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Abstract 

The last decades have seen the evolution of industrial production into more sophisticated processes. 

The development of specialized, high-end machines has increased the importance of predictive 

maintenance of mechanical systems to produce high-quality goods and avoid machine breakdowns. 

Predictive maintenance has two main objectives: to classify the current status of a machine component 

and to predict the maintenance interval by estimating its remaining useful life (RUL). Nowadays, both 

objectives are covered by machine learning and deep learning approaches and require large training 

datasets that are often not available. One possible solution may be transfer learning, where the 

knowledge of a larger dataset is transferred to a smaller one. 

This thesis is primarily concerned with transfer learning for predictive maintenance for fault 

classification and RUL estimation. The first part presents the state-of-the-art machine learning 

techniques with a focus on techniques applicable to predictive maintenance tasks (Chapter 2). This is 

followed by a presentation of the machine tool background and current research that applies the 

previously explained machine learning techniques to predictive maintenance tasks (Chapter 3). One 

novelty of this thesis is that it introduces a new intermediate domain that represents data by focusing 

on the relevant information to allow the data to be used on different domains without losing relevant 

information (Chapter 4). The proposed solution is optimized for rotating elements. Therefore, the 

presented intermediate domain creates different layers by focusing on the fault frequencies of the 

rotating elements. Another novelty of this thesis is its semi and unsupervised transfer learning-based 

fault classification approach for different component types under different process conditions 

(Chapter 5). It is based on the intermediate domain utilized by a convolutional neural network (CNN). 

In addition, a novel unsupervised transfer learning loss function is presented based on the maximum 

mean discrepancy (MMD), one of the state-of-the-art algorithms. It extends the MMD by considering 

the intermediate domain layers; therefore, it is called layered maximum mean discrepancy (LMMD). 

Another novelty is an RUL estimation transfer learning approach for different component types based 

on the data of accelerometers with low sampling rates (Chapter 6). It applies the feature extraction 

concepts of the classification approach: the presented intermediate domain and the convolutional 

layers. The features are then used as input for a long short-term memory (LSTM) network. The transfer 

learning is based on fixed feature extraction, where the trained convolutional layers are taken over. 

Only the LSTM network has to be trained again. The intermediate domain supports this transfer 

learning type, as it should be similar for different component types. In addition, it enables the practical 

usage of accelerometers with low sampling rates during transfer learning, which is an absolute novelty. 

All presented novelties are validated in detailed case studies using the example of bearings (Chapter 

7). In doing so, their superiority over state-of-the-art approaches is demonstrated. 



IV 
 

 



 

 

V 
 

Acknowledgments 

The execution of a dissertation is a time-consuming task that takes place over a long period of time. 

During this period, some people have been particularly supportive of me. I would like to take this 

opportunity to thank them. 

From a scientific point of view, I would like to thank my supervisor Prof. Dr. Andreas Rausch, who made 

it possible for me to pursue my doctoral degree at his institute. Further thanks go to my co-supervisor, 

Prof. Dr.-Ing. Axel Sikora for his scientific supervision during the entirety of my research work. Without 

his guidance, encouragement, and keen interest throughout our many hours of technical discussion, 

this thesis would not have been possible. Finally, I would also like to thank Zubair Amjad for his 

intensive cooperation with our project and the resulting impulses for my Ph.D. 

Privately, I would like to thank my family for their understanding and the many hours they had to spend 

without me due to my dissertation. Special thanks go to my dear wife and my two sons. I would also 

like to thank my parents for their trust and support throughout my entire life. Unfortunately, my father 

will not be able to celebrate this graduation, as he passed away much too early, shortly before the 

completion of this thesis. 

In addition, I would like to thank Erwin Junker Maschinenfabrik GmbH for giving me the opportunity 

to complete this Ph.D. and for providing the datasets. Finally, I want to give special thanks to my 

division manager, Mr. Johannes Schätzle, who made this possible for me in the first place. 

  



VI 
 

  



 

 

VII 
 

Related Research  

Parts of this thesis have been published in the form of research papers in the following journals: 

• S. Schwendemann, Z. Amjad, and A. Sikora, “A survey of machine-learning techniques for 

condition monitoring and predictive maintenance of bearings in grinding machines,” 

Computers in Industry, vol. 125, p. 103380, 2021, doi: 10.1016/j.compind.2020.103380. 

• S. Schwendemann, Z. Amjad, and A. Sikora, “Bearing fault diagnosis with intermediate domain 

based Layered Maximum Mean Discrepancy: A new transfer learning approach,” Engineering 

Applications of Artificial Intelligence, vol. 105, p. 104415, 2021, doi: 

10.1016/j.engappai.2021.104415. 

• S. Schwendemann and A. Sikora, “Transfer-Learning-Based Estimation of the Remaining Useful 

Life of Heterogeneous Bearing Types Using Low-Frequency Accelerometers,” J. Imaging, vol. 

9, no. 2, p. 34, 2023, doi: 10.3390/jimaging9020034. 

• S. Schwendemann, A. Rausch, and A. Sikora, “Detailed Study of Different Degradation Stages 

of Bearings in a Practical Reference Dataset,” in 2023 IEEE 28th International Conference on 

Emerging Technologies and Factory Automation (ETFA), Sinaia, Romania, 2023, doi: 

10.1109/ETFA54631.2023.10275478. 

• S. Schwendemann, A. Rausch, and A. Sikora, “A Hybrid Predictive Maintenance Solution for 

Fault Classification and Remaining Useful Life Estimation of Bearings Using Low-Cost Sensor 

Hardware,” 5th International Conference on Industry 4.0 and Smart Manufacturing, Lisbon, 

Portugal, 2023 [Status: accepted; not published yet] 

 

The research results were also presented at the following conference: 

• S. Schwendemann, “Predictive Maintenance: CNN basierende Zustandsanalyse von 

Kugellagern,” Internet of Things – vom Sensor bis zur Cloud 2020, Virtual conference (due to 

COVID-19), Oct. 21, 2020. 

• S. Schwendemann, A. Rausch, and A. Sikora, “Detailed Study of Different Degradation Stages 

of Bearings in a Practical Reference Dataset,” in 2023 IEEE 28th International Conference on 

Emerging Technologies and Factory Automation (ETFA), Sinaia, Romania, 2023 

• S. Schwendemann, A. Rausch, and A. Sikora, “A Hybrid Predictive Maintenance Solution for 

Fault Classification and Remaining Useful Life Estimation of Bearings Using Low-Cost Sensor 

Hardware,” 5th International Conference on Industry 4.0 and Smart Manufacturing, Lisbon, 

Portugal, 2023 

 



VIII 
 

  



 

 

IX 
 

Table of Contents 

Abstract ...................................................................................................................................... III 

Acknowledgments ........................................................................................................................ V 

Related Research ........................................................................................................................ VII 

List of Figures ............................................................................................................................. XV 

List of Tables ........................................................................................................................... XXIII 

Abbreviations ......................................................................................................................... XXVII 

1 Introduction ......................................................................................................................... 1 

1.1 Problem Statement ................................................................................................................ 1 

1.2 Research Objectives ............................................................................................................... 3 

1.3 Thesis Outline ......................................................................................................................... 6 

2 Machine Learning Background .............................................................................................. 9 

2.1 Introduction ........................................................................................................................... 9 

2.2 Machine Learning in General ................................................................................................. 9 

2.2.1 Introduction................................................................................................................... 9 

2.2.2 Theoretical Background ................................................................................................ 9 

2.2.3 Artificial Neural Networks ........................................................................................... 12 

2.2.4 Convolutional Neural Network .................................................................................... 12 

2.2.5 Recurrent Neural Network .......................................................................................... 13 

2.2.6 Support Vector Machine ............................................................................................. 15 

2.3 Feature Extraction Methods for Predictive Maintenance ................................................... 15 

2.3.1 Introduction................................................................................................................. 15 

2.3.2 Time Domain Analysis ................................................................................................. 16 

2.3.3 Frequency Domain Analysis ........................................................................................ 16 

2.3.4 Time-Frequency Analysis ............................................................................................. 18 

2.3.5 Combined Analysis ...................................................................................................... 22 

2.3.6 Comparison of the Different Methods ........................................................................ 22 

2.4 Transfer Learning for Predictive Maintenance .................................................................... 23 

2.4.1 Introduction................................................................................................................. 23 

2.4.2 Transfer Learning Definitions ...................................................................................... 24 

2.4.3 Transfer Learning Thematic Clusters ........................................................................... 26 



X 
 

2.4.4 Transfer Learning for CNNs ......................................................................................... 29 

2.4.5 Transfer Learning for RNNs ......................................................................................... 31 

2.4.6 Transfer Learning Loss Functions ................................................................................ 32 

2.5 Conclusion ............................................................................................................................ 35 

3 Predictive Maintenance ...................................................................................................... 37 

3.1 Introduction ......................................................................................................................... 37 

3.2 Predictive Maintenance Background ................................................................................... 37 

3.2.1 Introduction................................................................................................................. 37 

3.2.2 Industry 4.0 ................................................................................................................. 37 

3.2.3 Machine Tool Spindles ................................................................................................ 39 

3.2.4 Bearings ....................................................................................................................... 40 

3.2.5 Accelerometers ........................................................................................................... 43 

3.2.6 Challenges ................................................................................................................... 44 

3.3 State of the Art for Transfer Learning for Predictive Maintenance of Bearings .................. 45 

3.3.1 Introduction................................................................................................................. 45 

3.3.2 Bearing Fault Classification ......................................................................................... 45 

3.3.3 Remaining Useful Life of Bearings ............................................................................... 52 

3.3.4 Conclusion ................................................................................................................... 58 

3.4 Conclusion ............................................................................................................................ 59 

4 Feature Extraction .............................................................................................................. 61 

4.1 Introduction ......................................................................................................................... 61 

4.2 Validation Context ............................................................................................................... 63 

4.3 Intermediate Domain Structure ........................................................................................... 64 

4.4 Raw Signal Processing .......................................................................................................... 65 

4.4.1 Introduction................................................................................................................. 65 

4.4.2 Windowed Envelope ................................................................................................... 66 

4.4.3 Signal Segmentation .................................................................................................... 67 

4.4.4 Conclusion ................................................................................................................... 68 

4.5 De-noising ............................................................................................................................ 69 

4.5.1 Introduction................................................................................................................. 69 

4.5.2 Bandpass ..................................................................................................................... 69 

4.5.3 Harmonics ................................................................................................................... 70 

4.5.4 Conclusion ................................................................................................................... 71 



 

 

XI 
 

4.6 Preparation .......................................................................................................................... 72 

4.7 Supplements for the Use Case of Bearing Fault Classification ............................................ 74 

4.8 Generalization ...................................................................................................................... 76 

4.9 Conclusion ............................................................................................................................ 77 

5 Transfer Learning Approach for Classification ...................................................................... 79 

5.1 Introduction ......................................................................................................................... 79 

5.2 Validation Context ............................................................................................................... 81 

5.3 Classification Support by Transfer Learning ........................................................................ 82 

5.4 Proposed Transfer Learning Architecture ............................................................................ 82 

5.4.1 Introduction................................................................................................................. 82 

5.4.2 CNN Model .................................................................................................................. 83 

5.4.3 Transfer Learning Approach ........................................................................................ 86 

5.4.4 Alternative Transfer Learning Approach ..................................................................... 88 

5.5 Layered Maximum Mean Discrepancy................................................................................. 89 

5.6 Generalization ...................................................................................................................... 92 

5.7 Conclusion ............................................................................................................................ 92 

6 Transfer Learning Approach for Remaining Useful Life ......................................................... 95 

6.1 Introduction ......................................................................................................................... 95 

6.2 Validation Context ............................................................................................................... 97 

6.3 Intermediate Domain ........................................................................................................... 98 

6.4 Proposed RUL Architecture .................................................................................................. 99 

6.4.1 Introduction................................................................................................................. 99 

6.4.2 Machine Learning-Based Feature Extraction ............................................................ 100 

6.4.3 Time dependencies ................................................................................................... 101 

6.4.4 Transfer Learning Approach ...................................................................................... 108 

6.5 Generalization .................................................................................................................... 110 

6.6 Conclusion .......................................................................................................................... 110 

7 Case Studies ...................................................................................................................... 113 

7.1 Introduction ....................................................................................................................... 113 

7.2 Exploration: Transfer Learning for Bearings Fault Classification ....................................... 113 

7.2.1 Introduction............................................................................................................... 113 

7.2.2 Data Description ........................................................................................................ 113 

7.2.3 Evaluation .................................................................................................................. 114 



XII 
 

7.2.4 Conclusion ................................................................................................................. 123 

7.3 Benchmark: Transfer Learning for Bearing Fault Classification ......................................... 124 

7.3.1 Introduction............................................................................................................... 124 

7.3.2 Benchmark Description ............................................................................................. 125 

7.3.3 Benchmark ................................................................................................................ 127 

7.3.4 Conclusion ................................................................................................................. 128 

7.4 Benchmark: Transfer Learning for Remaining Useful Life of Bearings .............................. 130 

7.4.1 Introduction............................................................................................................... 130 

7.4.2 Benchmark Description ............................................................................................. 130 

7.4.3 Benchmark Execution ................................................................................................ 131 

7.4.4 Detailed Benchmark Analyses ................................................................................... 134 

7.4.5 Conclusion ................................................................................................................. 140 

7.5 Conclusion .......................................................................................................................... 141 

8 Conclusion and Outlook ..................................................................................................... 143 

8.1 Discussion ........................................................................................................................... 143 

8.1.1 Introduction............................................................................................................... 143 

8.1.2 Research Questions ................................................................................................... 143 

8.1.3 Research Challenges .................................................................................................. 145 

8.1.4 Conclusion ................................................................................................................. 149 

8.2 Outlook .............................................................................................................................. 149 

8.2.1 Transfer Learning for Classification ........................................................................... 150 

8.2.2 Transfer Learning for Remaining Useful Life ............................................................. 150 

References ................................................................................................................................ 151 

A Appendix .......................................................................................................................... 169 

A.1 General ............................................................................................................................... 169 

A.1.1 Assignment of Datasets ............................................................................................. 169 

A.2 Verification of the Intermediate Domain ........................................................................... 170 

A.2.1 Frequency Conversion Methods ............................................................................... 170 

A.2.2 Signal Segmentation .................................................................................................. 170 

A.2.3 Different Bandpass Width ......................................................................................... 171 

A.2.4 Frequency-Selective Filter with Different Harmonics ............................................... 171 

A.2.5 Image Size .................................................................................................................. 172 

A.3 Verifications of the Transfer Learning Approach for Classification ................................... 173 



 

 

XIII 
 

A.3.1 Number of Convolutional Layers ............................................................................... 173 

A.3.2 Dropout Factor .......................................................................................................... 173 

A.3.3 Loss function ............................................................................................................. 174 

A.3.4 MMD as Basis for LMMD ........................................................................................... 174 

A.4 Benchmark of the Transfer Learning Approach for Classification ..................................... 175 

A.5 Verification of the RUL approach ....................................................................................... 181 

A.5.1 Scoring Algorithm for RUL Estimation Tasks ............................................................. 181 

A.5.2 Different Fully Connected Layers .............................................................................. 181 

A.5.3 Pre-trained Convolutional Layers .............................................................................. 182 

 

 

  



XIV 
 

  



 

 

XV 
 

List of Figures 

Figure 1: Failure probability on grinding machines. Twenty-six percent of all failures are based on 
spindle errors. Among those, 42% of the failures are due to bearing defects [3]. .................. 1 

Figure 2: Relevant machine learning categories in general and the ones directly used in this thesis 
(highlighted). All machine learning processes can be assigned to a subitem of each of 
the five main categories. ........................................................................................................ 10 

Figure 3: Typical CNN architecture. The input image is first processed with convolutional and 
pooling layers, followed later by fully connected layers. ...................................................... 13 

Figure 4: Information flow of an RNN through time. ............................................................................ 14 

Figure 5: Architecture of an LSTM cell with the three gates: input (it), forget (ft), and output (ot) 
[31]. ........................................................................................................................................ 15 

Figure 6: Architecture of a GRU cell with its three gates: reset (rt), update (zt), and the hidden state 
(ht) [31]. .................................................................................................................................. 15 

Figure 7: A visualization of an SVM classification. The red dots are the support vectors, and the 
dashed lines define the decision boundaries of the green and blue classes. ........................ 15 

Figure 8: An SVR with different kernel models to create the hyperplane for a regression task. ......... 15 

Figure 9: Feature extraction techniques for time signals. There are techniques in the time domain, 
the frequency domain, and the time-frequency domain. ..................................................... 16 

Figure 10: Transformation of a time signal (a) to the frequency domain (b) with the help of an FFT. 
This signal consists of two frequency signals: One at 55 Hz and the other at 100 Hz. .......... 17 

Figure 11: This figure shows the envelope (a) calculated for a vibration signal, which is further 
processed to get the envelope spectra (b). Here the frequency of 156 Hz and its 
harmonics (312 Hz, 480 Hz, and so on) are well recognizable. ............................................. 18 

Figure 12: STFT of a 1 s signal with a 0.3 s window size: a) shows three windows used for the STFT 
in the time domain; b) shows the resulting FFTs of each window. ....................................... 19 

Figure 13: Different scales of a Morlet wavelet. An increased scale leads to a wider window in 
time that a wavelet can cover................................................................................................ 20 

Figure 14: The minima (red) and the maxima (blue) envelope of the signal and their mean [50]. ...... 21 

Figure 15: Differentiation possibilities for transfer learning into thematic clusters. All transfer 
learning techniques can be differentiated by the available information, the relationship 
between a source and a target domain, and its transfer type. The techniques used in 
this thesis are highlighted. ..................................................................................................... 26 

Figure 16: Transfer learning for CNNs based on domain adaptation loss. The output difference of 
the fully connected layers is used as input for the domain adaption loss function, which 
calculates the domain adaption loss. ..................................................................................... 31 

Figure 17: Stages in the Industry 4.0 development path. The path begins with stage 1 
computerization and ends with stage 6, which leads to autonomous adaptions [93]. ........ 38 

Figure 18: Positions of bearings (green) inside of a grinding spindle. .................................................. 39 

Figure 19: Different available spindle configurations and their applications [98]. ............................... 40 

Figure 20: Layout of a ball bearing in the front and side section plane [54]. ....................................... 41 



XVI 
 

Figure 21: The four degradations of a bearing. In every stage, the rotation frequencies are visible 
in area A. The first stage is shown in a). Here the crack is only visible through ultrasonic 
frequencies. In stage 2 (b), the natural frequencies of the bearing become visible. This 
is followed by stage 3, where the characteristic fault frequencies appear in addition to 
the two already existing frequencies. Finally, in stage 4 (d), the frequencies in areas b 
and c vanish. Instead, random noise appears [112]. ............................................................. 42 

Figure 22: Different feature extraction methods for sensor values in a machine learning process: 
Direct raw sensor data, statistical features, such as shape factor in the time domain, 
transformation into different frequency and time-frequency domains, and the use of an 
intermediate domain. ............................................................................................................ 61 

Figure 23: The creation of an intermediate domain image. As a first step, the raw sensor data is 
converted into the time-frequency domain to obtain better analysis possibilities. 
Afterward, the transformed data is de-noised with a frequency-selective filter. Before 
the created image can be used, it must be prepared for the upcoming machine learning 
algorithm (cf. [133]). .............................................................................................................. 63 

Figure 24: A setup of periodic test runs. After each test run, performed after an interval T, the 
sensor data measuring sequence of the length t cans be used for the given predictive 
maintenance task. The predictive maintenance tasks start with transforming the raw 
sensor data into an intermediate domain image. ................................................................. 65 

Figure 25: Classification accuracies of three different labels for bearings with different frequency 
and time-frequency conversions. The best accuracy is achieved with the windowed 
envelope. The test setup is described in Appendix A.2.1. ..................................................... 67 

Figure 26: Accuracies of samples of different lengths. All samples are generated with the 
windowed envelope method. All accuracies are between 99% and 100%. The test setup 
is described in Appendix A.2.2. .............................................................................................. 68 

Figure 27: The raw sensor signal as input (a) and the output (b) of a windowed envelope 
transform. (b) shows that numerous frequencies appear in the converted signal. For 
instance, the transformed signal shows that there are frequencies with a high amplitude 
at 800 Hz as well as several frequencies around 4500 Hz. These frequencies are not only 
related to the fault, but also belong to frequencies from other components of the 
process or to the natural frequencies of the bearing itself (cf. [133]). ................................. 69 

Figure 28: Accuracies for different bandpass widths of a frequency-selective filter, which uses four 
harmonics. The best accuracy is achieved with a width of 10 Hz. The lower accuracy for 
5 Hz might be related to the fact that the actual fault frequency in some samples defers 
more than 5 Hz through wear-out and manufacturing tolerances. On the other hand, 
the 20 Hz frequency band might be too wide, so that noise gets into the band, which 
can actually be filtered out. ................................................................................................... 70 

Figure 29: Accuracies for bearing fault classification with the help of a windowed envelope in a 
noisy environment. The highest accuracy can be reached by applying a frequency-
selective filter with four harmonics (see Appendix A.2.4). .................................................... 71 

file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311779
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311779
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311779
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311779
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311779
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311779


 

 

XVII 
 

Figure 30: These figures show the windowed envelope as input (a) and the output (b) of the 
frequency-selective filter. In (b) only the relevant layers remain. There is a layer for each 
fault frequency of the bearing. Each layer contains a frequency band around its fault 
frequency. This is done for n harmonics. Additional frequencies that are not related to 
the fault are filtered out. In this case, there are four layers for four different fault 
frequencies including four harmonics for each. It is clearly visible that the high 
amplitude, which occurs at approx. 800 Hz in (a) is filtered out and no longer appears in 
(b) (cf. [133]). ......................................................................................................................... 72 

Figure 31: Accuracies of different sizes of the input image. For the CWRU dataset, a 128x128 pixel 
image has a slightly better accuracy. For the Spindle dataset, the 64x64 pixel image 
performs better. On average, the 64x64 pixel image has the better accuracy. .................... 73 

Figure 32: The image of the frequency-selective filter as input (a) of the preparation process and 
its output (b), which is the final intermediate domain image. The preparation process 
performs normalizing and rescaling on the input. The output is now normalized in a 
range between 0.0 and 1.0. In addition, it is recognizable that the resolution has been 
reduced to 64x64 pixels because the image now appears pixelated  (cf. [133]). ................. 74 

Figure 33: Frequency domain of a bearing with an outer ring defect and "natural" noise of a 
spindle in use. The characteristic frequency of the outer ring defect plus its harmonics 
are marked with a green crosshair. ....................................................................................... 75 

Figure 34: Intermediate domain image for four different fault types. For each fault type, the first 
four harmonics are used and stacked on top of each other [133]. ....................................... 76 

Figure 35: The different steps for a transfer learning-based classification approach. The input, 
which is the raw sensor data, is preprocessed with a feature extraction technique such 
as an intermediate domain. Afterward, the extracted features are used for the machine 
learning process based on CNN with transfer learning. The trained model is finally used 
for classification tasks. ........................................................................................................... 81 

Figure 36: CNN architecture proposed by Verstraete et al. [141]: three consecutive blocks of a 
combination of two convolutional layers and pooling layers are used. In each block, a 
different number of filters is used. Afterward, two fully connected layers with a dropout 
layer after each feed the last fully connected layer, which is used for the classification. .... 84 

Figure 37: Comparison of a different number of convolutional layers in series. Two different test 
cases have been used. For both tested datasets, the double layer approach has the best 
accuracy. ................................................................................................................................ 84 

Figure 38: Different values for the dropout factor in the fully connected layers of the CNN. There 
is no significant difference between the accuracies. ............................................................. 85 

Figure 39: Resulting accuracies of CNN trainings with cross-entropy and Kullback Leiber 
divergence. Neither is superior. ............................................................................................. 86 

Figure 40: Simplified representation of the proposed CNN layout for transfer learning. It is a 
mirrored model that shares the same frozen weights and biases in the convolutional 
layers. Only the fully connected layers are trained during transfer learning with the help 
of the original loss function plus additional transfer learning losses LFC1 and LFC2 [133]. ...... 88 

Figure 41: Alternative transfer learning process (TLA2): First, the model is trained using source 
data that has been labeled. Afterward, this model is trained once more using unlabeled 
target data. Finally, the model is fine-tuned with labeled target data (cf. [133]). ................ 89 

file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311782
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311782
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311782
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311782
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311782
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311782
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311782
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311782
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311784
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311784
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311784
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311784
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311784


XVIII 
 

Figure 42: Calculation of the loss value with the LMMD loss function on fully connected layer 1. 
The image is split into separate images for each class. The output of the fully connected 
layer for each class is the input of an MMD function. All results together are the total 
LMMD loss. ............................................................................................................................ 91 

Figure 43: The different steps for a transfer learning-based RUL estimation approach. The input, 
which is the raw sensor data, is preprocessed with a feature extraction technique, such 
as an intermediate domain. Afterward, the extracted features are used for the machine 
learning process, which is based on a CNN in combination with an LSTM. The CNN can 
be pre-trained with data from a different domain for the feature extraction and then 
transferred to a learning task in the target domain. The trained model is finally used for 
the regression task of the RUL estimation with the help of a health indicator (cf. [112]). ... 97 

Figure 44: Feature extraction and classification parts of a CNN. The features start from a low-level 
on the left side and end at a high-level on the right side [112]. .......................................... 100 

Figure 45: Different degradation models for an example with a total lifetime of 200 
measurements. a) shows a linear model from start to end of the lifetime. b) shows a 
piece-wise linear degradation model, where only a degradation phase exists at the last 
n=75 measurements. For the other measurements, no degradation can be determined.
 ............................................................................................................................................. 101 

Figure 46: Example of the degradation of a bearing based on the outer and the inner ring fault 
frequency. ............................................................................................................................ 103 

Figure 47: Proposed RUL framework. The feature extraction is performed with the help of 
convolutional and pooling layers. This part is equal for each of the n input images used. 
All convolutional layers share the same weights. The output of the last pooling layer of 
each image path is the input of the first LSTM network. Three LSTM layers are used. 
After the last LSTM, two fully connected layers are used. The output of the last layer is 
the health indicator of the current lifetime. ........................................................................ 106 

Figure 48: The memory used for the proposed LSTM network depends on the number of input 
images used. ........................................................................................................................ 107 

Figure 49: Detailed example of the window size of the input. A total number of 10 measurements, 
a step size of s=2 and an amount of used septs n=3 leads to the usage of measurements 
6, 8, and 10 as input. ............................................................................................................ 107 

Figure 50: Evaluation of different input sizes (n) and different step sizes (s) for the training of the 
proposed LSTM framework. The best PHM score (see A.5.1) is attained with an input 
size of 85 and a step size of 2 [112]. .................................................................................... 107 

Figure 51: Comparison of the PHM score between the neuronal network with and without using 
pre-training convolutional layers. The pre-trained network has a much higher PHM 
score. .................................................................................................................................... 109 

Figure 52: The results of the transformation of the same 0.2 second sample in the frequency 
domain (FFT) (a), time-frequency domain (HHT (b), S-transform(c)), and the new 
intermediate domain (d). ..................................................................................................... 115 

Figure 53: Accuracies for λ of 0, 0.1, 1, 10, 50, 100 and 1000 for 𝜆𝐹𝐶1 and 𝜆𝐹𝐶2 for a transfer 
learning from Uni Paderborn to CWRU using LMMD (a) and CORAL (b). ............................ 116 



 

 

XIX 
 

Figure 54: Examples showing the confusion matrices of the third run for both transfer learning 
directions. The third run is only used to show a confusion matrix of a random result. All 
other confusion matrices are illustrated in Appendix A.4. a) shows the confusion matrix 
for drive-end to fan-end with an accuracy of 58.03% and b) shows the confusion matrix 
for fan-end to drive-end with a total accuracy of 72.13%. .................................................. 128 

Figure 55: The sensor values of bearing dataset 1_4 over time: Figure a) shows the maximum 
acceleration value of the horizontal and vertical accelerators of each measurement 
record. In addition, the test position is marked. Figure b) shows the values of the 
horizontal sensor in the time-frequency domain. For this purpose, an FFT was 
performed for the measured values every 500 seconds. Both figures show an increased 
amplitude of the fault frequencies at the end of the lifetime [112]. .................................. 134 

Figure 56: The amplitude of the entire frequency range (up to 12,800 Hz) of the horizontal 
accelerometer of bearing dataset 1_4 over time. Additionally, to the fault frequencies, 
amplitudes of other frequencies also rise at the end of the bearing life. ........................... 135 

Figure 57: The sensor values of bearing dataset 2_5 over time: Figure a) shows the maximum 
acceleration value of the horizontal and vertical accelerators of each measurement 
record. In addition, the test position is marked. Figure b) shows the values of the 
horizontal sensor in the time-frequency domain. For this purpose, an FFT was 
performed for the measured values every 500 seconds. A) and b) do not show a special 
characteristic at the test position, which is after 20,020 seconds. Figure a) shows an 
increased measured value at the end of the lifetime. Figure b) also shows slightly 
increased amplitudes towards the end [112]. ..................................................................... 136 

Figure 58: This plot shows the amplitude of the entire frequency range (up to 12,800 Hz) of the 
horizontal accelerometer of bearing dataset 2_5 over time. There is hardly any 
increased amplitude at frequencies lower than 1,000 Hz. This is the area of the 
characteristic fault frequencies. However, the frequency ranges of 1,000 Hz, 6,000 Hz, 
and 12,000 Hz have increased amplitudes at the end of the RUL. ...................................... 137 

Figure 59: The sensor values of bearing dataset 1_6 over time: Figure a) shows the maximum 
acceleration value of the horizontal and vertical accelerators of each measurement 
record. In addition, the test position is marked. Figure b) shows the values of the 
horizontal sensor in the time-frequency domain. For this purpose, an FFT was 
performed for the measured values every 500 seconds. A) and b) do not show a special 
characteristic at the test position after 23,020 seconds. As can be seen in a) and b), there 
are increased measured values before and after the test position but not at the test 
position. In addition, a high degree of scattering of the measured values is recognizable 
[112]. .................................................................................................................................... 138 

Figure 60: The amplitudes of the entire frequency range (up to 12,800 Hz) of the horizontal 
accelerometer of bearing dataset 1_6 over time. This plot shows hardly any increase in 
the amplitude of the fault frequencies. However, an increased amplitude of the 
frequency ranges of 1,000 Hz, 6,000 Hz, and 12,000 Hz is recognizable towards the end.
 ............................................................................................................................................. 139 

Figure 61: Different methods for estimating the machine condition and their interactions. There 
are two major types of methods: feature extraction and machine. In addition, an 
optional third method is the used transfer learning method. Here the most common 
deep learning methods are shown. ..................................................................................... 146 

file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311806
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311806
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311806
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311806
file://///synologyserver/sebastian/Doktorarbeit/Dissertation/Thesis_Schwendemann_230622.docx%23_Toc138311806


XX 
 

Figure 62: Classification accuracies of three different labels for bearings with different frequency 
and time-frequency conversions. The best accuracy is achieved with the windowed 
envelope. ............................................................................................................................. 170 

Figure 63: Accuracies of samples of different lengths. All samples are generated with the 
windowed envelope method. All accuracies are between 99% and 100%. ........................ 171 

Figure 64: Accuracies for different bandpass widths of a frequency-selective filter, which uses four 
harmonics. The best accuracy is achieved with a width of 10 Hz. The lower accuracy for 
5 Hz might be related to the fact that the actual fault frequency in some samples defers 
more than 5 Hz through wear-out and manufacturing tolerances. On the other hand, 
the 20 Hz frequency band might be too wide, so that noise gets into the band, which 
can actually be filtered out. ................................................................................................. 171 

Figure 65: Accuracies for bearing fault classification with the help of a windows envelope in a 
noisy environment. The highest accuracy can be reached by applying a frequency-
selective filter with four harmonics. .................................................................................... 172 

Figure 66: Accuracies of different sizes of the input image. For the CWRU dataset, a 128x128 pixel 
image has a slightly better accuracy. For the Spindle dataset, the 64x64 performs better. 
On average, the 64x64 pixel has the best accuracy. ............................................................ 172 

Figure 67: Comparison of a different number of convolutional layers in series. Two different test 
cases have been used. For both tested datasets, the double layer approach has the best 
accuracy. .............................................................................................................................. 173 

Figure 68: Different values for the dropout factor in the fully connected layers of the CNN. There 
is no significant difference between the accuracies. ........................................................... 174 

Figure 69: Resulting accuracies of CNN trainings with cross-entropy and Kullback Leiber 
divergence. None of them is superior. ................................................................................ 174 

Figure 70: Comparing the results of using loss function as the basis for the LMMD approach. The 
best results can be achieved with CORAL and MMD. .......................................................... 175 

Figure 71: Confusion matrix for the transfer-learning task from drive-end to fan-end. This matrix 
shows run 1 with an accuracy of 73.82%. ............................................................................ 175 

Figure 72: Confusion matrix for the transfer-learning task from drive-end to fan-end. This matrix 
shows run 2 with an accuracy of 62.78%. ............................................................................ 176 

Figure 73: Confusion matrix for the transfer-learning task from drive-end to fan- end. This matrix 
shows run 3 with an accuracy of 58.03%. ............................................................................ 176 

Figure 74: Confusion matrix for the transfer-learning task from drive-end to fan-end. This matrix 
shows run 4 with an accuracy of 56.05%. ............................................................................ 177 

Figure 75: Confusion matrix for the transfer-learning task from drive-end to fan-end. This matrix 
shows run 5 with an accuracy of 56.18%. ............................................................................ 177 

Figure 76: Confusion matrix for the transfer-learning task from fan-end to drive-end. This matrix 
shows run 1 with an accuracy of 78.70%. ............................................................................ 178 

Figure 77: Confusion matrix for the transfer-learning task from fan-end to drive-end. This matrix 
shows run 2 with an accuracy of 73.43%. ............................................................................ 178 

Figure 78: Confusion matrix for the transfer-learning task from fan-end to drive-end. This matrix 
shows run 3 with an accuracy of 72.31%. ............................................................................ 179 



 

 

XXI 
 

Figure 79: Confusion matrix for the transfer-learning task from fan-end to drive-end. This matrix 
shows run 4 with an accuracy of 71.09%. ............................................................................ 179 

Figure 80: Confusion matrix for the transfer-learning task from fan-end to drive-end. This matrix 
shows run 5 with an accuracy of 66.15%. ............................................................................ 180 

Figure 81: Scoring function Ai as a function of the relative error Eri. A negative Eri represents a 
longer estimated RUL than the actual RUL. ......................................................................... 181 

Figure 82: Comparison of the PHM scores between a neuronal network with pertained 
convolutional layers and one without pre-training. The pre-trained network has a much 
higher PHM score. ................................................................................................................ 182 

 
  



XXII 
 

  



 

 

XXIII 
 

List of Tables 

Table 1: Organization of the research questions in the chapters of this thesis. ..................................... 5 

Table 2: Summary of different feature extraction types....................................................................... 23 

Table 3: Summary of the notations used for transfer learning. ............................................................ 24 

Table 4: Recommendation on how many layers should be fine-tuned depending on the dataset 
size and their similarities. ...................................................................................................... 30 

Table 5: The occurrence of the different degradation stages in percentage terms of the L10 bearing 
lifetime [109]. ......................................................................................................................... 43 

Table 6: Brief overview of different research in the field of bearing fault classification. ..................... 51 

Table 7: Brief overview of different research in the field of transfer learning for estimating the 
RUL. ........................................................................................................................................ 58 

Table 8: Parameters used during the training of the neural network. ................................................. 64 

Table 9: The different parameters of the intermediate domain. .......................................................... 76 

Table 10: Parameters used during the training of the neural network. ............................................... 81 

Table 11: This table shows the detailed architecture of the proposed CNN with the layer types 
and their parameters. Each layer of the CNN is listed with its type, the output shape of 
each layer (none has to be replaced with the number of images that are used in a batch 
and is therefore dependent on the training parameter batch size), the number of 
trainable parameters, and used activation functions. ........................................................... 86 

Table 12: Training parameters used for the proposed RUL approach. ................................................. 98 

Table 13: The different evaluated LSTM layouts. The number of outputs for each layer is given in 
parentheses. Only the used layers and their connection (marked by an arrow) are drawn 
for each layout. For comparison, the PHM score of each layout for the RUL task of the 
IEEE PHM 2012 Data Challenge has been calculated. Layout 2 has the best results. ......... 105 

Table 14: This table shows the detailed architecture of the proposed RUL framework with all used 
layers and their parameters. Therefore, each layer is listed with its type, the output 
shape of each layer (none has to be replaced with the number of images that are used 
in a batch and is therefore dependent on the training parameter batch size) the number 
of trainable parameters, and the activation functions used. The parameter w in the 
output shape is for the window size of historical data. ....................................................... 105 

Table 15: The different combinations of datasets used in each case study. ...................................... 114 

Table 16: Here, the different headers/scenarios for the semi-supervised scenario are explained. 
They are based on only labeled data (only source domain, target, all target) and on 
transfer learning approaches using TLA1 (labeled data in the source, target, source and 
target domain) and transfer learning approach TLA2 with labeled data in both domains.
 ............................................................................................................................................. 117 

Table 17: Accuracies of only unsupervised learning. Source and target are different datasets of 
the Case Western Reserve University - Best results achieved with the help of the 
intermediate domain combined with LMMD (87.6%). ........................................................ 118 



XXIV 
 

Table 18: Accuracies of semi-supervised learning. Source and target are different datasets of the 
Case Western Reserve University – The best results were obtained using only target data 
and the intermediate domain (93.4%). This is followed by the intermediate domain and 
MK-MMD (92.6%) and with LMMD (91.4%). Accuracies better than 92% could be 
achieved for all setups when all target data is used as labeled data. ................................. 119 

Table 19: Accuracies of only unsupervised learning. Source is a dataset of University of Paderborn 
dataset and target is a dataset of Case Western Reserve University: Only transfer 
learning with the intermediate domain and CORAL (70.4%) or LMMD (63.2%) provides 
good result. The accuracy of any other setting is considerably inferior to that of the 
CORAL or LMMD settings. .................................................................................................... 120 

Table 20: Accuracies of semi-supervised learning. Source is a University of Paderborn dataset and 
target is a Case Western Reserve University dataset - The transfer learning approach 
TLA2 with the intermediate domain and LMMD produces the highest results (89.4%). 
The results of using HHT and S-Transform are always worse than the intermediate 
domain, except when all data is considered as labeled data. Here the S-transform 
achieves 98.8%. .................................................................................................................... 121 

Table 21: Accuracies of only unsupervised learning. Source is a University of Paderborn dataset 
and target is a spindle dataset with different rotational speeds. The intermediate 
domain in conjunction with CORAL yields the best accuracy (66.2%). This is followed by 
LMMD (53.6%). The S-transform produces the most accurate results without transfer 
learning, but the accuracy is still insufficient. ...................................................................... 122 

Table 22: Accuracies of semi-supervised learning. Source is a University of Paderborn dataset and 
target is a spindle dataset with different rotational speeds. The intermediate domain 
and LMMD in conjunction with transfer learning (TLA1 - Target) provide the 
best results (87.7%). With the intermediate domain input, other loss functions also 
provide encouraging results for Model 2, but the results are worse than the ones of 
LMMD. The intermediate domain consistently outperforms the S-transform, which in 
turn outperforms the HHT. .................................................................................................. 122 

Table 23: This table shows the detailed architecture with all used layers and their parameters of 
the CNN used by Cheng et al. Each layer of the CNN is listed with its type: the output 
shape of each layer (none has to be replaced with the number of images that are used 
in a batch and is therefore dependent on the training parameter batch size) and the 
used activation functions. Unfortunately, the exact size of the input and of the layers is 
not mentioned in the paper. ................................................................................................ 126 

Table 24: The resulting accuracies of the transfer learning tasks from drive-end bearing data to 
fan-end bearing data and vice versa. For each direction, five different assemblies of the 
data were used. In addition, the average and the 95% confidential interval of the five 
runs are listed. The runs are ordered according to the LMMD accuracy. ........................... 127 

Table 25: Results of transfer learning with an intermediate domain and LMMD compared to the 
results of Cheng et al. The overall best result is achieved with the LMMD transfer 
function and the proposed intermediate domain, with an accuracy of 66.85%. ................ 128 

Table 26: Assignment of the different datasets to test and training data. ......................................... 131 



 

 

XXV 
 

Table 27: The relative error (Er), its mean, and the score of the different RUL approaches is shown 
in this table. Sturisno et al. and Porotsky and Bluvband are the winners of the IEEE PHM 
2012 Data Challenge. They have scores of 0.3066 and 0.28. An example for a current 
approach is Zheng with a score of 0.2992. The best current approach by Zhang et al. has 
a score of 0.64. The proposed RUL approach has a score of 0.35, which represents a 
value approximately in the average. However, the approach is the worst when 
considering the mean of the Er due to two outliers (bearing 1_6 and bearing 2_5). If 
these two bearings were ignored, the presented approach would be good in this area 
as well. ................................................................................................................................. 132 

Table 28: Detailed summary of the results for the proposed RUL framework. Here, the nominal as 
well as the estimated RUL are shown. These two values are used to calculate the relative 
error Er. Er is then used to calculate A. The sum of all As is the calculated PHM score. 
For a detailed explanation of the calculation, see Appendix A.5.1. .................................... 133 

Table 29: Assignment of the different datasets for test and training data. ........................................ 169 

Table 30: Different evaluated LSTM layouts. The number of outputs for each layer is given in 
parentheses. For comparison, the sore of each layout for the RUL task of the IEEE PHM 
2012 Data Challenge has been calculated. Layout 2 has the best results. .......................... 182 

 

  



XXVI 
 

  



 

 

XXVII 
 

Abbreviations 

 

AHHPMG adaptive hybrid high-power multi-dimensional gradient 
 
ANN  artificial neural network 
 
Bi-LSTM bidirectional long short-term memory  
 
CNN  convolutional neural network  
CNC  computerized numerical control 
CORAL  correlation alignment 
CSN  closed skew s-normal 
CWRU  Case Western Reserve University 
CWT  continuous wavelet transform 
 
DA  domain adaptation 
DAN  domain adaption network 
DANN  domain adversarial neural network 
DFT  discrete Fourier transform 
DTN  deep transfer network 
 
EMD  empirical mode decomposition 
ERP  enterprise resource planning 
 
FFT  fast Fourier transform 
FTNN  feature-based transfer neural network 
GAN  generative adversarial network 
GRU  gated recurrent unit 
 
HHT  Hilbert-Huang transform 
HI  health indicator 
 
 
I4.0  industry 4.0 
IMF  intrinsic mode functions 
IMS  Intelligent Maintenance Systems 
 
 
JDA  joint distribution adaptation 
 
JMMD  joint maximum mean discrepancy 
 
LMMD  layered maximum mean discrepancy  
LSTM  long short-term memory 
 
MAE  mean absolute error 
MAPE   mean absolute percentage error 
 
MEMS  micro-electro-mechanical system 



XXVIII 
 

MK-MMD multi kernel maximum mean discrepancy 
ML  machine learning  
MM  Markov model 
MMD  maximum mean discrepancy  
MSE  mean squared error 
MTS  Mahalanobis Taguchi system 
 
NRMSE  normalized root mean square error 
 
PCA  principal component analysis 
 
RCs  research challenges 
ReLU  rectified linear unit 
RQ  research question 
RKHS  reproducing kernel Hilbert space 
RMS  root mean square 
RMSE  root mean squared error 
RNN  recurrent neural network 
RUL  remaining useful life  
 
SMEs  small and medium-size enterprises 
STFT  short-time Fourier transform 
SVM   support vector machines 
SVR  support vector regression 
 
 
TK-MMD tree kernel maximum mean discrepancy 
TLA  transfer learning approach 
 
WD-DTL Wasserstein distance based deep transfer learning 
WDCNN wide deep convolutional neural network 
WPE  wavelet packet energy 
  



 

 

 

1 Introduction  

1.1 Problem Statement 

Current industrial production processes are becoming increasingly optimized and, thus, also 

increasingly complex. For this purpose, specialized high-end machines have been developed, which in 

turn lead to higher investment costs and, thus, higher machine hour costs [1]. Nowadays, these 

machines produce their workpieces through just-in-time production. If there are no disruptions in the 

supply chain, a workpiece is processed with nearly no further time buffer in the production chain. 

Therefore, it is desirable to keep the machine downtime as low as possible. Downtimes may be caused 

by maintenance intervals and unexpected failures. If one component of a machine fails, the entire line 

or even another company that depends on the produced workpiece may be forced to delay production. 

This is leading more and more companies to rely on predictive maintenance. In a recent Europe-wide 

poll of 1,550 industrial companies, 78% stated that they already use predictive maintenance 

mechanisms [2]. 

 

Figure 1: Failure probability on grinding machines. Twenty-six percent of all failures are based on spindle errors. Among those, 
42% of the failures are due to bearing defects [3]. 

The machines monitored by a predictive maintenance process consist of many different components. 

Each of them is receptive to faults. The range of different fault types and their consequences becomes 

obvious when looking at the example of a grinding machine. A grinding machine is a machine tool that 

uses a grinding wheel made of hard material grains to produce a workpiece in a high-precision material 

removal process. Amongst components like axes or electrical components, one component that fails 

in 26% of their breakdowns is the grinding spindle or the tool changer [3]. Faulty bearings are the cause 

of grinding spindle failure in 42% of the cases [4] (see Figure 1). Changing a grinding spindle can take 

several hours. Therefore, to reduce the costs of a failure, it is essential that failures should be identified 
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in advance. By detecting an impending failure, a replacement spindle can be ordered before a defect 

appears and maintenance can be planned. 

Due to their complexity, complex defects, such as bearing defects, cannot be easily detected or 

predicted with traditional, non-machine learning-based methods like a simple threshold analysis [5]. 

Machine learning promises better solutions for problems that normally require a lot of manual fine-

tuning or cannot even be solved at all using traditional techniques [6]. Therefore, one focus of this 

thesis is predictive maintenance using machine learning techniques. There are two areas of interest in 

the context of predictive maintenance: the detection of faults by means of classification and the 

estimation of remaining useful life (RUL). 

An essential factor for machine learning is the availability of a large amount of data to train and test 

the parameters of the machine learning models. This is especially important for deep learning models, 

such as convolutional neural networks (CNN), which are based on “deep” layers of artificial neural 

networks and therefore have even more parameters to train. If the amount of data is too few, the 

trained model tends to overfit [6]. This means that the model matches for the samples in the training 

dataset but not for other samples. Most of the machine learning approaches need labeled data to train 

the model. This means that each datapoint should be assigned to a state that corresponds to the labels 

used for the classification results [7]. 

As stated above, there are a lot of specialized machines. Since all of them have their own setup with 

different components, there is no common data source that can be used for training a predictive 

maintenance system. Even on the same machine, the error pattern can vary based on process 

parameters like the rotational speed of a spindle. It also happens that measurement data is available 

but is not labeled completely. Disassembly of a pressed or welded component, such as an electronic 

device or a bearing, to determine the exact cause of a fault is demanding and time-consuming. The 

situation is made more difficult by the fact that many companies do not publish their data, and 

therefore this data cannot be used as a reference. For this reason, a lot of the current research is based 

on artificially created laboratory data [8]. In addition to the fact that the faults are often artificially 

created, there is another downside: the missing negative impact from other machine components in 

terms of background noise. However, there exist solutions to overcome the aforementioned lack of 

large, labeled datasets. One of these solutions is so-called transfer learning, which uses the knowledge 

of a large, labeled source dataset to improve the accuracy of a target dataset that can be small and 

unlabeled in the most unfavorable case [9]. Transfer learning can be used for error classification tasks 

as well as for remaining useful life tasks. 

The conditions mentioned above make it nearly impossible for small companies to have a working 

predictive maintenance solution for their machines. Such companies require solutions that: 
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• Can handle the predictive maintenance task of real-world machines with a lot of noise. 

• Can handle various process parameters like the rotational speed of the spindle. 

• Can handle the problem of having only small datasets that are often not even labeled. 

• Are based on machine learning techniques to avoid manual fine-tuning. 

• Achieve better results through transfer learning. 

1.2 Research Objectives 

This thesis explores the research challenges around predictive maintenance solutions for use cases 

with a small amount of labeled, unlabeled, or rarely labeled data. The approaches presented in this 

thesis focus on transfer learning approaches to tackle the lack of data in a target domain. During the 

process of solving the research questions (RQs), the following research challenges (RCs) will be 

discussed. 

 

 

RC1: Which methods are appropriate for predictive maintenance tasks of machines based on 

features of sensor data? 

With the rise of machine learning over the last decade, a lot of research has been performed on 

the topic of predictive maintenance. Therefore, the current state of the art covers manifold 

methods. However, open questions are related to their usage for real life predictive maintenance 

scenarios. 

• Are the methods appropriate for the analysis of sensor data?  

• Which feature extraction methods are suitable for the needs of predictive maintenance? 

• Which deep learning methods are available for this use case? 

RC2: Under which constraints can the different methods be used? 

This question is especially important for the different predictive maintenance scenarios that are 

also based on a variety of different dataset types. On the one hand, amongst others the following 

questions arise regarding feature extraction: 

• Which methods are appropriate for stationary signals?  

• Which are even usable with nonlinear and non-stationary signals?  

On the other hand, different machine learning methods exist. Here, relevant questions include: 

• Which machine learning methods are well suited for small training datasets.  

• Which machine learning methods are only usable for large datasets?  

• Which methods are suited for transfer learning to overcome the problem of small 

datasets? 
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These RCs are general and not specialized for a specific component. In contrast to this, this thesis also 

answers three bearing-specific research questions, which are defined and derived at the end of 

Chapter 3. These questions are the result of the presentation of the machine learning and predictive 

maintenance state of the art in Chapters 2 and 3.  

The research questions are: 

 

 

In order to answer these three RQs, it is essential to know which methods are appropriate for 

predictive maintenance tasks for machines based on sensor data and under which constraints they can 

be used. In addition, the answers may appropriately combine these methods. This is what the RCs are 

about. Therefore, the findings of the RCs are used as input for answering the RQs. As can be seen in 

Table 1, this results in the RCs being answered at the beginning of this thesis. The answers for the RQs 

that build on the answers for the RCs are given afterward. 

RC3: How can existing methods be combined and optimized to complement each other? 

There are many different methods, but it remains an open question how they can be used together 

to achieve optimal results. The combination of different feature extraction methods and transfer 

learning methods is of special interest here. 

• Are data-driven feature extraction approaches like the Hilbert-Huang transform or hybrid 

approaches, such as handcrafted intermediate domains, better suited for this task?  

• Based on the often-small datasets for a specific machine component, can transfer learning 

be a solution? 

• Is it possible to use such a solution even for partly or unlabeled datasets? 

RQ1: What are the necessary characteristics of a new classification method, which can take 

benefits of a dataset of a different bearing type for a partly labeled target dataset that is collected 

under different process conditions? 

 

RQ2: What are the necessary characteristics of a new RUL method, which can take benefits of a 

dataset of a different bearing type, for a labeled target dataset that is recorded with sensors with 

low sampling rates? 

RQ3: What are the necessary characteristics of a feature extraction method that is well suited for 

transfer learning? This method must be stable enough to be used on different bearing types 

without changing its parametrization or making significant changes to a subsequent machine 

learning model for different bearing types. 
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In order to be able to assign the content of the individual chapters to the questions, a brief assignment 

of their content to the questions is made at the end of each chapter. In addition, a detailed answer for 

each question is given in Chapter 8 of this thesis. 

Table 1: Organization of the research questions in the chapters of this thesis. 

Research Question Chapter 

2 3 4 5 6 7 

RC1: Methods       

RC2: Constraints       

RC3: Combinations & Optimizations       

RQ1: Classification       

RQ2: Remaining Useful Life       

RQ3: Intermediate Domain       

By answering the research questions, the three main contributions of this thesis are developed: 

1. A new layer-based intermediate domain that focuses on fault frequencies of bearings. This 

intermediate domain can be used on different bearing types and process conditions without 

any modifications. This intermediate domain is well suited for transfer learning and is the 

answer to RQ3, which asks for such a feature extraction mechanism. 

2. The first transfer learning approach for fault classification of bearings that supports a 

knowledge transfer between different component types and, at the same time, significantly 

different process parameters. For this purpose, a CNN solution based on the new intermediate 

domain is presented. In addition, a new loss function that extends an existing loss function 

called maximum mean discrepancy (MMD) is presented. This new loss function for training a 

neural network uses the characteristics of the intermediate domain and is called layered MMD 

(LMMD). This approach directly targets RQ1, which asks for a new classification approach for 

fault classification of partly labeled datasets. 

3. The first transfer learning approach for RUL estimation between different types that is based 

on data from accelerometers with low sampling rates. Here, a feature extraction mechanism 

based on the intermediate domain and convolutional layers is used in combination with a long 

short-term memory (LSTM) network. This approach directly targets RQ2, which asks for a new 

RUL estimation method for labeled datasets. 

All novelties are presented and evaluated based on the concrete example of bearings but might be 

adaptable to other components with periodic movements, such as gears. 
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1.3 Thesis Outline 

Building on the previous chapter, which assigned the research questions to the different chapters of 

this thesis, this chapter will explain the individual chapters and their contents. Chapter 2 of this thesis 

introduces a comprehensive background of the machine learning concept in general as well as for the 

specific task of transfer learning for predictive maintenance, which covers, for instance, convolutional 

neural networks. 

Chapter 3 illustrates the topic of predictive maintenance. This is done by ranking predictive 

maintenance in the context of Industry 4.0. Afterward, an introduction to the background of grinding 

machines, spindles, and bearings is given. In addition, the chapter presents the current research on 

predictive maintenance with a focus on the state of the art for transfer learning in the context of 

bearings in grinding spindles. This includes CNN-based transfer learning for bearing fault classification 

and recurrent neural network (RNN)/LSTM-based transfer learning for estimating the remaining useful 

life of bearings. Finally, the three research questions are defined based on the previously presented 

state of the art. 

In Chapter 4, a novel feature extraction method based on an intermediate domain that focuses on 

relevant information of processes with rotating elements is presented. This intermediate domain 

comes without a loss of relevant information. 

A novel solution for transfer learning-based fault classification is presented in Chapter 5. This covers a 

CNN-based transfer learning architecture that uses the in Chapter 4 introduced intermediate domain 

as input. In addition, a new domain adaptation loss function called LMMD is introduced. 

The next chapter (Chapter 6) presents a solution for the transfer learning task of the RUL scenario. 

Therefore, the feature extraction part of the classification task is reused. This reused part is based on 

the intermediate domain of Chapter 4 and the convolutional layers of Chapter 5. An LSTM network is 

used for the RUL estimation to cover the time dependencies. In addition, a transfer learning approach 

based on fixed feature extraction of the convolutional layers is presented. This approach also has a 

particular focus on being usable for accelerometers with low sampling rates. 

In Chapter 7, both presented solutions are demonstrated and verified in case studies. For the 

classification part, this is done by an exploration based on three reference datasets. Two of them are 

bearing datasets available in the public domain, and one is a private one of bearing faults in grinding 

spindles. In unsupervised and semi-supervised scenarios, other feature extraction methods and loss 

functions are compared to the intermediate domain and LMMD. This is followed by a benchmark 

against a current state-of-the-art approach. Finally, a verification of the RUL approach is given based 

on the execution of the IEEE PHM Data Challenge 2012, which was a challenge for the estimation of 

the RUL for bearings. 
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The last chapter (Chapter 8) summarizes the main contributions and conclusions of this thesis, which 

answer the research questions and suggest recommendations for future work. 
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2 Machine Learning Background 

2.1 Introduction 

This chapter presents the background and current state of the art for machine learning (ML) and deep 

learning in the context of predictive maintenance solutions. First, machine learning in general is 

introduced in Section 2.2. Section 2.3 describes important feature extraction methods for time data. 

Section 2.4 illustrates the theoretical backgrounds of transfer learning and describes the state of the 

art for transfer learning for deep learning techniques used later in this thesis. 

2.2 Machine Learning in General 

2.2.1 Introduction  

According to Arthur Samuel, machine learning is the “field of study that gives computers the ability to 

learn without being explicitly programmed” [10]. This involves the following benefits of machine 

learning compared to traditional programming techniques [6]: 

• It can perform better and simplify programming for problems where a lot of hand-tuning is 

required, or long lists of rules are needed. 

• It can provide solutions for complex use cases where no solution can be found with classic 

algorithms, for instance, very large datasets. 

• It can automatically adapt to new or dynamic datasets. 

These benefits, combined with the current trend to collect more and more data, which results in large 

available training datasets [6], are leading to an increased usage of ML approaches [11].  

An ML process consists of two parts [6]: The training data that can be used directly or in the form of 

extracted features and the machine learning model. This section introduces the theoretical 

backgrounds of machine learning, such as features and the relevant machine learning models for 

predictive maintenance tasks. 

2.2.2 Theoretical Background 

There are different types of machine learning algorithms whose suitability for a particular task can be 

made by classifying them into different categories. The most relevant categories are illustrated in 

Figure 2 and further described in the following section. 
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Figure 2: Relevant machine learning categories in general and the ones directly used in this thesis (highlighted). All machine 
learning processes can be assigned to a subitem of each of the five main categories. 

One possibility to categorize machine learning is by its usage of the available context information. 

Often, machine learning approaches are purely data-driven and rely on the effective extraction of 

features of the data that are used as input for the machine learning network [12]. In contrast to them, 

there are the so-called model-based approaches. They build a physical model to describe the current 

state of a machine. This is often done by means of equations (algebraic or differential). Therefore, 

knowledge of the system and its failure mechanism is needed. However, this may not be applicable to 

complex systems due to the lack of a complete understanding of the whole system [13]. Nevertheless, 

some approaches combine model-based and data-driven approaches. These so-called hybrid 

approaches close the gap between both by using the model-based domain knowledge and the data-

driven machine learning algorithm [13, 14]. Those solutions tend to be more accurate because of the 

combination of the advantages of both approaches [14]. 

Another type of categorization is by the intention of the given problem. This can be a classification or 

a regression problem [6]. In a classification problem, the algorithm selects a label for a given input. For 

example, there may be only two labels in an easy predictive maintenance setup: healthy and defect. 

However, regression predicts a continuous quantity, like sensor values or the remaining useful life of 
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a component. The algorithms for these categories do not have to be limited to one kind of problem. 

Some algorithms, such as support vector machines (SVM), can be used for both. 

In addition, machine learning techniques can also be categorized based on the amount of supervision 

required during the training [6]: 

• Supervised learning: The data must be labeled for the training algorithm for using supervised 

learning. This means that each data sample must be assigned to a class. The algorithm utilizes 

the input and the labels to learn a mapping between them. Afterward, this mapping is applied 

to unseen data. Supervised learning is the most-used method since it can deliver the best 

results. The downside is that it is not always possible since there are scenarios where a lack of 

labels in the training data exists. 

• Unsupervised learning: These algorithms do not use labeled datasets for unsupervised 

learning. Their principle is to learn inherent latent structures and relationships from the input 

data. Usually, they are used for clustering (detecting similar groups), dimension reduction 

(reducing the number of features), anomaly detection (detecting samples that are different 

from the ordinary ones), and transfer learning (transferring knowledge from one dataset to 

another). 

• Semi-supervised learning: This is a combination of supervised and unsupervised learning, 

where a small amount of labeled data and a large amount of unlabeled data are usually 

available. 

• Reinforcement learning: This approach is based on an agent who trains incrementally. 

Therefore, it rates the results of the current iteration by giving a reward. The algorithm tries 

to maximize the reward by changing its strategy. Since reinforcement learning, incremental 

learning, and online learning are all closely related and are not the focus of this thesis, they 

will only be referred to as incremental learning from now on. For more details about this topic, 

see Taylor and Stone [15]. 

A further criterion for differentiation between machine learning algorithms is how the features are 

used for the training. The training can be done with batch learning but also with online learning. Batch 

learning, also known as offline learning, is a learning type where a model can only be trained with the 

features of all samples of a dataset together. When new data appears, the model must be retrained 

completely. In contrast, only the features of a new sample are used to optimize the existing trained 

model when learning online. In addition, the samples can also be accumulated in small groups—the 

so-called mini-batches [6, 16]. 

There are different machine learning techniques available that can be assigned to the above-

mentioned categories. One well-known technique is an SVM that uses human-hand-crafted features 
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of the input data and transforms them into a higher dimensional space representation to solve ML 

tasks more easily. The downside of those algorithms is that they are hard to scale to very large datasets 

and are not very successful for voice recognition and image classification tasks [17]. A subfield of ML 

is deep learning. In contrast to techniques like SVM, deep learning is based on artificial neural networks 

(ANN) that are arranged in “deep” stacked layers. Therefore, they are also called deep neural networks. 

The benefit of these networks is that they can extract the best features automatically [6]. 

There are different variants of ANNs that are used in deep neural networks. However, the 

specializations convolutional neural networks (CNN) and recurrent neural networks (RNN) are the 

most important ANNs [18]. Therefore, in addition to ANNs in general, these two deep-learning 

networks will be discussed in the next three sections. One of the most important traditional machine 

learning models, the support vector machine, will also be explained in brief [6]. 

2.2.3 Artificial Neural Networks 

An artificial neural network (ANN) is a generic term for all computing systems that are inspired by 

biological neural networks [6]. An ANN consists of interconnected, artificial neurons, mimicking 

neurons in a human brain. When an artificial neuron receives an input signal, it processes it and then 

forwards the output signal to all other directly connected neurons. 

The output signal of an artificial neuron is calculated with the help of three elements: the weighted 

sum of the inputs, a bias, which on a trained neuron is a static offset, and an activation function. Often, 

the output must reach a threshold until the signal is sent to its connected neuron. 

An ANN consists of neurons that are commonly grouped in at least three layers. The input layer accepts 

the inputs, and the output layer delivers the results of the entire ANN. In addition, there can be several 

hidden layers in-between these layers, in which the states are not accessible from the outside. The 

most-used type of network is a feedforward network, which has one data direction only [6]: the output 

of each layer is the input of the next layer. Layers can be fully connected, where every output of the 

previous layer connects with a certain weight to every node of the following layer. Before an ANN can 

be used, it must be trained. The training can be done by backpropagation, wherein the neural 

network's output is compared with the expected result. The difference is returned as an error to the 

previous layers. Subsequently, they readjust their weights according to the error. 

2.2.4 Convolutional Neural Network 

Convolutional neural networks (CNN) are a specialized type of ANN. They were first designed and 

proposed by LeCun et al. [19] and later optimized using an error-gradient algorithm. Since CNNs have 

the unique ability to maintain initial information regardless of shift, scale, and distortion invariance, 

which is basically achieved through local receptive fields, they are widely used in image classification, 

traffic sign recognition, and many other applications [20–25]. 
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CNNs are inspired by the brain’s visual cortex, which consists of many neurons, each with a small 

receptive field. This means that they only react to a small region of interest. Furthermore, these fields 

may overlap [26]. The architecture of a CNN is often similar, consisting of a stack of different layers of 

neurons. Typically, a CNN has the following structure: convolutional layers followed by a pooling layer, 

followed by additional convolutional layers and a pooling layer, and so on. At the end, there is a regular 

feed-forward neural network with a few fully connected layers (see Figure 3) [6]. Such a fully connected 

layer is also called a dense layer. 

 

Figure 3: Typical CNN architecture. The input image is first processed with convolutional and pooling layers, followed later by 
fully connected layers. 

A convolutional layer does not use the output of the previous layer as a whole. Each neuron has a small 

field of view only (also known as a window or kernel). For each pixel in its view, its value is combined 

with a filter, and its weight is used to generate one output pixel. 

A pooling layer has a similar concept as a convolutional layer. It takes data from a window of the 

previous layer and calculates a new pixel. The difference between a pooling layer and a convolutional 

layer is that a pooling layer aims to reduce the size of an image by removing unnecessary 

information/pixels. The neurons in a pooling layer do not have a weight. They use a simple aggregation 

function (e.g., max or mean) on the data of the input window.  

As shown in Figure 3, the output of the last fully connected layer is used for the classification. The 

specific layout of CNNs leads to their strength in image classification. The lower layers are used for the 

more generic low-level feature extraction, while the highest layers are used for the classification itself 

[27]. 

In addition to the common use case for classifying 2D images, CNNs can also be used for 1D data of 

time series, such as sensor data. The space between the cells and the filters used helps the neural 

network to interpret the different observations in the time series data [28]. 

2.2.5 Recurrent Neural Network 

A recurrent neural network (RNN) is an ANN that analyzes time series to predict their future. This is in 

contrast to CNNs, which are more suitable for classification tasks. RNNs’ time series capabilities are 

based on their ability to remember input data of previous time steps and use them as additional input 
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for the current time step [29]. This makes them suitable for predictive maintenance solutions that rely 

on time series data, like predicting the remaining useful life of a machine [30]. 

The information flow of an RNN is as follows: A recurrent neuron has the output vector of the last time 

step as additional input to its input vector. As shown in Figure 4, the output yt-2 of the neuron on time 

position t-2 is used for two tasks. First, it is an output like in other neural networks, but it is also an 

additional input for the next time step (t-1). The output yt-1 is again an additional input of time t. With 

this mechanism, the results respect the results of the previous iteration as well as the new input. Each 

neuron has two weights: one for the input and one for the output of the last time step. Usually, RNNs 

are used as deep RNNs. Therefore, they are stacked in layers of cells. A deep RNN can have, for 

instance, three layers and 100 neurons in each layer [6]. 

 

Figure 4: Information flow of an RNN through time. 

The downside of RNNs is that they can suffer from the vanishing gradient problem, which can occur 

during the training wherein the gradient is used to update the weights through backpropagation [6]. 

The gradient may diminish through time because of the backpropagation. As a result, the network does 

not learn correctly and has a short-term memory. Two new network types have been developed to 

overcome this problem: Long short-term memory (LSTM) and gated recurrent unit (GRU). Both can 

learn long-term dependencies using a mechanism called gates. These gates learn which information of 

a sequence is important and which could be dropped. LSTMs have three gates: (input (it), forget (ft), 

and output (ot)) and the cell state (Ct) (see Figure 5). An LSTM can learn which input is important (input 

gate) and store it in a log-term state. With the help of the forget gate, an LSTM learns how long to 

store the input. A GRU cell works quite similarly by replacing the cell state with a hidden state to 

transfer information (Figure 6). A GRU consists of the reset (rt) and update (zt) gates and the hidden 

state (ht). 
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Figure 5: Architecture of an LSTM cell with the three gates: 
input (it), forget (ft), and output (ot) [31]. 

 

Figure 6: Architecture of a GRU cell with its two gates: reset 
(rt), update (zt); and the hidden state (ht) [31]. 

2.2.6 Support Vector Machine  

A support vector machine (SVM) is a simple but effective mechanism for classification [6]. An SVM tries 

to separate the values of the features in separate areas with a linear separator (see Figure 7). Parallel 

to this line, two (here dashed) lines represent the decision boundary, while the area in between is 

called the hyperplane. Each dot is called a support vector. Classification is done by checking which side 

of the decision boundary the instance is on. 

 

Figure 7: A visualization of an SVM classification. The red 
dots are the support vectors, and the dashed lines define the 
decision boundaries of the green and blue classes. 

 

Figure 8: An SVR with different kernel models to create the 
hyperplane for a regression task. 

In contrast to an SVM, support vector regression (SVR) is a machine learning algorithm for regression 

tasks. The architecture of an SVR and an SVM is quite similar. The difference is that an SVR tries to have 

as many training instances as possible inside the hyperplane, which is used to estimate the values 

during the regression task. 

For nonlinear problems, the so-called kernel trick must be performed. As shown in Figure 8, the fields 

can be separated by polynomial or Gaussian RBF lines instead of a linear line [6]. 

2.3 Feature Extraction Methods for Predictive Maintenance 

2.3.1 Introduction 

Before any of the above-presented machine learning models can be used for a predictive maintenance 

task, feature extraction methods should be used to preprocess the data. In many scenarios, sensor 

data recorded over a certain period of time is used. In addition, this data is often noisy due to influences 

from other components. Feature extraction has the following aims [6, 32]: 

• Reducing the amount of data. This is especially important for time series such as sensor data. 
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• Combining existing features to create a new, more powerful feature. For instance, in the case 

of sensors, this can be time and measured values. 

• Decreasing the computational costs based on unused features. 

• Decreasing the probability of overfitting based on unused features. 

All feature extraction techniques within the scope of time-dependent sensor data can be categorized 

into three categories (see Figure 9): time domain, frequency domain, and time-frequency domain. In 

the following sections, these techniques will be explained in detail. 

 

Figure 9: Feature extraction techniques for time signals. There are techniques in the time domain, the frequency domain, and 
the time-frequency domain. 

2.3.2 Time Domain Analysis 

A time domain analysis uses the direct raw sensor data. There exist approaches based on descriptive 

statistics like mean, peak-to-peak, amplitude, and standard deviation. However, high-order statistics 

like root mean square (RMS) and kurtosis are also common [33, 34]. 

2.3.3 Frequency Domain Analysis 

The big advantage of the frequency domain over the time domain is its ability to focus on frequency 

components of interest, like specific fault frequencies. The first step of frequency domain analysis is to 

transform the data into the frequency domain. This is often done via a Fourier transform [35].  

Power spectral density is another common technique in the frequency domain [36]. Frequency filters 

and envelope analysis are also of interest [37]. 
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2.3.3.1 Fast Fourier Transform 

With the help of a discrete Fourier transform (DFT), it is possible to transform signals from time to 

frequency domain. Afterward, the amplitude of each frequency can be analyzed. A DFT is defined by 

Eq. (1), where 𝑦𝑖  is a sample of the time domain with a total size of N samples. 𝑌𝑘is the transformed 

discrete Fourier coefficient, 𝑘 ∈ [0; 𝑁 − 1][35]. 

𝑌𝑘 = ∑ 𝑦𝑖 ∗ 𝑒−
𝑖 2𝜋 𝑘 𝑛

𝑁
 

N−1

𝑛=0

 (1) 

Since the calculation of the DFT is rather complex (𝑂(𝑛2)), the fast Fourier transform (FFT) is usually 

used for transformations into the frequency domain. An FFT has only a complexity of 𝑂(𝑛 ∗ log 𝑛) [38]. 

The first step when using an FFT is to choose the time window to be analyzed. This can be the whole 

data series or a subseries. Figure 10 shows an example of a transformation of a whole signal based on 

two overlaying frequencies (55 Hz and 100 Hz) to the frequency domain with the help of an FFT. 

a)  b) 

Figure 10: Transformation of a time signal (a) to the frequency domain (b) with the help of an FFT. This signal consists of two 
frequency signals: One at 55 Hz and the other at 100 Hz. 

2.3.3.2 Envelope Analysis 

The envelope analysis converts time data into the envelope spectrum. It is a widely used method to 

analyze data from mechanical systems by extracting periodic signals from modulated random noise 

[37].  

The resonance frequency of a mechanical system is generated by the amplitude modulation and the 

carrier frequency of a vibrations signal. With the help of the envelope analysis, those two signals can 

be separated [39]. Two steps are used to calculate the envelope spectrum. First, the envelope is 

calculated by applying the Hilbert transform to the time domain signal. This transformation calculates 

an analytic signal, which is a complex-valued function that has no negative frequency components. The 

analytic signal that is used for the recovery of the modulation signal (demodulation) is calculated by 

Eq.(2)  

𝐻{𝑥(𝑡)} =
1

𝜋
p. v. ∫

𝑥(𝜏)

𝑡 − 𝜏
𝑑𝜏

+∞

−∞

 (2) 

where p.v. is the Cauchy principal value of the integral process and x(t) is a simple periodic signal 

according to Eq. (3) [39]. A is the amplitude of the analytic signal, and f is its frequency. 

𝑥(𝑡) = A ∗ cos (2πft) (3) 
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a)  b)  

Figure 11: This figure shows the envelope (a) calculated for a vibration signal, which is further processed to get the envelope 
spectra (b). Here the frequency of 156 Hz and its harmonics (312 Hz, 480 Hz, and so on) are well recognizable. 

As shown in Figure 11, the envelope, which is the result of the Hilbert transform, is later used to extract 

the periodically occurring frequencies inclusive of its harmonics by applying an FFT. 

2.3.4 Time-Frequency Analysis 

2.3.4.1 Introduction 

A big disadvantage of the frequency domain analysis is that all time-related information is lost after 

applying the transformation into the frequency domain [40]. This leads to the delivery of a time-

averaged spectrum, which prevents nonlinear and non-stationary signals from being analyzed correctly 

[41]. A nonlinear signal is a signal of a nonlinear dynamic process, which implies that it is a partial 

solution of a nonlinear differential equation. The signal can also be non-stationary, meaning it lacks a 

specific mapping rule, and the first, second, or higher moments of the underlying stochastic processes 

vary over time [42, 43]. Covering nonlinear and non-stationary signals is important because real-world 

systems, such as machines, are often based on them [43].  

To analyze these signals, several techniques combine the information from the time domain and the 

frequency domain. These might be extensions to existing frequency domain analyses like a short-time 

Fourier transform (STFT). However, there are also time-frequency specific techniques such as the 

continuous wavelet transform (CWT), the Hilbert-Huang transform (HHT) in combination with the 

empirical mode decomposition (EMD), and the Stockwell transform (S-transform). In the following 

section, these methods are explained in detail. 

2.3.4.2 Short-Time Fourier Transform 

The STFT is an extension of the FFT. An STFT removes the loss of time information, which happens 

during an FFT by splitting the data series into small equal-sized sequences, also called windows. For 

each window, a separate FFT is calculated. As a result, there exists a mapping between time slices with 

the size of the window and their corresponding frequencies. The amplitude of the frequencies is not 

calculated for a single point in time. Instead, it is calculated for the whole window. Figure 12a shows 

an increasing linear signal of a 1-second length. The window size of the STFT is 0.3̅ seconds. This 

example shows different amplitudes for the frequency in each window (see Figure 12b). If the 
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resolution has to be higher, the window size has to be decreased. It is also possible to use a sliding 

window. Here the windows are not consecutive but slightly overlap each other. With the help of the 

sliding window, more windows can be generated out of the same signal length [44]. 

a)  b) 

Figure 12: STFT of a 1 s signal with a 0.3̅ s window size: a) shows three windows used for the STFT in the time domain; b) 

shows the resulting FFTs of each window. 

STFTs are easy to apply since FFTs are a well-known technique. The downside of this approach is that 

there is no continuous frequency resolution. The resolution depends on the window size. Smaller 

windows lead to a good time resolution, but the resulting frequency domain is less accurate than that 

of larger windows. This is important when analyzing data that have components in both a high-

frequency and low-frequency range. For low frequencies, the aim is to achieve a good (absolute) 

frequency resolution since a small absolute frequency change is especially important here. By contrast, 

a good time resolution is important at high frequencies since a complete oscillation takes less time, 

and, therefore, the instantaneous frequency can change more quickly [45]. 

The windowing can also lead to another disadvantage of the STFT: the so-called leakage effect [46]. 

For an exact representation, a window that matches the period length of the time series frequencies 

is needed. However, this is not always possible, especially when different frequencies are of interest. 

As a result of the non-matching window size, additional frequencies that do not exist in the signal itself 

can appear. These additional frequencies take some power from the frequencies representing the 

signal. Therefore, the original frequencies have a lower amplitude. 

2.3.4.3 Continuous Wavelet Transform 

Wavelet transformations overcome the aforementioned limitation of an STFT being only usable in a 

specific frequency range as well as its vulnerability for the leakage effect [46]. Both algorithms are 

similar in that they disassemble signals from the time domain into an infinite amount of substitute 

functions. The STFT uses sinusoidal functions. Wavelet transformations replace these sinusoidal 

functions with wavelet functions. Wavelets are oscillatory functions with a limited duration. 

The original wavelets are called “mother” wavelets. During a CWT, the mother wavelet has to be scaled 

and translated so that they match the signal. During the scaling, the energy of a wavelet is always the 

same as that of the mother wavelet. It is shrunk into one direction (e.g., x-axis) and stretched into the 

other direction (see Figure 13). 

A CWT is expressed by the following integral [46]: 
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𝑊(𝑠, 𝜏) =
1

√𝑠
∫ 𝑥(𝑡)𝜓 ∗ (

𝑡 − 𝜏

𝑠
) 𝑑𝑡,

+∞

−∞

 (4) 

Where s is the scale and 𝜏 is the translation (time) parameter. 𝜓 is the chosen mother wavelet. During 

a CWT, n scales must be used. Starting at scale 1, the wavelet must be moved (translation) to each 

data point. After that, it must be measured how well it fits the input curve. This algorithm must be 

performed for the entire time series. The result is a coefficient for each point. Afterward, the same 

procedure must be performed with the next scales from 2 to n. 

 

Figure 13: Different scales of a Morlet wavelet. An increased scale leads to a wider window in time that a wavelet can cover. 

Figure 13 shows that an increased scale leads to a wider window in time but, at the same time, to a 

decreased frequency range. With the help of this mechanism, datasets containing high and low-

frequency ranges can be analyzed. However, for analyzing only low frequencies, this algorithm may 

not be optimal because, according to G. Stockwell [41], the CWT may oversample the representation 

of the signal at low frequencies. Another disadvantage of the CWT is that it only has the power 

spectrum and amplitude, not the phase [45]. 

2.3.4.4 Hilbert-Huang Transform 

The HHT was introduced by Huang et al. in 1998 for nonlinear and non-stationary signals [47–49]. 

Previous approaches like wavelets and STFT cannot address nonlinear signal analysis. The HHT is based 

on two parts [50]: The first and most important part is the EMD, which extracts intrinsic mode functions 

(IMF). The second step uses the extracted IMFs for a Hilbert spectral analysis. 

The EMD extracts smooth envelopes from a time series x(t). These envelopes are the IMFs. This 

decomposition assumes that the data may have several simple coexisting modes of significantly 

different frequencies at any time. These modes are all superimposed onto each other. To extract these 

modes (IMFs), a recursive algorithm is used. All local minima and all local maxima of the data series 

have to be identified in each iteration. Next, a cubic spline, which goes through all maxima, must be 

defined. This spline is the upper envelope. The same must be done with the minima to determine the 
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lower envelope. The whole signal should be covered between the two envelopes. Then, the mean (see 

Figure 14) of these envelopes is subtracted from the initial data, and a new IMF is created. 

 

Figure 14: The minima (red) and the maxima (blue) envelope of the signal and their mean [50]. 

This extraction must be repeated n times until the remaining curve becomes a monotonic function, 

only has one extremum, or a stop criterion is reached. The remaining signal is called the residue. 

After extracting all IMFs, the Hilbert spectral analysis is applied to compute instantaneous frequencies 

(see Section 2.3.3.2), where the amplitude and phase are a function of time. 

The HHT process is not mathematically proven. It is only proven empirically by its practical application, 

which shows that it is a fitting solution for many scenarios [49]. Another downside of the HHT is the 

possibility of undesirable IMFs at low frequencies [51]. 

2.3.4.5 S-Transform 

The S-transform was introduced by Stockwell et al. [52] in 1996. This was about the same time that the 

HHT was presented. Both intend to create a transform that can be used for calculating a time-

frequency representation for non-stationary and nonlinear signals. The S-transform is based on the 

CWT. However, it enhances the CWT by being a frequency-dependent solution, providing a direct 

relationship with the Fourier spectrum—unlike a CWT whose result is in scales instead of frequencies. 

The S-transform of a function h(t) is comparable to a continuous wavelet transform with a particular 

mother wavelet that is multiplied by the phase factor [52]: 

𝑆(𝜏, 𝑓) = 𝑒𝑖2𝜋𝑓𝜏𝑊(𝜏, 𝑑) (5) 

Here, d is the inverse of the frequency f, 𝜏 is the time, and 𝑊(𝜏, 𝑑) is the CWT. The mother wavelet 

function w is defined by: 

𝑤(𝑡, 𝑓) =
|𝑓|

𝑘√2𝜋
𝑒−

𝑡2𝑓2

2
 𝑒−𝑖2𝜋𝑓𝜏 (6) 

where k is a scaling factor that controls the time-frequency resolution. Since Eq.(6) does not satisfy the 

zero mean criteria required for a CWT, an S-transform is not a real CWT [52]. The complete formula of 

an S-transform is: 
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𝑆(𝜏, 𝑓) = ∫ ℎ(𝑡)
|𝑓|

𝑘√2𝜋
𝑒−

𝑡2𝑓2

2
 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡

+∞

−∞

 (7) 

A significant advantage of S-transform is that it delivers higher precision in the frequency domain for 

low frequencies and, at the same time, higher precision in the time domain for higher frequencies, 

making it superior to the STFT [53]. 

2.3.5 Combined Analysis 

The previously described feature extraction methods do not have to be used exclusively. Some 

approaches combine time-frequency analysis and frequency analysis with time-domain analysis 

methods. For example, a common feature extraction method is to use a feature extraction chain, which 

uses only the EMD part of the HHT as a first step. Afterward, the EMDs are analyzed with the help of 

time-domain analysis methods, as done by Kang et al. [34]. 

2.3.6 Comparison of the Different Methods 

All three types of feature extraction (time domain, frequency domain, and time-frequency domain) 

are used in different predictive maintenance solutions [54]. As introduced in the previous sections, 

every category has its strengths and weaknesses. The important feature extraction methods and their 

previously described characteristics are listed in Table 2 and compared in the following. 

Time-domain analysis methods are easy to implement and are, therefore, compatible with low-cost 

hardware. They are also used in combination with time-frequency analysis methods. 

Most of the frequency domain analysis methods use FFTs as a first step. The benefit of these analysis 

methods is that they are an easy way to analyze signals for the appearance of particular frequencies. 

A drawback of frequency domain-based methods is that they always deliver a time-averaged spectrum. 

This may be good enough for stationary signals, but this method is insufficient if the signal changes 

over time. A possible solution is to slice the time series into smaller time windows and analyze them 

independently, as is done by an SFTF, which results in a time-frequency transformation. Whenever one 

needs to analyze variable signals, a time-frequency domain method should be used because it can 

deliver the characteristics for every point in time. The main features of each of the four most-used 

methods (STFT, CWT, HHT, and S-transform) are summarized below. 

STFTs are easy to implement and provide good results for non-stationary linear signals of frequency 

ranges that are close to each other. However, they have the disadvantage that the information 

depends on the window size. This window size is fixed during the execution of the transformation. In 

addition, they are vulnerable to the leakage effect. 

CWTs overcome both limitations of STFTs by using scaled and translated wavelets. However, this 

comes at the cost of a more computationally intensive algorithm. In addition, the phase data and the 
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relationship to the frequency spectrum are also unavailable when using a CWT. Another disadvantage 

of the CWT is that it oversamples the signal representation at low frequencies. 

The S-transform is an algorithm that provides phase and frequency data for nonlinear and non-

stationary signals. It delivers higher precision in the frequency domain for low-frequency areas and, at 

the same time, higher precision in the time domain for higher-frequency areas. 

The HHT is also usable for nonlinear and non-stationary signals. It is less resource-hogging than a CWT 

or an S-transform. However, there are also shortcomings (e.g., the possibility of undesirable IMFs at 

low frequencies). Finally, a significant disadvantage of the HHT is that it does not have a mathematical 

foundation. By now, the HHT has only been empirically proven. 

Table 2: Summary of different feature extraction types. 

Method Pros Cons 

Time domain 
analysis 

- Easy to implement, even on 
low-cost hardware 

- Complex coherences are not 
detectable 

Frequency 
domain analysis 

- Good for stationary signals - Only time average spectrum 

Short-time 
Fourier 
transformation 

- Extension to Fourier 
transform 

- Non-stationary data (limited) 

- Time information depending on the 
window size 

- Invariable resolution  

Continuous 
wavelet 
transformation 

- Non-stationary data with a 
wide frequency spectrum 

- No direct relationship to the 
frequency spectrum 

- No phase data 
- Resource-intensive algorithm 

Hilbert-Huang 
transform 

- Nonlinear and non-stationary 
signals 

- EMDs are not mathematically proven 
- Possibility of undesirable IMFs 

S-transform - Nonlinear and non-stationary 
signals 

- Phase and frequency data 

- Resource-intensive algorithm 

2.4 Transfer Learning for Predictive Maintenance 

2.4.1 Introduction 

As described in the previous sections, collecting as much training data as possible is important for the 

usage of machine leaning. However, many machine learning scenarios still share in their lack of 

sufficient data for learning a model in their specific scenario. The technique of knowledge transfer tries 

to overcome this problem by using source domain data or a source domain model to enhance the 

model for a target machine learning task [55]. In general, there are two different approaches available. 

Transfer learning, on the one hand, covers the topics of domain adaptation and multi-task learning, 

and, on the other hand, incremental, reinforcement, and online learning [9]. Incremental learning aims 

to permanently and incrementally adapt to a new environment with knowledge from an existing model 

and a small number of samples from the new domain [16]. Instead, transfer learning aims to maximize 

the reusability of knowledge from an existing model to a new environment with limited information. 
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This thesis focuses on transfer learning. Therefore, in the following section, the definitions for transfer 

learning used in this thesis are introduced. Next, the thematic clusters of transfer learning are 

explained. Finally, transfer learning methods for CNNs and RNNs are shown, as well as the transfer 

learning loss functions they use. 

2.4.2 Transfer Learning Definitions 

In order to understand and apply the concept of transfer learning, it must first be defined. For this 

purpose, the definitions and notations of Pan and Yang [55] are used in this thesis. 

 

If Definition 1 is mapped to a predictive maintenance example, then 𝑌 is a set of all labels (e.g., “good 

condition,” “defect”) and 𝑓(∙) is a function that can predict the status (label) 𝑦𝑖  of a collected sample 

of a component 𝑥𝑖, where 𝑥𝑖. is the measured value at the position i of all n recorded measured values 

Χ, which all are in the measuring range 𝜒. Task 𝑇 is the condition to monitor (e.g., the health of a 

component). 

In the following, every artifact related to the source domain is denoted with subscript S, e.g., 𝐷𝑆 =

{ (𝑥𝑆1
, 𝑦𝑆1

), . . . , (𝑥𝑆𝑛𝑆
, 𝑦𝑆𝑛𝑆

)}. For the target domain, where the subscript T is used accordingly, it is 

𝐷𝑇 = { (𝑥𝑇1
, 𝑦𝑇1

), . . . , (𝑥𝑇𝑛𝑇
, 𝑦𝑇𝑛𝑇

)}. Table 3 shows a summary of all these notations. 

Table 3: Summary of the notations used for transfer learning. 

Notation Description 

𝝌 Feature Space 

𝒀 Label Space 

𝑻 Learning Task 

𝑫 Domain data 

𝑷(𝚾) Marginal distribution 

𝑷(𝒀) Label distribution 

𝑷(𝒙|𝒚) Conditional distribution 

𝒇(∙) Predictive function 

Subscript S Source domain 

Subscript T Target domain 

With the help of the terms domain, task, source, and target, transfer learning can be defined according 

to Definition 2, which posits that transfer learning focuses on improving 𝑓𝑇(∙) with the help of 𝐷𝑆 [9]. 

In contrast to this, incremental learning focuses on improving 𝑓𝑇(∙) with the help of 𝑇𝑆 [56]. 

Definition 1 – Domain and Task 

A specific domain 𝐷 can be described with the help of two elements: the feature space 𝜒 and the 

marginal probability distribution 𝑃(Χ), where Χ = {𝑥1, … , 𝑥𝑛} ∈  𝜒. For a specific domain (expressed 

by 𝐷 = {𝜒, 𝑃(Χ)}), a task 𝑇 is defined by the label space 𝑌and the predictive function 𝑓(∙). The term 

𝑇 = {𝑌, 𝑓(∙)} is not observed but is learned with the help of training data pairs {𝑥𝑖, 𝑦𝑖}, where 𝑥𝑖 ∈ 𝑋 

and 𝑦𝑖 ∈ 𝑌. This can also be written as probabilistic term 𝑃(𝑦|𝑥). 
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Research in previous years has mainly focused on “classical” transfer learning. However, deep learning 

is the dominating technique in many research fields today [57]. Here, a particular type of transfer 

learning called deep transfer learning is used. Tan et al. [57] used the following definition for deep 

transfer learning: 

 

A common problem regarding transfer learning, regardless of whether it is deep transfer learning or 

not, is that the influence of the source domain data can also have a negative effect on the training 

results in the target domain. This behavior is called negative transfer [58]. 

 

Amongst others, a negative transfer can result from a conditional distribution difference between 

source and target [59]. In addition, the amount of labeled data in the target domain also influences 

the transfer learning process [60]. Therefore, one must weigh up the desired positive effect of a small 

amount of labeled data on the one hand, which can help to improve the feasibility and the reliability 

of finding a shared regularity between source and target. On the other hand, the result can worsen if 

there are only a few labeled target datasets because of overfitting. Using transfer learning with a large 

amount of labeled source data can also lead to negative transfer because the different source domain 

can impede the generalization [60]. 

Definition 2 – Transfer Learning: 

Transfer Learning is defined by a source domain 𝐷𝑆 with its learning task 𝑇𝑆 and a target domain 

𝐷𝑇 with the corresponding learning task 𝑇𝑇. Therein, the aim is to improve the predictive function 

in the target domain 𝑓𝑇(∙) by using the knowledge of 𝑇𝑆 and 𝐷𝑆. At this 𝑇𝑆 ≠ 𝑇𝑇 or 𝐷𝑆 ≠ 𝐷𝑇. 

Definition 3 – Deep Transfer Learning: 

A transfer learning task defined by 〈𝐷𝑆, 𝑇𝑆 , 𝐷𝑇 , 𝑇𝑇 , 𝑓𝑇(∙)〉 is called deep transfer learning when 𝑓𝑇(∙) 

is a nonlinear function represented by a deep neural network. 

Definition 4 – Negative Transfer: 

For a source domain 𝐷𝑆 with its task 𝑇𝑆 and a target domain 𝐷𝑇 with its task 𝑇𝑇 exist two different 

predictive functions 𝑓𝑇(∙): a predictive function, 𝑓𝑇1(∙), which is learnt only with the target domain 

data 𝐷𝑇 and a second predictive function, 𝑓𝑇2(∙), which is trained with the data of 𝐷𝑆 and 𝐷𝑇. If the 

results of 𝑓𝑇1(∙) are better than the results of 𝑓𝑇2(∙), it is referred to as negative transfer, otherwise, 

it is called positive transfer. 
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2.4.3 Transfer Learning Thematic Clusters 

2.4.3.1 Introduction 

Transfer learning itself can be expressed by a definition, as has been done in the previous section. In 

addition, it can also be subdivided into different thematic clusters. These clusters are shown in Figure 

15 and are described in detail in the following sections. 

 

Figure 15: Differentiation possibilities for transfer learning into thematic clusters. All transfer learning techniques can be 
differentiated by the available information, the relationship between a source and a target domain, and its transfer type. The 
techniques used in this thesis are highlighted. 

2.4.3.2 Relationship of Source and Target Domain Data 

Depending on the different relationships between the source and target domain data, it is possible to 

distinguish between four different use cases of transfer learning, all of them relevant for predictive 

maintenance [9]: 

1. Difference in the feature space: 𝑋𝑆 ≠ 𝑋𝑇 

This is the case when the variables for the machine learning task change and can be: 

a. New sensors 

b. Different production processes 

c. Different machines 
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d. Different data representation 

2. Difference in label space: Y𝑆 ≠ Y𝑇  

In this case, nothing changes physically. Only the labels are changed. In the case of fault 

classification, this can be the change from a binary classification {“healthy,” “defect”} to a 

classification of the exact faulty component {“healthy,” “defect of component 1,” “defect of 

component 2”}. 

3. Difference in marginal probability distribution: 𝑃(Χ𝑆) ≠ 𝑃(Χ𝑇) 

This kind of transfer learning is needed for the following cases: 

a. Wear-out of sensors or machine components 

b. Changes in production process settings 

4. Difference in conditional probability distribution: 𝑃(𝑦𝑠|𝑥𝑠) ≠ 𝑃(𝑦𝑇|𝑥𝑇) 

This happens when the relationship between features and labels changes. A use-case for this 

scenario is when a machine produces the same product without any process changes but the 

product rejection rate changes. 

2.4.3.3 Available Information 

It is furthermore possible to differentiate between three types of transfer learning based on the 

information available in the source and target domain [55]: 

• Inductive Transfer Learning: For this type, labeled data is available in the target domain. It can 

be distinguished between self-taught learning, which is the case when no labeled data is 

available in the source domain, and multi-task learning, when labeled data is available in the 

source domain and both tasks are learned simultaneously. For inductive transfer learning, the 

source and target tasks differ, while the domain can be the same or different. 

• Transductive Transfer Learning: Here, labeled data is only available in the source domain. The 

tasks are the same in both cases. A distinction can be made between two cases: If the source 

and the target domain are different, it is called domain adaptation (DA). However, if there is 

only one single domain, it is called selection bias or covariance shift. 

• Unsupervised Transfer Learning: In this setting, source and target tasks, as well as the domain, 

are not similar, and there is no labeled data available in either domain. 

The transductive transfer learning approach of a DA can be further subdivided. Wang and Deng [61] 

categorized different settings of DA. The standard approach is a one-step DA, which can only be done 

under the assumption that the source and target domain are directly related. In this case, the transfer 

of knowledge can be done in one step. Wang and Deng further subclass the domain adaptation into 

homogeneous and heterogeneous DA. The feature space between the source and target domain in 

the homogeneous DA is identical. In heterogeneous DA, however, the feature spaces are different. If 
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there is only a marginal overlap between the two domains or, in the case of a heterogeneous DA, the 

one-step DA may not be the best possible solution. Therefore, using an intermediate domain can bring 

the source and the target domain closer together to improve performance. This approach is also 

known as multi-step or transitive DA. 

2.4.3.4 Classic Transfer Learning Types 

It is also possible to differentiate transfer learning by the different transfer process types. There are 

four different types of performing a transfer learning task [55]: 

• Instance transfer: The labeled data of the source domain or at least parts of it can be used for 

training in the target domain. Therefore, the source data must be re-weighted. 

• Feature-representation transfer: This transfer type reduces the difference between the source 

and the target domain as well as the error of the resulting classification and regression models 

by finding a suitable feature representation. 

• Parameter transfer: Here, the source and the target task share some of the domain-across 

hyper-parameters of their model. This contrasts with multi-task learning, where both tasks are 

learned in parallel. 

• Relational-knowledge transfer: This transfer process type is used for transfer learning in 

relational domains where the data of the domains are not independent and identically 

distributed. In addition, the data can be represented by multiple representations, such as data 

in different social networks. 

Not every transfer learning approach can be used for every transfer learning type. For example, 

relational knowledge transfer and parameter transfer are only used in an inductive transfer setting. 

However, the types can also be combined, as in the case of [62], which combines instance and 

parameter transfer. 

2.4.3.5 Deep Transfer Learning Types 

Previously, the “classic” transfer learning types have been explained (see Section 2.4.3.4). While the 

deep transfer learning approaches sometimes have different names in the literature, the idea remains 

the same. Tan et al. [57] described the following approaches for deep transfer learning: 

• Instance-based deep transfer learning: This approach is similar to the classical transfer 

learning. Prominent approaches in the supervised context are AdaBoost-based techniques like 

TrAdaBoost [63], where the algorithm filters the source domain data to use only instances that 

are similar to the target domain. These instances are reweighted to have a similar distribution 

as in the target domain and are then used together with the data of the target domain for 

training the network. 
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• Mapping-based deep transfer learning: This approach has the same definition as feature-

representation transfer in classical transfer learning. The target domain and the source domain 

are mapped into a new data space through which it is possible to train a network with both 

domains at the same time. An adaptation layer can do this mapping. In general, those 

algorithms measure the distance of probability distributions. The leading algorithm in this area 

is the MMD [64], which can be used directly as is done in a semi-supervised approach for 

translations by Hamilton [65] or in modifications like multi-kernel MMD (MK-MMD), which is 

used, for instance, by Tang et al. [66] for character recognition. 

• Network-based deep transfer learning: Parts of a pre-trained network are reused in the target 

domain. This is comparable with the definition of parameter transfer in classical transfer 

learning. In the case of deep learning, the whole pre-trained source network, or at least parts 

of it, can be reused in the target domain neural network. In the case of classical transfer 

learning, only simple parameters are transferred. In deep neural networks, the front layers are 

typically used for the feature extractors of the more general aspects and are, therefore, well-

suited for such a transfer. It is also possible to share the hidden layers, as Microsoft does in a 

language transfer setup [67]. 

• Adversarial-based deep transfer learning: Here, the adversarial technique is used to find 

transferable features for the source and the target domain. One way to do this is to add an 

adversarial layer to the network that gathers the data from both domains. This layer can be 

used to generate a domain adversarial loss, which is used in addition to the usual classification 

loss function [68]. 

Those approaches can also be mixed. This is especially the case for semi-supervised solutions like that 

of Tang et al. [66]. In their setup, as a first step, parts of a trained CNN of a source domain are reused 

for training with labeled target domain data (network-based deep transfer learning). Afterward, they 

use an MMD-based approach (mapping-based deep transfer learning) for unsupervised learning of 

unlabeled target data. 

2.4.4 Transfer Learning for CNNs 

The above-given theoretical transfer learning basics can be used for CNNs. Ample research is currently 

being devoted to this topic due to the fact that CNNs are a specialized type of artificial neural network 

with a primary focus on the classification of images, which is, for instance, important for internet-based 

technologies as well as for self-driving cars. Moreover, many commercial products from big companies 

like Tesla [69] or Microsoft [70] use CNNs in combination with transfer learning for classification tasks 

of images. 
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As described in Section 2.2.4, a CNN consists of three parts. An input layer, feature extraction layers 

(made of convolutional and pooling layers), and classification layers that are realized by fully connected 

layers. Each of them is important for transfer learning. There are three different transfer learning 

scenarios [27]: 

1. Fixed feature extraction: The first two parts of a pre-trained CNN are reused. Only the fully 

connected layers must be retrained with the new data of the target domain. The weights and 

structure are frozen for the input and feature extraction layers. Therefore, this scenario is 

called fixed feature extraction. 

2. Fine-tuning and frozen layers: Here, either the whole feature extraction part or at least the last 

layers are not frozen. The weights of these layers are fine-tuned with the target dataset. Since 

the earlier layers can handle more generic features, the number of layers for fine-tuning 

depends on the distribution of the target and the source dataset. 

3. Pre-trained models: To avoid long training times, especially for large training sets, pre-trained 

models can be used. There exist several big models, such as Google LeNet [71], which can be 

used as initialization and fine-tuned afterward. 

Determining which scenario should be used mainly depends on the target dataset size and on how 

different the source domain is from the target domain (see Table 4). 

Table 4: Recommendation on how many layers should be fine-tuned depending on the dataset size and their similarities. 

 Small target domain dataset Large target domain dataset 

Similar 
datasets 

No fine-tuning of the feature extraction 
layers. Only modifying the last few fully 
connected layers to avoid overfitting. 

The whole pre-trained model can be 
retrained with the new dataset. 
Because of the data size, the chances 
of overfitting are small. 

Different 
datasets 

The last few layers of the feature extraction 
layer should be fine-tuned to respect the 
different high-level features. The first few 
layers, which are for low-level features, 
should be frozen to avoid overfitting. 

One way could be to train a 
completely new network. 
Nevertheless, it could be 
advantageous to initialize the new 
network with the pre-trained model. 

The aforementioned scenarios apply to both supervised and unsupervised training approaches. For 

the supervised case, the process is straightforward: Use the new target domain data and retrain the 

network with the help of the available labels.  

However, the domain adaptation process is more complicated for unsupervised learning, where 

different approaches exist. The most widespread solutions are mapping-based. These can be either 

discrepancy-based (mostly) or reconstruction-based. There also exist adversarial solutions. 

Discrepancy-based approaches are similar in that the output of the source and target domain of one 

or more fully connected layers is used to calculate a domain adaptation loss. This loss is used to 

minimize the distribution discrepancy between both domains in the shared feature space (see Figure 
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16). For instance, this can be achieved by simply adding one MMD layer with a linear kernel, as is done 

by Tzeng et al. [72]. Furthermore, the intensity of the loss functions can be varied by multiplication of 

its value with a tradeoff parameter λ. 

 

Figure 16: Transfer learning for CNNs based on domain adaptation loss. The output difference of the fully connected layers is 
used as input for the domain adaption loss function, which calculates the domain adaption loss. 

In contrast to discrepancy-based approaches, reconstruction-based methods are not widely used. One 

example is that of Ghifary et al. [73], who train their network with labeled source data together with 

unlabeled target data. The model itself is based on an ordinary CNN for source label prediction and a 

deconvolutional network to reconstruct the target data. 

The last used domain adaptation approaches are adversarial-based solutions like the one of Ganin et 

al. [74], who trained a network with two loss functions. The first is the ordinary loss for the class labels, 

and the second is a domain label loss. The aim is to maximize the label classification accuracy (for 

source samples), whereas the domain classification accuracy (for all samples) should be minimized 

through a gradient reversal layer. This results in the feature distributions of the two domains being 

made similar, leading to domain-invariant features. Tzeng et al. [75] proposed an similar approach that 

combined a generative adversarial network (GAN) loss with a discriminative model and unshared 

weights. 

2.4.5 Transfer Learning for RNNs 

A promising approach of using transfer learning for time series is to use RNNs and their LSTM and GRU 

derivates. However, in general, it can be said that there has been less research done in this area than 

around CNNs [76]. 

If both domains have labeled data, there are two ways of transfer learning. One way is to use fine-

tuning by pre-training the network with the source datasets and afterward freezing all layers except 

the last few classification layers. This approach is similar to that described already in Section 2.4.4 for 

CNNs. The fine-tuning of RNNs for time series analysis is used by different researchers like Gupta et al. 
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[77], who used this approach for clinical time series analysis, or Yoon et al. [78], who used it for 

language processing. 

Another approach for labeled data is multi-domain learning by using both datasets together. Toby 

Perrett and Dima Damen [79] presented a Dual-Domain LSTM, which optimizes this approach by using 

batch normalization on the input-to-hidden and the hidden-to-hidden weights of the LSTM. They 

evaluated their approach to datasets for cooking-related activities. 

If there is no labeled data, there are mainly two research directions in the context of domain 

adaptation for RNNs. The first is to reduce the difference between the two domains with techniques 

such as MMD, as done with CNNs. This can be done using a deep recurrent neural network with fully 

connected layers at the end. This approach has been used for a natural language processing setup with 

a Sina Weibo dataset (a large Chinese microblogging website) by Xiao Ding et al. [80]. They used a Tree-

LSTM, which is a modification of the LSTM that processes inputs—not in a chain-based manner, as in 

the original implementation, but in a tree-based manner to reflect sentences in natural language. Then, 

the weights of the supervised trained model are transferred to the domain adaption model. Finally, 

the domain adaption is done using a modified MMD called a tree kernel-based MMD (TK-MMD). 

Another popular concept is using deep adversarial-based RNNs. This is based on feature extraction, 

domain classifiers, and label predictors. For feature extraction, an LSTM can be used. A particular focus 

is given to label prediction, which synchronously uses both datasets (labeled source and unlabeled 

target) to learn the domain labels. For instance, this approach is used by Da Costa et al. [81], who used 

classical LSTMs, as well as by Liu and Gryllias [82], who used Bi-LSTMs for feature extraction. A Bi-LSTM 

is an LSTM, which not only takes the output of the previous time point, but also the output of the next 

time point as input. 

2.4.6 Transfer Learning Loss Functions 

2.4.6.1 Introduction 

In the previous chapters, transfer learning for CNNs and RNNs has been described in detail. The most 

frequently used transfer types for unsupervised and semi-supervised domain adaption are mapping-

based approaches. As such, discrepancy-based algorithms are used almost exclusively (see Section 

2.4.4). All these algorithms are similar in that they compare the output of fully connected layers of the 

source and the target domain. The more significant the difference between the output of the two 

domains, the larger the result of these algorithms is. In addition, they result in zero if the distributions 

are identical, which matches the requirement of most training algorithms that try to minimize the loss 

[6]. 

The most common loss functions are MMD, Wasserstein, and CORrelation ALignment (CORAL) [54, 81, 

83]. A particular position among these algorithms has MMD, which is not only used directly but in a 
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variety of variations, such as MK-MMD [84], joint MMD (JMMD) [85], and TK-MMD [80]. Amongst all 

MMD variations, MK-MMD is the most frequently used. MMD, MK-MMD, Wasserstein, and CORAL are 

discussed in the following sections. They are also used in Section 7.2 as a reference to measure the 

here-developed transfer learning approaches. 

2.4.6.2 Maximum Mean Discrepancy 

The MMD uses the mean discrepancy to measure the distance between two distributions and is 

defined by Gretton et al. [64] according to Eq. (8). 

𝑀𝑀𝐷𝑏(𝑝, 𝑞)  = √
1

𝑛𝑠
2 ∑ 𝑘(𝑥𝑖

𝑆, 𝑥𝑗
𝑆)

𝑛𝑠

𝑖,𝑗=1

-
2

𝑛𝑠𝑛𝑡
∑ 𝑘(𝑥𝑖

𝑆, 𝑥𝑗
𝑇)

𝑛𝑠,𝑛𝑡 

𝑖,𝑗=1

 + 
1

𝑛𝑡
2 ∑ 𝑘(𝑥𝑖

𝑇 , 𝑥𝑗
𝑇)

𝑛𝑡 

𝑖,𝑗=1

 (8) 

𝑝 and 𝑞 are the distributions of the source and target domain. The source domain samples are given 

by 𝑥𝑆and its number, 𝑛𝑠. For the target domain, 𝑥𝑇 and 𝑛𝑡 are used accordingly. The kernel function 

𝑘 is used for mapping the values in a Reproducing Kernel Hilbert Space (RKHS) (see also He and Ding 

[86]). Normally, a Gaussian kernel function (Eq. (9)) is used. The parameter γ defines the width of the 

Gaussian. 

𝑘(𝑥𝑆, 𝑥𝑇)  = 𝑒−𝛾‖𝑥𝑆−𝑥𝑇‖
2

 (9) 

The Gaussian kernel is a differentiable function, which also makes MMD differentiable. This allows it 

to be used as a loss function for training types based on gradient descent [65]. When using MMD as a 

loss function for transfer learning of CNNs, 𝑥𝑖 and 𝑥𝑗 are the outputs of the fully connected layers (see 

Section 2.4.4). 

MMD has been used successfully in many transfer learning setups [87]. However, a minor drawback 

emerges if the distribution of the classes is very different. In this case, MMD may not be an optimal 

choice. An example of this is using the well-known handwriting dataset MNIST as a source dataset and 

a dataset of house numbers as a target dataset. In the target dataset, the number 1 would occur 

disproportionately often since there are hardly any streets without the number 1. However, the 

number 0 occurs relatively rarely [87]. 

2.4.6.3 Multi Kernel MMD 

The choice of the kernel has a significant impact on the performance of MMD. The reason for this is 

that a different kernel may embed probability distributions into a different RKHS that brings out the 

sufficient statistics differently. Therefore, the proper selection of the kernel leads to the optimal 

effectiveness of the system. By using MK-MMD, the impact of a wrong kernel can be reduced by 

employing a mixture of multiple kernels [12]. MK-MMD is defined as given in Eq.(10). 
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𝑘(𝑥𝑖
𝑆, 𝑥𝑗

𝑇) =  ∑ 𝑘𝑚(𝑥𝑖
𝑆, 𝑥𝑗

𝑇)

𝐾

𝑚=1

 
(10) 

where 𝑘𝑚  (𝑚 = 1, ..., K) represents one of the K different kernels. For instance, when using a Gaussian 

kernel according to Eq. (9), each kernel has a different γ. The different source and target domain 

distributions are represented by 𝑥𝑖
𝑆 and 𝑥𝑗

𝑇, respectively. 

2.4.6.4 Wasserstein Distance 

The Wasserstein distance can measure the distance between two probability distributions [88]. Its 

origin is a loss function for the training of GANs. However, the Wasserstein distance can also be used 

as a loss function for transfer learning in a domain adaptation case [83]. 

The definition of the Wasserstein distance is based on a compact metric set ℌ. Prob(ℌ) denotes the 

space of probability measures on this compact metric set. The Wasserstein distance for two 

distributions p, q ∈ Prob(ℌ) is determined as given in Eq. (11). 

µ stands for a specific joint probability distribution. П(p, q) represents the set ℌ x ℌ of the available 

joint distributions µ(hs, ht), whose marginals are p and q. This algorithm results in the calculated 

optimal transport plan µ(hs, ht), which indicates how much ‘mass’ must be transported from domain 

hs to domain ht to move the distribution p into q. Therefore, the probability distributions can be seen 

symbolically as two heaps of a certain mass of earth and the Wasserstein distance as the minimal cost 

for transferring one of the heaps to the other. Because of this, the Wasserstein distance is also known 

as the earth mover’s metric [89]. 

2.4.6.5 Deep Correlation Alignment 

Another loss function is the CORrelation ALignment (CORAL) [90], which aims to align the second-order 

statistics (namely, the covariance) of the source and target domain features. The domain discrepancy 

loss (LCORAL) is calculated as given in Eq.(12), 

𝐿𝐶𝑂𝑅𝐴𝐿 =  
1

4𝑑2
∥ 𝐶𝑆 −  𝐶𝑇 ∥𝐹

2  
(12) 

where ∥𝐹
2  is the squared matrix Frobenius norm, and d denotes the dimension of the activations. The 

covariance matrix of the target and source domain features are CT and CS and are defined by: 

𝐶𝑆 =
1

𝑛𝑆 − 1
 (𝐼𝑆

T −  
1

𝑛𝑆
 (𝟏Τ𝐼𝑆)

Τ
(1Τ𝐼𝑆)

Τ
 

(13) 

𝐶𝑇 =
1

𝑛𝑇 − 1
 (𝐼𝑇

𝛵 −  
1

𝑛𝑇
 (𝟏𝛵𝐼𝑇)𝛵(1𝛵𝐼𝑇)𝛵 

(14) 

𝑊(𝑝, 𝑞) =  𝑖𝑛𝑓

𝜇 ∈ Π(𝑝, 𝑞)

𝔼(ℎ𝑠,ℎ𝑡)~ 𝜇[∥  ℎ𝑠 −  ℎ𝑡  ∥] (11) 



2.5. Conclusion 

 

35 
 

where IS and IT are both input data. This data is the previous layer's output in a deep learning network 

of the source (XS) and the target (XT) domain data. 𝑛𝑆 and 𝑛𝑇 should be equal and are the number of 

samples of both domains. 1 is a column vector with all elements set to 1. 

2.5 Conclusion 

There are many different techniques available for machine learning. This concerns the preprocessing 

by different feature extraction methods and the actual machine learning algorithm. Here, the best-

fitting solutions have to be chosen. Some techniques can be used for supervised learning only, and 

others, such as CNNs, can also be used in unsupervised setups. Some can be used for regression, and 

others for classification tasks. Especially in the context of predictive maintenance, where the analysis 

is often based on sensor signals, it is advisable to prepare the data by a suitable feature extraction 

method independent of the ML technique used. For this purpose, algorithms in the time, frequency, 

and time-frequency domains are available. In the field of predictive maintenance, it is often the case 

that the training dataset only consists of a few samples. These samples are also often unlabeled. For 

this purpose, the domain adaptation method is useful to take additional knowledge from a second 

dataset into account. 

Regardless of whether it is a classification or a regression problem, it must be decided which 

techniques are the most suitable for the given task. For instance, classification tasks can be handled by 

various approaches such as CNN or SVM. However, not all approaches can handle domain adaptation 

very well. In the context of domain adaptation with deep learning techniques, different approaches 

are available that are mainly based on different domain adaption loss functions. As such, the matching 

loss function has to be taken. 

Regression tasks can also be handled by different approaches like SVRs and RNNs, which can handle 

the time dependencies of the input data. When using a deep learning approach, such as an RNN, for a 

domain adaptation, the question of the most appropriate loss function arises again, as it did for the 

classification approach. The predictive maintenance regression tasks mainly concern the prediction of 

the remaining useful life/time to failure scenarios. 

This chapter has not only introduced the machine learning background, but it has also contributed 

content to RC1 and RC2. The points discussed can be assigned to the following research challenges. 

RC1, which asks for appropriate methods for predictive maintenance tasks of machines based on 

features of sensor data, is touched on by Section 2.2, Section 2.3, and Section 2.4. Section 2.2 

presented the most important machine learning techniques, which can be used for condition 

monitoring of sensor data. These are CNNs, RNNs, and SVMs. This was followed by Section 2.3, which 

presented feature extraction techniques that can be applied to raw sensor data. Here, a particular 

focus was on the techniques of all three domains (time domain, frequency domain, and time-frequency 
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domain). Section 2.4, which handles the basics of transfer learning, is not directly involved with the 

sensor data but with the effects of limited sensor data. Here, transfer learning can provide a solution. 

Section 2.3.6 compares the different feature extraction methods for sensor data and describes their 

constraints. This directly targets RC2, which asks for the constraints of the different techniques.  



 

 

 

3 Predictive Maintenance 

3.1 Introduction 

Predictive maintenance is a maintenance process based on the evaluation of process and machine data 

and is found primarily in the context of Industry 4.0. By processing the underlying data, forecasts 

become possible that form the basis for needs-based maintenance and a consequent reduction of 

downtime [1]. In order to gain a precise understanding of this process, this chapter will first incorporate 

predictive maintenance into the field of Industry 4.0. This chapter further presents two use cases for 

transfer learning in the predictive maintenance environment. The first is a fault classification task, and 

the second is a useful life prediction task. Both are applicable for bearings in grinding spindles. 

Therefore, the technical backgrounds of machine tool spindles, bearings, and accelerometers are 

introduced. Next, the current state of the art for predictive maintenance for classification and the 

remaining useful life of bearings is presented. This is done in order to provide an overview of what is 

lacking within the current approaches and how they can be improved, which is also done to tackle RC3. 

This also results in an overview of what is missing in current approaches and how they can be 

improved. Based on this overview, the three research questions of this thesis are derived. 

3.2 Predictive Maintenance Background 

3.2.1 Introduction 

The vision of a smart factory (fully connected and self-organizing) in the industrial environment is only 

possible if the machines used work correctly and deliver results with the desired efficiency and 

precision [1]. One way to achieve this is through the usage of predictive maintenance. Therefore, in 

this chapter, predictive maintenance is first brought into the context of Industry 4.0. Subsequently, 

spindles, an essential component in the machine manufacturing process, are introduced [3]. Within 

these spindles, the most critical element is the bearing [4], which is presented in detail in this section. 

Finally, accelerometers, which are used for predictive maintenance tasks, are introduced. 

3.2.2 Industry 4.0 

Predictive maintenance relies on a sequence of digitalization stages and is a subarea of Industry 4.0 

(I4.0). I4.0 denotes the fourth industrial revolution and aims to automate industrial practices and 

traditional manufacturing with the help of smart technologies such as machine-to-machine 

communication and the internet of things [91, 92]. A group of researchers and industry experts has 

developed an I4.0 reference model for a better understanding of the process [93]. The I4.0 

development path can be structured along six stages (see Figure 17): The first two stages are in the 

field of pure digitalization. Everything is based on stage 1, the “computerization” stage, where tasks 
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are performed with the help of computers. This involves business tools like enterprise resource 

planning (ERP) systems as well as production machines with a computerized numerical control (CNC). 

The next step, “connectivity,” connects the different isolated components. This is usually achieved by 

connecting the components in a local network. The remaining four stages are in the I4.0 field. The third 

stage is “visibility,” which focuses on presenting what is happening. To do so, sensors must be placed 

on the machines to record the measured values throughout the entire process. These measurements 

can be used to create a digital model that shows the current state of the processes. The next phase is 

“transparency.” Companies at this stage use the data gathered in phase 3 to understand why 

something is happening. This is followed by a step called “predictive capacity,” wherein algorithms use 

the gathered data to predict what will happen in the future. The last stage is “adaptability,” an 

autonomous process in which decisions are taken to optimize the process without human interactions. 

All these stages build upon each other directly. Therefore, it is impossible to move up to a higher stage 

if the current one is not fulfilled. 

 

Figure 17: Stages in the Industry 4.0 development path. The path begins with stage 1 computerization and ends with stage 6, 
which leads to autonomous adaptions [93]. 

Applying this definition of I4.0 to predictive maintenance shows that companies must be at least at 

stage 5 to cover all predictive maintenance aspects. This is because predictive maintenance, which is 

understood as the proactive maintenance of machine tools, consists, amongst others, of error 

detection of known errors, which is stage 3, and error prediction, which is stage 5 [94]. 

In order to gain an essential business understanding of predictive maintenance in general and bearing 

damage in grinding spindles in particular, machine tool spindles and bearings are explained in more 
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detail in the following two sections. Parts of these sections have already been published in a research 

article by Schwendemann et al. [54]. 

3.2.3 Machine Tool Spindles 

Today, there are numerous different types of machine tools. However, they all share the need to 

remove material somehow. This is done using a cutting tool attached to a spindle, which in turn is 

responsible for the precision and speed of the machine. It absorbs the emerging cutting forces and 

guides the tool. A spindle is usually driven directly by an electric motor but can also be driven indirectly 

by a belt drive [95]. To be more precise, the tool is attached to the shaft of a spindle, which is clamped 

to the spindle in two positions: the front bearings at the front, which absorb the cutting forces, and 

the rear bearings at the backside that hold the shaft at position [96] (see Figure 18). The spindle is 

positioned on the workpiece by linear and rotational axes. One particular type of machine tool is a 

grinding machine, which removes the material with a grinding wheel consisting of hard material grains 

attached to a basic body using a binding material [97]. 

 

Figure 18: Positions of bearings (green) inside of a grinding spindle. 

Even within the subcategory of grinding machines, there are a large variety of different spindles due 

to the specific requirements of the grinding tasks. There exist special grinding spindles for powertrains 

that need high power because they use big and heavy grinding wheels to remove much material. 

Because of the large wheel diameter, the circumference speed is high, even with a low rotational 

speed. However, there are also spindles for smaller components that need less power but higher 

rotational speed (see Figure 19) [98]. 
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Figure 19: Different available spindle configurations and their applications [98]. 

3.2.4 Bearings 

All the bearings inside spindles have the same layout, independent of their use case, like the grinding 

of a powertrain. This is based on their application purpose, which is to connect the rotating spindle 

shaft to the stationary spindle housing. Therefore, bearings are made of four components: the inner 

and the outer rings, the rolling elements, and the cage. For the use case of spindles, most bearings use 

balls as rolling elements [99]. The cage keeps the balls at a constant distance from each other. As 

shown in Figure 20, the cage and the balls are placed between the inner and the outer ring. Each of 

the four components can be the source of a bearing fault. However, it is supposed that 90% of all faults 

are related to outer and inner ring defects [100]. A possible reason for this could be that the rings are 

permanently under load while the balls rotate, and therefore their contact area is constantly changing. 

However, the cage does not have to hold any load at all—it just has to keep the balls at a distance 

[101]. 

Each of the four components (outer ring, inner ring, balls, and cage) has a specific fault frequency (Eq. 

(15) – (18)), which is emitted by the balls that roll over the surface of the inner and outer rings [101–

104]. Depending on the rotational speed, there are use cases where these frequencies are lower than 

85 Hz [105]. Each anomaly of a component results in a periodic impulse that depends on the rotational 

speed of the shaft 𝑓𝑟 and the geometry parameters. The relevant parameters are the pitch diameter 

(𝐷𝑚), the number of balls (𝑁𝑏𝑎𝑙𝑙𝑠) and their diameter (d), and the contact angle (∝) (see Figure 20). 

The contact angle defines the angle of the contact position between the rings and the ball. An angle of 

0° stands for a vertical contact line. 
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Figure 20: Layout of a ball bearing in the front and side section plane [54]. 

𝑓𝑐𝑎𝑔𝑒 𝑓𝑎𝑢𝑙𝑡 =
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The aforementioned faults can occur in the following ways: 

• Single-point defects: In this case, one of the four components of the bearing has a defect at a 

single point. All other bearing components are in good condition. Some examples of these 

defects are spalls, cracks, and pits. For this type of defect, an increased amplitude of the 

characteristic fault frequency of the given defect can be measured (see Eq. (15) – (18)). Most 

of the recent research articles address single-point faults [106, 107]. 

• Multiple-point defects: This term is used when a bearing has multiple single-point defects. 

Depending on the position of the defects, the amplitudes in the frequency range may vary. 

The amplitudes can sum up or compensate each other [108]. 

• Distributed faults: In contrast to point defects, this type of fault can result from the loss of 

lubrication, coupling misalignment, or contamination. This fault results in the bearing surface 

becoming rougher and rougher, which is why it is also called "generalized roughness." This 

leads to the fact that, unlike multiple-point faults, the fault cannot be subdivided into a series 

of multiple single-point faults. This, in turn, results in the problem that the characteristic 

frequencies are not necessarily measurable or might not even be present at all [107]. 

In the event that a bearing is degraded due to a short-term load, such as a machine crash, the 

characteristic frequencies appear immediately. However, the degradation of a bearing usually consists 

of four stages, as can be seen in Figure 21 [109, 110]. During the first stage, a crack is just developing 
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and is only visible through ultrasonic frequencies. Therefore, neither characteristic fault frequencies 

nor visual changes of the bearing are visible. In the next stage, the crack continues to increase, although 

still not visible on the surface. However, the crack is now measurable through the natural frequencies 

of the bearing components. These natural frequencies become apparent because the forces that now 

arise are strong enough to excite them [111]. They are usually in a frequency range of between 2 kHz 

and 6 kHz [110]. In stage 3, the degradation becomes visible. The crack evolves into defects on the 

surface of the bearing. Small parts of the defective bearing component may come off. These surface 

changes lead to the appearance of the characteristic fault frequencies already described above. The 

last stage occurs directly before the total failure of the bearing. The clearance inside of the bearing 

increases. In addition, some severe pits may be fixed with removed parts from other pits and afterward 

smoothed over by the rolling elements. These two occurrences can lead to a vanishing of the 

characteristic fault frequencies. Instead, random frequencies appear in the form of background noise. 

This noise is in the frequency area of the characteristic fault frequencies and of the natural frequencies. 

a)  b)  

c)  d)  

Figure 21: The four degradations of a bearing. In every stage, the rotation frequencies are visible in area A. The first stage is 
shown in a). Here the crack is only visible through ultrasonic frequencies. In stage 2 (b), the natural frequencies of the bearing 
become visible. This is followed by stage 3, where the characteristic fault frequencies appear in addition to the two already 
existing frequencies. Finally, in stage 4 (d), the frequencies in areas b and c vanish. Instead, random noise appears [112]. 

There are guideline values for the occurrence of the four stages in percentage terms of the L10 bearing 

lifetime (see Table 5) [109]. The L10 lifetime is the lifetime reached by 90% of the bearings of one type 

[101]. The current industrial solutions are condition monitoring and predictive maintenance systems 

with a primary focus on stage 3 [35]. This is probably because in order to prevent a machine 

breakdown, it is not necessary to detect a bearing fault earlier. Therefore, this thesis also focuses on 

faults in stages 3 and 4. An example of having enough time to perform a planned maintenance is the 

bearing in the workpiece spindles of grinding machines. Here, an operating life of 20,000 to 30,000 

hours is assumed [101]. According to Eq. (19), this leads to a remaining lifetime of 12.5 weeks until the 
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spindle bearing fails. This calculation is under the assumption that the machine is operated in two shifts 

and only on weekdays, in conjunction with the assumption that stage 3 is reached at 5% of the service 

life (as shown in Table 5). 

𝑅𝑒𝑚𝑎𝑖𝑛𝑔 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 =  20000 hours ∗  
𝑑𝑎𝑦𝑠

16 ℎ𝑜𝑢𝑟𝑠
∗

𝑤𝑒𝑒𝑘𝑠

5 𝑑𝑎𝑦𝑠
∗ 5% = 12.5 weeks (19) 

 

Table 5: The occurrence of the different degradation stages in percentage terms of the L10 bearing lifetime [109]. 

Stage 1 2 3 4 

Percentage of 

L10 lifetime [%] 

10 – 20  10 – 5  5 – 1 1 – 0  

Many publications focus on detecting the defects of bearings [102, 113, 114]. For some, only the fault 

state is relevant, and others also rely on the aforementioned degradation. In general, all the research 

works can be divided into two research directions. One direction is the determination of the physical 

size of the defect (e.g., the size of the hole in the inner ring). The other direction is the current 

degradation level of the bearing. 

Because the characteristic fault frequencies only depend on bearing parameters and the rotational 

speed (see Eq. (15) - (18)), the research findings can generally applied to bearings in spindles. However, 

when analyzing bearing faults, it is not only the bearing itself that is relevant but also its environment. 

For the use case of a bearing inside a spindle, noise is the most important factor to consider. Other 

components of the machine, such as other spindles, cooling systems, or even frequency converters, 

may be the source of this noise. Typically, this noise is outside of the bearing’s frequency band. There 

are three approaches to handle noise: 1: utilize only the frequency bands in which bearing defects can 

appear [103]; 2: de-noising of the data before using it [115]; 3: use noise-resistant algorithms [116]. 

3.2.5 Accelerometers 

Accelerometers are used to record the characteristic fault frequencies mentioned in the previous 

chapter. There are two measuring principles of accelerometers used in the industrial environment: 

MEMS (micro-electro-mechanical system) and piezoelectric sensors. MEMS sensors are less expensive 

and have high shock resistance. The sensors based on piezo electronics, on the other hand, are known 

for their low noise and high linearity [117]. 

The accelerometers used in today’s industrial environment can record data with a maximal resolution 

between 10 kHz and 50 kHz. However, most of them are only capable of recording up to 10 kHz [118, 

119]. Even within many research paper datasets, only sensors up to about 25 kHz are used (e.g., 

25.6 kHz [120] and 12 kHz [121]). 
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When recording accelerations of bearings, the following should be considered. To be able to record all 

possible fault positions, at least two sensors that are aligned to each other at right angles are required. 

This is because one part of the bearing (inner ring or outer ring) is fixed and operated under radial load. 

Not all possible positions of the fixed part can be recorded with a sensor that only records in one 

direction. Under misalignment of the bearing, all three dimensions are needed [37]. However, often, 

only one sensor is used because even MEMS sensors are expensive, and it is possible to cover large 

parts of the bearing with only one sensor. 

One way to fit the industrial demands for having a good return on investment is to use triaxial sensors 

to avoid the cost of multiple sensors and their wiring. Triaxial sensors record all three axes with only 

one sensor. Their usage is feasible because of their assembly, which uses three small accelerometers 

combined in one housing. However, their applicability is limited since sensors intended for industrial 

use are only available with approximate sampling rates of 5 kHz (e.g., 4.5 kHz [122] and 5.5 kHz [123]).  

The usage of accelerometers to measure vibrations is the most common way to analyze the status of 

a bearing [124, 125]. Nevertheless, there are also investigations regarding the actual and historic 

temperature profile [126], the mechanical forces occurring, such as preload in the bearing [127], and 

the motor current and voltage [128]. However, vibrations are found to be the most reliable source for 

the condition of a bearing [129]. Additionally, a DIN standard exists that describes the proper 

application of accelerometers for bearing monitoring [124]. 

3.2.6 Challenges 

This section has introduced the technical background for predictive maintenance in general. In 

addition, a particular focus was set on bearings inside of spindles, whose predictive maintenance tasks 

have been in focus for a long time due to their importance in the production process. The physical 

background described above can be used in combination with traditional methods like simple 

threshold value monitoring in order to detect errors [130]. However, those traditional approaches are 

challenging in that frequency bands, harmonics of the frequency, and the relationship between them 

must also be considered for a more accurate analysis. Therefore, experts with a deep knowledge of 

the degradation process are needed. Nevertheless, even for those experts, it is nearly impossible to 

identify all the convoluted features that can appear when multiple-point defects or distributed faults 

of a bearing appear [131]. 

As introduced in Section 2.2.1, machine learning can be used to overcome the problems described 

above. Like traditional approaches, they somehow create a mapping of vibration signals to classify 

them into different categories like “healthy” or “outer ring defect.” The difference is that when using 

traditionally approaches, the classification is carried out using hard empirically determined limits for 

particular features. When using machine learning, the classification is based on trained models, which 
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rely on often labeled data. A trained model involves more features than a simple hard limit (e.g., [34]). 

These assumptions can be directly applied to the case of estimating the RUL as well, since during the 

RUL estimation also the current health state is used to predict the remaining lifetime [132]. 

The downside of ML approaches is that they need a lot of data for training their model (see also Section 

2.2.1). Especially for the use case of bearings, this is not feasible for real-world approaches. Often, 

small and unlabeled or partly labeled datasets are available for these cases. This is the case for new 

machines or new types of a component [9]. However, existing machines also suffer from this problem 

for the following three reasons [131]: First of all, it can be dangerous when machines are running with 

faulty components; therefore, they are often replaced in advance. Second, the degradation process of 

bearings is really slow. Therefore, it takes a lot of time to get to a faulty state (see also Section 3.2.4). 

Third, the different process conditions of a machine might produce different error patterns. A solution 

to overcome the lack of datasets is to use transfer learning to use datasets of a different bearing or a 

different process condition [12, 83, 131]. Therefore, the next section introduces the state of the art for 

transfer learning for predictive maintenance of bearings.  

3.3 State of the Art for Transfer Learning for Predictive Maintenance of Bearings 

3.3.1 Introduction 

The previous chapter has shown the importance of using machine learning technologies and transfer 

learning for the use case of predictive maintenance for bearings. As introduced in Section 1.1, there 

are two main research directions: fault classification and the estimation of the RUL. Therefore, the 

following sections present a review of selected research regarding classification as well as for RUL in 

the context of bearings. In each case, supervised learning approaches are discussed first. After that, 

transfer learning approaches for the same bearings are presented, followed by approaches for 

different bearings. A particular focus is placed on transfer learning approaches and their strengths and 

weaknesses. This results in the derivation of the research questions of this thesis. 

Most parts of the following sections have already been published in research articles by the author 

[54, 112, 133]. 

3.3.2 Bearing Fault Classification 

3.3.2.1 Introduction 

Bearing fault classification is a field of great interest. Therefore, many approaches using different 

techniques exist. There are approaches that use traditional machine learning, where often a small 

number of features are extracted, which are then used for algorithms like SVMs [113, 134, 135], as 

well as approaches that use deep learning techniques, such as CNNs, where often no separate feature 
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extraction is performed [136, 137]. In addition, different classification tasks like fault location (inner 

ring, outer ring, etc.), fault size, and fault severity exist. 

Literature reviews reveal two important facts about current research on bearing fault classification 

[54, 131]: First, most publications are based on only a few reference datasets, and second, CNNs can 

deliver the highest accuracies for all classification tasks. Accordingly, the reference datasets, as well as 

the current state of the art based on CNNs, are presented below. 

3.3.2.2 Reference Datasets 

Two publicly available datasets are used in most publications. The one used in most of the current 

research articles is that of the Case Western Reserve University bearing data center (CWRU) [121]. It 

provides data from a two-horsepower electric motor. The recording of the signals of the bearings, 

which support the motor shaft, is done with accelerometers on both sides of the motor: drive-end (64 

measurements of vibration signals) and fan-end (49 measurements of vibration signals). All faults are 

artificial single-point faults seeded in the balls, the outer ring, or the inner ring of the bearing. This is 

carried out with an electro-discharge machining operation. There is a variation of faults by different 

fault diameters and different motor loads from a horsepower of 0 to 3. Please refer to the descriptions 

of Loparo [121] for more information. 

The University of Paderborn supplies another publicly available dataset [36]. It includes measurements 

of artificial defects in the outer race, the inner race, and the balls of the bearing. In addition, it includes 

data of real damages caused by accelerated lifetime setups. The entire dataset consists of 32 different 

bearings of the same model. Data is recorded by operating the bearings under different conditions for 

each bearing. The dataset includes samples of different rotational speeds (900 rpm and 1500 rpm), 

different radial forces (400 N and 1,000 N), and different loads (0.1 Nm and 0.7 Nm). The data is from 

a test rig consisting of a test motor, a bearing module, a measuring shaft, a flywheel, and a load motor. 

Please refer to the descriptions of Lessmeier et al. [36] for more information. 

Other datasets are also given in the literature, such as, for instance, a train bogie test rig [138] or a 

gearbox dataset [139]. However, these are rarely used and often not publicly available. 

In general, most of the available datasets are laboratory datasets that exist out of bearings with 

artificially introduced faults. However, laboratory datasets have two drawbacks. The first is that they 

often have only single-point faults, and the second one is that the recorded data lacks the noise of 

other machine components (e.g., electric motors and cooling systems). 

In addition to the publicly available datasets used in various research papers, this thesis exclusively 

uses a private dataset of Junker Maschinenfabrik GmbH. In contrast to the aforementioned laboratory 

datasets, all faults are genuine. They are the results of normal wear-out of the spindle and can be 

single-point faults as well as distributed faults. The recordings of each spindle have been carried out 
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under three different rotational speeds (from 10% to 100% of the maximum rotational speed). The 

data was collected with accelerometers attached to the spindle in the x-axis and y-axis orientations. 

The spindle is designed for a maximum power of 4 kW and a maximum rotational speed of 23,000 rpm. 

The bearings of the dataset can be assigned to the same three different health conditions as the CWRU 

and the University of Paderborn datasets, which are inner ring fault, outer ring fault, and healthy 

bearing. In sum, there are 48 different measurements. 

3.3.2.3 Supervised Learning with CNNs 

The easiest way to use the datasets described above is to use them for supervised learning without 

transfer learning. There are solutions using the raw input data and solutions that use abstractions 

through different feature extraction methods as input for a CNN. Examples of solutions using the raw 

sensor data are found in Wen et al. [26] and Ince et al. [140]. Both used the raw sensor data but in 

different ways. Wen et al. used a 2D CNN to plot the raw sensor data stream of the CWRU dataset and 

split them into smaller parts. Using this approach, they achieved accuracies of up to 100%. By contrast, 

Ince et al. directly used the raw sensor data of a real-world motor conditioning system as input for a 

1D CNN. This approach achieved a lesser accuracy of up to 97.8%. However, this approach has the 

benefit of faster training due to the fact that a 1D CNN has fewer trainable parameters than a 2D CNN. 

The work of Ding and He [125] used a feature extraction technique. They used wavelet packet energy 

(WPE) to convert the raw vibration data of the CWRU dataset into images. Therefore, the energy of a 

wavelet packet transform, a particular wavelet transform that uses high and low passes during the 

transformation, was plotted over time. The researchers reached an accuracy of 96.8% using this 

approach. Verstraete et al. [141] had a similar approach. They also used the CWRU dataset and 

compared different time-frequency domain transformations (HHT, Wavelet, and STFT) as well as 

different resolutions of the image (32x32 pixels and 96x96 pixels). The architecture of their approach 

was based on a double convolutional layer layout, which leads to an increased significance of the 

features through additional nonlinearity. A nonlinearity decision function is important for making 

complex nonlinear decisions [142]. The best approach reached an accuracy of 99.9%. 

Jing et al. [143] investigated the influence of different feature extraction methods for different 

machine learning approaches like CNN, SVM, and a fully connected neural network. They showed that 

for their dataset, which was provided by the 2009 PHM Data Analysis Competition, CNNs perform 

much better than other machine learning approaches when using the input data directly due to their 

ability to learn features. The results were nearly equal between the different techniques by manually 

preselecting features like the crest factor. The best accuracy (99.33%) was obtained using a CNN with 

direct frequency domain data. This result is even better than the results achieved using manually 
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selected frequency domain features. Although the researchers recommended the use of 2D segments 

for future work, they trained the CNN with 1D segments from raw data input. 

An improvement over pure CNN approaches can be achieved by combining them with other 

techniques. This was done by You et al. [144], who introduced a hybrid model that uses a CNN together 

with an SVR. The CNN was used for extract features directly from the raw sensor data of the CWRU 

dataset. However, the SVR was used for classification. By combining the two techniques, they had a 

97.6% accuracy rate for a larger dataset with different fault sizes and 93.9% for a dataset with only one 

fault size. These results were better than when using only one of these techniques. 

 

The presented research shows that in the area of supervised learning, very high accuracies can be 

achieved (up to 99.99%). However, it should be noted that these high accuracies might be based on 

the fact that supervised classifications, in general, provide higher accuracies based on large labeled 

datasets [145].  

3.3.2.4 Transfer Learning for Same Bearing Types with CNNs 

As an extension to supervised learning, there are also solutions that use transfer learning of the same 

bearing type. In doing so, knowledge from datasets of the same type, which work under different 

process parameters (e.g., loads) or have different fault sizes, is transferred. All of the in the following 

presented works use the CWRU dataset. This dataset has the advantage of having, amongst others, 

samples of different fault sizes as well as samples of different loads, which can be used for transfer 

learning. 

Li et al. [137] suggested a transfer learning approach for 1D sensor input data. Their proposed CNN 

was based on labeled data for the source domain and unlabeled data for the target domain. Both 

datasets were of the same bearing type, but each domain used different loads. During the training 

phase, they used data from the source and the target domain and adopted the two domains with the 

help of an MMD loss function. They evaluated combinations of different loads in the source and target 

domain as well as different MMD setups, such as classical MMD and MK-MMD. The results showed 

that the accuracy of each implementation is dependent on the transfer task. In all evaluations, they 

got results of about 95% accuracy with transfer learning. Without transfer learning, the accuracies 

were between 63% and 82%. 

Zhang et al. [136] used a particular layout of a CNN where the first layer had a wide kernel. They also 

called this approach a wide deep convolutional neural network (WDCNN). They transferred knowledge 

between domains of different loads but with the same bearing type. The transfer itself was done by 

statistical information of the target domain. Unfortunately, the exact nature of this information is not 

specified. With this network, they reached an accuracy of 95.9% on average. 
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Li et al. [138] employed a train bogie test rig dataset and the CRWU dataset to a two-step transfer 

learning approach. In order to extract frequency-domain data, they applied an FFT on the raw data. In 

the following step, they used a CNN and a generative neural network to generate a high-level feature 

representation. The CNN extracted the features, while the generative neural network used the output 

of this CNN to generate fake fault data. To reduce the distribution discrepancy between the fake and 

actual features, they employed the variance and the mean of the target domain data. The trained 

network was also used for the target domain. In the last step, they utilized another CNN for the 

classification with an accuracy of above 92% in the target domain. 

Han et al. [139] introduced an intelligent fault diagnosis framework called deep transfer network 

(DTN). Again, the source and the target domain datasets were from the same test environment. The 

difference in their approach is that they used different fault sizes. Their suggested framework uses 

Joint Distribution Adaptation (JDA) to adapt the conditional distribution of unlabeled target data 

together with labeled source domain data. JDA combines the classical MMD and an MMD that is 

calculated with the conditional distribution of each category as an input. With the help of JDA, they 

achieved an accuracy of 99.3% for transferring knowledge from small fault sizes to large fault sizes and 

97.1% for the reverse direction. 

All the presented transfer learning approaches for the same bearing type with different process 

conditions show promising results that are up to 99.3%. This shows that there is little reason to perform 

further investigations in this direction. However, it must be noted that all these works were performed 

on laboratory datasets, which have hardly any noise. 

3.3.2.5 Transfer Learning for Different Bearing Types with CNNs 

The aforementioned works may not perform particularly well when trained on a dataset of one bearing 

type and used to classify another. Therefore, there are also approaches for transfer learning for the 

classification of bearing faults between different bearing types. Since there are only a few solutions for 

transfer learning of different bearings based on accelerometer data, this chapter focuses on all kinds 

of machine learning techniques and not only on CNNs. In the following section, all, to the author's best 

knowledge, existing transfer learning approaches for different bearings based on accelerometer values 

are presented. 

Yang et al. [146] suggested a feature-based transfer neural network (FTNN) to determine the condition 

of bearings in actual machines using the diagnosis knowledge from bearings in lab machines. To extract 

transferable features from both actual and lab machines, their suggested framework used a CNN. The 

parameters of the CNN were then constrained by regularization terms of a multi-layer domain 

adaptation (MMD-based) and pseudo-label learning to reduce the among-class distance of the learned 

transferable features. They used two bearing fault cases to validate the suggested approach. In both 
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cases, the target domain data contained the health status of locomotive bearings. This dataset was a 

real-world dataset, and both source domains were laboratory domains. Case 1 contained data from 

motor bearings, and the second case contained gearbox bearing data. The results showed that the 

suggested approach can successfully learn transferable features to link the discrepancy between the 

data from actual and lab machines by having an accuracy of 84.32% for case 1 and 74.81% for case 2. 

Zhiyi et al. [147] presented an improved deep transfer auto-encoder for the purpose of diagnosing 

faults of bearings placed across multiple machines. An auto-encoder is a type of ANN that is typically 

used to learn a condensed representation (encoding) of the input data. A scaled exponential linear unit 

was employed in their suggested framework to increase the quality of the mapped vibration data 

acquired from bearings. Furthermore, a nonnegative constraint was used to change the loss function 

in order to enhance the reconstruction effect. The trained source model's parameter knowledge was 

then transferred to the target model. To harmonize the properties of the target test samples, target 

training samples that had limited labeled information were utilized to fine-tune the target model. The 

vibration signals of bearings installed in multiple machines were used to evaluate the suggested model. 

The researchers verified their approach in two case studies: Case study 1 used the CWRU dataset as 

the source domain and a private test bench dataset as the target domain. An accuracy of 90.42% was 

achieved. Case study 2 used a gearbox dataset as the source domain and a dataset of bearings of a 

locomotive wheel as the target domain. Here, an accuracy of 88.18% was reached. Only the target 

domain data of case 2 was a real-world example. This dataset was very small, and it is not apparent if 

samples from the same bearing were used in both the training and test datasets. Overall, the presented 

results indicate a promising performance compared to existing techniques. 

Cheng et al. [83] suggested a deep transfer learning approach that uses relevant information from the 

source domain to perform learning in the target domain. Therefore, they used the Wasserstein 

distance to minimize the distributions between the source and target domain. In their setting the 

Wasserstein-based transfer learning approach has shown to perform well for both unsupervised and 

supervised learning. They used the CWRU dataset for different transfer tasks: unsupervised transfer 

learning of different speeds (average accuracy 95.75%), unsupervised learning of different loads 

(average accuracy 64.20%), and supervised transfer learning of different locations (average accuracy 

64.92%). Different locations implicitly lead to different bearings since different bearings are mounted 

in both locations of the CWRU dataset. The difference in accuracies can be explained by the fact that 

the speed difference is only minor; therefore, this transfer task might be easier. 

To summarize, there are only three solutions for transfer learning between different bearing types. 

They are based on different algorithms and two of them target a real-world dataset. Independent of 

the algorithm, the accuracy is between 65% and 90%. 



3.3. State of the Art for Transfer Learning for Predictive Maintenance of Bearings 

 

51 
 

3.3.2.6 Conclusion 

The state of the art for bearing fault classification has been presented in the previous sections. 

Independent of the setup (supervised learning or transfer learning), one of the challenges of all 

researchers is that only a few datasets are available to validate the different approaches. The most 

frequently used dataset is that of the CWRU. This dataset and most of the other datasets are laboratory 

datasets that exist out of bearings with artificially introduced faults. In addition, there is no or only 

little noise from other components.  

Table 6: Brief overview of different research in the field of bearing fault classification. 
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Li et al. [137] 1D CNN Raw data MMD Different operating 
loads 

No 95% 

Zhang et al. 
[136] 

CNN Raw data Mean and 
Variance of 
the target 
domain 

Different operating 
loads 

No 95.9% 

Li et al. [138] CNN, 
GNN 

FFT MMD Different fault sizes No 92% 

Han et al. [139] DTN Raw data MDA, JDA Different fault sizes 
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No 97.1% - 
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Yang et al. [146] FTNN Raw data Multi-layer 
MMD 

Source from Lab 
Target from real 
machines 

No 74.81% - 
84.32% 

Zhiyi et al. [147] auto 
encoder 

Raw data Custom Source and target 
from different 
machines 

No 88.18 - 
90.42% 

Cheng et al. [83] DTL FFT Wasserstein Different setups with 
different bearing 
types, operating loads, 
and rotational speeds 

No 64.20% - 
95.75%  
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The datasets are used in a supervised manner or completely unsupervised for transfer learning. 

Unfortunately, there are no solutions that use partly labeled datasets for semi-supervised training. As 

stated in the problem statement, semi-supervised learning is of great interest since it is difficult for 

many companies to have all data labeled. Many enterprises are already happy to collect data and 

disassemble some of the defective bearings.  

There are many approaches for the classification of bearing faults for fully labeled datasets. As shown 

in Table 6, some solutions have an impressive success rate of 99% [143] or even more [26]. These 

solutions, however, are designed for one particular use case, usually with a certain type of bearing, 

fault size, and load. There are also transfer learning solutions for different process parameters and 

conditions of the same bearing, which can accurately classify the condition of a bearing. This changes 

when the transfer between different bearing types is considered. Here, the accuracy drops to between 

65% and 90%. This clearly shows that this transfer task between bearings is more sophisticated. Table 

6, which gives a brief overview of the presented research, shows that until now, no approach has 

combined the transfer learning fields of different process parameters in the target domain and 

different bearings in the source and target domain. Therefore, one missing use case is to have a partly 

unlabeled target domain with different rotating speeds of the spindle/bearing. This use case is also a 

real-world use case and can be related to different machine manufacturing processes. From this deficit, 

the following first research question of this thesis can be derived directly.  

 

 

3.3.3 Remaining Useful Life of Bearings 

3.3.3.1 Introduction 

Fault classification is an essential aspect of condition monitoring. However, knowing the remaining 

useful life is also important to prepare planned maintenance and avoid a machine breakdown. This can 

be accomplished by reporting the current condition, such as “new,” a percentage of the lifetime, or 

even an estimate in operational hours. In general, there are two common approaches for estimating 

the RUL. The first is to employ a health indicator, which is often a value between 0.0 and 1.0, with 0.0 

representing a healthy condition and 1.0 representing a defect. With the help of this indicator and the 

total lifetime of samples, a mapping from the health indicator to the remaining time can be made 

[148]. The other approach is based on regression. Here, it is possible to work directly with the 

remaining time. For this purpose, the future trend is determined based on past values. The RUL can 

RQ1: What are the necessary characteristics of a new classification method for bearings, which 

can take the benefits of a dataset of a different bearing type for a partly labeled target dataset 

that is collected under different process conditions? 
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then be calculated directly using this trend [12, 149]. SVMs [149] and RNNs [148] are two well-known 

approaches for this. Markov Models (MM) [150], Mahalanobis Taguchi systems (MTS) [151], and other 

artificial neural networks [152] are other used approaches. Furthermore, there also exist concepts that 

are not depending on machine learning, such as the closed skew s-normal (CSN) distribution [153]. The 

CSN is determined at each data point by taking the RMS of the vibration data. A regression model can 

also be used for traditional approaches, as done by Zhao et al. [53]. As described in Sections 2.2.1 and 

3.2.6, machine learning approaches are more suitable for complex and dynamic datasets and do not 

need manual fine-tuning. Therefore, non-machine learning approaches are not presented here and are 

beyond the scope of this thesis. 

Most studies estimating the RUL do not use the raw data directly. Instead, they use calculated features 

of the time or the frequency domain, such as crest factor or root mean square [54]. The datasets 

consist mainly of one dataset that is described in the following section. Afterward, some relevant works 

that use supervised learning without transfer learning are reviewed. This is followed by a review of 

relevant works for transfer learning for the same bearing type. Finally, to the best of the authors’ 

knowledge, only two existing transfer learning approaches for different bearing types are introduced. 

3.3.3.2 Reference Datasets 

There is one publicly available dataset that is used in most publications: that of the FEMTO Institute, 

which was used at the IEEE PHM 2012 data challenge competition [120]. This data is acquired from an 

accelerated aging platform called PRONOSTIA, which provides vibration and temperature 

measurements. The vibration signal is measured by two high-frequency accelerometers (type 3035B 

DYTRAN), which provide data with a sampling frequency of 25.6 kHz. One is used horizontally, and the 

other in a vertical direction. Every 10 seconds, 2560 data points are recorded. The data of each bearing 

was recorded until the vibration signal exceeded 20 g. This condition was then considered as defective. 

The defects of all bearings, which can be single-point or multiple-point, are based on natural 

degradation. There are no seeded faults. There are three groups of different operation conditions: the 

first (1800 rpm and 4000 N) and the second (1650 rpm and 4200 N) contain seven bearings each, while 

the third (1500 rpm and 5000 N) contains only three bearings. 

3.3.3.3 Supervised Learning with RNNs 

As mentioned in Section 3.3.3.1, the two important machine learning techniques used for supervised 

learning in the context of RUL are SVMs and RNNs. In the case of SVMs, there are two relevant research 

papers. The first is from Liu et al. [154], who proposed an approach for RUL based on numerous health 

state assessments. Their approach split the entire bearing life into different health states. The authors 

built an individual regression model with unsupervised and supervised components for each state. In 

a first step, the unsupervised part used principal component analysis (PCA) and clustering to 
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automatically extract knowledge in the form of health state labels using a fuzzy c-means technique. 

PCA is a technique to restructure a dataset by approximating a large number of statistical variables 

using a few linear combinations. An SVM was used afterward to detect the health status using the 

generated labels. With the help of these generated labels, an SVM was then used to detect the health 

states. Afterward, the RUL was estimated with another SVM. Finally, the authors evaluated their 

approach based on a custom benchmark that compared the difference between the true and the 

estimated absolute RUL of two bearings: bearing 1_3 (true RUL: 5730, estimated 5842) and bearing 

1_4 (true RUL: 339, estimated RUL 1109). 

The second paper contains the winning approach of the IEEE PHM 2012 data challenge competition 

[120]. Sturisno et al. [155] compared three different approaches. The first was a Bayesian Monte Carlo 

approach, which was based on an exponential model. This approach did not perform very well because 

it could not handle the abrupt signal changes at the end of life. The second was an SVR-based approach, 

which worked better, but more datasets would have been needed to increase the accuracy. The third 

approach was based on detecting anomalies by just examining variations in the frequency signature. 

Based on these changes, the authors calculated an anomaly ratio that was used to estimate the RUL 

based on an equation. In terms of the prediction accuracy, the third method was the most precise one. 

By using the challenge benchmark setup, the authors reached a PHM score of 0.306. For a detailed 

explanation of the calculation of this score, see Appendix A.5.1. 

There are also approaches based on deep learning, such as RNNs. Guo et al. [148] proposed an RNN-

based health indicator for estimating the RUL of bearings. They chose 14 features from the time, 

frequency, and time-frequency domains. The features of the time and frequency domain were 

transformed to related similarity features. Thereby, the current state was compared with the previous 

states. By using monotonicity and the correlation between operating time and features for training of 

their RNN, the authors chose the best features. Their approach was the best in their benchmark, with 

a mean relative error (Er) of 23.24. For the calculation of Er, see Appendix A.5.1. 

Malhi et al. [156] utilized an RNN and their own test data, which was captured at 1200 rpm. They 

employed ten features: five time-domain features (crest factor, kurtosis, peak value, rectified screw, 

and RMS) computed from raw data, and the same five features estimated from the result of a Morlet 

mother wavelet-based continuous wavelet transform. The authors trained their neural network using 

all data up to a certain point. Then, they forecasted the upcoming degradation trend. This is a real-

time recurrent learning approach that allows the RNN to be further trained while in use. As a result, 

on a machine, all currently available data can be utilized to estimate the future trend. This approach 

showed the best results in their benchmark based on a mean squared error (MSE) of 0.05. 
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Zhang et al. [157] used a two-layered network. In the first layer, they used a CNN, which is followed by 

an LSTM. The raw sensor data was used as input for this network. In addition, this data was used to 

calculate a health indicator based on 23 features of the time, frequency, and time-frequency domain. 

The authors used IEEE PHM 2012 data as well as the challenge’s setup and scoring function. The result 

was a PHM score of 0.64. 

All the presented works seem to be successful. However, although they all (with the exception of Malhi 

et al. [156]) use the dataset of the IEEE PHM 2012 data challenge, they are not comparable because 

they use different RUL mechanisms as well as different criteria for benchmarking their approach. 

3.3.3.4 Transfer Learning for Same Bearing Types with RNNs 

The dataset of the IEEE PHM 2012 data challenge is not only used for supervised learning. One of the 

relevant research approaches in the context of transfer learning also uses this dataset. This is done by 

Cheng et al. [12], who used a CNN for transfer learning the knowledge of one fault behavior to another 

of the same bearing type. The authors split the dataset into groups of different fault behaviors. To 

learn domain invariant features of the raw sensor signal they used MK-MMD. Their approach obtained 

the highest accuracy in their benchmark with methods without transfer learning based on a mean 

absolute Er of 47.35. 

Another important work is that of Liu and Gryllias [82], which is based on an XJTU-SY bearing dataset. 

The authors also used transfer learning to adapt to different working conditions of the same bearing 

type. Their approach was based on combining a domain adversarial neural network (DANN) and a 

bidirectional LSTM neural network (Bi-LSTM). On the one hand, the DANN was used to deal with 

domain shift (e.g., different distributions of the datasets). This mechanism is inspired by GANs and tries 

to generate domain invariant features for the source and the target domain data. On the other hand, 

the Bi-LSTM was used to extract the features for estimating the RUL. As already mentioned in Section 

2.4.5, the usage of a Bi-LSTM leads to higher accuracies than only using an LSTM because the training 

of a Bi-LSTM also takes the states of future timestamps into account. The authors benchmarked their 

result based on the root mean square error (RMSE), which was between 11.52 and 20.39, and the 

mean absolute error (MAE), which was between 4.21 and 16.54. 

3.3.3.5 Transfer Learning for Different Bearing Types with RNNs 

In addition to the previously introduced transfer learning approaches for the same bearing type, there 

are also solutions for transfer learning between different bearing types. However, to the best of the 

author’s knowledge, only two existing studies use transfer learning. Both are discussed in this section. 

Like most other RUL approaches, the work of Xia et al. [158] used the dataset of the 2012 IEEE PHM 

Data Challenge as the target domain dataset, whereas the source domain dataset was from Case 

Western Reserve University [121]. Raw sensor signals were used as input of this approach, which exists 
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of two parts: a fault knowledge transfer neural network (FTNN) and a convolutional LSTM ensemble 

network. The FTNN was made of three consecutive pairs of one convolutional layer and one pooling 

layer. The target domain dataset was used to train this neural network initially. The transfer learning 

process began with the pre-trained but unfixed convolutional layers. Then, this network was trained 

with inputs from both domains (source and target) at the same time. This was accomplished through 

the usage of MMD. The trained FTNN’s output was then fed into the LSTM ensemble network. This 

network consisted of n parallel LSTM networks with a similar layout. Each of the n networks was 

designed to handle one bearing condition. Finally, the estimated RUL was calculated using an ensemble 

mechanism that weighted the outputs of the LSTMs. To validate their approach, the authors used their 

own validation setup, which utilized one working condition out of the three available in the dataset. 

They also increased the number of training samples by switching the learning test ratio of the datasets 

of the challenge from two train and five test datasets to five train and two test datasets. The results 

were determined by the RMSE, showing an RMSE of 0.0673 and 0.1631, which leads in a reduction of 

up to 48.61% when compared to other self-implemented approaches. 

Huang et al. [159] suggested an analogous approach for transfer learning between different bearing 

types. The source domain dataset was again the 2012 IEEE PHM Data Challenge dataset, and the target 

domain was from the Intelligent Maintenance Systems (IMS) [160]. They passed the raw sensor input 

into convolutional and pooling layers. Their output was fed into a bidirectional LSTM. The result was 

then used as input for fully connected layers to estimate the RUL. Instead of the commonly used Adam 

optimizer, they employed an adaptive hybrid high-power multi-dimensional gradient algorithm 

(AHHPMG), which is their own backpropagation algorithm. AHHPMG takes into account the temporal 

correlation of the measurements in the training data. First, they pre-trained the network with the RUL 

dataset of the source domain. Afterward, the pre-trained network was trained using the target domain 

data in the same manner. The target dataset was not divided based on bearing instance. This means 

that the training dataset contained many samples of the same bearings, which were also used for 

testing. In the author’s opinion, this method is invalid because all it does is a complex interpolation of 

the RUL values in the training samples. The researchers validated their results using two bearings based 

on the normalized root mean square error (NRMSE) (bearing 1: 0.497, bearing 2: 0.234) and the mean 

absolute percentage error (MAPE) (bearing 1: 16.311, bearing 2: 23.124). 

In conclusion, both approaches use the 2012 IEEE PHM Data Challenge dataset. Furthermore, both use 

the entire frequency range of the data being recorded with a high-resolution sensor. In addition, both 

approaches make use of their own evaluation metric. Consequently, the outcomes are not comparable 

with most other approaches, which often use the challenge setup and the PHM score (see Appendix 

A.5.1) for their evaluation. 
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3.3.3.6 Conclusion 

To summarize, as shown in Table 7, there are various approaches to RUL without transfer learning 

based on SVM, CNN, RRN, and LSTMs. This table also shows that there are only two transfer learning 

approaches for RUL of bearings of different bearing types. Although the input of all approaches is based 

on only a few datasets, they are not directly comparable because they often use custom benchmark 

setups as well as different metrics to measure the performance of their approach. A benchmark type 

that is often used and well-defined is the IEEE PHM 2012 challenge setup and the PHM score (see 

Appendix A.5.1). 

All presented approaches use the entire frequency range of data that is collected with costly 

accelerometers with high sampling rates as input. However, the permanent mounting of expensive 

sensors does not reflect the industry's real needs where solutions are needed with a good return on 

investment. This need can be fulfilled by using triaxial sensors with low sampling rates (see Section 

3.2.5). This use case has not been researched yet and represents a clear research gap regarding suitable 

solutions for transfer learning of different bearing types that also cover the usage of sensor data with 

low sampling rates (up to 5000 Hz).  

This shortage leads to the second research question of this thesis:  

 

RQ2: What are the necessary characteristics of a new RUL method for bearings, which can take 

the benefits of a dataset of a different bearing type, for a labeled target dataset that is recorded 

with sensors with low sampling rates? 
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Table 7: Brief overview of different research in the field of transfer learning for estimating the RUL. 

 Authors ML 
model 

Signal 
Processing 

Difference 
in source 
and target 
data 

Trans
fer 
functi
on 

High-
frequ
ency 
data 

Performance 
 

W
it

h
o

u
t 

Tr
an

sf
er

 L
ea

rn
in

g 

Liu et 
al. [154] 

SVM PCA - - Yes Bearing 1_3: True RUL 
5730, estimated 5842 
Bearing 1_4: True RUL 
339, estimated 1109 

Sturisno 
et al. 
[155] 

Mathe-
matical 
equation 

FFT - - Yes PHM score 0.306 

Guo et 
al. [148] 

RNN 14 features of 
the time, 
frequency, and 
time-frequency 
domains 

- - Yes Mean Er 23.24 

Malhi et 
al. [156] 

RNN Five time 
domain features 

- - Yes MSE: 0.05 

Zhang 
et al. 
[157] 

CNN + 
LSTM 

Raw data; 
HI based on 23 
features 

- - Yes PHM score: 0.64 

Tr
an

sf
er

 le
ar

n
in

g 

sa
m

e 
b

ea
ri

n
gs

 

Cheng 
et al. 
[12] 

CNN FFT Different 
fault 
behaviors 

MK-
MMD 

Yes Mean Er: 47.35 

Liu and 
Gryllias 
[82] 

Bi-LSTM Raw data Different 
working 
conditions 

Adver
sarial 
Traini
ng 

Yes RMSE 11.52 – 20.39 
MAE 4.21 – 16.54 

Tr
an

sf
er

 le
ar

n
in

g 
w

it
h

  

d
if

fe
re

n
t 

b
ea

ri
n

gs
  

Xia et 
al. [158] 

LSTM Convolutional 
and pooling 
layers 

Different 
bearing 
types 

MMD Yes RMSE: 
Bearing 3: 0.0673 
Bearing 5: 
RMSE 0.1631 

Huang 
et al. 
[159] 

Bi-LSTM Convolutional 
and pooling 
layers 

Different 
bearing 
types 

Pre-
traine
d 
mode
l 

Yes NRMSE: 
Bearing 2_1: 0.497, 
Bearing 3_1: 
0.234 
MAPE 
Bearing 2_1: 16.311, 
Bearing 3_1: 
23.124 

3.3.4 Conclusion 

The state-of-the-art review for predictive maintenance solutions for bearings shows various activities 

in both the classification of bearing faults and remaining useful life. However, both research areas still 

have unaddressed aspects, which are mainly based on the lack of proper datasets. One of them is the 

possibility of using datasets of different bearings in the source and the target domain in combination 

with different process parameters. Out of this requirement, RQ1 for the task of bearing classification 

has emerged. The second is a solution that covers the need to use low costs sensors in combination 

with transfer learning. RQ2 covers this need for the use case of RUL estimation. 
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The state of the art has shown that independent of the RUL or the classification task, aside from the 

ML model used, two other processes are also important: the signal processing and the transfer learning 

method. In the case of unsupervised transfer learning, the most promising results are achieved using 

discrepancy-based loss functions like MMD. In addition, CORAL is also a successful transfer learning 

loss function.  

In the case of the signal processing method, the literature has shown that there are many different 

ways to use the sensor data (e.g., through time-frequency transformations). These methods are 

necessary for the ML algorithm to have usable features. However, they are not specialized for the use 

case of using different domains. Some of the feature extraction methods can be used without 

modifications on different bearings (e.g., FFT), and some have to be adapted for each dataset (e.g., 

wavelets). The aforementioned lack of training data for predictive maintenance task as well as the lack 

of IT specialists, especially in Small and Medium-size Enterprises (SMEs) [161], lead to the following 

question, which is also defined as RQ3: 

 

3.4 Conclusion 

This chapter showed that predictive maintenance is a very relevant topic. Large industrial plants and 

companies pay particular attention to Industry 4.0 and, inevitably, to predictive maintenance. The 

presented use cases for transfer learning for predictive maintenance tasks of bearings are relevant for 

many manufacturing plants. A lot of different types of machines use spindles with bearings inside. 

Since the individual machines are so different, transfer learning is the only solution to achieve accurate 

results since there is too little data for traditional ML approaches.  

The relevance of bearing faults classification and estimation of remaining useful life is also evident 

from the number of scientific publications on these topics, as presented in Section 3.3. As such, a 

particular focus was given to the methods used and their constraints, as reflected by RC1 and RC2. 

Based on the limitation of these methods, the research questions of this thesis were derived. This 

thesis will present appropriate solutions for these questions in the following chapters. The next chapter 

(Chapter 4) presents an intermediate domain, which can be seen as an answer to RQ3. This is followed 

by a solution for the classification challenge in the form of a general approach for different bearing 

types and different process conditions in the target domain (Chapter 5). This solution can also be seen 

as the answer to RQ1. Chapter 6 presents a solution for the RUL challenge of transferring knowledge 

RQ3: What are the necessary characteristics of a feature extraction method that is well suited for 

transfer learning? This method must be stable enough to be used on different bearing types 

without changing its parametrization or making significant changes to a subsequent machine 

learning model for different bearing types. 
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from one bearing type to another. This solution is tailored for the need to use samples of sensors with 

low sampling rates and is also part of the answer for RQ2. 

 



 

 

 

4 Feature Extraction 

4.1 Introduction 

The previous chapters, 2 and 3, have shown the current state of the art for predictive maintenance 

solutions in general and for the tasks of classification of bearing defects and RUL estimation of bearing 

in particular. Independent of the task, the beginning of the processing chain for a predictive 

maintenance process is the same: It always starts with raw sensor data. As shown in Figure 22 and 

mentioned theoretically in Section 2.3, there are different ways to use this data. It can be used directly 

or after a feature extraction has been performed. There are feature extractions available that are 

based on a transformation into a different domain, such as frequency (with an FFT) or time-frequency-

domain (with an S-transform, HHT, or STFT). In addition, statistical features such as the shape factor 

can be applied to the data. If data from different domains is used, there is also the possibility of using 

an intermediate domain, which combines the features of both domains. 

 

Figure 22: Different feature extraction methods for sensor values in a machine learning process: Direct raw sensor data, 
statistical features, such as shape factor in the time domain, transformation into different frequency and time-frequency 
domains, and the use of an intermediate domain. 

One target of predictive maintenance applications is components that make periodic movements. 

These provide patterns with distinctive characteristics in the frequency range that depend on the 

periodicity. The in Section 2.3 presented feature extractions are similar in that they do not take care 

of the context information based on these patterns. In use cases with only small datasets, context 

information might help to increase the accuracy of the machine-learning algorithm (see Section 2.4.2). 

In addition, this context information can also help to improve the transfer learning between different 

domains/datasets. Another downside of some of these methods is that they must be adjusted for each 

application. Therefore, a feature extraction method is of interest that fulfills the following 

requirements: 

• It must be a feature extraction method that takes care of the patterns provided by components 

with periodic movements. 

• It should increase the predictive maintenance quality of such components based on frequency-

related patterns. 

• It should improve transfer learning between different component types. 
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• It should be a stable solution that can be used on different types of a component without 

modifications. 

A feature extraction method that meets the above-listed requirements is also important for the use 

case of bearings. Therefore, this chapter focuses on a solution in the context of bearings. This also 

addresses RQ3, which asks for a feature extraction method that is well-suited for transfer learning. 

Furthermore, this method has to be stable enough to be used on different bearing types without 

changing its parametrization or significant changes on a subsequent machine learning model for a 

different bearing type. 

 

A possible solution for this RQ might be to use a specialized feature extraction type which is called an 

intermediate domain. In this case, an intermediate domain can use the input data and modify it in a 

way that only the relevant features of the sensor signal are in focus. This feature selection could lead 

to benefits in accuracy (see Section 2.3.1). In addition, an intermediate domain could lead to better 

results for transfer learning use cases, as it is itself a type of transfer learning that brings the source 

and target domain closer together (see Section 2.4.3.3).  

Therefore, this chapter presents an intermediate domain-based feature extraction method for raw 

sensor data of accelerometers connected to bearings. As a first step, the validation context for this 

chapter is introduced (Section 4.2). This is followed by a detailed justification for the decision to use 

an intermediate domain (Section 4.3). The proposed intermediate domain itself is created through 

three sequential steps (see Figure 23), which are explained as follows: The first step is the processing 

of the raw sensor data to convert it into the time-frequency domain for better analysis possibilities 

(Section 4.4). This is followed by a de-noising algorithm to obtain a stable intermediate domain for 

different bearings and process conditions independent of noise (Section 4.5). Finally, the output must 

be prepared for use in classification or an RUL task (Section 4.6).  

Each of these subchapters first introduces the reason for choosing this step and then explains it in 

detail. 
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Figure 23: The creation of an intermediate domain image. As a first step, the raw sensor data is converted into the time-
frequency domain to obtain better analysis possibilities. Afterward, the transformed data is de-noised with a frequency-
selective filter. Before the created image can be used, it must be prepared for the upcoming machine learning algorithm (cf. 
[133]). 

4.2 Validation Context 

In order to validate the decisions of the different development steps of the intermediate domain, 

different bearing health-based test scenarios have been used. Each test scenario uses the CNN 

presented in Section 5.4.2 for the classification of bearing faults. For the test scenarios that are used 

for the raw signal processing presented in Section 4.4, the data provided by the Case Western Reserve 

University (see Section 3.3.2.2) is used. This laboratory dataset without noise and no different process 

conditions has been chosen because the test scenarios of this chapter should only focus on signal 

processing and not noise or process conditions. On the other hand, Section 4.5 deals with filtering out 

the noise and the usability under different process conditions. Both properties are given with the 

custom dataset of Junker Maschinenfabrik GmbH (see Section 3.3.2.2), which is why it was selected 

for this chapter. Independent of the used dataset, the process is always the same: For each test 

scenario, the dataset is split bearing instance based on a ratio of 70% training data and 30% test data. 

The result of one test scenario is the mean of two runs with a different training and test data split. This 

split is identical between all test cases in one test scenario and is based on a random assignment. For 

each training and test run, the datasets are similarly assigned to training and test data. The detailed 

assignment of the data sets can be seen in Appendix A.1.1 in Table 29. The parameters of the training 

itself are listed in Table 8. 
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Table 8: Parameters used during the training of the neural network. 

Parameter Value Reason 

Optimizer Adam Empirical tests and recommendations such as [6] 

Learning rate 0.00003 Empirical tests 

Batch size 150 Empirical tests 

Iterations 200 Empirical tests 

Loss function Cross-entropy See Section 5.4.2 

 

4.3 Intermediate Domain Structure 

As introduced in Section 4.1, there are different methods for feature extraction of sensor data. The 

recommendation for using a feature extraction method instead of the raw sensor data is given by 

various studies in different domains, such as that of Sadouk [162], who compared time-frequency 

domain feature extraction (in the form of an S-transform) to raw data for datasets of different domains 

(like human activities) using CNNs. His finding was that feature extraction leads to an improvement in 

accuracy compared to the usage of raw data. This has also been shown for the specific use case of 

predictive maintenance tasks for bearings through the state-of-the-art survey in Section 3.3.  

A particular type of feature extraction is the usage of an intermediate domain. As mentioned in Section 

2.4.3.3, an intermediate domain based on feature representation can improve the accuracy of classical 

machine learning and transfer learning tasks. This is because the intermediate domain itself is already 

a transfer learning method. As introduced in Section 2.4.3.3, it is a transductive transfer learning 

method that is meant to reduce the discrepancy of the features of the input data between the source 

and the target domain to achieve better accuracies in classification and regression models. This is 

especially important when performing heterogeneous domain adaption [61] and has been verified, for 

instance, by Zhang et al. [163]. They used the intermedia domain for an image classification setup to 

benefit from the locality geometric structure of domain data. In most test cases, the intermediate 

domain achieved the best accuracy. Another advantage of using an intermediate domain is that 

domain knowledge can be incorporated here. Thereby, a hybrid approach can be used to bridge the 

gap between a purely data-driven and a model-based approach (see Section 2.2.2). The resulting 

hybrid approach can use the benefits of a model-based approach in a way that features, which clearly 

have no effect for the given task, can be removed through domain knowledge. This can decrease the 

training complexity, which is especially important when using only a small dataset. 

The requirements of the feature extraction method include the real-world need to be a stable solution 

that can be reused without changing its parametrization. This means that the proposed intermediate 

domain should be used on different bearings and process conditions without modification. This results 
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in the same intermediate domain being used to transfer the raw sensor data of a source domain and 

a target domain to an abstraction that can be used for both RUL and classification tasks. Therefore, the 

following applications are possible: As shown in Figure 24, periodic test runs can be used to capture 

the measuring data. Therefore, a component is tested after a test interval T for a measuring length t. 

Then, these measurements are converted into intermediate domain images. Out of these images, 

either only the last measurement can be used (e.g., for classification) or several can be used (e.g., for 

RUL). In addition, it is also possible to perform a manual test run primarily for classification tasks. 

 

Figure 24: A setup of periodic test runs. After each test run, performed after an interval T, the sensor data measuring sequence 
of the length t cans be used for the given predictive maintenance task. The predictive maintenance tasks start with 
transforming the raw sensor data into an intermediate domain image. 

4.4 Raw Signal Processing 

4.4.1 Introduction 

The Industry 4.0 development path describes the predictive maintenance, which is in development 

stage 5, relies on sensor data (development stage 3) (see Section 3.2.2). Before the sensor data can be 

used for a predictive maintenance use case, the domain in which the feature extraction should be 

applied to the data has to be selected. This is independent of the used sensor type, such as ultrasound, 

thermography, voltage, or dynamic pressure [1, 2]. 

While the measuring values of some sensors, such as temperature sensors, can be evaluated directly 

in the time domain, values of other sensors, such as sensors for detecting vibrations, should first be 

converted into the frequency domain or the time-frequency domain for better analysis [1, 162]. For 

each domain, a range of techniques is available, and the appropriate technique has to be selected. For 

instance, for the time domain, there are statistical features, such as the mean value (see Section 2.3.2). 



4. Feature Extraction 

 

66 
 

If the data has to be analyzed in the frequency domain, one must decide if the frequency domain itself 

is sufficient or if it should be analyzed in the time-frequency domain. As discussed in Section 2.3.4.1, 

time-frequency techniques such as STFT or CWT must be used if the signal is non-stationary. Such 

signals appear when process parameters, such as speed, change during the measurement. If the signal 

is also nonlinear, an HHT or S-transform must be chosen. For simple stationary signals, both 

approaches can be used. 

4.4.2 Windowed Envelope 

Vibration analysis, which is often based on values of accelerometers [130], is used to monitor 

movements. Those movements can be rotations, which appear in components such as rotors, gears, 

and bearings. The common feature of rotating components is that they all have periodic signals, which 

are based on the rotation and can be analyzed in the frequency domain. Each component may have 

its fault pattern, which is based on its characteristic fault frequency, its harmonics, and its relation to 

other distinctive frequencies [39]. Several approaches can be used for the transformation in the 

frequency domain, like an FFT, as well as in the time-frequency domain, like an easy-to-implement 

STFT or more complex algorithms such as HHT or S-transform. As stated in Section 2.3.6, the latter can 

analyze non-stationary nonlinear signals at the cost of more complex and computationally intensive 

algorithms. However, since many predictive maintenance use cases can be assumed to have stationary 

and linear signals, algorithms such as STFT can also be considered. This is especially true for the 

scenario of using test runs, as described in Section 4.3. There is also a big advantage in using a simpler 

algorithm for real-world scenarios because predictive maintenance tasks are often performed by 

embedded systems that have low performance [1]. 

For the predictive maintenance task with non-machine learning based methods, the envelope analysis 

is widely used, since defects are more distinctly analyzable in the envelope spectrum (see Section 

2.3.3.2). This is also evident in commercial products for bearings diagnoses that use this algorithm, 

such as those from IFM [130]. The envelope spectrum benefits from its ability to separate periodic 

signals from random noise by applying the Hilbert transform to the raw sensor signal. As described in 

Section 2.3.3.2, this transform is then followed by an FFT to extract periodically occurring frequencies. 

Since the envelope analysis is only a frequency domain operation, it may suffer from the 

aforementioned disadvantages of pure frequency transformations. An option to overcome these 

disadvantages may be to combine the envelope analyses with a time-frequency domain approach. This 

would allow the new technique to combine good detection of periodic signals with the ability to detect 

non-stationary signals. There are different time-frequency domain techniques available, which could 

be used as a basis for the novel approach. As stated above, STFT seems to be a promising technique 

for predictive maintenance tasks because it fulfills the requirement to be used for this task and its 
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performance benefits compared to techniques like HHT and S-transform (see Section 2.3.6). As 

mentioned in Section 2.3.4.2, STFT is realized in three steps: First, the sensor data is split into small 

sections using a sliding window. This is followed by an FFT analysis, which is performed for each 

window. Finally, the results are concatenated in order to receive the time-frequency data of the signal. 

This makes this algorithm well-suited to integrate an envelope analysis. For the integration, the FFT 

analysis of the STFT can be replaced with an envelope analysis. All other parts, mainly the sliding 

window, can be taken over. Therefore, this new approach is called windowed envelope. 

Different techniques have been benchmarked to select the best technique for the use case of bearings 

with their characteristic fault frequencies and to validate the performance of the windowed envelope. 

For this benchmark, the use case of bearing fault classification has been selected. The signals of the 

tested dataset are all recorded with a constant rotational speed, which leads to a stationary fault 

signal, which can also be analyzed in the frequency domain. For the verification, the raw sensor signals 

have been converted into the frequency domain using a classical envelope analysis and into the time-

frequency domain using the here-presented windowed envelope as well as the two most sophisticated 

time-frequency domain approaches, HHT and S-transform. A detailed explanation of the verification 

setup can be found in Appendix A.2.1. The results, displayed in Figure 25, show that the windowed 

envelope has the best accuracy of all tested transformations for the tested dataset. In addition, the 

results reveal that a time-frequency conversion can have better results even on stationary signals. This 

indicates that the windowed envelope is a suitable technique for performing classifications of bearings 

in predictive maintenance tasks. 

 

Figure 25: Classification accuracies of three different labels for bearings with different frequency and time-frequency 
conversions. The best accuracy is achieved with the windowed envelope. The test setup is described in Appendix A.2.1. 

4.4.3 Signal Segmentation 

A sensor provides continuous signals according to its sampling frequency. In order to use these signals 

as input for a transformation, like the one presented in the previous subchapter, the signal stream 

must be divided into segments of a specific length. As stated in Section 2.3.4.2, longer signal sequences, 
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which cover more periods of a relevant frequency, are less vulnerable to the leakage effect. It is 

expected that the length of the segment, assuming that it is long enough, is not important.  

Three different signal lengths have been chosen to validate this assumption: 0.11 seconds, which can 

cover ten times a complete 90 Hz signal; 0.2 seconds based on literature recommendations such as 

[164], and 0.7 seconds to cover the case of a longer time span. Those segment lengths have been used 

in a test scenario for the classification, which is based on the same setup as the test scenario for the 

different transformations (see also Appendix A.2.2). The results, which are presented in Figure 26, 

indicate that the accuracies are nearly independent of the signal length. Thus, the assumption made 

above is correct. In order to get a stable solution, as demanded in the requirements in Section 4.1, it 

is not sufficient to look only at the accuracies. It is also essential that the entire range of combinations 

of possible frequencies can be covered. Special attention must be paid to a process with low fault 

frequencies. For instance, there are processes that have fault frequencies that are lower than 85 Hz 

(see Section 3.2.4). For detecting an 85 Hz frequency, the signal must be at least 0.012 seconds long. 

In order to acquire enough data to perform the windowing process for the windowed envelope without 

a leakage effect, a signal length of 0.11 seconds might not be the best solution. Since the accuracies of 

0.2 seconds and 0.7 seconds are nearly equal, the shorter signal length of 0.2 seconds is used to get a 

more universal solution for the intermediate domain. 

 

Figure 26: Accuracies of samples of different lengths. All samples are generated with the windowed envelope method. All 
accuracies are between 99% and 100%. The test setup is described in Appendix A.2.2. 

4.4.4 Conclusion 

This chapter showed that it is possible to combine classical frequency and time-frequency domain 

transformations to be used for the feature extraction of sensor data. Therefore, the existing techniques 

of envelope analysis and SFTF have been combined into a new windowed envelope analysis. With the 

help of different test scenarios, it has been shown that for the given use case of the fault classification 

of bearings of the CWRU dataset, this combination delivers better accuracies than other state-of-the-
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art techniques such as S-transform or HHT (see Figure 25). The result of the windowed envelope for a 

0.2 second signal of a bearing is illustrated in Figure 27. 

 

4.5 De-noising 

4.5.1 Introduction 

As a next step for creating the proposed intermediate domain, the frequency domain data must be de-

noised. This step occurs after the signal processing because the frequency data can be more easily de-

noised once it is transformed into this domain (e.g., band-pass filtering) [165]. The de-noising is 

important for sensor data in mechanical systems. The sensor data is a mixture of background noise 

and the fault signature in practice. Because of the background noise, it is more difficult to identify the 

fault signature [166]. Current research proposes different methods for the time, frequency, and time-

frequency domains. An efficient method for de-noising in the time domain is to use averaging methods 

for periodic signals [167]. For data in the frequency domain, filtering methods such as band-pass 

filtering and low-pass filtering are typical ways to eliminate noise outside the manually defined 

frequencies of interest [165]. There are also methods for the time-frequency domain, such as singular 

value decomposition [105] or wavelet transform-based filters [168]. All these filtering methods need 

additional parameters for optimizing the results of the de-noising process. These parameters are often 

based on the empirical experiences of specialists [165]. 

4.5.2 Bandpass 

For the automation of the filtering process, domain knowledge can be used to automatically select the 

relevant frequencies. Therefore, the frequency bands around the characteristic fault frequencies as 

well as their harmonics can be used. These frequencies can be automatically calculated by knowing 

the exact mechanical layout and the current rotational speed of the bearing (see Section 3.2.4). Even 

a)    b)  

Figure 27: The raw sensor signal as input (a) and the output (b) of a windowed envelope transform. (b) shows that 
numerous frequencies appear in the converted signal. For instance, the transformed signal shows that there are 
frequencies with a high amplitude at 800 Hz as well as several frequencies around 4500 Hz. These frequencies are not only 
related to the fault, but also belong to frequencies from other components of the process or to the natural frequencies of 
the bearing itself (cf. [133]). 
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though the characteristic frequencies can be calculated exactly, frequency bands are used for the 

proposed intermedia domain to account for frequency deviations. These frequency deviations can be 

caused by wear-out of the bearing parts but also by manufacturing tolerances and uncertainties 

regarding the actual rotational speed [130]. It is essential that the used frequency band has the correct 

width. A too-narrow band will remove the above-described tolerance frequencies, and a too-wide 

band can include unwanted frequencies. This is especially the case for high rotational speeds since 

dimensional differences of the bearing parts have a more significant influence here. This is because 

the fault frequency is calculated by multiplying the speed with a fault factor that is specific for the 

component dimensions (e.g., Eq. (15)- (18)). Therefore, the nominal frequency can be different from 

the actual one. 

A real-world dataset of grinding spindles with noise is used to select an appropriate bandpass width 

(see Appendix A.2.3). As shown in Figure 28, a bandpass width of 10 Hz provides the best accuracy. It 

is therefore selected in the presented approach. 

 

Figure 28: Accuracies for different bandpass widths of a frequency-selective filter, which uses four harmonics. The best 
accuracy is achieved with a width of 10 Hz. The lower accuracy for 5 Hz might be related to the fact that the actual fault 
frequency in some samples defers more than 5 Hz through wear-out and manufacturing tolerances. On the other hand, the 
20 Hz frequency band might be too wide, so that noise gets into the band, which can actually be filtered out. 

4.5.3 Harmonics 

As described in Section 2.3.3.2, the harmonics of the frequency are also important because when an 

envelope analysis is done, the harmonics also have an appreciable amplitude. In some cases, the 

second and third harmonics can even have a higher amplitude than the original frequency [169]. 

Therefore, the proposed intermediate domain stacks the first n harmonics of each fault frequency 

band in layers on top of each other (see Figure 30 b). 

Using the characteristic frequencies and their harmonics may lead to another advantage of this 

approach: It can consider different rotational speeds. For the use case of bearings, all error frequencies 

depend on the rotational speed (see Selection 3.2.4). Using the method described above, the 

frequency band is always located at the same image position. This makes transfer learning easier since 

the layout of the images is always identical. 
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To validate the benefits of the use of harmonics, especially for bearings under different process 

conditions, the same bearing dataset as for the estimation of the bandpass width is used (see Appendix 

A.2.4). As can be seen in Figure 29, the accuracy of the windowed envelope drops from more than 99% 

for bearings used in a test stand (which has been shown above in Figure 26) to 75% using a dataset of 

a spindle, which is used at higher rotational speeds and also in a noisier environment. It also shows 

that the accuracy can be increased to 87% using a frequency-selective filter with four harmonics. This 

indicates that the frequency-selective filter, which uses the first four harmonics, is a good choice to 

increase the accuracy without manually fine-tuning the parameters. The results also indicate that the 

information outside the selected frequency bands is irrelevant for the fault classification and can 

therefore be removed. 

 

Figure 29: Accuracies for bearing fault classification with the help of a windowed envelope in a noisy environment. The highest 
accuracy can be reached by applying a frequency-selective filter with four harmonics (see Appendix A.2.4). 

4.5.4 Conclusion 

This chapter showed the effectiveness of de-noising based on a frequency-selective filter. This filter 

takes care of the fault frequencies and their harmonics. Therefore, as presented in Figure 30, the input, 

which is, in this case, a windowed envelope, is split into layers for each fault frequency. Only these 

layers remain in the output. 
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4.6 Preparation 

The last step of the creation of the intermediate domain is to prepare the image to be used for the 

classification task. Therefore, the images first have to be normalized. This step is advised when features 

have different ranges. For example, this can happen when performing transfer learning from one type 

to another type. However, the normalization of the data in a range between 0.0 and 1.0 is also common 

practice to increase the training speed, especially when using gradient descent algorithms [6]. These 

algorithms are one of the most commonly used optimization algorithms in the machine learning field, 

especially for CNNs [170]. In addition, some loss functions are only valid in this range. For instance, the 

commonly used cross-entropy is defined by a negative log and therefore is only valid in this range [6]. 

Afterward, the image must be resized to fit the input size of the machine learning model. This is 

especially important if the target and the source domain data were recorded with different sampling 

rates, which leads to different output sizes. If a sensor has a higher resolution, more measurement 

values are recorded in a defined time sequence, leading to a higher resolution for the transformed 

image and, therefore, a larger image size in terms of pixels. 

There are several possible sizes for the image to be rescaled. One recommendation is that an input 

size of a CNN should be divisible many times by two, such as 32, 64, 128 [171]. If the classification 

accuracy between two resolutions is equal, the smaller one should be used, since smaller images are 

beneficial in that they require less memory. Smaller images also have benefits during the training phase 

of a CNN because smaller images lead to smaller layers, which in turn leads to less trainable 

parameters. This increases the training speed. 

a)   b)  

Figure 30: These figures show the windowed envelope as input (a) and the output (b) of the frequency-selective filter. In 
(b) only the relevant layers remain. There is a layer for each fault frequency of the bearing. Each layer contains a frequency 
band around its fault frequency. This is done for n harmonics. Additional frequencies that are not related to the fault are 
filtered out. In this case, there are four layers for four different fault frequencies including four harmonics for each. It is 
clearly visible that the high amplitude, which occurs at approx. 800 Hz in (a) is filtered out and no longer appears in (b) (cf. 
[133]). 
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In order to determine a suitable resolution, a comparison of the image sizes of 64 pixels and 128 pixels 

with the two previously used datasets has been made (see Appendix A.2.5). The results, which are 

shown in Figure 31, have shown that, on average, the 64x64 pixels images perform better. 

 

Figure 31: Accuracies of different sizes of the input image. For the CWRU dataset, a 128x128 pixel image has a slightly better 
accuracy. For the Spindle dataset, the 64x64 pixel image performs better. On average, the 64x64 pixel image has the better 
accuracy. 

The same conclusion was also drawn in the external research of Verstraete et al. [141]. They showed 

that increasing the pixel density does not lead to any significant change in accuracy for their use case. 

The researchers compared the accuracies of STFT spectrograms generated by bearing defects of the 

CWRU dataset of 32x32 pixel images with the size of 96x96 pixel images. Here the difference in 

accuracy was only 1.5% (32x32 pixels: 98.0% and 96x96 pixels: 99.5%). Therefore, in this thesis, the 

lower image size of 64x64 pixels is used as input for a CNN. This leads to a rescaled image of 64 pixels 

for the timeline in the x-direction and 64 pixels for all frequency layers together in the y-direction. 

To summarize, the preparation is based on two steps. The first step is to normalize the images, and the 

second is to rescale the images. The resulting image (as shown in Figure 32b) is the final input for a 

machine learning algorithm, such as a CNN. 
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4.7 Supplements for the Use Case of Bearing Fault Classification 

The derivation of the intermediate domain was verified with the help of test scenarios for the bearing 

fault classification. The parameters, which are needed to create the intermediate domain, were 

already selected in the previous sections. As shown in Table 9, these are the use of signal segments of 

0.2 seconds to use the filtered windowed envelope with four harmonics and a bandpass width of 10 Hz, 

and the use of a 64x64 pixel image. This chapter provides additional information for the use case of 

bearing faults. As stated in Section 3.2.4, the process parameter with the most influence on the error 

pattern of bearings is the rotational speed. Therefore, any changes in the rotational speed, which may 

be needed for the different requirements of the process, may lead to a different fault frequency. 

However, it can be assumed that the speed can be kept constant during the analysis of the bearing. 

This can be achieved by diagnostic routines, which analyze the bearing state at defined rotational 

speeds (see Section 4.3). This is also proposed by commercial applications [130]. 

The de-noising of the data with the help of the frequency-selective filter is especially important for the 

use case of a bearing inside of a spindle because there is significant noise. As shown in Figure 34, the 

result of the intermediate domain is an image with 16 areas: four harmonics for each of the four 

characteristic frequencies (cage, ball, and inner and outer ring). The external frequencies outside of 

these frequency bands are removed. Figure 33 illustrates a bearing with an outer ring defect, including 

these external frequencies of other components, which appear when a spindle is used inside a 

machine. These external frequencies are mainly noise from unknown origin. However, in the case of 

spindle data, the internal research of Erwin Junker Maschinenfabrik GmbH has shown that there are 

two well-known external frequencies. The first is the frequency of the variable-frequency drive, which 

is used to model an output frequency to operate the three-phase drives of the spindle at variable 

a)   b)  

Figure 32: The image of the frequency-selective filter as input (a) of the preparation process and its output (b), which is the 
final intermediate domain image. The preparation process performs normalizing and rescaling on the input. The output is 
now normalized in a range between 0.0 and 1.0. In addition, it is recognizable that the resolution has been reduced to 64x64 
pixels because the image now appears pixelated  (cf. [133]). 
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speed. Typically, this frequency is next to 4 kHz. The second frequency is based on the control cycle of 

the current control used to guarantee a constant current for the input of the variable-frequency drive. 

In this example, the current control clock is set to 125 µs, which results in a frequency of 8 kHz. In 

addition, there are overlays of the stator frequency and its harmonics. This frequency is calculated as 

a function of the rotational speed of the spindle. A typical frequency range is approximately 100 Hz. 

 

 

Figure 33: Frequency domain of a bearing with an outer ring defect and "natural" noise of a spindle in use. The characteristic 
frequency of the outer ring defect plus its harmonics are marked with a green crosshair. 

In Section 4.5.3, the suggestion to use four harmonics based on the achieved accuracy was made. There 

is also a significant practical disadvantage in using the fifth or higher harmonics: As introduced in 

Section 3.2.5, current accelerometers for industrial use can record data with a maximal resolution 

between 10,000 Hz and 50,000 Hz, but most can only record up to 10,000 Hz. The problem is that a 

standard spindle for grinding machines has high fault frequencies when the spindle works at its 

maximum speed. Realistic values for such a spindle of the Junker Maschinenfabrik GmbH are a 

maximum rotational speed of 15,000 rpm and a bearing inside the spindle with the following 

parameters: 25 balls, 4 mm ball diameter, 45 mm pitch diameter, and a contact angle of 15°. By 

inserting these parameters into Eq. (17), a fault frequency for the inner ring fault of 3,393 Hz can be 

calculated. For an intermediate domain that uses four harmonics, the maximum fault frequency is four 

times 3,393 Hz, which is 13,572 Hz. If sensors with low resolutions are used, capturing the fault signal 

at a maximum rotational speed is impossible. If a higher number of harmonics were used, the speed 

range in which faults can be evaluated would be decreased further. Independent of the number of the 

used harmonics, it is therefore recommended, as mentioned above and in Section 4.3, to use specific 

predictive maintenance routines. These routines should generate a fixed fault frequency based on a 

constant rotational speed but also generate fault frequencies within the operating range of the sensors 

used. 
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Table 9: The different parameters of the intermediate domain. 

Parameter Value 

Signal length 0.2 seconds 

Bandpass with 10 Hz 

Used harmonics 4 

Output size 64x64 

Layers Cage fault, inner ring fault, outer ring fault, ball fault 

The intermediate domain image for bearings consists of 16 frequency layers for four fault types. The 

resulting final intermediate domain image for a bearing is shown in Figure 34. This image is based on 

the settings shown in Table 9. 

 

Figure 34: Intermediate domain image for four different fault types. For each fault type, the first four harmonics are used and 
stacked on top of each other [133]. 

4.8 Generalization 

The proposed intermediate domain was verified for sensor signals used for the bearing fault detection 

with the help of their fault frequencies. However, bearings are not the only components that can be 

analyzed with the help of the fault frequencies and their harmonics. If a different component than a 

bearing is used, the intermediate domain parameters might need to be modified. These are signal 

processing parameters: the number of layers, which have to be chosen according to the available fault 

frequencies, the number of used harmonics, and the bandwidth. Another parameter is the signal input 

parameter in the form of the signal length used for one window envelope. Finally, the output size must 

also be re-evaluated. 

A different component, which may be used with the intermediate domain, is, for instance, a gear. Gear 

fault classifications are also made based on fault frequencies. Here, the characteristic frequencies are 

the gear rotational frequency, the pinion rotational frequency, and the gear mesh frequency [172]. 

Some modifications must be made in the case of gears. At the very least, the number of layers for the 

intermediate domain must be changed since gears only have three different fault frequencies, and 
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bearings have four different fault frequencies. This leads to having only three layers in the intermediate 

domain. In addition, it may be necessary for the bandwidth of the frequency-selective filter to be 

changed. This assumption is based on the idea that gears may have different fault frequencies and 

manufacturing tolerances. The hypothesis of the application to gears is based on theoretical 

considerations and has not been verified based on a reference data set. 

4.9 Conclusion 

This chapter has presented a new feature extraction method based on an intermediate domain for 

bearings. The presented intermediate domain creates an abstraction of the raw sensor data by using 

a new time-frequency transform that is called windowed envelope. This windowed envelope is filtered 

by frequency bands of the harmonics of the characteristic fault frequencies. All parameters of the 

intermediate domain are empirically determined in different test scenarios. One possible scenario to 

use the intermediate domain is to use it to analyze bearings in periodical test cycles. During this cycle, 

it can be used for classification and RUL tasks.  

The usability of the intermediate domain will be verified later in the thesis in the form of different case 

studies. On the one hand, this concerns the stability of the intermediate domain for different bearing 

types, which is verified by the case studies in Section 7.2 and Section 7.3 for classification tasks and in 

Section 7.4 for an RUL task. On the other hand, the ability of the intermediate domain to improve 

transfer learning between different datasets is analyzed in detail in Section 7.2. Therefore, the 

intermediate domain is benchmarked against an HHT and an S-transform. In this case, the intermediate 

domain can increase the classification accuracy by more than 30%. In addition, with the help of a data-

driven approach such as a CNN, the remaining data can be analyzed without manually fine-tuning [13]. 

For those reasons, the chosen intermedia domain-based approach is also the answer to RQ3, which 

asks for a stable feature extraction method for bearings that is well suited for transfer learning. 

Furthermore, it is worth mentioning that the intermediate domain should also be suitable for other 

components with periodic motions, as asked in the general problem definition in Section 4.1 and 

discussed in Section 4.8. 

In addition to answering RQ3, the presented intermediate domain also provides an answer to RC3. This 

RC, which demands an answer on how existing methods can be combined and optimized, is answered 

by the intermediate domain itself. Here, particular focus should be paid to the new time-frequency 

transform, which is called windowed envelope. This transform combines the existing envelope spectral 

analysis and the STFT. 
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5 Transfer Learning Approach for Classification 

5.1 Introduction 

The current state of the art for predictive maintenance solutions in general and for the classification 

of bearing defects in particular was shown in Chapters 2 and  3. As also mentioned in Chapter 1, 

solutions are needed for real-life predictive maintenance scenarios, where datasets are often small 

and unlabeled or partly labeled for new machines or new types of a component [9]. In addition, these 

small target datasets may also be based on different process conditions. However, labeled datasets of 

a different component type or a different machine type may be present in large numbers. Therefore, 

a research gap for a solution that fits the following requirements exists: 

• A general solution that can be applied to different components of a machine. These 

components must meet the criterion that they are moving parts that make periodic 

movements. In addition, it must be possible to assign their condition to specific condition 

groups based on the measurement values of sensors. 

• It shall have superior classification accuracy compared to the current state-of-the-art 

techniques, especially for real-world scenarios encountering noise. 

• An important requirement is the transferability of the results. There are two relevant types of 

transfer. The first is when the classification process uses datasets from a different type of the 

same component to enhance the classification accuracy. The second is when, within the same 

dataset, samples of different process parameters exist. The solution shall handle both transfer 

types at the same time. 

The above problem definition is very general and is suitable for various components. However, as also 

required in RQ1, the specific use case of bearings will be addressed in the following sections. RQ1 asks 

for a new classification method that can take benefits of a dataset of a different bearing type for a 

partly labeled target dataset that is collected under different process conditions. This is a common use 

case since bearings are a component of many machines; for instance, they are used inside spindles. As 

mentioned in Section 3.2.3, there are many different spindles, which are all specific for a particular use 

case. In addition, bearings are often used under different process parameters that are related to the 

produced workpiece. A solution that fulfills the aforementioned requirements is particularly important 

because of the difficulty of getting many samples for training the different machine learning 

approaches for new bearing types or spindle setups. 

As stated in Section 2.4, a possible solution for this RQ might be to use a transfer learning-based 

approach, that uses the intermediate domain images of Chapter 4 as input for the classification. This 

feature extraction technique could also bring advantages for transfer learning tasks (see Section 4.3). 
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CNNs have been shown to be a suitable technique for the classification of images (see Section 2.2.4). 

Additionally, for the semi-supervised transfer learning case, the unique properties of the intermediate 

domain might be used to apply a hybrid transfer algorithm (using contextual knowledge).  

This chapter proposes a novel solution to verify this hypothesis in a complete process chain (see Figure 

35). The general layout of this approach corresponds to the standard procedure for classifications 

based on sensor values, which start with the raw sensor data as input. This data is then preprocessed 

by a time-frequency transform and afterward used with a CNN for the final classification task (see 

Section 3.3.2).  

The proposed solution implements these steps as follows: as a first step, the preprocessing is 

performed by the intermediate domain introduced in Chapter 4. This intermediate domain is a hybrid 

approach, which also considers domain knowledge to get a better feature representation, especially 

in the case of transfer learning. This is achieved, amongst other techniques, by a modification of the 

current model-based state-of-the-art technique for bearing analysis (envelope analysis), which 

extracts features in the input data in only relevant frequency areas. Afterward, this intermediate 

domain data is used as input for a proposed transfer learning architecture based on the current state-

of-the-art technique for classification: CNN (Section 5.4). For the training of the CNN, two different 

transfer learning approaches are presented: One approach processes labeled and unlabeled data in 

parallel. The other approach processes the data sequentially, whereby first unlabeled data is used, 

followed by labeled data. As the last step, a new domain adaptation loss function, called the LMMD, is 

presented. The LMMD is designed to take care of the characteristics of the new intermediate domain 

(Section 5.5). In summary, this solution is a new hybrid solution that combines the advantages of 

model-based and machine-learning-based techniques. For each part of the solution, first, the reason 

for its design decisions is introduced, followed by a detailed explanation. 

The proposed solution has the benefit that it can be used out of the box. Due to its ability to transfer 

knowledge to a different bearing type under different conditions, it must also fit the other bearing type 

or conditions, otherwise, the accuracy would be low after transfer learning. In contrast to this are new 

solutions without the ability to use transfer learning. Therefore, there is always the need for experts 

[165]. This need is valid for feature extraction as well as for machine learning itself. Feature extraction 

methods, like the one presented in Section 2.3, have parameters such as, for instance, the number of 

scales for wavelets (see Section 2.3.4.3), which need to be chosen correctly to obtain correct results. 

The same goes for the machine learning algorithm. There are also parameters that must be optimized 

for the given use case, like the different layers of a CNN (see Section 2.2.4). 
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Figure 35: The different steps for a transfer learning-based classification approach. The input, which is the raw sensor data, is 
preprocessed with a feature extraction technique such as an intermediate domain. Afterward, the extracted features are used 
for the machine learning process based on CNN with transfer learning. The trained model is finally used for classification tasks. 

The presented approach is verified in detail with three bearing-related case studies in Section 7.2 and 

a benchmark in Section 7.3. This approach and the corresponding case studies have also been 

summarized and published in a research paper [133]. 

5.2 Validation Context 

All design decisions of this chapter are based on empirical test scenarios based on bearing datasets. 

Therefore, each scenario is validated with the classification accuracy based on the Case Western 

Reserve University and the Junker Maschinenfabrik GmbH datasets and their mean accuracy (see 

Section 3.3.2.2). The other test parameters are identical to those presented in Chapter 4. One of them 

is the split ratio of the datasets. For each test scenario, the dataset is split based on a ratio of 70% 

training data and 30% test data. The result of one test scenario is the mean of two runs with a different 

training and test data split. This split is identical between all test cases in one test scenario and is given 

in Appendix A.1.1 in Table 29. The parameters of the training itself are listed in Table 10. 

Table 10: Parameters used during the training of the neural network. 

Parameter Value Reason 

Optimizer Adam Empirical tests and 
recommendations such as 
[6] 

Learning rate 0.00003 Empirical tests. 

Batch size 150 Empirical tests. 

Iterations 200 Empirical tests. 

Loss function Cross-entropy See Section 5.4.2.4 
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5.3 Classification Support by Transfer Learning 

There are many approaches for the different classification tasks in the context of predictive 

maintenance, such as fault classification of bearings [54], gears [172], and motors [173]. As mentioned 

in Section 2.2.2, these approaches can be divided into approaches with and without machine learning. 

Machine learning-based approaches have the benefit of outperforming non-machine learning based 

approaches if the classification task is complex (see Section 2.2.1). In this case, by using non-machine 

learning-based methods, there is often the need for a high degree of fine-tuning, even for only small 

process changes. Because of the often-complex dependencies on various conditions and process 

parameters, this fine-tuning can only be carried out by process experts. There is even a possibility that 

no solution can be found at all. Therefore, it is recommended to use machine learning techniques 

where it is often sufficient to retrain a predefined ML model for a similar task [1]. However, as 

explained in Section 2.4.1, the major drawback of machine learning techniques in general and deep 

learning methods in particular, is that they require a large dataset for training, which is not available 

in many scenarios [9]. This problem can be solved through transfer learning. As mentioned in Section 

2.4.3.5, there are different approaches to transfer learning. For the given problem of a small, partly 

labeled, or even unlabeled dataset, domain adaptation, a subfield of transductive transfer learning, is 

particularly important. Domain adaption is a transfer learning approach for using a large, labeled 

dataset in the source domain and a dataset of a different domain with the same learning tasks as the 

target domain. It can be said that for the given predictive maintenance use case, domain adaption is a 

suitable method because all the described preconditions are true: it involves the detection of errors, 

often with complex dependencies, and the use case of small unlabeled or partially labeled data in the 

target domain. 

5.4 Proposed Transfer Learning Architecture 

5.4.1 Introduction 

After the feature extraction of the raw sensor to 2D images using the intermediate domain of Chapter 

4 , the next step is to use them as input for a machine learning algorithm. As stated in Section 2.2.2, 

the most popular and successful approaches for classification are based on CNNs and SVMs. Different 

surveys compare the relevant machine learning approaches in the context of bearing fault 

classification [54, 131]. These approaches are based on different techniques such as SVM and CNN and 

are used for supervised learning in one domain as well as for transfer learning between different 

domains. The surveys point out that all algorithms could deliver similar results in supervised learning. 

For the use case of transfer learning, nearly all approaches are based on CNNs. Only a few are based 

on other techniques, such as an SVM, as is done by Li et al. [174], who combined an SVM with the 
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MMD for transfer learning, or autoencoders, as is done by Zhiyi et al. [147]. For CNNs, as stated in 

Section 2.2.4, the first layers are for the feature extraction of the CNN input data and the last layers 

are used for classification. In the case of transfer learning, the existing CNN can be fine-tuned as 

described in Section 2.4.4. Thereby, large parts of the feature extraction layers of the CNN can be taken 

over from the model trained with source domain data. This makes CNNs well suited for transfer 

learning, which also leads to the high number of CNN approaches for transfer learning. Other 

techniques used for transfer learning do not have the benefit of distinguishing between feature 

extraction and classification. The good performance of CNNs for transfer learning tasks, especially 

when using sensor data, is not limited to images as input. As introduced theoretically in Section 2.2.4 

and outlined by practical examples in Sections 3.3.2.4 3 and 3.3.2.5, there are also solutions that use 

the raw sensor data as 1D input for a CNN. 

Based on this derivation, the proposed solution is based on a CNN. The usage of the CNN is also 

proposed because it makes it possible to use the images of the proposed intermediate domain as input, 

making it a hybrid approach. Therefore, the physical parameters of the bearings are also taken into 

account. This results in a solution that uses two feature extraction layers: the intermediate domain 

itself and the lower convolutional layers of the CNN.  

The proposed CNN model is an approach that should be usable for supervised, semi-supervised, and 

unsupervised learning. In addition, the model is usable for two different kinds of semi-supervised 

learning. In Section 5.4.3, the first transfer learning approach (TLA) that performs transfer learning 

with labeled and unlabeled data of the target domain simultaneously (later referenced as Transfer 

Learning Approach 1 (TLA1)) is presented. This is followed by Section 5.4.4, which presents the second 

approach, which first uses the unlabeled data of the target domain for training, followed by a training 

step with only labeled data of the target domain (later referenced as Transfer Learning Approach 2 

(TLA2)). 

5.4.2 CNN Model  

5.4.2.1 Introduction 

Every CNN model is defined by several parameters. This chapter derives the important ones and the 

design decisions of the proposed CNN model. Therefore, first, the used layers of the model are 

introduced (Section 5.4.2.2). This is followed by the CNN hyperparameters window size and dropout 

factor (Section 5.4.2.3). Finally, the used loss function is evaluated (Section 5.4.2.4). 

5.4.2.2 CNN Layers 

The layout of the used CNN is based on the architecture of a CNN introduced by Verstraete et al. [141]. 

The authors presented a CNN that is superior to other CNNs for fault classification based on sensor 

data. As described in Section 3.3.2.3, they used the CNN to classify bearing faults on different 2D 
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images of time-frequency transforms (HHT, Wavelet, and STF). The images are processed by a CNN, 

which first extracts the features and finally assigns the image to one of the four health states of 

bearings. The architecture of this CNN is based on double convolutional layers. As displayed in Figure 

36, two convolutional layers are used in series, in contrast to the traditional layout, where a 

convolutional layer is followed by a pooling layer. According to the authors, this layout increases the 

significance of the features through an additional nonlinearity. Each convolutional layer increases the 

nonlinearity through its nonlinear activation function. A nonlinearity decision function is essential for 

making complex nonlinear decisions [142]. These decisions can be complex predictive maintenance 

tasks. Their CNN architecture uses these double convolutional layers three times with a different 

number of filters on each layer (32, 64, and 128). They are followed by three fully connected layers, 

where the last layer is used for the classification of different fault types.  

 

Figure 36: CNN architecture proposed by Verstraete et al. [141]: three consecutive blocks of a combination of two 
convolutional layers and pooling layers are used. In each block, a different number of filters is used. Afterward, two fully 
connected layers with a dropout layer after each feed the last fully connected layer, which is used for the classification. 

The decision to use the double convolutional layer based architecture of Verstraete et al. [141] has 

also been verified with two test cases with different bearing datasets in Appendix A.3.1. The results, 

shown in Figure 37, pointed out that accuracy is improved in both cases with the help of this 

architecture. 

 

Figure 37: Comparison of a different number of convolutional layers in series. Two different test cases have been used. For 
both tested datasets, the double layer approach has the best accuracy. 

5.4.2.3 CNN Hyperparameters 

In addition to the layout itself, other hyperparameters, such as window size, activation function, and 

dropout ratio, are also important. The proposed model uses a window size of 3x3 for each 
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convolutional layer, combined with the activation function rectified linear unit (ReLU). A window size 

of 3x3 has been selected because a window size of 1x1 only makes sense for dimensionality reduction, 

since a 1x1 window cannot use any information from the neighboring pixels. In addition, a window size 

of 2x2 and 4x4 should not be used because those filters do not use the pixels of the input layer 

symmetrically, which leads to distortions across the layers. Window sizes larger than 4x4 are not 

recommended because they lead to long training times [175]. The ReLu, which is defined as 

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥), has been chosen because it reduces the likelihood of the gradient vanishing 

(see Section 2.2.5) and results in faster learning through its constant gradient [6]. A dropout layer with 

a dropout ratio of 50% was inserted between each of the fully connected layers to prevent overfitting 

and minimize training error. The factor of 50% is used based on literature suggestions such as [6]. In 

addition, a test case has been used to evaluate the influence of the different dropout factors and the 

suggested value of 50% (see Appendix A.3.2). The results, which are shown in Figure 38, reveal that 

there are hardly any accuracy changes when using different dropout values. Nevertheless, to be 

prepared for possible overfitting with other datasets, a dropout factor of 50% was chosen according 

to the literature's recommendations. This means that during each training step, 50% of the neurons 

are completely ignored [6]. 

 

Figure 38: Different values for the dropout factor in the fully connected layers of the CNN. There is no significant difference 
between the accuracies. 

5.4.2.4 Loss Function 

During the training phase, a loss function must be chosen. As stated in Section 4.6, cross-entropy is a 

commonly used loss function for multiclass learning of CNNs. This loss function should only be changed 

when problems arise using this algorithm [176]. Another efficient loss function is the Kullback Leibler 

divergence, which measures the differences between two probability distributions. It is often used 

when the training goal is to recover an input signal, as is the case with autoencoders [6]. To validate 

that the loss function, which is proposed by literature, is also the best for this use case, both loss 

functions have been compared (see Appendix A.3.3). The result, which is also displayed in Figure 39, 
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indicates that neither is superior. One time cross-entropy performs a little better, and in the other 

case, the Kullback Leibler divergence emerges. Therefore, according to the literature, cross-entropy 

has been selected as the loss function for the proposed CNN. 

 

Figure 39: Resulting accuracies of CNN trainings with cross-entropy and Kullback Leiber divergence. Neither is superior. 

5.4.2.5 Conclusion 

The previous sections have introduced the used CNN model and its hyperparameters. A detailed 

summary of this CNN model for the 64x64 pixel images of the intermediate domain is shown in Table 

11. This model has a total amount of 1,116,236 trainable parameters. This architecture can be directly 

used for supervised training. 

Table 11: This table shows the detailed architecture of the proposed CNN with the layer types and their parameters. Each layer 
of the CNN is listed with its type, the output shape of each layer (none has to be replaced with the number of images that are 
used in a batch and is therefore dependent on the training parameter batch size), the number of trainable parameters, and 
used activation functions. 

Layer Type Output Shape Trainable Parameters Activation 

0 InputLayer (None, 64, 64, 1) 0  

1 Conv2D (None, 64, 64, 32) 320 ReLu 

2 Conv2D (None, 64, 64, 32) 9248 ReLu 

3 MaxPooling2D (None, 32, 32, 32) 0  

4 Conv2D (None, 32, 32, 64) 18496 ReLu 

5 Conv2D (None, 32, 32, 64) 36928 ReLu 

6 MaxPooling2D (None, 16, 16, 64) 0  

7 Conv2D (None, 16, 16, 128) 73856 ReLu 

8 Conv2D (None, 16, 16, 128) 147584 ReLu 

9 MaxPooling2D (None, 8, 8, 128) 0  

10 Flatten (None, 8192) 0  

11 Dense (FC1) (None, 100) 819300 ReLu 

12 Dropout (None, 100) 0  

13 Dense (FC2) (None, 100) 10100 ReLu 

14 Dropout (None, 100) 0  

15 Dense (FC3) (None, 4) 404 Softmax 

5.4.3 Transfer Learning Approach 

When performing transfer learning with unlabeled or only partly labeled data in a different domain 

with the same task, one speaks of domain adaption (see Section 2.4.2). As described in Section 2.4.4 
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regarding the use case of CNNs, this can be done with discrepancy-based approaches. These 

approaches all follow the same procedure by duplicating the used CNN, as shown in Figure 40. In doing 

so, two paths are created. One uses images of the source dataset while the other uses images of the 

target dataset. The CNN must first be trained during a supervised training phase with only labeled 

source domain data before doing the transfer learning. A fixed feature extraction can be done for the 

transfer learning itself because the source and the target domain images are expected to be similar 

due to the intermediate domain. Therefore, only the classification part must be adopted (see Section 

2.4.4). Consequently, the weights and biases of the convolutional layers are frozen and shared 

between the source and the target path. The output of the fully connected layers of each source and 

target domain pair is used for calculating an addition loss value that is called 𝐿𝐹𝐶1 for layer 1 and 𝐿𝐹𝐶2 

for layer 2. The loss function used for this purpose must be a function, which can calculate the distance 

between the outputs of the fully connected layers. Examples of important transfer learning loss 

functions are described in Section 2.4.6. In addition, there are still the normal loss functions of the CNN 

training process 𝐿𝑆𝑜𝑢𝑟𝑐𝑒 and 𝐿𝑇𝑎𝑟𝑔𝑒𝑡, which have been defined as cross-entropy in the previous 

section. This leads to a total loss function for the transfer learning process 𝐿𝑇𝑜𝑡𝑎𝑙, which is the sum of 

all loss functions: 𝐿𝑆𝑜𝑢𝑟𝑐𝑒, 𝐿𝑇𝑎𝑟𝑔𝑒𝑡, 𝐿𝐹𝐶1 and 𝐿𝐹𝐶2. As shown in Eq.(20), each of them is used with its 

tradeoff parameter 𝜆 to modify the intensity of the respective loss function. This follows the proposal 

of the usage of 𝜆 for domain adaptions, as introduced in Section 2.4.4 for the use case of an MMD loss 

function. 

𝐿𝑇𝑜𝑡𝑎𝑙 = 𝜆𝑆𝑜𝑢𝑟𝑐𝑒 ∗  𝐿𝑆𝑜𝑢𝑟𝑐𝑒 +  𝜆𝑇𝑎𝑟𝑔𝑒𝑡 ∗ 𝐿𝑇𝑎𝑟𝑔𝑒𝑡 +  𝜆𝐹𝐶1 ∗ 𝐿𝐹𝐶1 +  𝜆𝐹𝐶2 ∗ 𝐿𝐹𝐶2 (20) 

 

𝐿𝑆𝑜𝑢𝑟𝑐𝑒 is the loss of the labeled source domain data and is used in combination with its tradeoff 

parameter 𝜆𝑆𝑜𝑢𝑟𝑐𝑒. Accordingly, 𝐿𝑇𝑎𝑟𝑔𝑒𝑡 is the loss of the labeled target domain data and its 

corresponding tradeoff parameter 𝜆𝑇𝑎𝑟𝑔𝑒𝑡. The loss functions 𝐿𝐹𝐶1 and 𝐿𝐹𝐶2 with their tradeoff 

parameters 𝜆𝐹𝐶1 and 𝜆𝐹𝐶2 are used for the fully connected layers 1 and 2. They are calculated with the 

output of their fully connected layers and with the help of a transfer function like MMD. Since the 

mentioned loss functions for 𝐿𝐹𝐶1/2 do not need any label information, unlabeled target data can be 

used. 
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Figure 40: Simplified representation of the proposed CNN layout for transfer learning. It is a mirrored model that shares the 
same frozen weights and biases in the convolutional layers. Only the fully connected layers are trained during transfer learning 
with the help of the original loss function plus additional transfer learning losses LFC1 and LFC2 [133]. 

The above-defined transfer learning approach is referred to as TLA1 in this thesis. Using Eq. (20), it can 

be used for a semi-supervised transfer learning approach as well as for unsupervised transfer learning. 

Therefore, it is universal. In the unsupervised case, there are no labels available, which results in 

𝐿𝑇𝑎𝑟𝑔𝑒𝑡  also not being available. Since, in this case, 𝜆𝑇𝑎𝑟𝑔𝑒𝑡 ∗ 𝐿𝑇𝑎𝑟𝑔𝑒𝑡 is zero, Eq. (20) can be simplified 

to Eq. (21). 

𝐿𝑇𝑜𝑡𝑎𝑙_𝑢𝑛𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 = 𝜆𝑆𝑜𝑢𝑟𝑐𝑒 ∗  𝐿𝑆𝑜𝑢𝑟𝑐𝑒 +  𝜆𝐹𝐶1 ∗ 𝐿𝐹𝐶1 + 𝜆𝐹𝐶2 ∗ 𝐿𝐹𝐶2 (21) 

 

5.4.4 Alternative Transfer Learning Approach 

For the second semi-supervised transfer learning approach (TLA2), the CNN architecture remains the 

same as for TLA1. Only the process has to be adapted. Therefore, the first step is equal to TLA1 when 

doing unsupervised transfer learning with unlabeled data: first, the CNN must be pre-trained with 

labeled source data. As shown in Figure 41, this is followed by a transfer learning step. This would 

correspond to TLA1 without any labeled target domain data using Eq. (21). Here, the convolutional 

layers are frozen as described above, and the unlabeled part of the target data is used together with 

the labeled data of the source domain to train the network. The last step uses the labeled target 

domain data. The pre-trained model, which still has frozen convolutional layers, is now trained 

supervised with the remaining labeled target data. This reduces the loss function of Eq.(20) to Eq. (22) 

during this transfer learning step. 

𝐿𝑇𝑜𝑡𝑎𝑙_𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 = 𝜆𝑇𝑎𝑟𝑔𝑒𝑡 ∗ 𝐿𝑇𝑎𝑟𝑔𝑒𝑡 (22) 
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Figure 41: Alternative transfer learning process (TLA2): First, the model is trained using source data that has been labeled. 
Afterward, this model is trained once more using unlabeled target data. Finally, the model is fine-tuned with labeled target 
data (cf. [133]). 

5.5 Layered Maximum Mean Discrepancy 

Instead of using the existing loss functions, this thesis also introduces a new loss function for domain 

adaptation solutions based on CNNs like the one presented in the previous subchapter. Ordinary loss 

functions like those presented in Section 2.4.6 are pure data-driven approaches. By taking domain 

knowledge into account, existing loss functions may be improved for specific use cases [13]. In the case 

of CNNs, knowledge of the input image can be used. This can be, for instance, the image composition 

or the colors. In the context of predictive maintenance, where the input often comes from single-

valued sensors, colors only make sense when the sensor data is converted into a multicolor image 

through a specially designed algorithm or color cameras. Since, for predictive maintenance cases, the 

image's content is often known, the image's composition is a promising starting point. 

For the use case of components, which have different characteristic frequencies, it is obvious that a 

possible hybrid approach should take care of them. As can be seen in Section 2.3.4, images generated 

from sensor data by means of time-frequency transformations usually have the frequencies aligned 

along the y-axis. With this knowledge, each characteristic frequency can be seen as a separate layer, 

which can be optimized on its own. For this optimization, several algorithms are available. As stated in 

Section 3.3.4, the most promising algorithms are MMD and CORAL. Both have their advantages and 

disadvantages. MMD is a commonly used technique for domain adaptation with a convincing success 

rate. It is also less resource-intensive than techniques like CORAL. The downside of discrepancy-based 

approaches like MMD is that they can be vulnerable to quite different distributions of the error classes. 

This downside is not a big deal for transfer learning in predictive maintenance scenarios since the error 

distribution is often equal across different domains (see Section 3.2.4). In addition, in a test scenario, 

CORAL and MMD approaches have nearly the same accuracies (see Appendix A.3.4). Therefore, MMD 

has been selected to optimize the different domains.  
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Since the new loss function extends the classical MMD by using the context information of the layers, 

the new loss function is called Layered Maximum Mean Discrepancy (LMMD). The main difference 

between this hybrid approach and the original MMD (Eq. (8)), which is a purely data-driven approach, 

is that each layer is adapted independently. Therefore, the input images must be modified so that they 

represent only the features of the currently adapted layer. The features of the other layers should be 

ignored. To achieve this, a copy of each image is created for each layer. Then, for each copy, all pixels 

of the image areas that do not correspond to the analyzed layer are set to 0 (see Figure 42). Afterward, 

these images are used to calculate the loss of the corresponding layer with the help of the normal 

MMD function. Finally, the total loss function is the sum of all layer-specific loss functions and can be 

formulated as in Eq. (23), 

𝐿𝐿𝑀𝑀𝐷 = ∑ 𝐿𝑖(𝑆, 𝑇)  
(23) 

 

and Eq. (24) 

𝐿𝑖(𝑆, 𝑇) = 𝑀𝑀𝐷(𝑓(𝑆𝑖), 𝑓(𝑇𝑖)) (24) 

 

where 𝑖 are the layers of the image, and 𝑓(𝑆𝑖) and 𝑓(𝑇𝑖) are the outputs of a fully connected layer 

associated with the corresponding layer represented by 𝑖. This loss function can be used in the CNN 

architecture proposed in Section 5.4 for 𝐿𝐹𝐶1 and 𝐿𝐹𝐶2. 
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Figure 42: Calculation of the loss value with the LMMD loss function on fully connected layer 1. The image is split into separate 
images for each class. The output of the fully connected layer for each class is the input of an MMD function. All results 
together are the total LMMD loss. 

The principle of this algorithm is now demonstrated using the example of the intermediate domain for 

bearing fault classification from Chapter 4. Here, the context information of the four frequency layers 

can be used. Each layer represents one fault category (inner ring, outer ring, cage, and ball fault) and 

consists of the first four harmonics for each category. As shown in Figure 42, the total loss function 

consists of four parts and is defined as in Eq. (25), which is based on Eq. (23) with 𝑖 = {Outer, Inner, 

Cage, Ball}. 

𝐿𝐿𝑀𝑀𝐷(𝑆, 𝑇) = 𝐿𝑂𝑢𝑡𝑒𝑟(𝑆, 𝑇) + 𝐿𝐼𝑛𝑛𝑒𝑟(𝑆, 𝑇) + 𝐿𝐶𝑎𝑔𝑒(𝑆, 𝑇) + 𝐿𝐵𝑎𝑙𝑙(𝑆, 𝑇) (25) 

In the following section, the calculation of the loss of the layer of the cage (LCage) is explained as an 

example with the help of Figure 42. For this calculation, only the top quarter of the images is utilized 

(marked in orange in the figure). This is where the cage errors are mapped by the frequency-selective 

filter of the intermediate domain (see Section 4.5). All other parts are to be set to 0. Afterward, these 
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images are used as input for the CNN to calculate the loss by the normal MMD function, which can be 

done after each fully connected layer. In this example, the fully connected layer 1 is used. This loss 

value is then summed using loss values of the inner race, outer race, and ball fault to calculate the 

LMMD loss value. 

5.6 Generalization 

The introduced transfer learning approach for classification tasks can be divided into two parts. The 

first is the intermediate domain presented in Chapter 4, and the second is the transfer learning 

approach (Section 5.4) with the help of the LMMD loss function (Section 5.5). 

Although this approach was designed and evaluated for bearings, it should also be possible to use it 

for other components with periodic movements. This has already been explained for the intermediate 

domain in its corresponding generalization chapter (Section 4.8) and should also be true for the model 

and the LMMD loss function. Since the model itself has no dependencies on the input except the input 

size, a different component should also be possible. The general usability should also be given for the 

LMMD loss function because it is designed for the here-developed intermediate domain, which 

consists of different layers. Therefore, it is also suitable for intermediate domains of other 

components. The only thing that must be adjusted is the number of parallel layers in Eq. (25). 

A different component, which may be handled with the presented classification approach, is, for 

instance, a gear. Gear fault classifications are also carried out based on fault frequencies. Here, the 

characteristic frequencies are the gear rotational frequency, the pinion rotational frequency, and the 

gear mesh frequency [172]. Therefore, some modifications must be made. At the very least, the 

number of layers used for the intermediate domain must be changed, since gears have only three 

different fault frequencies while bearings have four different fault frequencies. This leads to having 

only three layers in the intermediate domain, which necessitates changing the number of parallel 

layers used for the LMMD function in Eq. (25) to three. This assumption is based on the assumption 

that gears may have different fault frequencies and different manufacturing tolerances. The 

hypothesis of the adaptability to gears is based on theoretical considerations and has not been verified 

based on a reference data set. 

5.7 Conclusion 

This chapter presented a new predictive maintenance solution for transfer learning of classification 

tasks for all sorts of components, which have characteristic frequencies such as rotors, gears, or 

bearings. This approach was demonstrated in detail using the example of bearing fault classification. 

However, as elaborated in Section 5.6, it is a generic approach and should fit for the previously 

mentioned components as well since there is no bearing-specific algorithm used. 
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To summarize, the presented solution uses the new intermediate domain of Chapter 4, which is 

specially designed for the classification task of characteristic frequencies, which takes their unique 

features in the form of layers into account. This intermediate domain can be applied afterward as input 

of a CNN. Therefore, a double-layered convolutional neural network was presented. Furthermore, a 

new loss function for domain adaptation (LMMD) that considers the particular layout of images, which 

contain characteristic frequencies, has been introduced. Finally, the LMMD was explained in detail, 

utilizing the example of the intermediate domain for bearing fault classification. These parts present a 

novel predictive maintenance chain for use cases where a large, labeled source dataset exists, but the 

target domain consists of unlabeled or only a few labeled samples. As such, this solution can be seen 

as a direct answer to RQ1, which asks for a new method that provides better results for fault 

classification of partly labeled bearing fault datasets. The verification of this classification approach is 

provided later in Section 7.2 in the form of an exploration, where it provides an up to 32.3% improved 

accuracy in contrast to other state-of-the-art approaches. Furthermore, a benchmark in Section 7.3 

shows that the given approach delivers better results than the benchmarked approach. 

In addition to answering RQ1, the presented classification approach also provides a part of the answer 

to RC3, which asks how existing methods can be combined and optimized. The answer is the solution 

itself, which combines and optimizes existing approaches like time-frequency transform, CNN, and 

domain adaption into an approach that provides better results for fault classification of partly labeled 

datasets. In addition, LMMD is an optimization of the MMD algorithm that provides better results for 

the given use case. 
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6 Transfer Learning Approach for Remaining Useful Life 

6.1 Introduction 

The current state of the art for predictive maintenance solutions in general (Chapter 2 and 3) and 

remaining useful life for bearings in particular (Section 3.3.3) have shown that, currently, most 

approaches focus on RUL without transfer learning or on transfer learning between different 

conditions of the same type of component. Today, only two published research works benefit from 

datasets of different component types via transfer learning. Such a component can be, for instance, a 

bearing, as already described in the classification approach in Chapter 5. In addition, the RUL 

estimation and the classification task suffer from a lack of reasonable training data. For the RUL 

estimation, the lack of training samples is even more significant than for the classification task. The 

whole lifetime of a component must be tracked in order to train a neural network, and it is not 

sufficient to measure the component once a fault appears. Because of this, knowledge transfer 

promises to be important, especially for new types where very little training data is available. An 

additional challenge arises from the fact that the sensors are permanently mounted for continuous 

RUL estimation. This contrasts with the classification task, where the use cases only need a temporarily 

attached sensor to check the current state of the component. Due to the cost pressure in industrial 

applications, the most cost-effective RUL solutions must be used. This can be realized by using 

permanently mounted triaxial sensors, which, however, have the disadvantage that they can only 

cover a limited frequency range of up to approx. 5 kHz (see Section 3.2.5). As stated in Section 3.3.3.6, 

there is no current solution that covers these needs. 

To overcome these shortcomings, an RUL solution that meets the following requirements is needed: 

• The solution shall be a general solution that can be applied to different machine components. 

These components must meet the criterion that they are moving parts with rotational 

movements. 

• The failure of such a component shall not be spontaneous without indication but must become 

apparent in some continuous trend. This requirement is essential because if the state of a 

component changes because of unforeseen conditions, it is not possible to detect the state 

correctly [177].  

• A frequency range of a maximum of 5 kHz should be used to use triaxial accelerometers, which 

are needed to realize cost-efficient industrial applications. 

• It shall have superior prediction accuracy compared to current state-of-the-art techniques, 

especially for real-world scenarios. Therefore, existing approaches can be combined suitably. 

In addition, the usage of domain knowledge can also be an opportunity. 
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• In order to overcome the lack of existing training samples for new component types and 

process conditions, it is essential to have algorithms optimized for a small number of samples.  

All these generic requirements are directly applicable to the RUL estimation of bearings. In addition, a 

solution to these requirements mapped to bearings is also an answer to RQ2 (see Section 1.2), which 

asks for a new method that can take benefits of a dataset of a different bearing type, for a labeled 

target dataset that is recorded with sensors with low sampling rates.  

A possible answer to this research question could be based on an LSTM, as LSTMs are well suited for 

tasks with time dependencies (see Section 2.2.5). The previous chapters have shown that the use of 

the proposed intermediate domain is well suited to preprocessing the input data. In such instances, 

the source and target domain get closer together. In order to use the intermediate domain images as 

input of an LSTM, the images must be preprocessed. This can be done with the convolutional layers of 

a CNN. Through the usage of a CNN, the mechanism of fixed feature extraction can be used to do the 

transfer learning between different domains (see Section 2.4.4). 

This hypothesis is addressed in the solution that is presented in this chapter. It implements a complete 

process chain (see Figure 43) that picks up the underlying principles of the developments done in 

Chapter 4 and Chapter 5 for fault classification and complements them with the RUL estimation’s 

ability to consider time dependencies. Comparing this process chain with the one presented in Figure 

35 for the classification of bearing faults reveals that the main steps are equal for both tasks: The raw 

sensor data is used as input. Out of this input, the features must be selected for the corresponding 

machine learning algorithm. The machine learning algorithm is then used for classification or 

estimating the RUL. For the classification approach, the feature extraction uses a hybrid model based 

in the intermediate domain, which abstracts the input data to focus only on the relevant frequency 

areas (Chapter 4). In addition, the convolutional layers of the CNN are also used for a data-driven 

machine learning-based feature extraction. For the classification, only the last fully connected layers 

are considered. This hybrid feature extraction can be taken over by the RUL task (Section 6.3) because 

the data to be analyzed is identical. In contrast to the classification task, the RUL task does not need 

to assign the input data to different conditions. Instead, it must estimate a time. Therefore, the output 

of the feature extraction based on the convolutional layers of the CNN is used as input of an LSTM 

network (Section 6.4), which is used to estimate the RUL with the help of a health indicator (see Section 

3.3.3.1). In addition, transfer learning to different other bearing types can be performed with a fixed 

feature extraction (Section 6.4.4). Each section explains its design decisions as a first step and then 

explains them in detail. 
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Figure 43: The different steps for a transfer learning-based RUL estimation approach. The input, which is the raw sensor data, 
is preprocessed with a feature extraction technique, such as an intermediate domain. Afterward, the extracted features are 
used for the machine learning process, which is based on a CNN in combination with an LSTM. The CNN can be pre-trained 
with data from a different domain for the feature extraction and then transferred to a learning task in the target domain. The 
trained model is finally used for the regression task of the RUL estimation with the help of a health indicator (cf. [112]). 

The presented approach is verified in detail with a benchmark in Section 7.4 of this thesis. The 

presented RUL solution has been summarized in a research paper [112]. 

6.2 Validation Context 

All design decisions in this chapter are based on empirical test scenarios based on bearing datasets. 

Each test scenario is based on two datasets. First, the feature extraction part of the proposed RUL is 

pretrained with the Case Western Reserve University dataset (see Section 3.3.2.2) and the mean 

accuracy in the same way as already described in Section 5.2. Every test scenario uses these pretrained 

convolutional layers. 

For the RUL estimation, the dataset of the IEEE PHM 2012 data challenge is used. This dataset, which 

was introduced in Section 3.3.3.2 is the most widely used RUL dataset. The different datasets were 

assigned according to the contest specification, where six training datasets and 11 test datasets were 

used [178]. A suitable metric has to be selected to verify the different development steps. A common 

metric to compare the accuracy of different approaches is to use a particular score, which is calculated 

by summing up the weighted relative error rate of each test case (see Appendix A.5.1). This score is 

also used to evaluate the different approaches in this chapter. Furthermore, this score was also used 

to compare the different solutions of the IEEE PHM 2012 Data Challenge [178]. For this reason, it is 

also referred to as the PHM score within this thesis. The score of each test scenario was the decision 

basis for each evaluated parameter. 
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The parameters of the training itself are listed in Table 12 

Table 12: Training parameters used for the proposed RUL approach. 

Parameter Value Reason 

Optimizer Adam Empirical tests and recommendations, such as [6]. 

Learning rate 0.0005 Empirical tests. 

Batch size 120 Due to the limitations of the used hardware, a larger 
batch size could not be used.  

Epochs 300 An improvement of the result could not be achieved 
with more than 300 epochs. 

Loss function Mean squared error MSE was used based on the recommendation of Liu 
et al. [179] that, amongst  all common loss 
functions, it is the most sensitive one to 
measurement errors. 

 

6.3 Intermediate Domain 

As explained in the introduction, the estimation of the RUL starts with the preprocessing of the sensor-

based raw input data. According to Section 4.3, the acquisition of the input data is equal for the task 

of the classification of the health state and the estimation of the RUL. In both cases, a sensor collects 

information (e.g., acceleration) for a short recording phase of the length t. This can be done during 

specialized test runs. This recording is repeated periodically at an interval T to assess the actual 

conditions of the component. It is sufficient to analyze only the last record for the classification task. 

However, the RUL task can also benefit from analyzing historical data of previous recording phases to 

consider time dependencies. In accordance with the literature presented in Section 3.3.3, there are a 

number of different feature extraction techniques, such as using different time and frequency domain 

features or wavelet transformations. However, the intermediate domain in Chapter 4 is specially 

designed and validated for this kind of sensor data. This method has already been used successfully 

for classification tasks in Chapter 5. In addition, the use of the intermediate domain provides the 

advantage of supporting transfer learning, since it already brings the data of the target and source 

domain closer together. For these reasons, this method is also considered to be the most suitable 

feature extraction method for the RUL estimation.  

Using the intermediate domain is also important for the requirement of having a solution that is usable 

in combination with triaxial sensors. Since the intermediate domain only focuses on the characteristic 

fault frequencies of a component, other higher frequencies are not used. It is even possible for 

components with high rotation speeds to have frequencies (including the first four harmonics) below 

5 kHz, which is in the range of triaxial sensors. An extreme example of such a component is a bearing 

of a high-speed grinding spindle, which can have rotational speeds up to 23,000 rpm. This results in 
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fault frequencies up to 4,500 Hz when using the bearing at 100% of the maximum rpm [133]. The 

maximum frequencies of these fault frequencies can be reduced by the aforementioned test runs, in 

which the spindle has to rotate at specified rotational speeds. If such a high-speed spindle is used at 

10% of the maximum rpm, it will result in fault frequencies of only about 500 Hz. Bearings for other 

use cases have rotational speeds of about 2,000 rpm, resulting in fault frequencies of less than 200 Hz 

[133]. 

In summary, it can be said that even for the extreme case of bearings in high-speed spindles, the 

requirement of usability with triaxial sensors can be fulfilled by specialized test runs that are not carried 

out with the maximum speed of the spindles. When using simpler bearings applications with lower 

rotational speeds, it should not be necessary to pay attention to the rotational speeds. 

One constraint of the usage of the intermediate domain is that it relies on the characteristic fault 

frequencies. For the use case of bearings, the first appearance of these frequencies is at degradation 

stage 3 (see Section 3.2.4). Therefore, this approach is unable to recognize an incipient bearing damage 

in fault stage 2. However, this limitation is also based on the triaxial sensors used. In stage 2, only 

natural frequencies of the bearing components occur, which are up to 6 kHz and therefore not 

completely covered by these sensors. However, as described in Section 3.2.4, this is not a real-life 

problem. In stage 3, there is still enough time for a planned maintenance. In addition, other current 

predictive maintenance solutions also rely only on stage 3. 

6.4 Proposed RUL Architecture 

6.4.1 Introduction 

The preprocessed images of the intermediate domain can be used as input for a machine learning 

algorithm. As introduced in Section 6.1 these images must be processed to use them for the RUL 

estimation. Therefore, features must be extracted from the images. Afterward, these features must 

be used for the RUL estimation. As stated in Section 3.3.3, a common technique for regression tasks 

such as RUL is an RNN. In addition, LSTMs are also important due to their ability to optimize the 

vanishing gradient problem of RNNs (see Section 2.2.5). Different surveys have compared the relevant 

machine learning approaches in the context of estimating the RUL for bearings [54, 132, 180]. They 

outline that the current RUL approaches are based on different techniques, such as deep learning 

techniques like CNN and RNN, and classical machine learning techniques like SVR and Bayesian Monte 

Carlo. These techniques are mainly used for supervised learning tasks in the same domain. CNN-based 

approaches [12], which use the raw sensor data, and LSTM-based approaches [82], which use extracted 

features out of the time and the frequency domain, are used for transfer learning between different 

domains (see also Section 3.3.3.4). 
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A promising approach seems to be the combination of CNN and LSTM, where the CNN is used for the 

feature extraction of the intermediate domain images. This approach is already used for different types 

of machine learning based sensor diagnostics. Including e.g. sensors in the field of automotive sensor 

systems [32], but also the in this case important field of RUL estimation for bearings (see Section 

3.3.3.5). The LSTM can use these extracted features of the CNN and also take the time dependencies 

of the different measurements into account to estimate the RUL. Therefore, this approach would be 

based on two feature extraction layers: The first layer extracts the features of the raw sensor data with 

the help of a frequency-selective filter to intermediate domain images. As illustrated in Figure 43, the 

second feature extraction layer uses the intermediate domain images as input for a CNN. Its output is 

used as input for an LSTM, which performs the RUL estimation. This design approach is explained and 

derived in this chapter. 

6.4.2 Machine Learning-Based Feature Extraction 

A common method for feeding an LSTM or an RNN is to directly use the raw signal or extract features 

based on statistical features of the time or frequency domain (see Section 3.3.3). As already justified 

in Section 6.3, this RUL approach uses the intermediate domain of Chapter 4 to preprocess the raw 

sensor signal into a 2D image. To use images as input for machine learning methods, a feature 

extraction is recommended to reduce the training time and increase the precision of a trained model 

[158, 181]. Based on the theoretical background in Section 2.2.4 and the practical demonstrations of 

different research papers in Section 3.3.3.5, a machine learning-based feature extraction is appropriate 

to effectively and automatically extract features. A suitable technique for the feature extraction of 

multidimensional input is to use the convolutional layers of a CNN [181]. As introduced in Section 2.2.4, 

a CNN uses the lower convolutional layers for low-level feature extraction and the higher convolutional 

layers for high-level feature extraction. Only the fully connected layers are used for the classification 

task. 

 

Figure 44: Feature extraction and classification parts of a CNN. The features start from a low-level on the left side and end at 
a high-level on the right side [112]. 
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Chapter 5.4.2 suggests the proposed double-layer CNN architecture as an appropriate approach for 

feature extraction of the intermediate domain images for the classification task. As shown in Figure 

44, it is based on three blocks of two convolutional layers followed by a pooling layer for the feature 

extraction. These blocks are followed by three fully connected layers, where the last layer is 

responsible for the final classification of a specific health state. Since the convolutional layers are 

responsible for detecting local conjunctions of features of the previous layer and mapping them into a 

feature map, they can be used to extract the features from the intermediate domain image. Therefore, 

the whole feature extraction part of the classification model (all convolutional layers and pooling 

layers) is also suited for the RUL approach. It uses these layers as a machine learning-based feature 

extraction method to extract the features of the intermediate domain in a suitable way and passes 

them on to the LSTM network. 

6.4.3 Time dependencies 

6.4.3.1 Introduction 

The extracted features of the previous step can now be used to estimate the RUL. Therefore, this 

chapter presents an LSTM model. First, a suitable degradation model is chosen in Section 6.4.3.2. This 

is followed by the introduction of a proposed LSTM model for the RUL estimation in Section 6.4.3.3. As 

the last step, an investigation of the window size of the inputs is presented in Section 6.4.3.4. 

6.4.3.2 Degradation  

In addition to the ML model itself, the degradation model is also an important decision. The most 

common ones are a linear degradation model and a piece-wise linear degradation model [182]. The 

linear degradation model is used in numerous research works with different deep learning techniques 

such as CNN, RNN, and LSTM (see 3.3.3.3 and 3.3.3.4). For this case, the degradation is considered 

linear over the entire lifetime of the component (see Figure 45a). 

a)  b)  

Figure 45: Different degradation models for an example with a total lifetime of 200 measurements. a) shows a linear model 
from start to end of the lifetime. b) shows a piece-wise linear degradation model, where only a degradation phase exists at 
the last n=75 measurements. For the other measurements, no degradation can be determined. 
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Instead of linear degradation, a piece-wise linear degradation may also be an option. When using a 

piece-wise linear degradation, only the last n values are treated as a linear degradation of the 

component. The degradation of all other measurements is always considered as constant (see Figure 

45b). This approach can be used in cases where once the degradation has started, it always takes about 

the same time until the component reaches the end of life. However, this approach has two drawbacks 

[182]: first, a maximum estimated RUL is limited to the chosen length n of the degradation phase. In 

addition, the more severe drawback is that the degradation phase is not comparable between different 

samples in many use cases. This is a significant problem for many predictive maintenance solutions. 

Some researchers have attempted to circumvent this problem by dynamically calculating the end of 

the constant RUL phase for each bearing. This can be done using different statistical functions that are 

applied to the sensor values. As soon as a specific threshold value is reached, the constant RUL time is 

declared as terminated. For this purpose, however, these threshold values must be determined 

empirically for each bearing type [183]. 

Some approaches do not use a linear health indicator. For instance, different statistical features from 

the time and frequency domain data can be used as it is done, for instance, by Khan et al. [184]. 

However, such an approach again leads to the problem that threshold values for the individual features 

and the optimal combinations must be determined. Khan et al. used specially developed MATLAB 

programs for this purpose.  

The research directions for a dynamic constant RUL phase end and an individual health indicator 

contradict the approach of having a universal approach that can be simply applied to other bearing 

types. Therefore, even though they may provide better results for a particular bearing type, they are 

not considered further here.  

The general choice between using a simple linear health indicator and the piece-wise linear 

degradation remains. As shown in chapter 3.2.4, the degradation of the same bearing type is very 

similar in most cases. Especially the degradation levels, which can be detected with the relevant 

accelerometers (degradation stages 3 and 4), are for 90% of all bearings of one type in a range of 5% 

of the expected theoretical lifetime. This can also be seen in Figure 46, where an exemplary bearing of 

the dataset presented in Section 3.3.3.2 is shown. Therefore, there is a range and no exact value when 

the constant RUL phase of the piece-wise linear degradation is over. This results in no advantages in 

the usage of a piece-wise linear degradation. Another downside of the piece-wise linear degradation 

is that the length of the constant RUL phase must be determined somehow for each bearing type. This 

again leads to an approach that requires the manual intervention of experts. 
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For these reasons, the typical approach of only using a linear degradation over the entire lifetime has 

been chosen for the presented solution. In addition, the literature also recommends using a linear 

model if the knowledge of a suitable degradation is unavailable [182]. 

Figure 46: Example of the degradation of a bearing based on the outer and the inner ring fault frequency. 

6.4.3.3 LSTM Model 

One crucial aspect of an RUL solution is the part that uses the features of the input data to estimate 

the estimated RUL. This is because, as presented in Section 3.3.3 through different research, the 

accuracy of an RUL solution depends significantly on this part. As outlined in Section 6.1, this 

dissertation searches for an appropriate technology for this purpose, which can also take advantage 

of available historical data. As outlined in Section 3.2.6, deep learning technologies are proposed for 

complex scenarios such as RUL estimations. These technologies are similar in that they are typically 

trained with normalized data in a range between 0 and 1 (see Section 4.6). Therefore, as mentioned in 

Section 3.3.2.1, the deep learning-based RUL approaches use a health indicator, which is between 1.0 

for a new component and 0.0 for a defective component. As proposed in Section 6.4.3.2, the 

interpolation between 1.0 and 0.0 is linear over the entire lifetime. This health indicator has to be 

retransformed in a separate step back to a time span.  

The RUL estimation through a health indicator is realized in deep learning approaches by a single fully 

connected neuron as the last layer of the neural network. This is done in different studies with different 

deep learning approaches such as CNN, RNN, and LSTM (see Sections 3.3.3.3 and 3.3.3.4). However, a 

CNN is not suitable to represent a time relation because only one input is analyzed at a time, and there 

is no connection to the prior inputs. By considering time relations, higher accuracies might be reached 

(see Section 2.2.5). Unlike CNNs, RNNs, and their successors GRUs and LSTMs, use data from previous 

time points. As already introduced in Section 2.2.5, the disadvantage of an RNN is that it is sensitive to 

the gradient vanishing problem. This problem can be mitigated by means of an LSTM or a GRU 

architecture. In addition, a comparison between GRU and LSTM shows that their accuracy is very 

similar [185]. For the use case of bearings, it has been shown that an LSTM can deliver higher accuracies 

than a GRU [186]. Different surveys pointed out that there are also a number of successful applications 
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using LSTMs in the field of RUL of bearings [54, 131]. Consequently, the proposed model is based on 

an LSTM network rather than an RNN or a GRU. 

In order to choose a suitable layout for the LSTM network, an LSTM layout of Sahoo [30] is used as a 

starting point. In his work, Sahoo uses three LSTM layers (layer 1: 128 outputs, layer 2: 64 outputs, and 

layer 3: 32 outputs). The output of these LSTM layers is processed by fully connected layers for the RUL 

estimation based on the last fully connected layer with a single neuron. In his scenario, this 

implementation provides remarkable results for the task of the RUL estimation. 

Based on the proposed LSTM layout, the three modifications presented in Table 13 are evaluated. All 

layouts have the first three layers in common: a CNN for the feature extraction, an LSTM with 128 

outputs, and an LSTM with 64 outputs. The other subsequent layers are different.  

• Layout 1: This layout investigates a pure LSTM network. Therefore, the CNN-based feature 

extraction together with two LSTM layers is used, followed by an LSTM with 32 outputs in the 

last layer as in the reference layout proposed by Sahoo [30]. The outputs of the LSTM are 

directly used as input for the health indicator, which consists of a fully connected layer with 

one neuron. 

• Layout 2: This layout investigates the common use of one LSTM followed by several (deep) 

fully connected layers [187]. For this purpose, two additional layers are added to layout 1: 

After the last LSTM layer, a fully connected layer with 32 outputs is inserted. This layer is 

followed by a dropout layer with a dropout rate of 0.5. The decision to use 32 neurons was 

inspired by the success of double convolutional layers for CNNs, where the same output size 

is used for two consecutive layers (see Section 5.4.2.2). The dropout factor of 0.5 is based on 

the research of the classification approach in Section 5.4.2.3, as well as on recommendations 

in the literature [6]. 

• Layout 3: This layout is similar to layout 2, except that the last LSTM layer with 32 outputs is 

unavailable. This layout has been selected to investigate the influence of the LSTM layers. If 

this approach shows the best results, a simpler model with fewer layers could be used. 
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Table 13: The different evaluated LSTM layouts. The number of outputs for each layer is given in parentheses. Only the used 
layers and their connection (marked by an arrow) are drawn for each layout. For comparison, the PHM score of each layout 
for the RUL task of the IEEE PHM 2012 Data Challenge has been calculated. Layout 2 has the best results. 

 Layers Layout 1 Layout 2 Layout 3 

Layout CNN (8192)    

LSTM (128)    

LSTM (64)    

LSTM (32)    

Fully connected (32)    

Dropout (rate=0.5)    

Fully connected (1)    

PHM score  0.1094 0.35 0.05647 

As shown in Table 13, the best result in terms of the PHM score is achieved with layout 2. Therefore, 

layout 2 has been chosen as the LSTM layout. A description of the evaluation can be found in Appendix 

A.5.2. 

A detailed summary of the complete proposed model with its 4,323,265 trainable parameters is shown 

in Table 14. As shown in Figure 47, for each of the n input images, the same CNN part with the same 

weights is used. The output of each of the n CNNs is used as input for the first LSTM layer. The last fully 

connected layer is used to calculate the health indicator. Based on the decision of the used network 

and the used linear degradation model, this indicator has to be converted back to a time value 

according to Eq. (26), 

𝑇𝑅𝑈𝐿 =  
𝑇𝐶𝑢𝑟

1 − 𝐻𝐼
− 𝑇𝐶𝑢𝑟 (26) 

where TCur is the current time stamp, and HI is the health indicator. 

 

Table 14: This table shows the detailed architecture of the proposed RUL framework with all used layers and their parameters. 
Therefore, each layer is listed with its type, the output shape of each layer (none has to be replaced with the number of images 
that are used in a batch and is therefore dependent on the training parameter batch size) the number of trainable parameters, 
and the activation functions used. The parameter w in the output shape is for the window size of historical data. 

Layer Type Output shape Trainable parameters Activation 

0 InputLayer (None, w, 64, 64, 1) 0  

1 Conv2D (None, w, 64, 64, 32) 608 ReLu 

2 Conv2D (None, w, 64, 64, 32) 9248 ReLu 

3 MaxPooling2D (None, w, 32, 32, 32) 0  

4 Conv2D (None, w, 32, 32, 64) 18496 ReLu 

5 Conv2D (None, w, 32, 32, 64) 36928 ReLu 
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6 MaxPooling2D (None, w, 16, 16, 64) 0  

7 Conv2D (None, w, 16, 16, 128) 73856 ReLu 

8 Conv2D (None, w, 16, 16, 128) 147584 ReLu 

9 MaxPooling2D (None, w, 8, 8, 128) 0  

10 Flatten (None, w, 8192) 0  

11 LSTM (None, w, 128) 4260352 tanh 

12 LSTM (None, w, 64) 49408 tanh 

13 LSTM (None, w, 32) 12416 tanh 

14 Fully connected (None, 32) 1056 ReLu 

15 Dropout (factor 0.5) (None, 32) 0  

16 Fully connected (None, 1) 33 Linear 

 

 

Figure 47: Proposed RUL framework. The feature extraction is performed with the help of convolutional and pooling layers. 
This part is equal for each of the n input images used. All convolutional layers share the same weights. The output of the last 
pooling layer of each image path is the input of the first LSTM network. Three LSTM layers are used. After the last LSTM, two 
fully connected layers are used. The output of the last layer is the health indicator of the current lifetime. 

6.4.3.4 Window Size of Measurements 

When using an LSTM, an important parameter is the window size w of the historical data used. In the 

context of predictive maintenance, this indicates how many measurements are included in the RUL 

estimation. The fewer measurements used, the more difficult it is to reflect time dependencies. 

However, a too-large window size can lead to an RUL determination not being possible at all. This is 

because if a window size w is defined, the RUL of a component can be determined only if at least w 

measurements are available. The neural network expects input in the selected window size only. 
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Another difficulty is the amount of memory needed when more historical data should be used. As 

shown in Figure 48, the amount of memory used during the training only has linear growth, but it 

quickly exceeds 16 GB. 16 GB is the amount of memory available on current mainstream graphic cards 

for commercial clouds (e.g., an NVIDIA P100 [65]). 

 
 

Figure 48: The memory used for the proposed LSTM 
network depends on the number of input images used. 

 

Figure 49: Detailed example of the window size of the input. A 
total number of 10 measurements, a step size of s=2 and an 
amount of used septs n=3 leads to the usage of measurements 
6, 8, and 10 as input. 

Regardless of these limitations, an ideal length can be determined empirically in the applicable range. 

One way to increase the window size without increasing the input size n of the LSTM network is to skip 

values by using a step size s. For instance, as shown in Figure 49, if s = 2, every second measurement 

is skipped. This results in the possibility of analyzing a time span twice as long with the same memory 

usage. However, skipping values has the risk that relevant dependencies are also dropped. An example 

is the case when only two values should be used. If only the first and last value of a measurement 

series are used, a wide range would be covered, but the information is not available shortly before the 

current time. Therefore, it could be better if no points were skipped and only the last two points were 

used, which would make the gradient of the values at the current position more apparent. In addition, 

it could be that no changes in the input values occur at all in the starting area for a long period of time. 

 

Figure 50: Evaluation of different input sizes (n) and different step sizes (s) for the training of the proposed LSTM framework. 
The best PHM score (see A.5.1) is attained with an input size of 85 and a step size of 2 [112]. 

The proper values for the parameters n (input size) and s (step sizes) are estimated by an evaluation. 

A limitation of the dataset used for this evaluation is that the shortest test sequence consists of only 

172 measurements. Therefore, the maximum usable historical data is limited to 𝑛 ∗ 𝑠 ≤ 172. This, for 
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instance, results in a maximum value of 85 for n when s is set to 2. As shown in Figure 50, the score is 

always better for the same input size n if a step size of 2 is used, which results in a wider time range. 

In addition, the input size is also important. The score gets better with an increasing input size. 

Therefore, it can be concluded that the wider the window size w of the historical data, the more 

accurate the result will be. Using every value is not possible for reasons of memory consumption, 

among others, but skipping values by a step size s, still allows one to achieve a wide window size. This 

can be done automatically by knowing the available memory and the test size being covered.  

For the given dataset, this is an input size of n=85 measurements in combination with a step size s=2. 

Here also, the best score is reached. Therefore, this setting has been chosen for the presented solution. 

6.4.3.5 Conclusion 

This chapter presented an LSTM-based solution for the RUL estimation, which considers time 

dependencies. Therefore, the variable parameters of such a solution have been identified and 

explained. In addition, the most suitable values for these parameters were determined based on the 

bearing dataset of the IEEE PHM 2012 data challenge, as described in Section 6.2. These are the 

degradation model, the layout of the LSTM model, and the window size in which the data is processed. 

6.4.4 Transfer Learning Approach 

The presented RUL framework can be used directly for supervised learning, as shown in Section 6.4.3. 

However, this framework can also take advantage of transfer learning in several ways. One theoretical 

way is to use the LMMD, which has been proposed in Section 5.5. The LMMD can be used for 

unsupervised or semi-supervised transfer learning. The procedure would be similar to the classification 

process wherein domain adaption has to be carried out after the high-level fully connected layer. 

However, in real-life scenarios, the RUL datasets are usually fully labeled. As described in Section 6.1, 

this is because these datasets can only be collected when the sensors are mounted on a machine, and 

the data is collected periodically. Because of the time-consuming wiring and mounting of the 

hardware, this is usually done during the machine setup. Therefore, in real life, the dataset usually 

begins with a new component. This results in every measure having a label. For this reason, 

unsupervised and semi-supervised approaches will not be discussed further here. 

Another approach is to perform a network-based deep transfer learning, where the pre-trained feature 

extraction part of the CNN of a different domain is transferred to the current domain (see Section 

2.4.3.5). This approach is important for applications in the real-life world. Here, often, only a few 

datasets for the RUL training are available for a particular component. As introduced in Section 2.4.4 

and used in Section 5.4.3, a fixed-feature extraction can be used for the case of a small dataset in the 

target domain. In addition, the dataset of the source domain and the target domain must be similar. 

In the presented case, the similarity of both domains is given by the format of the images: for both 
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domains, the images are generated with the help of the intermediate domain. This intermediate 

domain benefits from the fact that the input images are very similar due to the frequency-selective 

filter. For this reason, the lower-level feature extraction is identical, which has also been verified for 

the case of transfer learning for classification in Section 5.4. The entire network must be trained with 

the source domain dataset for this transfer learning process. Afterward, the feature extraction part, 

which is carried out by the convolutional layers, is frozen. Then, only the LSTM and fully connected 

layers are trained with the target domain dataset. 

However, the transfer from one RUL dataset to another is not the only possibility. Based on the 

intermediate domain, which also creates similar images for classification datasets, a transfer of a 

feature extraction part based on classification data should also be possible. Since many publicly 

available classification datasets exist, this approach has special significance. In order to perform this 

approach, a classification network is first trained with the source data as described in Section 5.4.2. 

Afterward, the fully connected layers of the classification network must be removed and replaced by 

the parts of the proposed RUL framework, which are responsible for the RUL estimation (LSTM and 

fully connected layers). Finally, the convolutional layers must be frozen, and the newly inserted parts 

must be trained with the labeled target domain dataset. For this approach, the classification and RUL 

datasets do not have to be of the same component type. 

A direct comparison between an RUL estimation with pre-trained convolutional layers and one without 

pre-training was made to confirm this statement. In addition, the pre-trained layers were from 

different types of a component. As can be seen in Figure 51, the pertained network has a far better 

PHM score. More details of the test setup are given in A.5.3.  

 

Figure 51: Comparison of the PHM score between the neuronal network with and without using pre-training convolutional 
layers. The pre-trained network has a much higher PHM score. 

Since the results are much better with a pre-trained network, all evaluations in Section 6.4.3 were also 

performed with the same pre-trained convolutional layers. 

0,35

0,0516

0

0,1

0,2

0,3

0,4

Convolutional layers

P
H

M
 S

co
re

with pre-training without pre-training



6. Transfer Learning Approach for Remaining Useful Life 

 

110 
 

6.5 Generalization 

The transfer learning approach for RUL estimation consists of two parts. The first is the feature 

extraction, which is based on the usage of the intermediate domain presented in Chapter 4 (Section 

6.3) and the convolutional layers (Section 6.4.2). The second is the RUL estimation based on an LSTM 

(Section 6.4.3). Both parts should be used for a range of different components. 

The feature extraction part was verified in Chapter 5 for classification of sensor signals using the 

example of bearing fault detection based on fault frequencies. As stated in that chapter, bearings are 

not the only components where the intermediate domain and the convolutional layers can be applied. 

The underlying theory of the intermediate domain should also be applicable to other components, 

which can be analyzed with the help of the fault frequencies and their harmonics. If a component other 

than a bearing is used, parameters such as the number of used harmonics or the signal length must be 

adjusted, as mentioned in Section 5.6. Afterward, it can be evaluated if the component is appropriated. 

In contrast to the feature extraction, the LSTM model is purely data-driven and has no specific 

characteristic frequency-related dependencies. The only limiting condition is that the LSTM is designed 

to receive outputs from convolutional layers as input. Therefore, this model should also be applicable 

to sensor data of other components with characteristic fault frequencies. This sensor data can be 

converted into intermedia domain images.  

A component with characteristic frequencies that might be applicable for the entire process chain of 

this approach, is, for instance, a gear. Here the characteristic frequencies are the gear rotational 

frequency, the pinion rotational frequency, and the gear mesh frequency [137]. As described in Section 

5.6, some modifications must be made during the feature extraction process. Here, at minimum, the 

number of layers for the intermediate domain must be changed, since a gear has only three different 

fault frequencies while bearings have four different fault frequencies. In addition, it may be necessary 

to change the bandwidth of the frequency-selective filter. The RUL part might also be adapted. One 

possible modification might be the window size of the inputs for the LSTM.  

All the above-stated assumptions about transferability to other components, especially to gears, are 

based on theoretical considerations and have not been verified based on a reference dataset. 

6.6 Conclusion 

This chapter has presented a new predictive maintenance solution for RUL estimation. This solution 

was specially designed and verified for the use case of bearings and consists of two parts.  

The first part, feature extraction, was already presented in Chapter 4 based on an intermediate 

domain, especially verified for bearings but also designed for other components with characteristic 

frequencies. In addition, the convolutional layers of the classification approach (see Section 5.4.2) are 

also used for feature extraction out of the intermediate domain images. The second part is an LSTM 
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model, which takes the output of the convolutional layers as input. This model takes the time 

dependencies of the degradation into account. A significant benefit of this solution is that transfer 

learning can be easily facilitated through the well-defined intermediate domain, which is similar for 

different types of the same component. Therefore, the entire feature extraction part (convolutional 

layers) of a pre-trained network can be transferred. This can even be a pre-trained network with 

datasets of a classification task of a different type. 

An additional advantage of using the intermediate domain is that by using it in conjunction with special 

test runs (see Section 6.3), the solution can also be used for sensors with low sampling rates.  

Although this solution has been verified through the example of bearings, no parts of it have bearing-

specific dependencies. They only rely on periodic movements that emit periodic impulses. Therefore, 

this solution might be the basis for RUL solutions for other components with periodic movements. 

These movements result in characteristic frequencies, which are, for instance, available for rotors, 

gears, and bearings. 

In summary, this solution answers RQ2 using an intermediate domain-based LSTM approach in 

combination with the proposed transfer learning approach. RQ2 asks for a new method that can take 

benefits of a dataset of a different bearing type for a labeled target dataset that is recorded with 

sensors with low sampling rates. A separate benchmark against other solutions is presented in Section 

7.4 to validate the effectiveness of this solution, which is also questioned in the requirements. As 

elaborated in Section 6.5, this solution might also be applicable to other components with rotating 

elements; therefore, it might also be a solution for the general problem statement of Section 6.1. 

However, this assumption is based on theory only and will not be validated within this thesis.  

In addition, this chapter demonstrates possible combinations of different machine learning algorithms 

(convolutional layers and the LSTM). This can be seen as a partial answer to RC3, which asks how 

existing methods can be combined and optimized. 
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7 Case Studies 

7.1 Introduction 

The previous three chapters have presented two new predictive maintenance approaches and an 

intermediate domain. This chapter presents case studies to validate them. First, the intermediate 

domain of Chapter 4 and the classification approach of Chapter 5 are validated with an exploration 

that compares different feature extraction methods and transfer learning loss functions. Based on this 

exploration, the stability of the intermediate domain parameters is also validated. Afterward, the 

classification approach is benchmarked against another state-of-the-art approach. Finally, the RUL 

approach of Chapter 6 is validated based on the well-known IEEE PHM 2012 data challenge. 

In all three presented case studies, the procedures are similar: 

• Source and target domain datasets are of different bearing types. 

• The datasets are split bearing instance based on a training test ratio of 70:30. This has been 

done according to literature such as [188] and [189]. For the benchmark where a split ratio is 

defined, the ratio of the benchmark setup is used. 

• In the first step, the neural networks are pre-trained with the source dataset. Afterward, 

transfer learning is performed with the target dataset or with both datasets (depending on the 

case study). 

• The performance of the trained neural networks is measured by the accuracy in the case of 

classification tasks and the PHM score in the case of RUL tasks. 

7.2 Exploration: Transfer Learning for Bearings Fault Classification 

7.2.1 Introduction 

The evaluation of the intermediate domain of Chapter 4 and the domain adaptation framework 

presented in Chapter 5 that is based on the intermediate domain and LMMD is performed for three 

different bearing vibration datasets. First, a brief description of the datasets is given in Section 7.2.2. 

Afterward, the evaluation is presented in Section 7.2.3. Finally, a conclusion is given in Section 7.2.4. 

The three case studies of this evaluation have already been published in a research article [133]. 

7.2.2 Data Description 

Two publicly available datasets and one private dataset are used to validate the domain adaption 

framework. The publicly available datasets were gathered from the CWRU and the University of 

Paderborn, which have already been described in Section 3.3.2.2. Both contain data recorded on a test 

stand. The fan-end and drive-end recording positions of the data from the CWRU dataset are treated 

separately because they have different bearings. The dataset of the University of Paderborn is only 



7. Case Studies 

 

114 
 

used as data for the source domain. Therefore, only measurements with a speed of 1,500 rpm are 

used. 

The last-used dataset is the real-life dataset of grinding spindles provided by Erwin Junker 

Maschinenfabrik GmbH. This dataset is also described in Section 3.3.2.2. 

7.2.3 Evaluation 

7.2.3.1 Case Studies Setup 

The datasets described above are used in three test cases to evaluate the presented transfer learning 

approach of Chapter 5. To do so, three different combinations have been chosen (see Table 15). The 

first combination uses the CWRU dataset only. The source and the target domain are measurements 

from different locations with different bearing types but the same process conditions. The second uses 

a source dataset of the University of Paderborn and a target dataset of the CWRU. This results in 

different bearing types as well as different process conditions between the source and target domains. 

The last combination transfers knowledge from the University of Paderborn dataset to a dataset of 

grinding spindles. Here again, different bearing types are used in both domains. However, in contrast 

to case study 2, very different process conditions exist in the target domain, which are given in the 

form of a variance of 10% to 90% of the maximum rotational speed of the spindle. 

Table 15: The different combinations of datasets used in each case study. 

Case Study Source domain Target domain 

1 CWRU drive-end side CWRU fan-end side 

2 University of Paderborn CWRU 

3 University of Paderborn Junker Spindle 

 

Each test case is based on the same setup to make the results comparable. The datasets of each 

domain (source and target domain) are split into 70% of training data and 30% of test data. This is 

randomly carried out four times for each case study. The presented result is the average accuracy of 

these four runs. Each case study uses the three health conditions: inner ring fault, outer ring fault, and 

healthy, which must be classified. Ball faults are not used since they are not available in all datasets. In 

addition, as described in Section 3.2.4, according to the literature, 90% of all faults are expected to 

occur at the inner and outer rings. Therefore, the not-considered ball faults are not of great importance 

in real life. The underlying model of the CNN is independent of the used input preprocessing method 

for the signal data. Three different preprocessing methods are applied to the sensor data: the 

intermediate domain proposed in this thesis, HHT, and S-transform. Figure 52 shows sample images of 

the result for each preprocessing method. 
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a)  

   

Figure 52: The results of the transformation of the same 0.2 second sample in the frequency domain (FFT) (a), time-frequency 
domain (HHT (b), S-transform(c)), and the new intermediate domain (d). 

The transfer task itself is always performed with a CNN, as described in Section 5.4.2. That CNN is first 

pre-trained with the source dataset. Afterward, a transfer learning according to Section 5.4.3 and 

Section 5.4.4 is performed. The following setup of the transfer learning framework is used for the 

evaluation: 

• The loss functions MMD, LMMD, MK-MMD, CORAL, and Wasserstein are used for the transfer 

learning process (see Section 2.4.6). 

• The variable parameter γ of the Gaussian kernel function (see Eq. (9)) for MMD and LMMD is 

assigned as the median of the pairwise Euclidean distance of the outputs of the corresponding 

fully connected layers, as proposed by Ramdas et al. [190] and Sutherland et al. [191]. 

• The MK-MMD uses the γ values 0.01, 0.1, 0.25, 0.5, 1.0, and 2.0. This follows the use of γ by 

Long et al. [84]. 

• The tradeoff parameters λ for the fully connected layer 1 (𝜆𝐹𝐶1) and the fully connected layer 

2 (𝜆𝐹𝐶2) are set to 50.0. This is based on an initial test of the following 𝜆 values: 0.0, 0.1, 1.0, 

10.0, 50.0, 100.0 and 1,000.0. By using two exemplarily setups, Figure 53 shows that the best 

accuracies are obtained by 𝜆s in the range of 50. In order to indicate a general solution, 50.0 

is used for all case studies. 

b) c) d) 
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Figure 53: Accuracies for λ of 0, 0.1, 1, 10, 50, 100 and 1000 for 𝜆𝐹𝐶1 and 𝜆𝐹𝐶2 for a transfer learning from Uni Paderborn to 
CWRU using LMMD (a) and CORAL (b). 

For each case study, two different settings for the training data of the target domain are used: 

• Unsupervised scenario: Here, the training data of the target domain is 100% unlabeled data. 

Therefore, according to Eq. (20) of Section 5.4.3, only the domain adaptation approach is 

possible. 

• Semi-supervised scenario: The target training data is divided into 20% labeled data for 

supervised learning and 80% unlabeled data for unsupervised learning. This split should 

provide insight into how well this method can be used in real-world use cases, where a lot of 

data is often unlabeled (see Section 5.1). Here, the following four training procedures that use 

transfer learning approach 1 (TLA1) from Section 5.4.3 and transfer learning approach 2 (TLA2) 

from Section 5.4.4 are evaluated: 

o Only unsupervised learning, according to Eq. (20) (TLA1). 

o Semi-supervised learning with labeled target data and unlabeled target data (TLA1). 

o Semi-supervised learning with labeled source and labeled as well as unlabeled target 

data (TLA1). 

o Only unsupervised learning, according to Eq. (20), which is followed by a pure 

supervised training (TLA2). 

The results for both settings are presented in Table 17 through Table 22. The results refer to the 

accuracy of the classification of a specific fault type. Table 16 briefly describes the different headers of 

the tables in the semi-supervised scenario, as the tables of this scenario have more details. 

a) b) 
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Table 16: Here, the different headers/scenarios for the semi-supervised scenario are explained. They are based on only labeled 
data (only source domain, target, all target) and on transfer learning approaches using TLA1 (labeled data in the source, 
target, source and target domain) and transfer learning approach TLA2 with labeled data in both domains. 

Type of 
transfer 
learning Labeled data in 

Remarks 

Only 
source 
domain 

Source Only labeled source data is used for training; target data is used to 
calculate the accuracy. 

TLA 1 

Source 

Pre-trained model like “only source domain.” Labeled and 
unlabeled source data and unlabeled target data used for transfer 
learning.  
The unlabeled source data is the same as the labeled data but 
without labels. 

Target 

Pre-trained model like “only source domain.” Labeled and 
unlabeled data of the target domain and unlabeled data of source 
domain are used for transfer learning. 
The unlabeled source data is the same as the labeled data but 
without labels. 

Source and 
target 

Pre-trained model like “only source domain.” Labeled and 
unlabeled data of both domains (source and target) are used for 
transfer learning. 
The unlabeled source data is the same as the labeled data but 
without labels. 

TLA 2  
  

Labeled source 
and unlabeled 
target, followed 
by labeled 
target 

Transfer learning with transfer learning approach 2. First 
unsupervised like in transfer learning approach 1, “labeled source,” 
and then supervised with labeled target data only. 

-  Target 
Here, 20% of the training data of the labeled target domain data is 
used for supervised training.  
The model is not pre-trained with any source data. 

-  All target 

Here, 70% of the training data of the labeled target domain data is 
used for supervised training. As described earlier, the missing 30% 
of the available target domain data is used for testing. 
The model is not pre-trained with any source data. 

 

7.2.3.2 Case Study 1: Classification in the Same Test Environment 

The different CWRU datasets are used as source and target domain datasets for this case study. The 

CWRU dataset contains two parts that are both created on the same test stand on different locations 

(fan-end and drive-end). Both are recorded with the same loads and rotational speed. The classification 

process also profits from the fact that both side’s bearings are almost identical, and the faults are all 

artificial with same size. 
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1. Unsupervised-Only Scenario 

The test scenario with only unsupervised data demonstrates that an accuracy of 85.4% can be achieved 

without applying domain adaptation by only employing the intermediate domain. This shows that the 

intermediate domain is stable enough to be used on these two different bearing types without 

modifications. In addition, it shows that transfer learning can also be carried out based on the 

intermediate domain for the given use case: The accuracy can be raised further, by using the LMMD 

technique, as well as with the MK-MMD and the classical MMD technique (LMMD 87.6%, MK-MMD 

87.4%, MMD 86.4%). Another finding is that when using only source domain data, the classical HHT 

and S-transform approaches can achieve accuracies up to 78.3%. This accuracy can be increased up to 

82.5% with transfer learning. This is caused by the quite similar source and target domains. 

Table 17: Accuracies of only unsupervised learning. Source and target are different datasets of the Case Western Reserve 
University - Best results achieved with the help of the intermediate domain combined with LMMD (87.6%). 

Setup Only 
source 
domain 
(%) 

Domain adaption with a loss function 

LMMD (%) MMD (%) Wasserstein 
(%) 

CORAL 
(%) 

MK-
MMD 
(%) 

Intermediate 
Domain 

85.4 87.6 86.4 50.2 80.7 87.4 

HHT 68.4 - 65.5 42.5 68.8 65.3 

S-transform 78.3 - 82.5 68.4 78.6 80.3 

 

2. Semi-Supervised Scenario 

The second setting of case study 1 demonstrates that employing the intermediate domain without DA 

produces the most accurate results with an accuracy of 93.4% when using small, labeled datasets. This 

indicates a negative transfer for the transfer learning cases (see Section 2.4.2), which appears for the 

input of the intermediate domain as well as for the input of the HHT. This might be caused by the fact 

that the faults in these laboratory test cases are distinctive. Because the source and target datasets 

are similar and recorded using the same test setup, a model trained on the source data can deliver an 

accuracy of 88.4% on the target dataset without the use of transfer learning. By using the intermediate 

domain, LMMD (91.4%) outperforms the other transfer learning techniques except for MK-MMD, 

which has a slightly higher accuracy (92.6%). The transfer learning accuracy is better when using the 

intermediate domain than when using other setups such as HHT and S-transform. Only with a large 

amount of labeled data, all three techniques can achieve accuracies better than 92%. 

However, this setting is far from the real-world scenario in which the model may be required to use a 

target domain that is completely different from the source dataset. 
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Table 18: Accuracies of semi-supervised learning. Source and target are different datasets of the Case Western Reserve 
University – The best results were obtained using only target data and the intermediate domain (93.4%). This is followed by 
the intermediate domain and MK-MMD (92.6%) and with LMMD (91.4%). Accuracies better than 92% could be achieved for 
all setups when all target data is used as labeled data. 

Setup Transfer 
type 

Only 
source 
domai
n (%) 

TLA1: Labeled data in: TLA2 Targe
t (%) 

All 
targe
t (%) 

Sourc
e (%) 

Targe
t (%) 

Sourc
e and 
target 
(%) 

Unsupervise
d source, 
followed by 
labeled 
target (%) 

Intermediat
e Domain 

LMMD 88.4 88.1 91.4 90.3 90.0 93.4 96.4 

MMD 88.4 88.8 90.8 89.2 90.0 93.4 96.4 

Wasserstein 88.4 66.8 79.2 82.4 89.0 93.4 96.4 

CORAL 88.4 86.2 90.8 89.0 89.3 93.4 96.4 

MK-MMD 88.4 87.4 86.5 88.2 92.6 93.4 96.4 

HHT MMD 72.0 68.4 76.5 80.9 70.4 68.1 92.3 

Wasserstein 72.0 66.9 61.2 74.3 67.3 68.1 92.3 

CORAL 72.0 68.6 71.3 74.6 69.2 68.1 92.3 

MK-MMD 72.0 69.4 70.4 72.5 71.2 68.1 92.3 

S-transform MMD 81.4 80.1 74.5 79.1 76.2 73.6 96.6 

Wasserstein 81.4 66.1 71.1 74.3 76.6 73.6 96.6 

CORAL 81.4 76.2 78.6 80.4 76.4 73.6 96.6 

MK-MMD 81.4 81.9 78.7 82.9 76.3 73.6 96.6 

 

3. Comparison of Both Scenarios 

In both scenarios, the best transfer learning accuracy is achieved using the intermediate domain and 

LMMD (unsupervised 87.6% and semi-supervised 91.4%). For the unsupervised case, this is the best 

achievable accuracy. However, this is not the case for the semi-supervised case. Here, using only the 

labeled target datasets of the intermediate domain reaches the best results, with an accuracy of 93.4%.  

The results of the HHT and the S-transform are similar for both scenarios. In addition, the high accuracy 

of the usage of only a pretrained network with labeled source data indicates, on the one hand, that 

the intermediate domain is stable enough to be used on these two datasets without modifications. 

However, on the other hand, it also pointed out that the intermediate domain is capable of doing a 

transfer learning by itself. 
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7.2.3.3 Case Study 2: Classification of Different Test Environments 

This case study employs two very distinct datasets. The Case Western Reserve University dataset is the 

target dataset. The source is a dataset of the University of Paderborn. Bearings, rotational speed, 

sampling frequency, and test environment differ between the two domains. 

 

1. Unsupervised-Only Scenario 

It has been found that in this test scenario, the accuracy from using purely unsupervised data with not 

using DA is only 47.5% with the intermediate domain. The accuracy is further reduced when HHT and 

S-transform are used. This can be explained by the fact that in this scenario the target data differs in a 

number of factors from the source data. However, utilizing DA in conjunction with LMMD and CORAL 

enhances the accuracy to some extent. In this case, CORAL (70.4%) outperforms LMMD (63.2%). Other 

techniques and combinations do not achieve usable accuracy. 

Table 19: Accuracies of only unsupervised learning. Source is a dataset of University of Paderborn dataset and target is a 
dataset of Case Western Reserve University: Only transfer learning with the intermediate domain and CORAL (70.4%) or LMMD 
(63.2%) provides good result. The accuracy of any other setting is considerably inferior to that of the CORAL or LMMD settings. 

Setup Only source 
domain (%) 

Domain adaption with a loss function 

LMMD (%) MMD (%) Wasserstein 
(%) 

CORAL 
(%) 

MK-
MMD 
(%) 

Intermediate 
Domain 

47.5 63.2 41.1 41.3 70.4 33.7 

HHT 0.0 - 0.0 33.5 18.5 0.0 

S-transform 30.8 - 32.3 35.3 41.0 26.5 

 

2. Semi-Supervised Scenario 

Because the target dataset differs from the source, using the pre-trained source network directly does 

not produce satisfactory results. However, the intermediate domain yields the highest accuracy 

(50.8%). LMMD surpasses the MMD and Wasserstein approaches in both proposed models (Model 1 

and Model 2). The usage of the intermediate domain together with the LMMD is the best performing 

combination for the case of 80% unlabeled data. It has an accuracy of 89.4%. 

It is also discovered that by using all of the target data as labeled data, the classification accuracy can 

be improved to 96.2% with the help of the intermediate domain. This can be increased when using the 

S-transform to 98.8%, which is the best accuracy among all combinations of this test scenario. 

However, when only 20% of the data is labeled, the intermediate domain significantly outperforms the 

HHT and S-transform. 
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Table 20: Accuracies of semi-supervised learning. Source is a University of Paderborn dataset and target is a Case Western 
Reserve University dataset - The transfer learning approach TLA2 with the intermediate domain and LMMD produces the 
highest results (89.4%). The results of using HHT and S-Transform are always worse than the intermediate domain, except 
when all data is considered as labeled data. Here the S-transform achieves 98.8%. 

Setup Transfer 
type (%) 

Only 
source 
domai
n (%) 

TLA1: Labeled data in: TLA2 Targe
t (%) 

All 
targe
t (%) 

Sourc
e (%) 

Targe
t (%) 

Sourc
e and 
target 
(%) 

Unsupervise
d source, 
followed by 
labeled 
target (%) 

Intermediat
e Domain 

LMMD 50.8 74.6 76.2 84.0 89.4 88.2 96.2 

MMD 50.8 52.9 62.4 80.8 88.0 88.2 96.2 

Wasserstein 50.8 43.3 71.9 68.7 86.8 88.2 96.2 

CORAL 50.8 64.4 75.7 84.2 87.1 88.2 96.2 

MK-MMD 50.8 53.0 80.5 80.5 69.7 88.2 96.2 

HHT MMD 0.0 0.0 52.3 41.2 71.5 75.0 89.9 

Wasserstein 0.0 17.2 55.6 50.8 64.3 75.0 89.9 

CORAL 0.0 23.5 54.2 51.5 69.1 75.0 89.9 

MK-MMD 0.0 0.6 54.2 44.5 72.0 75.0 89.9 

S-transform MMD 35.2 15.3 66.0 61.3 73.3 63.8 98.8 

Wasserstein 35.2 33.2 59.5 63.0 66.3 63.8 98.8 

CORAL 35.2 33.8 75.0 68.6 73.6 63.8 98.8 

MK-MMD 35.2 19.8 43.9 65.9 74.1 63.8 98.8 

 

3. Comparison of Both Scenarios 

In both scenarios, the best accuracy can be reached with transfer learning and the intermediate 

domain as input (70.4% for unsupervised, and 89.4% for semi-supervised). For the unsupervised 

scenario, CORAL as transfer loss function has the best results (70.4%), followed by LMMD (63.2%). In 

the semi-supervised scenario, LMMD is again the best transfer loss function, with an accuracy of 89.4%. 

Using images created with the HTT as input leads to bad results in both scenarios. Based on the best 

results of this case study when using the intermediate domain, it is also shown that the intermediate 

domain can be used with different bearing types without a reparameterization. In addition, its ability 

to perform transfer learning is shown by the slightly improved accuracies compared to other 

techniques when not making a domain adaptation. 

7.2.3.4 Case Study 3: Classification with a Real-World Example 

The source domain of this real-world test scenario is the dataset of the University of Paderborn's test 

laboratory, which contains both simulated and genuine bearing faults. The target domain data is 

obtained from a grinding spindle, where all faults are genuine. The datasets differ in terms of sample 

frequency, bearings, test environment (real-world vs. lab), and rotational speed. The rotational speed 

plays an important role because the target dataset was recorded with three rotational speeds that 

varied up to 90%. 
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1. Unsupervised-Only Scenario 

The intermediate domain achieved the highest accuracy. Thereby, CORAL performs best (66.2%), 

followed by MK-MMD (55.2%) and LMMD (53.6%). Furthermore, using the S-transform as an input can 

produce the highest accuracy without doing a domain adaptation. Nevertheless, the accuracy of all 

combinations is too poor to be used in real-world applications. 

Table 21: Accuracies of only unsupervised learning. Source is a University of Paderborn dataset and target is a spindle dataset 
with different rotational speeds. The intermediate domain in conjunction with CORAL yields the best accuracy (66.2%). This is 
followed by LMMD (53.6%). The S-transform produces the most accurate results without transfer learning, but the accuracy 
is still insufficient. 

Setup Only source 
domain (%) 

Domain adaption with a loss function 

LMMD (%) MMD (%) Wasserstein 
(%) 

CORAL 
(%) 

MK-
MMD 
(%) 

Intermediate 
Domain 

38.3 53.6 48.5 35.1 66.2 55.2 

HHT 36.2 - 33.6 50.4 35.3 33.0 

S-transform 58.0 - 45.1 32.6 55.7 43.8 

 

2. Semi-Supervised Scenario 

Table 22: Accuracies of semi-supervised learning. Source is a University of Paderborn dataset and target is a spindle dataset 
with different rotational speeds. The intermediate domain and LMMD in conjunction with transfer learning (TLA1 - Target) 
provide the best results (87.7%). With the intermediate domain input, other loss functions also provide encouraging results 
for Model 2, but the results are worse than the ones of LMMD. The intermediate domain consistently outperforms the S-
transform, which in turn outperforms the HHT. 

Setup Transfer 
type 

Only 
source 
domai
n (%) 

TLA1: Labeled data in: TLA2 Target 
(%) 

All 
target 
(%) 

Source 
(%) 

Target 
(%) 

Source 
and 
target 
(%) 

Unsupervise
d source, 
followed by 
labeled 
target (%) 

Intermedia
te Domain 

LMMD 37.8 61.4 87.7 85.8 83.9 84.0 87.7 

MMD 37.8 52.2 58.7 73.2 81.0 84.0 87.7 

Wasserstein 37.8 37.2 77.9 57.5 87.2 84.0 87.7 

CORAL 37.8 63.5 76.5 85.2 86.5 84.0 87.7 

MK-MMD 37.8 52.3 59.0 75.6 82.4 84.0 87.7 

HHT MMD 35.4 36.0 52.4 56.2 65.0 51.7 71.4 

Wasserstein 35.4 38.6 47.5 39.2 49.7 51.7 71.4 

CORAL 35.4 41.0 56.6 58.1 57.7 51.7 71.4 

MK-MMD 35.4 35.4 48.9 48.4 55.5 51.7 71.4 

S-
transform 

MMD 59.4 53.3 56.1 58.6 60.6 51.2 70.2 

Wasserstein 59.4 38.9 67.6 52.7 61.1 51.2 70.2 

CORAL 59.4 59.1 54.0 65.1 59.4 51.2 70.2 

MK-MMD 59.4 46.9 56.8 51.7 57.8 51.2 70.2 

In the semi-supervised test scenario, the highest accuracies are reached using the intermediate domain 

and LMMD in combination with a training process according to TLA1 and by only using additional 

labeled target measurements. Here, an accuracy of 87.7% can be reached. This is a 20.1% higher 
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accuracy than the best accuracy without the intermediate domain (S-transform with Wasserstein loss: 

67.6%). The confusion matrix also reveals that the 87.7% accuracy is mainly because some inner ring 

faults are detected as outer ring faults. These two circumstances confirm that this approach can be 

applied in real-world applications. This test scenario also demonstrates that by using the intermediate 

domain, an accuracy of 84.0% can be attained by using only a small, labeled dataset and with no 

transfer learning. This represents an improvement of 32.3%. A significant number of samples are 

required to employ HHT and the S-transform. This is demonstrated by an accuracy of around 50% on 

a subset of all samples and an improvement to an accuracy around 70% when using all samples as 

labeled data. However, this accuracy is still lower than the accuracies of the intermediate domain. 

 

3. Comparison of Both Scenarios 

As in the two previous case studies, the intermediate domain reaches the highest accuracy in both 

scenarios (66.2% unsupervised and 87.7% semi-supervised). HHT and S-transform have a much lower 

accuracy (50.4% unsupervised and 67.6% semi-supervised). In addition, these accuracies are too low 

for a real-world implementation. This demonstrates again that the intermediate domain can be used 

on different bearing types without reparameterization. Among the two setups, the S-transform 

outperforms the HHT in both scenarios. Using LMMD and CORAL as transfer functions result in the best 

results. However, of all the use cases in this case study, the only one with a suitable accuracy for real-

life use with small datasets is the semi-supervised use case, which uses an intermediate domain and 

LMMD. 

7.2.4 Conclusion 

The evaluation, which has been performed with the help of three case studies, shows that the 

presented intermediate domain and the LMMD are effective for the execution of transfer learning 

tasks. In particular, the hybrid approach based on the intermediate domain leads to strong 

improvements compared to pure data-driven approaches like HTT and S-transform. When only a small 

subset of the target domain data is used, the intermediate domain results are the most accurate in all 

three test cases – for supervised learning as well as for transfer learning. Based on these three different 

use cases, it is verified that the intermediate domain is stable enough to be used for different bearing 

types without any reparameterization. In addition, when using models trained with the source domain 

dataset only, the results are also the best in most cases, indicating its supportive influence on transfer 

learning. This verifies the effectiveness of the intermediate domain and is consequently an answer for 

RQ3, which asks for the characteristics of an intermediate domain that is stable enough to be used on 

different bearing types without changing the intermediate domain parametrization or making big 

changes to a subsequent machine learning model. 
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Neither of the presented training models for the semi-supervised scenario is superior to the other. 

Compared to the traditional MMD and Wasserstein methods, the accuracy can be improved by using 

the LMMD loss function. In addition, LMMD outperforms CORAL and MK-MMD in most of the cases. 

An exception are two unsupervised learning cases where CORAL outperforms LMMD. Nevertheless, 

even by using these improved methods, pure unsupervised training is not always feasible. In case study 

1, where target and source domains are comparable, it may be a choice, but the results are insufficient 

for use in real-world scenarios. The case studies also show that transfer learning may not always 

produce optimal results. Sometimes a negative transfer occurs, and re-training with only a small 

amount of target data can lead to more accurate results. As described in Section 2.4.2, this can be 

traced back to two facts. First, it might happen when samples from the target domain are similar and 

distinctive, as in the case of artificial defects in the Case Western Reserve University dataset, where, 

for instance, all faults have the same size. Second, at least the first convolutional layers are often fixed 

in the case of transfer learning. It may be required to retrain more than the last layers if the source 

and target domains are highly dissimilar. However, in the given use cases, this is not the case. 

Case Study 2 demonstrates that using the intermediate domain and LMMD together improves 

accuracy by around 15% in comparison of using conventional semi-supervised learning techniques. 

However, in the real-world scenario (case study 3), where many different aspects, such as various 

rotational speeds and noise, are present in the target domain, it is possible to see the true potential of 

the suggested approach. The intermediate domain in conjunction with LMMD yields the most accurate 

results (accuracy of 87.7%). Considering these aspects, it can be contemplated that the results are good 

enough for the usage in real-world predictive maintenance applications, especially when the target 

domain is based on datasets with different rotational speeds. 

To summarize, this exploration also verifies the classification approach of Chapter 5, which is the 

answer for RQ1 that asks for a new classification method, which can take benefits of a dataset of a 

different bearing type for a partly labeled target dataset that is collected under different process 

conditions. 

7.3 Benchmark: Transfer Learning for Bearing Fault Classification 

7.3.1 Introduction 

This section benchmarks the domain adaptation classification framework presented in Chapter 5 

against the research work of Cheng et al. [83]. It is important to mention that the presented approach 

is intended to be a general approach for different bearing types. Therefore, the classification 

framework has not been adapted in any way. This is true for the parameters of the intermediate 

domain and the CNN. 
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As a first step, this section explains the research of Cheng et al. and its setup in detail. This is followed 

by a comparison of the results to the ones of the approach presented here. Finally, a conclusion is 

presented based on the results. 

7.3.2 Benchmark Description 

The research of Cheng et al. [83] uses the datasets of the CWRU for pure data-driven unsupervised 

transfer learning. The authors investigated different transfer learning scenarios with these datasets. 

One scenario is similar to the case study presented in Section 7.2.3.2, where the domain adaption is 

applied between the different but similar bearings of the fan-end and the drive-end side. In addition, 

both datasets contain samples of the same process conditions. As described in Section 3.3.2.5, there 

is no other research that is appropriate for a direct benchmark. The research of Cheng et al. was chosen 

as a benchmark because, to the best of the author’s knowledge, this is the only transfer learning 

approach between different bearing types that uses the publicly available CWUR datasets. This makes 

it possible to make a direct benchmark. 

The transfer learning of their research work has the following setup: 

• Two transfer learning tasks: The first is to transfer knowledge from the bearings of the drive-

end side to the fan-end side, and the second is to transfer from the fan-end side to the drive-

end side. 

• Each transfer task has four health conditions: inner ring fault, outer ring fault, ball fault, and 

normal. 

• The exact split between training and test samples is unknown. 

• In addition, it is also unknown if the split is bearing instance-based or sample-based. This 

means that it is unknown whether samples of a particular bearing instance are included in the 

test, training, or both datasets. 

• Five different test scenarios were run for 5,000 iterations each. The best accuracy for each 

scenario has been chosen. Based on the resulting five accuracies, the average and the 95% 

confidential interval of the classification accuracy were calculated to rate a specific transfer 

learning approach. 

This setup is used for six different transfer learning approaches. Some are classical machine learning 

approaches based on an SVM and others are deep learning approaches based on a CNN. Unfortunately, 

their research does not present all used parameters, and the authors did not respond to contact 

requests. However, the missing parameters are not important for establishing a direct benchmark 

based on the resulting accuracies between the proposed approach and the work of Cheng et al. A 

detailed description of the authors’ approaches is given below. 
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7.3.2.1 SVM 

Cheng et al. used three different transfer learning approaches based on an SVM. The detailed setup of 

these approaches is unknown. The transfer functions are specified as follows: 

o Transfer component analysis (TCA): This approach uses TCA to bring the source and 

the target domain close together. The TCA algorithm is based on an extended version 

of MMD. 

o JDA: As described in Section 3.3.2.4 in brief, JDA is also an extension of the MMD. It is 

a sum of the classical MMD and an MMD, which is calculated with the conditional 

distribution of each category as an input. 

o CORAL: This method is described in detail in Section 2.4.6.5. 

7.3.2.2 CNN 

The research of Cheng et al.  is not only focused on traditional machine learning but also on deep 

learning techniques. They presented two transfer learning approaches that are based on a CNN. The 

CNN uses the raw vibration data as input. For this reason, 1D convolutional and pooling layers are 

used. The detailed architecture with all used layers and their parameters of the CNN is shown in Table 

23. 

Table 23: This table shows the detailed architecture with all used layers and their parameters of the CNN used by Cheng et al. 
Each layer of the CNN is listed with its type: the output shape of each layer (none has to be replaced with the number of images 
that are used in a batch and is therefore dependent on the training parameter batch size) and the used activation functions. 
Unfortunately, the exact size of the input and of the layers is not mentioned in the paper. 

Layer Type Output Shape Activation 

0 InputLayer (None, [Unknown], 1)  

1 Conv1D (None, [Unknown], 8) ReLu 

2 MaxPooling1D (None, [Unknown], 8)  

3 Conv1D (None, [Unknown], 16) ReLu 

4 MaxPooling1D (None, [Unknown], 16)  

5 Dense (FC1)  (None, 128) ReLu 

6 Dense (FC2) (None, 4) Softmax 

 

In their research, Cheng et al. used the following three CNN-based approaches to classify the bearings 

in the target domain: 

• CNN: Here, no transfer learning is used. The network is pre-trained with the source domain 

and is directly tested with the target domain data. 

• Domain adaption network (DAN): This method is similar to the one presented in Section 5.4 

and used in Section 7.2.3, wherein the CNN is pre-trained with the source dataset. Afterward, 

the weights and biases of the convolutional layers are frozen, and only the dense layers are 

trained during transfer learning. Here, they used MK-MMD on the output of the first dense 

layer (Layer 5) to adapt the two domains. 
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• Wasserstein Distance based Deep Transfer Learning (WD-DTL): This is the novelty presented 

in the paper of Cheng et al. The difference between the DAN and the WD-DTL is that it uses 

the Wasserstein distance to accomplish the transfer learning between the source and target 

domain. 

7.3.3 Benchmark 

In order to compare the classification approach presented in this thesis with the work presented 

above, a setup with the following specifications for the unknown parameters has been used: 

• The dataset has been split into 70% training data and 30% test data, as in the case studies in 

Section 7.2, since the split ratio from [83] is not known. 

• The assignment of the different bearings to the training and test dataset is also not known. 

Therefore, five random assignments into training and test data have been chosen. The average 

of the results as well as the 95% confidential interval of the classification accuracy have been 

calculated.  

This benchmark has been done for the fan-end side as the source domain and the drive-end side as 

the target domain and vice versa. The results of both transfer learning tasks are listed in Table 24. 

Table 24: The resulting accuracies of the transfer learning tasks from drive-end bearing data to fan-end bearing data and vice 
versa. For each direction, five different assemblies of the data were used. In addition, the average and the 95% confidential 
interval of the five runs are listed. The runs are ordered according to the LMMD accuracy. 

Transfer Task Run Intermediate 
domain 
direct 
accuracy (%) 

LMMD accuracy 
(%) 

Average 
intermediate 
domain direct 
(%) 

Average LMMD 
(%) 

Drive-End -> 
Fan-End 

1 60.66 73.82 58.22 (± 2.51) 61.37 (± 6.55) 

2 60.69 62.78 

3 59.47 58.03 

4 55.39 56.18 

5 54.87 56.05 

Fan-End -> 
Drive-End 

1 69.94 78.70 67.76 (± 3.19) 72.34 (± 3.96) 

2 70.44 73.43 

3 65.78 72.31 

4 70.37 71.09 

5 62.25 66.15 

The accuracy of the transfer task from fan-end to drive-end is about 10% better than in the opposite 

direction. When considering the confusion matrix (see Appendix A.4), it can be seen that for all 

transfers from drive-end to fan-end, the classification accuracy for bearings in a normal condition is 

bad. In one case, no sample was classified correctly (see Figure 54a). By contrast, the accuracy of the 

normal condition for the transfer from the fan-end to the drive-end side is much better. In four out of 

five runs, all bearings in normal condition were classified correctly (see also Appendix A.4). Figure 54b 

shows an example where every bearing in the normal condition was classified correctly. 
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Table 25 presents a comparison between the results of the two transfer tasks carried out in this thesis 

and the research of Cheng et al. The displayed accuracies clearly indicate that for the case of the pure 

data-driven CNN model without transfer learning, the use of the CNN model, developed in Section 

5.4.2, together with the intermediate domain of Chapter 4, is superior (average accuracy of 62.99%) 

to the model of the research paper (average accuracy of 39.51%). By combining this approach with the 

LMMD loss function for transfer learning, an even higher accuracy is reached. For the transfer learning 

from the fan-end side to the drive-end side, the best accuracy (72.34%) is reached. The second-best 

accuracy is reached for the transfer learning from the drive-end side to the fan-end side. LMMD 

achieves the best average accuracy (66.85%) for both transfer directions. 

Table 25: Results of transfer learning with an intermediate domain and LMMD compared to the results of Cheng et al. The 
overall best result is achieved with the LMMD transfer function and the proposed intermediate domain, with an accuracy of 
66.85%. 

Author Transfer Approach Drive-End -> 
Fan-End 

Fan-End -> Drive-
End 

Average 

Cheng et al. 
[83] 

TCA 19.05 20.45 19.75 

JDA 57.35 (± 0.47) 66.34 (± 4.47) 61.85 (± 2.47) 

CORAL 47.97 39.87 43.92 

CNN 39.07 (± 2.22) 39.95 (± 3.84) 39.51 (± 3.03) 

DAN 56.89 (± 2.73) 55.97 (± 3.17) 56.43 (± 2.95) 

WD-DTL 64.17 (± 7.16) 64.24 (± 3.87) 64.20 (± 5.52) 

This thesis Intermediate domain 58.22 (± 2.51) 67.76 (± 3.19) 62.99 (± 2.85) 

LMMD 61.37 (± 6.55) 72.34 (± 3.96) 66.85 (± 5.26) 

7.3.4 Conclusion 

The best average accuracy of 66.85% for the transfer task from fan-end to drive-end and vice versa is 

achieved with the proposed intermediate domain combined with transfer learning by means of LMMD. 

This is better than the best accuracies of Cheng et al. who achieved an accuracy of 64.20% for the same 

task. It is also remarkable that when using the intermediate domain directly without any transfer 

a) b)  

Figure 54: Examples showing the confusion matrices of the third run for both transfer learning directions. The third run is 
only used to show a confusion matrix of a random result. All other confusion matrices are illustrated in Appendix A.4. a) 
shows the confusion matrix for drive-end to fan-end with an accuracy of 58.03% and b) shows the confusion matrix for 
fan-end to drive-end with a total accuracy of 72.13%. 
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learning an average accuracy of 62.99% is reached. This accuracy can be compared to the accuracy of 

39.51% of the CNN in Cheng et al. since neither setup utilizes transfer learning. In addition, for the task 

of knowledge transfer from fan-end to drive-end, the intermediate domain without any used target 

data for training has even better accuracies than all approaches in the paper by Cheng et al. To 

summarize, the intermediate domain, as well as transfer learning with the loss function LMMD, are 

superior to the techniques presented by Cheng et al. It should be mentioned that the benchmark used 

datasets in the source and target domain with the same process conditions and similar bearing types. 

This leads to the fact that the selected approach cannot show its full strength, which could lead to a 

higher accuracy difference, as can be seen in Sections 7.2.3.3 and 7.2.3.4, where different process 

conditions and bearing types are used in each domain. In addition, no optimizations of the 

classification framework for the given use case have been carried out. 

Unfortunately, it has been shown that when LMMD is used for transfer learning, the transfer task from 

drive-end to fan-end does not classify normal bearings correctly. Since neural networks behave like 

“black boxes” [192] and Cheng et al. did not publish any confusion matrices and also did not release 

them upon request, it is unknown whether this is a problem based on the dataset or the technology 

used. 

To summarize, this benchmark has shown that the transfer learning approach presented in Chapter 5 

delivers better accuracies than the current research of Cheng et al. This benchmark was achieved under 

the same conditions, so the results are directly comparable. In addition to the exploration of chapter 

7.2, this benchmark also answers RQ1, which requires a solution for the classification of the bearing 

health of different bearing types based on partly labeled target datasets. 
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7.4 Benchmark: Transfer Learning for Remaining Useful Life of Bearings 

7.4.1 Introduction 

This section presents a benchmark based on the IEEE PHM 2012 data challenge for the transfer 

learning-based RUL approach of Chapter 6. This challenge took place in 2012 and was hosted by the 

IEEE Reliability Society and the FEMTO-ST Institute. The focus was on the estimation of the RUL of 

bearings. Participation was open to both professional (industry) and scientific (university) attendees 

[178]. To the author's knowledge, there is currently no better or more widely used benchmark and 

reference dataset available. However, the only two recent transfer learning approaches targeting 

different bearing types by Xia et al. [158] and Huang et al. [159] do not use this benchmark. Each of 

them uses its own benchmark, which is not explained in detail. Therefore, it is impossible to benchmark 

the presented RUL approach against their approaches.  

This section is divided into benchmark description, benchmark execution, detailed benchmark analysis, 

and a conclusion. The detailed benchmark analysis examines the influence of the constraint described 

in Section 6.3 on particular datasets. This constraint is that the intermediate domain is only capable of 

analyzing bearings that are at least at degradation stage 3. The usage of this detailed benchmark 

analysis is in contrast to the structure of the two case studies for the classification task (Section 7.2 

and Section 7.3). They do not need this section because the classification approach does not have any 

constraints. 

Large parts of Section 7.4.3 and 7.4.4 of this benchmark have already been published in a research 

article by the author [112]. 

7.4.2 Benchmark Description 

This benchmark was designed to estimate the RUL of bearings. For this purpose, the datasets of the 

FEMTO-ST institute, which was already presented in Section 3.3.3.2, was used. Because these datasets 

are based on accelerators with a maximum sampling frequency of 25.6 kHz, it may be possible that 

other approaches that use the entire available frequency spectrum provide better results than the 

proposed approach, which is optimized for frequencies up to 5 kHz. According to the given benchmark 

setup of the challenge, the datasets were assigned into training and test data, as shown in Table 26. In 

addition, a different number of measurements were removed from the end of the test datasets so that 

each test dataset had a different RUL. Finally, the solutions of the different attendees of the challenge 

were evaluated according to the PHM score in Appendix A.5.1. 
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Table 26: Assignment of the different datasets to test and training data. 

Datasets Operating Conditions 

1,800 rpm; 4,000 N load 1,650 rpm; 4,200 N load 1,500 rpm; 5,000 N load 

Learning set Bearing1_1 Bearing2_1 Bearing3_1 

Bearing1_2 Bearing2_2 Bearing3_2 

Test set Bearing1_3 Bearing2_3 Bearing3_3 

Bearing1_4 Bearing2_4  

Bearing1_5 Bearing2_5  

Bearing1_6 Bearing2_6  

Bearing1_7 Bearing2_7  

 

7.4.3 Benchmark Execution 

This benchmark was run under the identical settings as in the IEEE PHM 2012 Data Challenge. 

Additionally, as described in Section 6.4.4., the RUL network was pre-trained with the drive-end 

dataset of Case Western Reserve University (see Section 3.3.2.2). The pre-trained network was then 

trained using these parameters: 

• Data usage: The input data was formatted according to the settings proposed in Chapter 6, 

which include a total input size of 85 measurements (n = 85) where every second measurement 

(s = 2) was skipped during the input preparation. 

• Intermediate domain: The rotational speed combined with the used bearing results in the 

following characteristic fault frequencies: Cage fault: 13 Hz, ball fault: 108 Hz, outer ring fault: 

168 Hz, and inner ring fault: 222 Hz. The intermediate domain uses four harmonics, which 

results in a total maximum used frequency of 888 Hz for the inner ring fault. As defined in 

Section 6.1, one requirement is to have a solution that can be used in use cases with current 

industrial triaxial accelerometers, which have a sampling rate of about 5,000 Hz. This 

requirement is fulfilled by having a maximum used fault frequency of 888 Hz. 

• Training settings:  

o Batch size: For the training, a batch size of 120 was employed. Due to the limits of the 

hardware being used, a bigger batch size could not be employed. 

o Learning rate: A learning rate of 0.0005 was used, as proposed in the literature [133].  

o Optimizer: During training, an Adam optimizer with the mean squared error (MSE) loss 

function was employed. This is based on the recommendation of Liu et al. [179] that 

MSE is the most sensitive loss function for measurement errors among all common 

loss functions. 

o Training epochs: 300 epochs were used for the training, since no better results are 

reached in the result of the loss function afterward. 
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The results of this evaluation are presented using the relative error (Er), its mean, and the PHM scoring 

algorithm (see Appendix A.5.1) in Table 27. In addition, the results of Sturisno et al. [155] (academic 

challenge winner), Porotsky and Bluvband [193] (industrial challenge winner), Zheng [194] (current 

research), and Zhang et al. [157] are also presented. The approach of Zhang et al. is currently the best 

in terms of mean relative error and PHM score. In addition, they compared their approach to other 

recent approaches, which had PHM scores from 0.26 to 0.62. A recent approach by Xu et al. [195] 

achieved a score of 0.84. However, since it is not peer-reviewed, it is not considered in this thesis. Each 

of the aforementioned research used purely data-driven approaches without the usage of physical 

parameters. 

Table 27: The relative error (Er), its mean, and the score of the different RUL approaches is shown in this table. Sturisno et al. 
and Porotsky and Bluvband are the winners of the IEEE PHM 2012 Data Challenge. They have scores of 0.3066 and 0.28. An 
example for a current approach is Zheng with a score of 0.2992. The best current approach by Zhang et al. has a score of 0.64. 
The proposed RUL approach has a score of 0.35, which represents a value approximately in the average. However, the 
approach is the worst when considering the mean of the Er due to two outliers (bearing 1_6 and bearing 2_5). If these two 
bearings were ignored, the presented approach would be good in this area as well. 

Bearing Sutrisno et 
al. (%) 

Porotsky 
and 
Bluvband 
(%) 

Zheng (%) Zhang 
et al. 
(%) 

Proposed RUL 
Framework 
(%) 

Proposed 
RUL 
Framework 
without 
1_6 and 
2_5 (%) 

Bearing 1_3 97 N/A 92.44 2.27 29.27 29.27 

Bearing 1_4 80 N/A 100 5.6 -78.35 -78.35 

Bearing 1_5 9 N/A 20.43 12.42 -159.24 -159.24 

Bearing 1_6 -5 N/A 7.76 10.96 -6413.71 N/A 

Bearing 1_7 -2 N/A 82.29 -22.46 35.37 35.37 

Bearing 2_3 64 N/A 82.93 0.99 -0.7 -0.7 

Bearing 2_4 10 N/A 3.22 5.76 -124.18 -124.18 

Bearing 2_5 -440 N/A 58.77 25.89 -919.58 N/A 

Bearing 2_6 49 N/A 5.63 -10.85 8.16 8.16 

Bearing 2_7 -317 N/A -121.94 1.72 12.13 12.13 

Bearing 3_3 90 N/A -54.38 -3.66 -0.96 -0.96 

Mean 105.73 N/A 57.25 9.32 707.42 40.76 

Score 0.3066 0.28 0.2992 0.64 0.35 0.43 

 

The PHM score is the used metric for the IEEE PHM 2012 Data Challenge. The proposed approach 

surpasses the two competition winners and many other approaches, such as Zheng [194], when using 

this metric. However, when using the relative error, the results of the suggested approach are the 

worst. As shown in Table 28, the mean relative error of 707.42% results from two outliers with a 

relative error of -6413.71% (bearing 1_6) and -919.58% (bearing 2_5). Without the two outliers, the 

benchmark results in a mean relative error of 40.76%. This is again a good result. It is conspicuous that 

Sturisno et al. , also have the highest relative error for bearing dataset 2_5. 
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The two outliers of the proposed approach (bearing 1_6 and bearing 2_5) have a negative Er. A 

negative Er means a too large, estimated RUL (see Eq. (29)). A possible reason for this could be that 

the behavior of those two test datasets is not covered by the trained network, which can be the result 

of the only few training datasets. This could lead to a trained network that is not general enough. 

Therefore, the degradation characteristics of these two datasets is not covered by the trained network. 

The complete datasets of these two bearings were added to the training data to validate this. It turned 

out that this did not result in any improvements, as would have been expected. Another possibility for 

this could be the limitation of the used approach mentioned in Section 6.3, where the bearing has to 

be at least at degradation stage 3. This assumption will be examined in the following subchapter. 

Table 28: Detailed summary of the results for the proposed RUL framework. Here, the nominal as well as the estimated RUL 
are shown. These two values are used to calculate the relative error Er. Er is then used to calculate A. The sum of all As is the 
calculated PHM score. For a detailed explanation of the calculation, see Appendix A.5.1. 

Bearing Nominal RUL (s) Estimated RUL (s) Er (%) A 

Bearing 1_3 5730.0 4052.6 29.27 0.36 

Bearing 1_4 2890.0 5154.4 -78.35 0.00 

Bearing 1_5 1610.0 4173.8 -159.24 0.00 

Bearing 1_6 1460.0 95100.2 -6413.71 0.00 

Bearing 1_7 7570.0 4892.6 35.37 0.29 

Bearing 2_3 7530.0 7582.6 -0.70 0.91 

Bearing 2_4 1390.0 3116.2 -124.18 0.00 

Bearing 2_5 3090.0 31504.9 -919.58 0.00 

Bearing 2_6 1290.0 1184.7 8.16 0.75 

Bearing 2_7 580.0 509.6 12.13 0.66 

Bearing 3_3 820.0 827.8 -0.96 0.88 

 Mean: 707.42 PHM score: 0.35 

Except for the aforementioned outliers, there is a good matching between nominal and estimated RUL 

for all other bearings. The relative error of bearing 2_3 and 3_3 is even less than 1%. The excellent test 

result of the two test cases cannot be due to similarity since bearing 2_3 has a very high nominal RUL 

(7530.0 s) and bearing 3_3 has a very low RUL (820.0 s). However, most other test cases also have good 

results, with a relative error in the lower two-digit range. 

There are also recent approaches, e.g., Zhang et al. [157], that have superior results to the one 

presented. To the best of the authors’ knowledge, the input of all superior approaches are features of 

the time-frequency domain. Unlike the suggested approach, that uses frequencies of less than 1,000 

Hz, they utilize the entire frequency range of the datasets as input. This frequency range extends to 

12,800 Hz. 

Another outcome of this benchmark is the influence of different process conditions. As described in 

Section 3.3.3.2, the datasets have slightly different process conditions that vary from 1800 rpm 

combined with a load of 4000 N for the datasets bearing 1_n to 1500 rpm combined with a load of 

5000 N for bearing 3_n. Since the results are very similar regardless of the process conditions the 
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current sample belongs to, it can be assumed that the affiliations are not relevant. This is true for the 

proposed approach as well as for the other approaches from the literature. In addition, the two outlier 

datasets also belong to different process conditions.  

7.4.4 Detailed Benchmark Analyses 

7.4.4.1 Introduction 

The benchmark execution revealed that the estimated RUL of most test datasets is more accurate than 

that of other current solutions. Unfortunately, the estimated RUL is wrong for two datasets (bearing 

1_6 and bearing 2_5). This chapter analyzes these datasets in detail. For this purpose, first, an analysis 

of a reference dataset (bearing 1_4) is given. Afterward, the datasets of bearing 1_6 and bearing 2_5 

are analyzed. Finally, a conclusion summarizes the findings. 

7.4.4.2 Analysis of Bearing 1_4 

This dataset was chosen to study the expected behavior during degradation. The total length of this 

dataset is 14,280 seconds, and a lifetime of 11,390 seconds was defined as the test position. The 

dataset is examined in the time and time-frequency domain to obtain an overall picture of the 

degradation process. 

a)  b)  

Figure 55: The sensor values of bearing dataset 1_4 over time: Figure a) shows the maximum acceleration value of the 
horizontal and vertical accelerators of each measurement record. In addition, the test position is marked. Figure b) shows the 
values of the horizontal sensor in the time-frequency domain. For this purpose, an FFT was performed for the measured values 
every 500 seconds. Both figures show an increased amplitude of the fault frequencies at the end of the lifetime [112]. 

Figure 55 shows the measured acceleration values over time. The time domain plot in a) shows the 

maximum measured value per record. Both accelerometers show increased accelerations at the test 

position. In addition, the accelerations reveal a rising tendency until the end of the lifetime. These 

characteristics match those in the time-frequency domain as well, which is shown in b). Figure 55 

indicates that the bearing is already in degradation stage 3 at the test position. This can be seen from 

the already-increased acceleration value as well as through the amplitude of the characteristic fault 
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frequencies in the time-frequency domain. Therefore, the presented intermediate domain-based 

approach is well-suited to estimating the RUL for this dataset. 

 

Figure 56: The amplitude of the entire frequency range (up to 12,800 Hz) of the horizontal accelerometer of bearing dataset 
1_4 over time. Additionally, to the fault frequencies, amplitudes of other frequencies also rise at the end of the bearing life. 

The 3D plot presented in Figure 56 shows that at the end of the bearing lifetime, not only the 

characteristic fault frequencies and its harmonics have an increased amplitude. Even before the fault 

frequencies appear, there are amplitudes with an increasing trend on other frequencies. These are the 

frequency areas from 1000 Hz to 6000 Hz and from 10,000 Hz to 12,000 Hz. 
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7.4.4.3 Analysis of Bearing 2_5 

The benchmark result of bearing 2_5 is a relative error of Er = -919.58 % at the test position, which is 

after a lifetime of 20,020 seconds. 

a)  b)  

Figure 57: The sensor values of bearing dataset 2_5 over time: Figure a) shows the maximum acceleration value of the 
horizontal and vertical accelerators of each measurement record. In addition, the test position is marked. Figure b) shows the 
values of the horizontal sensor in the time-frequency domain. For this purpose, an FFT was performed for the measured values 
every 500 seconds. A) and b) do not show a special characteristic at the test position, which is after 20,020 seconds. Figure a) 
shows an increased measured value at the end of the lifetime. Figure b) also shows slightly increased amplitudes towards the 
end [112]. 

As shown in Figure 57, this dataset does not have any signs of a degradation of stage 3 at the test 

position. Only towards the end of the RUL an expected increase of the acceleration values can be seen 

for both sensors in the time domain. However, only moderate increased amplitudes are recognizable 

at the characteristic frequencies and their harmonics. This can be a result of a distributed fault. As 

explained in Section 3.2.4, a distributed fault is a fault that affects the entire bearing and can, for 

instance, occur due to a lack of lubrication. Such an error does not necessarily have largely increased 

fault frequencies. 

The plot of the entire frequency range in Figure 58 is consistent with Figure 57. There are also only 

moderate changes in the amplitudes below 1,000 Hz. Significant changes in the amplitude are only 

visible at higher frequency ranges such as 1,000 Hz, 6,000 Hz, and 12,000 Hz. At the test position itself, 

the values of the frequency range around 1,000 Hz are just starting to increase. As already seen for 

bearing 1_4, these frequency ranges have an increasing trend towards the end of the bearing lifetime, 

which leads to the assumption that these are natural frequencies of the bearing components, as 

described in Section 3.2.4. 
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Figure 58: This plot shows the amplitude of the entire frequency range (up to 12,800 Hz) of the horizontal accelerometer of 
bearing dataset 2_5 over time. There is hardly any increased amplitude at frequencies lower than 1,000 Hz. This is the area of 
the characteristic fault frequencies. However, the frequency ranges of 1,000 Hz, 6,000 Hz, and 12,000 Hz have increased 
amplitudes at the end of the RUL. 
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7.4.4.4 Analysis of Bearing 1_6 

The benchmark result of bearing 1_6 is a relative error of Er = -6413.71 % at the test position, which is 

after a lifetime of 23,020 seconds. 

a)  b)  

Figure 59: The sensor values of bearing dataset 1_6 over time: Figure a) shows the maximum acceleration value of the 
horizontal and vertical accelerators of each measurement record. In addition, the test position is marked. Figure b) shows the 
values of the horizontal sensor in the time-frequency domain. For this purpose, an FFT was performed for the measured values 
every 500 seconds. A) and b) do not show a special characteristic at the test position after 23,020 seconds. As can be seen in 
a) and b), there are increased measured values before and after the test position but not at the test position. In addition, a 
high degree of scattering of the measured values is recognizable [112]. 

Figure 59 illustrates that, as with bearing 2_5, there are no signs of a monotonic degradation at the 

test position: Neither in the characteristic frequencies in the time-frequency domain nor in the time 

domain. 

It is worth to note that the measurement reveals a few short-duration high peaks from unknown 

source just before the test position. In contrast to bearing 1_4 and bearing 2_5, there is also an 

additional strong scattering of the accelerations throughout the bearing’s lifetime. 
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Figure 60: The amplitudes of the entire frequency range (up to 12,800 Hz) of the horizontal accelerometer of bearing dataset 
1_6 over time. This plot shows hardly any increase in the amplitude of the fault frequencies. However, an increased amplitude 
of the frequency ranges of 1,000 Hz, 6,000 Hz, and 12,000 Hz is recognizable towards the end. 

As already seen in the analyses of the other two bearings, Figure 60 again shows that the supposed 

natural frequencies at frequency ranges around 1,000 Hz, 6,000 Hz, and 12,000 Hz have an increasing 

trend. At the test position itself, all three frequency ranges are already excited. The noise over the 

entire frequency range, which has already been seen in Figure 59, is also evident here. 

7.4.4.5 Assessment of the Analysis 

The analysis of the reference dataset (bearing 1_4) shows a wear-out, as expected. The bearing has 

constant acceleration values up to the point when the degradation starts. From that point on, the 

measured acceleration values increase over time. This behavior is visible in the time domain as well as 

in the frequency domain in the range of the characteristic fault frequencies. In addition, the test 

position is inside the degradation area of the characteristic fault frequencies (degradation stage 3). 

This is different from the measurements of the two outlier datasets. Here, in both cases, the test 

position shows neither increased acceleration values in the time domain nor increased amplitudes of 

the fault frequencies. However, there are increased amplitudes in specific frequency ranges such as 

1,000 Hz and 6,000 Hz. Since all three examined bearings have an increasing trend of amplitudes in 

these ranges towards the end of their lifetime, this strongly indicates that these frequencies are the 

natural frequencies of the bearing components. Therefore, the test positions of the two outlier 

datasets are in degradation stage 2 rather than degradation stage 3. 

This analysis confirms the constraints given in Section 6.3 that the degradation process must be at least 

in degradation stage 3. As can be seen in the three analyses above, the amplitudes of the fault 
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frequencies are almost identical for every position before the beginning of this stage. Therefore, the 

LSTM can only determine the RUL value based on the absolute amplitude and not their correlation. 

However, as can be seen in the analyses above, the amplitudes before the beginning of degradation 

stage 3 differ from bearing to bearing even though they are in a healthy condition. Therefore, it can be 

assumed that the neural network, which does not have any information on the current lifetime, cannot 

differentiate between the individual positions in degradation stage 2. Therefore, it is only possible to 

determine the RUL if a degradation in the low-frequency range of the characteristic fault frequencies 

(degradation stage 3) is already taking place. 

7.4.5 Conclusion 

The performed benchmark has shown excellent results by using the presented RUL approach, in 

combination with transfer learning by using only low-frequency features. For transfer learning, a 

dataset of a completely different bearing can even be used. The achieved results are even superior to 

the winners of the IEEE PHM 2012 Data Challenge. Since the introduced approach is not using any 

frequencies above 900 Hz, this is particularly noteworthy. The estimated and the actual RUL are close 

for most of the test datasets used. However, two datasets had large deviations. This is due to the 

limitations of this approach explained in Section 6.3. This approach relies on the characteristic fault 

frequencies used by the intermediate domain and has therefore the best results for the RUL estimation 

of bearings in degradation stages 3 and 4. The test positions of the two outlier datasets are in 

degradation stage 2. Accordingly, the RUL estimation should only be used in a real-world scenario using 

this method if a degradation is already apparent. A realistic RUL value can only be estimated after that.  

The few other recent approaches that achieve a better PHM score, like Zhang et al. [157], utilize input 

in the time-frequency domain. Their RUL estimation approaches take the natural frequencies of the 

bearings into account, by using the entire bandwidth of the available frequencies. These frequencies 

are supposed to be at 1,000 . Certain research works especially concentrate on these high-frequency 

bands, such as the one of Yoo and Baek [196], which is presently the second-best approach with a PHM 

score of 0.62. Although the intermediate domain does not cover these frequencies, the frequency 

ranges of 6,000 Hz and 12,000 Hz cannot be captured with the industrial triaxial sensors currently 

available either. This kind of sensors, which are in the subject of this approach, frequently have a 

maximum sampling rate of around 5000 Hz (see Section 3.2.5). Therefore, this is also a constraint of 

the targeted sensors. 

Based on the findings presented above, this benchmark can confirm the RUL solution from Chapter 6, 

which is also the answer to RQ2 that asks for a new RUL method, which can take benefits of a dataset 

of a different bearing type for a labeled target dataset that is recorded with sensors with low sampling 

rates. 
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7.5 Conclusion 

The three case studies in this chapter have successfully verified the intermediate domain and the 

classification and RUL transfer learning approaches for predictive maintenance.  

The exploration of the classification approach (Section 7.2) demonstrates the superiority of the LMMD 

in combination with the intermediate domain over the state-of-the-art methods used. In the semi-

supervised transfer learning case of real bearing defects with strongly different process conditions 

(rotational speed) in the target domain, an increased accuracy of about 20.1% is achieved (87.7% for 

intermediate domain and LMMD vs. 67.6% for S-transform and Wasserstein). This approach was also 

successful in the direct benchmark with a state-of-the-art approach in Section 7.3. Here, an increase 

in the accuracy from 64.2% to 66.85% was achieved, although the approach in this benchmark cannot 

apply its full capabilities, such as support for different process conditions. Therefore, in response to 

RQ1, the presented approach is successfully validated in both case studies.  

The benchmark for the RUL application, which is based on the IEEE PHM 2012 data challenge, also 

confirmed the suitability of the presented RUL approach (Section 7.4). Furthermore, this transfer 

learning approach, which is optimized for using a restricted frequency spectrum, showed even better 

results than the winning approaches of the challenge. Thus, the approach for RQ2 is also validated. 

These case studies also verify the intermediate domain itself, which is the answer to RQ3. The 

exploration of Section 7.2 showed its supportive effect for transfer learning solutions in direct 

comparison to other sensor signal techniques. Furthermore, the three case studies in this chapter 

showed that the intermediate domain is stable enough to be used in different setups without any 

modifications. 

In addition, the case studies also provide answers to RC1 (appropriate methods), RC2 (constraints), 

and RC3 (combinations and optimizations). This becomes especially visible in Section 7.2, where 

possible combinations of the appropriate methods, feature extraction, and transfer learning loss 

function are extensively combined in a practical use case. The different accuracies of the different 

methods show their useable application areas. 
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8 Conclusion and Outlook 

8.1 Discussion 

8.1.1 Introduction 

As introduced in Section 1.1, one of the most demanded areas in predictive maintenance is the area 

of bearings. In this area, both RUL and classification are of interest. Furthermore, there is often a lack 

of usable bearing datasets to perform a reliable analysis. Accordingly, transfer learning is of particular 

interest for predictive maintenance tasks of bearings. For this reason, this thesis discussed the topic of 

"Transfer Learning for Predictive Maintenance Solutions" using the example of bearings. This chapter 

summarizes the answers to the specific research questions and the more general research challenges 

of Section 1.2. 

8.1.2 Research Questions 

During this thesis, three RQs were identified. They were subsequently answered in Chapter 4 (RQ3), 

Chapter 5 (RQ1), and Chapter 6 (RQ2). The answers to each question can be summarized in 

chronological order as follows: 

 

Nowadays, purely data-driven approaches are often used for deep learning. It is advisable to choose a 

hybrid approach to increase accuracy compared to existing approaches. For this purpose, a new 

intermediate domain that considers context parameters in the form of the characteristic frequencies 

of rotating machine components was developed in Chapter 4. This intermediate domain was explained 

using the example of the fault classification of bearings and can be used for two things: First, it is a 

normal feature extraction method that can be used for different machine learning approaches such as 

CNNs or LSTMs. However, by considering the characteristic frequencies of rotating components, it also 

automatically performs a kind of transfer learning. This is achieved by minimizing the difference 

between different types of the same component and different process parameters by creating 

separate layers for each characteristic frequency, thus leading to better transferability to another 

domain. An exploration also verifies this assumption in Section 7.2, where the usage of a pretrained 

network of a source domain results in better accuracies for a target domain than other techniques, 

such as HHT, without any training with target domain data. 

RQ3: What are the necessary characteristics of a feature extraction method that is well suited for 

transfer learning? This method must be stable enough to be used on different bearing types 

without changing its parametrization or making significant changes to a subsequent machine 

learning model for different bearing types. 
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The focus on the fault frequency also leads to a stable solution that can be used on different types 

without any modifications. This has been verified in the different case studies of Chapter 7. In each of 

them, the approach that uses the intermediate domain is the best approach for the given use case. 

This result is reached without any modifications of the intermediate domain parameters.  

 

As already mentioned in the answer to RQ3, a hybrid approach can increase the accuracy of deep 

learning solutions. Therefore, the proposed intermediate domain of Chapter 4 is used to preprocess 

the input data of the presented classification approach. This data is later used as input for a CNN. The 

CNN itself consists of doubled convolutional layers, which improve the significance of the features 

through an additional nonlinearity (see Section 5.4). For the transfer learning task, a new function for 

calculating the transfer loss has been developed based on the newly developed intermediate domain 

(see Section 5.5). This is called Layered Maximum Mean Discrepancy because the layers of the 

intermediate domain are used. In addition, MMD is used to calculate the discrepancy of each layer. 

The sum of the functions is then used as a loss function during transfer learning. Therefore, like the 

intermediate domain, it is also a hybrid approach. This approach has been evaluated in Section 7.2 

with the help of three different datasets. This new approach outperforms the existing state-of-the-art 

transfer learning techniques by increasing the accuracy by about 20.1%. In addition, a direct 

benchmark to another research work based on the same test setup has been performed in Section 7.3. 

This benchmark uses similar bearing types and process conditions in the source and the target domain, 

meaning that the advantages of the proposed approach cannot be fully exploited. Nevertheless, it still 

outperforms the other research by an accuracy of 2.6%. 

 

This research question is related to RQ1 and RQ3 in that the RUL approach extends the usage of sensor 

data of the classification approach with time dependencies. Therefore, the basic concept of using a 

hybrid approach that extracts valuable features into an intermediate domain is valid for both (see 

Section 6.3). However, before using the features of the intermediate domain for the regression task of 

an RUL estimation, they must be extracted. As already verified for the classification task, an 

appropriate approach is to use convolutional layers. Therefore, a second machine learning-based 

RQ1: What are the necessary characteristics of a new classification method, which can take 

benefits of a dataset of a different bearing type for a partly labeled target dataset that is collected 

under different process conditions? 

 

RQ2: What are the necessary characteristics of a new RUL method, which can take benefits of a 

dataset of a different bearing type, for a labeled target dataset that is recorded with sensors with 

low sampling rates? 
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feature extraction layer is used (Section 6.4.2). This layer has the same layout as the convolutional 

layers in the classification approach. For the RUL estimation itself, the use of an LSTM has been shown 

to be appropriate. This decision is based on the current state of the art in Section 3.3 and on the 

derivation/evaluation in Section 6.4. 

In addition to being used for the feature extraction, using the intermediate domain in combination 

with the convolutional layers has a significant advantage when performing transfer learning. As 

described in the answer to RQ3, the intermediate domain reduces the difference between the source 

and the target domain, which leads to a better transferability. In addition, through the convolutional 

layer-based feature extraction, it is possible to perform network-based transfer learning by pre-

training and freezing this layer with a dataset of another component. These source domain datasets 

are not limited to RUL datasets. As evaluated in Section 6.4.4, even a classification dataset can be used. 

This approach has been evaluated on an IEEE PHM 2012 data challenge-based benchmark in Section 

7.4. It outperforms the winning approach of this challenge with a PHM score of 0.35 versus 0.3066. A 

few other current approaches provide better results than the presented approach. However, these are 

not directly comparable since the proposed approach intentionally uses only a limited feature space 

to cover the intended industrial use of triaxial sensors, which have only a low sampling frequency. 

8.1.3 Research Challenges 

In addition to the specific and measurable research questions, this thesis has also contributed content 

to the three RCs introduced in Section 1.2. These RCs are more general than the RQs; therefore, a 

complete answer is not possible. However, the following input was given to address these challenges: 

 

RC1: Which methods are appropriate for predictive maintenance tasks of machines based on 

features of sensor data? 

With the rise of machine learning over the last decade, a lot of research has been performed on 

the topic of predictive maintenance. Therefore, the current state of the art covers manifold 

methods. However, open questions are related to their usage for real life predictive maintenance 

scenarios. 

• Are the methods appropriate for the analysis of sensor data?  

• Which feature extraction methods are suitable for the needs of predictive maintenance? 

• Which deep learning methods are available for this use case? 
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The first two research challenges are directly related and can be answered together. As shown in Figure 

61, there are two relevant types of methods for predictive maintenance based on sensor data. The 

first is the feature extraction method, which is used to extract more powerful indicators (features) 

from the raw sensor data and to reduce the amount of data. The second is the algorithm, which uses 

the extracted features to perform the predictive maintenance task. In the case of transfer learning, a 

third type is added, which is the transfer learning method itself. These three methods are discussed in 

greater detail below. 

 

Figure 61: Different methods for estimating the machine condition and their interactions. There are two major types of 
methods: feature extraction and machine. In addition, an optional third method is the used transfer learning method. Here 
the most common deep learning methods are shown. 

Feature Extraction Methods: 

As stated in Section 2.3, feature extraction methods for sensor data can be distinguished into three 

types (time domain, frequency domain, and time-frequency domain). Two important conditions need 

to be considered when choosing a feature extraction method. First, it is necessary to have an 

RC2: Under which constraints can the different methods be used? 

This question is especially important for the different predictive maintenance scenarios that are 

also based on a variety of different dataset types. On the one hand, amongst others the following 

questions arise regarding feature extraction: 

• Which methods are appropriate for stationary signals?  

• Which are even usable with nonlinear and non-stationary signals?  

On the other hand, different machine learning methods exist. Here, relevant questions include: 

• Which machine learning methods are well suited for small training datasets?  

• Which machine learning methods are only usable for large datasets?  

• Which methods are suited for transfer learning to overcome the problem of small 

datasets? 
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understanding of the data to decide which feature extraction method to use. For instance, it is essential 

to know if the data is non-stationary and nonlinear. In this case, simple time domain and frequency 

domain analyses are impossible. Instead, it would be necessary to use techniques like HHT or S-

transform. However, often this is not the case, and less complex and less computation time-intensive 

algorithms like STFT or even only time-domain features can be used. This is also true for the presented 

use case of predictive maintenance of bearings. Since the rotational speed during test runs can be kept 

constant, there is no need to use approaches like an S-transform. Therefore, the presented solutions 

for predictive maintenance of bearings (see Chapter 5 and Chapter 6) can use the presented 

intermediate domain of Chapter 4, which is comparable to an STFT in terms of time-frequency 

behavior. The predictive maintenance algorithm is the second consideration when selecting a feature 

extraction method. Classical machine learning algorithms like SVMs can only handle a few features. 

Therefore, time-domain features like the root mean square are often used. By using deep learning 

algorithms like CNNs, more detailed features, such as images, can be used. 

Machine Learning Methods: 

The selection of the machine learning method is another important decision. As described in Section 

2.2.1 and Section 3.2.6 using machine learning for predictive maintenance is superior to non-machine 

learning approaches, especially in complex scenarios where much fine-tuning would be needed. Many 

predictive maintenance approaches use classic machine learning methods like SVMs. Nevertheless, 

some challenges are harder to master with traditional machine learning only. This is, for instance, when 

there is only a small amount of training data, which may be partly or even completely unlabeled. In 

this context, deep learning methods like CNNs are more suitable. This is based on the possibility of 

easily using (deep) transfer learning to transfer knowledge from a well-known source dataset to a small 

and unlabeled target dataset (see Section 2.4). 

Transfer Learning Methods: 

Using transfer learning leads to another degree of freedom for the decision of the used methods: In 

this case, the transfer function is also of interest (see Section 2.4.3.5). The most common transfer 

learning methods for deep learning are network-based deep transfer learning, mapping-based deep 

transfer learning, and adversarial-based deep learning. Network-based and mapping-based 

approaches show promising results for the use-case of predictive maintenance of bearings (see 

Sections 3.3.2 and 3.3.3). These approaches can transfer parts of a pre-trained network of the source 

domain to the target domain. However, mapping-based approaches, which measure the probability 

distance of the target and the source domain, such as MMD, also show very promising results. Here 

again, different existing methods are available (see Section 2.4.6).  
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Different methods for feature extraction and transfer learning and their constraints on small labeled, 

partly labeled, or unlabeled datasets have been shown in the case studies presented in Chapter 7. The 

number of possible combinations of different methods leads directly to RC3. 

 

This challenge can be described with the help of predictive maintenance tasks for bearings. Considering 

that a combination of CNN and transfer learning is used for bearing fault classification, there are 

degrees of freedom in the feature extraction method and the transfer learning function (see Figure 

61).  

Feature Extraction: 

If a classical CNN is assumed, the input must be a matrix, as it is when using an image. For sensor 

signals, it is therefore common to transform the sensor data into the time-frequency domain. This 

transformation automatically gives a two-dimensional input for a CNN. A positive side effect of this 

transformation is that non-stationary signals can also be analyzed. This can be achieved, among others, 

by an S-transformation or an HHT. These are purely data-driven approaches. In addition, it is also 

possible to use hybrid approaches, which make use of the properties of the datasets and generate an 

intermediate domain and therefore improve the accuracy of the machine learning task (see Chapter 

4). 

Transfer Learning: 

For transfer learning, there are several distance-based transfer functions available, such as MMD, 

CORAL, MK-MMD, and Wasserstein. Since both the feature extraction method and the transfer 

function can be easily exchanged, it is possible to benchmark them directly. This was done while 

evaluating the classification approach, which was developed in Chapter 5 to answer RQ1 in the case 

studies in Section 7.2. These case studies have also shown that his approach is usable for partly and 

unlabeled data of the target domain. In addition, network-based transfer learning is also an option for 

deep learning approaches since, for these approaches, parts of the trained network can be transferred 

RC3: How can existing methods be combined and optimized to complement each other? 

There are many different methods, but it remains an open question how they can be used together 

to achieve optimal results. The combination of different feature extraction methods and transfer 

learning methods is of special interest here. 

• Are data-driven feature extraction approaches like the Hilbert-Huang transform or hybrid 

approaches, such as handcrafted intermediate domains, better suited for this task?  

• Based on the often-small datasets for a specific machine component, can transfer learning 

be a solution? 

• Is it possible to use such a solution even for partly or unlabeled datasets? 

•  
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to the target domain. This has been proposed for the solution for the classification approach in Sections 

5.4.3 and 5.4.4 (RQ1) as well as for the RUL approach in Section 6.4.4 (RQ2). In addition, there is also 

the possibility of using an intermediate domain like the one proposed in Chapter 4. Such an 

intermediate domain can also be a kind of transfer learning. 

Machine Learning Method: 

The combination of existing methods can also be a combination of different machine learning methods 

in the machine learning part. Especially for the estimation of the RUL, two machine learning-based 

methods combined in one approach are a valid option. One machine learning part can be used for the 

feature extraction while the other can be used for the RUL estimation itself. For instance, convolutional 

layers can be used for the feature extraction of the intermediate domain and can optimize the feature 

extraction by training of the neuronal network. The output of this network can then be used as input 

for a second machine learning part for the RUL estimation. This approach is used for the answer of 

RQ2 in Chapter 6. 

 

In summary, a transfer machine learning process consists of feature extraction, the transfer learning 

algorithm, and the machine learning algorithm. Each can act as a single method or a combination of 

several different ones, depending on the particular application. 

8.1.4 Conclusion 

To sum up, all research questions of this thesis have been answered successfully with the help of a 

new intermediate domain and solutions for classification and a remaining useful life task for bearings. 

Both solutions rely on transfer learning in the context of predictive maintenance. Those solutions are 

easy to implement and lead to better results than existing approaches by using a new hybrid approach. 

The two solutions and the intermediate domain have already been published in research papers [112, 

133]. In addition, a survey paper on the state-of-the-art for predictive maintenance of bearings has 

also been published [54]. 

In addition to answering the research questions, valuable content was provided to address the RC. This 

has been done with the solution for the RQs and also during the introduction and presentation of the 

state of the art in Chapter 2 and Chapter 3. 

8.2 Outlook 

The previous discussion has outlined the improvements in predictive maintenance, which can be 

achieved using transfer learning. However, further improvements to the presented transfer learning 

approaches are still possible. 
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8.2.1 Transfer Learning for Classification  

The presented classification solution was developed to provide a universal solution to different bearing 

types. Leaving this out of consideration, several approaches can be pursued. The first is to carefully 

investigate which lambdas (weights of the different loss functions) are best suited for a specific 

application. This contradicts the generic approach, which can be applied directly without modification. 

However, it might bring about improvements in classification accuracy.  

Another option is to vary the number of frozen layers or the learning rate. In the context of this thesis, 

one example examined how far the number of frozen layers influences the result and found no 

significant difference. However, the difference may be more significant for other datasets.  

In addition to modifications in the machine learning model, the input may also be modified. Here, the 

width of the frequency band and image size of the intermediate domain are points that may be 

adjusted. 

8.2.2 Transfer Learning for Remaining Useful Life 

The RUL approach is an extension of the classification approach. Therefore, the considerations of the 

previous chapter for the classification approach can also be considered for the RUL approach. 

However, there are also possible improvements that specifically address the requirements related to 

RUL. These include an optimization of the degradation model towards a nonlinear behavior or an 

optimization of the window size. 

However, as shown in the benchmark for the RUL approach (Section 7.4), the most promising 

improvement would be the integration of the excited natural frequencies of the components. For this 

purpose, a natural frequency layer would have to be added to the intermediate domain. Unfortunately, 

this approach comes with two downsides. The first is that the typically available classification dataset 

cannot be used as a source domain dataset since the natural frequencies cannot be estimated in a 

static classification dataset. Another disadvantage is that the use of triaxial accelerometers would no 

longer be possible because their frequency range would not be sufficient to measure the natural 

frequencies. In order to prove this possibility in the future, matching datasets are currently being 

collected.  
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A Appendix 

A.1 General 

A.1.1 Assignment of Datasets 

For each training and test run, the datasets are assigned to training and test data in the same way. The 

original assignment was random, but this assignment is kept constant according to Table 29 for each 

verification step. 

Table 29: Assignment of the different datasets for test and training data. 

Dataset Run 1 Run 2 

Training data Test data Training data Test data 

CWRU 130, 133, 144, 146, 
147, 156, 159, 160, 
197, 198, 199, 200, 
234, 235, 237, 247, 
248, 259, 260, 261, 
105, 108, 169, 170, 
172, 209, 210, 211, 
3001, 3002, 3003, 
3004, 97, 98, 99 

249, 158, 145, 132, 
236, 246, 131, 258, 
171, 212, 107, 106, 
100 

100, 97, 98, 130, 132, 
133, 144, 146, 147, 
159, 160, 197, 198, 
199, 200, 234, 236, 
237, 246, 247, 248, 
249, 258, 105, 106, 
107, 108, 169, 170, 
171, 172, 210, 212, 
3001, 3002 

99, 131, 235, 156, 158, 
260, 261, 145, 259, 
211, 209, 3003, 3004 

Junker 5000000808_c10_Y, 
5000000808_c50_X, 
5000000808_c50_Y, 
5000000808_w10_X, 
5000000808_w10_Y, 
5000000808_w50_X, 
5000000808_w50_Y, 
5000000808_w100_X, 
5000003177_c10_Y, 
5000003177_c50_X, 
5000003177_c50_Y, 
5000003177_w10_X, 
5000003177_w10_Y, 
5000003177_w50_X, 
5000003177_w50_Y, 
5000003177_w100_Y, 
5000003796_c10_X, 
5000003796_c50_Y, 
5000003796_w10_Y, 
5000003796_w100_Y, 
060412019_c10_X, 
060412019_w10_X, 
060412019_w10_Y, 
060412019_w100_Y, 
060706012_c10_X, 
060706012_c10_Y, 
060706012_w10_X, 
060706012_w100_X, 
060302049_w50_Y, 
060302049_w100_X, 
060302049_w100_Y, 

5000003796_w10_X, 
5000003177_c10_X, 
5000003796_c50_X, 
5000003796_w100_X, 
5000000808_w100_Y, 
5000003177_w100_X, 
5000000808_c10_X, 
5000003796_c10_Y, 
060706012_w10_Y, 
060412019_c10_Y, 
060706012_w100_Y, 
060302049_w50_X, 
060707037_w10_X 

060302049_w50_Y, 
060302049_w100_Y, 
060707037_w10_X, 
060707037_w50_X, 
060707037_w100_X, 
060412019_c50_X, 
060412019_c50_Y, 
5000000808_c10_X, 
5000000808_c10_Y, 
5000000808_c50_X, 
5000000808_c50_Y, 
5000000808_w10_X, 
5000000808_w50_X, 
5000000808_w50_Y, 
5000000808_w100_Y, 
5000003177_c10_Y, 
5000003177_c50_X, 
5000003177_w10_X, 
5000003177_w10_Y, 
5000003177_w50_X, 
5000003177_w50_Y, 
5000003177_w100_X, 
5000003177_w100_Y, 
5000003796_c50_X, 
5000003796_c50_Y, 
5000003796_w10_Y, 
5000003796_w100_X, 
060412019_c10_X, 
060412019_c10_Y, 
060412019_w10_X, 
060412019_w100_Y, 

060302049_w50_X, 
060302049_w100_X, 
5000000808_w100_X, 
5000003177_c10_X, 
5000003796_w100_Y, 
5000003796_c10_X, 
5000000808_w10_Y, 
5000003796_w10_X, 
5000003796_c10_Y, 
5000003177_c50_Y, 
060706012_w100_Y, 
060412019_w10_Y, 
060706012_w10_Y 
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060707037_w50_X, 
060707037_w100_X, 
060412019_c50_X, 
060412019_c50_Y 

060706012_c10_X, 
060706012_c10_Y, 
060706012_w10_X, 
060706012_w100_X 

A.2 Verification of the Intermediate Domain 

A.2.1 Frequency Conversion Methods 

This test scenario is used to benchmark different frequency conversion methods. The test dataset is 

the drive-end dataset of the CWRU. The images for the input are created based on 0.2 second time 

slices and an image size of 64x64 pixels. The compared signal processing techniques are envelope, 

windowed envelope, HHT, and S-transform. Since the envelope is a frequency-domain technique, the 

resulting image is only 64x1 pixel in size. Therefore, a 1D CNN is used for the envelope, whereas a 2D 

CNN is used for all other techniques. The results, presented in Figure 62, show that the windowed 

envelope is the best technique in terms of classification accuracy. 

 

 

Figure 62: Classification accuracies of three different labels for bearings with different frequency and time-frequency 
conversions. The best accuracy is achieved with the windowed envelope. 

A.2.2 Signal Segmentation 

Sensors used in machines provide a stream of measuring values. These must be segmented before 

their usage. This test scenario shows the influence of the segment length. During this process, an 

optimum length is also determined. Therefore, the drive-end dataset provided by the CWRU was used. 

The images for the input are created based on 0.11, 0.2, and 0.7 second time slices and an image size 

of 64x64 pixels. The raw signal data of these slices was converted with the help of the windowed 

envelope technique. As shown in Figure 63, all accuracies are nearly equal. 
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Figure 63: Accuracies of samples of different lengths. All samples are generated with the windowed envelope method. All 
accuracies are between 99% and 100%. 

A.2.3 Different Bandpass Width 

When selecting a frequency-selective filter, it is essential to select the bandpass width. As stated in 

Section 4.5, this must be done to respect the wear-out of components and manufacturing tolerances. 

Therefore, a test scenario with a bearing dataset of a real-world scenario is used. This dataset is a 

bearing dataset of a grinding spindle with noise. The bearing fault frequencies are filtered with a 

bandpass width of 5 Hz, 10 Hz, and 20 Hz. For each fault frequency, the first four harmonics are used. 

As shown in Figure 64, the best accuracy is reached with a bandpass width of 10 Hz. 

 

Figure 64: Accuracies for different bandpass widths of a frequency-selective filter, which uses four harmonics. The best 
accuracy is achieved with a width of 10 Hz. The lower accuracy for 5 Hz might be related to the fact that the actual fault 
frequency in some samples defers more than 5 Hz through wear-out and manufacturing tolerances. On the other hand, the 
20 Hz frequency band might be too wide, so that noise gets into the band, which can actually be filtered out. 

A.2.4 Frequency-Selective Filter with Different Harmonics 

The proposed intermediate domain is based on using the harmonics of fault frequencies. This test 

scenario is employed to illustrate the importance of the harmonics. Therefore, the same dataset as in 

A.2.3 is used. All images are based on 0.2 second time slices and an image size of 64x64 pixels. A 

frequency band of 10 Hz is used for the frequency-selective filter. As shown in Figure 65, the highest 

accuracy is reached by using four harmonics. The results also show that if the number of harmonics is 
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too low, an information loss exists that leads to a lower classification accuracy than using the entire 

windowed envelope. 

 

Figure 65: Accuracies for bearing fault classification with the help of a windows envelope in a noisy environment. The highest 
accuracy can be reached by applying a frequency-selective filter with four harmonics. 

A.2.5 Image Size 

For evaluating the effect of the size of the input images, the dataset of the CWRU dataset and of the 

spindle dataset have been used. Images in a 64x64 pixel and 128x128-pixel resolution were created 

from these datasets. As shown in Figure 66, the accuracies of both resolutions are nearly equal. In one 

case, the 64x64 pixel image has a slightly better result; in the other, the 128x128 pixel image has a 

better result. On average, the accuracy of the 64x64-pixel image is better than that of the 128x128-

pixel image. 

 

Figure 66: Accuracies of different sizes of the input image. For the CWRU dataset, a 128x128 pixel image has a slightly better 
accuracy. For the Spindle dataset, the 64x64 performs better. On average, the 64x64 pixel has the best accuracy. 
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A.3 Verifications of the Transfer Learning Approach for Classification 

In order to validate the decisions of the different development steps for the presented classification 

approach of Chapter 5, different test scenarios have been used. If not mentioned otherwise, the test 

scenarios use the classification approach developed in this thesis. Bearing datasets, which are split into 

70% training data and 30% test data, are used for all scenarios. Each test scenario is run two times with 

a different training and test data split. The mean of the accuracies of both runs is used as the result. 

The split is identical between all test cases in one test scenario. 

A.3.1 Number of Convolutional Layers 

This test scenario examines the influence of the number of convolutional layers in a row before a 

pooling layer appears in a CNN model. The model of the CNN is always the same as that described in 

Section 5.4.2. The only difference is the number of convolutional layers (single, double, and triple). For 

the verification, samples of the CWRU dataset of the drive-end side and a spindle dataset were used. 

As shown in Figure 67, the best accuracy is reached when using a double convolutional layer approach 

in both cases. 

 

 

Figure 67: Comparison of a different number of convolutional layers in series. Two different test cases have been used. For 
both tested datasets, the double layer approach has the best accuracy. 

A.3.2 Dropout Factor 

This test scenario examines different values of the dropout factor during the training of a CNN. For the 

verification, samples of the CWRU dataset on the drive-end side were used. As shown in Figure 68, the 

accuracies seem to be independent of the dropout factor. There is only a small difference, which might 

be caused by the stochastic nature of the algorithms and the numerical precision. 
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Figure 68: Different values for the dropout factor in the fully connected layers of the CNN. There is no significant difference 
between the accuracies. 

A.3.3 Loss function 

This test scenario compares the accuracy of the Kullback Leibler divergence with the cross-entropy. 

Therefore, a spindle dataset and the dataset of the CWRU are used. The samples are supervised 

trained, one time with the Kullback Leibler divergence as loss function and the second time with the 

cross-entropy as loss function. As can be seen in Figure 69, none of them is superior. In one case, cross-

entropy as a loss function has a slightly better accuracy. In the other case, Kullback Leibler divergence 

has a better accuracy.  

 

Figure 69: Resulting accuracies of CNN trainings with cross-entropy and Kullback Leiber divergence. None of them is superior. 

A.3.4 MMD as Basis for LMMD 

To ensure that MMD is a well-suited starting point for the LMMD technique, a comparison of the 

LMMD approach with other loss functions was performed. For this purpose, the University of 

Paderborn dataset was used as the source dataset. The target dataset was a spindle dataset with 
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different rotational speeds. The training scenario was semi-supervised. MMD, MK-MMD, and CORAL 

were tested. MMD and CORAL performed almost equally well. 

  

Figure 70: Comparing the results of using loss function as the basis for the LMMD approach. The best results can be achieved 
with CORAL and MMD. 

A.4 Benchmark of the Transfer Learning Approach for Classification 

This chapter shows the confusion matrices of the benchmark of Section 7.3. This benchmark is based 

on two different transfer-learning tasks. For each task, five runs with a random dataset assignment to 

training and test data have been performed. The first task was to transfer knowledge from drive-end 

bearings to fan-end bearings. The confusion matrices of these five runs are presented in Figure 71 

through Figure 75. The second task was to transfer knowledge from fan-end bearings to drive-end 

bearings. For this, the results are shown in Figure 71 through Figure 80. 

 

Drive-End to Fan-End: 

 

Figure 71: Confusion matrix for the transfer-learning task from drive-end to fan-end. This matrix shows run 1 with an accuracy 
of 73.82%. 
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Figure 72: Confusion matrix for the transfer-learning task from drive-end to fan-end. This matrix shows run 2 with an accuracy 
of 62.78%. 

 

Figure 73: Confusion matrix for the transfer-learning task from drive-end to fan- end. This matrix shows run 3 with an accuracy 
of 58.03%. 
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Figure 74: Confusion matrix for the transfer-learning task from drive-end to fan-end. This matrix shows run 4 with an accuracy 
of 56.05%. 

 

Figure 75: Confusion matrix for the transfer-learning task from drive-end to fan-end. This matrix shows run 5 with an accuracy 
of 56.18%. 
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Fan-End to Drive-End: 

 

Figure 76: Confusion matrix for the transfer-learning task from fan-end to drive-end. This matrix shows run 1 with an accuracy 
of 78.70%. 

 

Figure 77: Confusion matrix for the transfer-learning task from fan-end to drive-end. This matrix shows run 2 with an accuracy 
of 73.43%. 
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Figure 78: Confusion matrix for the transfer-learning task from fan-end to drive-end. This matrix shows run 3 with an accuracy 
of 72.31%. 

 

Figure 79: Confusion matrix for the transfer-learning task from fan-end to drive-end. This matrix shows run 4 with an accuracy 
of 71.09%. 
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Figure 80: Confusion matrix for the transfer-learning task from fan-end to drive-end. This matrix shows run 5 with an accuracy 
of 66.15%. 
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A.5 Verification of the RUL approach 

A.5.1 Scoring Algorithm for RUL Estimation Tasks 

There is a common metric for validating different RUL algorithms that is based on the percent of 

prediction error. This metric was also used during the IEEE PHM 2012 Data Challenge [178]. It is based 

on the relative error (Eri), which is specified by Eq. (27). The parameters of actual RUL (RUL_Act) and 

estimated RUL (RUL_Est) are used, while parameter i is the index of the test dataset. 

𝐸𝑟𝑖 = 100 ∗  
𝑅𝑈𝐿_𝐴𝑐𝑡𝑖 − 𝑅𝑈𝐿_𝐸𝑠𝑡𝑖

𝑅𝑈𝐿_𝐴𝑐𝑡𝑖
 (27) 

Er is rated in two different ways. Cases in which the calculated RUL is lower than the actual RUL (Er > 

0) are less severe than cases in which the calculated RUL is longer than the actual RUL (Er < 0). In the 

former case, a component is replaced too early, which only leads to a short, planned downtime and 

increased material costs, whereas the latter case leads to an unpredicted and thus unplanned failure. 

For this reason, the weighting is carried out by calculating a score according to Eq.(28). 

𝐴𝑖 =  {
𝑒− ln 0.5∗𝐸𝑟𝑖/5                ∀ 𝐸𝑟𝑖 ≤ 0

𝑒− ln 0.5∗𝐸𝑟𝑖/20               ∀ 𝐸𝑟𝑖 > 0
 (28) 

This equation leads to the scoring function shown in Figure 81. 

 

Figure 81: Scoring function Ai as a function of the relative error Eri. A negative Eri represents a longer estimated RUL than the 
actual RUL. 

The score for the overall prediction is finally calculated according to Eq. (29), which is the median of 

the Ais of all N test datasets. 

𝑠𝑐𝑜𝑟𝑒 =  
∑ 𝐴𝑖

𝑁
𝑖=1

𝑁
 (29) 

In order to avoid referring to only a "score" in the thesis, this score is also titled as PHM score. 

A.5.2 Different Fully Connected Layers 

This test scenario is used to benchmark different LSTM and fully connected layer layouts for the RUL 

task. The test dataset is the FEMTO dataset. The images for the input are created based on 0.2 second 

time slices and an image size of 64x64 pixels. A time window of 170 measurements was used, but only 

every second measurement was employed. This leads to the usage of 85 measurements as input. For 

the training of 300 epochs, a batch size of 120 is used. 
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The results, which are presented in Table 30, show that layout 2 is the best in terms of PHM score. 

Table 30: Different evaluated LSTM layouts. The number of outputs for each layer is given in parentheses. For comparison, the 
sore of each layout for the RUL task of the IEEE PHM 2012 Data Challenge has been calculated. Layout 2 has the best results. 

 Layout 1 Layout 2 Layout 3 

Used layers CNN (8192) CNN (8192) CNN (8192) 

LSTM (128) LSTM (128) LSTM (128) 

LSTM (64) LSTM (64) LSTM (64) 

LSTM (32) LSTM (32) Dense (32) 

Dense (1) Dense (32) Dropout (rate=0.5) 

 Dropout (rate=0.5) Dense (1) 

 Dense (1)  

PHM score 0.1094 0.35 0.05647 

A.5.3 Pre-trained Convolutional Layers 

This test case is used to state the importance of using network-based transfer learning in the form of 

transferring pre-trained convolutional layers. For this purpose, the FEMTO dataset was used again. The 

pre-trained network was trained with samples of the CWRU dataset. 

As shown in Figure 82, the PHM score of a network that uses pre-trained convolutional layers is 

superior. 

 

Figure 82: Comparison of the PHM scores between a neuronal network with pertained convolutional layers and one without 
pre-training. The pre-trained network has a much higher PHM score. 
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