requests to

eliminate this critical case.

2.2.6 Hybrid Control Architecture of Yavuz and Bradshaw

A further well-known architecture approach to the control system is the hybrid control

architecture proposed by Yavuz and Bradshaw [44]. They have argued that the

State of the Art

34

capability to work against uncertainty is one of the leading design constraints for the

real-time control system in different applications such as mobile robotics, mainly due to

incomplete and time-variant prior knowledge about the environment. Thus, the control

system is required to complete its reasoning based on current information about the

state of the controlled system. It is also crucial that the control system quickly and

appropriately responds to an unexpected event. These expected properties require a

vital adaptability function and a quick reaction capability for the control systems. Thus,

a point for the system design was made by Yavuz and Bradshaw: the adaptability

function must be based on the reaction behaviors [44]. Following this point, a concept

of hybrid hierarchical architecture was proposed, as shown in Figure 2.12.

Figure 2.12: Hybrid Control Architecture for Mobile Robot [44]

System parts following different principles are systematically integrated into the hybrid

hierarchical architecture. On the top of the hierarchical architecture, deliberative

modules are deployed on upper layers, which are responsible for high-level planning

and decision-making, relying on the benefits of included world models. In this case, the

control task is hierarchically decomposed into different levels of abstraction. Thus, each

Ac�va�on
System

User Device Drivers
(DD)

DD DD

Behavioral
Iden�fica�on

Input S&H and
Valida�on

Control Signal
Genera�on

Command
Arbitra�on

Control Command
Genera�on

Manual Teach Playback

Opera�on Selec�on,
Ac�va�on, Configura�on

Se�ng

Task Descrip�on

Visual/Sound
Feedback

Control
Commands

Control
Commands

Sensory
Informa�on

Sensors

Centralized
Decision
Making

Distributed
Modular
Architecture

Bo�om-up

Top-down

Delibera�ve

Reac�ve

 State of the Art

 35

level controls the level beneath it and assumes that its commands will be executed as

anticipated [44], following a so-called principle of top-down manner.

Unfortunately, it is utopic that the commands can always be precisely performed as

expected, particularly in the case of unstructured and dynamic environments. In addition,

the deliberative modules rely on a complicated world model to complete the planning

tasks, which causes time delay due to extensive computation effort and thus possibly

violates the required time constraints of the control system within a concrete application

like a mobile robot. Thus, reactive modules are deployed at the bottom of the hierarchical

architecture instead of the deliberative modules. These reactive modules are

responsible for reflection of and response to environmental stimuli, relying on compiled

procedural knowledge without high-level knowledge in the world model [44].

In contrast to the top-down manner, the control task in the lower part of the hierarchical

architecture is horizontally decomposed into independent behaviors. Due to the

independencies between the behaviors, the control system can be developed in a

bottom-up, evolutionary manner. In this case, each behavior only concerns its relevant

context information and thus does not require a complicated world model. Relying on

sensing at a rate high enough for impact limitation of the false sensory readings to work

against the uncertainty in perception, the mentioned disadvantage of the deliberative

modules thus can be compensated for [44]. Additionally, due to the loose coupling of

the deliberative modules and the physical system by isolation of reactive modules, the

presented critical point about time constraints can also be eliminated.

Since the architecture of Yavuz and Bradshaw is mainly designed for a mobile robot,

several operating modes, including manual, teaching, and playback, are included in their

concept. The manual mode refers to teleoperation entirely controlled by the human

operator. In mobile robot applications, a map with high complexity is usually required for

the deliberative modules to plan the path for the robot. In the approach of Yavuz and

Bradshaw, a simple sequential task-information set containing simple steps of a

navigational pattern that direct the robot towards the goal (or the achievement of the

task pattern) is applied to replace the complicated map. Thus, the robot samples and

records the task pattern in the teaching mode, solving the task-information source

problem. The playback mode is designed for the self-supervised goal-oriented

State of the Art

36

autonomous operation of the robot. In this mode, the robot evaluates the inputs from the

user, deliberative and reactive modules, and assigns priorities to the requested actions

[44].

In this case, the information from different sources with different format (e.g., the task

plan step from the deliberative modules, the reflexive behaviors from the reactive

modules, and the control commands from the user) must be integrated. The component

Device Drivers are designed to preprocess the collected raw sensory data, relying on its

embedded specific sensor-information-analysis modules. After the preprocessing, each

input set is evaluated, decoded, or converted into standard behaviors with specific

motion control and activation settings [44]. The component Command Arbitration is

designed to integrate the sets of information and generate the control commands. The

deliberative modules may cause a time delay in response due to intensive computation.

Thus, the generated control command is checked against the sensory information

before execution to compensate for the time delay and potentially harmful influences. A

bypass technology is also utilized in the architecture, which means that the reflexive-

control-action requests with a high priority can bypass the control command process

and attend to the urgent reflexive behavior control requests [44].

Generally, the presented architecture aims to design a goal-oriented, reactive, and

teleoperable system. The design of modular reactive modules in the lower part of the

architecture guarantees high flexibility for further development of the system, while the

application of the mentioned bypass technology compensates for the disadvantages of

the deliberative modules regarding time delay of response. The overall sensory

processing is distributed to low-level reactive modules, allowing the developed system

to have sensor-specific processing to guarantee its responsiveness, robustness, and

flexibility to lower levels. From another perspective, decision-making in centralized

modules of the developed system guarantees the system’s straightforwardness,

modularity, and efficiency [44]. The operation of deliberative modules follows the top-

down approach, while the reactive modules follow the bottom-up approach. The

centralized decision-making integrates both modules for the generation of control

commands. Subsequently, the generated control commands are forwarded to the

activation system.

 State of the Art

 37

2.2.7 IBM’s MAPE-K for Autonomic Computing

The control systems aim to keep the current value of the controlled variable as a given

reference value by adapting the value of the manipulated variable, respectively,

depending on the current state of the control error. From the perspective of software

engineering, such an adaptation feature can be interpreted as a kind of self-adaptation

activity, which is the most significant feature of self-adaptive systems. For this reason,

the software engineering approach for designing self-adaptive systems is also

considered in this dissertation and taken as a reference to investigate the design of

future control system architectures with increasingly high complexity. Since MAPE-K is

one of the most well-known architecture concepts for self-adaptive systems in software

engineering, it is investigated in this dissertation. In the following sections, it will be

presented in detail.

2.2.7.1 Autonomic Computing as a Vision of Self-Adaptive System

In 2001, IBM reported that the crisis due to the increasing complexity of future software

systems had become one of the most significant constraints in the further development

of the IT industry [45]. This development trend requires millions of well-skilled IT

professionals to develop and maintain highly complicated systems. Additionally, it

constitutes a significant challenge for integrating heterogeneous systems and the

internet in the future. Thus, current innovations that solely rely on programming

languages, which have extended the size and complexity of the systems for architects

to design, become insufficient.

Concept Current Computing Autonomic Computing
Self-Configuration Corporate data centers have

multiple vendors and platforms.
Installing, configuring, and
integrating systems is time-
consuming and error-prone.

Automated configuration of
components and systems
follows high-level policies. The
rest of the system adjusts
automatically and seamlessly.

Self-Optimization Systems have hundreds of manually
set, nonlinear tuning parameters,
and their number increases with
each release.

Components and systems
continually seek opportunities to
improve their performance and
efficiency.

Self-Healing In large systems with high
complexity, problem determination
can take a team of programmers
weeks.

The system automatically
detects, diagnoses, and repairs
localized software and
hardware problems.

State of the Art

38

Self-Protection Detection of and recovery from
attacks and cascading failures is
manual.

The system automatically
defends against malicious
attacks and cascading failures.
It uses early warning to
anticipate and prevent system-
wide failures.

Table 2.1: Autonomic Computing for Strengthening Self-X Properties [45]

In this case, the only remaining solution approach is autonomic computing inspired by

the natural biological nervous system that enables self-management for high-level

objectives provided by administrators to software systems. Thus, the software systems

become self-managing or so-called self-adaptive systems [45]. To make the mentioned

self-management clearer, IBM has defined four properties to specify it, including self-

configuration, self-optimization, self-healing, and self-protection, summarized as the

well-known self-X properties as described in Table 2.1.

Additionally, IBM has developed the autonomic computing adoption model, as shown in

Figure 2.13, referring to a methodology for businesses to calibrate the degree of

autonomic capability based on the following dimensions: increased functionality, control

scope, and service flow. The dimension of functionality describes the automation degree

of the IT and business processes with five levels. The first Manual level means that the

IT professionals are manually responsible for system management. Different system

management technologies can be applied at the second level of Instrument and Monitor

to collect the information from the managed resources. Thus, some administration tasks

like monitoring can be eliminated for human administrators. The third level is named

Analysis, which means that the management functions like pattern recognition,

prediction of optimal configuration, and recommendation of corresponding actions are

automated instead of being delegated to human administrators. Subsequently, at the

level of Closed Loop, the management system performs the actions automatically,

relying on its available information and knowledge about the managed resources. Finally,

the IT systems can understand the high-level objectives and business policies at the

final level of Closed Loop with Business Priorities. Users interact with the autonomic

technology tools to monitor business processes and alter the business processes or

objectives [46].

 State of the Art

 39

Figure 2.13: The Autonomic Computing Adoption Model [46]

In addition to functionality, the second dimension is the control scope, which refers to

coverage of the managed resources. At the first level of the Sub-Component, the

technical system focuses on the partial system (an operating system on a server or an

individual application within an application server) [46]. The second level is the Single

Instance, in which case the whole standalone resource, such as a server or application

server, is automatically managed. The next level focuses on the case with Multiple

Instances of the Same Type as the managed resources, which means that the managed

resources are homogeneous (e.g., a cluster of application servers). Once the managed

resources consist of Multiple Instances of different Types, such a use case is

categorized as the fourth level, which means that heterogeneous resources like servers

and databases or routers and storage units are focused on. Finally, the hardware and

software resources, which perform the business processes, are automatically managed

by the systems at the Business System level.

The third dimension of service flow focuses on the so-called autonomic maturity level by

combining IT management process activities such as change management, incident

Complete
Adop�onE

D

C

B

A Entry Entry Entry Entry Entry

1 2 3 4 5

Increased Func�onality

Manual Instrument
& Monitor Analysis Closed

Loop
Closed Loop with

Business Priori�es

Co
nt

ro
l S

co
pe

Sub-
Component

Single
Instance

Mul�ple of
same Type

Mul�ple of
different

Types

Business
System

Service Flows

State of the Art

40

management, and problem management. Autonomic maturity can evolve in three

dimensions: (1) automating more functions along with the increase in maturity, (2)

applying automated functions to broader resource scope, and (3) automating tasks and

activities in various IT management processes [46]. Along with the increasingly higher

levels of autonomic maturity, automation is applied, in which case more processes of

the managed systems are focused on within an increasingly broader scope.

The developed adoption model enables the incremental adoption of additional

autonomic capabilities for the evolution of autonomic computing. Thus, a solution space

is provided for the business to determine an incremental action plan for maximizing the

benefits of corresponding available autonomic capabilities. To realize autonomic

computing, the topic of self-adaptive systems, which are capable of monitoring their

operating environments and automatically adapting themselves to changes with the help

of the mentioned self-X properties (cf. Table 2.1), has been studied by different

researchers [36][47][48]. In this dissertation, MAPE-K, proposed by IBM as one of the

most fundamental architecture concepts, is taken as a reference and will be discussed

in detail in the next section.

2.2.7.2 Overall Reference Architecture for Autonomic Computing

As discussed earlier, autonomic computing requires the self-management capability of

the software systems, which makes them self-adaptive systems. To design such

systems, IBM proposed a reference architecture to describe the overall idea for the

design of the MAPE-K concept, which is shown in Figure 2.14. This reference

architecture consists of multiple layers, with corresponding so-called autonomic

computing building blocks, which communicate by relying on the communication pattern

of the enterprise service bus (e.g., via standard mechanisms like web services) [46].

Thus, the autonomic computing system is decomposed by building blocks (on different

layers) within different classes: touchpoints, knowledge sources, orchestrating and

touchpoint autonomic managers, and manual managers.

 State of the Art

 41

Figure 2.14: Reference Architecture of Autonomic Computing [46]

The managed resources or system components that constitute IT infrastructures are

deployed on the lowest layer of the reference architecture, possibly consisting of

software or hardware like a server, storage unit, database, or application server. As

shown in Figure 2.14, it is emphasized that the managed resource can also contain an

embedded intelligent control loop. In this case, the loop can be used to realize the

autonomic capability of self-management within the run-time environment,

independently of the management by autonomic managers on higher layers. Such an

embedded intelligent control loop may be deeply hidden in the managed resources,

which are externally invisible and thus inaccessible. In some cases, the intelligent control

loop may also be externally visible and thus can be accessed and controlled by

autonomic managers via touchpoints and so-called manageability interfaces. In this

case, the touchpoints are the interfaces between the autonomic managers and

Manual
Manager

Orchestra�ng
Autonomic
Managers

Touchpoint
Autonomic
Managers

Touchpoint

Managed
Resources

Knowledge
Sources

…

Self-Configuring Self-Healing Self-Op�mizing Self-Protec�ng

Self-
Configuring

Self-
Configuring

Self-
Configuring

Self-
Configuring

Self-
Healing

Self-
Op�mizing

Self-
Protec�ng

Orchestra�ng
Within a
Discipline

Orchestra�ng
Across
Disciplines

R R R R R
Servers Storage Network Database/

Middleware
Applica�on

ISO … …

Intelligent Control Loop

Proper�es:

Rela�onships:

Sensor Effector

Managed
Resource

Managed
Resource

Logs

Configura�on Files
APIs

Events

Iden�fica�on, Metrics,
State, Configura�on

Hosts, Users

Proper�es:

Rela�onships:

Sensor Effector

Managed
Resource

Managed
Resource

Logs

Configura�on Files
APIs

Events

Iden�fica�on, Metrics,
State, Configura�on

Hosts, Users

Proper�es:

Rela�onships:

Sensor Effector

Managed
Resource

Managed
Resource

Logs

Configura�on Files
APIs

Events

Iden�fica�on, Metrics,
State, Configura�on

Hosts, Users

Proper�es:

Rela�onships:

Sensor Effector

Managed
Resource

Managed
Resource

Logs

Configura�on Files
APIs

Events

Iden�fica�on, Metrics,
State, Configura�on

Hosts, Users

Proper�es:

Rela�onships:

Sensor Effector

Managed
Resource

Managed
Resource

Logs

Configura�on Files
APIs

Events

Iden�fica�on, Metrics,
State, Configura�on

Hosts, Users

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

State of the Art

42

managed resources. The manageability interfaces are the services provided by the

managed resources, about which more details will be provided in Section 2.2.7.3.

Generally, the management task of specific managed resources can be taken over by

one or multiple touchpoint autonomic managers. Each touchpoint autonomic manager

can be implemented as a control loop to realize specific self-X properties. On a higher

layer, orchestrating autonomic managers, each of which is also implemented as a

control loop with the same structure as the touchpoint autonomic manager, are deployed

to deliver system-wide autonomic capability by coordination of multiple touchpoint

autonomic managers. For example, a typical orchestrating autonomic manager could be

the workload manager, which, based on specific measurement approaches and policies,

optimizes the resource utilization across a pool of managed resources to realize policy-

based goal-oriented system management [46]. Thus, the orchestrating can be

performed within a single discipline or across disciplines, depending on the self-X

properties realized by the touchpoint autonomic managers, as shown in Figure 2.14.

On the top layer of the reference architecture, a manual manager provides a standard

system management interface for human IT professionals to perform certain

management functions like system setup and configuration or run-time monitoring and

control. For this purpose, an integrated management console is used, which is primarily

designed to provide a single platform. Thus, the administrator can deal with an overall

management solution instead of addressing individual components. The manual

manager can cooperate with other autonomic or manual managers either on the same

or lower layers, enabling IT professionals to delegate management functions to

autonomic managers.

The final kind of building block refers to the knowledge sources as repositories to deliver

knowledge access. These knowledge sources are deployed across different layers in

the reference architecture to guarantee that different manual and autonomic managers

can acquire and share knowledge. The following sections will provide more details about

essential building blocks in the reference architecture.

 State of the Art

 43

2.2.7.3 Touchpoint and Manageability Interface

As presented before, the touchpoint is an interface component that exposes the state

and management operations for the resource to be managed by the autonomic manager.

In this case, the autonomic manager communicates with the touchpoint through the

manageability interface. Figure 2.15 illustrates a touchpoint as an implementation of the

manageability interface for a specific or a set of managed resources, typically for the

use case of database server management.

Figure 2.15: Touchpoint as Interface Between Autonomic Managers and Managed Resources [46]

The manageability interface is divided into sensor and effector interfaces to control the

managed resource. The touchpoint implements sensor and effector behavior for certain

specific managed resources by mapping the standard sensor and effector interfaces to

available manageability interface mechanisms of the managed resources, as shown in

Figure 2.15. Such an approach massively reduces implementation complexity due to

the avoidance of the need to specify diverse interface mechanisms for various types of

managed resources [46].

The sensor interface consists of at least one of two parts. The first part deals with

accessible properties through a standard “get” operation for exposure of the information

about the current state of the managed resources, relying on the interaction mechanism

Properties:

Relationships:

Sensor Effector

Managed
Resource

Managed
Resource

Commands
Logs

Configuration Files
APIs

Events
Manageability

Interface
Mechanisms

Managed
Resource

Details
Identification, Metrics,
State, Configuration

Hosts, Users

Touchpoint

State of the Art

44

of request-response. The second part refers to management events that occur in the

case of a state change in the managed resource, relying on the interaction mechanism

of send-notification.

The effector interface also contains at least one of two parts. The first part deals with a

set of “set” operations to change the state of the managed resource, relying on the

interaction mechanism of perform-operation. The second part focuses on other

operations implemented by autonomic managers to enable the managed resource to

send requests, relying on the interaction mechanism of solicit-response.

The sensor and the effector interface are directly linked. Such an approach works as a

reflection to enable notification through the sensor interface if the effector interface

changes the configuration of the managed resource. The approach relies on the so-

called manageability capability of the managed resource, including a logical collection

of manageable resource’s state information and operations as detailed properties (cf.

Managed Resource Details in Figure 2.15).

For example, the property of identification refers to state information and operations

used to identify the instance of a managed resource. Instead, the metrics refer to the

state information and operations used to measure the managed resource. For different

manageability capabilities, the component on the client-side is forced to be able to

acquire and control state data through the manageability interface, which includes three

parts: (1) meta details for specifying the managed resource and its configuration, (2)

sensor interactions for retrieving of current property values from the managed resource,

and (3) effector interactions for changing the state of the managed resource [46].

2.2.7.4 Knowledge Source

The previous section described how the knowledge source is deployed in the overall

reference architecture as a repository to access and share knowledge. Knowledge

refers to standard data shared among different building blocks, such as autonomic

managers. In this case, the knowledge included in the knowledge sources can be used

to extend the available knowledge of the autonomic managers. The autonomic

managers can load knowledge from one or multiple knowledge sources. Further, the

 State of the Art

 45

knowledge can be activated by the managers of these autonomic managers on higher

layers.

In the reference architecture of MAPE-K, knowledge can be acquired by following three

approaches. The first approach is that the knowledge source directly passes the

knowledge to the autonomic manager. The second approach refers to a case where the

autonomic manager retrieves the knowledge from an external knowledge source (e.g.,

specific resource-specific historical knowledge, which needs to be extracted from the

log files of a particular component or system). As a final approach, the autonomic

manager can also create new knowledge based on current activities by logging the

notifications provided by the managed resource [46]. In such a case, the autonomic

manager can also update the created knowledge into the knowledge source.

To complete the management tasks, the autonomic managers require different types of

knowledge, as summarized in Table 2.2. Each knowledge type must be expressed by

standard syntax and semantics [46], categorized in this dissertation as homogenous

knowledge. The case of heterogeneous knowledge expressed by different syntax and

semantics is excluded here and is discussed in Section 6.3.2.

Knowledge Types Comments
Solution Topology
Knowledge

The solution topology knowledge captures the components'
construction and configuration for a solution or business system.
Installation and configuration knowledge are captured in a
standard installable unit format to eliminate complexity. The plan
function of an autonomic manager can use this knowledge for
installation and configuration planning.

Policy Knowledge A policy is a knowledge consulted to determine whether changes
need to be made in the system. An autonomic computing system
requires a uniform method for defining the policies that govern the
decision-making of autonomic managers. By defining policies in a
standard way, they can be shared across autonomic managers to
enable entire systems to be managed by a standard set of policies.

Problem Determination
Knowledge

Problem determination knowledge includes monitored data,
symptoms, and decision trees. The problem determination
process also may create knowledge. As the system responds to
actions taken to correct problems, learned knowledge can be
collected within the autonomic manager. An autonomic computing
system requires a uniform method for representing problem
determination knowledge, such as monitored data (standard base
events), symptoms, and decision trees.

Table 2.2: Knowledge Types in Knowledge Sources [46]

State of the Art

46

2.2.7.5 Autonomic Manager Based on the Reference Model of MAPE-K

The most crucial building blocks in the presented reference architecture are the

orchestrating and touchpoint autonomic managers. As discussed earlier, each

autonomic manager implements an intelligent control loop. In both the orchestrating and

the touchpoint autonomic manager, the intelligent control loop is realized based on a so-

called MAPE-K reference model, which consists of five parts with different functions:

Monitor (M), Analyze (A), Plan (P), Execution (E) and Knowledge Source (K), as shown

in Figure 2.16 [49].

Figure 2.16: Reference Architecture of Autonomic Managers Based on MAPE-K [46][50]

The monitor function is responsible for the collection, aggregation, filtering, and reporting

of the managed resource details, including information like topology, metrics,

configuration property, state, and the provided capability of the managed resource. After

processing the collected data (e.g., filtering), the processed data is used to aggregate

and correlate the context of events to generate a symptom related to a particular

combination of events. The generated symptom is then forwarded to the analyze

function, as shown in Figure 2.16. It is emphasized that the monitor part may create

knowledge based on current activities by logging the notifications from a managed

resource [46].

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Effector

Sensor Effector

Sensor

 State of the Art

 47

The second part of the MAPE-K reference model is the analyze function, which aims to

observe and analyze situations to determine whether a change must be performed. For

this purpose, the analyze function includes mechanisms to correlate and model the

situations. For example, once a particular policy is not being met, the requirement to

enact a change is fulfilled [46]. Additionally, in some cases, the analyze function

considers the context of the current situation and takes the future context into account

during its processing. For this reason, the mechanisms of modeling the situations are

also included, which allows the analyze function to complete tasks like time-series

predictions or queuing of models.

With the help of these mechanisms, the analyze function can understand the current

system state and allow the autonomic manager to learn about the IT environment and

help predict future behaviors. Once a change is required, a so-called change of request

as a standard description of essential modifications, which the analyze function

considers, will be generated and forwarded to the next part: the plan function.

Once the plan function receives the change of request from the analyze function, it

enacts a desired alteration in the managed resource by creating or selecting a procedure,

which can be performed in diverse forms, ranging from a single command to a

complicated workflow [46]. The output of the plan function is called a change plan, which

includes a set of desired changes for the managed resource with certain orderings for

the achievement of goals and objectives. The plan function uses policy information to

guide its work [46].

The generated change plan still must be forwarded to the execute function, which as

another part in the control loop of the MAPE-K reference model, is responsible for the

execution control of the change plan. For this purpose, the execute function can

schedule and perform the desired changes to the system. A single change plan may

contain a series of actions that can be performed to modify the state of the managed

resources. To perform the actions, the autonomic manager needs to use the effector

interface of the touchpoint, which was presented in Section 2.2.7.3. Suppose the monitor

part has created new knowledge. In that case, the execution of the generated change

plan can also be completed by updating the created new knowledge into the final

State of the Art

48

knowledge source in the MAPE-K reference model, which was explicitly introduced in

Section 2.2.7.4.

The knowledge included in the knowledge source is required during the processes of

other system parts, like the monitoring, analyzing, planning, and execution functions.

For example, the monitor function can create new solution topology knowledge based

on the observed details of the managed resource (e.g., a new configuration or the

construction of the system). The analyze function can use the policy knowledge to

determine whether a change request is necessary. Following a standard means to

define the policy with a uniform method, a single autonomic manager can use the

defined policy for its decision-making, which can also be shared across multiple

autonomic managers in the whole system. Problem determination knowledge includes

monitored data, symptoms, and decision trees [30]. Thus, the monitor and the plan

function use this knowledge to generate symptoms and determine the change plan.

2.2.8 DYNAMICO Reference Model

Most implemented approaches as contributions to self-adaptation assume non-mutable

adaptation goals and monitoring infrastructures, which strongly limits the applicability of

the approaches in the case of systems within highly changing environments. For this

purpose, Villegas et al. [51] have proposed a so-called DYNAMICO reference model for

engineering adaptive software systems. The general concept of the DYNAMICO

reference model is inspired by the MAPE-K and the control theory with the classical

feedback control loop. In this sense, the DYNAMICO can also be seen as an application

and further development of MAPE-K with the integration of control theory approaches.

Integrating control theory approaches based on the feedback control loop and the self-

adaptive software systems is not an entirely novel idea. Its benefits have been

investigated by different researchers [25][52]. For example, Müller et al. [53] and Kramer

and Magee [54] said that the feedback control loops had been considered a fundamental

design element for designing systems with self-adaptation. However, visibility of the

adaptation controller and the control loop is still missing, which leads to a lack of explicit

methods for analysis, validation, and verification of the system and thus makes the

measurement of the effectiveness of the adaptation mechanisms unrealizable [53].

 State of the Art

 49

DYNAMICO reference model aims to solve such issues by increasing the visibility of the

feedback control loop components and making them analyzable, assessable, and

comparable [55].

2.2.8.1 Fundamental Design of DYNAMICO

As discussed with the concept of MAPE-K, the autonomic manager is a component that

implements an intelligent control loop [46], which is realized by a set of tight-coupled

functions (cf. Section 2.2.7.5). In this case, the separation of concerns between the

monitoring process, the adaptation controller, and the management of control objectives

(adaptation goals) is still missing. The lack of the separation of concerns makes the

consistency guarantee between the adaptation mechanisms and corresponding control

objectives while preserving the relevance of context monitoring of the adaptation

mechanism exceedingly tricky. Thus, loose coupling is selected in the concept of

DYNAMICO, which makes the fundamental elements in the MAPE-K loop independent.

For example, a classical feedback control loop from the perspective of control theory,

including corresponding components like controller and controlled system and their input

and output, are schematically visualized in Figure 2.17. Since control theory, especially

the classical control loop, was presented in Section 2.1.1, detailed discussion of the

classical feedback control loop is excluded.

Figure 2.17: Classical Block Diagram of a Feedback Control System [51]

From another perspective, the control loop of the MAPE-K is realized by the monitor,

analyze, plan, and execution functions, which were also discussed in previous sections.

Based on both the classical feedback control loop and the control loop in the MAPE-K,

Controller Controlled
System

Transducer
(G)

-

(B)
Reference

Input
(H)

(C)
Control

Error
(D)

Control Input

(F)
Noise Input

(E)
Disturbance

Input
(A)

Measured
Output

Transduced
Output

State of the Art

50

a fundamental structure with several general components in the DYNAMICO reference

model with loose coupling is developed by merging both previous concepts shown in

Figure 2.18.

Figure 2.18: Fundamental Structure with General Components of DYNAMICO [51]

2.2.8.2 Hierarchical Architecture Based on Three Levels of Dynamics in DYNAMICO

The context-driven self-adaptation of the software system is also considered to increase

the applicability of the DYNAMICO concept. For this purpose, three levels of dynamics

in the use case of the self-adaptive system are identified: (1) the management of

changing control objectives, (2) the dynamic behavior of the adaptation mechanism

controlling the target system, and (3) the management of dynamic context information

[51], which influence each other. This means that level (2) and level (3) must be adapted

in the case of the change of control objectives at level (1). Considering this from the

opposite direction, a change of context situation at level (3) may also require a review

of the control objectives to modify the adaptation mechanism at level (2), even once the

mechanism is working correctly [51].

Based on the identified three levels of dynamics, a hierarchical architecture is derived

following the idea of separation of concerns at different levels, which thus consists of

three subsystems implemented as three concurrent feedback loops (CO-FL, A-FL, and

M-FL), as shown in Figure 2.19. CO-FL represents the control objectives control loop,

which controls the change in adaptation goals and monitoring requirements to guarantee

their fulfillment. In comparison, the A-FL as the adaptation feedback loop controls the

adaptive behavior of the controlled system and the adaptation mechanism, considering

the control objectives from the CO-FL and the monitored context events. Finally, M-FL

Control Output
Preprocessing

Monitor Analyzer Controlled
System

Adapta�on Controller

PlannerExecutor

Reference Control Input
Sensed

Context
Informa�on

Preprocessed
Control Output

Control
Symptoms

Control
Error

Control
Input

Measured
Control
Output

Adapta�on
Noise

 State of the Art

 51

represents the dynamic monitoring feedback loop, which manages context information

for preserving the context relevance of the adaptation mechanism [51].

Figure 2.19: Three Levels of Dynamics in Context-Driven Self-Adaptive Software Systems [51]

In Figure 2.19, labels (A), (B), (B), (D) are highlighted interfaces between different

control loops, which represent interactions specified depending on the requirements of

concrete application. The interaction (A) provides requirements derived from the current

control objectives to the M-FL. The interaction (B) supports the CO-FL in deciding on

changes in the control objectives if the M-FL detects the requirement to change control

objectives. The interaction (C) guarantees that the observed context by the M-FL can

be considered during the processing of the A-FL. The interaction (D) represents the flow

of sensed internal context of the controlled system included on the A-FL.

For each feedback loop, this fundamental structure with general components can be

applied to derive concrete construction on a lower component level instead of on the

level of the control loop. Thus, a detailed hierarchical architecture is constituted,

including controllers on different levels of feedback loops, as shown in Figure 2.20. Each

feedback control is comprised of a series of “MAPE” components. The A-FL and M-FL

work together to take over the high-level objective-oriented control, which covers the

regulation of requirements satisfaction and the preservation of adaptation properties and

is defined as system variables: control objectives or adaptation goals [51].

Control Objec�ves Feedback
Loop

Adapta�on Feedback Loop

Monitoring Feedback Loop

Reference Control
Objec�ves (e.g., SLAs)

Sensed Context
Informa�on

CO-FL

A-FL

M-FL

Legend:
Control/Data Flow
Feedback Loop Abstrac�on

(D)(C)(A)(B)

State of the Art

52

To specify the control objectives, the requirements can be either functional or non-

functional, which the target system should satisfy. The adaptation properties refer to the

inherent properties of the self-adaptive software, which are quantitatively represented

by quality attributes and thus can be exposed by adaptation mechanisms. As illustrated

in Figure 2.20, the control objectives can also be modified by user-level negotiations at

runtime, which must be addressed consistently and synchronized at the level of A-FL

and M-FL [51]. In the case of a change of control objectives, the reference control input

at the A-FL level and the reference context input at the level of M-FL also must be

derived and adapted automatically and fed into corresponding feedback loops.

Figure 2.20: DYNAMICO Reference Model with Controllers for the Three Levels of Dynamics [51]

The second feedback loop A-FL follows the mechanism of control theory with

quantitative expressions to measure the control error between the current value of the

controlled system variables and the set value of the reference control inputs for these

Context Control Output
Preprocessing

Context Monitor Context Analyzer

Context Adapta�on
Controller

PlannerExecutor

System Control Output
Preprocessing

Adapta�on
Monitor

Adapta�on
Analyzer

System Adapta�on
Controller

PlannerExecutor

Objec�ves
Monitor

Objec�ves
Analyzer

Objec�ves Controller

PlannerExecutor

Control
Symptoms

Control
Error

Control
Input

Adapta�on
Noise

Measured Control Output

Sensed External Context
(Environment)

Context Manager

Preprocessed Internal and
External Context

Controlled
System

Context Symptoms

Reference
Context
Input

Control
Error

Control
Input

Measured Control Output

Sensed Internal Context

Preprocessed System
Context

Control
Symptoms

Reference
Control Input

Adapta�on
Noise

Context
Symptoms

Control
Objec�ves
Symptoms

Control
Objec�ves
Differences Control Objec�ves Outputs

Reference Control
Objec�ves

CO-FL

A-FL

M-FL

User Level Nego�a�ons DYNAMICO Reference Model

(D)
(C)

(A)

(B)

 State of the Art

 53

variables. Relying on the context monitor, the A-FL can continually monitor the state of

the controlled system, which is analyzed by the component Adaptation Analyzer, aiming

to determine whether an adaptation is necessary. As in the case of the MAPE-K

reference model, the planner and executer in the component System Adaptation

Controller take over the responsibilities of determining adaptation strategy to fulfill the

control objective by eliminating violations and performing concrete adaptation actions

included in the strategy.

The M-FL works as an independent feedback control loop focusing on the dynamic

nature of the controlled system’s context information. The reference context inputs

correspond to the reference context management objectives derived from the reference

control objectives at the CO-FL level. The Context Monitor gathers context information

from the internal and external environment, which is preprocessed by the component

Context Control Output Preprocessing and used to generate symptoms, which can also

influence the adaptation of the target system (cf. label (C)). The Context Analyzer

analyzes the symptoms, considering the system states' past, current, and future context.

Thus, it supports the Context Adaptation Controller to adapt the monitoring strategy (e.g.,

in the case of a change of control objectives via the user-level negotiation or evolvement

of the adaptive system). A typical example of the adaptation monitoring strategy for the

M-FL could be the deployment of new context management instrumentation. For the

CO-FL, the output of the context analyzer is also derived as context symptoms to

support the decision-making about changing the system objectives at the CO-FL level

(cf. label (B)) [51]. The context adaptation controller defines and executes the adaptation

plan for the Context Manager; these goals are derived from the measured control output

and the sensed internal context of the controlled system.

2.3 Generic Communication Architecture Patterns

In addition to architecture design from the static view of system construction, another

perspective on designing self-intensive systems is the dynamic view, which focuses on

component interactions within the system. For this reason, this dissertation also focuses

on generic communication architecture patterns, which can be applied to specify the

State of the Art

54

concepts of the communication between the components, primarily focusing on the use

case of distributed systems.

This dissertation considers the results of previous work as a reference, including a

taxonomy of generic communication paradigms for distributed systems [48]. This

taxonomy includes remote procedure calls (RPC), message-oriented communication,

stream-oriented communication, and data-based communication, as shown in Figure

2.21. Additionally, several generic communication architecture patterns are summarized

as examples, relying on their communication paradigms as underlying technologies

[56][57]. These communication architecture patterns will be presented in detail in the

following sections.

Figure 2.21: Taxonomy of Generic Communication Paradigms in Architecture Pattern [48]

2.3.1 Request-Response Pattern

The first communication architecture pattern is called the request-response pattern, also

named the client-server pattern. It is developed based on the communication paradigm

of remote procedure calls (RPC). RPCs refer to the process that a program on the local

machine (client) calls a procedure located in a different address space, which means

that the procedure is located on another machine (server) [57]. Since the client and

server machines do not share the same address space, parameter passing by using the

stack is unreliable for RPCs. Thus, RPCs are coded like local ones as much as possible

so that the developer is not required to handle underlying code for remote interaction.

Communication

Remote Procedure
Calls

Message-oriented

Stream-oriented

Data-based

Request-Response
Pattern

Pipes-and-Filters
Pattern

Blackboard PatternPublish-Subscribe
Pattern

asynchronous

synchronous

transient

persistent public space

ownership

non-synchronized

synchronized

 State of the Art

 55

As the initialized process in an RPC, the client procedure calls a client stub, a piece of

code for parameter conversion aiming to build a message, as illustrated in Figure 2.22.

The message built by the client stub will be forwarded to the operating system (OS)

deployed on the local machine, which communicates with the remote OS deployed on

the server machine via the network. Thus, the message can be transmitted from the

local machine to the remote machine. Another server stub on the remote machine

unpacks the parameters from the message and calls the server procedure [57].

Figure 2.22: Process Flow of a Remote Computation through RPC [56]

After the processing by the server procedure, the result is returned to the client

procedure via the process flow in reverse order. It is emphasized that a RPC only

supports the mechanism of call-by-value, which means that the client procedure copies

the parameter values and sends this copy to the server procedure instead of directly

sending the values. In this case, the client procedure aligns the parameter values, which

are returned from the side of the server procedure. If necessary, the client procedure

should also check consistency between the initially saved parameter values on the local

machine and the returned parameter values from the remote machine.

The RPC can still be divided into synchronized and non-synchronized RPC, as

illustrated in Figure 2.23. A synchronized RPC means that the client stub blocks itself

after sending the message until a reply comes back from the server procedure on the

remote machine, and a non-synchronized RPC means that the client stub will not block

Client Machine Server Machine

Client Process Server Process

Client OS Server OS

Implementa�on
of add

k = add(i,j) k = add(i,j)

proc: “add”
int: val(i)
int: val(j)

proc: “add”
int: val(i)
int: val(j)

proc: “add”
int: val(i)
int: val(j)

Client Stub Server Stub

1. Client call to
procedure

2. Stub builds
message

3. Message is sent
across the network

4. Server OS
hands message to
server stub

5. Stub unpacks
message

6. Stub makes
local call to “add”

State of the Art

56

itself. In the non-synchronized RPC, the server procedure immediately sends a reply as

an acknowledgment back to the client-side to confirm that the request is received. Thus,

the client stub can immediately continue working without blocking [58].

Figure 2.23: Process Flow of Synchronized and Non-Synchronized RPC [56]

In comparison to the synchronized RPC, the non-synchronized RPC increases overall

system performance due to the independent parallel computation of the client and server

procedures. However, from another perspective, in this case, there is no guarantee of

reliability since the client never knows whether the server will process the request.

Figure 2.24: Architecture of Request-Response Pattern [59]

Based on RPC as the underlying technology, the request-response pattern is developed,

as shown in Figure 2.24. In the request-response pattern, the client initializes an

interaction with the server by invoking provided services of the server and subsequently

waiting for the requested results [60]. In this case, the client and the server have ports

to describe the services they require and provide. One server can be connected to

multiple clients through request/reply connectors, defined as a data connector

employing a request/reply protocol.

Since the server can be a service provider for several clients, there are significant

disadvantages in the request-response pattern. The server can be a performance

Client

Server

Client

Server

Wait for result

Request Reply Request Accept request

Return
from call

Call remote
procedure

Return from call
+ Return value

Call remote
procedure

Wait for acceptance

Call local procedure
and return results

Call local procedure
Time Time

Synchronized RPC Non-synchronized RPC

Client Server

Request

Response

 State of the Art

 57

bottleneck or a single point with a high risk of failure. Additionally, system design based

on the request-response pattern is often complicated since the component interactions

must be individually defined. Such an approach makes the component interactions later

cost-intensive to change once the system has been built [52] and simultaneously limits

the number of active clients. Generally, it can be said that the request-response pattern

is not appropriate for applications requiring transferal of data in significant volumes.

2.3.2 Publish-Subscribe Pattern

The second communication architecture pattern is the publish-subscribe pattern, which

is based on the underlying technology of message-oriented communication. Message-

oriented communication refers to communication between the participating components

relying on specified messages via an intermediate-term storage capacity for transmitting

messages from sender components to corresponding receiver components.

In message-oriented communication, there is a loose coupling between the sender and

receiver, which means that it is not required that the senders and receivers are active

during the message transmission. This loose coupling is realized by a change

propagation infrastructure that plays the role of the intermediary, as shown in Figure

2.25.

Figure 2.25: Architecture of Publish-Subscribe Pattern [58]

Publisher A Publisher B Publisher C Publisher D

Subscriber W

Change Propaga�on
Infrastructure

Message 1

…

Message 2 Message 3

Topic A Topic B

Subscrip�on
WA

Message N

Message 1

Subscrip�on
WB

Message 2

Subscriber X …Subscriber Y Subscriber Z

Topic C

Subscrip�on
XC

Message 3

Topic D

Subscrip�on
YD

Subscrip�on
ZD

Message N Message N

State of the Art

58

With the help of the change propagation infrastructure, the sender only guarantees that

message will be inserted into a logical message channel, which is also called topic (cf.

Figure 2.25), without knowing when and whether the message will be read. Instead, the

receiver makes decisions about reading the message. In some cases, different

applications may have diverse message formats. Thus, the broker [61] can also be

integrated into the change propagation infrastructure to handle the conversion between

different message formats and temporarily store the messages, making advanced

enterprise application integration much more effortless. Indeed, the broker is not always

required in the communication once the message formats of the applications are

predefined previously and thus are consistent. Generally, it is not worth agreeing with a

standard message format in the case of communication between heterogeneous

systems [57].

The information exchanged between the sender and receiver components is

encapsulated inside events and realized as messages routed and forwarded by the

change propagation infrastructure. In this case, sender components (called publishers)

and receiver components (called subscribers) work independently and are not aware of

each other’s locations and identities. The publishers disseminate events that convey

information without concern for which subscribers are interested. The subscribers also

do not care about the events coming from which publisher and are only interested in the

published events, including the expected information. The communication in the publish-

subscribe-middleware is asynchronous, which means that the publishers continue their

processing without blocking themselves after event dissemination.

For this purpose, publishers and subscribers must register with the change propagation

infrastructure to realize such a communication mechanism. Thus, the infrastructure can

acquire the information about event types to be published and received and thus can

route events from publishers via network to interested subscribers using registration

information.

In such publish-subscribe-middleware, concrete message formats are hidden by the

events from the publishers, subscribers, and the change propagation infrastructure.

Such an approach makes the modification of the message format very transparent.

Nevertheless, from another perspective, the publish-subscribe-middleware also has

 State of the Art

 59

disadvantages. For example, the concept of anonymous communication possibly

causes unfavorable overhead once the subscribers have limited specifications (e.g., in

cases with very few types of events or strictly defined reaction criteria) [61].

Due to its loose coupling between publishers and subscribers, message-oriented

communication has provided tremendous advantages for distributed system

communication. On top of the message-oriented communication, the publish-subscribe

pattern is developed and implemented as so-called publish-subscribe-based

middleware (e.g., typical middlewares with a centralized broker like MQTT, CORBA [62],

or ROS14). Unlike the middleware with a centralized broker, some other middleware

relies on concurrency and networking programming patterns like DDS (data distribution

service) products like ROS25 instead of a broker.

2.3.3 Pipes-and-Filters Pattern

The third communication architecture pattern focused on in this dissertation is the pipes-

and-filters pattern, which relies on the underlying technologies of stream-oriented

communication, primarily focusing on the exchange of time-dependent information.

Considering the previously introduced two communication paradigms, neither request-

response-pattern nor publish-subscribe-pattern focus on the timing of the

communication, which, in cases of multimedia, plays a crucial role [56]. Different

concepts of stream-oriented communication have been developed relying on the data

stream, including a sequence of data units or items, to deal with the timing requirements.

The transmission of the data stream can be categorized into three modes: asynchronous

transmission, synchronous transmission, and isochronous transmission.

In the asynchronous transmission mode, the data items in a stream are transmitted one

after the other without any time constraint. For example, in the case of a file transfer, it

is irrelevant when the transfer of each item is completed. Instead of the asynchronous

mode, the synchronous transmission mode requires a maximal end-to-end delay for

each item in the data stream. As a more strict concept, maximal and minimal end-to-end

4 ROS1: Robot Operating System, Version 1: http://wiki.ros.org/Documentation (accessed: 4th April 2022).
5 ROS2: Robot Operating System, Version 2: http://docs.ros.org/en/rolling/ (accessed: 4th April 2022).

http://wiki.ros.org/Documentation
http://docs.ros.org/en/rolling/

State of the Art

60

delay are required in the isochronous transmission mode, which is particularly

meaningful for distributed multimedia systems and thus is included in the focus of this

dissertation [56].

In isochronous transmission, the timing requirements are expressed as quality of service

(QoS), which focuses on timeliness, volume, and reliability in the continuous data stream

(e.g., the maximum delay variance and jitter [63]). The most effective approach in the

isochronous transmission is the buffering for reducing jitter to enforce the QoS. Thus,

the receiver stores packets in a buffer for a certain maximal period, aiming to keep

regularly passing packets (to the application). In addition to buffering, other approaches

like error compensation have been developed to deal with the issue of losing packets

[64].

In some use cases of stream-oriented communication with multiple data streams (e.g.,

from different sensors) there is no need to synchronize the data streams. But in other

use cases, the synchronization of different streams is required, particularly in the case

of the multimedia stream like internet telephone or video conference. The

synchronization mechanisms for stream-oriented communication can be understood as

approaches on different levels of abstraction. For example, one of the possible

approaches is to deploy a procedure in the application to execute read and write

operations with consideration for timing and synchronization constraints [56].

Alternatively, a middleware layer with multimedia control offers a group of interfaces to

control streams such as video and audio, and devices such as cameras and

microphones can be deployed in the application. In this case, each device and stream

relies on its high-level interfaces to notify the application about the event of an incoming

stream, which is subsequently used to synchronize streams by writing handlers [65]. In

addition to middleware, deployment of a synchronization specification containing

required information on the receiver side has also been applied [56].

 State of the Art

 61

Figure 2.26: Architecture of Pipes-and-Filters Pattern [61]

Based on the underlying technologies of stream-oriented communication, the pipes-and-

filters pattern is developed; this architecture is shown in Figure 2.26. As shown in Figure

2.26, the input device provides the input data streams, which are processed stepwise

and forwarded as output data streams into the output device. In this case, each

processing step is completed by independent filter components with loose coupling. The

filter components consume and then deliver the data after corresponding individual

transformation processes. Once the filter component includes activity with a long

execution duration, it can also integrate multiple instances for parallel computation.

Some instances can already initialize the processing of a new data stream, even when

the previous data stream is not yet completed.

The pipes are deployed between the filter components, which work as connectors for

the stream by consuming the data at the input port and subsequently forwarding the

data to one or multiple output ports without any transformation [61]. As the intermediary

for exchange and coordination of the data, the pipes include policies for buffering to

guarantee a regular data rate, as discussed in the introduction to stream-based

communication.

Since there is no cycle in the pipes-and-filters pattern, it is not appropriate for interactive

systems, in which user feedback is essential [60]. Due to loose coupling, each filter

works as an individual thread or process, which possibly causes overhead in the case

of a system with a significant number of filters. The pipes-and-filters pattern does not

Input Device Filter 1

Pipe N-1

Output Device

Input

Buffer

…

Pipe 1Buffer Filter 2Input

Pipe N Buffer

…

Pipe 2Buffer

Pipe 3Buffer

Filter N-1Input

…

Filter N Input

State of the Art

62

have high system reliability in the case of a long-term computation since there is no

approach for the realization of checkpoints or restoring functionality in the pattern. Thus,

the whole system will fail if any filter has malfunctioned [61].

2.3.4 Shared-Repository Pattern

The fourth communication pattern refers to the shared-repository pattern, relying on the

underlying paradigm of data-based communication. The communication between

components is based on the exchange of structured data [48][57]. There are multiple

application components in the shared-repository pattern, all of which have access to a

shared data repository, as shown in Figure 2.27. In this case, the application

components do not know each other, and a shared data repository communicates with

them. The communication’s control flow is triggered and coordinated by the availability,

quality, and state of the saved data in the repository [61][66].

The application components can work directly on the data saved in the shared repository.

In the case of a data change in the repository, the shared repository notifies application

components about the data change to react to it immediately. The notification

mechanism is realized by observer arrangement. In this case, the shared repository

plays the role of the subject, and the application components are the observers. For

example, once a component has created new data and inserted the created data into

the shared repository, the other components will receive a notification from the

repository and thus can also access the newly inserted data [61].

Figure 2.27: Architecture of Shared-Repository Pattern [61][66]

Based on the above, it can be understood that the control flow in the shared-repository

pattern is data-driven without participating in the ordinary business process, which

Shared Repository

Data
Data

Data

Data

Data

Applica�on
Component 1

…

…Applica�on
Component n

operates on

operates on
operates on

 State of the Art

 63

makes the shared repository a performance and scalability bottleneck and a single point

with a high risk of failure [60]. The saved data can be encapsulated inside managed

objects in the shared repository. The managed objects can be implemented as domain

objects that hide the details of concrete data structures and offer operations for their

access and modification [61]. Nevertheless, the application components as data

producers and consumers may still be tightly coupled through their knowledge of the

data structure [60].

Generally, the notification of the shared repository in the case of data change can be

designed to perform on different levels relying on the utilization of managed objects. The

notification on the repository level makes the implementation easy, which could cause

an overhead of notification and data transfer once most application components are not

interested in the data change. From another perspective, once the notification is

performed on the managed object level, unnecessary notifications and data transfer can

be avoided, which leads to higher system complexity.

2.3.5 Blackboard Pattern

The final communication architecture pattern is the blackboard pattern, which includes

a blackboard as a shared data repository for structured data exchange [61]. Due to this

feature, some researchers categorize the blackboard pattern as a variant of the shared-

repository pattern [60]. The only difference is that the control flow in the shared-

repository pattern is driven by the data change in the shared repository. Instead, the

control flow in the blackboard pattern is driven by a control component independent of

the blackboard, which works as a shared repository. Other researchers have also

summarized this idea in their work [61].

Generally, the blackboard pattern is designed to construct systems dealing with tasks

based on uncertain, hypothetical, or incomplete knowledge and data. It is emphasized

that there is no guarantee of a valid result, which means that the pattern is not

appropriate for the systems with expected predictability of result quality or time

constraints like the worst-case execution time. The core idea behind the pattern is to

decompose the overall task into smaller, self-contained subtasks for which deterministic

solution algorithms are known [61]. In this case, the subtasks are assigned to

State of the Art

64

independent knowledge sources, which can be coordinated and activated by the control

component based on heuristic computation with an arbitrary order to gradually improve

an intermediate solution hypothesis on the blackboard, as shown in Figure 2.28.

Figure 2.28: Architecture of Blackboard Pattern [61]

The blackboard pattern is appropriate when systems have boundary conditions like

diverse input data sources physically distributed in environments. However, from

another perspective, this pattern also has disadvantages (e.g., expensive

implementation, few supports of parallelism, and testing difficulty due to the application

of the heuristic approach).

2.4 Applied AI-Based Technologies in This Dissertation

In this dissertation, the main contribution is a generic architecture style, which can be

used as a template to design automatic control systems in the future. An example

architecture of a so-called artificial cognitive cruise control (ACCC) system is derived by

following the architecture style. In addition, the ACCC is implemented as a prototype of

future ACC variants to evaluate the plausibility of the proposed architecture style. For

this implementation, different technical approaches, particularly applied artificial

intelligence algorithms, will be described in detail in the following sections.

Knowledge Source 1

…

check

ac�vate

Knowledge Source 2
check

ac�vate

Knowledge Source n
check

ac�vate

Controlrun

Blackboard
Intermediate
Solu�on
Hypothesis 1 Intermediate

Solu�on
Hypothesis 2

Intermediate Solu�on
Hypothesis n

…

1

2

5

4

3

Determine the best knowledge source to modify
data on the blackboard
Ac�vate the selected knowledge source to let it
modify data on the blackboard

Update the blackboard by modifying the data on
the blackboard

Inspect the blackboard by checking the current
solu�ons on the blackboard

Inspect the blackboard by checking the current
solu�ons on the blackboard

1

2 5

4

3

 State of the Art

 65

2.4.1 Q-Learning

Artificial intelligence and its subfield of machine learning are becoming increasingly

attractive and have been applied to diverse applications. Generally, machine learning

approaches can be classified into different broad categories (e.g., supervised learning

and unsupervised learning), which are differentiated by whether training data as labels

are available while training a machine learning model such as a neural network. Unlike

supervised and unsupervised learning, another learning approach named reinforcement

learning, which learns the best policy based on the environmental reward by taking

actions with a set of trial-and-error runs [67], is applied within the application example of

this dissertation. Figure 2.29 illustrates a general process flow of reinforcement learning.

Figure 2.29: General Process Flow of Reinforcement Learning [67]

Based on model availability, reinforcement learning can still be categorized into model-

based and model-free approaches. One of the most important breakthroughs in model-

free reinforcement learning was Q-learning [68], which is a kind of off-policy TD

(temporal difference) control algorithm [69]. In its simplest form, one-step Q-learning is

defined in the following equation:

𝑄𝑄(𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡) ← 𝑄𝑄(𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡) + 𝛼𝛼 �𝑅𝑅𝑡𝑡+1 + 𝛾𝛾max
𝑎𝑎

𝑄𝑄(𝑆𝑆𝑡𝑡+1,𝑎𝑎) −𝑄𝑄(𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡)� (2.17)

In the equation, Q represents the learned action-value function. The action-value

function is dependent on the variables S and A, respectively representing the state and

action of the agent at each time point (subscript t). The variable γ represents a learning

rate during each step in the learning process by adapting the Q-value. Based on the

equation, it can be seen that the learned action-value function can directly approximate

the optimal one, which is independent of the policy being followed [68].

Environment

Agent

State Reward Ac�on

State of the Art

66

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑄𝑄(𝑠𝑠,𝑎𝑎),∀𝑠𝑠 ∈ 𝑆𝑆,𝑎𝑎 ∈ 𝐴𝐴(𝑠𝑠),𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,∙) = 0
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒):

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒):
 𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑄𝑄 (𝑒𝑒.𝑔𝑔. , 𝜖𝜖 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑅𝑅, 𝑆𝑆′
𝑄𝑄(𝑆𝑆,𝐴𝐴) ← 𝑄𝑄(𝑆𝑆,𝐴𝐴) + 𝛼𝛼 �𝑅𝑅 + 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎
𝑄𝑄(𝑆𝑆′,𝑎𝑎) − 𝑄𝑄(𝑆𝑆,𝐴𝐴)�

𝑆𝑆 ← 𝑆𝑆′
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑆𝑆 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
Figure 2.30: Pseudo Code of Q-Learning — An Off-policy TD Control Algorithm [69]

Such an approach enormously simplifies the analysis of the algorithm and enables an

early convergence, in which the mentioned parameter of learning rate also plays an

important role. The detailed process flow of the Q-learning algorithm is illustrated in

Figure 2.30.

2.4.2 Kernel Density Estimator

In machine learning, the inferential statistical method is a significant important subfield.

It can be divided into parametric, semiparametric, and nonparametric methods. The

parametric and semiparametric methods work based on the assumption that the data is

drawn from one or a mixture of probability distributions of known form. The

nonparametric methods are applied if there is no such assumption about the input

density, and the data speaks for itself [67].

In this dissertation, the kernel density estimator (KDE), one of the most well-known

approaches in nonparametric methods, is used within the application example.

Depending on variable numbers, KDE can still be categorized as monistic and

multivariate approaches. The multivariate approach is out of the focus of this dissertation.

The most fundamental element of KDE is a so-called Gaussian kernel, which is a

probability density function based on Gaussian distribution, as illustrated in the first

Equation (2.17). K(u) represents the probability density, in which u represents the

deviation between each sample (x’) and the central data point (x) within the Gaussian

distribution. The central data point here means the data point with the highest density.

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾: 𝐾𝐾(𝑢𝑢) =
1

√2𝜋𝜋
𝑒𝑒𝑥𝑥𝑝𝑝 �−

𝑢𝑢2

2
� (2.18)

 State of the Art

 67

The Gaussian kernel works based on the assumption that the world is smooth and all

functions inside change slowly [67]. Thus, in the case of a parameter has acquired a

historical value of xi (𝑖𝑖 ∈ [1 𝑛𝑛],𝑛𝑛 ∈ ℝ), during the value prediction, all neighbor values will

receive corresponding probability densities, in which the Gaussian kernel is used as a

smooth weight function, as shown in Figure 2.31 (cf. individual green curve). In cases

where the parameter has acquired several historical values (x1, x2, … ,xm, … ,xn), as

shown in Figure 2.31, multiple green curves with the historical values as their central

data points can be found to visualize the probability density distributions.

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊): 𝑝̂𝑝(𝑥𝑥) =
1
𝑁𝑁ℎ

�𝐾𝐾(
𝑥𝑥 − 𝑥𝑥′
ℎ

)
𝑁𝑁

𝑡𝑡=1

 (2.19)

All density distributions can be merged using the kernel estimator, as illustrated in

Equation (2.19). In this case, the kernel with subscript h is called the scaled kernel

(𝐾𝐾ℎ(𝑢𝑢) = 1
ℎ
𝐾𝐾 �𝑢𝑢

ℎ
� ,𝑢𝑢 = 𝑥𝑥 − 𝑥𝑥′), in which h is an application parameter of bandwidth.

Selection of an optimized bandwidth requires consideration of a tradeoff between the

variance and bias of the overall estimator [67].

An overall density distribution (purple curve in Figure 2.31) can be found with an

appropriate bandwidth. With the help of the purple curve, the next value prediction of

the parameter x will become more precise since all historical values will be considered.

However, from another perspective, it is emphasized here that temporal dependencies

between the historical values are not specially considered in the approach of KDE, which

means that the appearance sequence of the historical value does not influence the final

prediction result.

Figure 2.31: Sample Visualization of Probability Density in Kernel Density Estimator [70]

D
en

si
ty

 F
un

ct
io

n

x
x1 xm xn

State of the Art

68

2.5 Summary

Chapter 2 has introduced the theoretical basics of control theory and the architecture

design of self-intensive systems. For the control theory, the research work of Trächtler

and Gausemeier [11] is taken as the reference taxonomy of current control systems in

this dissertation, which was presented in this chapter. In addition, this chapter provided

a short overview, including different concepts of software architecture design. An

introduction to generic communication architecture patterns and applied AI-based

technologies in this dissertation are also included in this chapter.

Since the main contribution of this dissertation deals with a generic architecture style for

designing automatic control systems, a case study focusing on the architectural

evolution of different automatic control systems is included in this dissertation, which will

be covered in the following chapter. Additionally, this dissertation uses a vehicle’s ACC

as an example in the case study to better illustrate the architectural evolution. Finally,

an artificial cognitive cruise control (ACCC) to improve the current ACC variants on the

market is implemented based on the instantiated architecture by following the generic

architecture style.

Case Study: Architecture Evolution of Automatic Control

within the Example of Adaptive Cruise Control

 69

3 Case Study: Architecture Evolution of Automatic
Control within the Example of Adaptive Cruise
Control

This chapter introduces a case study focusing on the architectural evolution of automatic

control systems based on application examples of a vehicle’s ACC. Different automatic

control concepts applied in current ACCs are analyzed and categorized into four levels:

basic control, naive adaptive control, controlled-plant-dependent adaptive control, and

physical-system-dependent adaptive control, which are initially inspired by Trächtler and

Gausemeier’s taxonomy and furtherly developed considering the perspective of

increasing system adaptability and autonomy (cf. Chapter 2) [11][71][72].

In this chapter, the well-known MAPE-K model described in Section 2.2.7 is taken as a

reference to be roughly compared with the previously mentioned four levels of control

concepts. Technical limitations of ACCs applying these control concepts are also

discussed in this chapter to determine existing issues with current control concepts. To

address these issues, challenges for the architecture design of future automatic control

systems are discussed. Finally, a future control concept named artificial cognitive control

is defined in the summary of the illustrated architectural evolution at the end of this

chapter.

3.1 Basic Control in ACC

While designing a control system, it is always challenging to take all possible operating

situations and corresponding appropriate system behaviors at run time into account,

particularly for systems working in an uncertain surrounding environment with high

nondeterminism. Faced with this challenge, different automatic control concepts with

diverse technologies have been developed. The most fundamental concept of automatic

control is named basic control in this dissertation, referring to control systems based on

a controller with a static parametrization at run time, as shown in Figure 3.1.

Basic control consists of a technical system and a physical system. A controller (e.g., a

PID controller) is implemented in the Controller component of the technical system,

Case Study: Architecture Evolution of Automatic Control
within the Example of Adaptive Cruise Control

70

relying on the static parametrization saved in a so-called Parametrization Memory

component (cf. Figure 3.1). The controller takes a control error represented by the

deviation between the set value of the reference variable and the controlled variable's

current value, which as an input is provided by another component Measurement Unit,

via a feedback loop. Another input to the controller comes from an optional Analyzer

component, which delivers the value of the predicted variable by analyzing future

feedback from the physical system within the following time cycle. Based on the inputs

of control error and predicted variable, the controller makes a decision and sends a

control command to the component Final Control Unit. Thus, the final control unit can

manipulate the hardware actuators (A) to guarantee the user’s preferred set value.

Figure 3.1: Basic Control Applied in ACC

In addition to the actuators in Figure 3.1, different hardware sensors are deployed as

interfaces between the technical and physical systems. For example, the current value

of the controlled variable is collected by the component Sensor of Controlled Variable

(SC), and the user-preferred set value of the reference variable is collected by the

component Sensor of Reference Variable (SR). In this case, the technical system’s

observation scope for the physical system is determined based on the data access of

the sensor components.

The controller parametrization in basic control is defined as a vital system configuration,

considering system operation and corresponding environmental disturbances within a

limited workspace. The limited workspace is determined by manual assumptions based

Physical System

Manipulated
Variable

Control Error
(Devia�on

between Current &
Set Value)

Technical System

Controlled Variable (Current Value)

Controlled Variable
(Current Value)

AFinal Control
Unit

Control
Variable

Parametriza�on
Memory

Predicted
Variable

Controller
Parametriza�on

SR

SC

Analyzer

Legend

A
Sensor of Controlled VariableSC

Actuator

Op�onal
SR Sensor of Reference Variable

Reference
Variable
(Set Value)

Environment

Disturbance Variable
(Physical Signal)

Controlled Plant

Controlled Variable
(Current Value)

Control Variable

Measurement Unit

Controller

User

Case Study: Architecture Evolution of Automatic Control

within the Example of Adaptive Cruise Control

 71

on the human engineers’ domain knowledge, usually described in the form of differential

equations. The defined parametrization is saved in the parametrization memory

component at design time. Such a control concept has been widely applied to ACC

systems for a long time.

The first generation of ACC was only utilized for luxury vehicles by automobile

manufacturers and their suppliers to enhance driving comfort and convenience in the

1990s. It has been over twenty years since the first ACC-equipped vehicles were

available and over ten years since the ISO standard for vehicle systems was produced

[73][74]. The ACC relieves the driver from routine physical tasks in driving by maintaining

a steady headway from the last preceding vehicle or a constant cruise velocity in the

case of no vehicle in front [74]. As the system user, the driver manually sets the headway

and constant cruise velocity in advance in the ACC. The driver-preferred headway and

cruise velocity are then taken as the set values (cf. Figure 3.1) of the reference variable

in corresponding use cases of the control system.

The controller in ACC relies on static parametrization to decide the vehicle’s acceleration

or deceleration to fulfill the driver’s preferences. The operation of the entire control

system relies on a feedback control loop, as shown in Figure 3.1. In the control loop, the

physical system refers to a summary of physical processes within a limited observation

scope (e.g., in the case of ACC with basic control, referring to the directly dependent

processes influencing the controlled variable within the vehicle’s physical components).

The measurement unit is used to forward the current and set value of the cruise velocity

or headway to the controller. To distinguish from later ACCs with advanced features, an

ACC solely based on basic control with static parametrized controller and feedback

control loop at run time is referred to as classical ACC in this dissertation.

As discussed earlier, the controller component in basic control is parametrized at design

time, considering a certain workspace limited by manual assumption and aiming to

guarantee system performance at run time within the workspace. From the view of the

ACC application, this feature ensures that classical ACC based on basic control has

strong robustness against disturbances coming from the driving environment, like the

wind influences on the vehicle’s driving dynamics. From another point of view, this

feature unfortunately also leads to disadvantages for classical ACC, especially in the

Case Study: Architecture Evolution of Automatic Control
within the Example of Adaptive Cruise Control

72

cases of its physical system (cf. Figure 3.1) with highly dynamic factors or the driver as

a user with dynamically changeable preferences during the ACC’s operation.

Figure 3.2: Architectural Comparison of Basic Control and MAPE-K

Figure 3.2 illustrates component dependency between the architecture of basic control and MAPE-K (cf.

Section 2.2.7). Relying on the technology of variable monitoring, the measurement unit in the basic

control is responsible for the sensory data collection and preprocessing, which corresponds to the

monitor function of the MAPE-K model. As an optional component in basic control, the analyzer

component takes the current value of the controlled variable as input to decide whether it is necessary

to provide a time-series prediction for the future context of the technical system. Thus, the functionality

of the analyzer roughly corresponds to the analyze function in the MAPE-K, with the task of symptom

evaluation and decision-making about change request, possibly considering the future context of the

controlled system. Moreover, the controller here takes the similar responsibility of plan function in the

autonomic manager, which is very simplified, only considering the current time point without any

predictive time horizon. Finally, the final control unit takes a similar responsibility as the execute function

in the MAPE-K, which performs the determined strategy by the plan function.

For example, a vehicle controlled by an activated classical ACC moves on a mountain

road with many curves. In this case, the ACC may determine critical control strategies

due to the controller’s static parametrization (e.g., aggressive acceleration or

deceleration of the vehicle). Such critical strategies may make the driver uncomfortable

and thus violate the requirement of driving comfort. Furthermore, if the road surface is

uneven or slippery, aggressive driving activity may even possibly lead to an accident

risk (due to unsafe slip) in the worst case. Facing this issue, classical ACC needs to

adjust its configuration, mainly referring to the controller parametrization. Thus, the

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Manipulated
Variable

Control Error
(Devia�on

between Current
& Set Value)

Technical System in Basic Control

Final Control
Unit

Control
Variable

Parametriza�on
Memory

Predicted
Variable

Controller
Parametriza�on

Analyzer

Controlled Variable
(Current Value)

Control
Variable

Measurement Unit

Controller

Case Study: Architecture Evolution of Automatic Control

within the Example of Adaptive Cruise Control

 73

vehicle’s acceleration and deceleration strategy could be adjusted during system

operation if necessary. Unfortunately, as discussed earlier, a change of controller

parametrization at run time is beyond the ability of a classical ACC based on basic

control.

3.2 Naive Adaptive Control in ACC

As presented in the critical scenario in the previous section, classical ACC has

limitations due to the missing adaptation capability of the controller parametrization.

Thus, classical ACC has been developed by integrating naive adaptive control to

overcome this limitation. Naive adaptive control in this dissertation refers to the control

systems with a run-time adaptation ability of controller parametrization once the user

selects a preferred operating mode by manual intervention. Figure 3.3 shows the

architecture of naive adaptive control.

Figure 3.3: Naive Adaptive Control Applied in ACC

An additional subsystem Adaptation Unit is integrated into the technical system to realize

the expected adaptability. A Monitoring Component is deployed in the adaptation unit to

catch up with user changes to system configuration, particularly referring to the system’s

operating modes represented by different controller parametrizations and relying on the

data collected by the component Sensor of User (SU in Figure 3.3). An Adaptation

Technical System Physical System

Manipulated
Variable

Controlled Variable (Current Value)

Controlled Variable
(Current Value)AFinal Control Unit

Control
Variable

Controller

Parametriza�on
Memory

Predicted
Variable

Controller
Parametriza�on

SC

Analyzer

Reference
Variable
(Set Value)

Environment

Disturbance Variable
(Physical Signal)

Controlled Plant

Controlled Variable
(Current Value)

Control
Variable

Measurement Unit

Adapta�on Unit

Adapted Variable

Monitored
Symptom

Adapta�on StrategyExecu�on
Component

Adapta�on
Controller

SU
Reference
Configura�on
(Set Opera�ng
Mode)

Legend
A

Sensor of Controlled VariableSC
Actuator

Op�onal

SR Sensor of Reference Variable

SU Sensor of User

Control Error
(Devia�on

between Current
& Set Value)

User
SRMonitoring

Component

Case Study: Architecture Evolution of Automatic Control
within the Example of Adaptive Cruise Control

74

Controller in the adaptation unit determines an adaptation strategy. With the help of an

included Execution Component, the adaptation strategy is split up into individual

adaptation activities. A new value of the adapted variable is forwarded into the

parametrization memory component as the outcome of the execution component to

update the current value. Thus, the originally saved controller parametrization can be

updated at run time in the case of a user’s request.

As presented before, the component SU represents additional data access to catch up

with the user’s request to change the operating mode, which is not included in basic

control. In this sense, the technical system’s observation scope for the physical system

in naive adaptive control is increased compared to basic control.

Figure 3.4: Architectural Comparison of Naive Adaptive Control and MAPE-K

The newly integrated subsystem adaptation unit in the naive adaptive control comprises a monitoring

component, an adaptation controller, and an execution component. Compared to the MAPE-K reference

model, it is indicated that the monitoring component can be roughly mapped as the monitor function of

the autonomic manager since both are responsible for data collection and preprocessing to generate the

symptom as the same output. The adaptation controller and the execution component can then be

roughly mapped as the autonomic manager's plan and execute function. There are two main differences

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor ExecuteX

X
Technical System in Naive Adap�ve Control

Manipulated
Variable

Final Control
Unit

Control
Variable

Controller

Parametriza�on
Memory

Predicted
Variable

Controller
Parametriza�on

Analyzer

Controlled Variable
(Current Value)

Control
Variable

Measurement
Unit

Adapta�on Unit

Adapted Variable

Monitored
Symptom

Adapta�on
Strategy

Execu�on
Component

Adapta�on
Controller

Control Error
(Devia�on

between Current
& Set Value)

Monitoring
Component

Case Study: Architecture Evolution of Automatic Control

within the Example of Adaptive Cruise Control

 75

in the architectural comparison. The first difference is that the MAPE-K model includes the analyze

function, which decides whether changes are necessary. However, the adaptation unit has no such

decision-making mechanism, since the user makes decisions externally. The second difference is that

the adaptation unit does not include a knowledge source function with an updatable knowledge base,

which is a significant feature of the MAPE-K. Since the adaptation unit is deployed on a secondary

feedback loop instead of on the primary loop, on which the mentioned controller component in the

previous section is deployed, another independent MAPE-K structure is added in Figure 3.4. In this case,

the primary control loop, especially including the controller component, can be interpreted as the

managed system of the adaptation unit.

With the application of naive adaptive control, advanced ACC variants enable the driver

to adjust the control strategy by manual selection of provided operating modes like “Eco,”

“Comfort,” “Efficient,” and “Sport,” which are respectively represented by different

parametrizations of the controller [75]–[78]. For example, the operating mode “Eco” will

make the ACC realize a consumption-optimized driving strategy once the driver

recognizes that the vehicle does not have much remaining fuel or energy and thus

selects the mode. The operating mode “Comfort” delivers a very conservative

accelerating and decelerating strategy for the vehicle to maximize the driving comfort

and thus also reduce the risk of unsafe slip. Thus, the issues presented in the previous

critical scenarios regarding the uneven and wet road surface (cf. Section 3.1) can also

be avoided.

The deployment of naive adaptive control has significantly improved the ACC’s

adaptability and flexibility. It enables the driver to change the controller parametrization

by manually selecting operating mode at run time, which is realized by reloading

predefined set values of different application parameters. Unfortunately, such a concept

still has its limitations, especially due to the limited number of operating modes, which

may not be beneficial to fulfill the driver’s preferences.

By way of example, the driver has selected the operating mode “Comfort”. Nevertheless,

the driver also wishes to simultaneously have a more energy-efficient driving strategy

later, with an expectation of using the operating mode “Eco” since there is not much fuel

remaining. The importance of the operating modes “Comfort” and “Eco” for the driver

will still change with reducing remaining fuel or energy during the trip. Thus, selecting a

single individual operating mode like “Comfort” or “Eco” may no longer completely fulfill

Case Study: Architecture Evolution of Automatic Control
within the Example of Adaptive Cruise Control

76

the driver’s diversified requirements. Another critical case may also happen when the

vehicle moves on a mountain road with many curves, making the original set value of

reference variable like high cruise velocity unreliable due to the high risk of unsafe slip.

Frequent human intervention for changing operating mode or repeated adaptation of the

set cruise velocity is required in these two critical scenarios. However, such a

requirement overstrains the driver’s reaction capability and patience while driving.

3.3 Controlled-Plant-Dependent Adaptive Control in ACC

The integration of naive adaptive control enables the ACC to dynamically change the

controller parametrization at run time by manually selecting a predefined operating

mode according to the driver’s request. Such an approach further increases the system

adaptability compared to the concept of basic control, which still has limitations in certain

critical cases, as discussed at the end of Section 3.2. To overcome these limitations,

some advanced ACCs have used a control concept with further improvement by

integrating an additional Interpreting Component into the adaptation unit. This

architecture is shown in Figure 3.5.

Figure 3.5: Controlled-Plant-Dependent Adaptive Control Applied in ACC

Technical System Physical System

Manipulated
Variable

Controlled Variable (Current Value)

Controlled Variable
(Current Value)

AFinal Control Unit

Control
Variable

Controller

Parametriza�on
Memory

Predicted
Variable

Controller
Parametriza�on

SR

SC

Analyzer

Reference
Variable
(Set Value)

Environment
Disturbance
Variable
(Physical
Signal)

Controlled Variable
(Current Value)

Control
Variable

Adapta�on Unit

Adapted Variable

Monitored
Symptom

Adapta�on
Strategy

Execu�on
Component

Adapta�on
Controller

SU
Reference
Configura�on
(Set Opera�ng
Mode)

SP

Legend
A

Sensor of Controlled VariableSC
Actuator

Op�onal

SR Sensor of Reference Variable

SP Sensor of Controlled Plant
SU Sensor of User

Controlled Plant

Plant Variable

Change
Request

Control Error
(Devia�on

between Current
& Set Value)

Adapta�on
Strategy

Measurement Unit

Interpre�ng
Component

Monitoring
Component User

Case Study: Architecture Evolution of Automatic Control

within the Example of Adaptive Cruise Control

 77

The integrated interpreting component has access to all data forwarded by the

monitoring component in such a control concept. As previously mentioned regarding

naive adaptive control, the monitoring component still observes and catches up with the

driver’s requests for changes to the operating mode collected by the component Sensor

of User (SU in Figure 3.5) and preprocesses (e.g., aggregates and filters) the data

collected by different sensors. Additionally, the component Sensor of Controlled

Variables (SC in Figure 3.5) delivers current values of controlled variables that represent

the state of the impressionable surrounding environment of the controlled plant. In this

dissertation, such an impressionable environment is called Dependent Environment

since it can directly be influenced by the controller’s activity (e.g., by maintaining the set

cruise velocity and headway in the case of ACC).

Relying on the component Sensor of Controlled Plant (SP in Figure 3.5), values of plant

variables representing the state of the controlled plant, such as the vehicle’s engine and

gear speed, could also be delivered to the monitoring component. In this case, it is

emphasized that the state of the controlled plant also covers the state of its dependent

environment, which the component SC can monitor. That means the component SP has

a larger monitoring horizon (i.e., more sensory data access) than the component SC.

For this reason, the technical system’s observation scope for the physical system is

increased further compared to naive adaptive control.

Depending on the sensory data forwarded by the monitoring component, the interpreting

component estimates the physical system's state, and the result is used to decide

whether it is necessary to request the processing of the adaptation controller for planning

the control strategy. In the case of a change request, the adaptation controller

determines a new adaptation strategy to update the previous one, for example by

including a group of set configurations over time such as the controller parametrization

for the future. The adaptation strategy is then forwarded to the execution component,

which splits the strategy into individual activities consisting of individual values of the

adapted variables. Subsequently, the execution component forwards the activities to the

parametrization memory component. In this case, both the human user and the

adaptation unit can change the system configuration. Such a concept is called

controlled-plant-dependent adaptive control in this dissertation.

Case Study: Architecture Evolution of Automatic Control
within the Example of Adaptive Cruise Control

78

Figure 3.6: Architectural Comparison of Controlled-Plant-Dependent Adaptive Control and MAPE-K

Roughly compared to the MAPE-K reference model, the adaptation unit in controlled-plant-dependent

adaptive control is upgraded with a new interpreting component. The interpreting component makes

decisions to request the planning of a new adaptation strategy and thus roughly corresponds to the

analyze function of the MAPE-K model. Thus, the adaptation unit deployed on a secondary feedback

loop instead of directly on the primary control loop in naive adaptive control can be roughly mapped as a

summary of monitor, analyze, plan, and execute functions in the autonomic manager. In this case, the

primary feedback control loop, including the controller component, can be interpreted as the managed

system of the adaptation unit.

Using the ACC based on controlled-plant-dependent adaptive control, both critical

scenarios mentioned in the previous section can be eliminated. For example, the driver

is not required to repeatedly change the operating mode while driving, like in the case

of ACC with naive adaptive control. Instead, such ACC enables the system to

automatically select the optimal controller parametrization for the driver based on its

state estimation, which is realized by an additional operating mode “Automatic”.

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Technical System in Controlled-Plant-Dependent Adap�ve Control

Manipulated
VariableFinal Control

Unit

Control
Variable

Controller

Parametriza�on
Memory

Predicted
Variable

Controller
Parametriza�on

Analyzer

Controlled Variable
(Current Value)

Control
Variable

Measurement Unit

Adapta�on Unit

Adapted Variable

Monitored
Symptom

Execu�on
Component

Adapta�on
Controller

Interpre�ng
Component

Monitoring
Component

Control Error
(Devia�on

between
Current & Set

Value)

X Adapta�on
Strategy

Change
Request

Adapta�on
Strategy

Case Study: Architecture Evolution of Automatic Control

within the Example of Adaptive Cruise Control

 79

In the mode “Automatic,” it can also be understood that the ACC switches between the

operating modes like “Eco,” “Comfort,” and “Sport” without any human involvement. For

example, the ACC has detected that the vehicle does not have much remaining fuel or

energy with the state estimation based on the variable monitoring. Thus, the system

automatically adapts the controller parametrization to avoid an aggressive control

strategy, which may cause high fuel or energy consumption. In this case, the vehicle is

able to arrive at the planned destination as much as possible. If the driver is not satisfied

with the ACC’s automatic decision, they can still directly change to their favorable mode.

In another case, if a vehicle controlled by the activated ACC moves on a mountain road

and the driver’s originally preferred driving strategy is too aggressive for the vehicle to

move through the curves safely, by relying on the sensory data about the plant variables,

ACC with controlled-plant-dependent adaptive control can also perceive the manual

steering activity of the driver and thus can correspondingly adapt the controller

parametrization to guarantee driving safety.

Relying on the concept of controlled-plant-dependent adaptive control, the ACC

becomes able to determine and adapt the optimal parametrization of the controller with

consideration of the state of the controlled plant, which covers its dependent

environment. Thus, the technical system’s observation scope for the physical system is

increased compared to naive adaptive control. However, such a concept still has

adaptability limitations due to missing information about the particular environment,

which is out of the sphere of the controller’s influence. Due to this reason, such an

environment is called Independent Environment for the ACCs within this dissertation. A

typical example of such an independent environment would be physical disturbances

from the driving environment like ambient temperature and wind speed.

Without context information about the independent environment, the determined

controller parametrization by the ACC may be extremely critical for the vehicle’s driving

in the worst case. For example, the ACC takes over the longitudinal control of the vehicle

moving on a mountain road. With high humidity and a low ambient temperature near

0°C, the road surface could be slippery due to ice. An aggressive driving strategy may

lead to a high accident risk if the ACC does not know the ambient temperature. Another

critical example would be when the ACC controls the vehicle on a route with a temporary

Case Study: Architecture Evolution of Automatic Control
within the Example of Adaptive Cruise Control

80

speed limit due to reconstruction work or an accident. In this case, an ACC with a high

cruise velocity originally set by the driver would ignore the speed limit without information

about the independent environment and thus lead to a high accident risk.

3.4 Physical-System-Dependent Adaptive Control in ACC

As presented in the previous section, the ACC may make inappropriate decisions with

a negative control strategy due to the lack of information about the independent

environment, which is not directly influenced by the controller’s activity. Thus, controlled-

plant-dependent adaptive control has been upgraded with additional access to

independent environmental information. In this dissertation, such a concept is called

physical-system-dependent adaptive control.

Figure 3.7: Physical-System-Dependent Adaptive Control Applied in ACC

As shown in Figure 3.7, the control system based on physical-system-dependent

adaptive control can make decisions considering the state of the vehicle’s physical

components and their dependent (including controlled variables like cruise velocity and

headway) and independent environment. Compared to the architecture of controlled-

plant-dependent adaptive control, an additional component, Sensor of Environment

Variable (SE in Figure 3.7), is added to acquire the independent environmental

Technical System Physical System

Manipulated
Variable

Controlled Variable (Current Value)

Controlled Variable
(Current Value)

AFinal Control Unit

Control
Variable

Controller

Parametriza�on
Memory

Predicted
Variable

Controller
Parametriza�on

SR

SC

Analyzer

Reference
Variable
(Set Value)

Environment

Disturbance
Variable
(Physical
Signal)

Controlled Variable
(Current Value)

Control
Variable

Measurement Unit

Adapta�on Unit

Adapted Variable

Monitored
Symptom

Execu�on
Component

Adapta�on
Controller

Interpre�ng
Component

SU
Reference
Configura�on
(Set Opera�ng
Mode)

SP
Plant

Variable

Legend
A

Sensor of Controlled VariableSC
Actuator

Op�onal

SR Sensor of Reference Variable

SP Sensor of Controlled Plant

SU Sensor of User

SE Sensor of Environment

Environment
Variable
(Current Value)

SE

Monitoring
Component

Control Error
(Devia�on

between
Current & Set

Value)

Adapta�on
Strategy

Change
Request

Adapta�on
Strategy

Controlled Plant

User

Case Study: Architecture Evolution of Automatic Control

within the Example of Adaptive Cruise Control

 81

information, covering states of different environmental variables. Thus, the observation

scope of the technical system for the physical system increases again.

ACC with physical-system-dependent adaptive control may use the vehicle's onboard

sensors to acquire information from the independent surrounding environment like

ambient temperature. As known, information about the future driving environment like

the route profile and speed limit is previously saved in the navigation map database. In

this sense, such information can be understood as inputs from an onboard virtual sensor

on the vehicle and be considered during the determination process of adaptation activity

[73][79].

For example, a well-known advanced ACC following the concept of physical-system-

dependent adaptive control is called “InnoDrive,” developed by Porsche. In the

“InnoDrive,” different operating modes such as “Dynamic,” “Comfort,” and “Dynamic

Plus” can be selected by loading different value sets for the weights of criteria like driving

comfort, energy-efficiency, and driving dynamics to adjust the style of the driving

strategy [80]. Depending on the selected operating mode, the “InnoDrive” uses dynamic

programming based on the vehicle's identified state and the state of the dependent and

independent environment to repeatedly plan an optimized predictive driving strategy.

This predictive driving strategy consists of a location-based trajectory of set cruise

velocities for the following route with a deterministic distance horizon, considering the

loaded values of weighted factors of criteria [78][80]. Compared to the illustrated

architecture in Figure 3.7, the driving strategy planning can be completed, for example,

by the adaptation controller in the adaptation unit deployed on the secondary feedback

loop of physical-system-dependent adaptive control.

In addition to planning the predictive driving strategy, the “InnoDrive” also includes the

functionality of location-based driving behavioral prediction of the preceding traffic,

depending on the identified driving style of the driver in the preceding traffic and the

route profile. Such a prediction functionality is categorized as a high-level prediction in

this dissertation since the high-level environmental information included in the digital

map of the navigation system is utilized. Such high-level prediction can be deployed in

the interpreting component of the adaptation unit compared to the architecture in Figure

3.7, which is different from the so-called low-level prediction of the component analyzer.

Case Study: Architecture Evolution of Automatic Control
within the Example of Adaptive Cruise Control

82

The low-level prediction only focuses on the level of variable data like the controlled

variable of headway without any real awareness of the system’s surrounding

environmental context.

Figure 3.8: Architectural Comparison of Physical-System-Dependent Adaptive Control and MAPE-K

Compared to the MAPE-K, the adaptation unit in physical-system-dependent adaptive control covers the

monitor, plan, analyze, and execute functions of the MAPE-K, which works as a secondary control loop

for adaptation of the controller deployed on the primary control loop (cf. Section 2.2.7). Nevertheless, a

significant remaining difference is that the knowledge source of the MAPE-K is still missing in the

physical-system-dependent adaptive control. As is well known, the knowledge source is used to store

the high-quality domain knowledge, including the solution topology, policy, and problem determination

on higher levels of abstraction. Instead of the knowledge source, the parametrization memory component

for storage of values of application parameters on low-level is included. Additionally, the monitor and the

execute function in MAPE-K can create new domain knowledge and subsequently update the knowledge

into the knowledge source, which is out of the ability of physical-system-dependent adaptive control [72].

Due to the reasons mentioned above, it can be said that the architecture of physical-system-dependent

adaptive control still does not completely cover all MAPE-K functions. Instead, only dependencies

between the components due to similar functionalities in the architecture and the MAPE-K can roughly

be found.

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Analyze Plan
Symptom

Change
Request

Change
Plan

Knowledge
Monitor Execute

Technical System in Physical-System-Dependent Adap�ve Control

Manipulated
VariableFinal Control

Unit

Control
Variable

Controller

Parametriza�on
Memory

Predicted
Variable

Controller
Parametriza�on

Analyzer

Controlled Variable
(Current Value)

Control
Variable

Measurement Unit

Adapta�on Unit

Adapted Variable

Monitored
Symptom

Execu�on
Component

Adapta�on
Controller

Control Error
(Devia�on

between Current
& Set Value)

X
Execu�on

Component

Adapta�on
Strategy

Change
Request

Adapta�on
Strategy

Monitoring
Component

Interpre�ng
Component

Case Study: Architecture Evolution of Automatic Control

within the Example of Adaptive Cruise Control

 83

Finally, in the “InnoDrive,” the planned driving behavior of the preceding traffic is taken

as a constraint to correlate with the planned predictive driving strategy and then

forwarded to the longitudinal control of the vehicle, which is deployed on the primary

feedback loop compared to the architecture in Figure 3.7.

With the help of physical-system-dependent adaptive control, the mentioned critical

scenario of unsafe slip due to the slippery road surface with ice will be eliminated since

the ACC has access to information about the ambient temperature. Thus, it can adjust

the control strategy more conservatively by adapting the controller parametrization.

However, in some cases, onboard sensors are also insufficient for the ACC to acquire

required information, for example, in the mentioned scenario regarding the change of

speed limit due to the reconstruction site on the following route.

To work against such a challenge, ACC with physical-system-dependent adaptive

control also has a communication ability with external resources to require the support

of their information accesses. Thus, it can take the temporary speed limit change into

account while planning the optimized driving strategy. With the help of physical-system-

dependent adaptive control, the adaptation unit in the ACC completes its adaptation

considering the acquired integrated context information about the elements in the

physical system (e.g., the controlled plant, the dependent environment, and the

independent environment).

3.5 Functional Vision of Future ACCs

The evolution of ACC from the first generation to the following advanced variants with

further improvements has been presented in previous sections of this chapter. Different

control concepts behind these ACCs have been categorized, analyzed, and discussed

to derive their corresponding functionalities and technical limitations. Along with the

functional supplementation, it is indicated that the system autonomy of current ACCs,

particularly due to stronger adaptability realized by the upgrade of the adaptation unit

compared to the first generation, has been strongly increased in recent years. In addition,

the technical system has acquired increasing context information about the controlled

physical system to determine the adaptation activity, as shown in Figure 3.9.

Case Study: Architecture Evolution of Automatic Control
within the Example of Adaptive Cruise Control

84

Figure 3.9: Evolution of Control Concepts Applied in Current ACC Variants

Instead of requiring the driver’s manual intervention, the latest ACCs (e.g., based on

controlled-plant-dependent or physical-system-dependent adaptive control) can already

automatically select the optimal operating mode (under the operating mode “Automatic”)

from given candidate modes based on state estimation and decision-making, relying on

the provided input data collected by the sensors from the physical system. Subsequently,

considering the selected optimal operating mode, such ACCs can also automatically

determine an optimized driving strategy for a certain predictive distance horizon of the

following route, including a trajectory of location-oriented set cruise velocities. Although

such ACCs have already become much more powerful, there are still large potentials to

further improve their performance in the future, which will be discussed in the following

sections through two potential future evolution directions.

3.5.1 Personalized ACC by Learning Individual Driver Preferences

ACC is designed to realize semi-automated driving of a vehicle since it only takes over

longitudinal control. This means that the driver must still participate in the driving task

by taking lateral control with manual steering. Thus, once an activated ACC controls the

vehicle, the whole driving task can be interpreted as a process of human-machine

collaboration, in which trust and reliance between the human driver and the ACC as

typical issues have been investigated by various researchers [81]–[83].

Basic Control

In
cr

ea
si

ng
 S

ys
te

m
 A

da
pt

ab
ili

ty

Increasing Observa�on Scope of Physical System’s Informa�on and System Autonomy

Naive Adap�ve Control

Controlled-Plant-Dependent
Adap�ve Control

Physical-System-Dependent
Adap�ve Control

Physical System

Manipulated
Variable

Control Error
(Devia�on

between Current &
Set Value)

Technical System

Controlled Variable (Current Value)

Controlled Variable
(Current Value)

A
Final Control

Unit

Control
Variable

Parametriza�on
Memory

Predicted
Variable

Controller
Parametriza�on

SR

SC

Analyzer

Legend

A
Sensor of Controlled VariableSC

Actuator

Op�onal
SR Sensor of Reference Variable

Reference
Variable
(Set Value)

Environment

Disturbance Variable
(Physical Signal)

Controlled Plant

Controlled Variable
(Current Value)

Control Variable

Measurement Unit

Controller

User

Technical System Physical System

Manipulated
Variable

Controlled Variable (Current Value)

Controlled Variable
(Current Value)AFinal Control Unit

Control
Variable

Controller

Parametriza�on
Memory

Predicted
Variable

Controller
Parametriza�on

SC

Analyzer

Reference
Variable
(Set Value)

Environment

Disturbance Variable
(Physical Signal)

Controlled Plant

Controlled Variable
(Current Value)

Control
Variable

Measurement Unit

Adapta�on Unit

Adapted Variable

Monitored
Symptom

Adapta�on StrategyExecu�on
Component

Adapta�on
Controller

Monitoring
Component SU

Reference
Configura�on
(Set Opera�ng
Mode)

Legend
A

Sensor of Controlled VariableSC
Actuator

Op�onal

SR Sensor of Reference Variable

SU Sensor of User

Control Error
(Devia�on

between Current
& Set Value)

User
SR

Technical System Physical System

Manipulated
Variable

Controlled Variable (Current Value)

Controlled Variable
(Current Value)

AFinal Control Unit

Control
Variable

Controller

Parametriza�on
Memory

Predicted
Variable

Controller
Parametriza�on

SR

SC

Analyzer

Reference
Variable
(Set Value)

Environment
Disturbance
Variable
(Physical
Signal)

Controlled Variable
(Current Value)

Control
Variable

Adapta�on Unit

Adapted Variable

Monitored
Symptom

Adapta�on
Strategy

Execu�on
Component

Adapta�on
Controller

SU
Reference
Configura�on
(Set Opera�ng
Mode)

SP

Legend
A

Sensor of Controlled VariableSC
Actuator

Op�onal

SR Sensor of Reference Variable

SP Sensor of Controlled Plant
SU Sensor of User

Controlled Plant

Plant Variable

Change
Request

Control Error
(Devia�on

between Current
& Set Value)

Adapta�on
Strategy

Measurement Unit

Interpre�ng
Component

Monitoring
Component User

Technical System Physical System

Manipulated
Variable

Controlled Variable (Current Value)

Controlled Variable
(Current Value)

AFinal Control Unit

Control
Variable

Controller

Parametriza�on
Memory

Predicted
Variable

Controller
Parametriza�on

SR

SC

Analyzer

Reference
Variable
(Set Value)

Environment

Disturbance
Variable
(Physical
Signal)

Controlled Variable
(Current Value)

Control
Variable

Measurement Unit

Adapta�on Unit

Adapted Variable

Monitored
Symptom

Execu�on
Component

Adapta�on
Controller

Interpre�ng
Component

SU
Reference
Configura�on
(Set Opera�ng
Mode)

SP
Plant

Variable

Legend
A

Sensor of Controlled VariableSC
Actuator

Op�onal

SR Sensor of Reference Variable

SP Sensor of Controlled Plant

SU Sensor of User

SE Sensor of Environment

Environment
Variable
(Current Value)

SE

Monitoring
Component

Control Error
(Devia�on

between
Current & Set

Value)

Adapta�on
Strategy

Change
Request

Adapta�on
Strategy

Controlled Plant

User

Case Study: Architecture Evolution of Automatic Control

within the Example of Adaptive Cruise Control

 85

Unfavorable scenarios may happen once the ACC’s determined and performed

longitudinal driving activity is out of the driver’s expectation. For example, the driver may

be afraid of possible critical scenarios like accidents due to a lack of reliance once the

vehicle enters a curve with a too-high cruise velocity. He may immediately take over the

vehicle’s longitudinal control from the ACC, thus violating the ACC’s original design

principle of relieving the driver from routine physical tasks in driving to maximize driving

comfort [74]. Thus, how to maximize the reliance and trust between humans and

machines becomes an interesting research question. For this purpose, one of the most

meaningful solution approaches is to make the ACC “drive” the vehicle as much like a

human driver as possible.

Due to their diverse preferences, various drivers drive their vehicles very differently. For

example, they may have different styles of acceleration and deceleration, preferred

headways to the preceding vehicle, and preferred location-dependent driving velocities

along with the route profile, which may even change over time along with context

changes of the driving environment such as the weather profile. Thus, it is utopic to

deploy the ACCs with one or deterministic numbers of static configurations and serve it

as a generalized solution to satisfy all drivers simultaneously. Against such a

background, a Personalized ACC, designed from completely the opposite direction to

the generalized solution by satisfying a single individual driver instead of diverse drivers,

becomes a potentially meaningful future solution to enable machine-automated

longitudinal driving that is as similar as possible to a human driver.

To realize such a personalized ACC that satisfies a single individual driver, it is

impossible to specify an appropriate system configuration at design time due to diverse

driving preferences. Instead, the personalized ACC is required to monitor concrete

manual driving activities of the observed individual driver with the help of physical

variable monitoring, and subsequently, based on the acquired sensory data about the

monitored physical variables, to extract and learn the driver’s driving preferences on a

higher level of abstraction at run time. Thus, the personalized ACC can automatically

adapt the individual driver’s preferred location-dependent cruise velocity and headway.

Additionally, preferred individual acceleration and deceleration style can be

automatically adapted so that the driver is not required to switch between different

Case Study: Architecture Evolution of Automatic Control
within the Example of Adaptive Cruise Control

86

operating modes. Unfortunately, such a personalized feature is still unavailable in ACCs

currently on the market.

3.5.2 Experience-Dependent ACC by Learning Historical Context of Driving

Environment

In the previous section, personalized ACC as a potential future variant was discussed.

Such ACC would be able to learn the high-level preferences of a single individual driver

so that the ACC can “drive” the vehicle as similarly to the individual human driver as

possible and thus make the semi-automated driving more reliable for the driver within

their expectations. In addition to learning a single individual driver’s preferences, the

learning of historical context of driving environment would be another future evolution

direction. Such a learning feature must rely on the observed facts by the perception of

future ACCs, which capability but has been increasingly strengthened by integrating

other sensor accesses like LiDAR and cameras, in addition to the original radar sensor

[73][84]–[86].

Considering current ACCs with the control concepts introduced in previous sections, all

these ACCs normally determine their control activities only by considering current

contextual information of the driving environment (e.g., the perceived input data from

the radar sensor). Some advanced ACCs may also consider future context information,

either provided by the pre-initialized digital map in the navigation system or possibly by

other prediction approaches based on pre-initialized knowledge about the preceding

traffic’s driving style and behavior. A typical example of such ACC is the “InnoDrive” by

Porsche, as presented in Section 3.4, which repeatedly determines a location-based

predictive driving strategy for a certain distance horizon of the following route. If

necessary, it also adapts the planned strategy considering the predicted driving behavior

of preceding traffic.

In this case, each determination process of the “InnoDrive” is independent without any

dependency on previous determination processes, which means that the observed

historical context information of the driving environment during the trip is completely

ignored. Such an approach is inconsistent with the temporal causality in reality, which

Case Study: Architecture Evolution of Automatic Control

within the Example of Adaptive Cruise Control

 87

thus possibly leads to critical scenarios since historical context may also influence the

current and the future context in the physical world's reality.

For example, a vehicle is being controlled by the ACC and moving on a mountain route

with many curves. The ACC has detected a preceding vehicle and adapted its planned

driving strategy until the end of the considered predictive horizon represented by a GPS

position on the following route. Once the ego-vehicle has reached the GPS position, the

ACC again begins to plan a predictive driving strategy for the next following horizon. In

this predictive driving strategy, the ACC will “forget” the previously detected preceding

vehicle since the ACC, due to a curve, currently cannot perceive the preceding vehicle,

even when it could suddenly appear again after the curve. Thus, a high risk of accident

is created.

To eliminate such an issue, it would be great if future ACC could “remember” its

observed facts that happened during the trip, such as, the “disappearing” preceding

traffic by relying on memory ability. In this dissertation, the ACC with such a feature is

called Experience-Dependent ACC. It refers to ACC that can record the observed facts

and, subsequently, extract knowledge on a higher level of abstraction from the observed

facts and learn the knowledge as its own experience. Thus, the future ACC can

continually strengthen its experience about the driving environment and thus become

increasingly more intelligent and adaptive to the previously mentioned critical scenarios.

Unfortunately, the features included in the described experience-dependent ACC are

still not available in current ACCs on the market, which could be crucial to realize in the

future.

3.6 Opening Issues of Current Control Concepts for Future ACCs in the
Functional Vision

The personalized and experience-dependent ACCs were presented in previous sections

as functional visions of future ACCs. However, such functionalities have not yet been

covered by current published serial ACC variants on the market. Thus, this dissertation

tries to identify the reasons for this phenomenon by investigating existing issues in the

current concepts of automatic control behind current ACCs at the architectural level.

More details about this investigation will be presented in this section.

Case Study: Architecture Evolution of Automatic Control
within the Example of Adaptive Cruise Control

88

3.6.1 Missing Knowledge Acquisition and Adaptation

Considering the presented functionalities of personalized and experience-dependent

ACC, it is indicated that both variants as visions require that the future ACC system be

able to deal with high-level domain knowledge. Typical examples of such high-level

knowledge could be the driving preferences of individual drivers and the system’s

experienced environmental context like the previously “seen” but currently “invisible”

preceding car on the mountain road with many curves, as previously introduced

examples in Section 3.5.2. Most automatic control systems work fundamentally at a very

low level of abstraction with concrete data. Thus, an appropriate representation of the

domain knowledge and corresponding abstraction mechanism from the low level of data

up to the higher semantic level becomes significantly important for the control systems

in the future.

3.6.1.1 Current Domain Knowledge Modeling in Control Systems

Considering concepts of automatic control systems presented in Section 3.1–3.4, the

adaptation unit, as an essential subsystem in the technical system (especially relying on

its included interpreting component and adaptation controller), analyzes and determines

an optimized adaptation strategy, for example in the case of ACC for adapting the

controller parametrization. For this purpose, a physical system model, including the

required domain knowledge, needs to be deployed in the adaptation unit to enable a

faithful adaptation. Thus, it is aware, for example, what kind of an influence on the final

control performance the adapted controller parametrization has.

The interaction between technical and physical systems in automatic control strongly

relies on physics. For this reason, physical formulas based on algebraic functions with

the physical variables are chosen as a kind of domain knowledge representation to

describe the behavioral relationship between input and output physical variables. This

approach guarantees great generalization potential and is categorized as physical

modeling in this dissertation. However, considering this from another perspective, such

a physical modeling approach requires explicit knowledge about the domain’s physical

behaviors at design time. Thus, the human engineers’ knowledge quality and

completeness strongly influence the system's performance.

Case Study: Architecture Evolution of Automatic Control

within the Example of Adaptive Cruise Control

 89

Generally, it is quite difficult for domains consisting of physical processes with high

complexity, like in the automobile branch, to precisely model processes solely by

following explicit physical formulas. Thus, data-driven modeling is an alternative

approach to physical modeling, aiming to fulfill such a challenge. Data-driven modeling

tries to describe relationships between related variables directly based on available real

data points and corresponding human mathematical approximation for data interpolation

within the covered value range of the data points (e.g., by using the characteristic

diagram as a simplification with assumed deterministic behavioral representation). An

explicit understanding of the physical processes is not required in data-driven modeling,

which makes the modeling much easier. However, from another perspective, such a

modeling approach has a limited generalization potential due to its properties of

approximated interpolation between the data points. In addition, a deviation of the

modeled behaviors to the ground truth behaviors (in reality) is inevitable, particularly in

the data’s extrapolation area where the value range of the measurement data is not

covered.

Both physical and data-driven modeling formulate domain knowledge by following the

so-called closed-world assumption, which assumes a quasi-static or at least predictable

world between sensing and acting [87] and assumes that the models contain all required

knowledge about the physical system. Along with the expected higher system

complexity and flexibility, the complexity of the physical system to be considered in the

system design also increases, which strongly challenges the knowledge reserve of

development engineers.

Looking at the presented personalized and experience-dependent ACC, such a closed-

world assumption is utopic in future system design. The development engineers cannot

know a single driver’s driving preferences or the individual system’s experienced driving

environmental context in advance. Additionally, the model behavior (due to the closed-

world assumption after the system development at design time) remains static. Such a

feature makes the model unable to update at run time. Thus, different time-dependent

behavioral changes of the modeled physical system (e.g., due to aging of the vehicle or

season-dependent vehicle modification like tire changes) would be ignored. Against

Case Study: Architecture Evolution of Automatic Control
within the Example of Adaptive Cruise Control

90

such a background, the conventional modeling approaches for the physical system

based on the closed-world assumption reach their limit and become slowly unfavorable.

3.6.1.2 Essential Knowledge Acquisition and Adaptation as Vision

To overcome the modeling limitations of the closed-world assumption, an approach for

knowledge acquisition and adaptation by following the open-world assumption, which

enables the system to update its available domain knowledge, becomes increasingly

important. From the viewpoint of software engineering, knowledge acquisition and

adaptation can be interpreted as a kind of configuration adaptation activity by the control

system itself. This expected property of self-adaptation is exactly the strength of MAPE-

K, which relies on its monitor, execute function, and knowledge source that are

responsible for knowledge creation, updating, and storage respectively [46].

As discussed earlier, current control systems already include monitoring and the

execution components, which means that an additional component for knowledge

storage must still be integrated into the adaptation unit. With the help of this component

for knowledge storage, it is emphasized that the acquired and adapted knowledge is no

longer limited to the concrete level of sensory data, which could also exist on higher

levels of abstraction. Thus, the other components like the interpreting component and

adaptation controller must also be upgraded to utilize higher-level knowledge.

Compared to the MAPE-K, it can be deduced that future control systems with the

properties of knowledge acquisition and adaptation will acquire properties of the real

MAPE-K, covering all monitor, analyze, plan, execute, and knowledge source functions.

In the architectures of current control systems, the primary control loop (including the

controller) is responsible for the real-time interaction with the physical world (e.g., the

vehicle’s longitudinal control in the case of ACC). In the worst case, it would quickly

become critical for the control task even within milliseconds if driving safety is violated.

For this reason, the primary control loop usually works within the millisecond range with

strictly limited timing constraints. Thus, its observation scope of information is also

limited, only focusing on determining the control activity for the current time point or a

certain limited predictive time horizon.

Case Study: Architecture Evolution of Automatic Control

within the Example of Adaptive Cruise Control

 91

Independently of the primary control loop, the adaptation unit is deployed on a parallel

secondary control loop with another cycle time. Without the requirements of real-time

interaction with the physical world, the secondary control loop is not as time-sensitive

as the primary loop. With such understanding in mind, the secondary loop for knowledge

acquisition and adaptation can be designed to work with a much longer cycle time and

lower time resolution, possibly considering a larger observation scope of information.

On a lower component level, knowledge acquisition and adaptation means that the

physical system’s model must be retrained repeatedly at run time. In this dissertation,

such a property of repeatedly retraining the model is called self-learning, which is

unfortunately still beyond the ability of current control systems. Aiming to realize the self-

learning property of the physical system’s model, artificial intelligence (AI) approaches,

especially from the subfield of machine learning (ML), came into the investigation focus

of researchers due to their strong data-driven learning capability for the model. In these

approaches, the self-learning process is driven by an appropriate training algorithm (e.g.,

in the case of a neural network model).

Along with the further development of artificial intelligence, researchers have already

tried to apply different machine learning approaches in the control systems, such as

neural networks [88][89]. As a common understanding in the control theory, such control

concepts with artificial intelligence are roughly categorized into the subfield of intelligent

control [34][90]. Still, they have yet to be deployed in the current ACCs on the market.

3.6.2 Limited System Scalability against Fixed Boundary Conditions

In addition to knowledge acquisition and adaptation, the presented personalized and

experience-dependent ACCs also constitute other present issues for the system

concept. Both variants of future ACC should be able to deal with high-level domain

knowledge. Since high-level knowledge depends on diversified low-level sensory data,

the future ACC system requires increased sensor access to gather more contextual

information about the entire physical system for the adaptation unit. However, the

system’s boundary conditions, especially the available hardware infrastructures like the

engine control unit’s (ECUs’) computation capability, are also fixed from another

perspective.

Case Study: Architecture Evolution of Automatic Control
within the Example of Adaptive Cruise Control

92

Along with the integration of increased sensor access, it can be understood that the

secondary control loop in the future personalized and experience-dependent ACC,

where the adaptation unit is deployed, will have much more sensory data to be

processed. Additionally, the expected processing capability with high-level domain

knowledge also requires that the secondary control loop include appropriate

mechanisms relying on heuristic or linguistic methods, which means that the worst-case

computation time would become longer and nondeterministic. Thus, it would become

very difficult for development engineers to design the system scheduling.

As presented earlier, automatic control systems like the ACC on a vehicle, which require

real-time processing capability, are designed as pure embedded systems. In this case,

such systems react to changes in their surrounding environments, and their

corresponding components can be denoted as independent “active objects” or

processes with a particular running cycle time [20]. For this reason, the synchronized

method calls for communication with external domains is rather used somewhat rarely.

Although in such a case, it does not mean that there is no interdependency between

different control loops. The lower primary control loop where the controller is deployed

still relies on the inputs provided by the upper secondary control loop, where the

adaptation unit is deployed (cf. architectures in Section 3.1–3.4). For this reason, an

excessive long worst-case computation time of the secondary control loop strongly

influences the scheduling of the primary control loop. It may limit the lower bound of the

primary control loop’s permitted cycle time, which thus negatively influences the real-

time interaction with a minimum required frequency between the primary control loop

and the physical world (e.g., in the case of the vehicle driving).

Additionally, the excessive long computation time may also limit the connectivity of the

primary control loop with the outside world. Thus, the system cannot acquire essential

external sensory data with the required high time resolution due to the limited lower

bound of the cycle time. Further, the control performance of the overall control system

may also be negatively limited once there are no sufficient sensory data inputs. Such a

case only describes a critical situation between two concurrent control loops in the

architecture. If the system includes more than two control loops, interdependencies

between the control loops would be much more complicated. The constraints of system

Case Study: Architecture Evolution of Automatic Control

within the Example of Adaptive Cruise Control

 93

connectivity for the lowest loop, which come from the multiple upper loops, would also

become much more critical.

As a pure embedded system, a control system like the ACC is deployed on the vehicle’s

ECU with limited computational resources. One potential solution is to eliminate the

excessive long computation time barrier by integrating more powerful hardware

computation units like a high-end graphics processing unit (GPU) and field-

programmable gate array (FPGA). Thus, more-complicated computation processes on

the upper control loops based on the heuristic and linguistic methods could be

completed within an expected cycle time.

However, from another perspective, the system complexity and flexibility of the ACC are

also continually increasing, although computing capability (following Moore’s law) has

massively improved in recent years. In this case, a conflict between the fixed system

boundary, particularly the limited onboard computing resource, and expected stronger

computing and connectivity slowly becomes a significant bottleneck in further

development. Against such a background, the external support of offboard computing

resources like cloud computing could be an alternative approach, which researchers

have already investigated, but which still has not been deployed in ACCs on the market

[91]–[94].

Generally, from the viewpoint of software engineering, the issues mentioned above can

be interpreted as a conflict between the expected high system scalability of the future

control system and its fixed boundary conditions. The hardware solution mentioned

earlier of integrating more powerful computing devices, aims to improve the boundary

conditions directly. Another potential solution would be to improve the software system's

architecture, aiming to reduce the interdependencies between the loops by loose

coupling instead of focusing only on the hardware environment. Unfortunately, such a

solution increases system scalability but may also constitute further challenges for the

system’s architecture design. For this reason, this dissertation focuses on a higher meta-

level of system architecture design and tries to identify relevant challenges, which will

be covered in the next section.

Case Study: Architecture Evolution of Automatic Control
within the Example of Adaptive Cruise Control

94

3.7 Challenges for Architecture Design of Future Control Systems

3.7.1 Current Design of Hierarchical Control System Architecture

The introduced architectures of current automatic control systems (e.g., in the case of a

vehicle’s ACC variants) clearly indicate that the whole system consists of several

concurrent control loops. In this case, each control loop can be interpreted as an

individual layer. Thus, considering the viewpoint of software engineering, current

automatic control systems are built based on the well-known hierarchical layered

architecture pattern [61], which is not actually a completely new topic for the field of

control theory.

To deal with increasing system complexity, the field of control theory has proposed

approaches of hybrid hierarchical architecture for advanced control systems with

sophisticated world models since the 1990s (e.g., for autonomous robots). In these

approaches, the field focuses more on controlling technical processes than on

configuration control6 [95][96]. By following the principle of increasing intelligence with

decreasing precision, the top-level control task is hierarchically decomposed into a

group of distinct subtasks on the next lower level, relying on the assumption that the

dynamics of the world decrease with the level of abstraction [2][87]. Thus, a successive

delegation of duties by determining and forwarding the reference control strategy exists

from the upper to lower levels.

Such hybrid hierarchical architecture of advanced control systems normally consists of

three parts with different mechanisms for deliberative computation, reactive plan

execution, and reactive feedback control, from the top layer to the lowest, respectively

[97]–[100]. The whole system construction is similar to the three levels (skill-, rule-, and

knowledge-based) of the cognitive model of Rasmussen for explaining human

interaction behaviors [101][102]. Some typical examples introduced in this dissertation

are the LAAS architecture [43] and the hybrid control architectures of Yavuz and

Bradshaw [44] (cf. Section 2.2).

6 Configuration control refers to the processes of configuration (e.g., during initial control application set up)
and reconfiguration (e.g., when a control application is changed) [95], in which adaptation of component
configuration, like controller parametrization or knowledge acquisition and adaptation is included.

Case Study: Architecture Evolution of Automatic Control

within the Example of Adaptive Cruise Control

 95

The reactive feedback control at the bottom of the architecture computes based on non-

symbolic algorithmic methods and thus is designed as a reactive layer in the system

architecture. The system part with deliberative computation possibly includes one or

several upper layers at the top of the whole architecture based on highly symbolic

computation, focusing on physical system behaviors at different levels of abstraction. A

sequencing middle layer involving a reactive planner is deployed to realize seamless

communication between the bottom and upper layers. It selects and executes

appropriate tactics, including a group of pre-written ordered sets of actions. Based on

the execution of the actions, appropriate behaviors to accomplish the subtasks are either

de- and activated or terminated [103].

Figure 3.10: Knowledge Coupling on Different Layers within Current Hierarchical System Architecture
Design [18][39][40]

Along with the hierarchical layers in the system architecture, the world model is also

separated as concurrent parts to model the physical system behaviors on different levels

of abstraction (e.g., deployed in hierarchical knowledge bases of Meystel’s hierarchical

nested architecture) [18]. In this dissertation, such an approach to knowledge

decoupling significantly reduces the complexity of the world model on each layer by

eliminating the need for a sophisticated “monster” world model with incredible high

complexity. Thus, a long processing time and the risk of violating corresponding time

Case Study: Architecture Evolution of Automatic Control
within the Example of Adaptive Cruise Control

96

constraints for the fulfillment of the system’s required real-time capability are effectively

avoided, as shown in Figure 3.10.

3.7.2 Limitations of Knowledge Decoupling Approach in Current Design

As presented earlier, the sophisticated “monster” world model is avoided through

knowledge decoupling by division into multiple world models, which are correspondingly

deployed on different layers in the hybrid hierarchical architecture and describe physical

system behaviors at different levels of abstraction. Thus, relying on parallel

computations of the concurrent layers, the timing performance of the whole control

system can be increased. However, from another perspective, such an approach still

has strong limitations for expected future features.

Considering the hybrid hierarchical architecture, the world models on different layers

describe the physical system behaviors on different levels of abstraction. Due to required

levels of abstraction, they may rely on different knowledge representations, varying from

modeling with linguistic methods like formal languages to the previously mentioned

explicit physical modeling or implicit data-driven modeling such as a neural network. In

this case, the expected feature of knowledge acquisition and adaptation constitutes

challenges for system architecture.

For example, it is known that knowledge acquisition and adaptation extract new domain

knowledge based on newly observed facts and subsequently integrate the new

knowledge into the world models through learning processes. In this case, the learning

process can be realized by adapting the data field in the knowledge base of the

knowledge component on a certain layer. Since the world models are deployed and work

independently on different concurrent layers, as shown in Figure 3.10, their learning

processes are independent.

Nevertheless, a knock-on effect of the newly learned knowledge on a certain layer to

the validity of domain knowledge included in the world models on neighbor layers (upper

and lower) may exist. The layer-independent learning processes become idealized since

the domain knowledge may still have a strong working dependency across different

layers. In such a case, vertical adaptation of all knowledge components through all

layers is required, leading to an unfavorably high computation effort for the control

Case Study: Architecture Evolution of Automatic Control

within the Example of Adaptive Cruise Control

 97

system. Thus, a strong challenge to the limited computation resources of control

systems deployed in an embedded running environment is raised (e.g., for the vehicle’s

ECU in the case of an ACC system). To work against such a challenge, how to enable

an efficiently interactive self-learning process between neighbor layers becomes a

meaningful research topic for system architecture design.

In addition to the challenge of unfavorable required vertical adaptation through all layers,

another challenge relates to increased computation time. Adapting the world model for

learning the knowledge included in the newly observed facts may further increase the

model complexity. Higher model complexity may require a larger knowledge base in the

knowledge component and a longer accompanying inference process relying on the

knowledge base. Thus, the longer inference process limits the permitted processing time

of other components on the loop and may negatively influence computation performance

of the whole closed control loop since the overall computation time of the loop, due to

interaction with the physical world is always limited. Against such a background,

enabling knowledge acquisition and adaptation without negative influences on the

computation of the closed control loop in the system architecture design becomes an

interesting research topic.

3.7.3 A Vision of Architecture Design for Future Control Systems

Considering the challenges discussed in Section 3.7.2, especially for integrating the

knowledge acquisition and adaptation, the most serious pain point lies in the deployment

of the knowledge component, including its corresponding knowledge base and world

model on the closed control loop of each layer. Thus, the deployment concept of the

knowledge components needs to be rethought to fulfill the previously mentioned

challenges, considering the influences of knowledge acquisition and adaptation.

Aiming to fulfill the challenges introduced in the previous section, one of the best

approaches in designing future control system architecture is to remove the knowledge

component from the closed control loop. Thus, the knowledge component has a loose

coupling with the closed control loop, and acquisition and adaptation regarding the

knowledge component can perform independently. In this case, the knowledge

component is deployed as an interface between every two layers. The original closed

Case Study: Architecture Evolution of Automatic Control
within the Example of Adaptive Cruise Control

98

control loop, consisting of components for the technical process control, is still deployed

on each layer. Thus, the basic control cycle, referring to information flow on the closed

control loop for the technical process control, is separated from the so-called knowledge

cycle. The knowledge cycle here refers to the information flow for the knowledge

acquisition and adaptation in this dissertation, covering sensory data acquisition,

extraction of new domain knowledge based on the acquired data, integration, and

deployment of the new domain knowledge.

As shown in Figure 3.11, each two neighbor layers have a shared knowledge base,

which means that each knowledge component may contain domain knowledge on two

different levels of abstraction. As interfaces between each two neighbor layers, the

knowledge components may also allow direct exchanges of data or domain knowledge

mutually, relying on underlying communication paradigms of distributed systems. Such

a design fulfills the previously discussed challenge of knock-on effect due to newly

learned knowledge on one layer for domain knowledge validity on corresponding

neighbor layers.

Figure 3.11: Preliminary Idea of Multidimensional Networked Architecture for Future Automatic Control

Case Study: Architecture Evolution of Automatic Control

within the Example of Adaptive Cruise Control

 99

Following the concept illustrated in Figure 3.11, it is indicated that the hierarchical layers

(grey layers), including closed control loops consisting of a group of components for

technical process control, are networked through corresponding knowledge components

(green components) in the overall unified system architecture. Since a loose coupling

between the layers relying on the isolation of knowledge components has been realized,

such system architecture can be interpreted with a networked topology. Each previous

layer can be generalized as a node in the network, and the knowledge components play

the role of interfaces between the nodes. In this sense, the hierarchical layered topology

is only considered an instance of the networked system architecture in this dissertation.

For this reason, the previous terminology of “layers” is replaced by “nodes” in the

following paragraphs.

This concept of system architecture design can be further generalized. The group of

components for control processing on the closed control loop can be interpreted more

abstractly as a software module. In this dissertation, each software module is defined

as a functionally closed unit consisting of single or multiple building blocks in a software

system, solely completing a certain functionality from the viewpoint of software

engineering [15]. Thus, seamless integration of different functions within an overall

software architecture can also be realized by the proposed preliminary ideas in Figure

3.11. The system decomposition following the illustrated preliminary idea of architecture

design in Figure 3.11 can consist horizontally of different components and consist

vertically of different modules realizing corresponding functionalities. From this point of

view, the proposed concept and its preliminary ideas can be illustrated as a kind of

multidimensional networked architecture.

However, many detailed questions must still be answered to design such a sophisticated

system architecture with the proposed networked construction. For example, the

knowledge component in the current architecture design is applied to complete an

inference process. Thus, the control system can make decisions for control activities by

relying on the observed facts and the domain knowledge included in the world model of

the knowledge component. Since the knowledge component does not directly

participate in the closed control loop in the proposed new architecture design concept,

its original inference task should be taken over by other appropriate components in the

Case Study: Architecture Evolution of Automatic Control
within the Example of Adaptive Cruise Control

100

control loop to complete the technical process control. Thus, the functionalities of the

components staying on the closed control loop must be reconsidered during the system

design.

Additionally, some typical questions for the design of hierarchical system architecture

may also need to be reconsidered. For example, a tradeoff decision between precision

and level of abstraction of the domain knowledge included in different knowledge

components must be made. Along with a higher level of abstraction, the precision of the

domain knowledge decreases. The decreased precision may limit the performance of

the planning control activity, depending on the context of expected control tasks of

different nodes.

Further, a similar architecture design challenge exists for determining the observation

scope of information on different nodes (e.g., the time horizon of the control strategy). A

longer time horizon due to included extensive information guarantees that the planned

control activity has a greater performance potential for the control system, which but due

to a higher risk of uncertainties in the future leads to a risk of performance violation.

The distribution of sensor access on different nodes must also be a focus during the

architecture design of hierarchical control systems. More access to sensory data helps

the nodes acquire more information about context but strongly challenges computation

capacity limits. Against such a background, identifying the global optimum for the design

of the overall architecture with consideration for different influencing factors together still

represents a challenge.

3.8 Summary: Future Automatic Control—Artificial Cognitive Control

In previous sections, current control concepts applied in ACC examples were introduced,

which are used to derive functional visions for the future. The existing issues with current

control concepts for realizing functional visions were discussed from the perspectives:

(1) missing knowledge acquisition and adaptation, and (2) the limited scalability against

fixed boundary conditions. Limitations of current approaches for architecture design of

hierarchical control systems were also discussed, aiming to investigate the root causes

Case Study: Architecture Evolution of Automatic Control

within the Example of Adaptive Cruise Control

 101

of these issues. Finally, a vision of future architecture design with some preliminary

ideas was given, in which some detailed initial questions were also discussed.

In this dissertation, a new category of automatic control named Artificial Cognitive

Control is proposed to better understand future control systems following from

preliminary ideas. The term artificial cognitive control is originally inspired by the human

cognition process, referring to the mental action or process of acquiring knowledge and

understanding through thought, experience, and the senses [104].

The term “cognitive control” is not completely new in research. In the fields of psychology

and neuropsychology, diverse definitions for this term have been published from

different perspectives over a long period [105]–[107]. One of these definitions, proposed

by Feldman and Friston [108], is concluded from the probabilistic view of the

environment. These researchers defined the cognitive control of the human as using the

brain to continually optimize the probabilistic representation of the environment, relying

on attention, which refers to a perception system for extraction of available information

out of noisy sensory measurements. From the viewpoint of information theory, cognitive

control thus can be understood as an activity aiming to minimize the information entropy

since entropy is a measurement of the uncertainty of a variable [109][110].

Based on the perspective of information theory, another definition of cognitive control

from the engineering perspective was proposed by Haykin et al. [111]. In this dissertation,

this definition is taken as a reference. Haykin et al. [111] define cognitive control as

adapting the directed flow of information from the perceptual part of the system to its

executive part to reduce the information gap. Thus, reducing the information gap is

equivalent to reducing the properly defined risk functional for the task at hand, with the

reduction having a probability of close to one. Here, the information gap is generally

understood as the lack of contextual information and domain knowledge about the

physical system, which is also directly relevant to information entropy.

Following this understanding, the expected integration of knowledge acquisition and

adaptation in future automatic control systems with stronger system scalability and

connectivity can thus be understood as approaches to reduce entropy by

supplementation and augmentation of domain knowledge and context data or

information about the physical system. Such a feature clearly shows that the term

Case Study: Architecture Evolution of Automatic Control
within the Example of Adaptive Cruise Control

102

“cognitive control” is appropriate for the definition of a future control system. In this

dissertation, the following functional requirements are defined to provide a better

understanding of artificial cognitive control:

• Artificial cognitive control shall be able to acquire low-level context

data and high-level context information about the physical system

(including user, controlled plant, and environment), relying on system

connectivity to communicate with available distributed (onboard and

offboard) perception resources7 (e.g., sensors or perception systems

with appropriate interpretation mechanisms).

• Artificial cognitive control shall be able to make decisions to

determine control strategy by analysis of acquired context data and

information and by manipulating actuators to complete the required

tasks for the control of the technical process.

• Artificial cognitive control shall be able to automatically analyze and

identify the current situation based on acquired context data or

information. Further, it shall be able to utilize its available domain

knowledge to adapt its configuration (i.e., changing system

configuration like component connections or component

configuration like values of application parameters to guarantee the

performance of the technical process control).

• Artificial cognitive control shall be able to acquire8 and automatically

adapt its domain knowledge about the physical system. Thus, it can

continually improve the performance of technical process control.

In Section 3.6, it was already stated that artificial cognitive control systems would acquire

the properties of a real MAPE-K by integrating knowledge acquisition and adaptation,

which will then roughly cover all MAPE-K functions: monitor, analyze, plan, execute, and

7 The perception resources can be data providers like pure sensors, but they also be data service providers
that strongly rely on the interpretation mechanisms deployed on the sensors (e.g., object-recognition
algorithms).
8 The domain knowledge could be either self-created based on acquired context information or directly
obtained from external domains.

Case Study: Architecture Evolution of Automatic Control

within the Example of Adaptive Cruise Control

 103

knowledge source. Thus, it can be concluded that the automatic control system is

increasingly evolving as a self-adaptive system with the properties of autonomic

computing (cf. Section 2.2.7).

The software engineering field has proposed holistic approaches for designing self-

adaptive systems with sophisticated architectures. Against such a background, this

dissertation takes the field of control theory and software engineering together, aiming

to investigate how software engineering approaches can benefit the architecture design

of future sophisticated automatic control systems. Thus, the architecture design

challenges mentioned above (cf. Section 3.7) can be overcome. Finally, a generic

architecture style for the architecture design of automatic control systems, covering

current control concepts and particularly artificial cognitive control, is proposed from the

viewpoint of software engineering as the main contribution of this dissertation. A more

comprehensive introduction to the generic architecture style will be provided in Chapter

4. Based on this generic architecture style, an example architecture for artificial cognitive

control will be further derived as an instance in more detail in Chapter 4.

A Generic Architecture Style for Designing Automatic

Control Systems

 105

4 A Generic Architecture Style for Designing Automatic
Control Systems

In Chapter 3, current concepts of automatic control were introduced based on a case

study with application examples of ACC. Issues with current concepts due to two

perspectives, including missing knowledge acquisition and adaptation, which is

interpreted as a kind of self-adaptation activity in this dissertation, and the limited system

scalability against fixed boundary conditions, were discussed. Based on the issues

regarding both perspectives above, architecture design challenges for future control

systems with sophisticated architectures were also discussed. A vision with preliminary

ideas for future automatic control systems’ architecture design was introduced to

address the challenges. Finally, artificial cognitive control by following the preliminary

ideas, aiming to eliminate the issues facing current concepts, is briefly defined as the

concept of future automatic control in the next generation at the end of Chapter 3.

As discussed at the end of Chapter 3, the artificial cognitive control system is evolving

toward a self-adaptive system that the software engineering field has focused on for a

long time. Thus, the architecture design of automatic control systems can benefit from

relying on established holistic approaches for designing sophisticated self-adaptive

systems. For this reason, this dissertation takes the fields of control theory and software

engineering together and tries to understand automatic control systems from the

viewpoint of software engineering. Finally, a generic architecture style considering

software engineering is proposed as the main contribution in this dissertation, which is

also included in this chapter.

4.1 Control Theory Meets Software Engineering

Examining the research work of recent years reveals that it is not a completely new idea

to bring control theory and software engineering together. Researchers have

investigated how software engineering approaches and control theory concepts could

mutually benefit. For example, some researchers studied on the development process

level in a dissertation on how to design self-adaptive software systems with formal

A Generic Architecture Style for Designing Automatic
Control Systems

106

guarantees on desired properties and behaviors, which are available in the design of

conventional feedback control systems [112].

Another dissertation focused on the control-theoretical software adaptation [113]. It

found that linear models are mostly used to represent the behavior of the software.

However, the behavior is considered highly nonlinear, far from real-world applications.

Furthermore, the dissertation argued that classic controller guarantees are poorly

exploited when engineering control-based solutions to guarantee the adaptation goals.

Thus, appropriately linking control-theoretic concepts to guarantee software quality is

still a challenging research topic. The same statement is also included in another paper

[71], in which the feedback control loops were interpreted as the MAPE-K loop for

autonomic computing. This research noted that the mapping from high-level adaptation

objectives in terms of QoS9 or SLO10 and abstract models towards lower-level effective

actions on the managed system is still missing. Additionally, a more complicated system

involving multiple control loops, which may have intertwined interferences due to

composition and coordination, is also a difficult and hardly tackled question.

In addition to the theoretical investigation of the system architecture, control theory

approaches have also been applied in software engineering of self-adaptive systems

within diverse applications. For example, the closed feedback control loop was applied

in the database system to realize self-tuning memory management with dynamic

resource allocations [114]. Another application uses a model-based control-theoretic

solution combined with the MAPE-K control loop for the resilience management of cloud

computing resource services [115][116]. Unlike other use cases of control theory in

MAPE-K, some researchers used the MAPE-K control loop to optimize the classical

controller based on fuzzy logic. Additionally, they integrated the property of online

learning to modify the fuzzy rules at runtime, which is also evaluated in an application of

cloud architecture adaptation [116].

The research works mentioned above have shown significant benefits by combining

software engineering approaches, especially for the self-adaptive systems (e.g., by

9 Quality of service.
10 Service level objectives.

A Generic Architecture Style for Designing Automatic

Control Systems

 107

following MAPE-K for autonomic computing with control theory). Most of the related

works mentioned focus on the benefits of a self-adaptive system by utilizing the principle

of control theory. A paper focused on applying MAPE-K to improve the classical

feedback controller but only considered the cloud architecture adaptation without strict

timing requirements and constraints [116]. As is well known, this is not the same use

case as for artificial cognitive control systems like future ACC, which are required to

interact with the physical world in real-time. In this case, it is important not only to

consider the self-adaptation capability of the system but also concurrently to consider

the time-computation-dependency due to the requirement of real-time interaction with

the physical world. Such a requirement constitutes challenges for the design of system

architecture, especially regarding the deployment of time-consuming computing

processes (e.g., knowledge acquisition and adaptation).

This dissertation aims to find a holistic concept for the architecture design of artificial

cognitive control systems to address the aforementioned requirements, especially

considering the architecture challenges introduced in Section 3.7. For this purpose,

fundamental disciplines for designing software architecture, including relevant

components and their relationships and interfaces, will be defined and summarized

together as a concept of a generic architecture style for automatic control systems. The

next section introduces these fundamental ideas about this generic architecture style.

4.2 Fundamental Design of Generic Architecture Style

Section 4.1 presents a brief introduction to related works on conceptual integration of

control systems in control theory and self-adaptive systems in software engineering. As

introduced, the design of the control system in control theory and the design of the self-

adaptive system in software engineering benefit from each other mutually, relying on the

design disciplines and concepts from both fields.

At the end of Section 4.1, it is noted that this dissertation aims to find a holistic concept

for architecture design of sophisticated control systems, especially for the artificial

cognitive control that is defined in this dissertation as a next-generation automatic

control concept. For this purpose, this dissertation investigates the architecture design

of control systems relying on software engineering approaches. Against such a

A Generic Architecture Style for Designing Automatic
Control Systems

108

background, a generic architecture style with logical components from the viewpoint of

software engineering is proposed in this dissertation, which can be applied as a template

to design the architecture of different control systems. Subsequently, the architecture

pattern is used to instantiate architectures of the introduced current control systems,

aiming to deeply understand and validate the control systems from another perspective,

thus contributing to the development of the mentioned networked architecture of artificial

cognitive control (cf. Section 3.7–3.8).

4.2.1 Preliminaries of the Design of the Generic Architecture Style

Current control systems are designed as pure embedded systems to guarantee real-

time interaction with the physical world. In such systems, each component is designed

to work as a single independent and active process with a particular cycle time [48].

However, such a design concept strongly challenges artificial cognitive control, which

includes multiple world models distributed in different nodes of the networked

architecture (cf. Section 3.7.3). As a potential instance derived from the networked

architecture, each node, including a single world model, can be instantiated as a

hierarchical deliberative upper layer, combined with the lowest layer with the real-time

control loop (also as a node), including the controller, to form a system architecture

instantiated with multiple hierarchies. As discussed earlier, knowledge acquisition and

adaptation properties require a nondeterministic processing time. Thus, there is a high

risk of violating the required real-time capability of the embedded control system based

on deterministic scheduling. From another perspective, the complexity of distributed

world models is increasing due to increasing sensor access. The accompanying

increasing data volume to be processed therefore further increases the risk of timing-

constraint violation, particularly in the case of upper layers due to their larger observation

scope for the physical system.

Against such a background, the deliberative part of the hierarchical architecture must be

designed with an event-triggered computation mechanism like an information system

instead of the previous design as a pure time-triggered embedded system relying on its

strong information processing capability and mechanism without timing constraint. Thus,

knowledge acquisition and adaptation with a long processing time would become

A Generic Architecture Style for Designing Automatic

Control Systems

 109

uncritical for the basic control task of the control system since the reactive part, including

the feedback control loop with the controller, stays independently on the lowest layer.

In this case, the hierarchical architecture leads to a hybrid system design consisting of

an information system and an embedded system. This trend makes the whole automatic

control system evolve as a cyber-physical system, including heterogeneous

computation mechanisms according to the formal definition in previous related work of

Rehfeldt [20]. For this reason, this dissertation puts the focus on the architecture pattern,

which is not limited to a self-adaptive system designed as a pure information system,

but also considers hybrid system construction with heterogeneous computation

mechanisms. The focused systems with such properties are called self-adaptive cyber-

physical systems in this dissertation.

In Chapter 3, control systems within different categories were introduced. The MAPE-K

for designing the self-adaptive system with the property of autonomic computing was

used as a reference architecture to roughly identify corresponding functional similarities

between components in the architectures from the viewpoint of control theory and

software engineering, respectively. Thus, a basic understanding of different control

systems from a software engineering perspective was derived.

The MAPE-K architecture is a well-known reference architecture for the self-adaptive

system, particularly with consideration for the property of autonomic computing, and it

has already been utilized in different applications (cf. Section 2.2.7). However, in this

dissertation, it is not directly taken as the architecture solution for several reasons.

The first reason lies with the fundamental idea of MAPE-K, which is designed for self-

adaptive IT systems like databases and servers. As noted earlier, such information

systems focus on the sequence of events instead of physical execution time. That

means there is no guarantee in this case that all activities included in the functions of

MAPE-K like monitor, analyze, plan, and execution can be completed under

deterministic time constraints. However, this is very important for control systems

designed as cyber-physical systems requiring real-time interaction with the physical

world. For example, in the case of ACC, the vehicle’s longitudinal control could even

completely fail due to the violation of the timing constraints in the worst case, which is

definitively not permitted to happen in reality. Thus, it can be said that the MAPE-K works

A Generic Architecture Style for Designing Automatic
Control Systems

110

well for the “cyber” part; however, unfortunately, it is not exactly appropriate for the

“physical” part of automatic control, particularly in artificial cognitive control.

Another reason relates to the differences about sensors and actuators (also called

effectors in MAPE-K). The sensor and actuator in MAPE-K are deployed as interfaces

in a software component touchpoint, which exposes the state and management

operations to a resource in the system [46]. The sensor and actuator, categorized as

manageability interfaces in MAPE-K, deliver the autonomic manager a standard

interface rather than the diverse interface mechanisms associated with various

managed resource types. In this case, the sensor and actuator are responsible for

requesting and sending messages without additional functions (details cf. Section 2.2.7).

However, in the case of an automatic control system, the sensor and actuator are not

only interfaces for information exchange between the technical and physical systems.

Additionally, they also include hardware mechanisms and corresponding basis software

components to manipulate the hardware infrastructure, which thus enables the sensor

and actuator to influence the controlled plant and the environment directly. For example,

in some advanced ACCs, LiDAR is utilized instead of the radar sensor to track multiple

preceding obstacles [86]. In such ACCs, the software component for control of LiDAR

also relies on the sophisticated numeric-algorithmic approach, possibly including a

configuration with application parameters (e.g., the rotation speed of the LiDAR). The

configuration may need to situationally adapt to guarantee the lowest acceptable

sensing performance if the original sensing reliability is limited due to the environment,

such as under extreme weather conditions like fog or heavy rain.

Another significant difference is that the sensor and actuator or effector in the MAPE-K

model are linked together. Such a concept guarantees that a configuration change

caused by the effector can be reflected as a notification through the sensor interface.

However, this reflection is not included in the case of the automatic control system since

the sensor and actuator are independent components linked via the controller and the

measurement unit (cf. Figure 3.1). Due to these differences, the reference model of

MAPE-K cannot be directly taken as an architecture solution for the design of future

control systems.

A Generic Architecture Style for Designing Automatic

Control Systems

 111

The final reason lies with the architecture concept regarding system decomposition. In

the MAPE-K, autonomic managers can also constitute a layered architecture, which

includes a group of several touchpoint autonomic managers (on the lower layer) and an

orchestrating autonomic manager (on the higher layer). Each touchpoint autonomic

manager only concerns its managed resources, which may be only a part of the whole

system. Instead, the orchestrating autonomic manager is deployed to coordinate the

touchpoint autonomic managers to guarantee system-wide autonomic computing

behavior (e.g., in the case of workload management) [46]. Thus, the task of self-

management is horizontally decomposed into concurrent subtasks, which are

respectively taken over by each touchpoint autonomic manager. However, in the case

of an automatic control system, the hybrid hierarchical architecture still requires a

hierarchical decomposition of the control task on different levels of abstraction, in

addition to the horizontal decomposition. Such decomposition has not yet been exactly

specified in the MAPE-K reference architecture.

For these reasons, the MAPE-K reference model is not directly taken as a solution for

designing the architecture of automatic control. Instead, a completely new architecture

concept more appropriate for the design of sophisticated architectures for future control

systems is proposed in this dissertation. Details of this new architecture concept will be

introduced in the following sections.

4.2.2 Fundamental Component Structure within Generic Architecture Style

Since the MAPE-K reference architecture is not exactly appropriate for the design of

automatic control, another architecture pattern consisting of a fundamental component

structure of “SICAP-K” is proposed in this dissertation, as shown in Figure 4.1. The

fundamental component structure includes a technical system and a physical system,

respectively marked in yellow and green, which has the same system construction as

the architecture of current control systems applied in the ACCs, as illustrated in Chapter

3.

A Generic Architecture Style for Designing Automatic
Control Systems

112

Figure 4.1: Fundamental Component Structure in Generic Architecture Style

The physical system refers to a summary of the user, controlled plant, and surrounding

environment. From the viewpoint of software engineering, the technical system

architecture here looks slightly different from the technical systems in the architectures

of current control systems based on the block (plugging) diagram from the control theory

viewpoint. The architectures in the control theory focus strongly on the technical

process's control flow with corresponding physical variables on a very concrete level.

The architecture derived from the software engineering viewpoint focuses instead on

static system construction, with components, their relationships, and logical

functionalities on a meta-level. Thus, such architecture is also called logical or functional

architecture in software engineering. Since the control system needs to interact with the

physical world to complete its control task, hardware sensors and actuators, including

pieces of basis driver software deployed on them, work as interfaces between the

technical system and the physical system. Since the sensors and actuators are not a

part of the software system to be designed, they are hidden in the logical architecture of

Figure 4.1.

In the “SICAP-K” structure, the component “P” refers to the Physical System, including

the user, the controlled plant, and the environment. The component “S” refers to a

Sensing Component responsible for the data preprocessing (e.g., collecting,

aggregating, and filtering the raw data collected by the hardware sensors from the

physical system). The output of the sensing component is the structured data, which is

called a “symptom” in this dissertation, similar to the case of monitor function in the

reference architecture of MAPE-K. The symptom is forwarded by the sensing

component into three other components, “C”, “I”, and “K”, respectively referring to

Control Component, an Interpreting Component, and a Knowledge Component.

P

K AS
I
C

Legend

S

A
K

I
C

P

Sensing Component
Interpre�ng Component
Control Component
Actua�ng Component
Knowledge Component
Technical System
Physical System

A Generic Architecture Style for Designing Automatic

Control Systems

 113

Based on the symptom, which describes the current context of the physical system on

a concrete level of sensory data, the control component “C” determines a control

strategy. The determined strategy can be transient like the case of a conventional

feedback controller, similar to a reflect system without consideration of future time

horizons. Alternatively, the determined control strategy can also be predictive

(considering a future time horizon), in which case the interpreting component “I” is

required. Subsequently, the control strategy is forwarded to an Actuating Component

“A”, which decomposes the strategy into individual activities to manipulate the actuators.

Unlike the sensing component describing the physical system's current context on a

concrete data level, the interpreting component identifies the current control problem

using an inference engine. It evaluates the current context on a higher level of

abstraction by checking correlations of observed facts included in the symptom and the

constraints and properties predefined in the problem catalog. Optionally, the observed

facts included in the symptom are also used to predict future context, and thus the future

context can also be evaluated. Once the problem is identified, the interpreting

component sends a change of request to the control component. Thus, the control

component will update the control strategy for realizing adaptation. If the problem cannot

be identified, the interpreting component acquires the knowledge support (e.g., from a

knowledge component “K”).

The knowledge component “K” is responsible for the storage of the control system’s

domain knowledge. Additionally, knowledge exchange with the outside world, like

acquiring and sharing to and from external knowledge sources, also happens inside the

knowledge component. The processing in other “SICA” components relies on the

domain knowledge included in the knowledge component. The knowledge component

initializes the domain knowledge for the other components in the first system operation.

The other components also adapt the knowledge included in the knowledge component

from the opposite side. More detailed processes of knowledge-relevant system

behaviors will be explained in Section 4.2.5.

Generally, it can be understood that a fundamental feedback control loop based on the

component cycle of “SCAP” is constituted. The interpreting component “I” is also

involved in the fundamental structure, playing the role of an optional component

A Generic Architecture Style for Designing Automatic
Control Systems

114

participating in the feedback control loop. Thus, the control system can understand and

analyze the context information and knowledge on a higher level of abstraction. With the

support of the knowledge component “K”, a complete fundamental structure of “SICAP-

K” is constituted.

4.2.3 Structural Adaptation Composition in Generic Architecture Style

After introducing the fundamental component structure, which is seen as the

fundamental building block for representing a closed control loop, the next question is

how to organize different component structures to construct a more sophisticated

system architecture, including multiple control loops.

In Section 3.7, it was discussed that the current architecture design of sophisticated

control systems proposed by the intelligent control field follows the idea of hierarchical

decomposition of the control task into different subtasks, vertically on different levels of

abstraction or horizontally on different levels of competence. Different limitations of such

architecture design approaches have also been discussed. For example, the system

design aims to adapt the control activities on lower levels to complete the original control

task on the highest level, which refers to the technical process control in this dissertation.

However, configuration control [95] (cf. Section 3.6.2) is neglected, which refers to the

adaptation of component configuration (e.g., the controller parametrization or the

domain knowledge in the knowledge component).

This dissertation has introduced preliminary ideas of architecture design based on the

proposed multidimensional networked topology to overcome the limitations mentioned

above, as illustrated in Figure 3.11. As discussed earlier, artificial cognitive control as

the future control system in the next generation is continually evolving into a self-

adaptive cyber-physical system with the property of so-called autonomic computing.

Autonomic computing typically refers to the well-known self-X properties covering self-

configuration, self-optimization, self-healing, and self-protection [46]. Thus, following

these preliminary ideas, the configuration control and the component adaptation are

taken as the focus in developing the generic architecture style in this dissertation.

The fundamental component structure includes a basic feedback control loop,

represented by the “SCAP” component cycle. Optionally, the interpreting component “I”

A Generic Architecture Style for Designing Automatic

Control Systems

 115

and knowledge component “K” can also participate in the loop. In this case, the primary

feedback control loop, including the controller based on linear robust control theory and

previously deployed on the lowest layer in the hierarchical architecture design by the

field of intelligent control, can be represented by a proposed fundamental component

structure of “SICAP-K” and deployed as a node in the networked system architecture.

Once a controller with static parametrization becomes insufficient, due to variations in

the behavior of the physical system, the adaptive control technique is required. Adaptive

control technologies allow, for example, controller parametrization to be adapted by the

adaptation unit, as discussed in Chapter 3. In this case, another adaptation unit as a

complete autonomic manager can be deployed on a secondary control loop. It takes the

primary feedback control loop, including the controller based on robust control theory as

its managed system. The deployment of the secondary control loop means that another

fundamental component structure of “SICAP-K” is deployed in the networked

architecture, as introduced in Figure 3.11 of Section 3.7.3.

Figure 4.2: Structural Paradigm of Adaptation Composition for Networked Architecture of Future Control

System

In this case, these two “SICAP-K” component structures are linked. Each “SICAP-K”

structure represents a node, considered the fundamental computing element. Thus, a

networked system architecture can be constituted once multiple “SICAP-K” component

A Generic Architecture Style for Designing Automatic
Control Systems

116

structures are linked mutually in any arbitrary form, as shown on the left side of Figure

4.2. As mentioned earlier, the secondary feedback control loop works as the adaptation

manager and takes the primary feedback control loop as its managed system. Such a

management relationship can also be transferred to the other nodes in the networked

architecture.

On the right side of Figure 4.2, an example of two arbitrary nodes from the networked

system architecture is illustrated. The superscripts n and n+1 represent the index of

different nodes. As shown in Figure 4.2, node n+1 has a larger observation scope of

information about the physical system than node n. Thus, the adaptation level decreases

from node n+1 to node n, which means that node n+1 is a so-called “adaptation manager”

of node n. Each node can be designed with an appropriate triggering mechanism (event-

triggered or time-triggered, cf. Section 4.2.4). If necessary, these two nodes can also be

instantiated as two layers to constitute a two-layered architecture. Thus, this dissertation

interprets such layered architecture as an instance derived from the networked system

architecture.

As discussed in Section 3.7, the hybrid hierarchical architecture in intelligent control

follows the closed-world assumption. This means that it is assumed that the system has

all the needed domain knowledge about the world (on different levels of abstraction) to

accomplish the determined control tasks. Unfortunately, such an assumption is utopian

for the case of future control systems like artificial cognitive control due to the world’s

nondeterministic aspects, which has been demonstrated by diverse negative examples,

particularly in the field of autonomous driving safety [117]–[119]. Some other critical

scenarios are also discussed in Section 3.6. Instead of the closed-world assumption,

this dissertation takes an open-world assumption during the architecture design and

aims to avoid the previously mentioned critical scenarios. The open-world assumption

holds that the control system does not have all the required domain knowledge about

the world. Additionally, it allows self-adaptation activities like knowledge acquisition and

adaptation, relying on the knowledge component and interpreting component in the

proposed fundamental component structure shown in Figure 4.1.

A Generic Architecture Style for Designing Automatic

Control Systems

 117

Figure 4.3: Coordination of Nodes’ Adaptation Composition in Networked System Architecture

Following the principle of open-world assumption, a compositional system design

approach is selected instead of the decomposition approach, which means that the

system construction begins from one node to multiple nodes. As presented earlier, each

node represents a closed control loop with the “SICAP-K” structure. In the case of

extensive sensor access, the processing tasks of the sensory data context analyzing

and inferencing become more time-consuming and thus hard to complete within a limited

cycle time. Against such a background, it is utopic to expect that only a single adaptation

unit with the “SICAP-K” structure can handle all collected sensor data. Thus, more

adaptation units must be deployed on additional control loops, which leads to an

architecture consisting of multiple nodes connected as a network (cf. left side in Figure

4.3). With this idea in mind, an architecture paradigm of so-called adaptation

composition is proposed in this dissertation, which can be applied to interconnect

increasing nodes to construct a more sophisticated system architecture continuously.

The right side of Figure 4.3 illustrates different cases of coordination of the nodes’

adaptation composition in the networked system architecture.

4.2.3.1 Vertical Coordination of Adaptation Composition

If necessary, the networked nodes can be grouped as different communities in the

networked architecture. Unlike the nodes as the fundamental building blocks in the

A Generic Architecture Style for Designing Automatic
Control Systems

118

system architecture, this community can be understood as an overarching unit like a

software module consisting of single or multiple building blocks. Some nodes are so-

called “adaptation managers” and take other corresponding nodes as their managed

systems. Thus, the nodes can be classified as “manager nodes” and “managed nodes.”

In most cases, the manager nodes have larger scopes of information observation about

the physical system than managed nodes. Thus, adaptation relationships between the

nodes can be organized hierarchically with multiple layers (cf. Case 1 in Figure 4.3). A

node on a higher layer coordinates the adaptation of multiple nodes on a lower layer.

Nodes on the same layer can communicate interactively but do not have any adaptation

relationship.

Once a system architecture includes multiple nodes, a significant point for the

architecture design is distributing the effort of acquiring and processing sensory data

and knowledge basis to different nodes and knowledge components between them. For

example, several nodes are instantiated as layers within a hierarchical architecture.

Different adaptation units are deployed on different layers, along with increasing

observation scopes for the physical system from lower to upper layers, to guarantee the

self-adaptability of the system, as is roughly described in the case study of architectural

evolution in Chapter 3.

In this case, the adaptation units on lower layers need to handle fewer sensory data, but

they must do so with high precision to frequently determine precise and short-term

adaptation strategies on a concrete level. The adaptation units on higher layers must

handle much more sensory data. Nevertheless, since higher layers do not require such

high time resolutions of adaptation activity as lower layers, they only need to focus on

determining long-term adaptation strategies on higher abstraction levels with less

precision. Thus, considering more context about the physical system becomes reliable

for the adaptation units on higher layers.

Along with this idea, the deployment of adaptation units can be extended to arbitrary

nodes. Thus, a networked architecture, including multiple nodes with different

adaptation levels, is constituted, as shown in Figure 4.2. Each adaptation unit in a certain

node is responsible for adapting its neighbor nodes on a lower adaptation level via

A Generic Architecture Style for Designing Automatic

Control Systems

 119

corresponding knowledge components. Thus, all adaptation units in different nodes with

nested observation scopes work together to determine adaptation strategies on different

levels.

With the help of the parallel computations of multiple adaptation units, processing efforts

for all collected sensory data can be distributed into different nodes to guarantee timing

constraints, such as a limited cycle time, are met. Additionally, a world model with

incredibly high complexity is avoided, and instead, distributed world models are

deployed in corresponding knowledge components between the nodes. Thus, based on

the paradigm of adaptation composition, the self-adaptability of future control systems

is particularly considered, which is beneficial for the architecture design of artificial

cognitive control with the property of knowledge acquisition and adaptation.

4.2.3.2 Horizontal Coordination of Adaptation Composition

In the last section, the vertical coordination of adaptation composition was introduced.

In vertical coordination, the control system is decomposed into different nodes with

different levels of abstraction. In such a case, the nodes following the adaptation chain

from higher to lower levels of abstraction have strong dependencies mutually. They can

be seen as several building blocks in a software module for realizing a certain function,

defined as a functionally closed unit in the overall system [15].

For example, in the case of the multi-layered planning function of an autonomous robot,

the planning on the highest level of abstraction may focus on the mission from a point A

to another point B without focusing on concrete behaviors for realizing the robot’s

movement from A to B. However, like the set profile of travel time, its planned mission

is taken as a specification during the behavioral planning at a lower level of abstraction.

In this case, both nodes for the planning at different levels simultaneously complete the

autonomous robot's planning task.

Nevertheless, nodes with adaptation relationships may not be considered within a

software module with strong dependencies in some other cases. Instead, their

adaptations may be across different software modules with loosely coupled

functionalities. Since such decomposition follows in an orthogonal direction compared

to vertical coordination, the coordination between the nodes in such a case is called

A Generic Architecture Style for Designing Automatic
Control Systems

120

horizontal coordination in this dissertation, as illustrated in Case 2 (cf. Figure 4.3), for

example, in a case where there are several driving modes like “Eco,” “Comfort,” and

“Sport” available in a vehicle. The driving mode’s change by the ACC may cause the

adaptation of other loose-coupled functions’ configurations such as the vehicle’s

steering and gearbox.

In such a case, the community of nodes may include building blocks in multiple software

modules from the viewpoint of software engineering. The manager nodes may publish

their adaptation requests by sending adaptation triggers as commands via an

intermediate information flow. Thus, corresponding managed nodes can subscribe to

the adaptation commands and subsequently realize their adaptations. Compared to

vertical coordination, no node has a global view of the whole community in the case of

horizontal coordination.

4.2.4 Applying Triggering Mechanisms for Nodes with Fundamental Component

Structure

Following the paradigm of structural adaptation composition mentioned in the previous

section, multiple fundamental component structures can be organically constructed to

build a sophisticated system with a unified networked architecture. Each fundamental

component structure is interpreted as a node within the architecture.

As introduced in Section 3.7.1, the current design approach of hierarchical control

system architectures by the intelligent control field focuses on a system construction

with several hierarchical layers. Each layer can be implemented as a subsystem with an

appropriate triggering mechanism (either time- or event-triggered), and thus makes the

overall system become a hybrid system, including both triggering mechanisms.

This dissertation supports these triggering mechanisms in its proposed generic

networked architecture style. Different nodes with their fundamental component

structures in networked system architecture can be designed as time-triggered or event-

triggered by applying the proposed generic architecture style. Each node is permitted to

have its unique triggering mechanism, and multiple nodes can be deployed within a

single subsystem, which thus leads to a hybrid subsystem with different computation

mechanisms.

A Generic Architecture Style for Designing Automatic

Control Systems

 121

Depending on concrete applications, the time-triggered mechanism can be applied for

the system parts with critical time-relevant requirements to realize the real-time

interaction with the physical world. From another perspective, the event-triggered

mechanism is also appropriate for system parts without any time-dependent

requirement (e.g., the inferencing process for state identification of the physical system,

which is deployed in the control loop without direct connection with the physical world).

Since the knowledge components play the roles of interfaces to isolate the nodes with

different computation mechanisms, loose coupling is realized, and the computation

mechanisms will not negatively influence each other. During system operation, the

knowledge components are responsible for fulfilling timing constraints in the case of

communication across nodes. Different timing requirements at the system level or

corresponding lower levels (e.g., at the node level) can also be seen as a kind of domain

knowledge saved in the knowledge components.

4.2.5 Applying Communication Architecture Patterns for the Design of Dynamic

System Behaviors

In addition to the static system construction, which was introduced in the previous

section from the perspective of structural adaptation composition, another perspective

of the generic architecture style focuses on dynamic system behaviors, which more

concretely refers to the component interactions via appropriate interfaces within the

system architecture. Figure 4.4 illustrates an overview of communication paths between

the components via different interfaces, which provides a framework for designing

component interactions.

In this dissertation, the component interactions are not limited by using a certain

specified communication paradigm to retain the generalization capability of the generic

architecture style. Instead, several standard communication architecture patterns are

taken as candidate solutions for specifying the roles of components in the

communication of defined use cases. Theoretical fundamentals of these communication

architecture patterns were introduced in Section 2.3, including the request-response

pattern, the publish-subscribe pattern, the pipes-and-filters pattern, the shared-

repository pattern, and the blackboard pattern.

A Generic Architecture Style for Designing Automatic
Control Systems

122

Figure 4.4: Component Interfaces within the Generic Architecture Style

Through selection of appropriate communication paradigms from the candidates of

standard communication architecture patterns, the component interactions for a

concrete instantiated system architecture can be reliably implemented, depending on

the concrete boundary conditions of required system communication. In this dissertation,

several use cases (UCs) are defined to understand these interactions via the interfaces

better. More details of these UCs will be introduced in the following section in detail.

Additionally, some of these standard communication architecture patterns will be taken

to apply within a concrete architecture of an artificial cognitive cruise control system,

which construction is also instantiated from the generic architecture style and taken as

an evaluation example in this dissertation.

4.2.6 Dynamic System Behaviors as Use Cases in Generic Architecture Style

In addition to the static system construction, another view of architecture design lies with

the dynamic system behavior, which refers to the interaction of components in the

architecture pattern. In this dissertation, four uses cases (UCs) are proposed. To

symmetrically describe the component interactions: technical process control in a single

node (UC1); knowledge initialization, retrieval, and update in a single node (UC2);

adaptation control across multiple nodes (UC3); and knowledge sharing across multiple

nodes (UC4). These use cases will be introduced in detail in the following sections.

Pn+1

An+1

Pn

Kn AnSn

In

Cn

Sn+1 Kn+1

In+1

Cn+1

Legend

S

A
K

I
C

P

Sensing Component
Interpre�ng Component
Control Component
Actua�ng Component
Knowledge Component
Technical System
Physical System
Interfaces

n/n+1 Node Index

A Generic Architecture Style for Designing Automatic

Control Systems

 123

4.2.6.1 UC1: Technical Process Control in a Single Node

The first use case refers to technical process control relying on a closed control loop in

each node of the networked architecture. In Section 4.2.2, the basic closed control loop

consisting of “SCAP” components was presented. The interpreting component “I” as an

additional component can also participate in the control loop if necessary and thus

constitutes a closed loop of “SICAP”.

To provide a better understanding of the process flow, detailed processes within the use

case are listed as follows11:

1. The sensing component “S*” retrieves the data collected by hardware sensors

from the observed physical system. The sensing component further processes

all the retrieved sensory data such as aggregation, correlation, or filtering, based

on the respective desired requirements. Thus, processed data with an expected

structure can constitute a symptom that is a predefined standard description of

the current context of the physical system based on the observed facts

represented by the sensory data, including the structured sensory data

themselves.

2. Optional: Based on the symptom provided by the sensing component “S*,” the

interpreting component “I*” evaluates the current of the physical system context

by searching for the relevance with its available symptoms as domain knowledge.

Once the relevance of one of the available symptoms can be found, the

interpreting component relies on an inference engine to identify the current

problem. If necessary, the predicted future context of the physical system relying

on prediction algorithms can also be considered here. Finally, the interpreting

component can determine a change of request based on its policy knowledge

and forward it to the control component “C*”. It is emphasized that the

interpreting component is an additional component in the use case.

3. The control component “C*” takes the change of request and the symptom from

the interpreting and sensing components respectively as inputs to determine an

11 The superscript “*” is used here to describe the index of arbitrary nodes in the networked architecture of
the control system.

A Generic Architecture Style for Designing Automatic
Control Systems

124

adaptation strategy, relying on its domain knowledge included in a decision tree.

If the interpreting component is not deployed, the control component reflects on

the delivered symptom directly without considering the change of request.

4. The adaptation strategy determined by the control component is forwarded to

the actuating component, which splits up the strategy as individual adaptation

activity. The actuating component forwards the individual adaptation activity

further to the hardware actuators. Thus, the actuators can execute the activity to

interact with the physical system.

Figure 4.5: Technical Process Control in a Single Node (UC1)

Such a control loop exists in each node of the networked architecture, as shown in

Figure 4.5. The proposed generic architecture style mainly focuses on the self-

adaptation of the control system across different nodes. However, it also supports

concurrent interactions of different nodes directly with the physical system. This is

appropriate, for example, for the case of a control system with multiple actuators

independently influencing the physical system within different observation scopes.

4.2.6.2 UC2: Knowledge Initialization, Retrieval, and Update in a Single Node

The second use case focuses especially on knowledge flow within the architecture

pattern, including knowledge initialization, retrieval, and update, as shown in Figure 4.6.

As introduced in the previous use case, the “SICAP” components constitute a closed

Pn+1

An+1

Pn

Kn AnSn

In
Cn

Sn+1 Kn+1

In+1

Cn+1

A Generic Architecture Style for Designing Automatic

Control Systems

 125

control loop to interact with the physical system with different observation scopes within

corresponding nodes. To guarantee the basic functionality of the control loop, the

components “SICA” must complete the tasks introduced in Section 4.2.6.1, for which

they still need domain knowledge provided by the knowledge component “K*”12.

Figure 4.6: Knowledge Initialization, Retrieval, and Adaptation (UC2)

For example, the sensing component “S*” collects and processes sensory data to

generate the symptom. In this case, it needs the knowledge about the symptom’s

configuration, which is called sensing knowledge in this dissertation, including

specifications like the naming format of the symptom, required resolutions of sensory

data values, and configurations of data aggregation and filtering. Thus, the symptom

can be described systematically, which the inference engine can process in the

interpreting component.

Similarly, the interpreting component “I*” also relies on the so-called interpreting

knowledge provided by the knowledge component. As presented earlier, the

interpretation component's functionality can be briefly categorized as several processes:

(1) prediction of future context of the physical system based on the current context, (2)

problem identification based on evaluation of both contexts by searching relevance to

12 The superscript “*” is used here to describe the index of arbitrary node in the networked architecture of
the control system.

Pn+1

An+1

Pn

Kn AnSn

In
Cn

Sn+1 Kn+1

In+1

Cn+1

A Generic Architecture Style for Designing Automatic
Control Systems

126

known symptoms and facts, and (3) reasoning for determination of the change of request.

In these processes, the approach for future context prediction, like a data-driven

machine learning algorithm, relies on configuration of relevant application parameters.

The problem identification needs the domain knowledge about known symptoms and

facts of the physical system, which are saved in a systematic format. Additionally, the

reasoning process also relies on policy knowledge to determine whether the change of

request is necessary.

The same case also exists for the control and the actuating component. The control

component must know what kind of control decision is appropriate for which symptom

and what kind of consequence the control decision has in order to determine the control

strategy. For this purpose, it requires knowledge about the symptom, including the

monitored sensory data and the decision tree, which is categorized as the control

knowledge in this dissertation. Finally, the actuating component is required to split up

the control strategy as a sequence of individual activities, relying on the knowledge

about the construction of the control strategy. Additionally, knowledge about time-

relevant constraints may also be an important part of knowledge in this case since some

control systems also have critical requirements for interaction with physical systems in

real time.

The knowledge component serves as a knowledge repository and provider to guarantee

that all “SICA”-components can complete their tasks. After the system design, the

knowledge component initializes the required domain knowledge for the other

components, called knowledge initialization in this dissertation. During the computation

processes in the components, they are also able to request support from the knowledge

component for the domain knowledge delivery. For example, the interpreting component

can request policy knowledge for problem identification if it cannot identify the current

problem by itself. In this case, the knowledge component plays the role of a consultant.

From the opposite side, it is also possible that new domain knowledge is created during

the control process. For example, the control component determines a control strategy

with the expectation of certain control performance. However, due to the time-relevant

behavioral change, the physical system has a different reaction than expected. The

A Generic Architecture Style for Designing Automatic

Control Systems

 127

control component can also create new domain knowledge and update the newly

created knowledge into the knowledge component.

Similarly, the same knowledge update can also be completed by other components in

the generic architecture style if necessary. Based on such a mechanism, the mentioned

property of knowledge acquisition and adaptation in current control systems is realized

in this dissertation by the proposed generic architecture style. Generally, the previously

mentioned adaptation within the architecture pattern can be understood as a knowledge-

or a data-driven process. Once a component (either the knowledge component or one

of the other components) has a change of knowledge, it can disseminate the change to

other components. Thus, knowledge within the knowledge component and other

components can always be synchronized.

During the design of concrete application of control systems, detailed description

formats of the domain knowledge must still be specified. This dissertation does not

define any concrete description format, aiming to retain the generalization capability of

the proposed generic architecture style. From another perspective, it is also an outlook

for this dissertation, which can be further investigated in the future to find out which

formats are appropriate for what kind of applications.

4.2.6.3 UC3: Adaptation Control across Multiple Nodes

The third use case in the generic architecture style focuses on the process flow of

adaptation control across multiple nodes. In UC3, one node in the networked

architecture adapts the managed subsystem deployed in other nodes, following the

introduced paradigm of adaptation composition in Section 4.2.3 (cf. Figure 4.7). A single

subsystem in a node can adapt to several subsystems in other nodes due to distributed

scalability of the generic architecture style, as illustrated in Figure 4.7, focusing on the

case with only one additional subsystem in a secondary node.

A Generic Architecture Style for Designing Automatic
Control Systems

128

Figure 4.7: Adaptation Control across Multiple Nodes (UC3)

The process flow of adaptation control across multiple nodes is similar to the use case

of technical process control in a single node, as introduced in Section 4.2.6.1. There are

only two differences between the use cases. The first is that the interpreting component

for high-level analysis and reasoning is involved regardless. Thus, the component in the

corresponding node can determine the adaptation strategy on a higher level of

abstraction. The second difference is that the actuating component does not forward the

control activity to the actuators to interact with the physical system. Instead, it forwards

individual adaptation activity split from the high-level adaptation strategy to the

knowledge component in the node that includes the managed subsystem (so-called

“managed” node). In this case, another mechanism to realize the knowledge acquisition

and adaptation in the managed node is involved in the architecture pattern.

4.2.6.4 UC4: Knowledge Acquisition and Sharing across Multiple Nodes

In the previous use cases, the knowledge flow focuses on the interaction between the

knowledge component and other functional components like “SICA” in the architecture

pattern. The final use case, knowledge acquisition and sharing across multiple nodes,

focuses on the knowledge flow between knowledge components deployed in different

nodes of the networked system architecture, as shown in Figure 4.8.

Pn+1

An+1

Pn

Kn AnSn

In
Cn

Sn+1 Kn+1

In+1

Cn+1

A Generic Architecture Style for Designing Automatic
Control Systems

129

Figure 4.8: Knowledge Acquisition and Sharing across Multiple Nodes (UC4)

In this dissertation, knowledge acquisition and sharing happen when the interpreting

component lacks domain knowledge. The other components like “SCA” do not have

any requirement for knowledge acquisition and sharing since they rely on the

knowledge to complete the tasks, in which a solution can be found in any case. For

example, the sensing component follows certain configurations to generate

symptoms. The control component relies on its knowledge to identify the best solution

of control strategy within the search space of its decision tree.

The standard processes within this use case are summarized as follows:

1. The sensing component “S*” collects the sensory data from the physical system

and processes the data to generate the symptom, which is then forwarded to the

interpreting component “I*”.

2. The interpreting component “I*” evaluates the physical system's current (and

future) context by trying to find relevance with one of its known symptoms (which

is saved as domain knowledge) to identify the current problem. Due to the lack

of knowledge, the problem cannot be reliably identified. Thus, the interpreting

component cannot generate the change of request.

3. The interpreting component requests support from the knowledge component

“K*”. Since the knowledge component “K*” has the same domain knowledge as

Pn+1

An+1

Pn

Kn AnSn

In
Cn

Sn+1 Kn+1

In+1

Cn+1

A Generic Architecture Style for Designing Automatic
Control Systems

130

the interpreting component, it also cannot identify the problem. Thus, it forwards

the request to other knowledge components, such as the knowledge component

“K*+1” in other neighbor nodes.

4. The knowledge component “K*+1” shares its domain knowledge with the

knowledge component “K*” in the neighbor node (e.g., its known symptom). The

component “K*” forwards the received domain knowledge to the interpreting

component “I*”.

5. The interpreting component “I*” accesses the new domain knowledge and tries

to determine whether the problem can be identified. If the problem can be

identified, the interpreting component “I*” uses its training algorithm to integrate

the new domain knowledge into the knowledge base included in the knowledge

component “K*”. If the problem cannot be identified, the interpreting component

“I*” requests the knowledge component “K*” again. Processes 3 and 4 will be

repeated with the interaction of other available knowledge components until the

solution can be found.

4.3 Instantiation of Generic Architecture Style for Different Control Systems

After introducing the generic architecture style as the main contribution of this

dissertation, from the perspectives of the static system construction and dynamic system

behavior respectively, it is necessary to investigate the generalization potential of the

proposed generic architecture style. For this purpose, the architecture pattern is further

instantiated as logical architectures from software engineering for the cases of

introduced control concepts with the architectures from the control theory viewpoint (cf.

Chapter 3). Thus, the architectures from both viewpoints can be compared to examine

whether the proposed generic architecture style is consistent on the architecture level

with current control systems.

4.3.1 Basic Control following the Generic Architecture Style

The first instantiation focuses on basic control architecture from the view of control

theory, which is shown again as the blue-grey architecture at the bottom of Figure 4.9.

There is no adaptation unit as a secondary layer to build a hierarchical system

A Generic Architecture Style for Designing Automatic

Control Systems

 131

architecture in basic control. Thus, the architecture pattern is instantiated only with one

layer illustrated at the top of Figure 4.9 as a yellow-green architecture from the view of

software engineering. By comparing “blue-grey” and “yellow-green” architectures,

relationships between the corresponding components included in the architectures can

be mapped.

Figure 4.9: Instantiation of Architecture Pattern for Basic Control System

In the following sections, the word “blue-grey architecture” is used to represent the

architecture from the control theory viewpoint to reduce description complexity. Similarly,

the word “yellow-green architecture” is used to represent the instantiated logical

architecture from the view of software engineering derived from the architecture pattern.

Firstly, the physical system and the hardware sensors and actuators (SC, SR, and A)

as its provided interfaces for the interaction with the technical system can be mapped

precisely as component “P0” in the yellow-green architecture. The subscript “0” here

stands for node zero, which can also be instantiated as a layer if necessary.

Physical System

Manipulated
Variable

Control Error
(Devia�on

between Current &
Set Value)

Technical System

Controlled Variable (Current Value)

Controlled Variable
(Current Value)

AFinal Control
Unit

Control
Variable

Parametriza�on
Memory

Predicted
Variable

Controller
Parametriza�on

SR

SC

Analyzer

Legend

A
Sensor of Controlled VariableSC

Actuator

Op�onal
SR Sensor of Reference Variable

Reference
Variable
(Set Value)

Environment

Disturbance Variable
(Physical Signal)

Controlled Plant

Controlled Variable
(Current Value)

Control Variable

Measurement Unit

Controller

User

P0 P0

P0

A0

I0

S0

C0

K0

P0

K0 A0S0

I0
C0

A Generic Architecture Style for Designing Automatic
Control Systems

132

Since the measurement unit in the blue-grey architecture is responsible for collecting

and preprocessing the sensory data, which is also covered by the sensing component

in yellow-green architecture, another mapping relationship can be found. Additionally, it

is very clear that the controller and the parametrization memory component respectively

correspond to the control and knowledge components (“C0” and “K0”) in the yellow-green

architecture. Since the actuating component (“A0”) converts the determined control

strategy into individual control activities, which are then forwarded into the physical

system through actuators, it can be mapped by the final control unit in the blue-grey

architecture. Finally, an additional component analyzer in the blue-grey architecture is

used to predict the future context of the physical system. It can be interpreted as a

simplified interpreting component (“I0”) since it also covers the functionality for evaluation

of the future context of the physical system (“P0”). Thus, it can be said that from the view

of software engineering the instantiated architecture, which is derived from the generic

architecture style, is consistent with the architecture of basic control from the viewpoint

of control theory.

4.3.2 Naive Adaptive Control following the Generic Architecture Style

After the architecture comparison for basic control, this dissertation continues its

investigation by focusing on naive adaptive control. The architecture of the naive

adaptive control is illustrated as blue-grey architecture from the view of control theory

again at the bottom of Figure 4.10. Since naive adaptive control includes an adaptation

unit deployed on a secondary control loop, an architecture including two nodes is

instantiated from the architecture pattern. Since these two nodes can then be

instantiated as two hierarchical layers, as presented earlier, a two-layered hierarchical

yellow-green architecture is thus constituted. Different layers are represented by

superscripts “0” and “1”.

In comparison to the blue-grey architecture for basic control, it can be seen that the

adaptation unit deployed on the secondary control loop includes several components: a

monitoring component, an adaptation controller, and an execution component. The

monitoring component is responsible for data collection and preprocessing, which

generates a symptom based on the standard data formats. The adaptation controller is

A Generic Architecture Style for Designing Automatic

Control Systems

 133

designed to determine an adaptation strategy, which is understood as high-level

specifications for the adapted variable to adapt the saved values of application

parameters in parametrization memory. The execution component takes the determined

adaptation strategy as input to derive individual values of the adapted variable, which

are forwarded to the parametrization memory.

Figure 4.10: Instantiation of Architecture Pattern for Naive Adaptive Control

Compared to the yellow-green architecture, it can be observed that the functionalities of

the introduced components in blue-grey architecture correspond to the sensing, control,

and actuating components within the generic architecture style. Since the components

in blue-grey architecture are deployed on the secondary control loop, the corresponding

Technical System Physical System

Manipulated
Variable

Controlled Variable (Current Value)

Controlled Variable
(Current Value)AFinal Control Unit

Control
Variable

Controller

Parametriza�on
Memory

Predicted
Variable

Controller
Parametriza�on

SC

Analyzer

Reference
Variable
(Set Value)

Environment

Disturbance Variable
(Physical Signal)

Controlled Plant

Controlled Variable
(Current Value)

Control
Variable

Measurement Unit

Adapta�on Unit

Adapted Variable

Monitored
Symptom

Adapta�on StrategyExecu�on
Component

Adapta�on
Controller

Monitoring
Component SU

Reference
Configura�on
(Set Opera�ng
Mode)

Legend
A

Sensor of Controlled VariableSC
Actuator

Op�onal

SR Sensor of Reference Variable

SU Sensor of User

Control Error
(Devia�on

between Current
& Set Value)

User
SR

P1

A1

P0

K0 A0S0

I0
C0

S1 K1

I1
C1

X
X

A1 C1

S1
P1

P0 P0

P0

A0

I0

S0

C0

K0

A Generic Architecture Style for Designing Automatic
Control Systems

134

components in yellow-green architecture are described as “S1”, “C1” and “A1”.

Superscript “1” means the index of the higher layer in the hierarchical architecture, as

shown in Figure 4.10.

4.3.3 Controlled-Plant-Dependent Adaptive Control following the Generic Architecture

Style

The architecture of controlled-plant-dependent adaptive control will now be taken as a

further investigation object. The blue-grey architecture from the view of control theory,

as previously introduced, is shown at the bottom of Figure 4.11. In comparison to the

blue-grey architecture of naive adaptive control, an additional interpreting component is

deployed on the secondary control loop, which takes the responsibility for evaluating the

generated symptom and thus provides a change of request for adaptation activity to the

adaptation controller. The functionality of the interpreting component in the blue-grey

architecture corresponds exactly to the interpreting component in the yellow-green

architecture, which builds a clear mapping relationship. The remaining components stay

the same as in the case of naive adaptative control.

In addition to the interpreting component, another supplement compared to naive

adaptive control is that controlled-plant-dependent adaptive control has access to the

component sensor of controlled plant (SP) for providing additional context information

to the adaptation unit. In this case, it can be said that the observation scope of the

technical system (yellow part of the yellow-green architecture) for the physical system

is further increased, which is represented by the integration of the sensor of controlled

plant. The knowledge component “K1” is still missing since there is no knowledge

management component similar to the parametrization memory component in the

adaptation unit of the blue-grey architecture.

A Generic Architecture Style for Designing Automatic

Control Systems

 135

Figure 4.11: Instantiation of Architecture Pattern for Controlled-Plant-Dependent Adaptive Control

4.3.4 Physical-System-Dependent Adaptive Control following the Generic Architecture

Style

The next investigated concept of current control systems is called physical-system-

dependent adaptive control. The architecture considering control theory is illustrated as

the blue-grey architecture in Figure 4.12.

Technical System Physical System

Manipulated
Variable

Controlled Variable (Current Value)

Controlled Variable
(Current Value)

AFinal Control Unit

Control
Variable

Controller

Parametriza�on
Memory

Predicted
Variable

Controller
Parametriza�on

SR

SC

Analyzer

Reference
Variable
(Set Value)

Environment

Disturbance
Variable
(Physical
Signal)

Controlled Variable
(Current Value)

Control
Variable

Adapta�on Unit

Adapted Variable

Monitored
Symptom

Adapta�on
Strategy

Execu�on
Component

Adapta�on
Controller

SU
Reference
Configura�on
(Set Opera�ng
Mode)

SP

Legend
A

Sensor of Controlled VariableSC
Actuator

Op�onal

SR Sensor of Reference Variable

SP Sensor of Controlled Plant
SU Sensor of User

Controlled Plant

Plant Variable

Change
Request

Control Error
(Devia�on

between Current
& Set Value)

Adapta�on
Strategy

Measurement Unit

Interpre�ng
Component

Monitoring
Component User

A1 C1

S1
P1

P0 P0

P0

A0

I0

S0

C0

K0

P1

I1

P1

A1

P0

K0 A0S0

I0
C0

S1 K1

I1
C1

X

A Generic Architecture Style for Designing Automatic
Control Systems

136

Figure 4.12: Instantiation of Architecture Pattern for Physical-System-Dependent Adaptive Control

In the blue-grey architecture, the component sensor of environment (SE) is also

connected to the adaptation unit on the secondary loop. Thus, it is also mapped to the

physical system “P1” on the higher layer of the hierarchical architecture. Unfortunately,

the knowledge component “K1” is still missing, similar to the case of controlled-plant-

dependent adaptive control.

Technical System Physical System

Manipulated
Variable

Controlled Variable (Current Value)

Controlled Variable
(Current Value)

AFinal Control Unit

Control
Variable

Controller

Parametriza�on
Memory

Predicted
Variable

Controller
Parametriza�on

SR

SC

Analyzer

Reference
Variable
(Set Value)

Environment

Disturbance
Variable
(Physical
Signal)

Controlled Variable
(Current Value)

Control
Variable

Measurement Unit

Adapta�on Unit

Adapted Variable

Monitored
Symptom

Execu�on
Component

Adapta�on
Controller

Interpre�ng
Component

SU
Reference
Configura�on
(Set Opera�ng
Mode)

SP
Plant

Variable

Legend
A

Sensor of Controlled VariableSC
Actuator

Op�onal

SR Sensor of Reference Variable

SP Sensor of Controlled Plant

SU Sensor of User

SE Sensor of Environment

Environment
Variable
(Current Value)

SE

Monitoring
Component

Control Error
(Devia�on

between
Current & Set

Value)

Adapta�on
Strategy

Change
Request

Adapta�on
Strategy

Controlled Plant

User

A1 C1

S1
P1

P0 P0

P0

A0

I0

S0

C0

K0

P1

I1

P1

P1

A1

P0

K0 A0S0

I0
C0

S1 K1

I1
C1

X

A Generic Architecture Style for Designing Automatic

Control Systems

 137

4.3.5 Artificial Cognitive Control following the Generic Architecture Style

After instantiating the generic architecture style for current control systems, it is also

important to check whether the proposed architecture pattern is consistent with artificial

cognitive control, defined in this dissertation as the next generation of control systems

(cf. Section 3.8).

In Section 3.6, it is clearly stated that current control systems have existing issues from

two perspectives: (1) missing property of knowledge acquisition, and (2) adaptation and

limited system scalability against fixed boundary conditions. Different challenges for the

system architecture design of artificial cognitive control are constituted to eliminate these

issues by integrating knowledge acquisition and adaptation and strengthening system

scalability and connectivity. For this purpose, the artificial cognitive control system needs

to include increasingly complicated knowledge basis as its world model and greater data

processing, along with increasing offboard sensor access. However, such a requirement

leads to a very high computation effort and long computation duration, thus strongly

challenging performance, especially regarding the timing perspective of the control loop.

Against such a background, the design of networked system architecture, including

multiple nodes as subsystems, is proposed as a solution. It aims to distribute the

computations of control loops into different nodes included in the architecture. Thus, the

bottleneck of high computation effort and duration can be overcome, relying on parallel

computations of the nodes. Different knowledge components are then deployed as

interface components between the nodes to isolate them and thus realize a loose

coupling. They can also serve as knowledge repositories to deploy corresponding

knowledge bases with limited complexity distributed from the previously highly

complicated knowledge basis.

Following the paradigm of structural adaptation composition in the proposed generic

architecture style, a networked architecture including multiple nodes can be constituted.

Each node can be instantiated as a layer, and the layers can be hierarchically connected.

Thus, a two-layered hierarchical yellow-green architecture can be derived as an

example to describe an instantiated artificial cognitive control system from the view of

software engineering, as shown at the top of Figure 4.13. It should be emphasized that

the artificial cognitive control system is not limited to two hierarchical layers. Instead, it

A Generic Architecture Style for Designing Automatic
Control Systems

138

can also be constructed with arbitrary hierarchical layers that can be separately

deployed on different distributed domains if necessary.

Figure 4.13: Instantiation of Architecture Pattern for Two-layered Artificial Cognitive Control System

Unlike the physical-system-dependent adaptive control, the final missing knowledge

component (“K1”) is now included in the higher layer of the yellow-green architecture.

Thus, knowledge acquisition and adaptation can be realized in artificial cognitive control,

relying on the knowledge component. In the case of a more complicated knowledge

basis or more data flow from offboard sensors, higher layers can also be constructed in

the system architecture; these layers are not shown in the simplified illustration of Figure

4.13.

Technical System Physical System

Manipulated
Variable

Controlled
Variable &
Reference

Variable
(Current & Set

Value)
Controlled Variable (Current Value)

Controlled Variable
(Current Value)

A
Control
Variable

Controller

Parametriza�on
Knowledge Comp.

Predicted
Variable

Controller
Parametriza�on

SR

SC

Analyzer

Reference Variable
(Set Value)

Environment

Disturbance
Variable
(Physical
Signal)

Controlled Variable
(Current Value)

Control Variable

Measurement Unit

Adapta�on Unit

Adapted Variable

Monitored
Symptom

Adapta�on
Strategy

Execu�on
Component

Adapta�on
Controller

Interpre�ng
Component

SU
Reference
Configura�on
(Set Opera�ng
Mode)

SP

Controlled Plant

Plant
Variable

Environment
Variable
(Current Value)

SE

Monitoring
Component

Change
Request

Legend
A

Sensor of Controlled VariableSC
Actuator

Op�onal

SR Sensor of Reference Variable

SP Sensor of Controlled Plant
SU Sensor of User

SE Sensor of Environment

Knowledge
Component

Interpre�ng
Knowledge

Monitoring
Knowledge

Adapta�on
Knowledge

Execu�on
Knowledge

Final Control unit
Parametriza�on

Final Control Unit

Predictor
Parametriza�on

Exchanged
Knowledge

& Data

Measurement
Unit

Parametriza�on

Adapta�on
Strategy

User

A1 C1

S1 P1

P0 P0

P0

A0

I0

S0

C0

K0

P1

I1

P1

K1

P1

A1

P0

K0 A0S0

I0
C0

S1 K1

I1
C1

A Generic Architecture Style for Designing Automatic

Control Systems

 139

The blue-grey architecture is derived from the blue-grey architecture of physical-system-

dependent adaptive control. A knowledge component (dark yellow box representing “K1”)

is added to the adaptation unit. This knowledge component communicates with the

monitoring, interpreting, and execution component, and with the adaptation controller to

initialize their required domain knowledge. From the opposite direction, they can also

acquire new domain knowledge and update it into the knowledge component to realize

the knowledge acquisition and adaptation, as described in use case 2 (UC2) of the

dynamic system behaviors (cf. Section 4.2.6.2).

Another difference in the blue-grey architecture of physical-system-dependent adaptive

control is that the knowledge component “K1” on the higher layer is evolved from a pure

knowledge repository for storage into a component for knowledge management

covering more functionalities. Thus, in artificial cognitive control, the knowledge

component “K1” can communicate with the parametrization knowledge component “K0”

on the lower layer to realize the use case 4 (UC4): knowledge acquisition and sharing

across multiple nodes (detailed process flow cf. Section 4.2.6.4).

4.4 Summary

Since automatic control systems become increasingly more complicated, system design

becomes an issue with greater challenges, particularly in the case of a sophisticated

system architecture with hybrid computation mechanisms, which is exactly what is

required in next-generation artificial cognitive control. This dissertation combines control

theory and software engineering, aiming to acquire another view of the automatic control

system and thus contribute to system design with the help of established software

engineering approaches.

With this idea in mind, this chapter first provides a short research overview of related

works about combining approaches of control theory and software engineering. Based

on the understanding of the related works, the main contribution of this dissertation is

introduced in detail, which consists of a generic architecture style for the design of

different automatic control systems. The fundamental design of the generic architecture

style, including the fundamental component structure and the system construction

paradigm of adaptation composition, is introduced. In addition to the view of static

A Generic Architecture Style for Designing Automatic
Control Systems

140

system construction, this chapter also introduces different standard communication

architecture patterns and triggering mechanisms that can be taken to define concrete

component interactions within several defined use cases of dynamic system behaviors.

Finally, to evaluate the generic architecture style, the generic architecture style is used

to instantiate logical architectures (from the view of software engineering) as concrete

examples for different control systems. Thus, the logical architectures can be compared

with the architectures from the view of control theory to check constructional consistency.

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 141

5 Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

Addressing the trend that automatic control systems are growing increasingly more

complicated, the approaches of hierarchical system architecture and the corresponding

challenges of system design were presented in Chapter 3. Aiming to fulfill the challenges

due to the more complicated system architecture, the main contribution of this

dissertation, a generic architecture style for designing automatic control systems from

the view of software engineering, was proposed and introduced in detail within Chapter

4. An overview of related works by combining control theory and software engineering

approaches was described.

Subsequently, the fundamental design of the generic architecture style was introduced,

including the paradigm of adaptation composition for system construction and

fundamental component structure. Different triggering mechanisms for the design of

system computation were also introduced. Additionally, a short introduction to different

generic communication architecture patterns (cf. Section 2.3), which can be applied to

specify the component interactions consisting of dynamic system behaviors, is also

included. Several use cases with different component interactions were also presented

to describe the dynamic system behaviors.

To validate the proposed generic architecture style, several architectures from the

perspective of software engineering were derived as instantiations and compared with

architectures of current control systems from the control theory viewpoint, with the aim

of investigating architectural consistency. A two-layered example architecture of artificial

cognitive control as a generally simplified instance was also included in the investigation.

Further, the generic architecture style is taken again to derive an example architecture

of the artificial cognitive control and applied within the vehicle’s ACC function as a

practical application called artificial cognitive cruise control (ACCC) in this dissertation.

This chapter will introduce the detailed architecture of the ACCC and an implemented

prototype. Additionally, the technical performance of the implemented prototype will also

be evaluated.

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

142

5.1 Preliminary Design of Artificial Cognitive Cruise Control

The reviewed architectures of current ACC variants (cf. Section 4.3) indicate that most

of these architectures include a two-layered construction. While the lowest layer is

responsible for the real-time control to interact with the physical world within milliseconds,

the higher layer is responsible for determining a high-level context-based adaptation

strategy with a longer cycle time. In this sense, it can be said that current ACC variants

with two-layered architectures (cf. Section 4.3.2–4.3.4) are extended gradually based

on the classical ACC with a single-layered architecture (cf. Section 4.3.1). As introduced

earlier, the architecture design of artificial cognitive control systems in next generation

should follow the proposed ideas of adaptation composition in the generic architecture

style. With this idea in mind, the layer design in the system architecture of ACCC as an

empirical application example of artificial cognitive control system needs to be

reconsidered.

As presented earlier, ACC is designed as a driving comfort assistance system to take

over the vehicle’s longitudinal control during a trip to realize so-called semi-automated

driving. In this case, the driver must still participate in the driving task by steering the

vehicle. Following the generic architecture style, different nodes have different

observation scopes. Since current ACCs have layered architectures, the architecture of

ACCC is also instantiated to include a multi-layered topology. Thus, it is obvious that the

largest scope could be assigned to the highest layer, which in the case of ACC refers to

the complete remaining trip, considering the whole route between the origin where the

vehicle is currently located and the desired destination.

In this case, the highest layer would focus more on the so-called global planning of

driving strategy. However, global planning cannot foresee every event during the trip in

advance due to nondeterministic in reality. Thus, other traffic participants on the route

that could be obstacles for the ego-car, such as moving vehicles or pedestrians, will be

completely ignored. For this reason, current ACCs’ original task of planning driving

strategy on a lower level of abstraction such as a set of cruise velocities for the whole

route is not worth being included on the highest layer.

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 143

Instead, the highest layer would work on a similar level of abstraction to the vehicle’s

navigation system. The difference is that the navigation system focuses on driving

behavior planning like turning left or right, with a set of intermediate points like

intersections as nodes on the route. However, the highest layer of the ACCC plans a

high-level set travel profile (like the expected travel time and energy consumption) from

the origin until each intermediate point on the following route. Thus, specific high-level

domain knowledge about the physical system, such as the driver-preferred average

travel time or average energy consumption, can be extracted based on the observed

facts during the whole trip and learned by the technical system to realize the proposed

personalized ACC (cf. Section 3.5.1). Since such planning of the high-level set travel

profile is not required to be performed regularly, the highest layer can be designed as

event-triggered (cf. Section 4.2.4).

Considering another perspective, the ACCC still needs to interact with the physical world

while driving. As a real-time automatic control system, the lowest layer in the architecture

of ACCC is thus required to deploy a well-known traditional closed control loop, as

previously introduced in the concept of basic control (cf. Section 3.1). Thus, it means

that the lowest layer is still required to focus on the determination of concrete low-level

control activity like cruise velocity or headway within the range of milliseconds. Since

the lowest layer is required to guarantee real-time interaction with the physical world, it

can be designed to be time-triggered (cf. Section 4.2.4) to fulfill timing requirements.

Compared with the high-level personalized set travel profile mentioned before, it is

indicated that the high-level personalized set travel profile (e.g., the driver’s expected

average travel time and the energy consumption) is still out of touch with the concrete

control activity within the range of milliseconds. This also means that the set travel profile

cannot directly be decomposed as individual concrete control activities due to the

absence of an appropriate intermediate level of abstraction between them. Thus, an

additional middle layer is required. A three-layered architecture for the preliminary

design of artificial cognitive cruise control was conceived with this idea in mind, as shown

in Figure 5.1.

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

144

Figure 5.1: Preliminary Design of Three-Layered Architecture of Artificial Cognitive Cruise Control (ACCC)

The highest layer's planned high-level personalized set travel profile would be

transferred into the middle layer in the architecture. The middle layer is responsible for

deriving the set travel profile as a situation-aware middle-level driving strategy. The

middle-level driving strategy includes a set trajectory of cruise velocity or headway,

focusing on a certain following route segment with a limited distance horizon instead of

focusing on the whole route. Since the middle-level driving strategy is situation-aware,

the middle layer needs to be designed as event-triggered. The high-level set profiles of

travel time and energy consumption can be understood as specifications for the middle

layer to take as constraints during trajectory planning. Subsequently, the lowest layer

can take the trajectory coming from the middle layer further as a specification in its

determination of low-level control activity with concrete set value of cruise velocity or

headway, which is called the set parameter profile in this dissertation.

By applying such a concept, three different hierarchically connected layers as three

instantiated networked nodes would have three different observation scopes. The

observation scopes vary from the whole route, to a route segment, to a certain limited

time horizon, depending on the required cycle time of the closed control loop. Thus, the

increasing observation scopes are consistent with the ideas of the proposed generic

architecture style. The higher two layers are triggered by events since they work on

higher semantic levels and include higher-level domain knowledge like the individual

driver’s personalized preferences. In constrast, the lowest layer works based on a low

Event-Triggered

Event-Triggered

Time-Triggered

Deriva�on of Middle-level Driving Strategy as
Low-level Control Strategy with Set

Parameter Profile for Next Milliseconds
(Cruise Velocity or Headway for Next Time Cycle)

Deriva�on of High-level Set Travel Profile as
Situa�on-aware Middle-level Driving Strategy

with Route-Segment-based Set Trajectory
(Cruise Velocity or Headway Trajectory for

following Route Segment)

Planning of High-level Personalized Route-
based Set Travel Profile

(Average Travel Time, Average Energy
Consump�on, …)

K0 A0S0

I0
C0

P0

A1S1 K1

I1
C1

P1

C2
I2
K2

P2

S2 A2

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 145

level of variable monitoring and precise actuator manipulation, without any semantic

understanding of the physical system regarding the driver or the driving environment.

5.2 Instantiation of Generic Architecture Style for ACCC System Architecture:
Static System Construction

After a short introduction in the previous section, a preliminary design for a three-layered

architecture of the ACCC was introduced. To further flesh out this preliminary design,

the proposed generic architecture style is applied to instantiate an example of logical

architecture on a lower component level from the viewpoint of software engineering,

illustrated as the yellow-green architecture in Figure 5.2. Subsequently, another

example of architecture (blue-grey) from the view of control theory can also be derived,

as illustrated at the bottom of Figure 5.2.

In Figure 5.2, it is indicated that the ACCC has a hierarchical architecture (blue-grey)

with three layers. On the layers, a route-based adaptation unit, a route-segment-based

adaptation unit, and a cycle-time-based control unit are deployed as three subsystems

within the technical system. With the help of different sensors, different units in the

technical system acquire increasing observation scopes of the physical system from

bottom to up, along with the hierarchical layers. The fundamental component structures

consisting of “SICAP-K” exist on each layer in the hierarchical architecture, illustrated

as color boxes inside the subsystems of the three units in Figure 5.2.

As presented in the previous section, the observation scopes of the physical system by

different units on different layers must be predefined. The route-based adaptation unit

on the highest layer makes adaptation decisions considering the whole route profile.

However, the route-segment-based adaptation unit on the middle layer considers only

the following section of the route, which is called the route segment in this dissertation.

Unlike the route-based and route-segment-based adaptation unit, the cycle-time-based

control unit on the lowest layer has an observation scope from the time perspective

instead of the spatial perspective of the physical driving environment. It focuses on the

determination of control activity for the following cycle time within milliseconds. In the

following sections, more details about these units and other subsystems in the

architecture of ACCC will be provided.

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

146

Figure 5.2: Instantiated Architecture of Artificial Cognitive Cruise Control (ACCC) from the Generic
Architecture Style

5.2.1 Physical System

As stated in Figure 5.2, similarly to current ACCs (cf. Section 3.1–3.4), the ACCC

consists of two major parts: a technical system and a physical system. The physical

system consists of the driver, the controlled plant referring to the ego-car’s physical

components like the car body and powertrain, and the surrounding driving environment

(cf. Figure 5.3). As presented earlier, the sensors and actuators play roles as interfaces

to enable interaction between the technical and physical system, which are also

Physical SystemTechnical System
Route-based Adapta�on Unit

Route-Segment-based Adapta�on Unit

Cycle-Time-based Control Unit

Driver Preference
Executor

Driver Preference
Analyzer

Driver Preference
Knowledge

Driving Strategy
Monitor

A

Driver Preference
Planner

SU

RSP

RSE

Legend
A
SC
SR

RSP
SU

RSE
SSP

Environment

SSP
SSE

S1 P1

P0 P0A0

S0

P2

P1

SC

P2

P2
A2

S2

Segment-oriented Sensor of Controlled Plant
Segment-oriented Sensor of Environment

Sensor of Controlled Variable
Actuator

Sensor of Reference Variable

Route-oriented Sensor of Controlled Plant
Sensor of User

Route-oriented Sensor of Environment

Physical
Components of

Ego-Car
(incl. Powertrain

and Car Body)

SSE

K2

Event-Triggered

Time-Triggered

Event-Triggered

Driving Strategy
Analyzer

SR
P0

I2

I1

K0 A0S0

I0
C0

P0

A1S1 K1

I1
C1

P1

C2
I2
K2

P2

S2 A2

Driver Preference
Monitor

C2

Driving Strategy
KnowledgeK1

A1

Parametriza�on
Knowledge

Analyzer

Measurement
Component

Final Control
Component

Driving Strategy
Planner C1Driving Strategy

Executor

K0

ControllerC0

I0

User

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

147

illustrated in Figure 5.3 and categorized into three classes (“P0”, “P1”, and “P2”). The

superscripts correspond to three layers with different observation scopes in the

hierarchical architecture instantiated from the generic architecture style.

On the highest layer, the component sensor of user (SU), the component route-oriented

sensor of controlled plant (RSP), and the component route-oriented sensor of

environment (RSE) are responsible for the delivery of sensory data for the route-based

adaptation unit. The data coming from the RSE and RSP include context information

about the vehicle and its driving environment. Unlike these two sensors, the sensor SU

interacts with the driver.

Figure 5.3: Physical System in Artificial Cognitive Cruise Control

This dissertation defines the quality of the set travel profile with a cost function influenced

by travel time, the vehicle’s fuel/energy consumption, and the driving comfort

represented by the vehicle’s acceleration/deceleration. In this cost function, different

weights of influence factors are required. The driver can manually adjust the weights of

Physical System

Legend
A
SC
SR

RSP
SU

RSE
Segment-oriented Sensor of Controlled Plant
Segment-oriented Sensor of Environment

Sensor of Controlled Variable
Actuator

Sensor of Reference Variable

Route-oriented Sensor of Controlled Plant
Sensor of User

Route-oriented Sensor of Environment

Technical System

Route-based Adapta�on
Unit

Route-Segment-based
Adapta�on Unit

Cycle-Time-based
Control Unit

Current Headway to
Preceding Car/Velocity
of Ego-Car

A

RSP

RSE

SSP

Environment

SSP
SSE

P1

P0 P0

P2

P1

SC

P2

P2

Physical
Components of

Ego-Car
(incl. Powertrain and

Car Body)

SSE

Driver-preferred
Time Gap &
Cruise Velocity
of Ego-Car

Disturbance
Variables
(Physical
Signals in
Driving
Process of
Ego-Car)

Reference
Configura�on of
Driver
Preference
(Weights of
Criteria)

Route-oriented Plant
Variables (Energy
Consump�on, Travel
Time and Driving
Comfort Profile for
the whole Route)

Route-Segment-
oriented Plant
Variables (Velocity of
Ego-Car within Current
Route Segment)

Route-Segment-oriented Environment
Variables (Headway to Preceding Car,
GPS-Posi�on of Ego-Car and Map Data
for Current Segments)

Route-oriented
Environment

Variables (GPS-
Posi�on of Ego-

Car and Map
Data for the

whole Route)

Current Headway to Preceding Car/Velocity of Ego-Car

Current Manipulated
Variable (Drive/Brake)

Knowledge &
Data about
High-/Middle-
Level Driver
Preference for
Exchange

Knowledge & Data
about Middle-
Level Driving
Strategy and Low-
Level Control
Strategy and
Parametriza�on
for Exchange

High-Level
Personalized Route-
based Set Travel Profile
(Set Profiles of Time,
Consump�on and
Driving Comfort)

Situa�on-aware
Middle-Level Driving
Strategy with Route-
Segment-based Set
Trajectory (Set
Profiles of Cruise
Velocity and Headway
to Preceding Car)

SR
P0

SU
User

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

148

the influence factors through the SU if necessary (e.g., via a human-machine interface

(HMI) of the vehicle’s entrainment system). In this case, the HMI can also be interpreted

as a special actuator and sensor simultaneously. Since HMI only indirectly instead of

directly influences the technical process, which refers to the physical processes for the

vehicle’s driving, it is excluded from the system design of ACCC in this dissertation and

thus is not visualized in the system architecture of Figure 5.3.

A significant point that must be emphasized is that all these mentioned sensors are not

limited to explicit physical sensors. For example, the SU possibly consists of a group of

independent physical sensors, which are all responsible for delivering driver-relevant

sensory data since the driver is the system user in this case. In addition to driver-relevant

data, the sensors RSP and RSE provide vehicle- and route-relevant data (e.g., the

driver’s accumulated travel time for the whole route and the GPS position of the ego-

car).

Instead of focusing on the whole route, the segment-oriented sensor of environment

(SSE) and the segment-oriented sensor of controlled plant (SSP) on the middle layer of

the hierarchical architecture focus on providing the data within the observation scope of

individual route segment (e.g., the driver’s preferred cruise velocity and headway to the

preceding car within the route segment). Along with the car’s movement during the trip,

the observation scope of the sensors is also moving towards the following route segment

like a sliding window, depending on the current GPS position of the ego-car and its

located route segment respectively.

On the lowest layer, the component sensor of controlled variable (SC) and the

component sensor of reference variable (SR) provide sensory data about current and

the driver-preferred set cruise velocity and headway, respectively, as in the case of

current ACCs (cf. Chapter 3). Additionally, the actuators (A) receive the current value of

manipulated variables to manipulate hardware in the ego-car’s engine and brake system.

In this case, both sensors and actuators on the lowest layer only focus on concrete

activities for the current time point without considering the following route or route

segments.

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 149

5.2.2 Route-Based Adaptation Unit in the Technical System

As indicated in Figure 5.2, the route-based adaptation unit is designed as a subsystem

triggered by trip-relevant events. It works only when trip-related requirements have been

fulfilled. For example, it plans the driver’s individual personalized global travel profile,

including set travel time, set energy consumption or set driving comfort, at the beginning

of the trip. Additionally, it updates the personalized travel profile once the planned trip

has been changed or strongly violated while driving. For instance, in the case of a traffic

jam, the vehicle’s navigation system would normally react, and thus this can be seen as

a potential trigger for the route-based adaptation unit to update the set travel profile.

Once the ego-car has reached the planned destination and the trip is finished, the route-

based adaptation unit stops the data collection. It then triggers the process of learning

high-level route-based driver preferences like the driver’s preferred travel time or energy

consumption as high-level domain knowledge based on the newly observed facts of

sensory data during the whole trip.

Figure 5.4: Route-Based Adaptation Unit in Artificial Cognitive Cruise Control (Detailed View cf. Appendix

A.1)

Physical SystemTechnical System

Route-based Adapta�on Unit

Route-Segment-based Adapta�on Unit

Cycle-Time-based Control Unit

A

SU

RSP

RSE

SSP

P1

P0 P0

P2

P1

SC

P2

P2

SSE

Event-Triggered

SR

Reference
Configura�on of
Driver Preference
(Weights of
Criteria)

Route-oriented Plant
Variables (Energy
Consump�on, Travel
Time and Driving
Comfort Profile for
the whole Route)

Route-oriented Environment
Variables (GPS-Posi�on of Ego-Car

and Map Data for the whole Route)

Configura�on of
Monitored Sensory Data
about Driver Preference

Configura�on of Driving
Strategy for Route Segment

Request of Planning
Route-based
Driving Strategy

Configura�on of
Route-based Driver
Preference Planner

Current Headway to
Preceding Car/Velocity
of Ego-Car

Current Headway to Preceding Car/Velocity of Ego-Car

Current Manipulated
Variable (Drive/Brake)

Disturbance
Variables
(Physical
Signals in
Driving
Process of
Ego-Car)

Route-Segment-
oriented Plant

Variables (Velocity
of Ego-Car within

Current Route
Segment)

Route-Segment-oriented Environment
Variables (Headway to Preceding Car,
GPS-Posi�on of Ego-Car and Map Data
for current Segment)

Observed Symptom (Processed
Sensory Data of Route-based Driver
Preference)

Knowledge &
Data about

High-/Middle-
Level Driver

Preference for
Exchange

Knowledge & Data
about Middle-

Level Driving
Strategy and Low-

Level Control
Strategy and

Parametriza�on
for Exchange

High-Level Personalized Route-based Set Travel Profile
(Set Profiles of Time, Consump�on and Driving Comfort)

Situa�on-aware Middle-Level Driving
Strategy with Route-Segment-based
Set Trajectory (Set Profiles of Cruise
Velocity and Headway to Preceding
Car)

Planned Route-based
Driving Strategy

I2

(Set Profile of Time,
Consump�on and Comfort)

Physical
Components of

Ego-Car
(incl. Powertrain and

Car Body)

Environment

Driver-preferred
Time Gap &
Cruise Velocity
of Ego-Car

Legend
A
SC
SR

RSP
SU

RSE
Segment-oriented Sensor of Controlled Plant
Segment-oriented Sensor of Environment

Sensor of Controlled Variable
Actuator

Sensor of Reference Variable

Route-oriented Sensor of Controlled Plant
Sensor of User

Route-oriented Sensor of Environment
SSP
SSE

Driver Preference
KnowledgeK2

Driver Preference
ExecutorA2 Driver Preference

Planner

Driver Preference
Analyzer

Knowledge of Route-
based Driver
Preference

C2

Driver Preference
Monitor

S2

P0User

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

150

The route-based adaptation unit (RAU) follows the proposed generic architecture style

to realize the aforementioned functionalities. It means that the RAU is constructed by

following the “SICAP-K” fundamental component structure consisting of five

components: Driver Preference Monitor (“S2”), Driver Preference Analyzer (“I2”), Driver

Preference Planner (“C2”), Driver Preference Executor (“A2”) and Driver Preference

Knowledge (“K2”), as illustrated in Figure 5.4. Detailed dynamic behaviors of these

components will be presented in Section 5.3 based on different predefined use cases.

The driver preference knowledge component is a centralized knowledge repository to

initialize the required domain knowledge for the other four components. It can also

support other knowledge components in the other two units by providing its available

domain knowledge. More detailed processes about this support of domain knowledge

will be presented in Section 5.3.4.

The driver preference monitor generates the symptom defined as well-structured

sensory data in this dissertation. As illustrated in Figure 5.4, the included data in the

symptom come from different sensors (SU, RSP, and RSE), which were presented in

Section 5.2.1. The driver preference monitor preprocesses and also, if necessary,

aggregates the collected sensory data. In addition, the collected sensory data may

include a slight temporal offset due to the computing frequencies of different sensors. In

this case, the driver preference monitor also completes the time synchronization of the

input data. Aiming to complete the aforementioned tasks, the driver preference monitor

needs related domain knowledge. For example, a data specification is required while

preprocessing and aggregating the input sensory data. Thus, the generated symptom

conforms to the data structure expected by the other components in the route-based

adaptation unit.

The driver preference analyzer is designed to analyze the physical system’s current and

future context information as an interpreting component. For this purpose, the observed

facts (included in the symptom) like the ego-car’s current location will be compared with

a catalog of previously available symptoms to represent the system’s known situations

like trip origin and destination. Thus, the driver preference analyzer could know whether

the trip has begun and ended and thus whether a request for (re-)planning the driver’s

personalized set travel profile is essential. In this sense, it can be said that the route-

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 151

based adaptation unit is aware of the driving situation and works on an interpreted higher

semantic level instead of the low data level.

The driver preference planner aims to find an optimized set travel profile to satisfy the

driver’s route-based preferences as far as possible if the driver preference analyzer

generates the request. The planning strategy is an optimization process. For this

purpose, an appropriate optimization algorithm and an accompanying decision tree for

describing the solution space of the candidate set travel profiles must be implemented

in the driver preference planner. In addition, the evaluation criteria and the interpretation

mechanism for identifying qualities of different strategies, like a cost function consisting

of a mathematical formula and the weights of the criteria, are required. In the

implemented prototype, the weights of factors influencing the route-based preferences

(collected by the sensor SU, cf. Section 5.2.1) are taken and considered as application

parameters of the optimization algorithm.

The planned optimized set travel profile aims to fulfill the individual driver’s route-based

driving preferences as much as possible. For this reason, the driver’s average profile is

taken as a reference to define the evaluation criteria by following rules:

• Travel time shall be as short as possible, with a soft constraint of the driver’s

average travel time as the maximal acceptable deviation.

• Energy consumption shall be as little as possible, with a soft constraint of the

driver’s average energy consumption as the maximal acceptable deviation.

• Driving comfort shall be as great as possible, which means that the ego-car’s

acceleration shall be as gentle as possible with the maximal driver-acceptable

acceleration rates (positive and negative) as soft constraints.

A concrete example of the cost function is implemented in this dissertation and will be

further introduced in Section 5.5. Considering that the route is divided by significant

intermediate route points like intersections as route segments, the implemented cost

function includes three terms: (1) the driver-preferred accumulated travel time from the

origin until each following route point, (2) accumulated fuel/energy consumption from

the origin until each route point, and (3) the vehicle’s average acceleration for

representing the required driving comfort from the origin until each route point.

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

152

The driver preference executor decomposes the accumulated set profiles into a group

of partial set profiles for route segments between each two neighbor route points. For

this purpose, the driver preference executor requires domain knowledge like the route

profile and specification of the route-segment-based partial set profiles provided by the

driver preference knowledge component. Thus, the partial strategies can be taken as

specifications during the planning strategy on a lower layer.

5.2.3 Route-Segment-Based Adaptation Unit in the Technical System

In addition to the route-based adaptation unit, another subsystem deployed on a lower

layer is the route-segment-based adaptation unit. Like the route-based adaptation unit,

the route-segment-based adaptation unit is also designed as an event-triggered

subsystem. However, it is triggered either by events with dependence upon state change

of the route segment or by events about the preceding obstacle’s availability of the ego-

car.

As presented earlier, the whole route has previously been decomposed as a sequence

of route segments. Unlike the route-based adaptation unit, which focuses on the set

travel profile for the whole route (until the destination), the route-segment-based

adaptation unit takes the set travel profile as a specification to derive a so-called

situation-aware middle-level driving strategy on a lower level of abstraction. This middle-

level driving strategy includes a location-based set trajectory of cruise velocity (in the

case of no preceding car) and headway (in the case of a preceding obstacle) for a limited

distance horizon on the route.

For this purpose, each route segment is further divided into a set of subsections through

further intermediate route points, which have a standard variable distance between each

other, depending on the respective geographical profiles of the route like curvature and

altitude. In the implemented ACCC example (cf. Section 5.5), this standard variable

distance is simplified as a fixed distance of one meter to reduce the implementation’s

complexity. Thus, the trajectory of cruise velocity and headway includes a sequence of

set values for these two variables that the vehicle should realize once it moves through

each route segment's starting point and endpoint and its included intermediate route

points.

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 153

As an event-triggered subsystem, the route-segment-based adaptation unit has two

independent triggering conditions: (1) the state change of the route segment and (2) the

state change of the preceding obstacle. The adaptation unit is activated to determine

the driving strategy if any condition is fulfilled. Whether the trajectory of cruise velocity

or headway will be planned depends on whether the radar sensor detects an obstacle

ahead.

The first triggering condition means a state change when the ego-car leaves the

previous route segment and enters following one. Thus, the driving strategy

determination process repeats during the whole trip as the ego-car enters each segment.

The route-segment-based adaptation unit repeatedly has an observation scope

dynamically limited by the horizon of the following route segment, which works like a

sliding window moving along the route.

The second triggering condition relates to the preceding obstacle’s state. Current ACC

variants (cf. Section 3.1–3.4) detect this solely by relying on the radar sensor's current

state of sensory data. For this reason, the lack of so-called memory ability as a

significant limitation of the ACC leads to critical scenarios, particularly in the case of a

route with many curves (cf. Section 3.5.2). In the design of ACCC, this memory ability is

considered in order to eliminate critical scenarios. The ACCC detects the preceding

obstacle’s availability based on the current sensory data and the dependency on the

previously experienced driving context.

For example, a “virtual” preceding obstacle will be considered during planning the

following driving strategy, even once the radar sensor cannot “see” a previously

appeared but currently disappeared obstacle due to a curve. When two conditions are

fulfilled, such “virtual” preceding obstacles would only be removed from the ACCC’s

memory. The first condition is that the full sensing range of the radar sensor is

overlapped with the following route (from another perspective, this also means a limited

lateral curvature of the following route). The second condition is that the obstacle is no

longer located within the full sensing range. For this purpose, the detailed map data for

each route segment is required by the route-segment-based adaptation unit, as

illustrated in Figure 5.5.

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

154

Figure 5.5: Route-Segment-Based Adaptation Unit in Artificial Cognitive Cruise Control (Detailed View cf.

Appendix A.2)

The route-segment-based adaptation unit observes and collects the sensory data once

the driver is manually driving on the route. The collected sensory data as newly observed

facts are used to learn the driver's middle-level driving preferences, namely their

preferred cruise velocity and headway within each route segment. Generally, the generic

architecture style supports online and offline learning of such preferences. Nevertheless,

in the implemented ACCC example provided here, offline learning is chosen to reduce

implementation complexity. The learning process will only be activated when the ego-

car has completed the trip.

Like the route-based adaptation unit, the route-segment-based adaptation unit is also

constructed by following the proposed generic architecture style, which means that it is

designed with a fundamental component structure of “SICAP-K” consisting of five

components: Driving Strategy Monitor (“S1”), Driving Strategy Analyzer (“I1”), Driving

Strategy Planner (“C1”), Driving Strategy Executor (“A1”) and Driving Strategy

Knowledge (“K1”), as illustrated in Figure 5.5. More details of these components’

dynamic behaviors will be introduced in Section 5.3.2 and Section 5.3.4.

Physical SystemTechnical System

Route-based Adapta�on Unit

Route-Segment-based Adapta�on Unit

A

Driving Strategy
Executor

SU

RSP

RSE

SSP

S1

P0 P0

P1

K1

SC

P2

P2

SSE

Event-Triggered

Driving Strategy
Analyzer

SR
P0

Driver-preferred
Time Gap &
Cruise Velocity
of Ego-Car

Reference
Configura�on of
Driver Preference
(Weights of
Criteria)

Route-oriented Plant
Variables (Energy
Consump�on, Travel
Time and Driving
Comfort Profile for
the whole Route)

Route-oriented Environment
Variables (GPS-Posi�on of Ego-Car

and Map Data for the whole Route)

Current Headway to
Preceding Car/Velocity
of Ego-Car

Current Headway to Preceding Car/Velocity of Ego-Car

Current Manipulated
Variable (Drive/Brake)

Disturbance
Variables
(Physical
Signals in
Driving
Process of
Ego-Car)

Route-Segment-
oriented Plant

Variables (Velocity
of Ego-Car within

Current Route
Segment)

Route-Segment-oriented
Environment Variables
(Headway to Preceding
Car, GPS-Posi�on of Ego-
Car and Map Data for
current Segment)

Configura�on of
Monitored Sensory Data
about Driving Strategy

Knowledge of Rout-
Segment-based Driver
Preferences

Configura�on of Driving
Strategy for Cycle-Time-

based Control Unit

(Set Trajectory of Cruise
Velocity and Headway to

Request of Planning
Route-Segment-based
Driving Strategy

Observed Symptom
(Processed Sensory Data of
Driving Strategy)

Configura�on of Driving
Strategy Planner

Knowledge &
Data about

High-/Middle-
Level Driver

Preference for
Exchange

Knowledge & Data about
Middle-Level Driving

Strategy and Low-Level
Control Strategy and

Parametriza�on for
Exchange

High-Level Personalized Route-based Set
Travel Profile (Set Profiles of Time,
Consump�on and Driving Comfort)

Situa�on-aware Middle-Level Driving Strategy with Route-Segment-based
Set Trajectory (Set Profiles of Cruise Velocity and Headway to Preceding Car)

Planned Route-Segment-
based Driving Strategy

Legend
A
SC
SR

RSP
SU

RSE
Segment-oriented Sensor of Controlled Plant
Segment-oriented Sensor of Environment

Sensor of Controlled Variable
Actuator

Sensor of Reference Variable

Route-oriented Sensor of Controlled Plant
Sensor of User

Route-oriented Sensor of Environment
SSP
SSE

Physical
Components of

Ego-Car
(incl. Powertrain and

Car Body)

Environment

P2

P1Driving Strategy
Monitor

I1

Driving Strategy
Planner

Driving Strategy
Knowledge

Cycle-Time-based Control Unit

Preceding Car)

C1
A1

User

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 155

The driving strategy knowledge component plays the role of the centralized knowledge

repository that initializes the required domain knowledge for the other four components.

In addition, it also requests knowledge support from and provides knowledge support to

other knowledge components in the ACCC. Mode detailed processes about the dynamic

behaviors of the driving strategy knowledge component will be presented in Section

5.3.2 and Section 5.3.4.

The driving strategy monitor is designed to generate the symptom by preprocessing and,

if necessary, aggregating the received sensory data. For this purpose, the driving

strategy monitor requires knowledge like data specification to preprocess the sensory

data. Thus, the generated symptom’s structure conforms to the preferred data

specification.

The driving strategy analyzer includes the triggering conditions mentioned above to

decide whether it is necessary to request the driving strategy planner to plan the middle-

level driving strategy. For this purpose, an inference engine and a state machine must

be implemented in the driving strategy analyzer. Since the memory ability is considered

in the design of the route-segment-based adaptation unit, the driving strategy analyzer

also includes functionality for predicting future driving behaviors like the preceding

obstacle’s velocity trajectory, which is also considered while planning the driving strategy.

The driving strategy planner aims to determine an optimized middle-level driving

strategy consisting of the set trajectory of cruise velocity and headway. An optimization

algorithm must be implemented in the driving strategy planner to complete the strategy

determination. Additionally, a decision tree is required to describe the solution space

comprising all candidate cruise velocities and headways. In the ACCC, the decision tree

is derived from the previously observed facts about the driver’s manual driving behaviors.

Thus, the decision tree will be continuously extended and updated along with the

knowledge acquisition and adaptation once a novelty is identified due to newly observed

facts.

Generally, the optimized middle-level driving strategy used by the route-segment-based

adaptation unit, which consists of the location-based set trajectory of cruise velocity and

headway, should fulfill the driving preferences of the individual driver as much as

possible. For this reason, the driver-preferred average profile of cruise velocity and

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

156

headway is taken as a reference to define the evaluation criteria through the following

rules within the implementation example:

• In the case of no preceding obstacle, the planned cruise velocity shall be as

equal as possible to the driver’s average profile.

• In the case of a preceding obstacle, the planned headway shall be as equal as

possible to the driver’s average profile.

• The planned middle-level driving strategy, including the set trajectory of cruise

velocity or headway, shall fulfill the specifications of the planned set travel profile,

which is the high-level personalized strategy planned by the route-based

adaptation unit.

Following the rules above, a cost function consisting of influencing factors and

accompanying weights must also be defined in the driving strategy planner. This

dissertation uses the same cost function to identify qualities of the candidate set

trajectories in the decision tree (cf. Section 5.2.2), as in the case of the route-based

adaptation unit. Three influencing factors regarding the travel time, the required

fuel/energy consumption, and the driving comfort represented by the vehicle’s

acceleration and their weights (customized by the driver, cf. the sensor SU in Section

5.2.1), are considered in the cost function. Thus, the cost function can quantitatively

evaluate the quality of candidate middle-level driving strategies. A concrete example of

this cost function is implemented in this dissertation, which will be introduced in Section

5.5.

Once the optimized middle-level driving strategy has been defined, it will be forwarded

to the component driving strategy executor (“A1”). The set trajectory planned by the

driver strategy planner consists of the set values of cruise velocity and headway for

certain intermediate route points in each route segment. The driver strategy executor

works similarly to the driver preference executor (cf. Section 5.2.2). It decomposes the

location-based set trajectory into different partial sub-trajectories (e.g., the required

cruise velocity or headway for each intermediate route point within each route segment).

In the decomposition process, domain knowledge like the individual route segment’s

profile is required. Finally, sub-strategies are forwarded to the cycle-time-based control

unit.

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 157

5.2.4 Cycle-Time-Based Control Unit in the Technical System

In Figure 5.2, it is indicated that the only time-triggered subsystem in the ACCC is called

cycle-time-based control unit. As the name suggests, the cycle-time-based control unit

repeatedly works with a deterministic cycle time, which means that each component

inside works as an independent and active process with its scheduling, as introduced in

Section 4.2.1. Such a computation mechanism aims to realize the real-time interaction

with the physical world while driving. Thus, concrete cycle time for each component and

the whole subsystem of the cycle-time-based control unit must be specified at design

time, considering timing requirements in concrete applications.

As a subsystem deployed on the lowest layer in the ACCC, the cycle-time-based control

unit takes over the responsibility of real-time feedback control to interact with the

physical world. Such real-time feedback control as the most fundamental functionality in

the control system is already included in current ACC variants. As noted earlier, the

location-based set trajectory of cruise velocity and headway covering an individual route

segment is provided by the route-segment-based adaptation unit. Each route segment

is decomposed into different sections. Thus, the set trajectory is decomposed into a

sequence of sub-trajectories for the sections in the route segment. Thus, each sub-

trajectory includes two set values of cruise velocity and headway and accompanying

GPS positions of two route points. With consideration of the distance profiles between

the route points, the decomposed location-based sub-trajectories will then be converted

into time-dependent sub-trajectories consisting of the set values of cruise velocity and

headway. Thus, the control system uses the quantitative set values as dynamically

changeable desired values of the reference variable (cf. Section 2.1.1). In this case, the

cruise velocity and headway are taken as the ego-car’s states expected by the driver

once the ego-car moves through corresponding geographical route points within the

route segment.

The cycle-time-based control unit relies on variable monitoring and tries to maintain the

set values, depending on the current location of the ego-car. Compared to the route-

based and route-segment-based adaptation unit, the most significant difference

between the cycle-time-based control unit is that it works on the low data level instead

of a higher semantic level. For this reason, the control unit does not request access to

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

158

map data for environmental perception. Instead, the current location of the ego-car

represented by the GPS data only means a group of quantitative values of

corresponding variables without any interpreted semantic meaning such as longitude,

latitude, or altitude, since the map data is not considered in the cycle-time-based control

unit.

Like the route-based and the route-segment-based adaptation unit, the cycle-time-

based control unit (CTCU) also has a learning ability to realize knowledge acquisition

and adaptation (cf. Section 3.6.1). The other two adaptation units focus on learning the

driver’s driving preferences on different levels of abstraction. The control unit focuses

on the vehicle’s internal operating strategy (e.g., to accelerate or decelerate the ego-car

as much like the human driver as possible under the same boundary conditions, such

as set cruise velocity and set headway). Although the learning ability of CTCU is

supported by the ACCC’s design, this dissertation removes it from the implementation

to reduce complexity.

Figure 5.6: Cycle-Time-Based Control Unit in Artificial Cognitive Cruise Control (Detailed View cf.

Appendix A.3)

Physical SystemTechnical System

Route-based Adapta�on Unit

Route-Segment-based Adapta�on Unit

Cycle-Time-based Control Unit

Parametriza�on
Knowledge

AController

SU

RSP

RSE

SSP

P1

P0 P0

S0

C0

P2

P1

SC

P2

P2

K0

SSE

Time-Triggered

SR
P0

Final Control
Component

Current Headway to Preceding Car/Velocity of Ego-Car

Parametriza�on
of Final Control

ComponentParametriza�on
of Predictor

Configura�on of
Monitored Data

in Measurement
Component

Planed Route-Segment-
based Set Trajectory

Current Control
Variable (Accelera�on)

Analyzer I0

Current Control
Variable
(Accelera�on)

Knowledge &
Data about

High-/Middle-
Level Driver

Preference for
Exchange

High-Level
Personalized Route-
based Set Travel
Profile (Set Profiles of
Time, Consump�on
and Driving Comfort)

Situa�on-aware Middle-Level Driving Strategy with
Route-Segment-based Set Trajectory (Set Profiles of
Cruise Velocity and Headway to Preceding Car)

Knowledge & Data
about Middle-

Level Driving
Strategy and Low-

Level Control
Strategy and

Parametriza�on
for Exchange

Current GPS-posi�on of Ego-Car

Symptom
including current

values of Velocity,
Headway, and

GPS-posi�on of
Ego-Car

Physical
Components of

Ego-Car
(incl. Powertrain and

Car Body)

Environment

Driver-preferred
Time Gap &
Cruise Velocity
of Ego-Car

Reference
Configura�on of
Driver Preference
(Weights of
Criteria)

Route-oriented Plant
Variables (Energy
Consump�on, Travel
Time and Driving
Comfort Profile for
the whole Route)

Route-oriented Environment
Variables (GPS-Posi�on of Ego-Car

and Map Data for the whole Route)

Current Headway to
Preceding Car/Velocity
of Ego-Car

Disturbance
Variables
(Physical
Signals in
Driving
Process of
Ego-Car)

Route-Segment-
oriented Plant

Variables (Velocity
of Ego-Car within

Current Route
Segment)

Route-Segment-oriented
Environment Variables
(Headway to Preceding
Car, GPS-Posi�on of Ego-
Car and Map Data for
current Segment)

Current Manipulated
Variable (Drive/Brake)A0

Measurement
Component

Predicted Velocity of
Preceding Car within
following Cycle-Time

Symptom including current Headway to
Preceding Car and Velocity of Ego-Car

Legend
A
SC
SR

RSP
SU

RSE
Segment-oriented Sensor of Controlled Plant
Segment-oriented Sensor of Environment

Sensor of Controlled Variable
Actuator

Sensor of Reference Variable

Route-oriented Sensor of Controlled Plant
Sensor of User

Route-oriented Sensor of Environment
SSP
SSE

User

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 159

The system construction of the cycle-time-based control unit follows the proposed

generic architecture style. This means that the cycle-time-based control unit is designed

with the fundamental component structure of “SICAP-K”, including five components:

Measurement Component (“S0”), Analyzer (“I0”), Controller (“C0”), Final Control

Component (“A0”) and Parametrization Knowledge (“K0”), as illustrated in Figure 5.6.

The measurement component generates the symptom by preprocessing the collected

sensory data. In the case of a detected preceding obstacle, the analyzer will forecast its

future velocity trajectory. Unlike the prediction in the driving strategy analyzer, the

prediction only forecasts the trajectory of the variable’s values for a limited time horizon

instead of the horizon of the route segment, without high-level semantic interpretation

like environmental perception. The prediction’s time horizon depends on the component

controller's working horizon. The predicted velocity trajectory will consider the individual

cycle time once the component controller generates the control command only for the

next cycle time. Otherwise, a period of multiple following cycles will be considered.

The analyzer’s output variable's values representing the predicted velocity are directly

taken as a state identifier of the current control task. The controller component relies on

variable monitoring to know whether a preceding obstacle is visible and whether it

should maintain the set value of cruise velocity or headway. Different classical control

theory approaches for designing the controller, like the PID control and the model

predictive control (MPC), can be applied to implement the component controller (cf.

Section 2.1).

Lastly, the final control component converts the control variable to the manipulated

variable to directly manipulate the actuator. If the controller only focuses on the individual

following cycle time (e.g., using PID control instead of MPC), the final control component

directly forwards the control command generated by the controller to the actuator to

interact with the physical system. Otherwise, it also decomposes the control command

into a sequence of sub-commands for individual cycle time and sequentially forwards

them to the actuator.

In the ACCC prototype of this dissertation, the PID control was implemented to reduce

implementation complexity. This means that the implementation of the analyzer was

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

160

also strongly simplified by removing forecast function. Only the detection of preceding

obstacle was implemented in the analyzer.

5.3 Instantiation of Generic Architecture Style for ACCC System Architecture:
Dynamic Behaviors in Use Cases (UCs)

After introducing the ACCC’s static system construction with several subsystems, the

predefined four use cases (UCs) from Section 4.2.6 are used again in this section to

describe the ACCC’s dynamic system behaviors in different situations. Although the

proposed generic architecture style allows component interactions for all four of these

use cases, it should be emphasized that not all use cases are relevant for all subsystems

and their included components in the implemented ACCC prototype. Due to the design

of the ACCC, only use cases with relevant subsystems will be included in the following

sections.

5.3.1 Dynamic Behaviors of ACCC in UC1

The first use case focuses on the technical process control in a single node of the

networked system architecture, as introduced in Section 4.2.6.1. In the ACCC, the

networked architecture style is instantiated as a three-layered architecture. Each layer

includes a subsystem and represents a single node. Thus, UC1 not only relates to the

route-based and the route-segment-based adaptation unit but also the cycle-time-based

control unit. As presented earlier, the so-called “SICAP-K” component structure is

deployed on each layer of the ACCC. In the ACCC’s UC1, the technical process control

means that the component structure on each layer directly manipulates actuators to

interact with the physical system.

Although the generic architecture style allows such direct actuator manipulation, it is

excluded in the design of the route-based and the route-segment-based adaptation unit

in ACCC. This point can be identified through the fact that both adaptation units

deployed on the upper two layers have no direct connection to the physical system, as

shown in Figure 5.2. Nevertheless, the route-based adaptation unit also has other ways

to interact with the physical system. For example, the planned high-level strategy can

be visualized via human-machine interfaces (HMI) on the vehicle as a suggestion to

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 161

request the driver’s confirmation, in which case HMI can also be interpreted as a kind of

special actuator and sensor simultaneously. Since HMI only indirectly instead of directly

influences the technical process, which refers to the physical processes for the vehicle’s

driving, it is excluded in the system design of ACCC in this dissertation and thus is not

visualized in the system architecture of Figure 5.2.

Figure 5.7 provides an overview of the components that participated in UC1 and their

interactions. As presented earlier, the route-based and route-segment-based adaptation

units do not interact directly with the physical world. Thus, it can be seen in Figure 5.7

that no feedback is forwarded by the final component in the effect chain of the technical

process control to the physical system. However, this is not the case with the cycle-time-

based control unit.

In the cycle-time-based control unit, UC1 means the control for the ego-car’s longitudinal

movement in real-time. Generally, the control concept here has no difference compared

to concepts of current ACC variants. Firstly, the measurement component is responsible

for collecting the raw sensory data and subsequent data preprocessing, aiming to

generate a symptom, which only includes current value profiles of relevant variables

(e.g., the velocity and headway and the GPS position of the ego-car).

In the case of no preceding vehicle, the analyzer estimates the current context

information and forwards it to the controller. Additionally, the symptom generated by the

measurement component is also forwarded to the controller component. Thus, the

controller component can determine an optimized value of the control variable to

accelerate and decelerate the ego-car. In this case, the controller's target is to guarantee

that the velocity of the ego-car is as close as possible to a corresponding set value,

which is selected from the set trajectory of cruise velocity, depending on the ego-car’s

current GPS position. For this purpose, the set trajectory should be guaranteed as much

as possible during the determination process. Relying on the final control component,

the input of the control variable is then transferred into the output of the manipulated

variable used to manipulate the hardware actuators directly. For example, in the case of

a car with an internal combustion engine (ICE), the control variable could be the

acceleration, and the manipulated variable for acceleration could be the throttle position

[84][9].

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

162

Figure 5.7: Component Interactions of ACCC in UC1

Current ACC variants are designed not only to take over longitudinal control of the car

in the case of no preceding vehicle but are also required to work once a preceding

vehicle as an obstacle is located in front of the car. The measurement component

Physical SystemTechnical System

Route-based Adapta�on Unit

Route-Segment-based Adapta�on Unit

Cycle-Time-based Control Unit

Driver Preference
Executor

Driver Preference
Analyzer

Driver Preference
Monitor

Driver Preference
Knowledge

Driving Strategy
Knowledge

Driving Strategy
Monitor

Parametriza�on
Knowledge

Driver Preference
Planner

Driving Strategy
Executor

Controller Final Control
Component

SU

S1 P1

P0A0

P1

SC

P2

P2

S2

Event-Triggered

Time-Triggered

Event-Triggered

Driving Strategy
Analyzer

SR

I2

I1

I0

SSP

SSE

RSP

RSE

P2

P0

Physical
Components of

Ego-Car
(incl. Powertrain and

Car Body)

P0

A

Environment

C2
A2

Driving Strategy
Planner C1A1

S0

Analyzer

C0

K0

K1

K2

Measurement
Component

User

K0 A0S0

I0
C0

P0

A1S1 K1

I1
C1

P1

C2
I2
K2

P2

S2 A2

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 163

provides its symptom to the controller and the analyzer. Thus, the analyzer takes the

current headway and current velocity of the ego-car from the symptom as its inputs,

which the analyzer uses to estimate the current velocity of the preceding vehicle.

Generally, the analyzer (“I0”) works similarly to the interpreting components (“I2” and “I1”)

on other layers, aiming to identify the current context situation by comparing the known

symptoms included in its configuration with the newly observed facts included in the new

symptom, which is provided by the measurement component. The only difference in the

analyzer compared to the interpreting components on other layers is that the interpreting

components, in the case of fulfilled requirements, would trigger the other components to

continue further computation processes on the closed control loop to realize the

adaptation control. Thus, these interpreting components are essential in participating in

the control loop.

Although the analyzer (“I0”) is defined as an optional component in the fundamental

component structure of “SICAP-K”, the design of the cycle-time-based control unit in this

dissertation still considers the analyzer in the architecture of the implemented ACCC

prototype. As explained in Section 4.2.2, the analyzer is responsible for evaluating the

physical system's current and future context since it plays the role of the interpreting

component (“I0”) on the lowest layer. It sends its analysis results to the controller. If a

preceding vehicle is detected (still existing in the ACCC’s memory, cf. Section 5.2.3),

the results include a predictive velocity trajectory of the preceding vehicle with a limited

time horizon. Otherwise, there is no such trajectory. The predictive velocity trajectory is

then forwarded to the controller as the analyzer's output. Thus, controller takes this

trajectory as future environmental disturbances during its decision-making of control

activity. In addition, it knows the current control task is to maintain the set value of the

cruise velocity or headway based on the states of the variables related to the previously

mentioned trajectory.

5.3.2 Dynamic Behaviors of ACCC in UC2

The second use case generally deals with the initialization, retrieval, and updating of

domain knowledge about the physical system behaviors on a single layer, as presented

in Section 4.2.6.2. In the designed ACCC prototype, UC2 exists on each layer, which

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

164

means that all the route-based and the route-based adaptation unit and the cycle-time-

based control unit are involved.

Figure 5.8: Component Interactions of ACCC in UC2

Physical SystemTechnical System
Route-based Adapta�on Unit

Route-Segment-based Adapta�on Unit

Cycle-Time-based Control Unit

Driver Preference
Executor

Driver Preference
Analyzer

Driver Preference
Knowledge

Driving Strategy
Knowledge

Parametriza�on
Knowledge

A

Driving Strategy
Executor

Controller Final Control
Component

SU

RSP

RSE

SSP

S1 P1

P0 P0A0

C0

P1

K1

SC

P2

P2

S2

A1

K0

SSE

K2

Event-Triggered

Time-Triggered

Event-Triggered

Driving Strategy
Analyzer

SR

I0

Driver Preference
Planner

I2

Driving Strategy
Planner

P2

P0

Physical
Components of

Ego-Car
(incl. Powertrain and

Car Body)

Environment

C2A2

Driver Preference
Monitor

C1

Driving Strategy
Monitor

I1

Analyzer

Measurement
Component

S0

User

K0 A0S0

I0
C0

P0

A1S1 K1

I1
C1

P1

C2
I2
K2

P2

S2 A2

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 165

The components that participate in the system’s dynamic behaviors in UC2 are colored

in Figure 5.8. The other components are marked grey. On each layer, interactions are

performed between the knowledge component (“K” in the “SICAP-K” structure) and the

other four components (“SICA” in the “SICAP-K”) on the same layer. As discussed in

Section 4.2.6.2, all interactions (such as knowledge initialization, retrieval, and updating)

are designed as knowledge- or data-driven processes. Once a component (either the

knowledge component or one of the other components) has a change of knowledge, it

disseminates the change and the updated knowledge to other corresponding

components. Thus, the knowledge within the knowledge component and other

components can always be synchronized. The following subsections will introduce

concrete domain knowledge of the components in different subsystems and their

detailed process flows.

5.3.2.1 UC2 in the Route-Based Adaptation Unit

As presented earlier, the driver preference knowledge component (“K2”) serves as a

central knowledge repository on its corresponding layer. While implementing this

component, development engineers must manually initialize some domain knowledge

for the system's first operation. In the process of knowledge initialization, the driver

preference knowledge component initializes other components by pushing its included

domain knowledge to them. Thus, this means that the driver preference knowledge

component is also aware of the system’s internal knowledge, such as topology and the

mapping relationships between the components and their corresponding required

domain knowledge. The same pushing process for updating domain knowledge also

happens if there is a domain knowledge change in the driver preference knowledge

component, for example, when the driver preference knowledge component has

acquired knowledge support from knowledge components on other layers (UC4).

From the opposite direction, the other components (“S2”, “I2”, “C2”, “A2”) are also allowed

to push their newly observed facts and corresponding extracted domain knowledge into

the driver preference knowledge component. Such a process happens once these

components detect an inconsistency between their currently available domain

knowledge and newly observed facts during manual control by the driver.

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

166

For example, the component driver preference monitor can update the map knowledge

about the intermediate GPS points for route segmentation once a lane changes due to

a reconstruction site. As another example, the driver preference planner can also update

its knowledge of the decision tree once the observed data lies in the extrapolation value

range due to a time-variant change of the driver’s preferences. In another case, the

knowledge about the interpretation mechanism (the cost function) for identifying

qualities of different candidate strategies can also be updated once the driver preference

planner has detected an inconsistency between the expected and realistic effect of the

planned strategy.

Generally, it can be understood that processes in UC2 are directly driven by the input of

sensory data or knowledge, which can be triggered either by the driver preference

knowledge component or the other components. In the case of a detected inconsistency

between the available domain knowledge and the newly observed facts, a process for

knowledge synchronization will be immediately activated. After the knowledge

initialization for the first system operation, the later process of knowledge

synchronization can be understood as a process of component adaptation regarding

domain knowledge.

5.3.2.2 UC2 in the Route-Segment-Based Adaptation Unit

The knowledge discussed above is initialized manually by development engineers in the

driving strategy knowledge (“K1”) component that plays the role of a central knowledge

repository on the middle layer. Subsequently, the driving strategy knowledge component

pushes its available domain knowledge to other components on the same layer, aiming

to initialize them for the first operation of the ACCC. The same process of pushing

knowledge also happens once the domain knowledge in the driving strategy knowledge

component or other components has been changed, which thus can be understood as

a process of knowledge synchronization driven by sensory data or knowledge input.

For example, the route-based adaptation unit provides the planned set travel profile to

the route-segment-based adaptation unit, as presented earlier. Such a process is

interpreted as a change of domain knowledge in the driving strategy knowledge

component. In this case, the driving strategy knowledge component pushes the updated

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 167

knowledge to the driving strategy planner. Thus, the driving strategy planner can take

the set travel profile as a new specification during the planning of the middle-level driving

strategy.

Considering the ACCC’s logical system architecture (cf. Figure 5.8), there is no

significant difference of dynamic behaviors within UC2 between components in the

route-based adaptation unit and the route-segment-based adaptation unit. Once any

component has detected an inconsistency between newly observed facts and its

available knowledge, it triggers a new process of knowledge synchronization by pushing

the new knowledge extracted from the new facts to other corresponding components.

5.3.2.3 UC2 in the Cycle-Time-Based Control Unit

In the case of the cycle-time-based control unit, UC2 refers to the interaction between

the parametrization knowledge component (“K0”) and the other four components (“S0,”

“I0”, “C0”, “A0”). All components except the knowledge component require relevant

domain knowledge to complete their tasks. More details about the required knowledge

have been illustrated in Figure 5.6 (cf. Section 5.2.4).

For example, the measurement component generates the symptom defined as well-

structured data conformed to a specific meta specification. In this case, the meta

specification represents a kind of component configuration and is seen as domain

knowledge. In another case, the controller in the evaluation example of this dissertation

(cf. Section 5.5) is implemented using PID control. Thus, another typical example of

domain knowledge is the parametrization of P-, I- and D-variables regarding their values.

A similar case exists for the analyzer and the final control component, which rely on their

corresponding internal processing mechanisms and the knowledge of parametrizations

to process the received inputs and generate the expected outputs.

As with both adaptation units, development engineers must initialize the domain

knowledge during the development of the parametrization knowledge component that

serves as a central knowledge repository in the cycle-time-based control unit. The same

synchronization process of pushing new knowledge between the parametrization

knowledge (“K0”) and the other four components (“S0,” “I0”, “C0”, “A0”) in the control loop

also exists, triggered by the component that first discovers an inconsistency between

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

168

available knowledge and newly observed facts. Although the ACCC’s design supports

the knowledge synchronization between different components, this dissertation only

considers the process between the parametrization knowledge component and the

controller. Once the location-based set trajectory of cruise velocity and headway as the

middle-level driving strategy is provided by the route-segment-based adaptation unit to

the parametrization knowledge component, it pushes the set trajectory to the controller.

Other processes in UC2, like knowledge retrieval and knowledge update are excluded

in the implemented ACCC example to reduce implementation complexity.

5.3.3 Dynamic Behaviors of ACCC in UC3

The third use case deals with adaptation control across multiple networked nodes that

are instantiated as hierarchical layers in the system architecture of ACCC, as introduced

in Section 4.2.6.3. As discussed earlier, the designed ACCC prototype has a three-

layered architecture, as shown in Figure 5.9.

In the figure, the components involved in UC3 are colored, and the components not

participating in UC3 are marked grey. Thus, the ACCC has two communication paths

for adaptation control in UC3 (cf. Figure 5.9, marked with blue and red arrows). The first

one exists between (1) the route-based adaptation unit (on the highest layer) and the

route-segment-based adaptation unit (on the middle layer). The second adaptation

control path happens between (2) the route-segment-based adaptation unit (on the

middle layer) and the cycle-time-based control unit (on the lowest layer). These two

communication paths will be introduced in the following subsections.

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 169

Figure 5.9: Component Interactions of ACCC in UC3

5.3.3.1 Adaptation Control Across the Highest and Middle Layers

As presented earlier, the route-based adaptation unit aims to plan a personalized route-

based strategy. This personalized route-based strategy includes set travel profiles such

Physical SystemTechnical System
Route-based Adapta�on Unit

Route-Segment-based Adapta�on Unit

Cycle-Time-based Control Unit

Driver Preference
Executor

Driver Preference
Analyzer

Driver Preference
Monitor

Driver Preference
Knowledge

Driving Strategy
Knowledge

Driving Strategy
Monitor

Parametriza�on
Knowledge

AController Final Control
Component

S1 P1

P0 P0A0

S0

P1

SC

P2

P2

S2

K0

K2

Event-Triggered

Time-Triggered

Event-Triggered

Driving Strategy
Analyzer

SR
P0

I0

C2Driver Preference
Planner

I2

I1

Driving Strategy
Planner C1Driving Strategy

Executor

RSP

RSE

SSP

SSE

SU
P2

Physical
Components of

Ego-Car
(incl. Powertrain and

Car Body)

Environment

A2

K1

A1

Analyzer

C0

Measurement
Component

User

K0 A0S0

I0
C0

P0

A1S1 K1

I1
C1

P1

C2
I2
K2

P2

S2 A2

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

170

as accumulated travel time, accumulated energy consumption, and average

acceleration13 of the vehicle, from the origin until the end of each route segment and the

destination, aiming to fulfill the preferences of a single individual driver. In this case,

route segmentation is realized using a sequence of predefined geographical points

representing significant intersections on the route. After determining the strategy, the

route-based adaptation unit transfers the set travel profiles to the route-segment-based

adaptation unit. In this case, the route-based adaptation unit plays the role of an

adaptation manager to adapt its managed system, which is the route-segment-based

adaptation unit.

The components that participated in the process of adaptation control between the

route-based and the route-segment-based adaptation unit are colored and connected

with blue arrows in Figure 5.9. In this process, the Driver Preference Monitor, Driver

Preference Analyzer (“I2”) and Driver Preference Planner (“C2”) complete their tasks of

symptom generation, decision making for the request of strategy planning and planning

of the optimized high-level route-based strategy, as introduced at the beginning of

Section 5.2.2. Compared to UC1, the only behavioral difference of the route-based

adaptation unit in UC3 is that the planned route-based strategy by the Driver Preference

Planner (“C2”) is split up into partial strategies for each route segment. Subsequently,

the partial strategies are forwarded to the route-segment-base adaptation unit on a lower

layer instead of directly manipulating the actuators for interaction with the physical

system.

In the route-segment-based adaptation unit, the Driving Strategy Knowledge (“K1”)

component receives the input of split individual strategies to replace the previously

saved strategies in its knowledge repository. As presented earlier, these strategies are

taken as specifications during the planning of middle-level driving strategy for the route-

segment-based adaptation unit. Thus, it can be understood that the domain knowledge

in the driving strategy knowledge (“K1”) component is adapted by its higher layer,

13 In this dissertation, driving comfort is naively defined, which is directly represented by the ego-car’s
longitudinal acceleration. In fact, the driving comfort can be formulized with representative variables by
applying different complicated formulas (e.g., based on the vehicle’s vibration and acceleration) [132][133].

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 171

following the paradigm of adaptation composition in the proposed generic architecture

style of this dissertation (cf. Section 4.2.3).

5.3.3.2 Adaptation Control Across the Middle and Lowest Layer

The second adaptation control happens between the route-segment-based adaptation

unit and the cycle-time-based control unit. In this case, the route-segment-based

adaptation unit is the adaptation manager, and the cycle-time-based control unit is its

managed system.

As presented earlier, the route-segment-based adaptation unit as an event-triggered

subsystem aims to determine the so-called middle-level driving strategy. The middle-

level driving strategy includes a driver-preferred location-based set trajectory of cruise

velocity or headway, depending on whether a preceding vehicle is recognized or not. A

particular feature of the route-segment-based adaptation unit is that its identification of

the preceding vehicle does not purely rely on the low-level sensory input data like in

extant ACC variants already presented (cf. Section 3.1–3.4). In addition, it also relies on

semantic interpretation on a higher level of abstraction and memory ability.

As illustrated in Figure 5.9 with red arrows, the driving strategy monitor in the route-

segment-based adaptation unit firstly preprocesses the raw sensory data to generate

the expected symptom. Subsequently, the driving strategy analyzer takes the symptom

as its newly observed facts to compare with its known symptoms, based on their

relevance aiming to identify the current situation. In the case of a known symptom and

thus a successfully identified situation, the Driving Strategy analyzer triggers the driving

strategy planner to determine an optimized set trajectory of cruise velocity or headway

for the route segment that is current focus.

During the determination process, the provided high-level personalized strategy,

including the set travel profiles by the route-based adaptation unit, is taken as a

specification and required to be guaranteed as much as possible. Thus, an optimized

set trajectory of cruise velocity or headway focusing on the following individual route

segment would be planned based on the evaluation criteria and cost function mentioned

earlier. The set trajectory consists of a sequence of quantitative values of the cruise

velocity or the headway. The values represent the expected set states of the ego-car

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

172

when it moves through corresponding geographical route points within the route

segment.

Finally, the set trajectory is forwarded again into the driving strategy executor, which

decomposes the set trajectory as partial set trajectories consisting of value pairs of the

cruise velocity or the headway for each two neighbor route points. The geographical

profiles of the route points are also included in the partial set trajectories. Thus, the

decomposed partial set trajectories are forwarded to the Parametrization Knowledge

(“K0”) component in the cycle-time-based control unit to complete the whole adaptation

control process. In this case, the partial set trajectories are seen as the domain

knowledge of the cycle-time-based control unit adapted by the route-segment-based

adaptation unit. Further details about the communication between the participated

components in this process will be presented in Section 5.5.

In the ACCC, UC3 refers to a subsystem or component on a higher layer adapting

another subsystem or component on a lower layer. Since the cycle-time-based control

unit is deployed on the lowest layer of the ACCC’s system architecture, it has no lower

layer. Thus, UC3 of the cycle-time-based control unit is neglected in the ACCC’s design.

5.3.4 Dynamic Behaviors of ACCC in UC4

The final use case refers to knowledge acquisition and sharing across multiple nodes,

which happens when the available domain knowledge in a certain node is insufficient to

identify and solve the current control problem. As presented earlier, this dissertation

instantiates the nodes as hierarchical layers in the ACCC’s design.

Since a higher layer has a larger observation scope of context information about the

physical system, the ACCC’s higher layer can provide knowledge support to the lower

layers. As a system with three-layered architecture, the ACCC’s dynamic behaviors in

UC4 are described with two sub-cases: (1) knowledge acquisition and sharing across

the route-based adaptation unit and the route-segment-based adaptation unit and (2)

knowledge acquisition and sharing across the route-segment-based adaptation unit and

the cycle-time-based control unit. In Figure 5.10, the components that participate in

these sub-cases are colored. The irrelevant components are marked grey. The following

subsections will present more detail about the component interactions in the sub-cases.

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 173

Figure 5.10: Component Interactions of ACCC in UC4

5.3.4.1 Knowledge Acquisition and Sharing Across the Highest and Middle Layers

Knowledge acquisition and sharing across the highest and middle layers of the ACCC

means that the route-segment-based adaptation unit requires support from the route-

Physical SystemTechnical System
Route-based Adapta�on Unit

Route-Segment-based Adapta�on Unit

Cycle-Time-based Control Unit

Driver Preference
Executor

Driver Preference
Analyzer

Driver Preference
Monitor

Driver Preference
Knowledge

Driving Strategy
Knowledge

Driving Strategy
Monitor

Parametriza�on
Knowledge

A

Driving Strategy
Executor

Controller Final Control
Component

SU

RSP

RSE

SSP

C1

P1

P0 P0A0

P2

P1

SC

P2

P2
A2

S2

SSE

K2

Event-Triggered

Time-Triggered

Event-Triggered

SR
P0

I0

S0

Driving Strategy
Planner

Driver Preference
Planner

I2

C2

Physical
Components of

Ego-Car
(incl. Powertrain and

Car Body)

Environment

I1Driving Strategy
Analyzer

S1

A1

K1

K0

Analyzer

C0

Measurement
Component

User

K0 A0S0

I0
C0

P0

A1S1 K1

I1
C1

P1

C2
I2
K2

P2

S2 A2

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

174

based adaptation unit. The related communication path between the components is

illustrated with blue arrows in Figure 5.10.

For example, the driving strategy analyzer (“I1”) in the ACCC has identified that its

received symptom cannot be matched to any known situation. Thus, the available

domain knowledge about the known situations is insufficient, and the current symptom

is identified as a novelty. In this case, the driving strategy planner will not be triggered.

Instead, the driving strategy analyzer requests the support of the driving strategy

knowledge component. As defined in UC2 (cf. Section 5.2.3.2), the domain knowledge

between the driving strategy knowledge (“K1”) component and the other four

components (“S1”, “I1”, “C1”, “A1”) on the same layer is always synchronized. Thus, this

means that the driving strategy knowledge component also does not include the required

domain knowledge. However, it plays its designed role of an interface component to

communicate with other knowledge components deployed on other layers or even in

other cars and request their support.

A typical example is as follows. Due to construction work on the road, the route

segmentation may have some changes and thus lead to several new route segments,

which are still unknown for the route-segment-based adaptation unit. In the case of such

unknown route segments, the driving strategy knowledge component may request the

support of the driving preference knowledge component in the route-based adaptation

unit. Since the driving preference knowledge component focuses on the complete route

instead of a single individual route segment, it may have the required domain knowledge

about the profiles of these new route segments when it receives the information of route

planning (e.g., from the navigation system). Thus, the driving preference knowledge

component can share its knowledge with the driving strategy knowledge component.

In addition to the knowledge acquisition and sharing across the layers deployed on the

same car, the driving strategy knowledge component may also request support from the

route-based adaptation unit deployed on other surrounding cars by relying on the Car2X-

communication capabilities. Thus, a “transfer learning” process can be realized between

ACCCs on different cars. Considering a more general viewpoint, so-called fleet-based

learning of driving strategy on the same route, which may benefit traffic management,

would thus be realized. The developed system architecture style theoretically allows

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 175

such fleet-based knowledge acquisition and sharing. However, since this dissertation

mainly focuses on the system design of ACCC on a single individual car, this cooperative

knowledge acquisition and sharing across multiple cars is excluded.

5.3.4.2 Knowledge Acquisition and Sharing Across the Middle and Lowest Layers

Knowledge acquisition and sharing across the middle and lowest layers in the ACCC

means that the cycle-time-based control unit requires support from the route-segment-

based adaptation unit. The related communication path between the components is

illustrated with red arrows in Figure 5.10.

In the case of the cycle-time-based control unit, UC4 happens once the currently

available knowledge is insufficient to find a solution and thus needs to request

knowledge support from other knowledge components located on other layers or

domains. Such a case may happen if the analyzer lacks knowledge (e.g., if current

values of variables included in the newly observed facts about the preceding vehicle’s

behavior included in the symptom are out of the analyzer’s known value range). Thus,

the analyzer would communicate with the parametrization knowledge component to

eliminate the knowledge lack. The parametrization knowledge component then

communicates with the driving strategy knowledge component on the higher layer to

request further support.

Since the route-segment-based adaptation unit has a memory ability and can learn the

driving preferences of obstacles ahead during previous trips, it may have “seen” much

more preceding obstacles than the cycle-time-based control unit. Thus, the driving

strategy knowledge component in the route-segment-based adaptation unit could

provide the parametrization knowledge component its required knowledge. In the

implemented ACCC example (cf. Section 5.5), UC4 is excluded to reduce

implementation complexity, although the system’s architecture design allows such a

component interaction.

5.4 Applying Communication Architecture Patterns for Component Interactions
in Artificial Cognitive Cruise Control

In the previous section, an architecture of artificial cognitive cruise control (ACCC) that

illustrates the system’s static construction is instantiated from the generic architecture

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

176

style. As introduced in Section 4.2, another important perspective to illustrate the system

is the view of dynamic system behaviors, from which four use cases (UC1–UC4) were

previously defined. As introduced in Section 4.2.5, generic communication architecture

patterns can be applied to specify the interactions between components and thus to

describe dynamic system behaviors.

In this dissertation, it is emphasized that the application of the mentioned generic

communication patterns within the use cases is unlimited. It means either one

communication pattern or different patterns can be applied within one use case. Since

there is no preference for certain generic communication patterns, several example

patterns are selected in this section to apply within the four predefined use cases. All

these examples will be introduced in more detail in the following sections in order to

derive a more concrete understanding of the design of dynamic system behaviors.

5.4.1 Publish-Subscribe Pattern for UC1

The first use case refers to technical process control on a single layer, which describes

the technical process flow of independent control loops on each layer of the hierarchical

architecture, as illustrated in Figure 5.11. On the top of Figure 5.11, a logical architecture

from the view of software engineering is instantiated based on the generic architecture

style. The fundamental component structure of “SICAP-K” is deployed on each layer in

the logical architecture. The process flow of UC1 is illustrated with arrows, with three

colors (blue, red, and brown) to identify different layers.

In Figure 5.11, it can be seen that all sensors (SC, SU, SR, SSP, SSE, RSP, and RSE)

play the roles of publishers since they are responsible for data delivery. Unlike the

sensors, the actuator (A) is a pure subscriber who only receives the message from the

final control component in the technical system. Except for the sensors and actuators,

all other components simultaneously play the roles of publishers and subscribers,

depending on the context of the concrete communication path.

For example, the driver preference monitor generates the symptom and forwards the

symptom to the driver preference analyzer and the driver preference planner. In this

case, the driver preference monitor is the publisher, and the other components are the

subscribers. On the middle layer, the driving strategy planner publishes the message

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 177

about middle-level driving strategy, to which the driving strategy executor will then

subscribe.

Figure 5.11: Component Roles within Interactions of UC1

All publishers and subscribers must register with a so-called change propagation

infrastructure in the publish-subscribe pattern. Thus, the change propagation

infrastructure can route the messages from publishers to interested subscribers [58]. As

discussed earlier, the ACCC can also be designed as a distributed instead of a

Physical SystemTechnical System
Route-based Adapta�on Unit

Route-Segment-based Adapta�on Unit

Cycle-Time-based Control Unit

Driver Preference
Analyzer

Driver Preference
Monitor

Driver Preference
Knowledge

Driving Strategy
Knowledge

Driving Strategy
Monitor

Parametriza�on
Knowledge

AController
Final Control
Component

Driving Strategy
Planner

SU

P1

P0 P0A0

P2

P1

K1

SC

P2

P2

S2

K0

K2

Event-Triggered

Time-Triggered

Event-Triggered

Driving Strategy
Analyzer

SR
P0

Analyzer

Measurement
Component

I2

I0

SSP

SSE

RSP

RSE

Physical
Components of

Ego-Car
(incl. Powertrain and

Car Body)

Environment

Driver Preference
Planner

C2A2 Driver Preference
Executor

I1

S1

C1A1 Driving Strategy
Executor

S0

C0

User

Publish-Subscribe-
Pa�ern

P S
P

P S

P SP S

P

Publish-Subscribe-
Pa�ern

P S

P S

P
SP S

Publish-Subscribe-
Pa�ern

P S

P

PS
P
S

P S

P S

K0 A0S0

I0
C0

P0

A1S1 K1

I1
C1

P1

C2
I2
K2

P2

S2 A2

Legend

P

S

P

S

P

S

Publisher

Subscriber

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

centralized system. Thus, the route-based adaptation unit and the route-segment-

based adaptation unit are not limited to being deployed on a single car. They can also

be deployed on different domains. Additionally, the ACCC relies on the data delivery of

offboard sensors, which are also not deployed on the local domain of car. In this case,

the application of publish-subscribe-pattern guarantees great system scalability for the

artificial cognitive cruise control.

5.4.2 Shared-Repository Pattern for UC2

The second use case (UC2) describes the process of knowledge initialization, retrieval,

and updating on a single layer of the ACCC’s hierarchical architecture, which refers to

the interaction between the component “K*” and the other components (“S*”, “I*”, “C*”,

and “A*”) on the corresponding layer, as illustrated at the top of Figure 5.12. Based on

the previous introduction to UC2 in Section 4.2.5, it is known that the component “K*”

plays the role of a knowledge repository to provide the domain knowledge about the

physical system to other components. From the opposite direction, the other

components can also update their learned knowledge into the component “K*”, which

means that the component “K*” is accessible for the other components.

The shared-repository pattern is selected as an example to be applied within UC2, as

illustrated at the bottom of Figure 5.12. Thus, the components of driver preference

knowledge, driving strategy knowledge, and parametrization knowledge are defined as

shared repositories on different hierarchical architecture layers.

In addition to the shared repository, other components in the technical system play the

roles of application components. For example, the driver preference monitor and the

driver preference analyzer are the application components, which can access the driver

preference knowledge as the central shared repository. From the opposite direction,

once the driver preference knowledge triggers any update, it can also disseminate

knowledge to the driver preference monitor and the driver preference analyzer, which

play the roles of application components, relying on the notification mechanism (cf.

Section 2.2.7).

178

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 179

Figure 5.12: Component Roles within Interactions of UC2

5.4.3 Request-Response Pattern for UC3

UC3 refers to the hierarchical control flow across layers, which focuses on how the

subsystem on a higher layer determines a high-level strategy to adapt a subsystem

deployed on a lower layer, following the introduced paradigm of adaptation composition,

as introduced in Section 4.2.3. Detailed communication paths between the components

within UC3 have been illustrated with arrows at the top of Figure 5.13.

To specify the communication paradigms within UC3, two communication patterns,

including the publish-subscribe pattern and the request-response pattern, are selected

Legend

R

A

R

A

R

A

Shared Repository

Applica�on Component

Physical SystemTechnical System
Route-based Adapta�on Unit

Route-Segment-based Adapta�on Unit

Cycle-Time-based Control Unit

Driver Preference
Executor

Driver Preference
Analyzer

Driver Preference
Monitor

Driver Preference
Knowledge

Driving Strategy
Knowledge

Driving Strategy
Monitor

Parametriza�on
Knowledge

A

Driving Strategy
Executor

Controller

SU

RSP

RSE

SSP

S1 P1

P0 P0
A0

P2

P1

K1

SC

P2

P2

S2

K0

SSE

Event-Triggered

Time-Triggered

Event-Triggered

Driving Strategy
Analyzer

SR
P0

I0

Driver Preference
Planner

I2

Driving Strategy
Planner

Physical
Components of

Ego-Car
(incl. Powertrain and

Car Body)

Environment

C2
A2

K2

I1

C1A1

Final Control
Component

Analyzer

C0

Measurement
ComponentS0

UserR

A

A

A
A

Shared-Repository -
Pa�ern A

R
A

AA

Shared-Repository -
Pa�ern

Shared-Repository -
Pa�ern

R

A

A

A

A

K0 A0S0

I0
C0

P0

A1S1 K1

I1
C1

P1

C2
I2
K2

P2

S2 A2

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

180

as examples. As shown at the bottom of Figure 5.13, the communication between

sensors and subsystems in the technical system relies on the publish-subscribe pattern.

In this case, the sensors are the publishers, and the components in the subsystems like

the driver preference monitor and the driving strategy monitor are the subscribers. The

publish-subscribe pattern realizes a loose coupling between the sensors and

components for monitoring sensory data, relying on high system scalability. In this case,

the sensors as publishers and the monitoring components as subscribers work

completely independently, and the specified topics of the messages realize all

communication identification. Thus, further development of the whole system becomes

much easier (e.g., integrating more sensor accesses for the technical system).

Figure 5.13: Component Roles within Interactions of UC3

Physical SystemTechnical System
Route-based Adapta�on Unit

Route-Segment-based Adapta�on Unit

Cycle-Time-based Control Unit

Driver Preference
Executor

Driver Preference
Analyzer

Driver Preference
Monitor

Driver Preference
Knowledge

Driving Strategy
Knowledge

Driving Strategy
Monitor

Parametriza�on
Knowledge

Measurement
Component

AController Final Control
Component

SU

S1 P1

P0 P0A0

S0

C0

P2

P1

K1

SC

P2

P2

S2

K0

K2

Event-Triggered

Time-Triggered

Event-Triggered

Driving Strategy
Analyzer

SR
P0

I0

Driver Preference
Planner

I2

I1

Driving Strategy
Planner C1Driving Strategy

Executor

RSP

RSE

SSP

SSE

Physical
Components of

Ego-Car
(incl. Powertrain and

Car Body)

Environment

C2
A2

A1

Analyzer

User

P

S

Request-Response-
Pa�ern

C

S

C

S

CS

C

S

PS
C

S
C

C

S
S

C
S

Publish -Subscribe -
Pa�ern

Request-Response-
Pa�ern

S
C

Publish -Subscribe -
Pa�ern

Legend

C

S

C

S

Client (in Request-Response Pa�ern)

Server (in Request-Response Pa�ern)
P
S

P
S

Publisher (in Publish-Subscribe Pa�ern)
Subscriber (in Publish-Subscribe Pa�ern)

K0 A0S0

I0
C0

P0

A1S1 K1

I1
C1

P1

C2
I2
K2

P2

S2 A2

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 181

In addition to the publish-subscribe pattern, the request-response pattern (also called

the client-server pattern) is also selected to specify communication paths between

components inside the technical system. For example, on the highest layer of the

hierarchical architecture, the driver preference monitor provides its generated symptom

to the driver preference analyzer. In this case, the driver preference monitor as the client

initiates the interaction with the driver preference analyzer, which plays the role of a

server. In this case, the client component invokes the services provided by the server

component (e.g., which also happens between the driver preference executor in the

route-based adaptation unit and the driving strategy knowledge component of the route-

segment-based adaptation unit).

As introduced in Section 2.3.1, the communication paradigm behind the request-

response pattern (also called the client-server pattern) is the remote procedure call

(RPC), which can still be categorized as synchronized and asynchronized. In the ACCC,

it is recommended to use the asynchronized RPC due to the feature of a distributed

system, especially when the route-based adaptation unit and the route-segment-based

adaptation unit are deployed on two different domains. In this case, the component of

driving preference executor can keep working in parallel if there is no reply from the

driving strategy knowledge component in the route-segment-based adaptation unit.

5.4.4 Blackboard Pattern for UC4

The final use case (UC4) refers to hierarchical knowledge acquisition and sharing across

layers in the ACCC, which happens when the interpreting component on a certain layer

such as “I1” cannot identify the problem due to a lack of knowledge. In this case, the

interpreting component “I1” will communicate with the knowledge component “K1” on the

same layer to request support. Since knowledge between the “I1” and “K1” is always

synchronized, the “K1” cannot directly support the “I1”. However, it can communicate

knowledge components on neighbor layers (“K2” and “K0”) of the hierarchical

architecture, as illustrated at the top of Figure 5.14.

To specify the component interactions within UC4, two different communication patterns,

including the shared-repository-pattern and the blackboard pattern, are selected as

examples in this section. As presented in UC2, the communication between the

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

182

knowledge component and the other component like the sensing, interpreting, control,

and actuating component on each layer can be realized based on the shared-repository

pattern. The interpreting and the knowledge component (“I1” and “K1”) also participate in

UC4. Thus, the shared-repository pattern is applied to specify their communication.

Figure 5.14: Component Roles within Interactions of UC4

In UC4, it can be understood that the subsystem on one layer of the hierarchical

architecture with its knowledge base is required to solve a task based on incomplete

knowledge and data and thus requires the support of knowledge bases on neighbor

layers. Such a feature corresponds exactly to the application potential of the blackboard

Legend

B

K

B

K

Blackboard
Knowledge Source

C C Controller

R

A

R

A

Shared Repository
Applica�on ComponentA

Physical SystemTechnical System
Route-based Adapta�on Unit

Route-Segment-based Adapta�on Unit

Cycle-Time-based Control Unit

Driver Preference
Executor

Driver Preference
Analyzer

Driver Preference
Monitor

Driver Preference
Knowledge

Driving Strategy
Knowledge

Driving Strategy
Monitor

Parametriza�on
Knowledge

A

Driving Strategy
Executor

Controller Final Control
Component

SU

RSP

RSE

P1

P0 P0A0

P2

P1

K1

SC

P2

P2
A2

S2

A1

K0

SSE

K2

Event-Triggered

Time-Triggered

Event-Triggered

Driving Strategy
Analyzer

SR
P0

I0

S0

Driving Strategy
Planner

Driver Preference
Planner

I2

C2

Physical
Components of

Ego-Car
(incl. Powertrain and

Car Body)

Environment

C1

SSPI1

C0

Analyzer

Measurement
Component

S1

User

Blackboard-Pa�ern

Blackboard-Pa�ern

Shared-Repository -
Pa�ern

R
A

BC

K

BC

K

A
R

Shared-Repository -
Pa�ern

K0 A0S0

I0
C0

P0

A1S1 K1

I1
C1

P1

C2
I2
K2

P2

S2 A2

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 183

pattern. Thus, the blackboard pattern is selected to specify communication of the

knowledge components (“K0” vs. “K1” or “K1” vs. “K2”) on each two hierarchical neighbor

layers. In this case, the knowledge component requesting support plays the role of

controller and blackboard. The knowledge component providing the support plays the

role of knowledge source, which the controller activates and operates on the blackboard

to contribute its knowledge (cf. Section 2.3.5).

As shown at the bottom of Figure 5.14, the driving strategy knowledge component works

as the blackboard and controller in the case of communication with the driver preference

knowledge component on the highest layer. Additionally, it also plays the role of

knowledge source while communicating with the parametrization knowledge component

on the lowest layer. Following this idea, the knowledge component may be further

decomposed as two subcomponents, which are responsible for a pure knowledge

database and its corresponding management mechanisms, respectively. Due to the

limited scope of this dissertation, further details about this idea will be discussed in

Section 6.3.

5.5 Implementation of Artificial Cognitive Cruise Control

After introducing the system design, a prototype implementation is planned in this

dissertation in order to evaluate the ACCC’s performance. The implementation strictly

follows the designed architecture of the ACCC, consisting of the technical and physical

system. In the technical system, the subsystems, namely the route-based adaptation

unit (RAU), the route-segment-based adaptation unit (RSAU), and the cycle-time-based

control unit (CTCU) are also implemented. In the following sections, more details about

the implementation will be presented.

5.5.1 Implementation Overview

Figure 5.15 indicates an implementation overview of the ACCC prototype. The technical

system in the ACCC, including three subsystems (RAU, RSAU, and CTCU) and their

corresponding components, is implemented using Python.

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

184

The physical system is implemented in a hybrid manner. The well-known simulator

SUMO14, based on C++, is applied to simulate the ego-car’s driving environment. Since

SUMO primarily focuses on a macro simulation of traffic flow instead of a detailed

simulation of a single car’s internal physical processes, the car's realistic driving

dynamics model is missing. Thus, an additional Python implementation of the ego-car’s

physical components for simulating driving dynamics was also completed. In addition,

the human driver in the physical system is modeled based on the real driving data with

Python.

Figure 5.15: Overview of the Co-Simulation Platform in the Implementation of ACCC Prototype

14 SUMO (Simulation of Urban Mobility) is an Eclipse Foundation project and stands for an open-source
traffic simulation platform developed by the German Aerospace Center and its community users. Link:
https://www.eclipse.org/sumo/ (accessed on 26th Apr. 2022).

Physical SystemTechnical System
Route-based Adaptation Unit

Route-Segment-based Adaptation Unit

Cycle-Time-based Control Unit

Driver Preference
Executor

Driver Preference
Analyzer

Driver Preference
Monitor

Driver Preference
Knowledge

Driving Strategy
Knowledge

Driving Strategy
Monitor

Parametrization
Knowledge

A

Driver Preference
Planner

Driving Strategy
Executor

Controller Final Control
Component

Driving Strategy
Planner

SU

RSP

RSE

SSP

S1 P1

P0 P0A0

S0

P2

P1

K1

SC

P2

P2
A2

S2

K0

SSE

K2

Event-Triggered

Time-Triggered

Event-Triggered

Driving Strategy
Analyzer

SR
P0

I0

C2

I2

C1

I1

Physical
Components of

Ego-Car
(incl. Powertrain and

Car Body)

Environment

A1

Analyzer

C0

Measurement
Component

Traffic Control Interface
(TraCI)

Traffic Control Interface
(TraCI)

User

SUMO
SIMULATION OF URBAN MOBILITY

https://www.eclipse.org/sumo/

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 185

After implementing the technical and physical systems, they are integrated to build a co-

simulation platform to evaluate the ACCC’s performance. The SUMO and Python

simulation communicate via a traffic control interface (TraCI15). In Figure 5.15, the

actuators (component A, cf. Figure 5.15) and the sensors (components: SC, SU, RSP,

RSE, SSE, and SSP, cf. Figure 5.15) are designed as the interfaces between the

physical and technical systems. These actuators and sensors are not explicitly

implemented as additional software components in the implemented co-simulation.

Instead, they are implicitly represented by methods calls via TraCI. More concrete

implementation details of the components will be introduced in the following subsections.

5.5.2 Implemented Physical System

In the built co-simulation platform, the implemented physical system covers the

simulation of the human driver’s activities, physical components, and driving dynamics

of the ego-car and its interaction with the surrounding driving environment. These

simulated processes will be introduced in more detail in the following subsections.

5.5.2.1 Driver

The first Driver component implements a driver model to simulate the human driver’s

driving activities using the ACCC. As illustrated in Figure 5.3 (cf. Section 5.2.1), the

human driver is not required to control the ego-car’s longitudinal movement. Instead,

they need to specify a reference configuration of their preferences, including different

weights of optimization criteria for planning the driving strategy, as illustrated in Figure

5.3 within Section 5.2.1. Thus, the ACCC can evaluate the qualities of different

candidate high-level set travel profiles and middle-level driving strategies (cf. Figure 5.1)

and plan an optimized set travel profile and driving strategy for the driver.

In the original design of the ACCC, the driver can change the values of the initialized

criteria weights while the ego-car is driving so that the ACCC can adjust its planned

driving strategy. In addition to the manual adjustment, the criteria weights would also be

automatically adjusted by machine learning algorithms based on the observed manual

15 TraCI is an API provided by SUMO-community to access its simulated objects like cars and pedestrians
and manipulate their behaviors. Link: https://sumo.dlr.de/docs/TraCI.html (accessed on 28th Apr. 2022).

https://sumo.dlr.de/docs/TraCI.html

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

186

driving behaviors of the human driver. Nevertheless, in the implemented co-simulation

for the ACCC’s evaluation, the initialized weights are kept the same in the evaluation of

this dissertation to reduce problem complexity. The criteria and their weights are defined

and initialized as follows:

Criteria Meaning Weights Symbol
Travel Time Accumulated travel time of the ego-car from

its current location until the end of each
following route segment and the destination

0.4 𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Energy
Consumption

Accumulated energy consumption of the
ego-car from its current location until the
end of each following route segment and the
destination

0.4 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Driving Comfort Average acceleration of the ego-car from its
current location until the end of each
following route segment and the destination

0.2 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Table 5.1: Criteria and their Weights for Planning the Set Travel Profile and Middle-level Driving Strategy

In addition to setting preferred criteria weights, the driver may also change their desired

velocity and headway by human intervention. Such a case may happen, for example, if

the driver is unsatisfied with the ACC and ACCC’s automated driving due to a too high

deviation between the current and desired profiles of the ego-car’s velocity and headway.

Figure 5.16: Human Driver’s Recorded Sample Driving Data with Location-based Speed Profiles

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 187

For this purpose, the human driver model requires a reference profile of the driver-

preferred cruise speed and headway. In the implemented ACCC, this reference profile

is taken as the driver’s average driving profile derived from historical trips with manual

driving. For this purpose, a pool of recorded real driving data of an anonymous driver is

integrated into the implemented human driver model. This data pool includes the driver’s

driving behavioral data during 600 repeated trips on the federal highway B241 in both

directions between Clausthal-Zellerfeld (CLZ) and Goslar (GS) in Germany. As an

example, Figure 5.16 shows some sample data describing speed profiles in the recorded

trips from Clausthal-Zellerfeld to Goslar.

5.5.2.2 Environment

The implemented Environment component in the physical system is responsible for

simulating the driving environment. Since the recorded driving data on the federal

highway B241 is used in the implemented human driver model, this highway is chosen

as the simulated driving environment during implementation. For this purpose, the traffic

simulator SUMO is applied to build a realistic simulated environment. Furthermore, the

simulation of traffic participants on highway B241 is also included in SUMO to make the

simulation more realistic.

During implementation, the geographic route profile of B241 derived from

OpenStreetMap16 (OSM) is integrated into the SUMO simulation. Different cars as the

traffic participants and their trips are randomly initialized based on a predefined catalog

(including 200 diverse trips with different origins and destinations) to generate an

expected nondeterministic capability in the simulation. A certain single car is selected

from the catalog as the ego-car. In the SUMO simulation, the ego-car and other cars'

movements in the traffic are also visualized. Figure 5.17 compares the simulated track

in SUMO and the highway B241 in reality. The ego-car is visualized as the red car with

a highlighted green circle in SUMO. The other cars as traffic participants are colored

yellow.

16 OpenStreetMap is a geographic database of the real world that provides diverse free map- and
navigation-relared APIs and services. Link: https://www.openstreetmap.org/ (accessed on 28th Apr. 2022).

https://www.openstreetmap.org/

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

188

Figure 5.17: SUMO-simulated Track (left) of Germany Federal Highway B241 (right)17

5.5.2.3 Physical Components of Ego-car

As introduced previously, SUMO is a macro traffic simulator focusing on overall traffic

flow and thus does not have detailed physical modeling for a single car, particularly a

model of realistic driving dynamics. For this reason, this dissertation has developed a

model of a battery electric vehicle (BEV), including the car’s different drive components

and driving dynamics, to simulate the ego-car for implementing the component Physical

Components of Ego-Car (cf. Figure 5.15). The implemented BEV model is developed

based on a reference implementation taken from an open-source repository18 on GitHub.

Figure 5.18 illustrates an overview of this BEV model with a class diagram, in which

drive components of the car like the traction battery, electric motor, gear box, front and

rear brakes, front and rear wheels, and chassis are included. Several classes with

attributes representing the drive components are defined on a meta-level. Due to high

17 The right-side figure: Direction for Driving from Clausthal-Zellerfeld to Goslar, Germany, Google Maps,
2022, maps.google.com.
18 Link: https://github.com/bjyurkovich/vehicle-model-python (accessed on 28th Apr. 2022).

https://github.com/bjyurkovich/vehicle-model-python

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

189

implementation complexity, detailed attributes of the classes are not visualized in the

class diagram. The defined classes are then instantiated to model the concrete drive

components in the simulated BEV.

Figure 5.18: Class Diagram for the Construction of BEV Model

In each defined class, methods for updating the drive components’ states during the

BEV’s driving are created. The built BEV model is taken to simulate the ego-car. Thus,

the ego-car’s overall state can be updated by calling the method ego_vehicle_update(),

which then calls the previously mentioned methods for updating individual drive

components’ states like battery_update() and chassis_update(). In Figure 5.18, only the

abstract methods are presented. Detailed input and output parameters are not listed to

reduce the visualization complexity. More details about the attributes and the methods

can be found in the accompanying code implementation.

Based on the defined classes, the ego-car’s driving dynamics can be simulated by

calling the methods defined in the classes of drive components. Figure 5.19 shows a

process flow of the driving dynamics simulation.

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

190

Figure 5.19: Driving Dynamics Simulation in the BEV Model

Since the BEV model is built based on the physical modeling approach, the interactions

between the models of the drive components are realized by parameter passing of

relevant data values. Table 5.2 provides an overview of these physical parameters.

Parameter Meaning Physical
Unit

𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 Controller’s command for the ego-car’s acceleration,
𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∈ [0 1]

[-]

𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 Controller’s command for the ego-car’s acceleration,
𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∈ [−1 0]

[-]

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Required power from the battery for the ego-car’s
acceleration

[w]

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Voltage of the cell/package in the battery [V]

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Provided power by battery for the ego-car’s acceleration [m/s2]
𝑇𝑇𝑒𝑒𝑒𝑒 Torque of electric motor [Nm]
𝑇𝑇𝑔𝑔𝑔𝑔_𝑜𝑜𝑜𝑜𝑜𝑜 Output torque of gearbox after transmission [Nm]
𝑇𝑇𝑔𝑔𝑔𝑔_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑇𝑇𝑔𝑔𝑔𝑔_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

Distributed torque of the gearbox to front and rear axis [Nm]

𝑇𝑇𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑇𝑇𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

Drive torque of front/rear wheels [Nm]

𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

Angular velocity of front/rear wheels [rad/s]

𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 Total brake force [N]
𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

Distributed brake force to front/rear axis [N]

BEV’s Driving Dynamics Simula�on

𝑅𝑅𝑎𝑎𝐼𝐼𝑞𝐵𝐵𝐼𝐼𝑎𝑎𝐼𝐼𝑑𝑑 𝑅𝑅𝑅𝑅𝑎𝑎𝑓𝑓𝑑𝑑𝐼𝐼𝑑𝑑𝐼𝐼𝑑𝑑 𝑇𝑇𝐼𝐼𝑡𝑡
𝑇𝑇𝑢𝑢𝑎𝑎_𝑓𝑓𝐵𝐵𝑡𝑡electric_motor_

update()ba�ery_update()

𝑉𝑉𝑅𝑅𝑎𝑎𝑒𝑒𝑘𝑘𝑎𝑎𝑢𝑢𝐼𝐼

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘𝐼𝐼 _𝑓𝑓𝑎𝑎𝑓𝑓𝐼𝐼𝑡𝑡

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘𝐼𝐼 _𝑎𝑎𝐼𝐼𝑎𝑎𝑎𝑎

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘𝐼𝐼 _𝑡𝑡𝑓𝑓𝑡𝑡𝑎𝑎𝐼𝐼

𝑒𝑒𝑡𝑡𝑑𝑑𝑑𝑑𝐼𝐼𝑒𝑒𝐼𝐼𝐼𝐼

𝑒𝑒𝑡𝑡𝑑𝑑𝑎𝑎𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼

𝑉𝑉𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼

rear_brakes_
update()

front_brakes_
update()

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘𝐼𝐼 _𝑡𝑡𝑓𝑓𝑡𝑡𝑎𝑎𝐼𝐼

𝑇𝑇𝑢𝑢𝑎𝑎_𝑓𝑓𝑎𝑎𝑓𝑓𝐼𝐼𝑡𝑡

𝑇𝑇𝑢𝑢𝑎𝑎_ 𝑎𝑎𝐼𝐼𝑎𝑎𝑎𝑎

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘𝐼𝐼 _𝑓𝑓𝑎𝑎𝑓𝑓𝐼𝐼𝑡𝑡

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘𝐼𝐼 _𝑎𝑎𝐼𝐼𝑎𝑎𝑎𝑎

chassis_update()

𝑗𝑗𝑗𝑗ℎ𝐼𝐼𝐼𝐼𝐼𝐼 _𝑓𝑓𝑎𝑎𝑓𝑓𝐼𝐼𝑡𝑡

𝑇𝑇𝑗𝑗ℎ𝐼𝐼𝐼𝐼𝐼𝐼 _𝑎𝑎𝐼𝐼𝑎𝑎𝑎𝑎

𝐹𝐹𝑎𝑎𝑡𝑡 _𝑗𝑗ℎ𝐼𝐼𝐼𝐼𝐼𝐼 _𝑓𝑓𝑎𝑎𝑓𝑓𝐼𝐼𝑡𝑡 𝐹𝐹𝑎𝑎𝑡𝑡 _𝑗𝑗ℎ𝐼𝐼𝐼𝐼𝐼𝐼 _𝑎𝑎𝐼𝐼𝑎𝑎𝑎𝑎

𝑑𝑑𝐼𝐼𝑢𝑢𝑓𝑓 _𝑒𝑒𝑎𝑎𝑎𝑎

𝑇𝑇𝑗𝑗ℎ𝐼𝐼𝐼𝐼𝐼𝐼 _𝑓𝑓𝑎𝑎𝑓𝑓𝐼𝐼𝑡𝑡

𝑗𝑗𝑗𝑗ℎ𝐼𝐼𝐼𝐼𝐼𝐼 _𝑎𝑎𝐼𝐼𝑎𝑎𝑎𝑎

𝑑𝑑𝐼𝐼𝑢𝑢𝑓𝑓 _𝑒𝑒𝑎𝑎𝑎𝑎front_wheels_
update()

rear_wheels_
update()

gearbox_update()

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 191

𝐹𝐹𝑎𝑎𝑎𝑎_𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐹𝐹𝑎𝑎𝑎𝑎_𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

Drive force at front/rear wheels [N]

𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐 Ego-car’s velocity [m/s]

Table 5.2: Table of Physical Parameters in the BEV Model

In the BEV model, the traction battery is simulated using a well-known simulation

approach with a so-called second-order equivalent circuit model (with two RC elements)

[120], as illustrated in Figure 5.20. The equivalent circuit model simulates a single cell's

charging and discharging process in the battery. The simulated battery includes three

packages, and each package includes 120 cells. All cells are interpreted to be serially

connected within the battery instead of in parallel. The inputs of the whole BEV model

are 𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, representing the controller’s output control commands for

accelerating and decelerating the ego-car. Based on these two inputs and the maximal

power of the battery, a provided output power of the battery is calculated and transferred

to the next instantiated electric motor model.

Figure 5.20: Lithium-Ion Traction Battery Model Based on the Second Order Equivalent Circuit Model

[120]

The electric motor model relies on an implemented characteristic diagram regarding the

provided power (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) of the traction battery and the motor’s output torque (𝑇𝑇𝑒𝑒𝑒𝑒).

With the help of the electric motor’s output torque, the gearbox model calculates its

output torque based on a predefined static transmission ratio. Both electric motor and

gearbox models include application parameters to simulate the machine’s working

efficiencies (electric motor: 0.95, gearbox: 0.9). Fixed ratios for the distribution of total

brake torque and the gearbox’s total output torque to the car’s front and rear axis are

𝑅𝑅0

𝑅𝑅1 𝑅𝑅2

𝐶𝐶1 𝐶𝐶2

𝐼𝐼

𝐼𝐼𝑓𝑓
𝑎𝑎𝑑𝑑

𝑒𝑒ℎ
𝑎𝑎𝑎𝑎
𝑢𝑢𝐼𝐼
𝑎𝑎

𝑈𝑈𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝐼𝐼𝑎𝑎𝑦𝑦 = 𝑓𝑓(𝑆𝑆𝑓𝑓𝐶𝐶)

𝑈𝑈2𝑈𝑈1
𝑈𝑈0

𝑈𝑈𝑅𝑅𝑎𝑎𝑓𝑓𝑑𝑑𝐼𝐼𝑑𝑑𝐼𝐼𝑑𝑑
𝑈𝑈: Voltage
𝑅𝑅: Resistance
𝐶𝐶: Coil
 𝐼𝐼: Current
𝑆𝑆𝑓𝑓𝐶𝐶 : State of Charge

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

192

also included in the BEV model. Thus, the front and rear wheels models can use the

distributed torque to simulate the wheels’ rotation dynamics. The outputs of the drive

forces acting on the wheels (𝐹𝐹𝑎𝑎𝑎𝑎_𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ,𝐹𝐹𝑎𝑎𝑎𝑎_𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) will be then provided. While

simulating such a process, application parameters like tire radius are specified in the

model. The chassis model focuses on the car’s body and movement modeling. In this

model, the ego car’s driving resistance is calculated following the approach published in

[121]. Finally, the ego-car’s velocity (𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐) for the next timestamp can be determined.

This determined velocity is then used to update the models’ internal parameters like the

wheels’ angular velocities (𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟).

After the physical processes in the ego-car’s drive components are simulated, the

determined ego-car’s velocity (𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐) will be transferred via TraCI into the SUMO

simulation by calling the method traci.vehicle.setSpeed()19. Thus, SUMO can update the

ego-car’s visualization in SUMO by moving it to the following corresponding geographic

location along the route. Visualization of the other traffic participants’ movements will

automatically be updated without a realistic underlying driving dynamics simulation. Due

to high implementation complexity, detailed physical equations implemented for the

driving dynamics simulation are not intensively introduced in this section. However, they

can be found in the submitted accompanying code implementation.

5.5.3 Route-Based Adaptation Unit (RAU) in Implemented Technical System

As introduced in Section 5.1, the ACCC following the proposed architecture style is

constructed with a hierarchical architecture including three layers. On each layer, a

“SICAP-K” component structure is deployed. The “P” refers to the physical system that

has been introduced previously. The other four “SICA-K” components (cf. Figure 5.15)

on three layers are deployed as three subsystems in the technical system. The first

subsystem on the highest layer of the hierarchical architecture is the route-based

adaptation unit (RAU).

19 This is a method defined in TraCI to manipulate the state of certain vehicle in the simulation. Link:
https://sumo.dlr.de/docs/TraCI/Change_Vehicle_State.html (accessed on 28th Apr. 2022).

https://sumo.dlr.de/docs/TraCI/Change_Vehicle_State.html

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 193

Figure 5.21: Class Diagram for the Construction of Route-Based Adaptation Unit

The RAU aims to observe the driving behaviors of the human driver while manual driving

and learn their high-level driving preferences. The high-level preferences are defined in

this dissertation as preferred travel time, energy consumption, and driving comfort during

the previous trips on the same route. Thus, the RAU can automatically plan an optimized,

high-level personalized route-based set travel profile for the driver before the trip once

it is activated to take over the ego-car’s longitudinal control. For this purpose, learning()

and calling() are defined in the class RouteBasedAdaptationUnit to realize the

functionalities of learning driving preferences and planning set travel profiles, as

illustrated in Figure 5.21. Additionally, other classes with aggregation relationships with

the class RouteBasedAdaptationUnit are defined to implement the “SICA-K”

components in the RAU. Figure 5.21 provides an overview of these classes. The

following sections will introduce more details of the classes and their instantiations

representing the “SICA-K” components.

A significant point that needs to be emphasized here is that the functionality of learning

driving preferences was implemented with a small difference compared to the original

design of the ACCC. In the original design, the learning process can also be triggered

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

194

by the “SICA” components once they have identified a difference between the observed

input facts and their available domain knowledge (cf. Section 5.3.2). After learning, these

components push the updated domain knowledge to the “K” component for

synchronization (cf. Section 4.2.6.2). Nevertheless, in the implementation of this

dissertation, the learning process of the domain knowledge is only triggered by the “K”

component (e.g., driver preference knowledge component). Then the updated

knowledge is pushed to the “SICA” components for knowledge synchronization. The

same implementation approach is also applied to the learning processes in the route-

segment-based adaptation unit (RSAU) and the cycle-time-based control unit (CTCU).

5.5.3.1 Driver Preference Knowledge

As introduced in Section 5.2.2, the Driver Preference Knowledge component plays the

role of a knowledge repository. It communicates with other components (“S2”, “I2”, “C2”,

“A2”) in the RAU to provide them required domain knowledge. For this purpose,

appropriate technologies like the database can be applied to implement the knowledge

repository to store huge vehicle data. However, the ACCC’s implementation in this

dissertation focuses on a co-simulation instead of the real hardware. Thus, domain

knowledge is represented by different attributes in the class

DriverPreferenceKnowledge (cf. Figure 5.21).

Domain Knowledge
Attributes in the class

DriverPreferenceKnowledge
Sub-Attributes

+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑥𝑥_𝑝𝑝𝑝𝑝𝑝𝑝
+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑦𝑦_𝑝𝑝𝑝𝑝𝑝𝑝
+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

+𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡 +𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡
+𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡
+𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡

+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 -

Table 5.3: Defined Attributes of Domain Knowledge in the Class DriverPreferenceKnowledge

Subsequently, the instantiated objects are saved as individual “.npy” files in a folder of

the local project repository, which is interpreted as the ACCC’s knowledge base. The

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 195

attributes representing the domain knowledge are called “domain knowledge attributes”

in this section. Table 5.3 provides an overview of more details about these attributes.

The first domain knowledge refers to a high-level reference route profile. As introduced

in the ACCC’s preliminary design, the ACCC needs the route profile saved in the

navigation system to plan the high-level set travel profile and the middle-level driving

strategy. For this purpose, the route needs to be segmented by a group of intermediate

route points. For example, the simulated route from GS to CLZ is represented by 27663

intermediate route points in the implementation, and the simulated route from CLZ to

GS includes 28250 route points. Since the RAU focuses on the high-level route profile,

not all these intermediate route points are interesting. Instead, only significant route

points representing the intersections are important for the planning high-level set travel

profile.

During the ACCC prototype implementation, the resolution of the route points

representing a so-called high-level reference route profile was thus massively reduced.

Following the original order of the points, one route point is taken out of every 1000 route

points to represent the intersections on the route. Several sub-attributes like .x_pos

and .y_pos are defined to describe the features of the attribute +

reference_high_level_route_profile. The sub-attribute .accumulated_distance relates to

the accumulated distance from the first route point (the trip’s origin) to each following

route point.

In addition to the high-level reference route profile, another domain knowledge refers to

the driver’s preferred criteria weights of their driving preferences, as mentioned in Table

5.1. Three sub-attributes (.time_weight, .comfort_weight, and .consumption_weight) are

thus defined to represent the three criteria weights. During the class instantiation, these

weights are initialized by normalized values with a sum of one. Thus, the weights can

represent the criteria’s importance for the driver from different perspectives.

As illustrated in Figure 5.21, the class RouteBasedAdaptationUnit includes a method

learning(). While calling this method, the method update_knowledge() in the class

DriverPreferenceKnowledge will be called. Such a case happens once the human driver

completes a trip with the ego-car by manual driving. Based on the observed and

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

196

collected driving data during the trip (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), the RAU will try to learn

the driver’s preferred average travel profile by updating the currently saved average

travel profile (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) to an updated profile

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙).

The final attribute in the class RouteBasedAdaptationUnit represents a learning rate for

learning the driver’s average travel profile (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), which is used to control the

learning process and initialized with 0.08 in the implemented instance. The learning

process can be generalized by equation (5.1) as follows:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

∙ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)

(5.1)

Either the current or the average travel profile still includes sub-profiles from three

perspectives, including trajectories of the accumulated average travel time, the

accumulated average energy consumption of the ego-car, and its accumulated average

acceleration (representing the driving comfort), along with the route points in the high-

level reference profile for representing the intersections on the route. Updating the

profiles regarding the travel time, energy consumption, and acceleration (representing

driving comfort) needs to be calculated separately by following Equation (5.1).

Figure 5.22 shows a visualization example of the learning process of the human driver’s

high-level average profile within several learning cycles. It is indicated in the figure that

the average profile of the travel time and the energy consumption is continually changed

along with the learning cycles.

Another method, share_knowledge(), is also defined in this class. This method is

implemented to realize the knowledge sharing between multiple knowledge components

across different layers in the ACCC’s architecture (cf. Section 4.2.6.4). In the

implemented co-simulation, such a process can easily be realized by exchanging the

variables’ values initialized in different class instances. In the following Section 5.5.4,

more details about this process will be introduced.

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 197

Figure 5.22: Example of Learning the Human Driver’s High-Level Average Profile with Multiple Learning

Cycles

5.5.3.2 Driver Preference Monitor

The component Driver Preference Monitor is designed to collect the sensory data from

the physical system and generate a symptom (defined as structured data). For this

purpose, the driver preference monitor needs to preprocess and aggregate the sensory

data if necessary. The class DriverPreferenceMonitor defines a method

generate_high_level_symptom() to complete the preprocessing and aggregation tasks.

In this method, two input parameters are required: trip and ego_pos_xy. The parameter

trip includes the current trip profile like the trip name, the origin, and the destination. With

the help of the parameter trip as an indicator, the ACCC knows which reference route

profile should require from the ego-car’s navigation system. The parameter ego_pos_xy

is used to indicate the ego-car’s current location. The data of both input parameters are

then allocated to form the symptom.

5.5.3.3 Driver Preference Analyzer

In the ACCC’s design, the component Driver Preference Analyzer takes the symptom

provided by the driver preference monitor as input to decide whether it is necessary to

request the (re-)planning of a high-level set travel profile. For this purpose, a method

analyze_high_level_symptom() is defined in the class DriverPreferenceAnalyzer (cf.

Figure 5.21).

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

198

In the original design, the RAU plans the high-level personalized set travel profile in two

cases: (1) at the beginning of the trip or (2) when the planned set travel profile

significantly deviates from the current performed trip profile. In this dissertation, a

simplified implementation only focusing on the first case is completed. The method

analyze_high_level_symptom() compares the ego-car’s current location with the trip’s

origin to identify whether the ego-car is at the beginning of the trip. In the case of the

beginning of the trip, the method analyze_high_level_symptom() generates an output to

request the planning of the high-level set travel profile.

5.5.3.4 Driver Preference Planner

The fundamental functionality of the Driver Preference Planner is to plan a driver-

individual high-level set travel profile once the ACCC is activated. For this purpose, a

method plan_set_travel_profile() is defined in the class DriverPreferencePlanner (cf.

Figure 5.21) to complete the planning task. The set travel profile includes several sub-

profiles regarding different perspectives: travel time, energy consumption, and the

driving comfort represented by the ego-car’s acceleration. Some examples of the sub-

profiles have been illustrated in Figure 5.22. The individual values on the figure’s y-axis

refer to the accumulated travel time and energy consumption that the ego-car needs to

reach the corresponding intermediate route points considering the trip starting from the

origin.

In the method plan_set_travel_profile(), it is possible to deploy machine learning or

classical optimization algorithms to complete the planning task. In such a case, criteria

and weights would be required to evaluate the qualities of candidate set travel profiles,

which massively increases implementation complexity. In the implemented ACCC

prototype, this method is implemented more simply. During the ACCC’s learning process,

by calling the method learning(), the learned average travel profile (cf. Section 5.5.3.1)

is updated and saved in the ACCC’s knowledge base as a “.npy” file. In the method

plan_set_travel_profile(), the saved average travel profile is extracted from the

knowledge base and taken as the method's output.

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 199

5.5.3.5 Driver Preference Executor

The final Driver Preference Executor in the RAU is designed to decompose the planned

set travel profile provided by the driver preference planner. Another method

decompose_set_travel_profile() is defined in the class DriverPreferenceExecutor to

complete the decomposition task, as illustrated in Figure 5.21. As introduced in Section

5.2.3, the decomposed set travel profile should be used as specifications for the route-

segment-based adaptation unit (RSAU) deployed on the lower layer of the ACCC’s

architecture. Since the RSAU focuses on planning the middle-level strategy only for

individual route segments, the method decompose_set_travel_profile() here tries to

convert the planned travel profile into segment-wise specifications.

For example, a planned set travel profile includes a trajectory of the accumulated set

travel time for 27 high-level intermediate route points representing intersections (cf.

Figure 5.22). This means the whole route has 26 route segments, and thus 26 different

partial profiles of set travel time for individual segments can be decomposed based on

the travel time trajectory for the whole route. The same decomposition can also be

performed for the trajectory of set consumption and set acceleration representing driving

comfort. All the calculated partial set profiles for individual segments are then taken as

specifications and provided to the RSAU.

5.5.4 Route-Segment-Based Adaptation Unit in Implemented Technical System

The second subsystem in the technical system is the RSAU. Like in the RAU, another

“SICA-K” component structure is deployed in the RSAU. For this reason, five classes

and their corresponding methods are defined to implement the RSAU, as illustrated in

the class diagram in Figure 5.23.

The RSAU also has two functionalities: planning the middle-level driving strategy and

learning the driver’s middle-level preferences. Thus, the class

RouteSegmentBasedAdaptationUnit defines two methods: calling() and learning(). The

same implementation approach used in the RAU to deal with the learning process is

also applied here. It means that the learning process of the implemented prototype is

triggered by the instance of the class DriverStrategyKnowledge using its included

methods: update_average_profile(), update_decision_trees(), and

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

200

update_distribution_pred_behaviors(). The following sections will provide more

implementation details about these classes and their instantiation.

Figure 5.23: Class Diagram for the Construction of Route-Segment-Based Adaptation Unit

5.5.4.1 Driving Strategy Knowledge

In the ACCC’s design, the Driving Strategy Knowledge component plays the role of a

knowledge repository in the RSAU to store domain knowledge. Thus, the class

DrivingStrategyKnowledge includes different attributes to deal with different knowledge

types. Like the class DriverPreferenceKnowledge (cf. Section 5.5.3.1), different domain

knowledge after the class instantiation is also saved as individual “.npy” files in a folder

of the local project repository that serves as the knowledge base. After each learning

process, these “.npy” files will be updated. Several sub-attributes are defined to acquire

appropriate data structures for some of these attributes. Table 5.4 provides an overview

of the defined attributes and their sub-attributes representing different domain

knowledge.

The first attribute, reference_middle_level_route_profile, deals with the domain

knowledge about the reference route profile in each segment, which is called the middle-

level route profile in this dissertation. As presented earlier, the highway’s route profile

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 201

from GS to CLZ includes 27663 intermediate route points. From these route points, 27

significant route points representing the intersections are selected from these

intermediate route points to form the high-level route profile, including 26 route segments

(cf. Figure 5.22). These route points are interpreted as each route segment's beginning

and endpoints. Thus, a reference middle-level route profile is defined as an array with

26 elements. Each element represents a single route segment and includes a group of

intermediate route points to describe a more detailed route segment profile. Several sub-

attributes like .x_pos, .y_pos, and .accumulated_distance are then defined to describe

the route segment profile, as indicated in Table 5.4.

Domain Knowledge
Attributes in the class

DriverStrategyKnowledge
Sub-Attributes

+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑥𝑥_𝑝𝑝𝑝𝑝𝑝𝑝
+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑦𝑦_𝑝𝑝𝑝𝑝𝑝𝑝
+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

+𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡 +𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡. 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡
+𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡
+𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡

+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 -
+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 -
+𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 -
+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 -
+ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑠𝑠𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑠𝑠𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑠𝑠𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑠𝑠𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑠𝑠𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+ℎ𝑖𝑖𝑖𝑖ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑠𝑠𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑠𝑠𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Table 5.4: Defined Attributes of Domain Knowledge in the Class DriverPreferenceKnowledge

The RSAU is designed to plan the optimized (i.e., driver-preferred) middle-level driving

strategy. The middle-level driving strategy includes a location-based trajectory of cruise

speed or headway for a single following route segment. Domain knowledge manifested

by several attributes is thus required since the planning task can be interpreted as an

optimization process.

The first preference_weights attribute refers to the weights of driver’s preferences

describing the importance of different criteria like travel time and energy consumption

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

202

(cf. Table 5.1), defined similarly in comparison to the case of class

DriverPreferenceKnowledge. Another attribute refers to the driver’s middle-level

average profile, which is taken as a reference to evaluate the qualities of different

candidate driving strategies. Compared to the attribute high_level_average_profile in

the class DriverPreferenceKnowledge, the high_level_set_travel_profile is defined

similarly. It is used to save the provided high-level average profile provided by the RAU.

The attribute decision_tree describes the search space of candidate cruise speeds and

headways while planning the strategy. The final two learning_rate and discount_factor

attributes represent two application parameters: the learning rate and discount factor.

Both parameters will then be used in a reinforcement learning (RL-) algorithm, which

learns the driver-preferred middle-level driving strategy, namely their preferred location-

dependent trajectory of cruise speed and headway for the intermediate route points.

Since the RSAU requires diverse domain knowledge to complete its tasks, different

methods are defined to complete the learning process. The first learning process

focusing on the segment-wise average driving profile of the human driver is realized by

the method update_average_profile(). For example, the whole route is divided into 26

route segments, as introduced previously. The segment-wise average profile includes

three sub-profiles representing the travel time, the ego-car’s energy consumption, and

the acceleration. Each sub-profile is implemented as an array with 26 elements

representing the 26 route segments. The currently saved average profile

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) will be updated (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) via

update_average_profile() during the learning process by following the same calculation

principle in Equation (5.1) with the learning rate (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) and inputs of the

recorded profile (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙). Each average and current profile can still

further be split into three terms regarding travel time, consumption, and driving comfort

as follows:

• 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

• 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

• 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 203

Due to the high similarity of the calculation approach compared to Equation (5.1), a new

equation is not listed in this section.

Another method used in the learning process is the update_decision_trees(). This

method is implemented to update decision trees. Since the RSAU plans a trajectory of

cruise speed in the case of no preceding car and plans a trajectory of headway once a

preceding car is available as the middle-level driving strategy, two decision trees are

defined. In the decision trees, the candidate driving strategies are not directly saved.

Instead, a matrix of scores representing the strategies’ qualities is included in the trees.

The candidate driving strategies are represented by the data structure of the

implemented decision trees in Python.

Figure 5.24: Data Structure of the implemented Decision Trees in the RSAU of ACCC

Figure 5.24 illustrates an overview of the data structure of the implemented decision

trees. Each decision tree is defined as a 3D array (cf. attribute: decision_trees in Table

5.4). The three dimensions of the array, relate to the route segments, the index of

intermediate route points within the segment, and the candidate cruise speed,

respectively. For example, the whole route includes 26 route segments. Each route

segment includes 200 route points. Due to the ego-car’s maximum speed of 140 km/h,

there are 141 candidate cruise speeds once the resolution is set to 1 km/h. Thus, a

26x200x141 array can describe the decision tree of candidate cruise speed. Following

M x Candidate Cruise Speed: [0 140]

L x
 In

de
x

of
In

te
rm

ed
ia

te
 R

ou
te

 P
oi

nt Score

Score

Score Score

Score

Score

M x Candidate Headway: [1.5 4.0]

L x
 In

de
x

of
In

te
rm

ed
ia

te
 R

ou
te

 P
oi

nt Score

Score

Score Score

Score

Score

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

204

a similar principle, the 3D array of the candidate headway can be defined. This

dissertation sets the valid value range of the headway from 1.5 to 4.0 seconds, and the

value resolution for headways’ state segmentation is set to 0.1 seconds. Thus, the

scores representing the qualities of candidate driving strategies can be saved as an

element in the 3D array, as illustrated in Figure 5.24.

Learning the human driver’s driving preferences for cruise speed and headway is

realized by updating the saved scores in the 3D array. The Q-learning algorithm (cf.

Section 2.4.1) for reinforcement learning is applied to realize this learning process. The

previously mentioned learning rate and discount factor are also used in the Q-learning

algorithm.

Generally, it can be understood that the Q-learning algorithm builds a function for

updating the score (𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) based on the original score (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) saved in

the array and a calculated reward. In addition, two application parameters, learning rate

and discount factor (cf. Table 5.4) will also be used as follows:

𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

∙ �𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚

− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�

(5.2)

The reward calculation is completed based on three terms: travel time, consumption,

and driving comfort. For calculating the terms, the driver’s preference weights (𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,

𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, cf. Table 5.1) are used. Since fundamental theories about the

Q-learning algorithm have been introduced in Section 2.4.1, a detailed calculation path

for updating the score will not be introduced in this section. However, it was well-

formulated in a previously published paper [122].

As introduced in Section 5.2.2, the RSAU (route-segment-based adaptation unit)

includes the functionality of predicting the future context of the driving environment. For

this purpose, a machine learning-based prediction approach relying on kernel density

estimation (KDE) is applied in the RSAU (cf. Section 2.4.2).

Since the KDE’s prediction relies on a density distribution of the preceding cars’

behaviors, an attribute distribution_pred_behaviors (cf. Table 5.4) is defined in the class

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

205

DrivingStrategyKnowledge to save the distribution. In the implementation, this

distribution is defined as a 3D array. Figure 5.25 provides an overview of the data

structure of the 3D array. The 3D array for storing the preceding cars’ behavioral density

distribution differs from the 3D array for storing the scores of candidate driving strategies.

This array is constructed by concatenating several sub-arrays representing the density

distribution for individual route segments, marked in different colors within Figure 5.25.

Figure 5.25: Data Structure of the Implemented Preceding Car’s Behavioral Density Distribution

For example, a route includes 26 route segments separated by several route points

representing the intersections. The 3D array will then include 26 colored sub-arrays.

Since there are still many route points to form sub-segments within each segment, the

sub-array can be further divided into several 2D arrays. Each 2D array corresponds to

the distribution for a single route point. The state-space of the preceding car’s speed is

divided into 141 states, representing 0 km/h to 140 km/h (with a resolution of 1 km/h).

Thus, a density distribution regarding the preceding car’s speed for the next route point

depending on its current speed for the actual route point can be formulated and saved

in the 2D array. In this 2D array, the density values in corresponding speed-dependent

M x Candidates of Next Speed: [0 140]

M
 x

 C
an

di
da

te
Pr

ev
io

us
Sp

ee
d:

 [0
 1

40
]

density

density density

density

density

densityM x Candidates of Next Speed: [0 140]

M
 x

 C
an

di
da

te
Pr

ev
io

us
Sp

ee
d:

 [0
 1

40
]

density

density density

density

density

density
M x Candidates of Next Speed: [0 140]

density

density density

density

density

density

M
 x

 C
an

di
da

te
s o

fC
ur

re
nt

Sp
ee

d:
 [0

 1
40

]

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

206

contexts are located. A method update_distribution_pred_behaviors() is defined in the

class DrivingStrategyKnowledge to implement the learning of the preceding car’s

behavior distribution by updating the densities in the array.

The concrete calculation path for this update process was already included in the

theoretical fundamentals of KDE (cf. Section 2.4.2) and thus will not be introduced in

this section. Compared to the original KDE, the only implementation difference is that

the overall density distribution is normalized (to keep the maximal density value in the

distribution always equal to one) after each learning process. Thus, the influence of the

new upcoming density distribution will be appropriately considered.

In this implementation of this dissertation, the KDE prediction is strongly simplified by

considering a single influencing parameter of the distribution (i.e., the preceding car’s

current speed) to reduce implementation complexity. Theoretically, more input

parameters can also be considered. A previously published paper can provide more

details about the KDE-based prediction with multiple influence parameters like the

preceding car’s previous acceleration and speed [70].

The final method, request_knowledge(), is defined as an example in this dissertation to

demonstrate UC4: knowledge sharing between knowledge components across layers

(cf. Section 5.3.4). The RSAU calls this method to acquire the previously mentioned

driver’s preference weights (cf. Table 5.1). On the other side, the defined method

share_knowledge() in the class DriverPreferenceKnowledge of RAU is responsible for

answering the request from the RSAU.

5.5.4.2 Driving Strategy Monitor

After introducing the class DrivingStrategyKnowledge, the next defined class is

DrivingStrategyMonitor, which is applied to generate a symptom for the RSAU after

instantiation. For this reason, a method generate_middle_level_symptom() is defined in

this class. A sub-class Symptom is defined to specify the data structure of the symptom.

5.5.4.3 Driving Strategy Analyzer

The next class, DrivingStrategyAnalyzer, is defined in the RSAU to analyze the current

context manifested by the symptom. For this purpose, a method

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 207

analyze_middle_level_symptom() is defined in this class. In this method, several

subtasks are completed. As presented earlier, the route is divided into different route

segments by significant route points representing intersections. Since the RSAU

focuses on planning the driving strategy for individual route segments, it only plans a

trajectory of cruise speed and headway as the middle-level driving strategy until the end

of the following segment. Thus, it is required that the RSAU knows which route segment

the ego-car is facing. This is completed by an internal method defined in the method

analyze_middle_level_symptom() based on the reference middle-level route profile (cf.

Table 5.4) and the ego-car’s current location.

After identifying the current route segment, the driving strategy analyzer aims to identify

whether it is necessary to request (re-)planning the middle-level driving strategy. In the

implemented driving strategy analyzer, a state machine including three states and

corresponding transition conditions is defined, as illustrated in Figure 5.26.

Figure 5.26: State Machine Implemented in the Method analyze_middle_level_symptom() of Driving

Strategy Analyzer

With the help of this state machine, the driving strategy analyzer can identify the current

state regarding the preceding obstacle, which in the built co-simulation is represented

by the preceding car. Other traffic participants like pedestrians are not considered in the

simulation. There are three cases where the driving strategy analyzer would request

(re-)planning of the middle-level strategy:

• The ego-car enters the next route segment.

• The radar sensor detects a visible preceding car.

No preceding
obstacle is available.

A virtual preceding
obstacle is available.

A visible preceding
obstacle is available.

Initialize
Radar sensor has

detected a preceding
obstacle.

Radar sensor hasn’t detected a
preceding obstacle within its

full sensing range. &&
The ego-car’s orientation is
overlapped with the route

orientation.

Radar sensor has lost
the detected

preceding obstacle.

Radar sensor has
detected a preceding
obstacle.

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

208

• The ACCC has confirmed that the previously detected invisible virtual preceding

obstacle is gone.

For example, the RSAU would be initialized with the state “No preceding obstacle is

available” at the beginning of the trip. In this case, once the ego-car enters a new route

segment, a middle-level strategy consisting of the trajectory of cruise speed until the end

of the route segment would be (re-)planned. Once the radar sensor has detected a

preceding car, which in this dissertation is called a “visible preceding obstacle” (cf.

Figure 5.26), a replanning of strategy would be performed since a trajectory of headway

until the end of the route segment is required. In the case of such a visible preceding

obstacle, the trajectory would also be updated once the ego enters a new route segment.

Compared to classical ACC and its variants currently on the market, a significant

difference in ACCC is its memory capability. As introduced in Section 3.5.2, current

ACCs may accelerate the ego-car before a curve once a previously detected preceding

car becomes invisible due to the curve for the radar sensor. Thus unfavorable

deceleration after the curve may be caused.

The ACCC deals with such an invisible preceding car in another way. Instead of

forgetting it, the ACCC keeps the previously detected preceding car in memory as a

virtual obstacle and considers its influence while (re-)planning the headway. For this

purpose, another method, predict_pred_behaviors(), is defined in the class

DrivingStrategyAnalyzer. In this method, the KDE algorithm (cf. Section 2.4.2) is applied

to forecast a location-based trajectory of the preceding car’s speed along with the

intermediated route points in the focusing route segment until its endpoint. Since the

underlying principle of the algorithm has been introduced in Section 2.4.2, more detail

will not be included in this subsection. Generally, it can be understood that the prediction

is completed relying on the saved density distribution in the ACCC’s knowledge base,

as introduced in Figure 5.25. The speed profiles with the highest density values for

individual route points will be taken and combined as a trajectory to describe the

predicted preceding obstacle’s driving behaviors.

The virtual obstacle would be deleted from the ACCC’s memory only when two

conditions are fulfilled:

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 209

• The radar sensor cannot detect the preceding obstacle within its full sensing

range (implemented configuration: 400 m, ±15°),

• The ego-car’s orientation overlaps with the route’s orientation (evaluated by a

threshold value of orientation difference: ±10°).

In such a case, the ACCC would assume that the previously detected preceding

obstacle is no longer relevant for planning the middle-level driving strategy.

5.5.4.4 Driving Strategy Planner

If the driving strategy analyzer requests the planning of the middle-level driving strategy,

the driving strategy planner would be activated to complete the planning task.

Depending on the current state regarding the preceding obstacle, the driving strategy

includes either a location-based trajectory of cruise speed or headway. Once the

preceding obstacle is available (either visible or virtual), its predicted driving behaviors

will also be taken as inputs during the planning of the driving strategy.

The class DrivingStrategyPlanner defines a method generate_driving_strategy() to deal

with the planning task. As presented earlier, a Q-learning algorithm is applied to learn

the driver’s middle-level driving preferences, which refers to their preferred cruise

speeds and headways for different intermediate route points. The candidate cruise

speeds and headways are quantitatively evaluated with scores and saved in the ACCC’s

knowledge base (cf. Figure 5.24). Based on these scores, the planning task becomes

substantially simpler. The candidate cruise speed and headway with the highest score

for each intermediate route point within the current route segment will be taken and

combined into a trajectory. While planning the trajectory of headway for the ego-car, the

predicted preceding car’s driving behaviors in the form of a location-based speed

trajectory will also be taken as output to transfer into the driving strategy executor.

5.5.4.5 Driving Strategy Executor

As introduced in the ACCC’s design, the driving strategy executor is applied to

decompose the planned middle-level driving strategy and convert it into an appropriate

form. For this purpose, a method decompose_driving_strategy() is defined within the

class DrivingStrategyExecutor.

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

210

Within this method, interpolation functions are generated based on the planned driving

strategy of the ego-car:

• 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓�𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐, 𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐�, with 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐, 𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐

representing the ego-car’s current location

• ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓�𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐, 𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐�, with 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐, 𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐

representing the ego-car’s current location

Additionally, the predicted preceding car’s location-based future speed trajectory is

converted into a time-dependent interpolation function:

• 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑐𝑐𝑐𝑐𝑐𝑐 =

𝑓𝑓�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐�, with

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐 representing the accumulated

disappeared time duration of the preceding car, which is derived from the

predicted preceding car’s speed profile and the reference middle-level route’s

distance profile

In the implemented ACCC prototype, these interpolation functions replace the

decomposed middle-level driving strategy in the original design. After the interpolation

functions are built, they are taken as outputs to transfer into the subsystem cycle-time

based control unit (CTCU) deployed on the lowest layer of the ACCC’s hierarchical

architecture.

5.5.5 Cycle-Time-Based Control Unit in Implemented Technical System

The cycle-time-based control unit (CTCU), as the subsystem deployed on the lowest

layer of the ACCC’s hierarchical architecture, is designed to realize interactions with the

physical world by taking over its longitudinal control while the ego-car is driving. A class

CycleTimeBasedControlUnit is defined to implement the prototype. Since the CTCU

also follows the design principle based on the same “SICA-K” component structure, five

additional classes for the CTCU’s included components are defined. Figure 5.27

provides an overview of these classes and their included accompanying methods.

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 211

Figure 5.27: Class Diagram for the Construction of Cycle-Time-Based Control Unit

Although the CTCU in the original design of the ACCC includes a learning ability, such

ability is excluded in the implemented prototype of this dissertation to reduce

implementation complexity. Thus, unlike the other two subsystems, the class

CycleTimeBasedControlUnit only has a defined method calling() without the method

learning(). When calling the method calling() is called, the other classes and particularly

their included methods will be called to complete the control task. The following sections

will introduce more details about these classes and their methods.

5.5.5.1 Parametrization Knowledge

Like the driver preference knowledge and the driving strategy knowledge components,

there is also a Parametrization Knowledge component in the CTCU that plays the role

of the knowledge repository. Several attributes are defined within the class

ParametrizationKnowledge to specify different domain knowledge data structures.

Since the CTCU controls the ego-car in its longitudinal direction, a PID controller is

implemented in the CTCU prototype. Thus, the CTCU requires an appropriate

parameterization for P-, I-, and D-elements. For this reason, the attributes k_p, k_i, and

k_d are defined and will be initialized during class instantiation. As previously discussed,

the learning ability is excluded in the implemented CTCU. Thus, the controller

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

212

parametrization would always stay the same in the whole evaluation based on the built

co-simulation.

As introduced in Section 5.2.4, the CTCU is designed as a time-triggered subsystem.

Thus, another attribute, delta_t_for_decomposition, is defined in the class

Parametrization Knowledge to specify CTCU’s cycle time knowledge. During the class

instantiation, this attribute is initialized with the cycle time of the overall co-simulation.

The final attribute, middle_level_set_travel_profile, is defined to deal with the provided

inputs by the RSAU. The three interpolation functions mentioned in the previous

subsection will be assigned to this attribute in the implemented prototype.

5.5.5.2 Measurement Component

The second defined class is the MeasurementComponent, including a method

generate_symptom(). This method is designed to preprocess and aggregate the

acquired sensory data. In the implemented prototype, the method is realized more

simply by only assigning acquired data values to corresponding variables to form the

symptom with an appropriate data structure.

5.5.5.3 Analyzer

The Analyzer in the CTCU is designed to analyze the context included in the acquired

symptom to decide whether it is required to take the set cruise speed or the set headway

as its reference variable. Thus, an internal algorithm to detect the preceding car is

implemented in the method analyze_low_level_symptom(). In this algorithm, a

preceding car will be detected as visible by the radar sensor once it is located within its

sensing range (400 m) and sensing angle (±15°). The preceding car’s availability will

then be included in the Analyzer’s output and sent to the Controller.

5.5.5.4 Controller

As illustrated in Figure 5.27, a further class Controller is defined for implementing the

CTCU. Since the controller works based on the classical feedback control approach, an

algorithm for realizing PID control is implemented within an included method

update_control_strategy(). In the implementation, the D-element is eliminated by

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 213

initializing with zero since the PI controller is widely used as a classical approach in ACC

variants [77][123].

The input of the update_control_strategy() is the planned middle-level driving strategy

from the RSAU. As introduced in Section 5.5.4.5, three interpolation functions are

included as implementation examples in the planned middle-level driving strategy.

These interpolation functions are used here to generate the set values of the reference

variable. For example, the function 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓�𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐, 𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐�

can provide a set value of the driver-preferred cruise speed depending on the ego-car’s

current location. The function ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓�𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐, 𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑟𝑟� can

generate a set value of the driver-preferred headway.

Following the basic control concept (cf. Section 2.1.1), the PI controller works based on

the input of control error, calculated as the deviation between the set value of the

reference variable and the current value of the controlled variable (cf. Figure 2.2). There

is no problem getting the controlled variable's current value in the case of a visible

preceding car by the radar sensor since the current headway can be acquired. However,

suppose the preceding car is not visible and virtually “saved” in the ACCC’s memory. In

that case, the radar sensor cannot “see” the preceding car, and thus is impossible to

provide the current headway.

Facing this issue, the final interpolation function 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐 =

𝑓𝑓�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐� is designed and integrated into the

RSAU’s planned middle-level driving strategy. During the CTCU’s operation, the time

point when the preceding car disappears would be recorded to calculate the preceding

car's accumulated disappeared time duration. Once a preceding virtual car becomes

visible by the radar sensor, the recorded accumulated disappeared time will be reset to

zero. The calculated disappeared time duration will then be taken as input to calculate

the invisible preceding car’s travel distance during its invisible period. From another

perspective, the ego-car’s travel distance during this period can also be calculated with

the help of its speed profile. Thus, current headway can be derived from the deviation

between both cars’ travel distances.

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

214

After the control error is determined, it will then be transferred into the implemented

function of the PI controller. Since the underlying algorithm of the PI controller is already

well-known, its detailed calculation processes will not be described in this subsection.

More details can be found in relevant literature [9][124].

5.5.5.5 Final Control Component

A class FinalControlUnit with a method decompose_control_strategy() is defined in the

implementation. The Final Control Unit serves to decompose the determined control

strategy by the Controller. In the implemented prototype, the method

decompose_control_strategy() forwards the determined values of manipulated variables

for controlling the ego-car’s acceleration and deceleration (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑐𝑐𝑐𝑐)

directly to the ego-car’s model built in the physical system (cf. Section 5.5.2.3) due to

the lack of predictive planning of the implemented prototype of Controller. Once the

controller is implemented, e.g., based on the model predictive control (MPC) concept, it

will provide a value trajectory of manipulated variables instead of individual value. Thus,

the method decompose_control_strategy() could then include a more complicated

algorithm to decompose the trajectory into single values for each running cycle of the

feedback control loop.

5.6 Evaluation of Artificial Cognitive Cruise Control

In the previous section, implementation details of the ACCC prototype were intensively

discussed. As presented at the beginning of Section 5.5, this dissertation aims to build

a co-simulation platform to evaluate the ACCC prototype’s performance after

implementing the prototype. In this section, more detail about the evaluation work will

be provided.

5.6.1 Hypotheses

For evaluation of the implemented ACCC prototype, this dissertation has selected

several alternative approaches as candidates to build a performance benchmark. Since

the ACCC aims to learn the preferences of a human driver, manual driving is taken as

one reference approach. In addition, the classical ACC based on the basic control is

also selected as a further candidate approach in the benchmark since the ACCC can

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 215

also be interpreted as a further improvement of the classical ACC. Thus, two hypotheses

are proposed based on the candidate approaches in the dissertation, which will then be

validated within the following evaluation work:

• Hypothesis 1: The ACCC realizes a higher performance quality of the ego-car’s

longitudinal control than the classical ACC based on a statically parametrized

PID controller.

• Hypothesis 2: The ACCC shows a higher performance quality in the ego-car’s

longitudinal control than the human driver’s manual driving.

After proposing the hypotheses to be validated, a systematical quantitative evaluation

of different approaches’ control performances must still be performed. Thus, this

dissertation has used the previously mentioned criteria regarding travel time, energy

consumption and driving comfort (represented by the ego-car’s acceleration), and their

weights (𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.4, 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 = 0.4, 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.2, cf. Table 5.1) were used while

learning the driver’s preferences and planning strategy by the ACCC to complete the

benchmark. A cost function to quantitatively evaluate the performed strategy’s quality

after each trip by using three candidate approaches is built as follows:

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∙ 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (5.3)

Equation (5.3) states that the final quality depends on a basic quality (initialized with a

constant of 100 in the implementation) and a so-called quality coefficient. The quality

coefficient describes the fulfillment of the driver’s preferences, which thus takes the

preference weights into account during the calculation as follows:

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
= 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

(5.4)

As illustrated in Equation (5.4), the quality coefficient consists of three terms:

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , which are respectively calculated by

following equations as follows:

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

216

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 2 ∙ (
1

1 + 𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
− 0.5) (5.5)

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 2 ∙ (
1

1 + 𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

− 0.5)

(5.6)

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 2

∙ (
1

1 + 𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜) − 𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

− 0.5)

(5.7)

In the equations above, all profiles (𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥) represent

a value trajectory of corresponding variables. The deviation between two profiles means

the average value derived from both trajectories' deviations of values. The designed

equations above guarantee that the output values are always normalized between -1

and 1. The preference weights (𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, and 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) are also normalized

with a sum of 1. Thus, the calculated quality coefficient will always stay within the value

range between -1 and 1.

5.6.2 Alternative Candidate Approaches within the Benchmark

As introduced in the previous section, two additional candidate approaches are planned

within the performance benchmark to evaluate the implemented ACCC prototype. For

this purpose, a classical ACC with the basic control (cf. Section 3.1), including a PI

controller (without planning and prediction functionalities), and a human driver model for

simulating manual driving were also implemented. The following sections will introduce

more implementation details about both candidate approaches.

5.6.2.1 Manual Driving with Human Driver Model

The SUMO community has developed various human driver models, like Kauss’s car-

following model [125] and Erdmann’s lane-change model [126]. Since the ACCC only

focuses on the ego-car’s longitudinal control, Treiber et al.’s intelligent driver model

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 217

(IDM), a well-known car-following model, is used to implement the human driver model

in this dissertation [127]. The IDM describes the driving dynamics of a single car by

calculating the car’s set acceleration (i.e., the human driver’s preferred

acceleration/deceleration) for the next time step based on the current context regarding

the preceding car. In this case, the human driver’s driving activities in the ego-car’s

longitudinal direction are simplified as a decision-making process of the car’s

acceleration. Several fundamental equations as follows are defined in the IDM.

Equation (5.8) aims to calculate the ego-car’s acceleration in the case of an open road

without any preceding car as an obstacle. Nevertheless, an additional interaction term

represented by Equation (5.9) must be considered when a preceding car is available. In

this case, the ego-car’s acceleration can be calculated by integrating both previous

equations (cf. Equation (5.10)).

𝑣̇𝑣𝑒𝑒𝑒𝑒𝑒𝑒
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(1− (

𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒
𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

)𝛿𝛿) (5.8)

𝑣̇𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(
𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑒𝑒𝑔𝑔𝑜𝑜
+

𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒 ∙ ∆𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒
2�𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

) (5.9)

𝑣̇𝑣𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑣̇𝑣𝑒𝑒𝑒𝑒𝑒𝑒
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑣̇𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (5.10)

The variables included in the equations above are illustrated as follows in Table 5.5:

Variable Meaning Physical
Unit

𝑣̇𝑣𝑒𝑒𝑒𝑒𝑒𝑒
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 Ego-car’s set acceleration in the case of an open road (without

a preceding car)
[m/s2]

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 Ego-car’s maximal acceleration [m/s2]
𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒 Ego-car’s current velocity [m/s]

𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 Ego-car’s desired velocity (e.g., preferred by the human driver) [m/s]
𝛿𝛿 Acceleration exponent (as an application parameter, usually set

to 4)
[-]

𝑣̇𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 Reduction of ego-car’s acceleration due to interaction with a
preceding obstacle (e.g., a preceding car)

[m/s2]

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 Minimum spacing (ego-car is not permitted to move forward
once its distance to the preceding car is lower than the minimum
spacing.)

[m]

𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Ego-car’s desired headway to the preceding obstacle (e.g.,
preferred by the human driver)

[s]

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

218

𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Ego-car’s current distance to the preceding car (the ego-car’s
length shall be excluded in this distance)

[m]

∆𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒 Velocity difference of ego-car and the preceding car [m/s]

𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Ego-car’s comfortable braking deceleration (a positive number,
e.g., preferred by the human driver)

[m/s2]

𝑣̇𝑣𝑒𝑒𝑒𝑒𝑒𝑒 Ego-car’s set acceleration [m/s2]

Table 5.5: Variables and Their Meanings in the Equations of Intelligent Driver Model (IDM) [127]

Equation (5.10) illustrates that the original IDM’s output is the ego-car’s set acceleration.

Finally, the determined set acceleration of the ego-car is used in the implementation to

calculate representative control commands (𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) so that the ego-

car’s model can provide a final set speed for the ego-car. For this purpose, the

predefined maximal acceleration (+2.8 m/s2) and deceleration (-2.6 m/s2) of the ego-car

are used to ensure that the control commands’ values can be normalized between [0 1]

and [-1 0] (cf. Table 5.2). Subsequently, the set speed is forwarded to the SUMO

simulation since SUMO provides a method traci.vehicle.setSpeed() in its interface to

visualize the ego-car’s movement (cf. Section 5.5.2.3).

As indicated in Table 5.5, values of several application parameters in the equations like

𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are driver-dependent, which means that different drivers may have

different value configurations. Thus, this dissertation extends the original IDM by

integrating a recorded real driving data pool, covering an anonymous driver’s driving

behaviors during 600 repeated trips on the federal highway B241 in both directions

between the city CLZ and GS in Germany.

5.6.2.2 Longitudinal Automated Driving with Classical ACC

In addition to the IDM, a classical ACC based on the PI controller was also implemented.

Compared to the controller in the implemented ACCC prototype, there is no significant

difference in the ACC’s implementation. The only difference is that the ACCC’s controller

generates the set values of cruise speed or headway by itself, relying on the learned

preferences of the human driver. However, in the case of classical ACC, these set

values are directly generated from the recorded driving data (cf. Figure 5.16). Since the

recorded driving data includes paired speed and location of the ego-car (represented by

GPS positions), the speed value with the minimal distance compared to the simulated

ego-car’s current location is taken as the human driver’s preferred set cruise speed.

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 219

Since the driving data does not include the headway profile, the driver-preferred set

value of headway is derived relying on an interpolation function as follows:

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐

=
ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 − ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐

∙ �𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑒𝑒𝑒𝑒𝑜𝑜−𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐� + ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐

(5.11)

In Equation (5.11), the application parameters ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 and ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐

are initialized with 1.5 and 4.0 seconds. The 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 are initialized with 0

and 140 km/h.

Subsequently, the generated set values of the cruise speed and headway are

transferred into the implemented algorithm in the PID controller. This dissertation will

not include more details since such an algorithm in the PID controller is already well-

known. It is emphasized that the PID controller has the same parametrization compared

to the controller in the CTCU of the ACCC. Such an approach guarantees that the ACCC

and the classical ACC can have a more comparable basis within the benchmark and

thus makes the evaluation results more meaningful.

5.6.3 Evaluation Framework

After introducing the implementation details of alternative candidate approaches in the

benchmark, it is necessary to provide an overview of the evaluation framework. This

section describes the test scenarios and the design of experiments included in the

evaluation work.

As introduced in Section 5.5.1, the federal highway B241 between the city CLZ and GS

(cf. Figure 5.17) is simulated within the built co-simulation platform to evaluate the

ACCC’s performance. For this reason, the implemented driver model representing the

human driver’s manual driving and the classical ACC is also evaluated with the help of

this simulated highway.

Since the anonymous driver's recorded manual driving data pool (cf. Figure 5.16)

contains 600 trip profiles (including 300 trips from GS to CLZ and 300 trips from CLZ to

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

220

GS), the planned test scenarios in the simulation address these trips. A user story is

summarized to describe an overview of the simulation as follows:

A human driver lives in the city GS and works in the city CLZ in Germany.

The driver frequently drives from home to his workplace at 8 a.m. and

drives back home after work every day on the weekdays. If the driver

drives the ego-car manually, the ACCC observes the driver’s manual

driving. After each trip, the ACCC learns the driver’s driving preferences

based on the observed driving profile during trips. Once the driver wants

to be released from the routine driving task, the ACCC is activated to take

over the ego-car’s longitudinal control. In such a case, the ACCC tries to

fulfill the learned preferences as much as possible. Alternatively, the

driver can also activate the classical ACC to control the ego-car.

Two separate experiments were designed for the ACCC’s evaluation with this user story

in mind. Each experiment focuses on simulating 300 one-way trips either from GS to

CLZ or from CLZ to GS. Figure 5.28 indicates the process flow of each experiment.

Figure 5.28: Process Flow of the Evaluation Work for the Performance Benchmark

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 221

As illustrated in Figure 5.28, multiple simulation cycles, including individual trip

simulations with different candidate approaches using the human driver model, the

ACCC, and the classical ACC, are planned. After each simulation with the human driver

model, the ACCC would be triggered to learn the driver’s preferences. After each trip is

simulated with all three candidate approaches, a single simulation cycle is completed.

Qualities of different performed control strategies will be calculated based on Equation

(5.3) and compared to complete the performance benchmark. Thus, the best candidate

approach can be identified.

5.6.4 Analysis

After designing the experiments, this dissertation has simulated the planned 600 trips

with the help of the developed co-simulation platform to evaluate the performance of the

implemented ACCC prototype. The evaluation results will be illustrated and analyzed in

detail in this section.

Before introduction of the final evaluation results of the performance benchmark

between the human driver model, the classical ACC, and the ACCC, it is meaningful first

to evaluate the performance of applied individual machine learning algorithms (e.g., the

Q-learning algorithm and the KDE) in the ACCC. Applying these two algorithms for

planning the ego-car’s driver-preferred driving strategy and predicting the preceding

car’s driving behaviors in the implementation of this dissertation is not a blind decision.

Instead, this decision is based on the previous papers’ research results [70][122], which

are the basis of this dissertation. Thus, this dissertation did not separately evaluate the

algorithms again.

Instead, the following sections will briefly summarize previous research work to explain

why these two algorithms are selected for implementation in this dissertation. The final

performance benchmark results between the manual driver, the classical ACC, and the

ACCC based on the built co-simulation platform implemented in this dissertation will

subsequently be introduced at the end of this section.

5.6.4.1 Performance of Planning Driving Strategy by Q-Learning Algorithm

The previous research [122] evaluated the Q-learning algorithm based on a simulation

environment in three different test scenarios: (1) urban areas, (2) extra-urban areas, and

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

222

(3) motorways. Inspired by Porsche’s “InnoDrive” (cf. Section 3.4), dynamic

programming (DP) was selected as an alternative approach to complete the

performance benchmark with the Q-learning algorithm. Since detailed concepts have

been introduced in [123], this dissertation will not present all detail. Both candidate

approaches in the benchmark were designed to plan an optimized driving strategy

consisting of a location-based trajectory of set speed for a sequence of predefined

intermediate geographical points on a given route, similar to the concept of this

dissertation. Following the planned strategy, the ego-car aims to arrive at the destination

under a given constraint of travel time by saving energy consumption as much as

possible. Other traffic (e.g., a preceding obstacle) was ignored in the simulation.

The previous research [122] used a statistical driver model called “Move3F” to generate

the human driver’s driving behaviors in the simulation environment. A total of 900 trips

(300 trips in urban areas, 300 trips in extra-urban areas, and 300 trips on motorways)

were simulated. After each trip, the Q-learning and DP algorithms were (re-)trained to

plan a driving strategy with the highest quality.

Figure 5.29: Performance Benchmark of Dynamic Programming (DP) and Q-learning (learning rate:

0.001, discount factor: 0.001) for Extra-Urban Areas [122]

Figure 5.29 shows an overview of the evaluation results for the test scenario of extra-

urban areas. The left-side figure indicates that either the Q-learning or the DP algorithm

guaranteed the fulfillment of the timing constraint, which was taken as the human driver’s

average travel time. The figure on the right shows that the ego-car could also save

energy consumption by relying on the planned driving strategy. For the extra-urban

scenario, almost 9.8% of the energy consumption can be saved using DP compared to

70

69

68

67

66

65

64

63

62

61
0 50 100 150 200 250 300

Number of Learning Tracks

Time by DP
Driver's Average Time
Time by Q-Learning

Tr
av

el
 T

im
e

of
 P

la
nn

ed
 D

riv
in

g
S

tra
te

gy
 in

 [m
in

]

18

16

14

12

10

8

6

4

2

0
0 50 100 150 200 250 300

Number of Learning Tracks

Saving Potential by DP
Saving Potential by Q-Learning

Sa
vi

ng
 P

ot
en

tia
l o

f V
eh

ic
le

 C
on

su
m

pt
io

n i
n [

%
]

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 223

the driver’s average profile. However, the Q-learning algorithm's saving potential is up

to 16.5%, namely 6.7% higher than the DP algorithm.

Similar evaluation results were also found for the test scenarios of urban areas and

motorways. Ater 300 learning iterations, the DP algorithm achieved an energy-saving

potential of nearly 20% (cf. Figure 5.30, the blue line in the left-side figure) in the urban

scenario. Compared to the DP algorithm, the Q-learning algorithm achieved a higher

saving potential of 26%. In the motorway test scenario, the Q-learning algorithm also

achieved a higher potential of 11% for saving energy consumption than the DP (6.5%).

Figure 5.30: Performance Benchmark of Dynamic Programming (DP) and Q-learning (learning rate:

0.001, discount factor: 0.001) for Urban Areas and Motorways [122]

Evaluation results in previous research [122] indicated that the Q-learning algorithm is

meaningful for planning the driving strategy with great optimization potential. Thus, this

dissertation has used Q-learning again in the ACCC since one of its core functionalities

is designed to plan the driver-preferred optimized driving strategy. The only difference

compared to the previous research is that the cost function for the optimization process

has changed. The same cost function introduced in Section 5.6.1 (cf. Equations (5.3)–

(5.7)) was used in the Q-learning algorithm.

5.6.4.2 Performance in Predicting Preceding Car’s Behaviors by Kernel Density

Estimator (KDE)

Similar to the case of Q-learning, the decision to apply KDE for predicting the preceding

car’s driving behaviors in the ACCC is made based on another research work [70] as

the basis of this dissertation. This previous research implemented four candidate

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

224

approaches: (1) KDE, (2) NARX (recurrent neural network), (3) clustering of driving

styles with polynomial approximation, and (4) clustering of driving styles with the

average profile.

For the candidate approaches (3) and (4), the recorded driving behaviors consisting of

location-based speed trajectories of the preceding cars are firstly categorized into three

classes using the ML-based clustering algorithm k-means, as illustrated on the left side

of Figure 5.31 (green, red, and blue). The categorized speed profiles in each class can

further be processed to determine a standard profile, which can subsequently be used

for speed prediction. For example, in approach (4), all included speed profiles were used

to derive an average speed profile. Instead, approach (3) used the polynomial

approximation to derive the standard profile, as illustrated on the right side of Figure

5.31. During prediction, it is required to classify which category the current detected

preceding car belongs to and thus decide which standard profile should be used to

derive the future speed of the preceding car.

Figure 5.31: Clustering of Preceding Car Behaviors with k-means (left-side) and Polynomial

Approximation and Average Profile (right-side) [70]

Unlike approaches (3) and (4), approaches (1) and (2) rely on a learned model of the

preceding car’s behaviors. In approach (2), a neural network (input: the preceding car’s

speed for previous route points, output: the preceding car’s speed for the next route

point) is trained based on the recorded speed data. In approach (1), the statistical

density model is built based on the KDE algorithm. This dissertation will not introduce

more details since detailed concepts have been published in previous research papers

[71]. As illustrated in Figure 5.31, all approaches aim to predict a location-based speed

trajectory. The locations are again determined by a sequence of predefined route points.

Sp
ee

d
of

 P
re

ce
di

ng
 C

ar
 [k

m
/h

]

Index of Route Point for Segmentation

Sp
ee

d
of

 P
re

ce
di

ng
 C

ar
 [k

m
/h

]

Index of Route Point for Segmentation

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 225

Figure 5.32: Performance of Candidate Approaches for One-Step Prediction of Preceding Car’s Driving

Behaviors [70]

Another point that needs to be emphasized is that the KDE algorithm considers three

influencing factors (the preceding car’s current acceleration, previous speed, and

current speed) to predict future speed for the following route point. However, this

dissertation reduces implementation complexity by using only one influencing factor: the

preceding car’s current speed. The evaluation results of the previous research [70]

showed that the KDE has a better prediction performance than the other candidate

approaches. It has significantly fewer predicted speed deviations in one-step prediction

(i.e., predicting the preceding car’s speed for a single following route point) than others.

Figure 5.33: Performance of Candidate Prediction Approaches with Multiple Step Sizes of Prediction [70]

In addition, a benchmark of multi-step prediction was also performed in the previous

research work. The results showed that the deviations increase along with the increasing

D
ev

ia
tio

n
of

 P
re

di
ct

ed
 S

pe
ed

 P
ro

fil
e

[k
m

/h
]

Index of Experiments

KDE
NARX
Polynomial Approx.
Average Profile

D
ev

ia
tio

n
of

 P
re

di
ct

ed
 S

pe
ed

 P
ro

fil
e

[k
m

/h
]

Step Size of Prediction

KDE
NARX
Polynomial Approx.
Average Profile

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

226

prediction horizon. However, the KDE still showed a great performance in the task of

multi-step prediction, as illustrated in Figure 5.3320. For this reason, KDE was chosen

as the prediction approach implemented in the ACCC of this dissertation for predicting

the preceding car’s speed.

5.6.4.3 Performance Benchmark between the Human Driver Model, ACC, and ACCC

After introducing the separate performance evaluation of the applied machine learning

algorithms in the previous research works, the performance of the overall ACCC will be

introduced in this section. As introduced in Figure 5.28, the ACCC’s evaluation is

completed based on a simulation of 600 trips on the federal highway B241 between the

city Clausthal-Zellerfeld (CLZ) and Goslar (GS) in Germany (300 trips from CLZ to GS,

300 trips from GS to CLZ). Depending on the directions of the trips, they are named

“GS2CLZ” and “CLZ2GS”.

Figure 5.34: Learning of High-level Average Driver Profile in ACCC for the Trip “CLZ2GS”

Along with the simulation of these 600 trips, the ACCC learns the driver’s average trip

profiles. Figure 5.34 shows an example of this learning process, considering the 300

trips from CLZ to GS. The figure indicates that the initialized high average energy

20 The black line without a label is the average deviation considering predicted speed profiles using all
candidate approaches.

H
ig

h-
le

ve
l A

ve
ra

ge
 E

ne
rg

y
C

on
su

m
pt

io
n

[k
W

h]

Trip Index

H
ig

h-
le

ve
l A

ve
ra

ge
 T

ra
ve

l T
im

e
[s

]

Trip Index

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 227

consumption and average travel time converged along with the learning iterations. Since

the 50th trip, the average profiles begin to remain within a quite stable value range.

In addition to learning the driver’s average profile, the ACCC is also designed to take

over the ego-car’s longitudinal control and guide it to the destination considering its

planned optimized driving strategy and predicted preceding car’s behaviors. After the

simulation of all 600 trips, the qualities of performed strategies by the human driver

model, the classical ACC, and the ACCC are quantitatively calculated with the help of

the cost function introduced in Section 5.6.1 (cf. 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 in Equation (5.3)).

The calculated final quality of the performed strategies is illustrated in Figure 5.35. It is

indicated that the quality of all performed strategies was reduced during the simulation

of the first 50 trips. Such a phenomenon arises because the high-level driver’s average

profile, taken as the set travel profile for the ACCC, has changed significantly due to the

learning process illustrated in Figure 5.34.

 Figure 5.35: Quality Benchmark of Manual Driver, classical ACC, and ACCC for the Trip CLZ2GS (left

side) and CLZ2GS (right side)

After that, the quality of the performed strategies performed by the human driver model,

the classical ACC, and the ACCC changed due to the nondeterministic property of traffic

simulation. However, the changes converge and stay within limited value ranges. For

the trip “CLZ2GS”, although the ACCC does not always realize a better-qualified driving

strategy than the human driver and the classical ACC, it still has a clear potential for

optimizing the driving strategy’s quality. Compared to the human driver model and the

classical ACC, the ACCC has achieved a better quality for around 35.2% of 300 trips.

Artificial Cognitive Cruise Control as Experimental
Application of Generic Architecture Style

228

The average quality of the human driver model and the classical ACC is quite similar:

around 112.1 and 112.9. Instead, the average quality of the ACCC is lower than the

others (around 100.2). However, for the trip “GS2CLZ”, the ACCC shows a significantly

better quality profile than the human driver and the classical ACC (for around 98.5% of

300 trips). In this case, the average quality of the human driver and the classical ACC is

around 111.2 and 72.9. Compared to them, the average quality of the ACCC is much

higher and around 128.5.

Based on the discovery above, the proposed hypotheses summarized in Section 5.6.1

can be confirmed. The implemented ACCC can realize a higher performance quality of

longitudinal control than the classical ACC and the human driver’s manual driving.

Although the evaluation results for the trip “CLZ2GS” are not idealized, it does not mean

that the ACCC works definitively worse than the classical ACC and the human driver.

Since the ACCC is designed as a self-learning system, the illustrated potential of

increasing the quality of longitudinal control has still not reached its limitation. By

learning more diversified profiles of the human driver’s manual driving, the quality of the

ACCC’s performed control strategy may further increase. However, such a plan requires

a more comprehensive data recording for the human driver’s driving behaviors and is

thus excluded from this dissertation's evaluation.

5.7 Summary

After evaluating the generalization capability of the proposed generic architecture style,

it is meaningful to evaluate its feasibility in concrete applications. For this purpose, a

further ACC variant called artificial cognitive cruise control (ACCC) is designed and

implemented in this dissertation. This chapter focuses on the introduction to the ACCC.

First, some preliminary ideas about the system design of the ACCC were introduced in

this chapter. Subsequently, the generic architecture style was applied to instantiate a

system architecture. Subsystems like the physical system, the route-based adaptation

unit, the route-segment-based adaptation unit, and the cycle-time-based control unit

included in the system architecture were presented in detail. Different generic

communication patterns are allocated to appropriate use cases to evaluate the dynamic

system behaviors.

Artificial Cognitive Cruise Control as Experimental

Application of Generic Architecture Style

 229

The designed ACCC was also implemented as a simplified prototype in this dissertation.

The implemented prototype is subsequently evaluated within a co-simulation

environment based on an anonymous human driver's previously recorded driving data.

A benchmark compared to the classical ACC and the human driver was also included

and introduced in this chapter. The benchmark results showed that the ACCC could

learn and fulfill the driving preferences of the human driver. Compared to the standard

ACC and the human driver, there is a significant performance improvement in satisfying

the driving preferences of the human driver.

Since the driver during the ACC’s operation is still required to participate in the driving

task by steering the car, such a concept can massively increase the driver’s reliance on

the ACC and the performance of the overall semi-automated driving. In a more general

sense, the concept of ACCC makes the driver more able to take over vehicle control in

urgent cases that the (semi-)automated system cannot handle. Thus, the concept of

such a driver-individual self-learning system may also be meaningful in developing the

autonomous driving system with an automation level of L3+.

 Conclusion

 231

6 Conclusion

Chapter 6 aims to conclude the whole dissertation. A summary of the dissertation will

first be first provided. Limitations of the dissertation are then discussed, identifying

concrete pain points, and, if necessary, presenting corresponding potential approaches

to eliminate them. Since this dissertation can inspire and contribute to far future work in

other research directions, recommendations for future research are also included at the

end of this chapter.

6.1 Summary of this Dissertation

This dissertation addresses the current problems and challenges in designing automatic

control systems. Automatic control is a well-known technology applied almost

everywhere. The automated control mechanisms behind automatic control systems

have also progressively evolved from relying on traditional pure mechanical control

elements to combining the mechanical with increasing numbers of electronic/electric

control elements and accompanying software implementations. The complexity of

automatic control systems grows along with expected increases in autonomy and

adaptability to work appropriately under diversified operation conditions.

This dissertation has systematically reviewed the current concepts of automatic control

systems based on concrete examples of the current ACC variants. This review has

analyzed the architectures of different automatic control systems from the control theory

viewpoint. A taxonomy of these concepts was identified in the dissertation. Additionally,

a functional vision of the future ACC variants was postulated to derive issues facing the

current concepts, covering two perspectives: (1) missing knowledge acquisition and

adaptation and (2) limited system scalability against fixed boundary conditions (cf.

Section 3.6). Since the current system architecture design approaches reached limits to

the elimination of the previously mentioned issues, this dissertation focused on

improving the architecture design of automatic control systems.

Along with integrating more complicated algorithms on higher levels of abstraction and

their accompanying required computation mechanisms, automatic control systems are

becoming so-called cyber-physical systems with heterogeneous computation

Conclusion

232

mechanisms. Additionally, they are acquiring properties of other software-intensive

systems like the self-adaptive system from the research field of software engineering.

Thus, this dissertation has focused on the architecture design of future automatic control

systems designed as so-called self-adaptive cyber-physical systems. A new concept for

such future automatic control systems called artificial cognitive control is defined in this

dissertation to extend the previously mentioned taxonomy.

Against such a background, this dissertation has combined control theory and software

engineering approaches and developed a generic architecture style for automatic

control systems. The developed architecture style can be used to design different

automatic control systems for diverse applications. A fundamental component structure

with static construction is designed. Each fundamental component structure represents

a node. Thus, an arbitrary networked system architecture can be constructed by

connecting multiple nodes, following the design principle of so-called structural

adaptation composition. The networked system architecture can be instantiated in more

concrete examples like system architecture with multiple hierarchies. The generic

architecture style also supports the application of different triggering mechanisms and

generic communication patterns and paradigms.

In this dissertation, the current concepts of automatic control systems are used to

evaluate the generalization capability of the developed generic architecture style. For

this purpose, the derived logical architectures for the current automatic control systems

are compared with architectures from the control theory viewpoint that focus more on

control flow than system construction with components and accompanying responsibility

assignment.

A concrete prototype called artificial cognitive cruise control (ACCC) was designed

following the generic architecture style to evaluate the architecture style’s feasibility. The

previously mentioned issues regarding knowledge acquisition and adaptation and the

limited system scalability are overcome by ACCC. Unlike current ACC variants on the

market, ACCC learns the driving preferences of a single individual driver and satisfies

this driver instead of satisfying different drivers simultaneously. In addition, it also has a

memory ability to remember the previously experienced environmental driving context

during the trip and learn the context as its experience.

 Conclusion

 233

Based on the evaluation results, ACCC has significantly improved performance

compared to the human driver and the standard ACC on the market. It is emphasized

that certain features of the ACCC are simplified to reduce the implementation complexity

of this dissertation. For example, this dissertation only considers the preceding car as

an example of the driving context. The implemented ACCC prototype can still be

extended in the future, relying on the generic architecture style’s benefit of great system

scalability.

6.2 Limitations of this Dissertation

In this dissertation, the proposed generic architecture style has massively improved the

architecture design of complicated automatic control systems in the future. In addition,

the designed ACCC as a further ACC variant has shown significant performance

improvement over the current ACC variant. However, there are always limitations in

research work, which is also the case in this dissertation. In the following sections, the

limitations of this dissertation will be discussed from different perspectives.

6.2.1 Limited Separation of Concerns in Knowledge Component of the Generic

Architecture Style

The first limitation of this dissertation refers to the limited separation of concerns in the

knowledge component (“K*”) of the fundamental component structure defined in the

generic architecture style. The generic architecture style derives a system architecture

consisting of multiple networked nodes, each of which includes a fundamental

component structure (cf. Section 4.2). In the fundamental component structure, the

knowledge component is defined as a knowledge repository for storing the domain

knowledge like the symptom, which includes structured data about observed facts of the

physical system. As introduced earlier, the knowledge component is required by the

other four components (“S*”, “C*”, “A*”, and “I*”). In this sense, the knowledge

component can be implemented as a reactive database or knowledge base that other

components can access to fetch the required data or knowledge with an appropriate

representation format.

Conclusion

234

However, the knowledge component also communicates other components by pushing

domain knowledge to them, considering UC2 and UC4 from another perspective. In this

case, the knowledge component remains proactive and triggers the communication itself.

In this sense, the knowledge component plays the role of a knowledge management

system responsible for knowledge synchronization across the overall fundamental

component structure.

Based on the understanding above, it is clear that the knowledge component is currently

designed as a single centralized point responsible for diversified knowledge-relevant

processes. Such a design concept would make the responsibility assignment unclear

and thus violate the general architecture design principle of separation of concerns. A

concrete example can be found once the blackboard pattern is applied within UC4.

Suppose the interpreting component cannot identify the current problem and requests

support from the knowledge component. In such a case, the knowledge component (“K*”)

forwards the request to other knowledge components (“K*+1”, “K*-1”) in neighbor nodes

and asks for their support. Thus, the knowledge component that requests the support

plays two different roles of controller and blackboard simultaneously in the backboard

pattern (cf. Figure 5.14). Such an unfavorable responsibility assignment makes the

communication between the components more complicated.

In this dissertation, all knowledge-relevant responsibilities like storage and management

are assigned to a single component. Following the concept of separation of concerns in

software architecture design, these responsibilities may need to be separated in the

future. For example, knowledge storage and management can be assigned to two

different components. These two components must not be designed on the same level

of abstraction as the components in the fundamental component structure. Instead, they

could also be the subcomponents of the knowledge components. Thus, the case where

a single component plays multiple roles simultaneously in the blackboard pattern can be

eliminated. Generally, there is still great potential to further develop the presented

generic architecture style.

 Conclusion

 235

6.2.2 Missing Impact Investigation on Applying Communication Architecture Pattern

Another limitation of this dissertation is applying generic communication architecture

patterns and their underlying communication paradigms, as introduced in Section 4.2.5.

In this dissertation, the choice of an appropriate generic communication architecture

pattern for a certain use case (UC) is not limited in the current design of the generic

architecture style. The developers must consider the requirements and constraints of

their specific applications and decide the appropriate communication paradigm with the

consideration of corresponding boundary conditions. However, different communication

paradigms due to their features may also influence the final performance of an automatic

control system. Thus, an impact investigation on applying communication architecture

patterns and accompanying underlying paradigms is still missing.

Against such a background, it may be meaningful to perform a comprehensive case

study to achieve such a target. Different applications of automatic control systems could

be investigated and categorized, considering their boundary conditions, requirements,

and constraints in the use cases. From another perspective, the features of the

communication patterns and their underlying communication paradigms, including

advantages and disadvantages, may also be analyzed. Thus, an allocation between the

communication problems and accompanying solutions might be found and serve as a

template solution. Thus, the developers can easily identify an appropriate

communication pattern and apply it to design automatic control systems for concrete

use cases.

6.2.3 Uncomprehensive Evaluation of Generic Architecture Style

In this dissertation, the generalization capability and feasibility of the generic architecture

style are empirically evaluated. For example, the logical architectures derived from the

architecture style are compared with accompanying architectures of current automatic

control systems from the control theory viewpoint to check the architectural consistency.

In addition, the architecture style is also applied to design the ACCC that serves as an

empirical prototype to evaluate the feasibility of the architecture style.

Although this dissertation has empirically evaluated the generic architecture style, a

more comprehensive evaluation can still be planned in the future. For example, the well-

Conclusion

236

known architecture tradeoff analysis method (ATAM) [59], designed to help determine

an appropriate software system architecture by focusing on risks and sensitive pain

points, may be helpful for a comprehensive evaluation.

In addition to applying standard methods to evaluate the architecture pattern, it may also

be meaningful to evaluate the architecture style in more different applications. The ACC

and its variants are taken as the main application examples in this dissertation. However,

in reality, there are thousands of different applications requiring automatic control

systems. Due to the diversity of these applications, it may also be helpful to evaluate the

architecture style in applications with completely different boundary conditions to

increase the plausibility of the evaluation results.

6.2.4 Missing Extensive Evaluation of Artificial Cognitive Cruise Control

The final limitation of this dissertation deals with the evaluation of the ACCC. As

introduced in Section 5.6, the ACCC is designed as an advanced driver assistance

system (ADAS) deployed on the vehicle. In this dissertation, the evaluation of the ACCC

is completed within a co-simulation environment. Although fundamental functionalities

of the ACCC have been evaluated, non-functional performance (e.g., against timing

constraints) is still unknown. Thus, as a potential improvement in the future, a more

extensive evaluation of the ACCC could be performed in reality.

For this purpose, the implemented system must be deployed on a real car or a

comparable physical prototype environment. As introduced in Section 5.5, some code

is currently implemented with programming language Python, which does not have great

timing performance for real-life applications. Thus, the implementation still needs to be

revised considering timing performance.

Another potential improvement for the evaluation deals with applying generic

communication patterns and underlying paradigms. As is well known, the performance

of different communication patterns cannot be evaluated well within a simulation

environment since the boundary conditions in the simulation are not comparable with

reality. Thus, an intensive evaluation of different communication patterns’ influences on

the ACCC’s final performance could also be meaningful in future work.

 Conclusion

 237

6.3 Recommendation for Future Research

In the previous section, the limitations of this dissertation are introduced. Suggestions

for further improvements to eliminate their limitations were also proposed. In addition to

the limitations, this dissertation can also guide further research work in different

directions. For this purpose, some recommendations with potential future research

directions are identified in this section.

6.3.1 Architecture Design from the Viewpoint of Multi-Agent Systems

In this dissertation, the developed generic architecture style focuses on designing an

automatic control system with a networked architecture consisting of a set of nodes.

Each node includes a fundamental component structure comprising several standard

components (“SICAP-K”). The connections of nodes are built following the design

principle of structural adaptation composition, considering the node level of the overall

architecture. It means that for every two connected nodes, there is always a “manager

node” and a “managed node”, and the “manager node” is able to adapt the “managed

node”.

In this dissertation, the design of the generic architecture style relies on software

engineering approaches for the self-adaptive system. In other words, the architecture

design focuses especially on the perspective of adaptation between nodes. Each node

has a complete fundamental component structure, which means that it can work

independently. Thus, each node can be seen as an independent subsystem in the

overall system. They cooperate mutually to complete the overall control task. Thus, it is

indicated that automatic control systems with such networked architectures acquire

similar features as so-called multi-agent systems [107] [108].

With this understanding in mind, the design of nodes and their relationships could be

diversified. The automatic control systems with networked architectures would acquire

the properties of distributed artificial intelligence. For example, notions like deliberative

and reactive agents or passive, active and cognitive agents have been proposed in

related works of distributed artificial intelligence [96][128], and these can be applied in

the future design of automatic control systems. Instead of only focusing on adaptation,

the roles of nodes and their relationships can be designed differently. Thus, a meaningful

Conclusion

238

research direction for this dissertation in the future is combining software engineering

approaches regarding multi-agent systems and control theory to further develop the

generic architecture style.

6.3.2 Heterogeneous Knowledge Acquisition and Adaptation

The final recommendation for future research deals with the update process of domain

knowledge. As presented earlier, the domain knowledge in the generic architecture style

needs to be described in an appropriate uniform representation format. In this

dissertation, only the case of homogenous domain knowledge is considered (cf. Section

2.2.7.4). This means that the knowledge representation and the allocations between the

notions and their underlying meanings are specified in advance and remain static.

However, in reality, automatic control systems are increasingly relying on system

connectivity. The systems would acquire high-level domain knowledge (e.g., by relying

on linguistic methods direct from external domains). In this case, there is no guarantee

that the knowledge representations and the allocations will always remain the same.

Suppose the acquired domain knowledge is described in another format, or the same

meaning is described with unknown notions. In such a case, identifying the underlying

meaning and integrating the received knowledge on a higher semantic level into the

system’s knowledge base is still a great challenge for designing the automatic control

system. Thus, heterogeneous knowledge acquisition and adaptation may be another

meaningful research direction for future automatic control systems.

Fortunately, such high-level semantic fusion of heterogeneous knowledge is not a

complete novelty in computer science. In web applications, the topic of integrating

human knowledge represented by different natural languages is very common. Different

mature approaches for so-called knowledge fusion based on the technologies such as

ontology have been proposed [130][131]. In the future, it may be meaningful to integrate

the capability of heterogeneous knowledge fusion into automatic control systems. Such

a capability would particularly benefit the research work of the multi-agent system to

realize a high-level distributed artificial intelligence.

 Bibliography

 239

Bibliography

[1] G. N. Saridis, “Toward the realization of intelligent machines ,” presented at the

Proc. IEEE, 1979 , vol. 67, pp. 1115–1133.

[2] G. N. Saridist, “Analytic formulation of the principle of increasing precision with

decreasing intelligence for intelligent machines ,” in Automatica, 1989, vol. 25, no.

3, pp. 461–467, 1989. doi : 10.1016/0005-1098(89)90016-2.

[3] J. S. Albus, R. Lumina, J. Fiala, and A. J. Wavering, “NASREM - The NASA/NBS

standard reference model for telerobot control system architecture,” in Proc. 20th

Int. Symp. Ind. Robot., Oct. 1989.

[4] F. F. Ingrand, M. P. Georgeff, and A. S. Rao , and M. P. Georgeff, “An architecture

for real-time reasoning and system control,” IEEE Expert, vol. 7, no. 6, pp. 33–44,

1992, doi: 10.1109/64.180407.

[5] A. Meystel, “Representation of descriptive knowledge for nested hierarchical

controllers,”, IEEE 27th Conf. Decis. and Control, Dec. 1988. doi:

10.1109/CDC.1988.194639.

[6] S. V. Ilyukhin, T. A. Haley, and R. K. Singh, “A survey of automation practices in

the food industry,” in Food Control, 2001, vol. 12, no. 5, pp. 285–296, 2001, doi:

10.1016/S0956-7135(01)00015-9.

[7] M. Dotoli, A. Fay, M. Miskowicz, and C. Seatzu, “A survey on advanced control

approaches in factory automation,” in IFAC-PapersOnLine, 2015, vol. 8, no. 3, pp.

394–399, doi: 10.1016/j.ifacol.2015.06.113.

[8] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion

planning and control techniques for self-driving urban vehicles,” in IEEE Trans.

Intell. Veh., 2016, vol. 1, no. 1, pp. 33–55, doi: 10.1109/TIV.2016.2578706.

[9] B. Heinrich and W. Schneider, Grundlagen Regelungstechnik. Wiesbaden,

Germany: Springer Fachmedien, 2019. doi: 10.1007/978-3-658-26741-4.

[10] K. Ogata, Modern Control Engineering, 5th ed. Amsterdam, Netherlands:

Pearson Education Inc., 2002.

Bibliography

240

[11] A. Trächtler and J. Gausemeier, Eds., Steigerung der Intelligenz mechatronischer

Systeme, Berlin/Heidelberg, Germany: Springer, 2018.

[12] D. E. Seborg, T. F. Edgar, and S. L. Shah, “Adaptive control strategies for process

control : A survey,” in AIChE, 1986, vol. 32, no. 6, pp. 881–1056.

[13] A. Armenta, “Control automation: Data science for control systems,” 2021, vol. c,

pp. 1–5.

[14] J. Chen and S. Hong, Eds., “Real-Time and Embedded Computing Systems and

Applications,” in 9th International Conference, RTCSA, 2003, Berlin/Heidelberg,

Germany: Springer International Publishing, 2003.

[15] M. Gharbi, A. Koschel, A. Rausch, and G. Starke, Basiswissen für

Softwarearchitekten: Aus- und Weiterbildung nach iSAQB-Standard zum

Certified Professional for Software Architecture – Foundation Level, 2nd ed.

Heidelberg, Germany: dpunkt.verlag, 2015.

[16] L. Bass, P. C. Clements, and R. Kazman, Software Architecture in Practice. 1997.

[17] G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling Language User

Guide, 2nd ed. Reading, MA, USA: Addison Wesley Longman, Inc., 2015.

[18] A. Meystel, “Multiresolutional architectures for autonomous systems with

incomplete and inadequate knowledge representation,” in Artificial Intelligence in

Industrial Decision Making, Control and Automation. Microprocessor-Based and

Intelligent Systems Engineering, Dordrecht, Germany: Springer, pp. 159–223,

1995.

[19] K.-E. Årzén, “An architecture for expert system based feedback control *,” in

Automatica, 1989, vol. 25, no. 6, pp. 813–827, doi: 10.1016/0005-

1098(89)90050-2.

[20] K. Rehfeldt, “Entwurf einer Modellierungssprache für Cyber-Physische Systeme,”

Master thesis, Institute for Informatics , Technische Universität

Clausthal,Germany, 2015.

[21] A. Rausch, C. Bartelt, and K. Rehfelt, “Quo vadis cyber-physical systems

research areas of cyber-physical ecosystems,” in CTSE 2015: Proc. 1st Int

 Bibliography

 241

Workshop Control Theory Softw. Eng., 2015, pp. 22–25, doi:

10.1145/2804337.2804341.

[22] S. Behere and M. Törngren, “A functional reference architecture for autonomous

driving,” in Inf. Softw. Technol., 2016, vol. 73, pp. 136–150, doi:

10.1016/j.infsof.2015.12.008.

[23] S. Behere and M. Törngren, “A functional architecture for autonomous driving,” in

WASA 2015 Proc. of the 2015 ACM Workshop on Automot. Softw. Architecture,

2015, pp. 3–10, doi: 10.1145/2752489.2752491.

[24] M. C. Huebscher and J. A. McCann, “A survey of Autonomic Computing - Degrees,

models, and applications,” in ACM Comput. Surv., 2008, vol. 40, no. 3, pp. 1–31,

doi: 10.1145/1380584.1380585.

[25] B. H. C. Cheng et al., “Software engineering for self-adaptive systems,” in Lecture

Notes in Computer Science, 2009, vol. 5525, pp. 1–26.

[26] K. J. Åström and R. M. Murray, Feedback systems: An introduction for scientists

and engineers, Princeton, NJ, USA: Princeton Univ. Press, 2012.

[27] W. S. Levine, The control handbook: control system fundamentals, 2nd ed.

Evanston, IL, USA: Routledge. 2011. doi: 10.1201/b10383.

[28] P. Iwanek, “Systematik zur Steigerung der Intelligenz mechatronischer Systeme

im Maschinen- und Anlagenbau,” Ph.D. dissertation , Faculty mechanical

engineering, Universität Paderborn, Germany, 2017.

[29] H. P. Geering, Regelungstechnik: Mathematische Grundlagen,

Entwurfsmethoden, Beispiele. Berlin/Heidelberg, Germany: Springer-

Verlag,1994.

[30] K.-D. Tieste and O. Romberg, Keine Panik vor Regelungstechnik: Erfolg und

Spaß im Mystery-Fach des Ingenieurstudiums, Wiesbaden, Germany: Springer

Fachmedien, 2011.

[31] K. Miettinen, “Nonlinear multiobjective optimization,” in International Series in

Operations Research & Management Science, vol. 12., Boston, MA, USA:

Springer, 1988, doi: 10.1007/978-1-4615-5563-6.

Bibliography

242

[32] J. H. Kessler, M. Krüger, and A. Trächtler, “Continuous objective-based control

for self-optimizing systems with changing operation modes,” ECC 2014, pp.

2096–2102, 2014, doi: 10.1109/ECC.2014.6862182.

[33] A. M. Meystel and J. S. Albus, Intelligent systems : Architecture, design, and

control, Hoboken, NJ, USA: Wiley, 2001, ISBN: 978-0-471-19374-6.

[34] K. J. Astrom, “Toward intelligent control,” in Control Syst. Mag., 1989, vol. 9, no.

3, pp. 60–64, doi: 10.1109/37.24813.

[35] K. Kawamura and S. Gordon, “From intelligent control to cognitive control,” 2006

World Autom. Congr., 2006, pp. 1–8, 2006, doi: 10.1109/WAC.2006.376003.

[36] T. Wong, M. Wagner, and C. Treude, “Self-Adaptive Systems: A systematic

literature review across categories and domains,” 2020, arXiv: 2101.00125.

[37] P. J. Antsaklis, K. M. Passino, N. Dame, and S. J. Wang, “An introduction to

autonomous control systems,” in Proc. 5th IEEE Int. Symp. Intell. Control, 1990,

pp. 21–26.

[38] J. C. Fiala, “NIST technical note 1255: Manipulator servo level task

decomposition,” Gaithersburg, MD, USA: National Institute of Standards and

Technology, 1988, doi: 10.6028/nist.tn.1255.

[39] A. Meystel, “Planning in a hierarchical nested autonomous control system,” in

Proc. SPIE 0727, Mobile Robots I, Feb 1986, doi: 10.1117/12.937784.

[40] A. Meystelt and E. Messinag, “The challenge of intelligent systems,” Proc. 2000

IEEE Int. Symp. Intell. Control, 2000, pp. 211–216, doi:

10.1109/ISIC.2000.882925.

[41] R. A. Brooks, “A robust layered control system for a mobile robot” Cambridge,

MA, USA: MIT, 1985.

[42] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep

learning techniques for autonomous driving,” in J. Field Robot., 2019, vol. 37, no.

3, pp. 362–386, doi: 10.1002/rob.21918.

[43] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, “An architecture for

 Bibliography

 243

autonomy,” in Int. J. Robot. Res., 1998, vol. 21, no. 2, pp. 1–38.

[44] H. Yavuz and A. Bradshaw, “A new conceptual approach to the design of hybrid

control architecture for autonomous mobile robots,” in J. Intell. Robot. Syst., 2002,

vol. 34, pp. 1–26, doi: 10.1023/A:1015522622034.

[45] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” in IEEE

Comput. Soc., Jan 2003, pp. 41–50.

[46] IBM, “An architectural blueprint for autonomic computing,” White paper, 2005.

https://www-

03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf

(accessed on 28th Apr. 2022).

[47] P. Oreizy et al., “An architecture-based approach to self-adaptive software,” in

IEEE Intell. Syst. Appl., May 1999, vol. 14, no. 3, pp. 54–62, doi:

10.1109/5254.769885.

[48] T. Warnecke, K. Rehfeldt, and A. Rausch, “Managing communication paradigms

with a dynamic adaptive middleware,” Adapt. 2018 10th Int. Conf. Adapt. Self-

Adaptive Syst. Appl., Feb 2018, pp. 24–33.

[49] P. Arcaini, E. Riccobene, and P. Scandurra, “Modeling and analyzing MAPE-K

feedback loops for self-adaptation,” in 2015 IEEE/ACM 10th Int. Symp. Softw.

Eng. Adapt. Self-Managing Syst., Florence, Italy, 2015, pp. 13–23, doi:

10.1109/SEAMS.2015.10.

[50] D. G. De La Iglesia and D. Weyns, “MAPE-K formal templates to rigorously design

behaviors for self-adaptive systems,” in ACM Trans. Auton. Adapt. Syst., 2015,

vol. 10, no. 3, pp. 1–31, doi: 10.1145/2724719.

[51] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, “Feedback control of

computing systems,” Hoboken, NJ, USA: Wiley, 2004.

[52] J. Kramer and J. Magee, “Self-managed systems: An architectural challenge,” in

Futur. Softw. Eng. (FoSE), 2007, pp. 259–268, doi: 10.1109/FOSE.2007.19.

[53] J. Cámara, G. Moreno, and D. Garlan, “Reasoning about human participation in

self-adaptive systems,” in 10th Int. Symp. Softw. Eng. Adapt. Self-Manag. Syst.

https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf

Bibliography

244

(SEAMS), 2015, pp. 146–156, doi: 10.1109/SEAMS.2015.14.

[54] H. Müller, M. Pezzè, and M. Shaw, “Visibility of control in adaptive systems,” in

Proc. 2nd Int. Workshop Ultra-Large-Scale Softw.-Intensive Syst. (ULSSIS’08),

May 2008, pp. 23–26, doi: 10.1145/1370700.1370707.

[55] N. M. Villegas, G. Tamura, H. A. Müller, L. Duchien, and R. Casallas,

“DYNAMICO: A reference model for governing control objectives and context

relevance in self-adaptive software systems chapter,” in Software Engineering for

Self-Adaptive Systems II, R. de Lemos, H. Giese, H. A. Müller, M. Shaw, Eds.,

2013, pp. 265–293, doi: 10.1007/978-3-642-35813-5_11.

[56] A. S. Tanenbaum and M. Van Steen, Distributed systems: Principles and

paradigms, Upper Saddle River, NJ, USA: Pearson, 2006.

[57] A. Schill and T. Springer, Verteilte Systeme: Grundlagen und Basistechnologien,

New York, NY: Springer, 2011.

[58] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-oriented software

architecture, patterns for concurrent and networked objects, vol. 2, Hoboken, NJ,

USA: Wiley, 2000.

[59] J. Ingeno, Software architect’s handbook: Become a successful software

architect by implementing effective architecture concepts, Birmingham, UK: Packt,

2018.

[60] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 3rd ed.

Reading, MA, USA: Addison-Wesley, 2015.

[61] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-oriented software

architecture: A pattern language for distributed computing, vol. 4, Hoboken, NJ,

USA: Wiley, 2007.

[62] Object Management Group, CORBA component model specification, April 2006.

https://www.omg.org/spec/CCM/4.0/PDF (accessed on 28th Apr. 2022).

[63] F. Halsall, Multimedia Communications, ed. 2, Boston, MA, USA: Addison-

Wesley, 2001.

 Bibliography

 245

[64] B. W. Wah, X. Su, and D. Lin, “A survey of error-concealment schemes for real-

time audio and video transmissions over the Internet,” in Proc. Int. Symp.

Multimed. Softw. Eng., 2000, pp. 17–24, doi: 10.1109/MMSE.2000.897185.

[65] G. S. Blair and J.-B. Stefani, Open distributed processing and multimedia, Boston,

MA, USA: Addison-Wesley, 1998.

[66] P. Lalanda, “Shared repository pattern,” in Proc. 5th Pattern Lang. Programs Conf.

(PLoP 1998), 1998, p. 10.

[67] E. Alpaydin, Introduction to machine learning, vol. 579, 2nd ed. Cambridge, MA,

USA: MIT Press, 2010.

[68] C. J. C. H. Watkins and P. Dayan, “Technical note: Q-Learning,” Mach. Learn.,

1992, vol. 8, pp. 279–292, doi: 10.1023/A:1022676722315.

[69] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, 2nd ed.

Cambridge, MA, USA: MIT Press, 2018, 2020.

[70] M. Zhang, K.-F. Storm, and A. Rausch, “Recognition and forecast of driving

behavior based on self-learning algorithms,” in Hybrid and Electric Vehicles, 2017.

[71] E. Rutten, N. Marchand, and D. Simon, “Feedback control as MAPE-K loop in

autonomic computing,” in Software Engineering for Self-Adaptive Systems III, de

Lemos, R., Garlan, D., Ghezzi, C., Giese, H., Eds., Cham, Switzerland: Springer,

2015.

[72] K. Dar, “MAPE-K adaptation control loop,” Lecture Slides, 2012.

https://www.uio.no/studier/emner/matnat/ifi/INF5360/v12/undervisningsmateriale

/MAPE-K%20adap%20control%20loop.pdf (accessed 28th Apr. 2022).

[73] L. Xiao and F. Gao, “A comprehensive review of the development of adaptive

cruise control systems,” in Vehicle Syst. Dyn., 2010, vol. 48, no. 10, pp. 1167–

1192, doi: 10.1080/00423110903365910.

[74] A. Vahidi and A. Eskandarian, “Research advances in intelligent collision

avoidance and adaptive cruise control,” in Transactions on Intelligent

Transportation Systems, 2003, vol. 4, no. 3, pp. 143–153, doi:

10.1109/TITS.2003.821292.

https://www.uio.no/studier/emner/matnat/ifi/INF5360/v12/undervisningsmateriale/MAPE-K%20adap%20control%20loop.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF5360/v12/undervisningsmateriale/MAPE-K%20adap%20control%20loop.pdf

Bibliography

246

[75] F. Flehmig, F. Kästner. K. Knödel, and M. Knoop , “Eco-ACC für Elektro- und

Hybridfahrzeuge,” in Fahrerassistenzsysteme und Effiziente Antriebe, W.

Siebenpfeiffer, Ed., p. 11–17, 2015, doi: 10.1007/978-3-658-08161-4_2.

[76] Audi AG, “Audi annual report 2015,” 2015.

https://www.audi.com/content/dam/gbp2/company/investor-relations/events-

and-presentations/investor-presentations/englisch/2018/3.1_GB_2015_en.pdf

(accessed on 28th Apr. 2022).

[77] B. Abendroth and R. Bruder, “Capabilities of humans for vehicle guidance,” in

Handbook of Driver Assistance Systems, H. Winner, S. Hakuli, F. Lotz, and C.

Singer, Eds., Cham, Switzerland: Springer, 2016, pp. 3–18, doi: 10.1007/978-3-

319-12352-3_1.

[78] M. Roth et al., “Porsche InnoDrive – An Innovative Approach for the Future of

Driving,” Aachen Colloq. Automob. Engine Technol., 2011, pp. 1453–1467.

[79] I. D. Landau, R. Lozano, M. M’Saad, and A. Karimi, “Adaptive control: Algorithms,

analysis and applications,” in Communications and control engineering, 2nd ed.

London, UK: Springer, 2011, doi: 10.1007/978-0-85729-664-1.

[80] T. Radke, “Energieoptimale Längsführung von Kraftfahrzeugen durch Einsatz

vorausschauender Fahrstrategien,“ in Kalsruher Schriftenreihe

Fahrzeugsystemtechnik, vol. 19, 2013.

[81] I. Koglbauer, J. Holzinger, A. Eichberger, and C. Lex, “Drivers’ interaction with

adaptive cruise control on dry and snowy roads with various tire-road grip

potentials,” J. Adv. Transp., 2017, vol. 2017, no. 549683,7 doi:

10.1155/2017/5496837.

[82] B. D. Seppelt and J. D. Lee, “Making adaptive cruise control (ACC) limits visible,”

in Int. J. Human-Comp. Stud., 2006, vol. 65, no. 3, pp. 192–205, doi:

10.1016/j.ijhcs.2006.10.001.

[83] B. D. Seppelt, F. N. Lees, and J. D. Lee, “Driver distraction and reliance:

Adaptive cruise control in the context of sensor reliability and algorithm limits,” in

Proc. 3rd International Driving Symp. of Human Factors in Driv. Assess., Training

https://www.audi.com/content/dam/gbp2/company/investor-relations/events-and-presentations/investor-presentations/englisch/2018/3.1_GB_2015_en.pdf
https://www.audi.com/content/dam/gbp2/company/investor-relations/events-and-presentations/investor-presentations/englisch/2018/3.1_GB_2015_en.pdf

 Bibliography

 247

and Vehicle Design, 2005, vol. 3, pp. 255–261, doi:

10.17077/drivingassessment.1168.

[84] T. Seyffarth, “Bildbasierte Abstandsregelung für Kraftfahrzeuge,” Ph.D.

dissertation, Dept. IT, TU München, München, Germany, 2012.

https://mediatum.ub.tum.de/doc/1085164/491990.pdf (accessed on 28th Apr.

2022).

[85] S. Birch, “Honda introduces ‘industry first’ intelligent adaptive cruise control,”

2015. https://www.sae.org/news/2015/01/honda-introduces-industry-first-

intelligent-adaptive-cruise-

control#:~:text=Automatic%20crash%20avoidance%20and%20braking,cutting

%2Din%20and%20endangering%20another (accessed on 28th Apr. 2022).

[86] G. R. Widmann et al., “Comparison of lidar-based and radar-based adaptive

cruise control systems,” in SAE Tech. Pap., pp. 3–4, 2000, doi: 10.4271/2000-

01-0345.

[87] A. A. D. Medeiros, “A survey of control architectures for autonomous mobile

robots,” in J. Brazilian Comput. Soc., 1998, pp. 1–12, doi: 10.1590/S0104-

65001998000100004.

[88] K. J. Hunt, D. Sbarbaro, R. Żbikowski, and P. J. Gawthrop, “Neural networks for

control systems - A survey,” in Automatica, 1992, vol. 28, no. 6, pp. 1083–1112,

doi: 10.1016/0005-1098(92)90053-I.

[89] G. Han, W. Fu, W. Wang, and Z. Wu, “The lateral tracking control for the

intelligent vehicle based on adaptive pid neural network,” in Sensors, 2017, vol.

17, no. 6, p. 1244, doi: 10.3390/s17061244.

[90] C. Wilson, F. Marchetti, M. Di Carlo, A. Riccardi, and E. Minisci, “Intelligent

control: A taxonomy,” in 8th Int. Conf. Syst. Control, 2019, p. 333–339, doi:

10.1109/ICSC47195.2019.8950603.

[91] T. Chakraborty, S. Yamaguchi, and S. K. Datta, “Sensor fusion and adaptive

cruise control for self-driving platoon,” in 2018 IEEE 7th Glob. Conf. Consum.

Electron. GCCE, 2018, pp. 634–635, doi: 10.1109/GCCE.2018.8574639.

https://mediatum.ub.tum.de/doc/1085164/491990.pdf
https://www.sae.org/news/2015/01/honda-introduces-industry-first-intelligent-adaptive-cruise-control#:%7E:text=Automatic%20crash%20avoidance%20and%20braking,cutting%2Din%20and%20endangering%20another
https://www.sae.org/news/2015/01/honda-introduces-industry-first-intelligent-adaptive-cruise-control#:%7E:text=Automatic%20crash%20avoidance%20and%20braking,cutting%2Din%20and%20endangering%20another
https://www.sae.org/news/2015/01/honda-introduces-industry-first-intelligent-adaptive-cruise-control#:%7E:text=Automatic%20crash%20avoidance%20and%20braking,cutting%2Din%20and%20endangering%20another
https://www.sae.org/news/2015/01/honda-introduces-industry-first-intelligent-adaptive-cruise-control#:%7E:text=Automatic%20crash%20avoidance%20and%20braking,cutting%2Din%20and%20endangering%20another

Bibliography

248

[92] B.-J. Chang, Y.-L. Tsai, and Y.-H. Liang, “Platoon-based cooperative adaptive

cruise control for achieving active safe driving through mobile vehicular cloud

computing,” in Wirel. Pers. Commun., 2017, vol. 97, pp. 5455–5481, doi:

10.1007/s11277-017-4789-8.

[93] R.-H. Huang, B.-J. Chang, Y.-L. Tsai, and Y.-H. Liang, “Mobile edge computing-

based vehicular cloud of cooperative adaptive driving for platooning autonomous

self-driving,” in 2017 IEEE 7th Int. Symp. Cloud Serv. Comput. (SC2), 2017, pp.

32–39, doi: 10.1109/SC2.2017.13.

[94] B.-J. Chang, R.-H. Hwang, Y.-L. Tsai, B.-H. Yu, and Y.-H. Liang, “Cooperative

adaptive driving for platooning autonomous self-driving based on edge

computing,” in Int. J. Appl. Math. Comput. Sci., 2019, vol. 29, no. 2, pp. 213–225,

doi: 10.2478/amcs-2019-0016.

[95] R. W. Brennan, X. Zhang, Y. Xu, and D. H. Norrie, “A reconfigurable concurrent

function block model and its implementation in real-time Java,” in Integr. Comput.

Aided. Eng., 2002, vol. 9, no. 3, pp. 263–279, doi: 10.3233/ica-2002-9306.

[96] R. W. Brennan, “Toward real-time distributed intelligent control: A survey of

research themes and applications,” IEEE Trans. Syst. Man Cybern. Part C Appl.

Rev., 2007, vol. 37, no. 5, pp. 744–765, doi: 10.1109/TSMCC.2007.900670.

[97] E. Gat, “On Three-Layer Architectures,” in Artif. Intell. Mob. Robot., 1997, pp.

195–210, doi: 10.1.1.165.5283.

[98] E. Gat, “Three-layer architectures,” in Artificial intelligence and mobile robots:

Case studies of successful robot systems, 1998, pp. 195–210.

[99] F. Qureshi, D. Terzopoulos, and R. Gillett, “The cognitive controller: A hybrid,

deliberative/reactive control architecture for autonomous robots,” in Innov. in

Appl. Artif. Intell. (IEA/AIE), 2004, pp. 1102–1111, doi: 10.1007/978-3-540-

24677-0_113.

[100] F. M. Adolf and F. Thielecket, “A sequence control system for onboard mission

management of an unmanned helicopter,” in AIAA InfoTech Aerosp. Conf. Exhib.,

2007, pp. 594–605, doi: 10.2514/6.2007-2769.

 Bibliography

 249

[101] J. Rasmussen, “Skills, rules, and knowledge; signals, signs, and symbols, and

other distinctions in human performance models,” in IEEE Trans. Syst. Man

Cybern., 1983, vol. SMC-13, no. 3, pp. 257–266, doi:

10.1109/TSMC.1983.6313160.

[102] E. Ahle and D. Söffker, “Interaction of intelligent and autonomous systems - part

II: Realization of cognitive technical systems,” in Math. Comput. Model. Dyn.

Syst., 2008, vol. 14, no. 4, pp. 319–339, doi: 10.1080/13873950801983852.

[103] A. A. Zheltoukhov and L. A. Stankevich, “A survey of control architectures for

autonomous mobile robots,” in 2017 IEEE Russia Section Young Researchers

in Elect.l and Electron. Eng. Conf. (ElConRus), 2017, pp. 1094–1099, doi:

10.1109/EIConRus.2017.7910746.

[104] Lexico.com, “Cognition,” Lexico.com.

https://www.lexico.com/definition/cognition (accessed 28th Apr. 2022).

[105] M. M. Botvinick, T. S. Braver, D. M. Barch, C. S. Carter, and J. D. Cohen,

“Conflict monitoring and cognitive control,” in Psychol. Rev., 2001, vol. 108, no.

3, doi: 10.1037/0033-295x.108.3.624.

[106] K. R. Hammond and D. A. Summers, “Cognitive control,” in Psychol. Rev., 1972,

vol. 79, no. 1, pp. 58–67, doi: 10.1037/h0031851.

[107] M. Brass, Jan Derrfuss, B. Forstmann, and D. Y. von Cramon, “The role of the

inferior frontal junction area in cognitive control,” in Trends Cogn. Sci., 2005, vol.

9, no. 7, pp. 312–314, doi: 10.1016/j.tics.2005.05.001.

[108] H. Feldman and K. J. Friston, “Attention, uncertainty, and free-energy,” in Front.

Hum. Neurosci., 2010, vol. 4, no. December, pp. 1–23, doi:

10.3389/fnhum.2010.00215.

[109] C. E. Shannon, “A mathematical theory of communication,” in Bell Syst. Tech. J.,

1948, vol. 27, no. 4, pp. 623–656, doi: 10.1002/j.1538-7305.1948.tb00917.x.

[110] C. E. Shannon and W. Weaver, The mathematical theory of communication,

Urbana, IL, USA: Univ. of Illinois Press, 1964.

[111] S. Haykin, M. Fatemi, P. Setoodeh, and Y. Xue, “Cognitive control,” in Proc. IEEE,

https://www.lexico.com/definition/cognition

Bibliography

250

2012, vol. 100, no. 12, pp. 3156–3169, doi: 10.1109/JPROC.2012.2215773.

[112] A. Filieri et al., “Software engineering meets control theory,” 2015 IEEE/ACM

10th Int. Symp. Softw. Eng. Adapt. Self-Managing Syst. (SEAMS), 2015, pp. 71–

82, doi: 10.1109/SEAMS.2015.12.

[113] S. Shevtsov, M. Berekmeri, D. Weyns, and M. Maggio, “Control-theoretical

software adaptation: A systematic literature review,” in IEEE Transactions on

Software Engineering, 2016, vol. 44, no.8, pp. 784–810, doi:

10.1109/TSE.2017.2704579.

[114] T. F. Abdelzaher, Y. Diao, J. L. Hellerstein, C. Lu, and X. Zhu, “Introduction to

control theory and its application to computing systems,” in Performance

Modeling and Engineering, Z. Liu, C. H. Yia, Eds., Boston, MA, USA: Springer,

pp. 185–215, 2008.

[115] C. Pahl and P. Jamshidi, “Software architecture for the Cloud-A Roadmap

Towards Control-Theoretic, Model-Based Cloud Architecture,” in Software

Architecture, D. Weyns, R. Mirandola, and I. Crnkovic, Eds., Cham, Switzerland:

Springer, 2015, doi: 10.1007/978-3-319-23727-5_17.

[116] P. Jamshidi, A. Sharifloo, C. Pahl, H. Arabnejad, A. Metzger, and G. Estrada,

“Fuzzy self-learning controllers for elasticity management in dynamic cloud

architectures,” in 2016 12th Int. ACM SIGSOFT Conf. Qual. Softw. Archit.

(QoSA), 2016, pp. 70–79, doi: 10.1109/QoSA.2016.13.

[117] C. Kunkel, “Tödlicher Unfall : Robotaxi hatte Software-Fehler,” in Süddeutsche

Zeitung, 2019, pp. 1–7, https://www.sueddeutsche.de/auto/uber-unfall-robotaxi-

amerika-ursache-1.4670087 (accessed 28th Apr. 2022).

[118] D. Lee, “Google self-driving car hits a bus,” in BBC News, 2016,

https://www.bbc.com/news/technology-35692845 (accessed 28th Apr. 2022).

[119] A. J. Hawkins, “Google’s ‘worst’ self-driving accident was still a human’s fault,”

in The Verge, 2016, https://www.theverge.com/2016/9/26/13062214/google-

self-driving-car-crash-accident-fault (accessed on 28th Apr. 2022).

[120] C. Zhang, W. Allafi, Q. Dinh, P. Ascencio, and J. Marco, “Online estimation of

https://www.sueddeutsche.de/auto/uber-unfall-robotaxi-amerika-ursache-1.4670087
https://www.sueddeutsche.de/auto/uber-unfall-robotaxi-amerika-ursache-1.4670087
https://www.bbc.com/news/technology-35692845
https://www.theverge.com/2016/9/26/13062214/google-self-driving-car-crash-accident-fault
https://www.theverge.com/2016/9/26/13062214/google-self-driving-car-crash-accident-fault

 Bibliography

 251

battery equivalent circuit model parameters and state of charge using decoupled

least squares technique,” in Energy, 2018, vol. 142, pp. 678–688, doi:

10.1016/j.energy.2017.10.043.

[121] S. Breuer and A. Rohrbach-Kerl, Fahrzeugdynamik: Mechanik des bewegten

Fahrzeugs, Wiesbaden, Germany: Springer Vieweg, 2015.

[122] M. Zhang, K.-F. Storm, and A. Rausch, “Enhancement of driving strategy of

electric vehicle by consideration of individual driver intention,” in 30th Int. Electr.

Veh. Symp. Exhib., 2017, pp. 1–12.

[123] P. F. and J. V. Josef Nilsson, Niklas Strand, “Driver performance in the presence

of adaptive cruise control related failures: Implications for safety analysis and

fault tolerance,” in 2013 43rd Annual IEEE/IFIP Conf. Dependable Syst. and

Networks Workshop (DSN-W), 2013, p. 1–10, doi:

10.1109/DSNW.2013.6615531.

[124] K. J. Åström and T. Hägglund, PID controllers: theory, design and tuning, 2nd

ed. Research Triangle Park, NC: USA: Instrument Society of America, 1995.

[125] S. Krauss, “Microscopic modeling of traffic flow: Investigation of collision-free

vehicle dynamics,” Forschungsanstalt fuer Luft - und Raumfahrt e.V., Cologne,

Germany, Rep. DLR-FB-98-08, 1998.

[126] J. Erdmann, “Lane-changing model in SUMO,” presented at SUMO2014, 2014,

pp. 77–88.

[127] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical

observations and microscopic simulations,” in Phys. Rev. E, 2000, vol. 62, no. 2,

pp. 1805–1824, doi: 10.1103/PhysRevE.62.1805.

[128] Y. Kubera, P. Mathieu, and S. Picault, “Everything can be agent!,” in 9th Int. Conf.

Auton. Agents Multiagent Syst. (AAMAS 2010), 2010, vol. 1–3, pp. 1547–1548.

[129] M. Niazi and A. Hussain, “Agent-based computing from multi-agent systems to

agent-based models: A visual survey,” in Scientometrics, 2011, vol. 89, pp. 479–

499, doi: 10.1007/s11192-011-0468-9.

[130] X. Dong et al., “Knowledge vault: A web-scale approach to probabilistic

Bibliography

252

knowledge fusion,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discov. Data

Min., 2014, pp. 601–610, doi: 10.1145/2623330.2623623.

[131] T.-T. Kuo, S.-S. Tseng, and Y.-T. Lin, “Ontology-based knowledge fusion

framework using graph partitioning,” in Developments in Applied Artificial

Intelligence (IEA/AIE 2003), Lect. Notes Artif. Intell, vol. 2718, Chung, P.W.H.,

Hinde, C., Ali, M., Eds., Berlin/Heidelberg, Germany: Springer, pp. 11–20, 2003,

doi: 10.1007/3-540-45034-3_2.

[132] Y. Li and H. T. Bi, “Vehicle driving comfort analysis for a cable-stayed bridge

considering vehicle bridge coupled vibration,” in 2010 WASE Int. Conf. Inf. Eng.

(ICIE), 2010, vol. 3, pp. 422–425, doi: 10.1109/ICIE.2010.278.

[133] Y. Luo, T. Chen, S. Zhang, and K. Li, “Intelligent hybrid electric vehicle acc with

coordinated control of tracking ability, fuel economy, and ride comfort,” in IEEE

Trans. Intell. Transp. Syst., 2015, vol. 16, no. 4, pp. 2303–2308, doi:

10.1109/TITS.2014.2387356.

 Appendix

 253

Appendix

A.1 Detailed View of Route-Based Adaptation Unit in Artificial Cognitive
Cruise Control

Physical System
Technical System

Route-based Adapta�on U
nit

Route-Segm
ent-based Adapta�on U

nit

Cycle-Tim
e-based Control U

nit

A SU

RSP

RSE

SSP

P
1

P
0

P
0

P
2

P
1

SC

P
2

P
2

SSE

Event-Triggered

SR

Reference
Configura�on of
Driver Preference
(W

eights of
Criteria)

Route-oriented
Plant

Variables (Energy
Consum

p�on, Travel
Tim

e and Driving
Com

fort Profile for
the w

hole Route)
Route-oriented

Environm
ent

Variables (GPS-Posi�on of Ego-Car
and M

ap Data for the w
hole Route)

Configura�on of
M

onitored Sensory Data
aboutDriver Preference

Configura�on of Driving
Strategy for Route Segm

ent

Request of Planning
Route-based
Driving Strategy

Configura�on of
Route-based Driver
Preference Planner

Current Headw
ay to

Preceding Car/Velocity
of Ego-Car

Current Headw
ay to Preceding Car/Velocity of Ego-Car

CurrentM
anipulated

Variable (Drive/Brake)

Disturbance
Variables
(Physical
Signals in
Driving
Process of
Ego-Car)

Route-Segm
ent-

oriented
Plant

Variables (Velocity
of Ego-Car w

ithin
Current Route

Segm
ent)

Route-Segm
ent-oriented

Environm
ent

Variables (Headw
ay to Preceding Car,

GPS-Posi�on of Ego-Car and M
ap Data

for current Segm
ent)

O
bserved Sym

ptom
 (Processed

Sensory Data of Route-based Driver
Preference)

Know
ledge &

Data about

High-/M
iddle-

Level Driver
Preference for

Exchange

Know
ledge &

 Data
about M

iddle-
Level Driving

Strategy and Low
-

Level Control
Strategy and

Param
etriza�on

for Exchange

High-Level Personalized Route-based Set Travel Profile
(Set Profiles of Tim

e , Consum
p�on and Driving Com

fort)

Situa�on -aw
are M

iddle-Level Driving
Strategy w

ith Route -Segm
ent-based

Set Trajectory (Set Profiles of Cruise
Velocity and Headw

ay to Preceding
Car)

Planned Route-based
Driving Strategy

I 2

(Set Profile of Tim
e,

Consum
p�on and Com

fort)

Physical
Com

ponents of
Ego-Car

(incl. Pow
ertrain and

Car Body)

Environm
ent

Driver-preferred
Tim

e Gap &

Cruise Velocity
of Ego-Car

Legend
ASCSR

RSP
SURSE

Segm
ent-oriented Sensor of Controlled Plant

Segm
ent-oriented Sensor of Environm

ent

Sensor of Controlled Variable
Actuator

Sensor of Reference Variable

Route-oriented Sensor of Controlled Plant
Sensor of User

Route-oriented Sensor of Environm
ent

SSP
SSE

Driver Preference
Know

ledge
K

2

Driver Preference
Executor

A
2

Driver Preference
Planner

Driver Preference
Analyzer

Know
ledge of Route-

based Driver
Preference

C
2

Driver Preference
M

onitor
S

2

P
0

U
ser

Appendix

254

A.2 Detailed View of Route-Segment-Based Adaptation Unit in Artificial
Cognitive Cruise Control

Physical System
Technical System

Route-based Adapta�on U
nit

Route-Segm
ent-based Adapta�on U

nit

A

Driving Strategy
Executor

SU

RSP

RSE

SSP

S
1

P
0

P
0

P
1

K
1

SC

P
2

P
2

SSE

Event-Triggered

Driving Strategy
Analyzer

SR
P

0

Driver-preferred
Tim

e Gap &

Cruise Velocity
of Ego-Car

Reference
Configura�on of
Driver Preference
(W

eights of
Criteria)

Route-oriented
Plant

Variables (Energy
Consum

p�on, Travel
Tim

e and Driving
Com

fort Profile for
the w

hole Route)

Route-oriented
Environm

ent
Variables (GPS-Posi�on of Ego-Car

and M
ap Data for the w

hole Route)

Current Headw
ay to

Preceding Car/Velocity
of Ego-Car

Current Headw
ay to Preceding Car/Velocity of Ego-Car

CurrentM
anipulated

Variable (Drive/Brake)

Disturbance
Variables
(Physical
Signals in
Driving
Process of
Ego-Car)

Route-Segm
ent-

oriented
Plant

Variables (Velocity
of Ego-Car w

ithin
Current Route

Segm
ent)

Route-Segm
ent-oriented

Environm
ent

Variables
(Headw

ay to Preceding
Car, GPS-Posi�on of Ego-
Car and M

ap Data for
current Segm

ent)
Configura�on of
M

onitored Sensory Data
aboutDriving

Strategy

Know
ledge of Rout-

Segm
ent-based Driver

Preferences

Configura�on of Driving
Strategy for Cycle-Tim

e-
based Control Unit

(Set Trajectory
of Cruise

Velocity and Headw
ay to

Request of Planning
Route-Segm

ent-based
Driving Strategy

O
bserved Sym

ptom

(Processed Sensory Data of
Driving Strategy)

Configura�on of Driving
Strategy Planner

Know
ledge &

Data about

High-/M
iddle-

Level Driver
Preference for

Exchange

Know
ledge &

 Data about
M

iddle-Level Driving
Strategy and Low

-Level
Control Strategy and

Param
etriza�on for

Exchange

High-Level Personalized Route-based Set
Travel Profile (Set Profiles of Tim

e,
Consum

p�on and Driving Com
fort)

Situa�on-aw
are M

iddle-Level Driving Strategy w
ith Route-Segm

ent-based
Set Trajectory (Set Profiles of Cruise Velocity and Headw

ay to Preceding Car)

Planned Route-Segm
ent-

based Driving Strategy

Legend
ASCSR

RSP
SURSE

Segm
ent-oriented Sensor of Controlled Plant

Segm
ent-oriented Sensor of Environm

ent

Sensor of Controlled Variable
Actuator

Sensor of Reference Variable

Route-oriented Sensor of Controlled Plant
Sensor of User

Route-oriented Sensor of Environm
ent

SSP
SSE

Physical
Com

ponents of
Ego-Car

(incl. Pow
ertrain and

Car Body)

Environm
ent

P
2

P
1

Driving Strategy
M

onitor

I 1

Driving Strategy
Planner

Driving Strategy
Know

ledge

Cycle-Tim
e-based Control U

nit

Preceding Car)

C
1

A
1

U
ser

 Appendix

 255

A.3 Detailed View of Cycle-Time-Based Control Unit in Artificial Cognitive
Cruise Control

Physical System
Technical System

Route-based Adapta�on U
nit

Route-Segm
ent-based Adapta�on U

nit

Cycle-Tim
e-based Control U

nit

Param
etriza�on

Know
ledge

A
Controller

SU

RSP

RSE

SSP

P
1

P
0

P
0

S
0

C
0

P
2

P
1

SC

P
2

P
2

K
0

SSE

Tim
e-Triggered

SR
P

0

Final Control
Com

ponent

Current Headw
ay to Preceding Car/Velocity of Ego-Car

Param
etriza�on

of Final Control
Com

ponent
Param

etriza�on
of Predictor

Configura�on of
M

onitored Data
in M

easurem
ent

Com
ponent

Planed Route-Segm
ent-

based Set Trajectory

CurrentControl
Variable (Accelera�on)

Analyzer
I 0

CurrentControl
Variable
(Accelera�on)

Know
ledge &

Data about

High-/M
iddle-

Level Driver
Preference for

Exchange

High-Level
Personalized Route-
based Set Travel
Profile (Set Profiles of
Tim

e, Consum
p�on

and Driving Com
fort)

Situa�on-aw
are M

iddle-Level Driving Strategy w
ith

Route-Segm
ent-based Set Trajectory (Set Profiles of

Cruise Velocity and Headw
ay to Preceding Car)

Know
ledge &

 Data
about M

iddle-
Level Driving

Strategy and Low
-

Level Control
Strategy and

Param
etriza�on

for Exchange

Current GPS-posi�on of Ego -Car

Sym
ptom

including current

values of Velocity,
Headw

ay, and
GPS-posi�on of

Ego-Car

Physical
Com

ponents of
Ego-Car

(incl. Pow
ertrain and

Car Body)

Environm
ent

Driver-preferred
Tim

e Gap &

Cruise Velocity
of Ego-Car

Reference
Configura�on of
Driver Preference
(W

eights of
Criteria)

Route-oriented
Plant

Variables (Energy
Consum

p�on, Travel
Tim

e and Driving
Com

fort Profile for
the w

hole Route)

Route-oriented
Environm

ent
Variables (GPS-Posi�on of Ego-Car

and M
ap Data for the w

hole Route)

Current Headw
ay to

Preceding Car/Velocity
of Ego-Car

Disturbance
Variables
(Physical
Signals in
Driving
Process of
Ego-Car)

Route-Segm
ent-

oriented
Plant

Variables (Velocity
of Ego-Car w

ithin
Current Route

Segm
ent)

Route-Segm
ent -oriented

Environm
ent

Variables
(Headw

ay to Preceding
Car, GPS-Posi�on of Ego-
Car and M

ap Data for
current Segm

ent)

CurrentM
anipulated

Variable (Drive/Brake)
A

0

M
easurem

ent
Com

ponent Predicted Velocity of
Preceding Car w

ithin
follow

ing Cycle-Tim
e

Sym
ptom

 including current Headw
ay to

Preceding Car and Velocity of Ego-Car

Legend
ASCSR

RSP
SURSE

Segm
ent-oriented Sensor of Controlled Plant

Segm
ent-oriented Sensor of Environm

ent

Sensor of Controlled Variable
Actuator

Sensor of Reference Variable

Route-oriented Sensor of Controlled Plant
Sensor of User

Route-oriented Sensor of Environm
ent

SSP
SSE

U
ser

	Acknowledgment
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Used Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Objectives of this Dissertation
	1.3 Contributions of this Dissertation
	1.4 Content and Structure

	2 State of the Art
	2.1 Control Theory
	2.1.1 Basic Control
	2.1.2 Optimal and Adaptive Control
	2.1.3 Self-Optimization Control
	2.1.3.1 Feedback Control Loop on Higher Layer
	2.1.3.2 Feedback Control Loop on Lower Layer

	2.2 Architecture Design of Software-Intensive Systems
	2.2.1 Tree-Structured Architecture of Saridis
	2.2.2 NASREM Reference Model for Telerobot Control System Architecture
	2.2.3 Nested Hierarchical Architecture of Meystel
	2.2.4 Behavior-Based Subsumption Architecture of Brooks
	2.2.5 LAAS Architecture of Alami
	2.2.6 Hybrid Control Architecture of Yavuz and Bradshaw
	2.2.7 IBM’s MAPE-K for Autonomic Computing
	2.2.7.1 Autonomic Computing as a Vision of Self-Adaptive System
	2.2.7.2 Overall Reference Architecture for Autonomic Computing
	2.2.7.3 Touchpoint and Manageability Interface
	2.2.7.4 Knowledge Source
	2.2.7.5 Autonomic Manager Based on the Reference Model of MAPE-K

	2.2.8 DYNAMICO Reference Model
	2.2.8.1 Fundamental Design of DYNAMICO
	2.2.8.2 Hierarchical Architecture Based on Three Levels of Dynamics in DYNAMICO

	2.3 Generic Communication Architecture Patterns
	2.3.1 Request-Response Pattern
	2.3.2 Publish-Subscribe Pattern
	2.3.3 Pipes-and-Filters Pattern
	2.3.4 Shared-Repository Pattern
	2.3.5 Blackboard Pattern

	2.4 Applied AI-Based Technologies in This Dissertation
	2.4.1 Q-Learning
	2.4.2 Kernel Density Estimator

	2.5 Summary

	3 Case study: Architecture Evolution of Automatic Control within the Example of Adaptive Cruise Control
	3.1 Basic Control in ACC
	3.2 Naive Adaptive Control in ACC
	3.3 Controlled-Plant-Dependent Adaptive Control in ACC
	3.4 Physical-System-Dependent Adaptive Control in ACC
	3.5 Functional Vision of Future ACCs
	3.5.1 Personalized ACC by Learning Individual Driver Preferences
	3.5.2 Experience-Dependent ACC by Learning Historical Context of Driving Environment

	3.6 Opening Issues of Current Control Concepts for Future ACCs in the Functional Vision
	3.6.1 Missing Knowledge Acquisition and Adaptation
	3.6.1.1 Current Domain Knowledge Modeling in Control Systems
	3.6.1.2 Essential Knowledge Acquisition and Adaptation as Vision

	3.6.2 Limited System Scalability against Fixed Boundary Conditions

	3.7 Challenges for Architecture Design of Future Control Systems
	3.7.1 Current Design of Hierarchical Control System Architecture
	3.7.2 Limitations of Knowledge Decoupling Approach in Current Design
	3.7.3 A Vision of Architecture Design for Future Control Systems

	3.8 Summary: Future Automatic Control—Artificial Cognitive Control

	4 A Generic Architecture Style for Designing Automatic Control Systems
	4.1 Control Theory Meets Software Engineering
	4.2 Fundamental Design of Generic Architecture Style
	4.2.1 Preliminaries of the Design of the Generic Architecture Style
	4.2.2 Fundamental Component Structure within Generic Architecture Style
	4.2.3 Structural Adaptation Composition in Generic Architecture Style
	4.2.3.1 Vertical Coordination of Adaptation Composition
	4.2.3.2 Horizontal Coordination of Adaptation Composition

	4.2.4 Applying Triggering Mechanisms for Nodes with Fundamental Component Structure
	4.2.5 Applying Communication Architecture Patterns for the Design of Dynamic System Behaviors
	4.2.6 Dynamic System Behaviors as Use Cases in Generic Architecture Style
	4.2.6.1 UC1: Technical Process Control in a Single Node
	4.2.6.2 UC2: Knowledge Initialization, Retrieval, and Update in a Single Node
	4.2.6.3 UC3: Adaptation Control across Multiple Nodes
	4.2.6.4 UC4: Knowledge Acquisition and Sharing across Multiple Nodes

	4.3 Instantiation of Generic Architecture Style for Different Control Systems
	4.3.1 Basic Control following the Generic Architecture Style
	4.3.2 Naive Adaptive Control following the Generic Architecture Style
	4.3.3 Controlled-Plant-Dependent Adaptive Control following the Generic Architecture Style
	4.3.4 Physical-System-Dependent Adaptive Control following the Generic Architecture Style
	4.3.5 Artificial Cognitive Control following the Generic Architecture Style

	4.4 Summary

	5 Artificial Cognitive Cruise Control as Experimental Application of Generic Architecture Style
	5.1 Preliminary Design of Artificial Cognitive Cruise Control
	5.2 Instantiation of Generic Architecture Style for ACCC System Architecture: Static System Construction
	5.2.1 Physical System
	5.2.2 Route-Based Adaptation Unit in the Technical System
	5.2.3 Route-Segment-Based Adaptation Unit in the Technical System
	5.2.4 Cycle-Time-Based Control Unit in the Technical System

	5.3 Instantiation of Generic Architecture Style for ACCC System Architecture: Dynamic Behaviors in Use Cases (UCs)
	5.3.1 Dynamic Behaviors of ACCC in UC1
	5.3.2 Dynamic Behaviors of ACCC in UC2
	5.3.2.1 UC2 in the Route-Based Adaptation Unit
	5.3.2.2 UC2 in the Route-Segment-Based Adaptation Unit
	5.3.2.3 UC2 in the Cycle-Time-Based Control Unit

	5.3.3 Dynamic Behaviors of ACCC in UC3
	5.3.3.1 Adaptation Control Across the Highest and Middle Layers
	5.3.3.2 Adaptation Control Across the Middle and Lowest Layer

	5.3.4 Dynamic Behaviors of ACCC in UC4
	5.3.4.1 Knowledge Acquisition and Sharing Across the Highest and Middle Layers
	5.3.4.2 Knowledge Acquisition and Sharing Across the Middle and Lowest Layers

	5.4 Applying Communication Architecture Patterns for Component Interactions in Artificial Cognitive Cruise Control
	5.4.1 Publish-Subscribe Pattern for UC1
	5.4.2 Shared-Repository Pattern for UC2
	5.4.3 Request-Response Pattern for UC3
	5.4.4 Blackboard Pattern for UC4

	5.5 Implementation of Artificial Cognitive Cruise Control
	5.5.1 Implementation Overview
	5.5.2 Implemented Physical System
	5.5.2.1 Driver
	5.5.2.2 Environment
	5.5.2.3 Physical Components of Ego-car

	5.5.3 Route-Based Adaptation Unit (RAU) in Implemented Technical System
	5.5.3.1 Driver Preference Knowledge
	5.5.3.2 Driver Preference Monitor
	5.5.3.3 Driver Preference Analyzer
	5.5.3.4 Driver Preference Planner
	5.5.3.5 Driver Preference Executor

	5.5.4 Route-Segment-Based Adaptation Unit in Implemented Technical System
	5.5.4.1 Driving Strategy Knowledge
	5.5.4.2 Driving Strategy Monitor
	5.5.4.3 Driving Strategy Analyzer
	5.5.4.4 Driving Strategy Planner
	5.5.4.5 Driving Strategy Executor

	5.5.5 Cycle-Time-Based Control Unit in Implemented Technical System
	5.5.5.1 Parametrization Knowledge
	5.5.5.2 Measurement Component
	5.5.5.3 Analyzer
	5.5.5.4 Controller
	5.5.5.5 Final Control Component

	5.6 Evaluation of Artificial Cognitive Cruise Control
	5.6.1 Hypotheses
	5.6.2 Alternative Candidate Approaches within the Benchmark
	5.6.2.1 Manual Driving with Human Driver Model
	5.6.2.2 Longitudinal Automated Driving with Classical ACC

	5.6.3 Evaluation Framework
	5.6.4 Analysis
	5.6.4.1 Performance of Planning Driving Strategy by Q-Learning Algorithm
	5.6.4.2 Performance in Predicting Preceding Car’s Behaviors by Kernel Density Estimator (KDE)
	5.6.4.3 Performance Benchmark between the Human Driver Model, ACC, and ACCC

	5.7 Summary

	6 Conclusion
	6.1 Summary of this Dissertation
	6.2 Limitations of this Dissertation
	6.2.1 Limited Separation of Concerns in Knowledge Component of the Generic Architecture Style
	6.2.2 Missing Impact Investigation on Applying Communication Architecture Pattern
	6.2.3 Uncomprehensive Evaluation of Generic Architecture Style
	6.2.4 Missing Extensive Evaluation of Artificial Cognitive Cruise Control

	6.3 Recommendation for Future Research
	6.3.1 Architecture Design from the Viewpoint of Multi-Agent Systems
	6.3.2 Heterogeneous Knowledge Acquisition and Adaptation

	Bibliography
	Appendix
	A.1 Detailed View of Route-Based Adaptation Unit in Artificial Cognitive Cruise Control
	A.2 Detailed View of Route-Segment-Based Adaptation Unit in Artificial Cognitive Cruise Control
	A.3 Detailed View of Cycle-Time-Based Control Unit in Artificial Cognitive Cruise Control

	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite
	page fig4-3.pdf
	4.2.3.1 Vertical Coordination of Adaptation Composition

	Leere Seite
	page fig5-2.pdf
	5.2.1 Physical System

	abstract page.pdf
	Abstract

	acknowledgement page.pdf
	Acknowledgment

	page 165.pdf
	5.3.2.1 UC2 in the Route-Based Adaptation Unit

	page 176.pdf
	5.4.1 Publish-Subscribe Pattern for UC1

	page 197.pdf
	5.5.3.2 Driver Preference Monitor
	5.5.3.3 Driver Preference Analyzer

	page 216.pdf
	5.6.2 Alternative Candidate Approaches within the Benchmark
	5.6.2.1 Manual Driving with Human Driver Model

	page 231.pdf
	6 Conclusion
	6.1 Summary of this Dissertation

	page 239-252.pdf
	Bibliography

	page abstract.pdf
	Abstract

	page 6.pdf
	1.4 Content and Structure

	page 168.pdf
	5.3.3 Dynamic Behaviors of ACCC in UC3

	page 239-252.pdf
	Bibliography

	chapter 3.pdf
	3 Case Study: Architecture Evolution of Automatic Control within the Example of Adaptive Cruise Control
	3.1 Basic Control in ACC
	3.2 Naive Adaptive Control in ACC
	3.3 Controlled-Plant-Dependent Adaptive Control in ACC
	3.4 Physical-System-Dependent Adaptive Control in ACC
	3.5 Functional Vision of Future ACCs
	3.5.1 Personalized ACC by Learning Individual Driver Preferences
	3.5.2 Experience-Dependent ACC by Learning Historical Context of Driving Environment

	3.6 Opening Issues of Current Control Concepts for Future ACCs in the Functional Vision
	3.6.1 Missing Knowledge Acquisition and Adaptation
	3.6.1.1 Current Domain Knowledge Modeling in Control Systems
	3.6.1.2 Essential Knowledge Acquisition and Adaptation as Vision

	3.6.2 Limited System Scalability against Fixed Boundary Conditions

	3.7 Challenges for Architecture Design of Future Control Systems
	3.7.1 Current Design of Hierarchical Control System Architecture
	3.7.2 Limitations of Knowledge Decoupling Approach in Current Design
	3.7.3 A Vision of Architecture Design for Future Control Systems

	3.8 Summary: Future Automatic Control—Artificial Cognitive Control

	chapter 3.pdf
	3 Case Study: Architecture Evolution of Automatic Control within the Example of Adaptive Cruise Control
	3.1 Basic Control in ACC
	3.2 Naive Adaptive Control in ACC
	3.3 Controlled-Plant-Dependent Adaptive Control in ACC
	3.4 Physical-System-Dependent Adaptive Control in ACC
	3.5 Functional Vision of Future ACCs
	3.5.1 Personalized ACC by Learning Individual Driver Preferences
	3.5.2 Experience-Dependent ACC by Learning Historical Context of Driving Environment

	3.6 Opening Issues of Current Control Concepts for Future ACCs in the Functional Vision
	3.6.1 Missing Knowledge Acquisition and Adaptation
	3.6.1.1 Current Domain Knowledge Modeling in Control Systems
	3.6.1.2 Essential Knowledge Acquisition and Adaptation as Vision

	3.6.2 Limited System Scalability against Fixed Boundary Conditions

	3.7 Challenges for Architecture Design of Future Control Systems
	3.7.1 Current Design of Hierarchical Control System Architecture
	3.7.2 Limitations of Knowledge Decoupling Approach in Current Design
	3.7.3 A Vision of Architecture Design for Future Control Systems

	3.8 Summary: Future Automatic Control—Artificial Cognitive Control

	page 246-251.pdf
	5.6.4.2 Performance in Predicting Preceding Car’s Behaviors by Kernel Density Estimator (KDE)
	5.6.4.3 Performance Benchmark between the Human Driver Model, ACC, and ACCC

