

Engineering of Safety in Automated
Safety-Critical Systems through
Design-time Verification and Runtime
Validation of Environment Assumptions

Doctoral Thesis
(Dissertation)

to be awarded the degree of
Doctor rerum naturalium
(Dr. rer. nat.)

submitted by

Adina Aniculaesei
from lasi, Iagi County, Romania

approved by the Faculty of Mathematics, Computer Science
and Mechanical Engineering,
Clausthal University of Technology

2022

Dissertation Clausthal, SSE-Dissertation XXX, 2022
Chairperson of the Board of Examiners
Prof. Dr. Der Die Was

Chief Reviewer
Prof. Dr. Andreas Rausch

2. Reviewer
Prof. Dr. Stefan Wagner

3. Reviewer
Prof. Dr.-Ing. habil. Alois Christian Knoll

Date of oral examination: XX . XX. XXXX

Abstract

Automated systems are often used in highly safety- and mission-critical applications.
Failure of automated systems could lead to mission failure and endanger human life.
Being complex and safety- and mission-critical in their nature, automated safety-critical
systems benefit from a structured and rigorous system development process with clearly
specified tasks for verification and validation in order to make sure that such systems
are safe. Formal verification methods used at design-time can provide proof of the
system’s correctness with respect to a safety property specification. Yet, design-time
verification methods can reason only on the basis of the information which is available to
the systems engineers at design-time. Furthermore, design-time verification techniques
have scalability issues, which limits the size of the systems that can be verified. Testing
is used to complement design-time verification and overcome its scalability issues. During
system test, test oracles in form of property monitors check whether the behavior of the
system fulfills the system requirements.

During the system operation, unpredicted events occurring in the operational en-
vironment result in safety hazards. These hazards do not appear as consequence of
system faults, but because assumptions made about the operational environment during
design-time are not valid anymore. The property monitors designed to check the sys-
tem requirements cannot detect the assumptions violation, because there is no explicit
definition of the environment assumptions at system’s design-time.

In order to address these limitations, this thesis proposes an engineering approach
which extends the quality assurance goals for automated safety-critical systems towards
the verification and validation of environment assumptions. During system design,
environment assumptions are explicitly defined and monitors are derived from the
environment assumptions definition. During system testing, the quality assurance goals
are to test the environment assumptions monitor as well as the implemented system.
Requirements validation means both the validation of the system safety requirements as
well as the validation of the environment assumptions. The approach is integrated in the
system development process and is evaluated on the basis of two cases studies: a mobile
service robot and an automotive function for accurate vehicle speed estimation.

Acknowledgment

This thesis is the result of many years of research at the Institute of Software and Systems
Engineering (ISSE) of TU Clausthal and would not have been possible without the
support many people throughout this time. I would like to thank my doctoral supervisor
Prof. Dr. Andreas Rausch for his guidance throughout the development and writing of
this thesis. I especially want to thank Prof. Dr. Andreas Rausch for his patience with
me in the first meetings in which we discussed my PhD topic. He managed to create an
environment for the fruitful exchange of ideas through lively discussions on the topic of
this thesis as well as exciting meetings in various research projects carried throughout my
years as a doctoral researcher. I feel that the talks we had in these meetings have enriched
me and have contributed significantly to my professional and personal development. I
would like to also thank Prof. Dr. Stefan Wagner and Prof. Dr. habil. Alois Knoll for
taking over the task to revise this thesis as external reviewers.

I would further like to thank several past and present colleagues whose suggestions
and feedback have been a valuable input for my work on this thesis. I thank my former
colleagues, Prof. Dr. Sebastian Herold, Dr. Constanze Deiters, Dr. Christian Bartelt, Dr.
Thomas Schéfer (née Ternite), Dr. Christian Bartelt, Dr. Dirk Niebuhr, and Dr. Holger
Klus. They made me feel welcome and helped me adjust in my first years at the Chair
of Sofware Systems Engineering, which is the precursor of ISSE. Further thanks go to Dr.
Malte Mauritz and Dr. Stefan Ruhl. Their PhD theses have served as an inspiration on
how a PhD thesis should be written. I would like to further thank former colleagues Tim
Warnecke, Jorg Grieser and Karina Rehfeldt. I am grateful for the fruitful discussions we
had during the projects we worked on together on the iServelU and VanAssist projects. I
would also like to thank Daniel Arnsberger, Peer Denecke, Jan Toennemann, and Andreas
Vorwald, with whom I had the opportunity of writing exciting papers on the verification
and validation of autonomous robots and automated vehicle functions, some of which
are featured in this thesis.

Special thanks go to Meng Zhang and Andreas Vorwald for the great collaboration and
the fun we had in the projects Accurate Speed Estimation of Verification of Ego-Vehicle
Speed and Verification of Exhaust Aftertreatment Systems. Meng Zhang and Andreas
Vorwald receive further thanks for taking over many of the administrative tasks in the
research group of Dependable and Autonomous Cyber-Physical Systems during the final
months of writing this thesis.

I would like to thank Dr. Christoph Knieke, Dr. Marco Kérner, and Henrik Lisner
(née Peters) for providing valuable support during the projects carried out in collaboration
with Volkswagen. I would also like to thank Prof. Dr. Marco Kuhrmann, Dr. Christoph
Knieke and Dr. Peter Engel for the exciting time we had during our teaching activities
in the Software Systems Engineering and Informatik I lectures.

I want to thank Steffen Kiipper, Sebastian Lawrenz, Dirk Herrling and Mirco Schindler
for helping me navigate the working environment at ISSE and providing valuable input
on how to find my feet on the sail ship Petrine, even though I do not know how to swim.
I would also like to thank Thomas Bravin, Simone Dahms, and Nadine Hahn for their
support with any technical and not so technical questions I had during the years, getting
me out of trouble more times than I can count, and lending a listening ear during the
coffee breaks.

I want to thank Katharina and Holger Peters, and their son Erik for their friendship
and the home cinema weekends they organized throughout the years, which were a great
outlet for laughter and relaxation.

My deepest thank you goes to my parents, Gherghina and Vasile, for their unwavering
encouragement and support throughout my school and university education. This thesis
is dedicated to you.

Contents

Abstract

Contents

List of Figures

List of Tables

1. Introduction

1.1.
1.2.
1.3.

Motivation,
Goals and Contributions of this Thesis
Thesis Structure,

2. Fundamental Concepts and Approaches

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

Definitions of the Problem Domain
2.1.1. Safety-critical Systems oL
2.1.2. Functional Safety and Safety of the Intended Functionality
2.1.3. Automated Systems versus Autonomous Systems
2.1.4. Uncertain Environments
System Life Cycle and Development Process
2.2.1. System Development Process according to ISO 26262
2.2.2. System Development Process according to ISO/PAS 21448
Property Specification for Automated Safety-critical Systems
2.3.1. Timed Computation Tree Logic
2.3.2. Probabilistic Computational Tree Logic
System Modeling for Automated Safety-Critical Systems
2.4.1. Timed Automata
2.4.2. Short Overview of Modeling Formalisms for Probabilistic Systems
2.4.3. Markov Decision Processes
Verification and Validation of System Properties in Automated Safety-
critical Systems
2.5.1. Testing
2.5.2. Design-time Verification 00
2.5.3. Runtime Verification L.
SUMMATY 0 o v v v e e e e e

vii

S Ot w W

10
10
11
13
18
19
20
29
36
37
40
44
45
47
49

53
o4
o8
69
74

Contents

3. Problem Analysis 75
3.1. Motivational Example: Mobile Service Robot 76
3.2. Overall Development Process 81
3.3. Requirements Elicitation and Analysis 83

3.3.1. Informal Specification of System Requirements 83
3.3.2. Formal Specification of System Requirements 88
3.4. Safety Analysis 95
3.5. System Design 100
3.5.1. Usage of Formal Models in System Design 101
3.5.2. Environment Modelo 102
3.5.3. Technical System Model 104
3.5.4. Overall System Model 104
3.5.5. Specification of System Properties 108
3.5.6. Design-Time Verification 109
3.6. System Implementation. 112
3.7. System Test 113
3.8. Requirements Validation 118
3.9. Analysis of Emerging Challenges 118
3.9.1. Challenges of Design-Time Verification 119
3.9.2. Challenges of Testing 120
3.10. Scope of this Thesis Lo 123
3.10.1. Introduction of Runtime Monitoring of Environment Assumptions 124
3.10.2. Research Questions of this Work 125
311, Summary . .o oL 126

4. Solution Concept 129

4.1. Runtime Monitoring of Environment Assumptions 130
4.1.1. Integration in the System Development Process 131
4.1.2. Overview of Concept 132
4.1.3. Runtime Monitoring of Environment Assumptions by Example . . 136

4.2. Revisiting the Motivational Example 143

4.3. Requirements Elicitation and Analysis 149
4.3.1. Informal Specification of System Requirements 149
4.3.2. Formal Specification of System Requirements 154

4.4. Safety Analysis 156
4.4.1. HARA Analysis of the Revisited Motivational Example 156
4.4.2. “Safe Enough” for Autonomous Safety-Critical Systems 161
4.4.3. Extending Safety Requirements with Environment Assumptions . 163
4.4.4. Informal Specification of Extended Safety Requirements. 165
4.4.5. Formal Specification of Extended Safety Requirements 167

4.5. System Design 174
4.5.1. Environment Modelo 174
4.5.2. Technical System Model 180

ii

4.5.3. Design Time Verification 185

Contents

4.5.4. Analysis of the Environment Assumptions
4.5.5. Formal Definition of Environment Assumptions Monitors
4.6. System Implementationo
4.6.1. Implementation of the System Model
4.6.2. Realization of the Environment Model
4.6.3. Realization of the Environment Assumptions Monitors
4.7. System Test
4.7.1. Testing the Implemented System
4.7.2. Testing Environment Assumptions Monitors
4.8. Requirements Validation 0L
4.8.1. Environment Assumptions Validation via Runtime Monitoring . .
4.9. Summary

. Case Studies

5.1. Case Study 1: Mobile Service Robot

197
198

5.1.1. Evaluation in the Operational Environment in the iserveU Project 198

5.2. Case Study 2: Automotive System Function for Accurate Vehicle Speed
Estimation
5.2.1. Overview of Vehicle Speed Estimation Function
5.2.2. Requirements Elicitation and Analysis
5.2.3. Safety Analysis
5.2.4. System Design
5.2.5. System Implementation, ..
5.2.6. System Test
5.2.7. Requirements Validation

5.3, SUMMATY . . . v v vt et

. Contributions with respect to Related Work
6.1. Obtaining Environment Assumptions
6.1.1. Manual Methods for Specification of Environment Assumptions
6.1.2. Automated Methods for Obtaining Environment Assumptions
6.2. Assumptions in Verification and Validation Processes
6.2.1. Assumptions in Design-time Verification
6.2.2. Controller Synthesis and Environment Assumptions
6.2.3. Combining Design-time Verification with Runtime Validation . . .
6.3. Comparison of the Proposed Approach with Related Work
6.3.1. Comparison with the Manual Methods for Environment Assump-
tions Specificationo Lo
6.3.2. Comparison with Automated Methods for Obtaining Environment
Assumptions
6.3.3. Comparison with Methods that integrate Assumptions in Verifica-
tion and Validation Processes
6.4. Summary

ii

Contents

7. Summary and Conclusion
7.1. Discussion of Results
7.1.1. Contributions

7.1.2. Limitations of this Thesis and Future Work

7.2. Summary

A. Addendum to Case Study 2: Vehicle Speed Estimation Function
A.1. Design-time Verification of Extended Safety Requirements ESR2 - ESR4
A.2. Definition of Runtime Monitors for the Environment Assumptions of ESR2

-ESR4 . ..o oo

A.3. System Test of the Environment Assumptions Monitors of ESR2 - ESR4

A.3.1. Scenario 1: Smooth Driving
A.3.2. Scenario 2: Dynamic Driving

Bibliography

iv

257
257
258
260
264

267
267

269
270
270
272

275

List

1.1.

2.1.
2.2.

2.3.

2.4.
2.5.
2.6.

2.7.

2.8.
2.9.
2.10.
2.11.
2.12.

3.1.
3.2.

3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

3.10.
3.11.

3.12.

of Figures

Overview of this Thesis Outline. 7
The System Development Process of ISO 26262 (cf. [Int1lb]). 21
ISO 26262 - The Concept Phase in the System Development Process (cf.

Intllc]). . . o o o 23
ISO 26262 - The Structure of the Safety Requirements through the System

Development Process (cf. [Intllc]). 25
ISO 26262 - The Hardware Development Process (cf. [Int11f]). 26
ISO 26262 - The Software Development Process (cf. [Int11f]). 27
ISO/PAS 21448 - Visual Intuition of the Goal in the SOTIF System

Development Process (cf. [Int19]). 0L 31
ISO/PAS 21448 - Operative Flowchart of the SOTIF System Development

Process (cf. [Int19]). L 32
Visual Intuition of TCTL Formulae used in UppPAAL (cf. [BDLO4]). . . . 41
Visual Intuition of Testing. 58
Process of Model Checking (cf. [BKO8]). 61
Visual Intuition of Model Checking. 62
Visual Intuition of Probabilistic Model Checking. 63

Mobile Service Robot: Physical Overview of the Motivational Example. . 77
Mobile Service Robot: Computation of the Collision Distance between the

Robot and a Moving Obstacle. 79
Overall System Development Process. 81
Mobile Service Robot: A Visual Interpretation of the Safety Property. . . 101
Mobile Service Robot: Environment Model. 103
Mobile Service Robot: Technical System Model. 105
Mobile Service Robot: Declarations of Shared Variables in UPPAAL. . . . 106

Mobile Service Robot: Coordinator Model in the Motivational Example. 107
Mobile Service Robot: Overall System Model and Communication between

its Components in the Simulator Panel of UpPPAAL. 108
Mobile Service Robot: A Visual Representation of the Network Automa-
ton’s Initial State in UPPAAL. 111
Mobile Service Robot: Spanning Tree Path Showing its Satisfied Safety
Property. 112
Mobile Service Robot: Safety Property and Liveness Property Visualized
in UPPAAL. e 113

List of Figures

vi

3.13.

3.14.
3.15.

3.16.

3.17.

4.1.

4.2.
4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

0.1

0.2

2.3.

0.4.
2.5.

Mobile Service Robot: A System Execution and the Corresponding Eval-
uation of the Safety Property Monitor M, during System Test. 116
Mobile Service Robot: State Space Explosion Problem Visualized in UPPAAL.120
Mobile Service Robot: A Visual Representation of the Initial System State

during System Test. 121
Mobile Service Robot: Evaluation of the Safety Property Monitor M,
showing the Safety Property ¢ fulfilled during System Test. 122
Mobile Service Robot: Evalution of the Safety Property Monitor Mg
showing the Safety Property ¢ disproved during System Test. 123
Overall System Development Process: the changes pertaining to this thesis’
approach are highlighted in orange. 131
[ustration of Solution Concept With Example Values. 134

Mobile Service Robot: Application of RMEA to a System Trace with
valid Environment Assumption ¢ and valid Safety Requirement ¢.140
Mobile Service Robot: Application of RMEA to a System Trace with
invalid Environment Assumption ¢ and valid Safety Requirement

Mobile Service Robot: Application of RMEA to a System Trace with
invalid Environment Assumption ¢ and invalid Safety Require-

ment ¢. 142
Physical Overview of the Revisited Motivational Example. 144
Overview of the Rules for Lane Changing in the Revisited Motivational
Example. 145
Systematic Method for the Display and Comparison of the Reformulated
System Requirements with the Original System Requirements. 149
Visual Intuition of the Movement Directions of Dynamic Obstacles with
respect to the Mobile Service Robot. 158
Pattern for the Safety Requirements Specification extended with Environ-
ment Assumptions. 164

Representation of a Dynamic Obstacle Following the Robot in the Carte-
sian Coordinate System. 169

Construction Method for Runtime Monitors of Environment Assumptions. 190

Map of the Hospital Ward where the Mobile Service Robot has been

evaluated in the iserveU Project (cf. [GRRT16]). 199
Mobile Service Robot en route from Point (B) to Point (E) on the Hospital
Ward (cf. [GRRT16]). o 201
Mobile Service Robot: Results of the Test Cases Evaluation on the Hospital
Ward in the iserveU Project. L. 203

Vehicle Speed Estimation Function: High-level Overview (cf. [AVZR21]). 205
Vehicle Speed Estimation Function: Overview of Approach for Construc-
tion of the Functional Abstraction (cf. [AVZR21]).. 213

5.6.

D.7.

5.8.

5.9.

5.10.

Al

A2

A3.

A4

List of Figures

Vehicle Speed Estimation Function: Visual Intuition of the Mechanism
for Adequate GPS Data Selection (cf. [AZR20]).
Vehicle Speed Estimation Function: Environment Assumption Monitor
for the GPS Data Error during the Smooth Driving Scenario.
Vehicle Speed Estimation Function: Test Data and Test Oracle of the
Safety Requirement in the Smooth Driving Scenario (cf. [AZR20]).
Vehicle Speed Estimation Function: Environment Assumption Monitor
for the GPS Data Error during the Dynamic Driving Scenario.
Vehicle Speed Estimation Function: Test Data and Test Oracle of the
Safety Requirement in the Dynamic Driving Scenario (cf. [AZR20]). . . .

Vehicle Speed Estimation Function: Environment Assumption Monitor
for the Road Slope during the Smooth Driving Scenario.
Vehicle Speed Estimation Function: Environment Assumptions Monitors
for the Longitudinal Acceleration and the Lateral Acceleration during
Smooth Driving Scenario.
Vehicle Speed Estimation Function: Environment Assumptions Monitor
for the Road Slope during the Dynamic Driving Scenario.
Vehicle Speed Estimation Function: Environment Assumptions Monitors
for the Longitudinal Acceleration and the Lateral Acceleration Environ-
ment during the Dynamic Driving Scenario.

vii

List of Tables

2.1.

2.2.

3.1

3.2.

3.3.

3.4.
3.5.

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

5.1.
D.2.
9.3.

5.4.

SAE Automation Levels (cf. [SAEL8]) vs. Autonomy Levels in Au-

tonomous Systems (cf. [FMR*21]) 16
Overview of some Formalisms used for Modeling of Probabilistic Systems
(cf. [Katl6]). 48
Mobile Service Robot: Requirements for Allowed and Forbidden System
Actions in the System’s Environment. 86
Mobile Service Robot: Requirements for the System’s Normal Operation
Mode. 87
Mobile Service Robot: Requirements for the System’s Collision Avoidance
Mode. o 88
Mobile Service Robot: Hazard Analysis and Risk Assessment. 99

Mobile Service Robot: Detailed View in the Evaluation of the Safety
Property Monitor My with respect to the Visible Obstacles in the Robot’s
Environment.00 117

Requirements for the allowed and forbidden system actions in the system
environment: comparison between initial and revisited motivational example.151
Requirements for the normal operation mode of the robot: comparison

between initial and revisited version the motivational example. 152
Requirements for the collision avoidance mode of the robot: a comparison
between initial and revisited motivational example. 153
Mobile Service Robot - Hazard Analysis and Risk Assessment in the
Revisited Motivational Example. 160
Mobile Service Robot - Safety Requirement extended with Environment
Assumptions. 166
Mobile Service Robot: Informal and Formal Specification of the Safety
Requirement extended with Environment Assumptions. 173
Mobile Service Robot: Verification of Extended Safety Requirement ESR2
expressed as Multi-objective Property. 186

Mobile Service Robot: Test Cases for the Evaluation on the Hospital Ward.202
Vehicle Speed Estimation Function: Hazard Analysis and Risk Assessment. 209
Vehicle Speed Estimation Function: Safety Requirement extended with

Environment Assumptions. 211
Vehicle Speed Estimation Function: Informal and Formal Specification of
the Safety Requirement extended with Environment Assumptions. 212

iX

List of Tables

2.5.

5.6.

D.7.
0.8.

Al

Vehicle Speed Estimation Function - Definition of Data Types for the
Function Inputs and the Function Outputs in the Functional Abstraction. 214
Vehicle Speed Estimation Function - Definition of Data Types for the
Intermediary Results in the Functional Abstraction. 215
Vehicle Speed Estimation Function - Definition of Application Parameters.216
Vehicle Speed Estimation Function: Verification of Extended Safety Re-
quirement ESR1 expressed as Multi-objective Property. 224

Vehicle Speed Estimation Function - Extended Safety Requirements ESR2
- ESR4 expressed as Multi-objective Properties. 268

List of Tables

style=list, title=Abbreviations

Chapter 1.

Introduction

1.1. Motivation 3
1.2. Goals and Contributions of this Thesis 5
1.3. Thesis Structure 6

1.1. Motivation

Automated safety-critical systems are deployed in highly safety- and mission-critical
application domains, e.g., medical devices, aircraft flight control, vehicle control systems,
or autonomous robots. Automated safety-critical systems are characterized by their
continuous interaction with the physical world. The physical environment in which
automated safety-critical systems are deployed is denoted henceforth as operational
environment. Such systems are equipped with a set of sensors, which are used to perceive
the operational environment of the system, as well as a set of actuators, with which the
system may effect change on it. A failure in such systems may lead to mission failure
with significant property damage or endanger human life. Due to their potential of
causing harm, automated safety-critical systems benefit from a structured and rigorous
development process, in which specific tasks are allocated for system verification and
validation, in order to make that such systems are safe. Plan-driven development processes
are considered suitable for the design and development of safety-critical systems (cf.
[Som14a]). International standards focused on safety-critical and safety-related systems
propose the V-model as a system development process for such systems (cf. [Int11b],
[Int19]). For every phase in the development process, the system engineers define what
artifacts are to be developed, the inputs needed from other development phases, the tools
needed to develop the respective artifacts, as well as the guidelines and regulations to
which these artifacts have to adhere. These guidelines and regulations may be internal
to the organization or external, recommended by international standards or imposed
by legislative bodies. Verification and validation are processes which accompany the
actual development process of an automated safety-critical system, and can be applied in
different phases of the system development and different abstraction levels. Depending
on the abstraction level at which they are applied, the planning of the specific verification

Chapter 1. Introduction

and validation tasks means deciding on the appropriate methods and tools with which
the respective artifacts can be analyzed. Two well known categories of verification and
validation methods are formal verification and testing.

Formal verification methods are used at design-time to obtain proof of the system’s
correctness with respect to a safety property specification. These methods rely on
mathematical theories, e.g., logic or automata [Pel01], and allow the unambiguous
description of the behavior of a system under analysis as well as the formal reasoning
about this behavior with respect to a formal specification of the safety properties of
interest (cf. [Luc21]). The system behavior is described by a formal model. This model
is a mathematical abstraction of the system, that preserves only those system aspects
which the system designers wish to analyze. Since automated safety-critical systems
interact with the operational environment, design-time verification methods require also
a model of the environment in order to carry out the verification process (cf. [FDA*18a]).
During design of an automated safety-critical system, the system engineers define the
operational design domain of the system under development. The operational design
domain defines the general operational environment in which the system is intended
to carry out its task as defined in the system requirements (cf. [KO19]). Some of the
environmental characteristics are taken by the system engineers and included in the
environment model. However, the environment model remains an abstraction of the
actual system environment. In order to model the system reaction to the environmental
characteristics specified in the environment model, the system engineers rely on a number
of assumptions. These assumptions are used implicitly in the computations of the system,
e.g., the assumption about the maximum obstacle velocity can be used to compute a
collision avoidance strategy and subsequently plan a safe trajectory for an autonomous
robot. These assumptions are rooted in the domain knowledge and years of experience
which system modelers have of the system under development and its operational design
domain, but are not defined explicitly. Other assumptions may not even be known to the
system designers due to the system requirements and the definition of the operational
design domain being incomplete.

Design-time verification is carried out by checking the system model together with the
environment model against the formal specification of the system’s safety requirements.
Techniques used for verification at design-time are manual, e.g., deductive software
verification, semi-automated, e.g., theorem proving, or fully automated, e.g., model
checking. Since it is being applied on an abstract model of the system, the result of
design-time verification is as good as the model of the system. Furthermore, design-time
verification techniques, in particular model checking, suffer from scalability problems.
In order to overcome its scalability issues, design-time verification is complemented by
testing, which uses test oracles in the form of property monitors to check the actual
system against the system requirements.

After passing all tests, the system is deployed in its operational environment. During
the system operation, unpredicted events may occur and result in safety hazards. Given
that the behavior of the system under analysis has been proven correct with respect
to its safety requirements through design-time verification and that the actual system
has passed all its tests, these hazards do not appear as consequence of malfunctioning

1.2. Goals and Contributions of this Thesis

system behavior. Instead, these hazards are caused by system’s inability to deal with
environment assumptions that have become invalid during system operation. This
happens because there is no explicit definition of the respective environment assumptions
that can be analyzed and considered in the design-time verification. Notice that the
property monitors designed to check the system requirements are not suitable to verify
for assumptions violation, since the assurance goal of a property monitor is to verify
whether the system complies with the respective safety requirements. Given that there is
no explicit definition of environment assumptions, the system designers cannot define
and test specific monitors that can later be used to check for assumptions violations
during system operation.

1.2. Goals and Contributions of this Thesis

In order to address these limitations, this thesis proposes an engineering approach
which extends the quality assurance goals for automated safety-critical systems towards
the verification and validation of environment assumptions. During system design,
environment assumptions are explicitly defined and monitors are derived from the
environment assumptions definition. During system testing, the quality assurance goals
are to test the environment assumptions monitor as well as the monitor of the system’s
safety requirements. Requirements validation means both the validation of the system
safety requirements as well as the validation of the environment assumptions.

The goal of this thesis is to define a structured engineering approach to ensure
the safety of automated safety-critical systems in uncertain environments, by using
environment assumptions defined explicitly at design-time to validate the design-time
verification result during system operation. The approach is coupled with the system
development process and uses the phases of the development process in order to produce
the relevant artifacts for the definition of the environment assumptions. Thus, the
contributions of this thesis are:

Method for Explicit and Formal Definition of Environment Assumptions.
Based on a high-level description of the system under development, the functional
system requirements are defined during the phase of requirements elicitation and
analysis. The same high-level system description is used to carry out the safety
analysis and derive safety hazards that could appear during system operation.
Safety requirements and environment assumptions are defined that cover the
respective safety hazards. The environment assumptions are used to extend the
system safety requirements, which are then denoted as extended safety require-
ments. A requirements pattern is designed and applied in order to produce the
informal specification of the extended safety requirements. Their formal speci-
fication is realized through TCTL for non-probabilistic systems and through a
fragment of PCTL for probabilistic systems. The functional system requirements
and the extended safety requirements serve as an input for the design of the
technical system model and the environment model. Using the environment

Chapter 1. Introduction

assumptions, these models are verified at design-time against the system safety
requirements.

Method for Construction of Environment Assumptions Monitors. Although
the environment assumptions have been explicitly and formally defined, for the
construction of environment assumptions monitors to succeed, it is important
to understand how their explicit definition of environment assumptions on the
requirements level is mirrored at system design level. Environment assumptions
build the interface between the technical system model and the environment model.
An analysis of this interface is carried out and the environment assumptions are
mapped on the technical system model and the environment model. The mapping
of the environment assumptions on the technical system model is then projected on
the implemented system. Further variable definitions are introduced to model the
observations of the environment assumptions monitors in the system environment.
The definition of the environment assumptions monitors combines variables of the
implemented system and variables that model the monitor’s observations in the
system environment. On a concrete level, the monitors are defined as predicates
in first-order logic.

Demonstration of the Applicability of the RMEA Concept on two Real-world
Safety-critical Systems The applicability of the proposed safety engineering
approach is demonstrated on two case studies: (i) a mobile service robot, commis-
sioned to execute transportation tasks autonomously in an uncertain environment,
and (ii) an automotive system function for estimation and display of a moving
vehicle’s speed on its instrument board.

1.3. Thesis Structure

Figure 1.1 illustrates the outline of this thesis and the relationships between the individual
chapters.

Chapter 1: Introduction presents and motivates the problem of verification and
validation of automated safety-critical systems in the absence of explicitly defined
environment assumptions and introduces the contributions of this work.

Chapter 2: Fundamental Concepts and Approaches introduces concepts and
approaches that are necessary to understand the following chapters of this thesis.
It gives a detailed description of the development process for automated safety-
critical systems. It then introduces several formalisms for modeling automated
safety-critical systems and for formally specifying their safety properties, followed
by a discussion of the fundamentals of verification and validation approaches used
to guarantee the correctness of safety-critical systems with respect to a given
property specification.

1.3. Thesis Structure

@ @ Related Work @
A
Introduction —> Problem —> STy —> Case Studies > Conclusion
Analysis Concept
Y y
@ Fundamental Concepts and Approaches

Figure 1.1.: Overview of this Thesis Outline.

Chapter 3: Problem Analysis introduces the motivational example - a mobile service
robot commissioned to drive autonomously towards a given destination in an
uncertain environment. Based on it, it carries out a problem analysis, which
identifies the challenges of design-time verification and testing of automated safety-
critical systems. These challenges lead to the definition of this thesis’ research
questions.

Chapter 4: Solution Concept presents an approach which addresses two of the
research questions introduced through the problem analysis. The chapter unfolds
what the application of this approach entails for every phase in the system
development process based on the motivational example of the mobile service
robot. This chapter provides a formal method for the definition of environment
assumptions as well as method for the construction of environment assumptions
monitors.

Chapter 5: Case Studies evaluates the approach presented in this thesis on two case
studies: (1) the mobile service robot tasked to drive autonomously in an uncertain
environment, and (2) an automotive system function for accurate speed estimation
in driving vehicles. The evaluation is carried on based on simulations in the case
of the mobile service robot and based on real-world data collected with a field
testing platform of an automotive OEM partner.

Chapter 6: Related Work gives an overview of related work and compares it with
the approach presented in this thesis.

Chapter 7: Conclusion summarizes this thesis and discusses further lines of research
that can be derived from this work.

Chapter 1. Introduction

Note to the Readers of this Thesis

Interested readers of this thesis can read it the best way it suits them, in a linear manner
or otherwise. However, the structure presented in Figure 1.1 is not random. Besides
giving on overview of this thesis outline, Figure 1.1 can be interpreted also as a proposal
on how to read this thesis. The backbone of this thesis is represented by Chapter 3,
Chapter 4, and Chapter 5. These chapters have their theoretical foundations in Chapter
2, while Chapter 6 compares the concepts developed in Chapter 4 and Chapter 5 with
other works. Chapter 1 and Chapter 7 represent, metaphorically speaking, the frame
to the whole picture. It is worth considering reading the Chapters 3 to 5 and turning
to Chapter 2 and respectively Chapter 6 only when more details on the underlying
theoretical foundation of different concepts are needed or when comparison between this
work and other research is looked for.

Chapter 2.

Fundamental Concepts and Approaches

2.1. Definitions of the Problem Domain 10
2.1.1. Safety-critical Systemso 10
2.1.2. Functional Safety and Safety of the Intended Functionality 11
2.1.3. Automated Systems versus Autonomous Systems 13
2.1.4. Uncertain Environments 18

2.2. System Life Cycle and Development Process 19
2.2.1. System Development Process according to ISO 26262 20
2.2.2. System Development Process according to ISO/PAS 21448 29

2.3. Property Specification for Automated Safety-critical Systems 36
2.3.1. Timed Computation Tree Logic 37
2.3.2. Probabilistic Computational Tree Logic 40

2.4. System Modeling for Automated Safety-Critical Systems 44
2.4.1. Timed Automata 45
2.4.2. Short Overview of Modeling Formalisms for Probabilistic Systems 47
2.4.3. Markov Decision Processes 49

2.5. Verification and Validation of System Properties in Automated Safety-
critical Systemso 53
251, Testingo 54
2.5.2. Design-time Verification 0L 58
2.5.3. Runtime Verification 000 69

2.6. Summary 74

The goal of this chapter is to introduce several fundamental concepts and approaches on
which this thesis builds upon. Section 2.1 starts this chapter by defining a few of the
concepts that make up the research domain of this thesis. Section 2.2 gives an overview
of the development process for automated safety-critical systems. Following this, in
Section 2.4, several formalisms for modeling automated and autonomous safety-critical
systems are presented in detail. In Section 2.3 the notion of safety and liveness property
are introduced and several formalisms and languages designed to specify such properties
are presented. Section 2.5 discusses the fundamentals of verification and validation
approaches used to guarantee the correctness of safety-critical systems with respect to

Chapter 2. Fundamental Concepts and Approaches

a given property specification. This chapter is concluded by a summary of the main
concepts presented in Section 2.6.

2.1. Definitions of the Problem Domain

The problem domain of this thesis is sustained by several fundamental concepts. To
begin with, Section 2.1.1 presents the concept of safety-critical system. In Section 2.1.2,
the notions of functional safety and safety of the intended functionality are introduced.
The concepts of automated and autonomous systems are discussed in Section 2.1.3, while
Section 2.1.4 introduces the notion of uncertain environment.

2.1.1. Safety-critical Systems

Before introduction the concept of safety-critical system, the notions of system, subsystem
and component must be defined. This is done in Definition 2.1.1, Definition 2.1.2, and
respectively Definition 2.1.3.

Definition 2.1.1 - System

A system is considered to be a collection of elements which interact with each other
following a set of specific rules in order to achieve a specific function or set of function
within a specific environment. An element may include hardware equipment, a software
program, or a human (cf. [ISO10]). |

Definition 2.1.2 - Subsystem

A subsystem is a system in its own right, which is part of a larger system (cf. [ISO10]).
In order to provide useful functionality it must be integrated with other subsystems in
order to make a system. |

Definition 2.1.3 - Component

A component is an entity with discrete structure, such as an assembly or software module,
within a system considered at a particular level of analysis (cf. [[SO10]). A component
is logically and technically separable from other parts in the system (cf. [Int11b]). A
component may be either a hardware or a software component and can be divided in
other components. Atomic level hardware components are denoted as hardware parts
and atomic level software components are called also software units (cf. [Int11b]). W

Notice that in literature, the notions of module, unit and component are used
interchangeably and, depending on the context in which they are used, these notions
may be defined as sub-elements of one another (cf. [[SO10]).

Definition 2.1.4 - Safety-critical System

A safety-critical system is a system “whose failure may endanger human life, lead to
substantial economic loss or cause extensive damage to the environment” (cf. [Kni02]).
In a safety-critical system, the safety of the system has a higher priority than other
design objectives (cf. [Alulb]). |

10

2.1. Definitions of the Problem Domain

Safety-critical systems appear in a variety of application domains, such as commercial
aircraft, medical care, nuclear power or weapons (cf. [Kni02]). Examples of safety-critical
systems include pacemakers and insulin pumps in the medical care domain, autopilot
systems in commercial aircraft and adaptive cruise control systems in the automotive
industry. In parallel to the concept of safety-critical system, there is also the notion of
safety-related system. The concept of safety-related system is introduced in IEC 61508,
which is an international standard for the functional safety of electrical, electronic and
programmable electronic (E/E/PE) equipment (cf. [Int97a]). A safety-related system is
part of the system under analysis and implements the required safety functions needed
to achieve or maintain a safe state of the system under analysis (cf. [Int97b]). At the
same time, the safety-related system is designed to achieve, on its own or in combination
with other E/E/PE safety-related systems or external risk mitigation measures, the
safety integrity for the required safety function (cf. [Int97b]). Smith and Simpson [SS11]
analyze the distinction between the concepts of safety-related system and safety-critical
system and point out that these concepts are used in different situations. The concept
of safety-critical system is used more often in situations in which a failure alone of the
system in question leads to fatalities or increased exposure to risk for people. In contrast,
the notion of safety-related system is used in a wider context, for systems in which a
single failure is not necessarily critical, whereas the combination of coincident failures
may lead to hazardous consequences (cf. [SS11]).

2.1.2. Functional Safety and Safety of the Intended Functionality

IEC 61508 works both as a stand-alone standard and as an umbrella standard that
serves as a basis for the development of standards for specific sector industries and
products (cf. [Int97al]). One industrial domain which developed its own standard using
the foundations laid down by TEC 61508 is the automotive industry. ISO 26262 is the
automotive standard, which is an adaptation of IEC 61508 in order to comply with the
specific needs of the application domain of electrical and/or electronic (E/E) systems in
road vehicles (cf. [Int11b]). This adaptation is reflected in all the phases of the system
development process, which includes the design and development of the hardware and
software system components, as well as their integration in the whole system and testing.
Before defining the notion of functional safety, several terms related to the notion of
safety must be defined. This is done in Definitions 2.1.6 to 2.1.11.

Definition 2.1.5 - Operational Situation
An operational situation is defined as a scenario that can occur during a system’s life (cf.
[Int11b]). |

Definition 2.1.6 - Harm
Harm is defined as physical injury or damage to the health of persons (cf. [Int11b]). W

Definition 2.1.7 - Severity
Severity is defined an estimate of the extent of harm to one or more persons which can
occur in a potentially hazardous situation (cf. [Int11b]). |

11

Chapter 2. Fundamental Concepts and Approaches

Definition 2.1.8 - Risk and Unreasonable Risk
Risk is defined as the combination of the probability of occurrence of harm and the
severity of that harm. Unreasonable risk is defined to be a risk that is considered to

be unacceptable in a certain context and according to valid societal moral concepts (cf.
[Int11b]). |

Definition 2.1.9 - Residual Risk
Residual risk is the risk which remains after the safety measures have been deployed (cf.
[Int11b]). |

Definition 2.1.10 - Malfunctioning Behavior
A malfunctioning behavior of a system under analysis is the failure or the unintended be-
havior of the system with respect to its design intent expressed in the system requirements

(cf. [Int11b]). |

Definition 2.1.11 - Hazard
A hazard is a potential source of harm caused by malfunctioning behavior of the system
under analysis (cf. [Int11b]). |

Definition 2.1.12 - Hazardous Event
A hazardous event is defined as a combination of a hazard and an operational situation
(cf. [Int11b)). |

Once the relevant notions related to safety have been introduced, the concept of
functional safety can be defined, which is done in Definition 2.1.13.

Definition 2.1.13 - Functional Safety

Functional safety is defined as the absence of unreasonable risk which appears due to
hazards caused by the malfunctioning behavior of E/E systems as well as the software
installed on such systems (cf. [Int11b]). [

According to Definition 2.1.13, the malfunctioning behavior of both hardware compo-
nents and software components can lead to a loss of the system’s functional safety. Notice
that functional safety refers only to the cases when system failures occur. A failure of
the system under analysis is equivalent to the inability of the system to work as required.
Functional safety is therefore also concerned with methods and measures for mitigating
the risks which occur due to system failure.

However, even in the absence of system failure, the system under analysis may be
unable to work as specified in the system requirements. This can happen due to the
appearance of unforeseen events in the environment in which the system under analysis
operates. Such events expose functional insufficiencies in the system under analysis,
which are performance limitations in the implementation of the specified system behavior.
To give some examples of performance limitations, consider the example of an adaptive
cruise control (ACC). Following limitations in the implementation of the system under
analysis can be exposed by events which occur in the environment: (1) incomplete
perception of the scene in which the vehicle is situated due to heavy rain, (2) limitation

12

2.1. Definitions of the Problem Domain

of the ACC decision algorithm in the ego vehicle due to abrupt braking of the leading
vehicle, or (3) insufficient performance of the actuators in the ego vehicle due to skidding
on a wet road surface. In order to address this type of limitations, the system engineers
have to ensure not only the functional safety of the system under analysis but also the
safety of its intended functionality. Definition 2.1.14 describes the notion of safety of the
intended functionality.

Definition 2.1.14 - Safety of the Intended Functionality
The safety of the intended functionality (SOTIF) is defined as the absence of unreasonable
risk which appears due to hazards resulting from functional insufficiencies or through

reasonably foreseeable misuse of the system under analysis by the system users (cf.
[Int19]). [|

2.1.3. Automated Systems versus Autonomous Systems

Autonomous systems have permeated various application domains in the last decades,
ranging from health-monitoring devices to autonomous robots and vehicles. From an
etymological point of view!, the adjective autonomous originates in the Greek language
and is the composition of two particles: autos which means “self” and nomos which means
“law”. Thus, any entity described as being autonomous is considered to be subject to its
own laws or rules and to be able to self-govern itself according to those laws. Various
researchers give their own definition of an autonomous system. Autonomous systems
are considered to be systems that are able to observe and orient themselves in their
environment as well as make and execute decisions in order to achieve their goal without
any outside assistance from humans or from any other systems (cf. [HMAO03], [CHMSO06]).
Having control over their own actions and over their own state, autonomous systems are
able to decide, based on their own state and on their sensing of their environment, what
tasks, at which point in time and in which order need to be carried out (cf. [FDW13]).
Furthermore, autonomous systems are systems which are able to change their behavior
in response to unforeseen events in their environment (cf. [WS05]). Various technologies
which help improve the self-awareness of autonomous systems along with the expansion of
artificial intelligence (AI) theory bring further dimensions to the definition of autonomous
systems. Besides being able to perform tasks independently of the supervision of a human
operator, Al-based autonomous systems can exhibit behaviors that allow them to evolve
and gain certain levels of self-X features, e.g., self-adaptation or self-healing (cf. [Xu21]).
Furthermore, when reacting to unanticipated events in their environment, the results
may not be deterministic (cf. [Xu21]). Definition 2.1.15 describes autonomous systems
as they are seen and used throughout this thesis.

Definition 2.1.15 - Autonomous System

An autonomous system is a system which is able to observe its environment, find its
orientation in it, make and execute decisions without any external (human) supervision (cf.
[HMAO3], [FDW13]) as well as change its behavior in reaction to any unanticipated events
in the environment (cf. [WS05]), possibly with nondeterministic results (cf. [Xu21]). B

"https://www.etymonline.com/word/autonomous

13

https://www.etymonline.com/word/autonomous

Chapter 2. Fundamental Concepts and Approaches

There are various situations in which autonomy is worth considering: (1) physically
challenging tasks for humans due to its extensive duration or due to a large number of
repetitions, (2) necessity for a faster reaction time than that of a human, and (3) hostile
or remote environments inaccessible tu humans in which the tasks are to be performed
(cf. [FDW13]). In relation to the notion of autonomous systems there is also the concept
of automated system. Yet, the two notions are very different from each other. Definition
2.1.16 describes automated system as they are seen and used henceforth in this thesis.

Definition 2.1.16 - Automated System
An automated system is a system which is able to perform well-defined tasks and to
produce deterministic results, while relying on a fixed set of rules and algorithms (cf.

Xu21)).]

According to the Definitions 2.1.15 and 2.1.16, every autonomous system is an
automated system but not every automated system is an autonomous system. Thus, the
set of autonomous system is a subset of the set of automated systems. Throughout this
thesis, the systems taken under analysis are automated safety-critical systems, which
interact continuously with the operational environment in which they are deployed.

Notice that Definition 2.1.15 describes the maximum level of autonomy. There are,
however, several degrees of autonomy (cf. [DF20], [FMR*21]). The taxonomy introduced
in [DF20] follows closely the PACT system for pilot authorization for control of tasks
developed for aerospace scenarios (cf. [BTFMO8]), while the classification in [FMR*21]
is closer to some extent to the SAE automation levels defined in the SAE J3016 standard
(cf. [SAE18]). Each degree of autonomy defined in [FMR*21] is a combination between
the responsibilities by autonomous system and the responsibilities of a human operator.
A comparison of the two taxonomies introduced in [FMR21] and [SAE18] is given in
Table 2.1. In comparison to the six SAE automation levels, Fisher et al. introduce an
additional level for low autonomy which is situated between SAE level 0 (no automation)
and SAE level 1 (driver assistance) (cf. [FMR*21]).

SAE level 0 corresponds to autonomy level 0 in Fisher’s taxonomy (cf. [FMR*21]).
At SAE level 0, the driver is required to perform all aspects of the driving task. There
may be safety mechanisms installed in the vehicle to provide warnings or support, e.g.,
forward collision warning system (cf. [SAE1S]).

SAE level 1 corresponds to autonomy level 2 and comprises driving assistance systems
which support the driver in controlling the vehicle. The driving assistance system executes
within certain limits either the lateral motion control or the longitudinal motion control,
while the human driver is in charge of permanently performing the remainder of the
driving tasks, that are not carried out by the driving assistance system. As an example,
if the driving assistance system is in charge of longitudinal motion control, then the
driver is responsible for executing lateral motion control (cf. [SAE18]). The driver is also
responsible for supervising the operation of the system and monitoring its environment.
Furthermore, the driver is also required to be able to determine when the engagement
or disengagement of the automated driving system is necessary (cf. [SAE18]). As a
consequence, the driver represents the only fallback for the driving assistance system,
and is required to be able to take over immediately complete control of the vehicle at any

14

2.1. Definitions of the Problem Domain

time, should a hazardous event occur (cf. [SAE18]). Examples of automated systems at
SAE level 1 are ACC and lane keep assist (LKAS) systems.

SAE level 2 refers to partial driving automation and corresponds to Fisher’s autonomy
level 3, which represents systems with partial autonomy (cf. [SAE1S8], [FMR*21]).
Partially automated driving systems perform more tasks on their own, e.g., executing
both longitudinal and lateral motion control of the vehicle for a certain period of time or
in specific situations described in the ODD (cf. [SAE18]). The human driver can take
the hands off the steering wheel for a short time while the automated driving system
is activated. However, the driver is required to constantly to supervise the automated
system and monitor its environment, and be prepared to intervene immediately in case
of a hazardous event (cf. [SAE18]). It is worth noticing that in the autonomy levels 2
and 3, which correspond to the SAE levels 1 and 2, the system permits activation by
a human operator, irrespective of whether the current environment conditions are part
of its ODD or not (cf. Definition 2.2.7). This is because the automated driving system
is not required to monitor its own environment. Instead, it is the responsibility of the
human driver to monitor the system environment and determine whether the automated
driving system can be activated or not. An example of a SAE level 2 automated driving
system is the Tesla Autopilot system mounted in Tesla vehicles (cf. [Mor21]).

SAE level 3 describes conditional driving automation and is considered to be equiva-
lent to the Fisher’s autonomy level 4, which is also denoted conditional autonomy (cf.
[FMR*21]). An automated driving system with SAE level 3 is required to be able to
execute the entire driving task independently and without human intervention for a
limited period of time and only in certain situations described in the system’s ODD (cf.
[SAE18]). The vehicle driver is allowed to turn away temporarily his attention from the
driving task and from the surrounding system environment. Even though the driver
can turn away his attention from the driving task for a short period of time, he is still
required to be receptive to the requests to intervene and act as the fallback mechanism
for the automated driving system (cf. [SAE18]). Automated driving systems of SAE
level 3 and higher are required to monitor their own environment and determine if the
environment conditions are inside their respective ODD. If it determines that its ODD
limits are about to be exceeded, then the automated driving system is required to issue a
timely request for intervention to the vehicle driver (cf. [SAE18]). The automated driving
system disengages immediately upon the driver’s request or after a certain amount of
time if the driver does not respond to the request to intervene (cf. [SAE18]). An example
of an SAE level 3 automated driving system is the traffic jam assistant manufactured by
Mercedes-Benz (cf. [Pet20], [dpa22]).

SAE level 4 refers to high driving automation and is regarded as equivalent to the
autonomy level 5 in Fisher’s taxonomy, which is called high autonomy (cf. [FMR*21]).
Since it is required to monitor its own environment, an automated driving system of SAE
level 4 allows engagement only when the environment conditions satisfy the constraints
imposed by the ODD definition (cf. [SAE1S8]). Similar to SAE level 3, as long as the
environment conditions satisfy the ODD definition, the automated driving system is
required to execute the entire driving task independent of any human intervention.

15

91

Table 2.1.: SAE Automation Levels (cf. [SAE18]) vs. Autonomy Levels in Autonomous Systems (cf. [FMR*21])

SAE Au-
tomation
Level

Narrative Description

Autonomy
Level

Narrative Description

No automa-

The driver is in charge of all aspects of the driv-

No autonomy

The operator is in charge of all tasks.

tion (SAE | ing task, even though active safety mechanisms | (Level 0)
Level 0) installed in the vehicle may provide support.
- - Low auton- | Straightforward non-trivial tasks are per-
omy (Level | formed by the system. The operator is not
1) required to take over operation
Driver The system executes either the longitudinal or | Assistance The operator is assisted by automated sys-
assistance the lateral motion control task within ODD | systems tems. The operator remains in control or
(SAE Level 1) | limits, but not both at the same time. The | (Level 2) is ready to take back control of the entire
driver performs the remainder of the driving driving task at any time.
task, monitors the system and the driving envi-
ronment, is prepared to intervene immediately
and execute the fallback if needed/desired. The
system disengages immediately on driver’s re-
quest.
Partial The system executes both the longitudinal and | Partial The automated control system takes full con-
automation the lateral motion control tasks within ODD | autonomy trol of the system. The operator remains
(SAE Level 2) | limits. The driver performs the remainder of | (Level 3) engaged, monitors the operation and is pre-

the driving task, monitors the system and the
driving environment, is prepared to intervene
immediately and execute the fallback if need-
ed/desired. The system disengages immedi-
ately on driver’s request.

pared to intervene immediately.

soyprorddy pue sydoouoy) rejustuepun,y ‘g Iojdey))

L1

SAE Au- | Narrative Description Autonomy Narrative Description
tomation Level
Level
Conditional When within ODD limits, the system executes | Conditional The automated control system has full con-
automation the entire driving task without human interven- | autonomy trol of the operation during specified tasks.
(SAE Level 3) | tion. The system monitors its environment and | (Level 4) The operator can turn safely his attention
determines if the ODD constraints are satisfied. away, but must be ready to take over control
The driver is expected to respond appropri- if needed.
ately to a timely request to intervene from the
system. The system disengages immediately
upon driver’s request or a certain amount of
time after a request to the driver to intervene.
High Within ODD limits, the system executes the | High auton-| The automated control system is capable
automation entire driving task without human interven- | omy (Level | of performing all planned functions under
(SAE Level 4) | tion. The system monitors its environment | 5) given conditions. The operator can leave the
and determines if the ODD constraints are sat- system safely to work by itself.
isfied. The driver is not expected to respond
to a request to intervene from the system. If
the driver does not respond, then the system
executes the fallback and brings the vehicle in
a safe state. The system disengages after it
has reached a safe vehicle state or if the driver
executes the driving task.
Full automa- | The system performs all aspects of the driving | Full — auton-| The system can perform all its intended tasks
tion (SAE | task under all aspects of the driving task, under | omy (Level | on its own. The operator is not required to
Level 5) all roadway and environmental conditions that | 6) intervene at any time.

can be managed by a human driver.

urewo(] wo[qold ot} jo suonIuyaq Iz

Chapter 2. Fundamental Concepts and Approaches

In case a hazardous event occurs or the ODD limits are exceeded, the system requests the
intervention of the vehicle driver (cf. [SAE18]). In contrast to SAE level 3, there is no
expectation for SAE level 4 systems that the driver responds to a request to intervene. In
case the driver does not respond to the system’s request to intervene, then the automated
driving system is required to execute the fallback and achieve a safe state for the vehicle.

In case he chooses to intervene, the driver requests the automated driving system
to disengage and becomes its fallback mechanism in order to bring the vehicle in a safe
state (cf. [SAE1S8]). In case the driver does not intervene, the automated driving system
is required to be able to execute the fallback in a timely manner and, automatically and
on its own, bring the vehicle in a safe state (cf. [SAE1S8]). At the moment, there exists
no market-ready automated driving system that complies with SAE level 4 (cf. [Sch21]).

SAE level 5 represents the highest level of automation, denoted as full driving
automation, and corresponds to autonomy level 6 in Fisher’s taxonomy (cf. [FMR'21]).
In comparison to SAE level 4, the performance and execution of the driving task by an
automated driving system at SAE level 5 is not ODD-specific anymore (cf. [SAE1S]).
This means that the automated driving system permits engagement under all on-road
conditions that are manageable by a human driver (cf. [SAE18]). As with SAE level 4,
no automated driving system exists on the market which complies with the requirements
for SAE level 5.

2.1.4. Uncertain Environments

Automated systems have usually been deployed in known, restricted environments. The
main characteristic of such environments is that their structure, configuration as well as
their dynamics are defined a priori during system design. An automated system working
under the premise that its operation environment is completely defined at design-time
is said to be working under the closed-world assumption (cf. [Maul9]). An example of
an automated system deployed in a closed environment is an industrial robot deployed
in a production line of a car manufacturer. These robots are usually restricted in an
area with predefined dimensions, separated by walls from the rest of the factory floor.
Furthermore, there may be clear rules of interaction between the human workers and the
industrial robots, e.g., if the industrial robot is powered on, then no human workers are
allowed to enter the restricted area.

However, automated systems are used also in less structured environments, such
as roadways, hospitals or households. The main characteristic of such environments
is that they are open and dynamic, which leads to some features of the environment
being known only during the system operation. An automated system working under
the premise that its operational environment cannot be fully specified at design-time is
said to be working under the open-world assumption (cf. [Maul9]). Such an automated
system is sometimes also referred to as an open context system, as the unpredictability
and inherent complexity of the operational environment make it impossible for the
system designers to give a complete specification of it at design-time (cf. [BH20]). When
working under the open-world assumption, the interaction between an automated system
with its operational environment is an important source of uncertainty. Therefore it

18

2.2. System Life Cycle and Development Process

becomes important to pinpoint the key features which trigger this uncertainty and define
the notion of uncertain environment for automated systems. Definition 2.1.17 gives a
description of how the concept of uncertain environment is understood throughout this
thesis.

Definition 2.1.17 - Uncertain Environment of Automated Systems
For an automated system, an uncertain environment is an unstructured and heterogeneous
part of the physical world, with complex and unpredictable dynamics, e.g., moving objects
or other entities which exert changes on the physical world. Any a priori knowledge
retained about such an environment is necessarily:

e incomplete, e.g., temporary features of the environment are omitted,

e inaccurate, e.g., spatial relations have changed in the environment since the a priori

knowledge was gathered, and
e approximate, e.g., metric information in the environment may be imprecise.

To give an example of an uncertain environment and the respective a priori knowledge
of this environment, consider an autonomous robot which is commissioned to drive to a
given destination. Prior to the start of its mission, the robot has stored a map of the
operation environment in which it is supposed to drive. This map represents the a priori
knowledge retained by the robot about its environment. However, details and temporary
features may be omitted from the map, so the map is incomplete. Furthermore, spatial
relations between entities may have changed in the operation environment since the map
was built, which renders the map inaccurate. Moreover, the metric information of the
map may be imprecise, which makes the map an approximate one.

2.2. System Life Cycle and Development Process

Automated systems are often used in highly safety- and mission-critical applications.
Failure of the software responsible for the control of automated systems could lead to
mission failure and endanger human life. Due to their complexity and their critical nature,
a structured and rigorous system development process with clearly specified tasks for
verification and validation becomes paramount for the development of automated systems.
System development models and development processes are used to achieve a structured
and controllable effort during development of systems (cf. [SLS14a]). For automated
safety-critical systems, e.g., speedometers in vehicles, and autonomous systems, e.g.
mobile service robots, a plan-driven development process is appropriate (cf. [Som14a]).
International standards concerned with functional safety of safety-related and safety-
critical systems recommend the use of the V-model for the development of such systems
in their respective application domains.

This section gives an overview of the system life cycle and the development process
for automated and autonomous safety-critical systems, as presented in two international
industry standards, ISO 26262 and ISO/PAS 21448. ISO 26262, first published in 2011
and revised in 2018, is the adaptation of IEC 61508 for the automotive industry, in order

19

Chapter 2. Fundamental Concepts and Approaches

to comply with the specific requirements of E/E systems in road vehicles (cf. [Int11b]).
The ISO 26262 standard provides a full automotive safety life cycle and describes the
automotive development process in detail, which is briefly presented in Section 2.2.1. The
ISO/PAS 21448 standard extends the development process of ISO 26262 and provides
mechanisms to guarantee the safety of the intended functionality in the absence of system
faults (cf. [Int19]). These extensions are discussed in Section 2.2.2.

2.2.1. System Development Process according to 1ISO 26262

The development process in ISO 26262 is depicted in Figure 2.1. Under ISO 26262,
the system under development is considered to be a series production road vehicle (cf.
[Int11b]). ISO 26262 differentiates between development at system level, hardware level,
and software level and defines specific development processes for each of them. Although
the three development processes are different from each other, the development activities
at software level are coordinated with the development activities at hardware level and
with the activities carried out at system level. The development process proposed in
ISO 26262 begins at system level with the concept phase which lays down the functional
and non-functional requirements of the system as well as the system boundaries and the
dependencies of the system with its environment. During the concept phase, a hazard
analysis and risk assessment is carried out in order to identify and categorize the hazards
which could occur due to malfunctioning behavior of the system. The results of the
concept phase are a functional concept and a functional safety concept. The functional
concept describes the system functional and non-functional requirements, while the
functional safety concept contains the functional safety requirements of the system under
development.

Having defined the functional concept and the functional safety concept for the system
under development, the planning of the development at system level is initiated. The
purpose during initiation of system development is to define a development plan and
a functional safety plan using the functional concept and respectively the functional
safety concept as input. These plans determine the development activities at system
level and plan the respective functional safety activities during the phases of the system
development.

During development at system level, technical safety requirements are derived from
the functional safety requirements specified during concept phase. The system design
begins once the development plan is defined and the technical safety requirements are
specified. During system design, the logical system architecture is defined based on the
functional requirements defined for the system under development. The logical system
architecture described the network of the system functions, the interfaces of the individual
functions and the communication between the functions for the entire vehicle or for a
subsystem of the vehicle (cf. [SZ16]).

The specification of the concrete technical system architecture is derived on the basis
of the logical system architecture. The technical safety requirements are allocated to
hardware and software (cf. [Int11d]), and the technical system architecture specifies which
of the system functionality is to be implemented by software and which functionality is

20

2.2. System Life Cycle and Development Process

‘ Management of Functional Safety

q " Initiation of Product Product Development - P el
oncep! e g at System Level elease for roduction
Phase Production and Operation

System Level

Specification of Functional Safety
Technical Safety Assessment

Requirements Safety Validation
. Item Integration
System Design .
\ 4 e and Testing
Product Development Product Development
at Hardware Level at Software Level

‘ Supporting Processes ’

‘ ASIL-oriented and Safety-oriented Analyses I

Legend
__ Activity in the development __ Activity in the development <N > __Activity in the development
<Name> process at system level <Name> process at hardware level Ll process at software level

Figure 2.1.: The System Development Process of ISO 26262 (cf. [Int11b]).

to be realized in hardware (cf. [SZ16]). The technical safety requirements are further
refined and additional requirements with respect to the hardware-software interface are
added to the requirements catalog. The phase of system design is applied in an iterative
manner to every subsystem in the system under development. The phase of system
design is followed by the development at hardware level and respectively software level.

The implemented software components are checked for correctness by component
or module tests. The tested software components are integrated to subsystems of the
software system and then the entire software system, which is subsequently subject to
integration tests. Three major integration phases follow after the software integration
test.

The first phase is the hardware-software integration, which takes place after the
software integration test is completed. In this phase, the software system is installed
on the corresponding electronic control units (ECUs), and the ECUs are calibrated so
that they are functional. Tests are carried out to verify the hardware-software interface,
while diagnostic coverage is used to measure the effectiveness of the implemented safety
mechanisms with respect to specific predefined hardware metrics.

The second major integration phase is the system integration. The ECUs are integrated
with other E/E components, e.g. sensors and actuators, and with elements of other

21

Chapter 2. Fundamental Concepts and Approaches

technologies, e.g., mechanical components (cf. [Int11d]). The integrated system represents
a subsystem of the vehicle and is checked for correct behavior in the integration test of
the system (cf. [SZ16]).

The last phase of integration is vehicle integration, in which the different subsystems
are assembled in the vehicle. After the integration at the vehicle level is finished, safety
validation is carried out to provide evidence of functional safety with respect to the
defined safety goals. The tests carried out during safety validation take into consideration
the safety goals, the functional safety requirements and the intended use cases. The phase
of safety validation is followed by an assessment of the vehicle’s functional safety, which is
carried out by an independent third party, e.g., a certification body. Once the functional
safety assessment is successful, the system is released for production (cf. [Int11d]).

Engineering Functional Safety in ISO 26262

The end objective of a system development process carried according to ISO 26262 is
to demonstrate a certain level of safety for the system under development. In order to
achieve this objective, the process proposed in ISO 26262 aims to reduce the unreasonable
risks to which the system under development may be subject later during its operation
and build in mechanisms which help manage these risks, either by avoiding them or by
mitigating them. The process begins with the concept phase, which produces as artifacts
a functional concept as well as functional safety concept of the system under development.
An overview of the concept phase is shown in Figure 2.2.

The concept phase begins with the item definition, in which the system functional and
non-functional requirements as well as the system boundaries, the system interfaces and
the assumptions regarding the interactions with other systems are defined. The system
requirements describe the purpose and functionality of the system, its operating modes
and states, the operational and environmental constraints, and include legal requirements
extracted from regulations and standards (cf. [Intllc]). The safety life cycle is then
initiated with the goal to determine whether the system under development is a new
system to be developed or is an existent system, that undergoes modifications. If the
system under development is newly to be developed then the next step is hazard and
risk assessment. However, if the system under development is an existent system that
is subject to modifications due to changes in the system requirements, then an impact
analysis is performed in order to find out how the required modifications reflect on the
relevant phases of the system development and on the safety plan of the system (cf.
[Int1lc]).

The hazard analysis and risk assessment (HARA) is performed in order to identify
and categorize the hazards which could occur due to system malfunctions. For the
hazard identification, a situation analysis is performed which takes into account the
operating modes and operational situations in which a system failure will lead to a
hazardous event, for the cases when the system is correctly used as well as when it is
incorrectly used in a foreseeable manner (cf. [Intllc]). Hazard identification can be
carried out systematically using techniques such as fault tree analysis (FTA) [BRB13],
failure mode and effects analysis (FMEA) [DAR'15], or hazard and operability study

22

2.2. System Life Cycle and Development Process

3-5 Item Definition

Definition of the System, Definition of the
System Interfaces with its Environment

3-6 Initiation of the Safety Cycle

Impact Analysis and Safety Plan

P 3-7 | Hazard Analysis and Risk Assessment

Definition of the Automotive Safety
Integrity Levels (ASILs) for the System

v

3-7 | Hazard Analysis and Risk Assessment

Legend

I Specification of Safety Goals
__ Activity in the development
process at system level *
__ Artifact obtained as a result 3.7

of an activity carried out in

the development process at
system level

<Name> Functional Safety Concept

Specification of Functional Safety
Requirements

Figure 2.2.: ISO 26262 - The Concept Phase in the System Development Process (cf.
[Int11c]).

(HAZOP) [DFVAQ9]. Hazard identification is followed by a risk assessment, which does
a classification of the hazardous events according to which are the most serious and the
most likely to occur. This is formulated in terms of risk, which is the combination of the
probability of occurrence of harm and the severity of that harm (cf. Definition 2.1.8). In
turn, the probability of occurrence of harm is determined as a combination between the
probability of exposure to a hazardous event and the probability that the driver gains
sufficient control over the hazardous event so as to avoid the specific harm. Using three
parameters - severity of harm (S), exposure (E), and controllability (C) - a risk matrix is
built which is used to establish the automotive safety integrity level for each hazardous
event identified for the system under development.

Definition 2.2.1 - Automotive Safety Integrity Level (ASIL)

An automotive safety integrity level (ASIL) represents one in four levels associated with
the safety requirements for a system under development and the safety measures needed
to be applied in order to avoid unreasonable residual risk. There are four levels, with D
being the highest and A being the lowest safety integrity level (cf. [Int11b]). [|

Having determined the ASIL of a system under development, the safety goals associ-
ated with it are specified. A safety goal is a top level requirement, which is specified for

23

Chapter 2. Fundamental Concepts and Approaches

each hazardous event identified in the hazard analysis, that has an ASIL allocated to
it. Notice that there is a n-to-n relationship between safety goals and hazards, i.e. one
safety goal can be related to several hazards and, at the same time, one hazard can be
covered by several safety goals (cf. [Int11b]).

The functional safety concept is defined based on the system safety goals and consists
of a catalog of functional safety requirements. These requirements specify various safety
measures for fault detection, fault tolerance, failure mitigation, which can be applied or
implemented in the system in order for the system to comply with its safety goals (cf.
[Intllc]). An example of a safety measure is FTA, which can be used for fault detection.

Definition 2.2.2 - Safety Measure

A safety measure represents an activity or a technical solution that can be realized in
order to avoid or control systematic failures and to detect or control random hardware
failures, or mitigate their potentially harmful effect (cf. [Int11b]). Safety measures can
include safety mechanisms. |

Definition 2.2.3 - Safety Mechanism
A safety mechanism is a technical solution whose purpose is to detect faults or control

failures in order to achieve or maintain a safe state of the system under development (cf.
[Int11b]). |

Along with the functional safety concept, the concept phase creates also a preliminary
architectural design of the system under development. Based on this preliminary design,
the ASIL of the entire system under development can be decomposed following its
hierarchical structure. Thus, the safety-related subsystems and components in the system
under development have an ASIL associated to it.

During the development at system level, the functional safety requirements are refined
into technical safety requirements, which specify how the functional safety concept is to
be implemented in the system under development. This includes defining the response of
the system to stimuli which affect its safety goals, i.e. for each system operating mode
and system state, the relevant combination of stimuli and the possible system failure are
defined (cf. [Int11d]). During development at hardware and software level, the hardware
and software safety requirements are derived from the technical safety requirements. The
structure of the safety requirements throughout the system development process is shown
in Figure 2.3.

Hardware Development Process in 1SO 26262

The hardware development process according to ISO 26262 is depicted in Figure 2.4. The
process begins with planing the activities for the development at hardware level. These
activities consist of the hardware implementation of the technical safety requirements,
the analysis of the hardware faults and their effects, as well as the coordination of the
hardware development with the software development (cf. [Intlle]).

Before the hardware design can begin, the hardware safety requirements are defined
based on the technical safety requirements and the technical system architecture defined

24

2.2. System Life Cycle and Development Process

A
3-7 | Hazard Analysis and Risk Assessment
Hazard Analysis and Risk Assessment
. |
@ g | g
§ § g 3-7 | Hazard Analysis and Risk Assessment
2
b 3|2
(7] 3
§ ﬂ; g Specification of Safety Goals
(-4
S 8|z
§) 3|8 l
« | ®
o %]
2% .
g = 3-7 Functional Safety Concept
@ v
E’ é} Specification of Functional Safety
] c Requirements
2|5
A o [s I
c
© el *
S| &
% < 46 Specification of Technical Safety
< 8|2 Requirements
< £ | B
g 3 | €
g = Technical Safety Requirements
< Q
> wv
)
[a]
3]
3 56 Specification of Hardware Safety 66 Specification of Software Safety
g Requirements Requirements
© Hardware Safety Requirements Software Safety Requirements
o0
_c
c .8
=]
S%
S o
3 8‘ Legend
oz
5 @ Activity in the development Activity in the development
® s <Name> process at system level <Name> process at hardware level
§%
% 8 Activity in the development Artifact obtained as a result of an activity carried
g9 <Name> - <Name> - inth ive devel
a process at software level out in the respective development process
v

Figure 2.3.: ISO 26262 - The Structure of the Safety Requirements through the System
Development Process (cf. [Intllc]).

during system design (cf. [SZ16]). For this purpose, the technical safety requirements are
allocated to hardware and software. Those requirements which happen to be allocated
to both hardware and software are further refined in order to yield exclusively hardware
safety requirements (cf. [Intlle]).

The hardware design at architectural level and at the level of electrical schematics
is carried out based on the specification of the hardware safety requirements and the
technical system architecture (cf. [Intlle]). Each hardware component inherits the
highest ASIL associated with the hardware safety requirement that are implemented by
the hardware component. To avoid failures caused by a high level of complexity, ISO
26262 recommends that the hardware design is modular, has an appropriate level of
granularity and avoids unnecessary complexity in the implementation of the hardware
components and their respective interfaces (cf. [Int1le]). To support the hardware design,
safety analyses such as FMEA or FTA can be carried out for the safety-related hardware
components in order to determine possible causes of failures and the effects of faults (cf.
[Intlle]). The hardware design is then verified for compliance and completeness with the
hardware safety requirements using analytical methods, e.g., walk-through review and
inspection, as well as simulation and hardware prototyping. Once the hardware design

25

Chapter 2. Fundamental Concepts and Approaches

47

System Design [

_____________________ -
Product Development |

at Hardware Level |

Initiation of Product Development
at Hardware Level

|
|
|
|
1 v
|
|
|

G20

Specification of Hardware Safety
Requirements

y

Hardware Design }Q ~~~~~~~~~~~~~~~~~~~~~~~~~~

5-6

7

‘ 7-5

Legend

<Name>

Production

5-7

Operation, Service (Maintainance
and Repair) and Decommisioning

Evaluation of Hardware
Architectural Metrics

Evaluation of Safety Goal Violations
due to Random Hardware Failures

&
‘ﬂ 59

Qualification of Hardware

Activity in the development
- Components

process at system level

i 8-13

Activity in the development

<Name>
process at hardware level

5-10 | Hardware Integration and Testing 4-8 Item Integration and Testing

Figure 2.4.: ISO 26262 - The Hardware Development Process (cf. [Int11f]).

is completed, the hardware architecture of the system under development is evaluated
against the requirements for fault handling as expressed by hardware architectural metrics,
e.g., single point fault metric or latent fault metric (cf. [Kaf12]). The evaluation of the
hardware architecture is followed by an assessment of residual risk in case of a safety
goal violation due to random hardware failure (cf. [Int1le]). After the evaluation of the
hardware design is completed, the developed hardware components are integrated with
each other and tested. In order to derive test cases for the hardware integration test,
several approaches can be applied, such as definition and analysis of equivalence classes,
boundary values analysis, experience-based error guessing, analysis of environmental
conditions and operational use cases, and worst-case analysis (cf. [Int1le]).

The hardware integration tests have a two-fold purpose: (1) to check the correctness
and completeness of the implementation of the safety mechanisms with respect to the
hardware safety requirements, e.g., by verifying the expected normal operation through
functional tests and (2) to verify the robustness of the hardware against external stress
stimuli, e.g., by exposing the hardware to extreme environmental conditions in worst-case
tests (cf. [Intlle]).

Software Development Process in ISO 26262

The software development process according to ISO 26262 is illustrated in Figure 2.5.
The process is initiated through a planing of the activities for the development at software
level. These activities include the development and testing of software, as well as the
coordination with the development activities at system level and at hardware level.
Before the actual software development can begin, the software safety requirements
are defined based on the technical safety requirements specified at system level and
the logical and the technical system architecture defined during system design. Along

26

2.2. System Life Cycle and Development Process

E -
©
158 . /]
= Item Testing Item Integration I
|0J9 System Design e 4-8)
| £g Test phase verification and Testing |
om I
=}
B ® Design Phase
| g Verification : |
L e e A e e e e
r i |
I H Specification of Software Testing Verification of I
| . -4 6-6 Software Safety e 6-11 Software Safety
| o Requirements Test Phase Verification Requirements |
et A o) |
| c e 1 % % 5 & |
| - 3 g Design Phase ! X &
| S< I&8 \Verficaton | ® & |
> =0 1
|83 |28 L Software Software Testing Software I
oo |8E Architectural —— e — e — e — 6-10 Integration and |
| g g ;‘:5 g Design Test Phase Verification Testing |
ls5 |E9
Sa T @ |
T += > I
I < © 8 Design Phase ! |
| Verification . |
| Software Unit Software Testing i
| 0 6-8 Designand \— ' —: — — —- 6-9 Sof_trwa{_e Wi l
© Implementation Test Phase esting |
| - Verification |
S S S

- ity in th
QD __Activity in the development TS __Activity in the development

process at system level process at software level

Figure 2.5.: ISO 26262 - The Software Development Process (cf. [Int11f]).

with these inputs from the system design, the constraints imposed by the hardware on
the software are also taken into consideration in the specification of the software safety
requirements (cf. [Int11f]).

The design of the software architecture is the next phase after the specification of
the software safety requirements. The software architecture describes both static aspects
and dynamic aspects of the software components. The static aspects of the software
architecture include the logical sequence of data processing along with the data types
and their characteristics, the interfaces of the software components and the external
interfaces of the software, as well as the hierarchy levels in which the software components
are organized (cf. [Int11f]). With respect to the dynamic aspects of the design, the
software architecture describes the behavior of the software components, the data flow
and the control flow between the components, the concurrency between the processes and
their timing behavior, as well as the data flow at the external interfaces of the software
(cf. [Int11f]). The software safety requirements formulated in the previous phase are
allocated to the software components defined in the software architecture. Each software
component is developed in compliance with the highest ASIL associated to any of the
safety requirements allocated to it. Safety analyses, e.g., FMEA or FTA, are carried out
on the software architecture in order to identify the safety-related parts of the software
and the hazards that may be introduced by the respective software components. The
safety analyses carried out at software architectural level also support the specification

27

Chapter 2. Fundamental Concepts and Approaches

of safety mechanisms for the avoidance, reduction or mitigation of the hazards identified
at software level (cf. [Int11f]). The software architecture is then checked for conformity
with the established design guidelines and principles in walk-through and inspection
reviews. Two examples of principles applicable to architectural design are high cohesion
within each software component and restricted coupling between software components.
Furthermore, the software architecture is verified for compliance with the software safety
requirements through a variety of methods, e.g., static analysis, simulation, and formal
verification (cf. [Int11f]). Dynamic parts of the software architecture can be verified
through simulation, if executable models have been created for these parts. Formal
verification can be used to provide proof of correctness with respect to the software safety
requirements for critical software components to which higher ASILs are allocated, e.g.,
ASIL C or ASIL D (cf. [Int11f]).

Based on the software architectural design, the software units are implemented either
as a model or directly as source code. The implementation is statically verified to
check whether it conforms to the approved implementation conventions and standards,
e.g., through static code analysis or through code reviews. Static code analysis is
often provided by modern compilers and allows the software unit implementation to
be examined for compliance with conventions and standards using, e.g., data flow and
control flow analyses, in order to detect specific anomalies in the implementation of the
software unit (cf. [SLS14b]). In addition, the software unit implementation is checked for
conformance with the software architectural design through, e.g., through walk-through
reviews and code inspection reviews before proceeding with the software unit testing (cf.
[Int11f]).

Software unit testing is the first test phase after the software unit implementation.
The purpose of this phase is to check the software units individually against their
design specification. For software unit testing, various methods can be applied, such as
requirements-based tests and interface tests. The appropriate test cases can be derived
by analysis of the software requirements at software unit level, generation and analysis
of equivalence classes, or boundary values analysis (cf. [Int11f]). There are various
metrics recommended by the ISO 26262 standard in order to determine the adequacy of
the derived test cases, e.g., branch coverage and modified condition/decision coverage
(MC/DC) as well as coverage of the requirements (cf. [Int11f]).

Once they have passed their respective tests, the software units are integrated to
larger software components, which in turn are integrated into subsystems, that eventually
are put together to build the entire system under development. At each integration
level, the more complex software elements obtained as a result of integration and their
respective interfaces are tested against the software architectural design. Specific software
integration tests are carried out with different objectives in mind. Thus, back-to-back
tests can be used to verify the compliance of the integrated software with the software
architecture, provided that there are executable models of the software architecture
available. Verification of the hardware-software interface is also part of the software
integration test and this can be done through interface tests. Requirements-based tests
and fault injection tests can be used to check if the integrated software implemented
the required functionality correctly. Moreover, fault injection tests can be used also to

28

2.2. System Life Cycle and Development Process

check the robustness of the integrated software. Furthermore, resource usage tests can be
carried out to check that there are enough hardware resources available for the integrated
software to carry out its required functionality. Analysis of requirements, generation and
analysis of equivalence classes along with boundary values analysis are several methods
by which test cases can be derived for the tests performed at different integration levels
(cf. [Int11f]). Depending on the hierarchy level at which the integration is performed,
the integrated software can be executed in specific test environments. Such tests are
called X-in-the-loop tests, where X can be a model, a piece of software, a target processor
or a target hardware (cf. [Int11f]). During model-in-the-loop tests, a computer model
containing a representation of the test object, e.g., of a software component, as well as of
its environment is run in a simulation on a host computer. Software-in-the-loop tests
connect the implemented source code of the test object and a model of its environment
in one simulated model. With processor-in- the-loop tests, the production source code of
the test object is run on the real-time platform, while the environment of the test object
is simulated separately usually on another computer. The real-time platform on which
the test object is executed is connected directly to the computer running the environment
simulation. In contrast to processor-in-the-loop tests, in hardware-in- the-loop tests
the real-time platform running the test object is connected to a real-time simulation
of its environment executed on specialized hardware, or a combination of real-time
simulation and further hardware components connected electronically (cf. [KDJ*16]).
The adequacy of the derived test cases can be determined through specific metrics, e.g.,
function coverage or call coverage (cf. [Int11f]).

The final test phase at software level is the verification of the software safety re-
quirements. The purpose of this phase is to demonstrate that the embedded software
satisfies its requirements in the target environment. The verification of the software
safety environments can be conducted in hardware-in-the-loop environment or in a lab
environment where the system under development is partially or fully integrated, e.g.,
lab cars. The results of this test phase are evaluated with respect to the coverage of the
software system requirements and with respect to the expected results as well as other
predefined pass/fail criteria (cf. [Int11f]).

2.2.2. System Development Process according to ISO/PAS 21448

ISO 26262 introduces the concept of functional safety for E/E systems as well as their
respective software in road vehicles, and provides methods to ensure functional safety in
the event of system failures (cf. Section 2.2.1). However, even in the absence of system
failures, the system under analysis may be unable to work as required. This is possible
due to the uncertainty in the system environment which manifests itself through the
appearance of unpredicted events in the environment. These events can appear through
the interaction of the developed system with other systems in the environment or through
the misuse of the developed system through its users. The unpredicted events which
may occur in the system environment can account for edge cases, that may lead to safety
hazards. These hazards do not appear as a consequence of system faults, but instead can
expose functional insufficiencies of the developed system, because the system was not

29

Chapter 2. Fundamental Concepts and Approaches

designed to handle the respective edge cases. In order to deal with system malfunctions
in the absence of system faults, ISO/PAS 21448 introduces the notion of SOTIF (cf.
Definition 2.1.14) and provides design, verification and validation methods needed to
achieve SOTIF (cf. [Int19]).

The functional and system specification of the system under analysis defines relevant
use cases for the system. Definition 2.2.4 introduces the notion of use case. Use cases
consist of one or more scenarios, while a scenario is made up of a temporal sequence of
several scenes. The concepts of scenario and scene are introduced in the Definition 2.2.5
and respectively in Definition 2.2.6.

Definition 2.2.4 - Use Case

A wuse case is a specification which belongs to a specific field of application and describes
for a system under development at least one scenario in which the system is required to
operate as well as its functional range, the desired behavior and the system boundaries

(cf. [Int19], [UMR*15]).]

Definition 2.2.5 - Scenario

A scenario is a temporal sequence of scenes and actions or events which allow the
progression from one scene to another scene over a certain time span. Besides scenes and
actions, a scenario can also specify the goals and values of the system under development
(cf. [Int19], [UMRT15]). |

Definition 2.2.6 - Scene

A scene is defined as a snapshot of the physical environment and includes dynamic
elements, scenery elements, self-representation of actors and observers, as well as the rela-
tionships between these entities. An example of a dynamic element is a moving obstacle.
The scenery contains information about the infrastructure in the physical environment,
e.g, traffic signs and positions of traffic lights, geometry of the physical environment, e.g.,
number of lanes and vertical elevation, as well as environment conditions, e.g., rain or
fog. The self-representation of actors and observers describes their abilities, their state
and their attributes, e.g., the field of view of the system under development (cf. [Int19],
[UMRT*15]). |

The use cases defined in the functional and system specification consist of scenarios, in
which triggering events could occur that lead possibly to a hazardous event (cf. [Int19]).
ISO/PAS 21448 differentiates between four categories of scenarios, which are depicted in
Figure 2.6: (1) area A - known safe scenarios, (2) area B - known unsafe scenarios, (3)
area C - unknown unsafe scenarios, and (4) area D - unknown safe scenarios.

In order to achieve SOTIF, ISO/PAS 21448 outlines the system development process
and the methods used to ensure that the likelihood of a hazardous event is sufficiently
low. The ISO/PAS 21448 also aims to reduce up to an acceptable level the residual risk
which remains from the system not being able to process an encountered scenario in a
safe manner or from the involved system users not being able to control and mitigate the
hazardous event (cf. [Int19]). When a system development process is initiated according
to ISO/PAS 21448, areas B and C in Figure 2.6 may be too large, which means that the

30

2.2. System Life Cycle and Development Process

Starting point in system development Goal after finished system development

D

» s e

Legend
@ Known safe scenarios (Area A) (\ B> Known unsafe scenarios (Area B)
<C> Unknown unsafe scenarios (Area C) Unknown safe scenarios (Area D)

Figure 2.6.: ISO/PAS 21448 - Visual Intuition of the Goal in the SOTIF System Devel-
opment Process (cf. [Int19]).

residual risk is unacceptable. The goal of the system development process carried out
according to ISO/PAS 21448 is to maximize area A, while minimizing the areas B and C
(cf. [Int19]).

Figure 2.7 shows the flow of activities in the SOTIF system development process. The
process starts with the functional and system specification phase. The first purpose of
this phase is to define the goals of the intended functionality and the uses cases in which
the intended functionality is activated, and respectively deactivated. From a functional
point of view, this phase also defines the dependencies and the interaction of the system
with the surrounding environment as well as the relevant environmental conditions (cf.
[Int19]). For these reasons, in this thesis it is considered that the functional and system
specification phase of the SOTIF development process defines the operational design
domain of the system under development. The concept of operational design domain as
it is understood and used in this thesis is introduced in Definition 2.2.7.

Definition 2.2.7 - Operational Design Domain

An operational design domain (ODD) is defined as the sum of operating conditions under
which a given automated driving system is specifically designed to function, including,
but not limited to, environmental, geographical, and time-of-day restrictions, as well as
the presence or absence of certain traffic or roadway characteristics (cf. [SAE18]). W

Definition 2.2.7 states that the ODD of the system under development consists of
all operating conditions under which the system is designed to function. Test engineers
can design specific test cases in order to show that the system works according to its
requirements under the ODD conditions. Therefore, in this thesis it is considered that
the ODD consists of known safe scenarios, which corresponds to area A in Figure 2.6. For
this reason, in this thesis an increase of area A through the SOTIF development process
is considered equivalent to an expansion of the ODD of the system under development.

31

Chapter 2. Fundamental Concepts and Approaches

The second purpose of the functional and system specification phase is to define the
system architecture. The architecture includes the system components that implement
the intended functionality as well as the components responsible for countermeasures in
case a performance limitation of the system is exposed through an unpredicted event
in the environment. These countermeasures may result in a graceful degradation of the

system functionality or a warning signal for the user to take over control over the system
(cf. [Int19]).

TN Evaluation by Safety Analysis
. SOTIF related Hazard i Yes
Functional and System Identification and Risk Risk of harm Review
Specification N acceptable?
Evaluation
T No
Functional Modification to
reduce SOTIF risk o N
Identification and Evaluation of
Triggering Events
No Identified triggering | Risk
events acceptable? accepted

Yes

Evaluation of Known Hazardous Scenarios

Known scenarios
sufficiently covered and the
system components behave
as expected?

No
Verification of
the SOTIF

Definition of the
t Verification and -
Validation Strategy

System & system

N
° components do not Validation of the
cause unreasonable risk SOTIF
in real-life scenarios?
No Yes Evaluation of Unknown Hazardous Scenarios
Acceptable Methodology and Criteria

residual risk? for SOTIF Release

Set of activities in the SOTIF system development process carried
™ out for the identification and evaluation of known safe scenarios

Set of activities in the SOTIF system development process carried _ Setof activities in the SOTIF development process carried out for

out for the identification and evaluation of known unsafe scenarios the identification and evaluation of unknown unsafe scenarios

m — Activity in the SOTIF system development process <}> — Decision made during the SOTIF system development process

Figure 2.7.: ISO/PAS 21448 - Operative Flowchart of the SOTIF System Development
Process (cf. [Int19]).

It is worth noting that the graceful degradation of functionality is equivalent to the
system under development working in a degraded operation mode, which is a suboptimal
functional operation mode of the system (cf. [CPST18]). After it underwent a graceful
degradation of its functionality, the system under development no longer works in the
original ODD, but instead it operates in a restricted operational domain (ROD). In
contrast to its ODD, which specifies all the conditions under which the system is designed

32

2.2. System Life Cycle and Development Process

to operate, the ROD of an automated driving system comprises the specific conditions
under which the system is currently able to operate, which includes also the system’s
driving modes (cf. [CPST18]).

Once the functional and system specification is completed, the hazards that may be
caused by the intended functionality are identified and the associated risks are evaluated.
The same methods introduced in the concept phase of ISO 26262 system development
process can be used to carry out the hazard analysis for the SOTIF related hazards,
e.g., FMEA. Although the harm and controllability of the hazardous events can be
estimated using the methods introduced in [Int11c|, they are evaluated with respect to
a specific SOTIF related hazard (cf. [Int19]). Thus, delays in the reaction time of the
system user impact the evaluation of the controllability factor and are part of the SOTIF
related hazard analysis. The risk evaluation considers the performance limitations of
the intended functionality in order to assess whether controllability and severity are at
an acceptable level. The severity and controllability evaluation take into account the
expected system limitations and the countermeasures implemented to mitigate their
effects (cf. [Int19]). The hazard analysis also specifies a validation target for the risk
evaluation, which depends on the method chosen for the validation strategy. If deductive
analysis is used, then a list of all known an relevant triggering events is considered and
the validation target requires the coverage of all events on the list. In case an inductive
analysis is carried out, then previously unknown triggering events are identified and the
validation target requires that the triggering events do not impose unreasonable risk with
a predefined statistical confidence level.

If the risk of harm is situated within acceptable bounds, then the results of the hazard
analysis go through a review phase by the experts and the respective risk is considered
and documented as accepted (cf. [Int19]). However, if the risks resulting from the hazard
analysis are not acceptable, then the triggering events of those risks are identified and
evaluated. The analysis of the triggering events takes into consideration the limitations of
the system components as well as the environment conditions and foreseeable misuse of
the system by its users which could expose these system limitations and create scenarios
that may result in hazardous events (cf. [Int19]).

The triggering events can expose performance limitations in different system com-
ponents which implement decision algorithms or in the system sensors and actuators.
Consider as an example system an automated vehicle, in which an object detection algo-
rithm rejects a person on a skateboard as a pedestrian due to its implausible speed or the
camera sensor mounted in the vehicle whose performance is affected by the light in front
of the vehicle (cf. [Int19]). The triggering events identified in this phase are evaluated
on the acceptance criteria defined during hazard identification and risk evaluation. It is
considered that the response of the system to the triggering events is acceptable with
respect to SOTIF if the probability of a hazardous event caused by the system is lower
than the validation target defined during hazard analysis and if there is no systematically
unacceptable scenario with respect to a specific vehicle that may lead to a hazardous
event (cf. [Int19]). Notice that a scenario is considered to be unacceptable if there is a
high probability for a hazardous event to occur with respect to a specific vehicle, even

33

Chapter 2. Fundamental Concepts and Approaches

though with respect to a entire fleet of vehicles, the probability of occurrence for the
hazardous event is very low (cf. [Int19]).

If the response of the system to the identified triggering events is not considered
acceptable with respect to SOTIF, the functional and system specification is updated
with functional measures which improve the system design in order to reduce the risks
associated with these events, but also to reduce and to mitigate SOTIF risks during
system operation. Depending on the identified SOTIF risks, these measures can be aimed
at risk avoidance, risk reduction or risk mitigation (cf. [Int19]). The measures can be
applied to different system components, e.g., sensors, actuators, or decision algorithms.
One example of a functional measure used at sensor level to improve the system and avoid
SOTIF related risks is a strategy for using the appropriate sensors in order to recognize
whether the system has exited its operational design domain and has encountered a
known unsupported environmental condition. Another functional measure used this time
at decision algorithm level to reduce the SOTIF related risks is a design strategy which
incorporates warning signals and degradation of the functionality in order to handle a
known unsupported SOTIF scenario (cf. [Int19]).

Mitigation measures are used in combination with mechanisms for risk avoidance
and reduction. These measures can apply progressive restrictions with respect to the
intended functionality: (1) restriction of the intended functionality itself, (2) restriction
of the authority of specific system components with respect to the intended functionality,
or (3) restriction of the overall authority of the system with respect to the intended
functionality (cf. [Int19]). Consider the example of an automated vehicle equipped
with a lane keeping assist system. In case the lane is not detected accordingly, the lane
keeping assist functionality is restricted in order to avoid undesired steering. In case the
performance of a camera sensor mounted on the automated vehicle is affected by the
reflection of the surrounding light, then the camera sensor is disabled and the operation
of the automated driving function continues with restricted authority, using radar and
other sensors. In case all sensors of the automated vehicle are incapacitated in a snow
storm, then the automated vehicle hands over the control over the driving function to
the vehicle driver (cf. [Int19]). If the identified risks are related to the foreseeable misuse
of the system by its users, then measures that prevent the user from inadvertent use
of the system or monitoring systems that warn the user in case an incorrect system
operation is detected are added to the functional and system specification. An example
of the latter is a monitoring system which warns the driver of an automated vehicle when
the steering wheel has been released. If the risk presented by the triggering events is
considered acceptable, the system development process proceeds with the definition of
the verification and validation strategy.

The verification and validation strategy is defined with respect to the SOTTF rationale
and it develops the necessary procedures, which are used to demonstrate SOTIF for the
system under analysis (cf. [Int19]). The verification and validation strategy takes the
following artifacts as inputs to define its procedures: functional concept of the system,
system architecture, results of the hazard analysis and risk assessment, the system
integration and testing plan (cf. [Int19]). The strategy focuses on two of the four areas

34

2.2. System Life Cycle and Development Process

depicted in Figure 2.6: (1) area B - known unsafe scenarios and (2) area C - unknown
unsafe scenarios.

Verification of SOTIF focuses on area B in Figure 2.6 and its objective is to verify the
system and its components - sensors, actuators, and decision algorithms - to show that
these behave according to their specification with respect to known hazardous events and
foreseeable misuse. This phase of the system development process takes into account
the defined verification strategy, the system’s functional concept, the verification targets,
as well as the results of the hazard analysis and risk assessment (cf. [Int19]). The
verification strategy comprises methods which demonstrate the functional performance of
system sensors, the ability of decision algorithms to react as required and avoid unwanted
actions, as well as the performance of the system actuators in case of intended use and
in case of foreseeable misuse. Furthermore, the verification strategy includes methods
to check the robustness and controllability of the integrated system (cf. [Int19]). If
under given specific hazardous events, there are still system components which do no
fulfill their specification or the developed test cases do not provide enough test coverage
for the system and its components, then further functional measures are added to the
functional and system specification. These measures may restrict the system functionality
in such a way so that the respective system components and the system itself fulfill their
requirements with respect to the identified hazardous events. However, if the known
hazardous events are sufficiently covered by test cases and the system components and
the entire system comply with their specification, then the system development process
proceeds with the validation of SOTIF.

The objective of the SOTIF validation phase is to show that the system and its
components - sensors, actuators, decision algorithms - do not cause any unreasonable risk
in real-life use cases. The focus of the SOTIF validation is area C in Figure 2.6, which
covers unknown hazardous scenarios that may occur in real-life use cases. This phase of
the system development process takes as inputs the validation strategy, the verification
results obtained in the previous phase for the defined used cases, the system’s functional
concept, the validation targets, and the results of the hazard analysis and risk assessment
(cf. [Int19]). In order to show that the system does not cause any unreasonable risks in
real-life scenarios, the validation strategy must provide evidence that the system meets
the validation targets defined during hazard analysis. If the system does not meet its
validation targets, further measures are added to the functional and system specification,
which modify the system design so that the system is able to meet its validation targets
(cf. [Int19]).

Nevertheless, if the system is able to fulfill its validation targets, then the methodology
for the evaluation of SOTIF for release is developed. The purpose of this methodology is
to review the SOTIF activities carried out during the system development process, and
based on the results of these activities, evaluate whether the residual risk is acceptable
or not (cf. [Int19]). During the evaluation for the SOTIF release, the verification and
validation process is subject to scrutiny and it is checked whether all use cases formulated
with respect to the intended functionality have been taken account during validation
of SOTIF and whether the defined test cases have covered all the triggering events
identified in the safety analysis (cf. [Int19]). Furthermore, it is checked whether the

35

Chapter 2. Fundamental Concepts and Approaches

intended functionality has been exercised sufficiently in order to evaluate both nominal
and potential unwanted behavior. In case unintended behavior was observed which
potentially leads to a hazardous event, the evaluation for the SOTIF release checks
whether enough evidence has been provided in order to argue the absence of unreasonable
risk (cf. [Int19]).

2.3. Property Specification for Automated
Safety-critical Systems

The system development process according to ISO 26262 and ISO/PAS 21448 has
been presented in Section 2.2.1 and respectively Section 2.2.2. Testing is the principal
verification method recommended by these standards to show that a system under
development behaves according to its system requirements (cf. [Int11f], [Int1la], [Int19]).
Formal verification is another method recommended by ISO 26262 for the verification of
system components and automotive functions with higher ASIL, e.g. ASIL C or ASIL
D, against their functional and safety requirements (cf. [Int11f]). Formal verification
methods need a formal properties specification as well as a formal model of the system
or the system component which is to be verified. The formal properties specification
is derived from the system requirements and the safety requirements derived during
the item definition and the safety analysis in the concept phase. Formalisms used for
modeling automated safety-critical systems are presented in Section 2.4, while this section
is concerned with formalisms and formal languages that used for the formal specification
of requirements in automated safety-critical systems.

Luckuck et al. carry out a survey on the formal specification and verification for
autonomous robotic systems (cf. [LFD"19]) and uncover a wide range of formalisms
used for property specification for robotic systems, e.g., different variants of temporal
logic (cf. [WFCJ11], [DFSW16], [DWFZ12], [?], [HEZT14], [IQV16], [MV09]), dynamic
logic (cf. [SKA13]), and process algebra (cf. [OAHT14]). In an effort to define the
suitable selection criteria of a formal method for an industrial application, Kossak and
Mashkoor discover formalisms which are used in various industrial domains for the formal
specification of automated safety-critical systems (cf. [KM16]), e.g., higher order logic
combined with probabilistic analysis for machine control systems (cf. [MHB13]), Event-B
for transportation and platooning systems (cf. [MJ11], [MJS], [Lan08]).

For automated safety-critical systems developed according to the standards ISO 26262
or ISO/PAS 21448 it is important to ensure their functional safety and respectively
the safety of their intended functionality. This means that any verification procedure
used during the system development process must provide evidence that the system
under development is free of unreasonable risks, i.e. the probability of occurrence for the
hazardous events associated with the respective risks is low enough so that the residual
risk remains at an acceptable level. Making sure that specific hazardous events do not
occur at all or their probability of occurrence is below an accepted threshold can be
expressed using safety properties. At the same time, it is important for an automated

36

2.3. Property Specification for Automated Safety-critical Systems

safety-critical system to show that it progresses with the realization of its tasks and
achieves its predefined goals. This can be expressed through liveness properties. The
notions of safety property and liveness property are introduced by Lamport in [Lam77],
and are reiterated in this thesis in Definitions 2.3.1 and 2.3.2.

Definition 2.3.1 - Safety Property
A safety property is defined as a property which states that a certain event will not
happen or a certain condition will not occur (cf. [Lam77]). |

Definition 2.3.2 - Liveness Property
A liveness property is a property which requires that an event must happen or a condition
must occur eventually (cf. [Lam77]). [

This section introduces the two temporal logics used in this thesis to express properties
for automated safety-critical systems: timed computational-tree logic in Section 2.3.1
and probabilistic computational tree logic in Section 2.3.2. This includes the syntax and
the semantics of the respective temporal logic.

2.3.1. Timed Computation Tree Logic

The basis of timed computation tree logic (TCTL) is formed by computation tree logic
(CTL), which is introduced by Clarke and Emerson in [CE81] and respectively in [EC82].
Timed CTL is an extension of CTL, which is defined by Alur et al. in [ACD90], in
order to express properties of real-time systems (cf. [BK08]). Timed CTL formulae are
formulated over the atomic propositions and the clock constraints, which are specific to
the timed automata modeling the system under analysis. The concept of timed automata
and details related to it are discussed in Section 2.4.1.

Before introducing the syntax of TCTL, the notions of clock interpretation and clock
constraint, as well as the satisfaction relation for clock constraints must be defined. This
is done in Definitions 2.3.3 and Definition 2.3.3. The TCTL syntax and its semantics are
presented in Definition 2.3.6 and Definition 2.3.7.

Definition 2.3.3 - Clock Interpretation

Let C' be a set of real-valued variables called clocks. A clock interpretation for the set C'
is a mapping v : C — R5(from C to the set of non-negative real numbers R, which
assigns a real value to each clock in C' (cf. [AH99]). |

Notation 2.3.1. v + ¢ denotes the clock interpretation which increases the value of every
clock x € C by § € R. For a set of clocks D C C, v[D := 0] denotes the clock
interpretation which resets every clock in x € D and maintains all the other clocks
y € C'\ D unchanged (cf. [AH99]). The notion of clock interpretation given in Definition
2.3.3 is equivalent to the notion of clock valuation introduced by Baier and Katoen in
[BKO0S]. |

Definition 2.3.4 - Clock Constraint
A clock constraint over a set of clocks C is either an atomic clock constraint or a
conjunction of atomic clock constraints.

37

Chapter 2. Fundamental Concepts and Approaches

An atomic clock constraint compares a clock value with a time constant taken from
the set of non-negative rationals Q>¢. An atomic clock constraint does not contain any
conjunctions. The following grammar defines the syntax of clock constraints:

bopi=x<cla<clz>c|z>c| b dmy
where z € C'is a clock variable and ¢ € N is a constant (cf. [AH99], [BKO08]). |
Notation 2.3.2. B(C') denotes the set of clock constraints over the set C' (cf. [BY04]). B

Definition 2.3.5 - Satisfaction Relation for Clock Constraints

Let C be a set of clocks, z € C' a clock, v a clock interpretation, ¢¢,, and ¢%,, two clock
constraints, and ¢ € N a constant. Then, the satisfaction relation = is defined for clock
constraints as follows (cf. [BKO08]):

v | true

vEx<c iff v(r) <c

vEx<c iff v(z) <c

v E b, iff v I dou

v = don A don, if v dow N vE o

Definition 2.3.6 - Syntax of TCTL
The formulae of TCTL are either state or path formulae. The state formulae over the set

of atomic propositions AP and the set of clocks C are built according to the following
grammar (cf. [BKO08]):

wState = true ’ a ’ ¢Clk ‘ wé'tate A wgtate ’ - 7vbState ’ E wPath ‘ A wPath

where 1g;q40 18 a state formula, ¥ puy, is a path formula, @ is an atomic proposition, and
oo is a clock constraint. The path formulae are defined as:

e 1 2
¢Path T 7\pState UJ 2bSi&ai&e

where U; denotes the Until operator inherited from CTL and associated with the interval
J C Rso. |

Notation 2.3.3. The interval J C R is an interval of real numbers which has natural
numbers as lower and upper bounds, i.e. the form of interval J is either [n,m|, (n,m),
(n,m], or [n,m), with n,m € N and n < m (cf. [BKO0S]). |

A property expressed in TCTL is always a state formula. Path formulae appear only
together with path operators A (for All Paths) and E (for Some Path).

The other propositional logic operators, such as V (logical or) and — (logical im-
plication), are derived from A (logical and) and — (logical negation) using the laws of
Boolean algebra, e.g., De Morgan laws and the material implication rule. The operators
A and E are inherited from CTL and they only quantify over time divergent paths in a
given timed automaton.

38

2.3. Property Specification for Automated Safety-critical Systems

Notation 2.3.4. Let TA be a timed automaton as in Definition 2.4.1, T.S(TA) the
corresponding transition system as in Definition 2.4.2, and (s,v) a state in TS(TA). A
path of the form 7 = (sq, 1) LINGIN (s1,11) LINCEN (s2,19) 92,9, . is time divergent if
time progresses always on this path, i.e. Y, 0; diverges. The set Pathg;,((s,v)) denotes
the set of time-divergent paths that start in the state (s, v). [|

Intuitively, the formula A 1 p,y requires that the path formula ¢ p,; holds on all
paths of the timed automaton that models the system under development. In contrast,
the formula F ¢ p.y, stipulates that there exists a path in the given timed automaton
on which the path formula 9 pay, holds (cf. [BKO08]). The modal operators G (Globally)
and F' (Eventually) are also imported from CTL and are used to quantify over states
within a path. The operator G requires that all states in the respective path satisfy a
given property, while the operator F' asks that there is at least one state in the execution
path which fulfills the respective property (cf. [BY04]). These operators have their timed
variants, which are expressed with the help of the U; (timed Until) operator (cf. [BKO0S]):

FJ wsmte = true UJ wsmte EGJ wsmte - _‘AFJ _‘wState AGJ 1/}State - _‘EFJ _‘¢State

There are CTL operators which are not represented in TCTL, i.e. the X (Next)
operator is absent in TCTL. Since time is considered to be continuous in TCTL, there is
no unique next time instant that can be meaningfully represented through an X (Next)
operator (cf. [BKO08]).

When asking whether a timed automaton TA satisfies a TCTL property, the respective
TCTL state formula is interpreted over the transition system 7.S(TA) which describes the
formal operational semantics of the timed automaton TA. The notion of timed automata
as its operational semantics are introduced in Section 2.4.1. It is said that a timed
automaton T A satisfies a TCTL state formula gy, denoted TA |= Ygiaze if and only if
Wstate 1s satisfied in all initial states (sg, 19) of the associated transition system T.S(TA),
denoted as (Sg,) E ¥siate- The satisfaction relation = is introduced in Definition 2.3.7.

Definition 2.3.7 - Semantics of TCTL

Let TA = (Loc, Loc ., Act, C, Inv, E; AP, L) be a timed automaton as defined in Defini-
tion 2.4.1. Let a € AP be an atomic proposition, ¢y, € B(C') an atomic clock constraint,
and J C Rsq an interval of real numbers. Let T'S(TA) be the transition system associated
with the timed automaton TA as per Definition 2.4.2 and (s, v) be a state in T'S(TA).
Let ¥}, and %, be two TCTL state formulae and v p,y, a TCTL path formula. Then,
the satisfaction relation |= is defined for state formulae by (cf. [BKO08]):

(s,v) | true

(s,v) Ea iff a€ L(s)

(s,v) = dou iff V= don

(s;v) E _‘w}%ate iff not (s,v) | wé‘tate

(s,v) F ,lvbé'tate N ¢%tate if (s,v) F wé'tate A (s,v) E wg'tate
(s,v) E E Ypan iff Ir € Pathgy((s,v)), s.t. m = Ypa,
(s,v) = A Ypan iff Vr € Pathgy,((s,v)), ™ FE Ypan

39

Chapter 2. Fundamental Concepts and Approaches

Given the time-divergent path 7 = (s,) Do, o1, (s1,11) RINUEN (S2, 1) LN
o € ACt and the path formula wé’tate UJ wg‘tate? then 7): wétate UJ ¢%tate if and Only if
there exists a state (s;,v; +), where i > 0 and § € [0, J;], so that:

i—1

(si,v; +0) E 1/’§'tate with Z(5k +0)eJ
k=0

and for all the previous states (s;,v; +0"), where j > 0,7 < i and ¢’ € [0, ;] the following
holds (cf. [BKO0S]):

j—1 i—1
(Sj> I/j + 5/) }: wétate \4 wg‘tate thh Z(ék + 6/> S Z(ék + 5)
k=0 k=0

Notice that Definition 2.3.7 does not consider only the delays ¢ and ¢ which may
occur in the states (s;,1;) and respectively (s;, ;). Instead it considers all the delays
0k, that may have occurred in each previous state (s, vy) starting from the initial state
(S0, p) of path 7, and requires that the respective sums of these delays leading up to the
states (s;,v;) and respectively (s;,1;) are situated in the interval of real numbers J.

UPPAAL is a verification tool which accepts a fragment of TCTL as a property
specification language (cf. [BY04]). Figure 2.8 gives a visual intuition of the TCTL
formulae that are used in UPPAAL. Notice that UPPAAL uses the symbols [J and ¢ for
the G operator and respectively for the F' operator. UPPAAL also introduces a textual
notation similar to the C programming language, which allows system designers more
flexibility in modeling the behavior of the system under analysis through custom defined
variables and functions. This reflects also on the specification of the system properties,
as these can contain not only clock constraints but also predicates over the user defined
variables.

The TCTL fragment implemented in UPPAAL allows the system designer to express
three categories of system properties: reachability properties, safety properties, and
liveness properties. Safety properties are formulated as one of either of the two forms:
Al¢ or EOJ¢. The safety property AlJ¢ expresses that ¢ is on any path always true,
while El¢ says that there exists a path on which ¢ is always true. Liveness properties
in UPPAAL can express that either a condition ¢ is eventually satisfied using the formula
AQ@, or that always the occurrence of the event ¢ leads to the condition v being
eventually satisfied, by using the formula ¢ ~» ¢ (cf. [BDLO4]).

2.3.2. Probabilistic Computational Tree Logic

Probabilistic computational tree logic (PCTL) was introduced in [HJ94], [BAA95], and
[BK98] as probabilistic variant of CTL, in order to express properties of probabilistic
systems with and without nondeterministic behavior. Instead of properties that require
that a certain condition is satisfied on all execution paths or just some paths of a system,

40

2.3. Property Specification for Automated Safety-critical Systems

Safety
Properties

Reachability
Properties

All¢ E[]l¢

Liveness
Properties

Yy——9

Legend

O __ State which satisfies . __ State which satisfies Q __ State which satisfies neither
the property ¢ the property ¥ property ¢ nor property i

Transition

- ——» — Repetition
between states

Figure 2.8.: Visual Intuition of TCTL Formulae used in UPPAAL (cf. [BDLO04]).

PCTL allows the specification of properties which impose constraints on the proportion
of the system execution paths that satisfy the respective condition (cf. [BdAFK18]).
PCTL extends the logic CTL with a probability operator Py, ,. Thus, PCTL defines
the standard propositional logic operators along with the probabilistic operator Py ,(¢),
where ¢ is a path formula and > p is a probability constraint (cf. [BK08|, [BAAFK18]).
Intuitively, the formula Py, ,(¢) requires that the probability of taking a path satisfying ¢
meets the probability constraint > p. In the probability constraint o< p, b is a comparison
operator in {<,<,>,>} and p € [0,1] N Q is a probability threshold (cf. [BAAFK18]).
The probability operator Py , is considered to be the quantitative counterpart to the
universal path quantifier A and existential path quantifier £ defined in CTL (cf. [BKO08]).
Baier et al. extend PCTL with an expectation operator, which helps reasoning about
the accumulated cost and the instantaneous cost for a given path ¢ (cf. [BAAFK18]).
Rather than asking about the cost associated with executing certain paths, the properties
formulated for a system under analysis in this thesis are safety properties. Such properties
require for example that, given the probability of occurrence for a hazardous event, the
probability with which the system remains in a safe state satisfies a predefined threshold.
Definition 2.3.8 introduces the syntax of PCTL as it is later used in this thesis.

41

Chapter 2. Fundamental Concepts and Approaches

Definition 2.3.8 - Syntax of PCTL
The formulae of PCTL consist of state formulae and path formulae. The state formulae

are expressed over the set of atomic propositions AP according to the following grammar
(cf. [BKOg], [FKNP11]):

1/}State = true | a | wé'tate A ¢§tate | - ¢State | Pl><1 p(¢Path>

where Yg,. is a state formula, ©p.y is a path formula, a is an atomic proposition,
€ {<,<,> >}, and p € [0,1] N Q.
The path formulae are defined as:

wPath =X ZﬂSiEaiEe ‘ wétate U wg’tate | wé’tate Uﬁn w%’tate
where Uc,, denotes the step-bounded Until, with n € N. |

A property expressed in PCTL is always a state formula. Path formulae are used only
inside the probabilistic operator Py ,. Similar to TCTL, the other propositional logic
operators are derived using the laws of Boolean algebra. With respect to the grammar
of path formulae, PCTL extends CTL by adding U<, the step-bounded Until operator.
Intuitively, the path formula v}, U<, ¥2,,,. asserts that ¢2,,,. shall be satisfied with
maximum n steps, and that 1g,,,, holds in all the states traversed before reaching a state
in which v%,,,. is satisfied (cf. [BKO08§]).

Besides the operators X (Next), U (Until) and U<, (bounded Until), PCTL allows
further operators in the path formulae: operator F' (Eventually) and G (Globally). The
F operator is obtained by using the U operator, while the G operator is defined by the
duality with the F' operator:

F wState = true U QﬁState G ¢State = _'(F _'/l/)State)

The corresponding bounded operators are obtained in a similar manner, using the U<,
operator:

an wState = true Ugn 7wbState ng wState = _‘(an _‘¢State)

In the context of PCTL, the duality between the G and F' operators reflects also on the
probability operator P ,. This means that an event e occurs with a probability of at
most p if its complement event e® occurs with a probability of at least 1 — p (cf. [BKOS]).
This allows the definition of the following relations:

PSp(G wState) = PZl—p(F _‘wState) PSP(GSn wState) = PZl—p(FSn ﬁ'lvbState)

In this thesis, PCTL formulae are interpreted over a Markov decision process M. The
semantics of PCTL is defined with respect to a class of schedulers Sched s of a Markov
decision process M. The notion of scheduler as well as the definition and operational
semantics of Markov decision processes are given in Section 2.4.3. It is said that a PCTL
state formula g4 is satisfied in a state s of a Markov decision process M, if under any
scheduler U € Sched i, s FEschedn Ysiate (cf. [FKNP11], [BAAFK18]). The satisfaction
relation =gehed,, is described in Definition 2.3.9.

42

2.3. Property Specification for Automated Safety-critical Systems

Definition 2.3.9 - Semantics of PCTL

Let M = (S, Act, P, sini, AP, L) be a Markov decision process as in Definition 2.4.6 and
s a state in M. Let a € AP be an atomic proposition. Let v}, and ¥%, .. be two
state formulae and ¥ pyy, a path formula. Let p be a probability threshold and Scheda, a

class of schedulers of M as in Definition 2.4.8. Then, the satisfaction relation F=geped,, is
defined for state formulae by (cf. [FKNP11],[BAAFK18]):

S F=Sched,n, true

S ESchedn @ iff a € L(s)

S }:schedM _'wé'tate iff S P Sched M ¢§mm

S [Sched wé’tate N ¢?9tate iff S FSched wétate N 8 Esched wg’tate
5 FEschedps Poa p(VPan) iff VU € Sched g, Pr (v pam) > p

Where Pr?(death) d:ef PT’?({T(S PathsM | T):SchedM 1/}Path})'

For any path m € Pathsp, the satisfaction relation =gepeq,, for path formulae is
defined by (cf. [BKO8],[FKNP11]):

m):SchedM X wState Zﬁ W[l]):SchedM wState
T Eschedr Vstate U Vstate iff 35 >0 s.t. wj] Eschedns Virate N
VO < k <j s.t. 7T[k3] IZSchedM wé’tate

™):Sched/\/t ¢A15'tate USn lpg'tate Z.ﬁ 30 <] sn st ﬂ-[']] ’:SChedM wgmta A
VO0<k<jst mk] Eschedn Vstate

Notation 2.3.5. Given a Markov decision process M, a scheduler U € Schedn, and an s
in M, then:
. Przj(zﬁ patn) denotes the probability that the path formula 1 pyy, is satisfied by state
s in M under the scheduler U, and
° Pr’g’({w € Pathsp | ™ FEschedn, Vratn}) denotes probability that all infinite paths 7
starting in state s satisfy the path formula v p,y, under the scheduler U. [|

Notice that the only difference between the operators U and U, is that the index j
over the states of the path 7 is unbounded in the case of the former and is bounded by
n in the case of the latter. Intuitively, this means that ©§,,,. U ©%,,,. is true if %, ,,. is
satisfied at some step in the future, and v,,,, holds up until that step. In comparison,
Ve Usn V3, is true if ¥2, . is satisfied within n steps, and 9,,,, holds up until %, ,.
becomes true.

Given an Markov decision process M with s;,; its initial state, it is said that M
satisfies a PCTL state formula g if and only if sii F=schedn, Vstate (cf. [BAAFK18]).

PRrisM and STORM are two verification tools which accept a rich range of property
specification languages, among which is also PCTL (cf. [KNP02], [DJKV17], [Hen18)).

43

Chapter 2. Fundamental Concepts and Approaches

2.4. System Modeling for Automated Safety-Critical
Systems

The system architecture is created during the system design phase of the system devel-
opment process presented in Section 2.2.1 and respectively Section 2.2.2. The software
architecture represents all the software components of the system under analysis along
with their respective interfaces and the relations between them. The software components
may be modeled via graphical notations, e.g., UML 2, and then implemented manually, or
the software components can be created as executable models, from which the respective
source code is automatically generated with the help of a toolchain which supports
model-based engineering. In industrial domains such as automotive or aeronautics, there

are commercial toolchains which have established themselves over years long experience,
e.g., MATLAB/SIMULINK [BD97], AsCET-sD [LBBZ97], or ANSYS SCADE [CPP17].

In the survey in [LED*19], Luckuck et al. point out a wide range of methods used to
describe in the software architecture of autonomous robotic systems. Several of these
methods produce executable models, from which the respective source code is generated.
Some of these methods use executable graphical notations such as restricted Finite State
Machines [MRWO06] and ARMARX statecharts [WOK™16] to produce executable C++
code. Model-driven engineering approaches, e.g., the BRICS component model [BKH'13]
and the architecture description language MONTIARCAUTOMATON [RRRW14], translate
models into platform-specific component models or into source code aimed at specific
robotic platforms, e.g., Ros (cf. [LFD"19]). The system requirements can then be checked
through the execution of the executable software program or through the simulation of
the executable models.

Nevertheless, for a highly safety-critical system function, e.g., an automotive function
with ASIL C or ASIL D, irrefutable proof is necessary that the respective function
satisfies its functional and safety requirements. Formal verification methods can provide
mathematical proof for the correctness of safety-critical systems with respect to their
specified system requirements. This is achieved based on the unambiguous semantics
of the property specification which formalizes the verification goal and of the system
model which formally describes the system to be verified. Luckcuck et al. [LFD*19]
survey several methods used for the formal modeling of autonomous robotic systems and
their environment. Many of these methods rely on state-transition models, e.g., Petri
nets (cf. [CDGO7], [CLOT7]), [DWFZ12], [FJNT11], finite transition systems ([FJNT11],
[DWFZ12], [GJD13], [WDF*16]), or probabilistic models such as discrete-time Markov
chains and Markov decision processes (cf. [KDF12]). Other approaches use set-based
formalisms, e.g., Z specification (cf. [LDSWO09]) or Event-B ([TPT*12]), dynamic logic
(cf. [SKA13]), process algebra (cf. [OAH"14], [MBL"13]) or ontologies (cf. [MV09],
[PCRT13]).

This section introduces two formalisms used in this thesis for the modeling automated
safety-critical systems: timed automata in Section 2.4.1 and Markov decision processes
in Section 2.4.3. Before the introduction of Markov decision processes in Section 2.4.3,
Section 2.4.2 gives a short overview of modeling formalisms for probabilistic safety-critical

44

2.4. System Modeling for Automated Satety-Critical Systems

systems. The discussion of timed automata and Markov decision processes in Section
2.4.1 and respectively Section 2.4.3 includes the syntax and semantics for each formalism.
However, in order to reason about an automated safety-critical system in the environment
in which it is designed to operate, both the system and the environment have to be
modeled and their models have to be put in interaction with each other. This is done
through parallel composition of the two models. Therefore, for each modeling formalism
presented in this section, it is illustrated how the parallel composition is built.

2.4.1. Timed Automata

Timed automata represent a formalism introduced by Alur et al. in [AD92] and [AD94]
in order to model the behavior of real-time critical systems. In 1999, Alur extended
the definition of timed automata with the notion of location invariants (cf. [AH99]). A
timed automaton is essentially a transition system extended with clock constraints. The
notion of timed automata is introduced in Definition 2.4.1. The semantics of a timed
automaton TA is formally defined by the transition system 7'S(7TA) associated with it,
which is introduced in Definition 2.4.2.

Definition 2.4.1 - Timed Automaton
A timed automaton TA is defined as the tuple (cf. [BKO08], [AH99]):

TA = (Locta, Locy', Actra, Cra, Invra, AP 7a, Lra, E1a)

where:

e Locyy is a finite set of locations,
Locit C Locry is a set of initial locations,
Actry is a finite set of action labels,
C'ra is a finite set of clocks,
Invpa @ Locra — B(Cra) is a function which maps each location s with an invariant
from the set of clock constraints B(C'ra),

e APy is a finite set of atomic propositions,

o Lpy: Locyy — 24774 is a labeling function, and

o By C Locry x B(Cra) X Actpy x 26™ x Locry is a set of switches (s, 1, a, D, s').
Each switch (s,%,a, A, s') is an edge from location s € Locty to location s’ € Locry on
action a € Actry. The switch is enabled when the clock constraint ¢» € B(C'74) evaluates
to the truth value true. The set of clocks D C Cpy specifies which clocks are to be reset
when the switch is enabled. [|

Definition 2.4.2 - Formal Operational Semantics for Timed Automata
Let TA be a timed automaton as in Definition 2.4.1. The operational semantics of the
timed automaton T A is given by the transition system associated with it, which is defined

as the tuple (cf. [BKOS], [AH99]):
TS(TA) = (Srs, 575", Actrs, AP1s, Lts, Erg)

where:

45

Chapter 2. Fundamental Concepts and Approaches

e Srtg is a finite set of states (s,), with s € Locs and v is clock interpretation over
the set of clocks C'py,

o Shit C Spgis a set of initial states (so, 1), with so € Lochi’ and vy(z) = 0, for all
x € Cra,

o Actrs = Actpa UR> is a finite set of action labels for the discrete transitions
between locations along with real-valued time increments for the delay transitions,

e APrg = APps U B(Crya) is a set of atomic propositions along with the clock
constraints of the timed automaton,

o Lrg: Sysg — 24F7 is a labeling function, where Lrg((s,v)) is the set Loy U{¢cy €
B(CTA) | 1%): ¢Clk}a and

e [rg is the transition relation, defined through the following two rules:

— delay transitions: for a state (s,v) € Srs and a value § € R, the transition
(s,v) LN (s,v + 0) takes place, if for all o' with 0 < § < ¢, the clock
interpretation v + 0’ satisfies the invariant Invra(s), i.e., v + 0" = Invra(s),

— discrete transitions: for a state (s,v) € Spg and an action label a € Actrg, the
transition (s, v) = (s, v[D := 0]) takes place if there is a switch (s, 4, a, D, s') €
Ery in the timed automaton, for which v = ¢ and v[D := 0] = Invra(s').

|

Definition 2.4.3 - Parallel Composition of Timed Automata
Let TA; and TA5 be two timed automata as in Definition 2.4.1:

Init
TAI — (LOCTA17 LOCTA17 ACtTAla OTA17]nUTAU ETAla APTA17 LTAl)

Init
TA2 = (LOCTAZ, LOCTA2, ACtTAQ, CTA2> InUTA2, ETAg, APTAQ, LTAQ)

for which CTAl N CTA2 = (Z) and APTA1 N APTA2 = @
Then, the parallel composition of TA; and TA,, also denoted as the product automaton,
is defined as the tuple:

TA,||TAy = (Loc, Locy, Act,C, Inv, E, AP, L)

where Loc = Locta, X Locra,, Locp, = Loc[{fjtl X Locfﬂi, Act = Actpa, U Actra,,

C = Cra, UCra,, Inv((s1,52)) = Invga, (s1) A Invpa,(se), AP = AP 14, U APy, and
L((s1,82)) = Lra,(s1) U L7a,(s2). The switches in the product automaton are defined
by the following rules:
e for action a € Actra, N Actra,, for every switch (s1,%1,a,D1,s)) in Ery, and
(82,19, a, Do, s5) in E7a,, there exists the switch ((sq, s2), Y1 Ae, a, D1UDs, (s, s5))
in F,
e for action a € Actra, \ Actra,, for every switch (s1,11,a, Dy,s}) in Era, and
Sy € Locra,, there exists the switch ((sy, s2),%1,a, Dy, (s, s2)) in E,
e for action a € Actya, \ Actry,, for every switch (sq, 9, a, Dy, sh) in Ery, and
s1 € Locra,, there exists the switch ((s1, $2), 19, a, Do, (s1,55)) in E.
|

Notice that in a product of two timed automata, a component timed automaton
synchronizes with the other timed automaton over the switches that have identical action

46

2.4. System Modeling for Automated Satety-Critical Systems

labels and executes independently of the other component automaton those switches
that have different labels.

UPPAAL is a verification tool which implements the formalism of timed automata
introduced by Alur in [AD92] as UPPAAL automata. It provides a graphical language for
modeling the UPPAALd a textual language similar to the C programming language which
allows modeling the behavior of the UPPAAL automata with the help of user defined
variables and functions. In UPPAAL, the parallel composition between timed automata
results in a network of timed automata (cf. [BY04]), which constitutes the UPPAAL
model used to describe the system model and the environment model. The parallel
composition between two UPPAAL automata is realized through channels, which are
used for synchronous communication between the two automata. UPPAAL implements
both synchronous and asynchronous communication between timed automata. The
synchronous communication is realized via an alphabet of input and output actions,
which are implemented as channels, while the asynchronous communication occurs
through shared variables (cf. [BY04]). Consider two UPPAAL automata TA; and TA
that synchronize over a channel m. Timed automaton TA; contains a transition labeled
with the output action m! and timed automaton TA; has a transition labeled with
the input action m?. The alphabet of actions consists of the input action m? and
output action m!. If the transition labeled with the action m! is enabled in TA; and the
corresponding transition labeled with action m? is enabled in TA,, then TA; and TA,
synchronize with each other and execute together their respective transitions, e.g., TA;
outputs a computation result and TA, reads it and uses it further in its own computations.

2.4.2. Short Overview of Modeling Formalisms for Probabilistic
Systems

There is a wide range of formalisms, that can be used to model the behavior of probabilistic
safety-critical systems. PRISM and STORM are two verification tools which implement
some of these formalisms (cf. [KNP02], [DJKV17]). An overview of the formalisms used
to describe probabilistic systems in the model checker STORM is given in Table 2.2.

The models in Table 2.2 are categorized according to two dimensions: model of time
and determinism or lack thereof. Discrete-time Markov chains (DTMCs) are considered
the simplest of the probabilistic models. A DTMC is a transition system in which each
transition has a probability associated with it and for each state the sum of probabilities
for the outgoing transitions equals to 1 (cf. [Katl6]). In contrast to DTMCs which
have a discrete model of time, in continuous-time Markov chains (CTMCs) time is
continuous. Each state in a CTMC has a negative exponential distribution associated
with it, that defines the residence time in the respective state. Similar to a DTMC,
there is a probability distribution over the successor states for each state of a CTMC (cf.
[Kat16]).

A Markov decision process (MDP) extends a DTMC with nondeterminism. Each state
may have several outgoing transitions, each labeled with an action. In order to switch to
another state, a transition labeled with a unique action is chosen in a nondeterministic

47

Chapter 2. Fundamental Concepts and Approaches

Table 2.2.: Overview of some Formalisms used for Modeling of Probabilistic
Systems (cf. [Kat16]).

\ | Discrete Time

Continuous Time \

Deterministic Discrete-time Markov Chain | Continuous-time Markov
(DTMC) Chain (CTMC)

Nondeterministi¢ Markov Decision Process | Continuous-time Markov
(MDP) Decision Process (CTMDP)

Compositional | Probabilistic =~ Automata | Markov Automata (MA)
(PA)

manner, after which the successor state is elected according to a probability distribution
(cf. [Kat16]). A scheduler or a policy prescribes which probability distribution is selected
when an MDP is in a given state. In this way, a scheduler transforms an MDP in a
DTMC (cf. Section 2.4.3).

Continuous time Markov decision processes (CTMDPs) extend MDPs with the notion
of continuous time as it is modeled in CTMCs, i.e., the time spent in a state of a CTMDP
is defined through a negative exponential distribution. This distribution depends on
the probability distribution that is selected and used to determine the next state (cf.
[Kat16]).

In addition to the formalisms presented above, there are also compositional variants
of them. The compositional formalisms are extensions of the presented Markov models,
which can be used to describe complex probabilistic systems using parallel composition
with process-algebraic operators like in calculus of communicating systems (CCS) or in
communicating sequential processes (CSP) (cf. [Kat16]). Thus, probabilistic automata
(PA) introduced by Segala in [Seg95] are an extension of MDPs; in which the probability
distributions in state are labeled with actions. Parallel composition of PA is realized
through synchronization between the two component PA over a set of common actions.
Each PA executes the actions outside of this set independently and in an interleaved
manner (cf. [Kat16]). Markov automata (MA) are an extension of CTMDPs, and from a
technical point of view MA are similar to PA with the additional feature that transitions
can be labeled with actions or with positive real numbers, which represent rates of
exponential distributions. Transitions labeled with rates in an MA can be understood as
delay transitions (cf. [Kat16]). Semantically, an MA combines the behavior of CTMC
with that of a PA. In states with the outgoing transitions labeled by actions, an MA
behaves as a PA, while in states with outgoing transitions labeled by rates the MA works
as CTMC (cf. [Kat16]).

The PRIsM model checker supports all of the formalisms in Table 2.2 with the
exception of MA and CTMDPs. In addition to the formalisms it has in common with
the STORM model checker, the PRISM model checker also supports probabilistic timed
automata (PTA), as well as variants of MDP and PTA in which the scheduler that

48

2.4. System Modeling for Automated Satety-Critical Systems

resolves the nondeterminism in the model has access only to observations of the model
state, instead of accessing its actual state.

2.4.3. Markov Decision Processes

Markov decision processes, introduced first in [Bel57], [How60] and [Put94], are used
to represent systems which exhibit probabilistic as well as nondeterministic behavior
(cf. [FKNP11]), and in which the evolution of the system under analysis is encoded by
discrete probabilities (cf. [BAAFK18]). In MDPs, transitions are labeled with actions,
which can be chosen in a nondeterministic fashion. The successor states for the chosen
action are specified through discrete probability distributions. In this respect, MDPs can
be considered as a probabilistic variant of labeled transition systems (cf. [BAAFK18§]).
Throughout this thesis, MDPs are considered to be equivalent to PA (cf. [BAAFK18]),
due to Segala’s work (cf. [Seg95]). Before the introducing the notion of Markov decision
process it is important to define the notion of probability distribution and the product of
two probability distributions. This is done in Definition 2.4.4 and Definition 2.4.5. The
notion of Markov decision process is introduced in Definition 2.4.6.

Definition 2.4.4 - Probability Distribution
Let X be a countable set. A probability distribution over the set X is a function
D : X — [0,1] for which }_,cx D(z) =1 holds (cf. [BdAFK18]). |

Notation 2.4.1. Supp(D) of {z € X : D(x) # 0} is denoted the support set of the
distribution D and contains all elements of X which have associated a nonzero probability
with them. If the support set of the probability distribution D contains only a single
element, then D is denoted as a Dirac distribution. Distr(X) denotes the set of all
distributions over set X (cf. [BAAFK18]). [

Definition 2.4.5 - Product of Probability Distributions

Let X; and X, be two countable sets. Let Dy € Distr(X;) and Dy € Distr(Xs) be
two probability distributions over these sets. Then, the product of the two probability
distributions is denoted as D1 x Dy € Distr(X; x X3) and is defined by D; x Do ((21,22)) =

Definition 2.4.6 - Markov Decision Process
A Markov decision process (MDP) is defined as the tuple:

M = (S, Sinits ACt, P, AP, L)

where:
e S is the countable non-empty set of states of M,
Sinit 1s the initial state of M,
Act is the finite non-empty set of actions of M,
P: S x Act x S — [0,1] N Q is the transition probability function of M, such that

> P(s,a,8') € {0,1},

s'eS

for all system states s € S and for all system actions a € Act,

49

Chapter 2. Fundamental Concepts and Approaches

e AP is a finite set of atomic propositions in M,
o L :S — 247 is a labeling function of M which labels a state s € S with the atomic
propositions a € Act that are supposed to hold in s. |

Notation 2.4.2. Act(s) denotes the set of actions which are enabled in state the s of M.
An action a € Act is enabled in state s of M if and only if Y, P(s,a,s) =1, i.e., at
least one outgoing transition of state s labeled with the action a has a nonzero probability
associated with it. No state s in M is allowed to be a terminal state, i.e., Act(s) # (0 (cf.
[BKO08], [BAAFK18]). This is in order to prevent deadlocks, since Act(s) # () means that
there is always an action enabled in the state s of M which can be taken in order for M
to progress to the next state (cf. [FKNP11]) [

The definition for MDP used in this thesis is adapted from the one given by Baier et
al. in [BAAFK18]. In comparison with the definition given in [BAAFK18], the one used in
this thesis does not include the cost function associated with executing a path or a set of
paths in a Markov decision process. An example in which the definition of a cost function
is necessary is an autonomous robot which aims to reach a given destination as soon
as possible. However, in this thesis, MDPs are used to model automated safety-critical
systems that operate in uncertain environments. For such systems, the purpose is to
express safety properties that ask for example the probability with which the system
under analysis remains in a safe state, given the probability of occurrence for a hazardous
event. In order to be able to reason about MDPs, their operational semantics must
be understood. Definition 2.4.7 introduces the operational semantics of MDPs at an
intuitive level.

Definition 2.4.7 - Intuitive Operational Semantics for Markov Decision Pro-
cesses

Let M be an MDP as defined in Definition 2.4.6. Its operational semantics can be
described intuitively as follows. The MDP M starts its computation in its initial state
Smit- After n computation steps, the current state of M is s, and M chooses the action
an+1 € Act(s,) in a nondeterministic manner. The effect of taking action a,4q in s,
is controlled by the probability distribution P(s,,a,11,-). The next state s, is an
element of the support set of P(s,, a,t1,-) and it is chosen based on its probability. The
execution of M results in a possibly infinite sequence of states and actions of the form
T =50 = 81— 5y <% ..., With s4 = 5o (cf. [BAAFK18]). [|

Notation 2.4.3. Let M be an MDP. A path of state sy in M is an infinite alternating
sequence of states and actions of the form 7 = sy =% 51 2 5o 2% ..., in which s; € 9,
a;41 € Act(s;), and P(s;, @41, Si+1) > 0, with @ > 0 (cf. [BAAFK18]).

A finite path of state sy in M has the form 7 = sy = s; = ... 2% s,,. For the finite
path 7, last(m) denotes the last state of the path 7 and |r| is called the length of the
path 7 (cf. [FKNP11]).

For an infinite or a finite path 7 in M, first(m) denotes the first state of the path 7
and 7[i] denotes the (i + 1)-th state in the path m, i.e., 7[i| = s; (cf. [BAAFK18]).

There are several sets of paths which are defined with respect to a state s in M:
Pathsp(s) denotes the set of all paths in M starting in the state s, while FinPathsa(s)

20

2.4. System Modeling for Automated Satety-Critical Systems

is the set of all finite paths in M starting in the state s. With respect to the whole MDP
M, following sets of paths are defined: Pathsa, denotes the set of all paths in M, while
FinPathsa represents the set of all finite paths in M (cf. [BAAFK18]). |

In order to reason about probabilities in MDPs, it is important to have a mechanism
which resolves the nondeterministic choices, which exist between the transitions of an
MDP (cf. [BAAFK18]). This is done through a decision making approach which chooses
in each state of the MDP which action is to be performed, based on the history of
the MDP’s execution up to the respective state (cf. [FKNP11]). The decision making
approach is formally modeled using the notion of scheduler. In literature, schedulers are
referred to as adversaries, policies or strategies (cf. [FKNP11], [BAAFK18]) The notion
of scheduler is introduced in Definition 2.4.8.

Definition 2.4.8 - Scheduler

Let M be an MDP as defined in Definition 2.4.6. Then, a scheduler is a function
U : FinPathsyy — Distr(Act) such that, for all finite paths 7 in M, Supp(U (7)) C
Act(last(m)) (cf. [BAAFK18]). [

Notice that what Definition 2.4.8 expresses is that all actions with nonzero probability
in the scheduler U are enabled in the last state of the finite path 7, and one of them can
be chosen, based on its probability, to be executed next. Intuitively, a scheduler U takes
a finite path 7, i.e., a history of computation in the MDP M, as input and, based on a
probability distribution, chooses the next action to be executed (cf. [BAAFK18]). By
assigning probabilities to the nondeterministic choices available in the last state of ,
scheduler U transforms the MDP M in a DTMC (cf. [BK08], [ABD*14]).

Notation 2.4.4. A finite or infinite path 7 = 59 — §1 — 59 —» ... in an MDP M is
denoted as a path of a scheduler I/ if, for any path fragment m; = 59 = 5, —» 59 —
... 2 s;, there exists an enabled action a;,; in 7 which can be chosen by the scheduler
U,ie., U(m)(aiz1) > 0 (cf. [BAAFK18]). Sched denotes the set of all schedulers in an
MDP M. [|

The notion of scheduler as defined in Definition 2.4.8 describes a history-dependent
randomized scheduler. Schedulers are categorized depending on which information they
use in order to make a decision and whether randomization is used or not. Besides history-
dependent randomized schedulers, there are deterministic schedulers and memoryless
schedulers.

Notation 2.4.5. A deterministic scheduler is a function U : FinPathsy, — Act, where for
all finite paths 7 € FinPathsy, U(m) is a Dirac probability distribution. This means
that a deterministic scheduler selects always some action a with probability 1, while all
the other actions have probability 0 (cf. [BAAFK18]).

A memoryless randomized scheduler is a function Y : S — Distr(Act), for which
U(si)(air1) > 0, where a1 € Act(s;), s; = last(m;), and m; € FinPathsy,. This means
that a memoryless scheduler makes a decision based only on the current state, rather
than considering the states encountered previously as history-dependent schedulers do.

A memoryless deterministic scheduler, also denoted as simple scheduler, is represented
by a function U : S — Act (cf. [BAAFK18]). |

o1

Chapter 2. Fundamental Concepts and Approaches

Using MDPs to model an automated safety-critical system and its environment means
that the parallel composition for MDPs must also be defined. This is done in Definition
2.4.9, which is inspired by the definition of parallel composition for PA given by Segala
in [Seg95].

Definition 2.4.9 - Parallel Composition of Markov Decision Processes
Let M; and M3 be two MDPs as in Definition 2.4.6:

Ml = (Sl, ACtl, P17 S%m-t, APl, Ll)
MQ = (SQ, ACtQ, Pl, S?mt? APQ, Lg)

Then, the parallel composition of M; and M, results in an MDP, which is represented
by the tuple:

MIHMQ = (Sa ACt7P7 Sinits AP7 L)

where:
e S =5 x 55 is the countable non-empty set of states of the composite MDP,
o Acty = Acty U Acts is the finite non-empty set of actions in the composite MDP,
e P: S x Act x S — [0,1] N Q is the transition probability function such that

> P(s,a,s) €{0,1}

s'es

for all states s € S and for all actions a € Act in the composite MDP,

® Sinit = (sh ., s2) is the initial state of the composite MDP,
e AP = AP, U AP, is a finite set of atomic propositions,
L : S — 247 is a labeling function which labels a state s = (sy, s3) of the composite
MDP with the atomic propositions which are supposed to hold in this state.
The parallel composition of M; and M is done using the CSP-based operator ||. The
transitions of the composite MDP and their respective probabilities are defined according
to the following rules:

e for action a € Act; \ Acty, for every transition (si,a,s]) in M;, transition

((s1,82),a,(s),s2)) is added to M, with the probability

P((Slv 32)7 a, <$I17 52)) = Pl(slv a, 5/1)

e for action a € Act; \ Acty, for every transition (sq,a,sh) in My, transition
((s1,52),a, (s1,55)) is added to M, with the probability

P((Slv 32)7 a, (317 5/2)) = PQ(SZ’ a, 3/2)

e for action a € Act; N Acty, for every transition (sy,a,s)) in M; and (sg,a, s5) in
My, transition ((s1, s2), a, (s}, s5)) is added to M, with the probability

P((Sla 32)7 a, (S/b 5/2)) = Pl(sla a, 5/1) * P2(527 a, 3/2)

52

2.5. Verification and Validation of System Properties in Automated Safety-critical Systems

PRrisM and STORM are two verification tools which implement a wide range of
formalisms, that can be used to model the behavior of probabilistic systems (cf. Section
2.4.2). The two verification tools share a common textual modeling language, called
PrisMm, which is a state-based language inspired by the formalism of reactive modules
introduced by Alur and Henzinger in [AH99] (cf. [HKNPO06]). A PRisM model consists
usually of several modules, whose behavior is described by a set of commands. A
command in the PRISM modeling language has the general form shown in Equation (2.1):

[a] g = A cug 4o+ A ugy, (2.1)

where ¢ is the guard of the PRISM command and uy, ... u,, are several updates that can
be carried out with different probabilities A; ... \,,. Optionally, a PRISM command is
labeled with an action a.

PRrisMm supports several CSP-based operators which allow the modeling of several
types of parallel composition between two or more MDPs through (1) synchronization
over a common alphabet of actions with interleaving on all the other actions that are not
included in the alphabet, (2) full interleaving with no synchronization, (3) renaming of
actions in one or several modules, and (4) hiding of actions in one or several modules.

In this thesis, the parallel composition of two MDPs is realized through synchronization
over the common actions between the two MDPs and interleaving for all the other actions,
that do not belong to the common alphabet. Given two MDPs M; and M, their parallel
composition is done according to the following rules®:

e for each action a € Act; \ Acty and command [a] g — Ayt ug + -+ + Ay ¢ Uy, Of

M add command [a] g = Ayt ug 4 -+ + A 2 Uy, to My || Mo,
e for each action a € Acts \ Act; and command [a] g — Ayt ug + -+ + Ay ¢ Uy, Of
M add command [a] g — Ay ug + -+ + A 2 U, t0 My || Mo,

e for each action a € Acty N Acty, command [a] g — Ayt ug + -+ + Nyt upy, of My

and command [a] ¢ — 71 : v+ -+ + 7, 1 v, of M3 add the command

la g& ¢ = iy iup & v+ A k7w, & vy
FA kYt uy & vgF Ay kYt uy, & v

FAN kY tuy & v+ A ke uy, &y

to Ml H Mg.

2.5. Verification and Validation of System Properties in
Automated Safety-critical Systems

The verification and validation process accompanies the system development process of
an automated safety-critical system starting with the concept phase, in which a safety

2https://www.prismmodelchecker.org/doc/semantics.pdf

53

https://www.prismmodelchecker.org/doc/semantics.pdf

Chapter 2. Fundamental Concepts and Approaches

concept is defined along the functional concept of the system under development, and
ending with the acceptance tests and the safety assessment of the system carried out
before releasing it for production (cf. Section 2.2). Verification and validation are two
types of activities that are carried out with different goals in mind during the development
of automated safety-critical systems. The notions of verification and validation as they
are understood throughout this thesis are introduced in Definition 2.5.1 and Definition
2.5.2.

Definition 2.5.1 - Verification

Verification is the process of evaluating a system or a system component in order to
determine whether the artifacts obtained as a result of a given development phase satisfy
the conditions imposed at the start of that phase (cf. [[SO10]). The verification process
is aimed at one single development phase at a time and its purpose is to provide objective
evidence that the outcome of the respective development phase is achieved correctly and
completely with respect to its specification, i.e. the requirements and conditions imposed
through specific input documents at the start of the phase (cf. [SLS14c]). |

Definition 2.5.2 - Validation

Validation is the process of ensuring that a developed system is able to accomplish its
intended use, goals and objectives (cf. [ISO10]). The validation process can take place
at different levels of abstraction (cf. [SLS14c]) and evaluates the system or a system

component in order to check whether the system or the system component satisfies the
user needs and those of other identified stakeholders (cf. [ISO10]). |

Notice that both verification and validation can take place at any level during the
system development process. The difference between the two is that verification is
concerned with checking the correctness of a developed system with respect to a given
specification, focusing on answering the question whether the system is correctly built or
not, while in comparison, validation focuses on checking whether the developed system
fulfills its intended purpose and meets the user needs, thus answering the question
whether the right system was built (cf. [SLS14c]).

There are various methods by which verification and validation of automated safety-
critical systems can be carried out. This section gives an overview of three of these
methods, which are used in this thesis - testing (Section 2.5.1), design-time verification
(Section 2.5.2), and runtime verification (Section 2.5.3) - and introduces some core notions
associated with them.

2.5.1. Testing

Testing is the principal approach of verification and validation recommended by ISO
26262 and ISO/PAS 21448 (cf. Section 2.2). Testing accompanies the development phases
of a safety-critical system and specific test methods are integrated in the development
process at system level as well as at hardware and software level in order to verify that
the system as a whole as well as the individual hardware and software components comply
with their respective functional and safety requirements (cf. Section 2.2). The notion of

o4

2.5. Verification and Validation of System Properties in Automated Safety-critical Systems

testing as it is understood and used throughout this thesis is introduced in Definition
2.5.3.

Definition 2.5.3 - Testing

Testing is defined as an activity in which a system or a system component is executed
under predefined conditions, the results are observed or recorded, and specific aspects of
the system or of the system component are evaluated based on the recorded results (cf.

[ISO10]). An artefact under test, e.g., a system or a system component, is denoted as a
test object. [

In the software development process presented in ISO 26262, there are three large
test phases: software unit test, software integration test and software safety requirements
verification (cf. Section 2.2.1). In order to test a particular test object, test engineers
define test cases as finite sequences of test inputs and test outputs. During testing, the
test object is stimulated with the defined test inputs and the computations’ result is
compared to the expected value defined by the test engineers. While software unit tests
check atomic software components individually with respect to their design specification,
software integration tests accompany the software integration process and check the test
object and its interfaces against the software architectural design (cf. Section 2.2.1). The
software safety requirements verification can be seen as a system test for the integrated
software system, which is checked in its target environment with respect to its functional
and safety requirements. As the process of software and system integration progresses,
the environment of the test object consists of other software components as well as
software and hardware components and subsystems. Software unit tests as well as
software integration tests can be carried out in various environments, depending on the
level at which the tests are performed. Such tests are simulation-based tests, called
X-in-the-loop tests, where X stands in for a model, a piece of software, a target processor
or a target hardware (cf. Section 2.2.1). The environment of a test object which is part
of a larger automated safety-critical system is a technical one, consisting of software
and/or hardware components. At higher levels of development and integration, e.g., at
system level, the test object is not a system component or a subsystem anymore but
the whole system itself. In this case, the environment of the test object is in fact the
physical environment in which the system is deployed, which is part of the physical world.
Definitions 2.5.4 and 2.5.5 introduce the notions of technical environment and physical
environment as they are understood and used henceforth in this thesis.

Definition 2.5.4 - Technical Environment

A technical environment is defined in relation to a test object which is part of a larger
automated safety-critical system. The technical environment consists of software and/or
hardware components with which the test object communicates through its software and
hardware interfaces. [

Definition 2.5.5 - Physical Environment
A physical environment is defined in relation to an automated safety-critical system, of
which the test object is a part of. The physical environment consists of dynamic elements,

%)

Chapter 2. Fundamental Concepts and Approaches

scenery elements, self-representation of the system itself and of other actors present in
the environment as well as the relationships between all these entities. |

Notice that the concept of physical environment is related to the notion of scene
introduced in Section 2.2.2, since a scene is considered to be a snapshot of the physical
environment in which the system under test is deployed (cf. Definition 2.2.6). To give
an example of the elements that may be contained in the physical environment of an
automated safety-critical system, consider the case of an autonomous vehicle. The
dynamic elements in the physical environment may be represented by moving obstacles,
e.g., other vehicles. The scenery may contain information on the infrastructure elements
present in the physical environment, the geometry of the environment, and environment
conditions, e.g., traffic lights, number of lanes, and weather conditions.

In order to test a test object, test engineers create a series of test cases, which are
executed on the test object. The notion of test case as it is understood in this thesis is
given in Definition 2.5.6. Related to the execution of test cases on a test object are the
notions of system trace and system execution, introduced in Definitions 2.5.7 and 2.5.8.

Definition 2.5.6 - Test Case

A test case is a set of inputs, a precondition, an expected result, and a postcondition,
defined for a test object with a specific objective in mind, e.g., exercise a particular path
in an algorithm or verify compliance with a specific requirement (cf. [SLS14c|, [[SO10]).
The test inputs are also denoted as stimuli, while the outputs produced by the test object
are denoted as responses. |

Definition 2.5.7 - System Trace
Let S be a test object. A system trace of S is a possibly infinite sequence of system
states of S or a sequence of actions performed by S (cf. [LS09]). |

Definition 2.5.8 - System Execution
Let S be a test object. A system execution of S is a finite trace of S (cf. [LS09]). W

Notice that state of a test object can be regarded as a snapshot of the test object
at a certain step during its execution. A state is in fact a interpretation of the state
variables over their respective value domains. When running, the test object performs
certain actions. Each action starts with a specific interpretation of the state variables
and produces a new interpretation of them, i.e. the state variables are assigned specific
values from their respective value domains as a result of the action carried out by the
test object.

Given a test object S and a test case tc, the precondition describe the state of S
before the execution of S with the test case tc, while the postcondition expresses the
expected state of S afterwards. The postcondition compares the expected result with
the output produced by the test object S. The postcondition is sometimes referred to
as a test oracle. The notion of test oracle as it is understood in this thesis is defined in
Definition 2.5.9.

26

2.5. Verification and Validation of System Properties in Automated Safety-critical Systems

Definition 2.5.9 - Test Oracle

Let S be a test object and tc a test case specified for S. A test oracle is defined as
a boolean function from a system execution of the test object S to the boolean set
{true, false}. The test oracle determines whether the execution of S with the test case tc
is correct, by comparing the expected output defined by the test case tc with the output
produced by S during its execution. [|

Notice that Definition 2.5.9 aligns with the definitions introduced by Richardson et al.
[RAO92] and Barr et al. [BHM'15]. Barr et al. define a test oracle as a partial boolean
function over a set of stimuli and responses of the test object (cf. [BHM*15]). In turn,
Richardson et al. consider that a test oracle consists of two parts: oracle information and
oracle procedure. The oracle information defines what constitutes correct behavior of the
test object S, while the oracle procedure verifies the results of the test case execution
with regard to the respective oracle information (cf. [RAO92]).

There are various methods for specifying a test oracle. The oracle information can
be extracted from the requirements specification of the test object S, from a reference
implementation of S that is available as an executable code or model, or it can be
manually defined by experts (cf. [SWH11]). If a property specification ¢ holds for the
system S when executing the test case tc, then it is said that the system S has successfully
passed the test case tc (cf. [SWH11]). The oracle procedure can be realized as mechanism
which monitors inputs with which the test object S is stimulated and its outputs and
compares the output computed by S with the expected output specified in the oracle
information. Another form of test oracles are assertions defined by experts in the test
object S, which do not verify only the final result but also the intermediate results of a
system execution of the test object S (cf. [RAO92]).

Test cases may be defined manually by experts, but they can also be automatically
generated using design-time formal verification methods such as model checking. Various
methods are recommended by ISO 26262 for the manual definition of test cases for the
software unit tests and the software integration tests, e.g., definition and analysis of
equivalence classes, boundary value analysis as well as analysis of the functional and
safety requirements of the respective test object (cf. Section 2.2.1).

Used as a method for the verification and validation of automated safety-critical
systems, testing can show the presence of faults or defects in a test object but never
their absence (cf. [Dij72]). This is because testing is incomplete and can never cover the
entire set of possibly reachable states of a test object. Figure 2.9 gives a visual intuition
of testing.

In an effort to increase the relevance of the defined test cases and also to ensure their
traceability to the requirements of the test object, test engineers can make use of auto-
mated methods such as model checking in order to automatically generate requirements-
based test cases. One way to generate test cases using model checking is to build
trap properties (cf. [AHDR18]), which are essentially negations of the original system
requirements (cf. [AVR19a]). This approach has been shown to work in the aeronautics
domain (cf. [WRHMO06], [SWRH10]), and has been later transferred to the application
domain of automotive control systems (cf. [AHDR18]). The premise for using model

57

Chapter 2. Fundamental Concepts and Approaches

] Reachable States
False Negative

Initial States
Found Defect

Figure 2.9.: Visual Intuition of Testing.

checking is the existence of a formal model for the test object and a formal specification
for its requirements (cf. Section 2.5.2) and for the respective trap properties. The
formal model of the test object is built correctly with respect to its original requirements,
which is shown through the design-time verification methods applied during its design.
The automated generation of test cases via model checking relies on the basic working
principle of this method, i.e. when verifying a formal model against a formal property
specification, the model checker searches the reachable state space of the model for
a counterexample which disproves the property specification (cf. Section 2.5.2). If a
counterexample is found when verifying the formal model of the test object against a trap
property, then by the law of double negation in propositional logic, the counterexample
which disproves the trap property is one that satisfies the original requirement of the
test object (cf. [AHDRI18], [AVR19a]).

Notice that the form of testing introduced in this section is also denoted oracle-based
testing.

2.5.2. Design-time Verification

Along with testing, ISO 26262 recommends that formal verification methods be applied at
design-time to provide proof of correctness of software components with higher ASIL with
respect to their respective software safety requirements (cf. Section 2.2.1). For safety-
critical systems in the aeronautics domain, the standard RTCA DO-178C recognizes that
verification is not reduced to testing and instead regards the activities in the verification
process as a combination of reviews, tests, and analyses of the system under development
(cf. [RTC11]).

Design-time verification is a complementary activity to testing that can be carried
out at architectural level but also at implementation level during the system development
process. Methods applied in design-time verification are used to carry out analyses of the
system under development with respect to certain properties, which the system designers

o8

2.5. Verification and Validation of System Properties in Automated Safety-critical Systems

would like the system to fulfill. The notion of design-time verification as it is understood
and used throughout this thesis is given in Definition 2.5.10.

Definition 2.5.10 - Design-time Verification

Design-time verification is an activity in which formal verification methods are used
during design-time of a system under development in order to establish whether the
system satisfies a given property. |

Formal verification is the process of applying a manual or automated technique in
order to ensure that a system satisfies a given property or behaves in accordance with some
higher level description of it (cf. [Pel01]). Formal verification methods usually rely on
mathematical theories, e.g., logic and automata (cf. [Pel01]), which allow the development
of a formal model for the system under analysis as well as a formal specification of the
system property to be verified. A formal model of a system is in fact a mathematical
abstraction of that system, that simplifies the system description and preserves only the
system aspects which the system designers want to analyze.

When applying design-time verification to an automated safety-critical system, system
designers want to make sure that the system under development works properly in its
operational design domain according to its functional and safety requirements. For this
purpose, system designers do not create only a formal model of the system but also a
formal model of the environment. These models are denoted as technical system model
and environment model, two concepts which are formally introduced in Definitions 2.5.11
and 2.5.12.

Definition 2.5.11 - Technical System Model

A technical system model is defined as a formal abstract representation of a system under
analysis. The technical system model reflects in an abstract manner one or more aspects
of the system, which are considered relevant by system designers in process of design-time
verification. A technical system model is connected with an environment model through
a system-environment interface. [

Definition 2.5.12 - Environment Model

An environment model is defined as a formal abstract representation of the environment
of a system under analysis. Depending on the hierarchy level at which the system under
analysis is situated, the environment model reflects in an abstract manner one or more
aspects of the technical environment and/or of the physical environment, which are
considered relevant by system designers in the process of design-time verification. An
environment model is connected with a technical system model through the system-
environment interface. n

The technical system model and the environment model are combined together in an
overall system model. During design-time verification, reasoning about the system with
respect to a given property specification is done on the basis of the overall system model.
This allows system designers to focus their analysis only on certain aspects of the system
and its environment and thus manage the complexity of the system as well as that of its
environment more efficiently.

99

Chapter 2. Fundamental Concepts and Approaches

Depending on the method used for the design-time verification, the analysis can be
carried out manually, semi-automated or fully automated with the help of specialized
tools.

Deductive Software Verification

Deductive software verification is one of the first formal verification techniques studied,
which has been developed in various proof systems, that were applied for the verification of
a program’s correctness, e.g., Hoare calculus [Hoa69] (cf. [Pel01]). Deductive verification
relies on the step-wise refinement of the program under analysis, starting from its formal
specification and ending with the actual code of the program, so that at each refinement
step the correctness of the step is preserved (cf. [Pel01]). Even though some parts of
deductive verification can be automated, it remains primarily a manual technique which
requires a lot of expertise and is applicable mainly on small examples (cf. [Pel01]).

Theorem Proving

Theorem proving is a semi-automated technique used to check a program’s correctness
by proving it as one would prove a mathematical theorem (cf. [Maul9]), starting with
well-known axioms as premises and applying established proof rules in an iterative manner
in order to obtain the desired proof goals. Theorem provers are tools used for obtaining
and checking proofs, based on an underlying proof system, which consists of axioms and
proof rules (cf. [Pel01]). Nevertheless, rather than applying one proof rule or one axiom
at a time, the process of theorem proving can be accelerated by using proof-automation
procedures or tactics, which combine the application of several axioms and proof rules
(cf. [PelO1]).

Theorem proving tools are built to enforce rigor in the steps by which a proof is
obtained. However, there are two approaches by which this is done: a so-called purist
approach and a more engineering-oriented approach (cf. [Pel01]). Under the first approach
the proofs are based on a small number of well-known axioms and proof rules. The
user cannot add axioms about objects from new domains, but instead needs to prove
theorems about them. In order to give support to the user, different mathematical
theories that have already been proven are organized in libraries and are made available
in theorem provers for reuse in future proofs (cf. [Pel01]), e.g., the theorem prover
ISABELLE/HoOL which uses higher-order logic for the specification and verification of
systems (cf. [Nip02]). Theorem provers using higher-order logic aim for expressiveness,
i.e. the data manipulation is handled precisely, and for full functional correctness (cf.
[CHV1S]).

In the more engineering-oriented approach, the user is allowed to provide the axioms
for the application domain in which the system under analysis is situated, but he is
also responsible to ensure that the axioms reflect the properties of the intended domain
(cf. [Pel01]). With this approach, users may add more axioms in order to make the
proof more easier to obtain. However, those axioms may in fact be assumptions which
may or not may not hold in the given proof system of the theorem prover. By adding

60

2.5. Verification and Validation of System Properties in Automated Safety-critical Systems

such axioms to the proof, the user inadvertently proves that a property ¢ holds only
under the assumptions added to the proof, instead of proving that a property ¢ holds in
general for some chosen domain (cf. [Pel01]). In contrast to the purist approach, the
engineering-oriented approach allows tactics to be implemented as programs, e.g. COQ
has its own tactic language LTAC (cf. [BC04]), or as external plugins, e.g., ISABELLE/HOL
(cf. [Nip02]). These tactics are applied to some subgoal in order to obtain another subgoal
of the proof (cf. [Pel01]). Whatever the approach used for theorem proving, a proof is
a result of the interaction between the theorem prover and the inputs provided by an
expert (cf. [Pel01]), that has both knowledge of the theorem proving method provided in
the theorem prover as well as the domain in which the proof is carried out.

Model Checking

Model checking is a computer-aided formal verification method, which allows the analysis
of dynamical systems that can be modeled by state-transition systems (cf. [CHV18]). It
can be used at design-time of an automated safety-critical system in order to verify the
system with respect to formally specified system requirements. Figure 2.10 depicts the
general process of model checking.

[Requirements System
Modeling
Formal Property Formal System M ?
Specification Model =
Model
Checking
A A
Satisfied Disproved & Counterexample Simulation

Error location

Legend

<Name> | — Artefact related to the <Names | — Artefact related to

system requirements the system
N Artefact produced as a result Activity in the model
SName> | = of the model checking process ~ checking process

Figure 2.10.: Process of Model Checking (cf. [BKO08]).

il

61

Chapter 2. Fundamental Concepts and Approaches

A model checker takes as input a formal system model, e.g., a finite state machine,
and a formal property specification, e.g., expressed in temporal logic (cf. [BKO08]). Given
a model of the system under analysis SM and a property specification ¢ to verify, the
model checker aims to answer the question whether the system model SM satisfies the
property ¢, denoted as SM |= ¢. For this purpose, it explores the state space of the
system model exhaustively in search of states which disprove the given system property
(cf. [AHDRI18, AVR19a]). In the classical view of temporal logic model-checking, the
state space of the system model is represented as a finite directed graph (cf. [CHV18]),
which is explored with the help of graph traversal algorithms. During the model checking,
the directed graph is rolled out in a tree-like structure. In this structure, the set Reach’
denotes the states, i.e. the nodes, which are reachable within ¢ transitions from the initial
state of the system model. Figure 2.11 gives a visual intuition of how model checking
works. The states which disprove the property to be verified are called henceforth
error states. In case it has encountered an error state, the model checker returns a
counterexample. For non-probabilistic systems and linear time safety properties, a
counterexample is a single finite path, which starts in the initial state of the system
model and ends in an error state (cf. [AVR19a, AVR19b)).

False Negative Reachable States

Initial States
Error State

Figure 2.11.: Visual Intuition of Model Checking.

In probabilistic systems, there are two categories of properties which are considered for
verification: quantitative properties and qualitative properties. Quantitative properties
ask about the proportion of paths in a Markov model that satisfy a certain condition
(cf. [BAAFK18]). Such properties express quantitative constraints with respect to the
probability of occurrence of certain events, e.g., the probability for a message to be
delivered within ¢ seconds is at least 0.98 (cf. [BKO08]) or the probability of a system
failure occurring is at most 0.02 (cf. [FKNP11]). In turn, qualitative properties require
typically that a good event will happen almost surely, i.e., with probability 1, or that a bad
event almost never occurs, i.e., with probability 0 (cf. [BKO08]). In probabilistic systems,
qualitative properties are often expressed by formulae of the form P-((1) or P_;(¢)

62

2.5. Verification and Validation of System Properties in Automated Safety-critical Systems

(cf. [BAAFK18]). Qualitative properties are considered a special case of quantitative
properties with the probability bounds 0 and 1 (cf. [BKO08]). The difference between
qualitative properties and quantitative properties lies in the way their probability bounds
are defined, i.e., for quantitative properties this is a rational number in the interval [0, 1],
while for qualitative properties it is either 0 or 1 (cf. [EKVYO07]). Notice that safety and
liveness properties as introduced in Definitions 2.3.1 and 2.3.2 are qualitative properties.
Nevertheless, safety properties can also be expressed quantitatively, e.g., the probability
of an error occurring is at most 0.01 (cf. [KNPQ10]).

In contrast to classical model checking, probabilistic model checking combines nu-
merical methods with reachability analysis and standard model-checking techniques to
show that the model of a probabilistic system satisfies a given property (cf. [ABD*14]).
There is a wide range of formalisms that can be used to model probabilistic systems (cf.
Section 2.4.2). Counterexamples obtained through probabilistic model checking are more
complex than counterexamples generated by non-probabilistic model checking. Consider
for this purpose the safety property 1;: “an error never occurs” in the context of a
non-probabilistic system. The corresponding safety property in a probabilistic system is
1y “an error occurs with probability at most p”. When checked with a non-probabilistic
model checker, the safety property 1, can be refuted with a single finite path that starts
in the initial state of the system model and ends in an error state (cf. Figure 2.11).
In contrast to 1, the safety property 15 is refuted by a set of finite paths that reach
the error state and whose total probability is larger than p (cf. [FKP10]). As a visual
intuition, a counterexample in the probabilistic model checking is a tree starting in the
initial state of the system model, whose leafs are all error states. This visual intuition is
depicted in Figure 2.12.

False Negative Reachable States

Initial States
Error State

Figure 2.12.: Visual Intuition of Probabilistic Model Checking.

Abraham et al. survey various methods by which counterexamples can be obtained for
discrete-time Markov models (cf. [ABD*14]). There are three forms of counterexamples
identified in [ABD*14]: (1) path-based counterexamples, (2) critical subsystems, and

63

Chapter 2. Fundamental Concepts and Approaches

(3) counterexamples based on the description language used to describe the system
model. Path-based counterexamples are obtained by the explicit enumeration of the
paths contained in the counterexample, usually starting with the most probable path
and in the order of descending probability (cf. [ABD*14]). The path enumeration stops
once the cumulative probability of the enumerated paths exceeds the probability bound
specified in the verified property (cf. [ABD*14]). The path enumeration method has
been applied to DTMCs (cf. [HK07], [WBB09]), and to MDPs (cf. [AL09]). Since
the number of enumerated paths can become quite large, another form of obtaining
counterexamples is to compute a critical subsystem of the system model under analysis.
This is a sub-model of the system model at hand in which an error state is reached with a
probability exceeding the specified probability threshold. The critical subsystem induces
a counterexample by the set of its paths (c¢f. [ABD*14]). Critical subsystems can be
extracted from DTMCs (cf. [Jan15]) and MDPs (cf. [WJA*+14]). Rather than having
counterexamples expressed in terms of states and paths of the system model, it is possible
to describe a counterexample in terms of the modeling language used for the description
of the system model. Typically, large Markov models are written in a human-readable
language, which can prove an advantage for system designers that wish to inspect and
analyze the obtained counterexamples (cf. [ABD*14]). PRISM is a high-level modeling
language in which a system model may consist of one or several models, whose behavior
is described by guarded commands (cf. Section 2.4.3). In this case, a counterexample is
a critical set of commands, which induces a Markov model that disproves the property
to be verified. Counterexamples based on PRISM as a high-level modeling language can
be generated for PAs (cf. [WJVT13]).

The counterexamples obtained during model checking in case a property is disproved
can serve as diagnostic information (cf. [BKO8]). System designers can take this
information and, based on it, refine or redesign the system model, followed by a rerun
of the model checking procedure on the adapted system model and the property to be
verified. This process is repeated until the system model satisfies the specified property.
During the verification via a model checker, it may happen that the model checker runs
out of memory. This is because the number of states in the system model exceeds the
available amount of computer memory, which is denoted as the state-space explosion
problem (cf. [BKO08]). In fact, for model checking techniques, the cost in terms of memory
usage may be exponential in the size of the system under verification (cf. [PGGB*08]).

In order to make the system model verifiable through model checking, system designers
can try to reduce the model, e.g., restrict the value intervals of state variables. Modern
model checkers employ various techniques in order to circumvent the state-space explosion
problem. In order to cope with the infinite state space of timed automata, the UPPAAL
model checker uses the notion of zones, which are conjunctions of atomic clock constraints,
and their representation as difference-bound matrices to obtain a coarser and more
compact representation of the state space (cf. [BFL*18]). The model checkers PrRism
and STORM use among other methods a symbolic approach, in which the state space of
the system model is encoded using binary decision diagrams (BDDs) as well as multi-
terminal BDDs (MTBDDs) as data structures (cf. [BAAFK18]). Multi-terminal BDDs
extend BDDs by allowing the representation of functions that map to numbers rather

64

2.5. Verification and Validation of System Properties in Automated Safety-critical Systems

than just to boolean truth values, i.e. true or false (cf. [Henl8]). Despite effective
methods used to address the state space explosion problem, models created for realistic
systems may still be too large to fit into memory (cf. [BKO08]) or for the verification
procedure to terminate in a reasonable amount of time.

Compositional Verification

Besides symbolic approaches that aim at a more efficient representation of the system
state space, a further method which addresses the state space explosion problem in order
to ameliorate its effects is compositional reasoning or compositional verification.

Compositional verification has its roots in Hoare’s calculus [Hoa69] and in the deno-
tational semantics defined by Scott and Strachey [SS71] for computer languages, which
establish compositional reasoning for sequential programs (cf. [GNP18]). Compositional
reasoning for concurrent programs is introduced by Owicki and Gries (cf. [OGT76]) as
well as Lamport (cf. [Lam77]) and Abadi (cf. [AL93|). Pnueli and Harel introduce
modular reasoning for reactive systems and studies the application of temporal logic to
it (cf. [Pnu85], [HP85]). Fully compositional techniques for reasoning about network of
processes and parallel programs are presented by Misra and Chandy (cf. [MC81]) and
respectively by Jones (cf. [Jon83b], [Jon83a]). These methods impose an assumption
on the inputs of each process and a guarantee on its outputs, providing also proof rules
to ensure consistency between the assumptions and the guarantees of the programs
under analysis (cf. [GNP18]). Therefore, these methods are denoted in literature as
assume-guarantee (A/G) reasoning methods (cf. [GNP18]).

Assume-guarantee reasoning uses a divide-and-conquer approach for the verifica-
tion of complex systems, in which individual components are analyzed separately (cf.
[PGGB™08]). This analysis is carried out based on assumptions made about the behavior
of the other components in the system under analysis. Thus, rather than verifying
a property of the whole system under analysis, A/G reasoning works on the premise
that the system property can be decomposed into properties that are specific to the
individual system components. Each component is then verified individually against
its own property, under consideration of the knowledge about the context in which the
component is supposed to operate correctly (cf. [PGGB*08]). The context knowledge
is encoded by assumptions that capture the requirements or the expectations which a
system component has of the environment in which it operates (cf. [PGGB*08]). The
A /G paradigm works with formulae of the form: (A) M (G) where M is a component in a
given system, A is an assumption about M’s environment, and G is a system property (cf.
[CGPO03]). The formula (A) M (G) is considered to be true, if whenever the component
M is part of a system that satisfies the assumption A, then the system must also satisfy
the system property G (cf. [Pnu85], [PGGB108]).

Barringer et al. introduce various A/G proof rules for compositional verification
(cf. [BGPO03]). The asymmetric proof rule is considered to be useful in checking safety
properties in a compositional manner (cf. [PGGB'08]) and it is used in this section
to give an intuition of how A/G reasoning works. Given a system that consists of two

65

Chapter 2. Fundamental Concepts and Approaches

components M; and Ms, A/G reasoning says that if the formulae ¢; and 1, hold, then
the formula 1) also holds (cf. [CGPO03].

(Y1) = (true) My (A)
(¥2) = (A) Ms (G)
() = (true) My || My (G)

[ASYMM]

Assumptions can be specified directly by domain expert, or they can be automatically
learned or synthesized. There is extensive work done on learning-based assumption
generation for non-probabilistic systems (cf. [CGP03], [GPB05], [PG06], [GGPO7],
[GBPGO8], [PGGB™08]). The method introduced by Pasareanu et al. [PGGBT08] uses
L* which is a learning algorithm first introduced by Angluin [Ang87] and then improved
by Rivest and Shapire [RS93], to learn assumptions in an iterative manner. The algorithm
L* takes an alphabet ¥ as input and learns an unknown language Ly.umeq Over 2. As
a result, L* produces a deterministic finite state machine which accepts the language
Licarnea (cf. [CGPO03], [PGGB*08]). The L* algorithm works by interrogating a teacher,
which answers two types of questions. The first type of question is a query of membership
for a string s € X in the language Ljcumeq- The second type of question is a conjecture,
in which L* asks the teacher whether £(C') = L eumeq for a candidate finite state machine
C built by L*, i.e., if the language accepted by C' coincides with the learned language
Licarnea (cf. [PGGBT08]). The teacher is in fact a model checker which, in case the
languages £(C') and L eqmeqs do not coincide, produces a counterexample that shows how
the two languages differ from each other (cf. [PGGBT08]).

The assumptions learned through this method are assumptions under which the
system under analysis is shown to satisfy its safety property. Cobleigh et al. [CGP03]
show how this works for the proof rule AsymM and non-probabilistic systems that are
modeled as finite labeled transition systems (cf. [CGP03]). For the proof rule Asymm,
the compositional verification of M; || My checks whether the formulae (true) M; (A)
and (A) Ms (G) hold in an iterative manner (cf. [CGP03]). At iteration i, the model
checker verifies in the first step whether the component M satisfies the property G under
an assumption A;. If the verification result is true, then the model checker proceeds with
the second step, i.e. checking the component M, against the assumption A;. Otherwise,
the model checker returns a counterexample in the first step which shows that the
assumption A; is too weak for G to be satisfied (cf. [CGP03]). The assumption A; is
then strengthened using the information delivered by the counterexample of the first step,
i.e. behaviors are removed from the assumption. The second step verifies the component
M, against the assumption A;. In case the result is true, then the the system M || M,
satisfies the property G. Otherwise, the model checker gives out a counterexample which
may illustrate that assumption A; is to strong and it must be weakened in the next
iteration step, i.e. behaviors are added to the assumption (cf. [CGP03]). The learning
approach presented in [CGP03] learns assumptions only for asymmetric A/G rules in
systems with two components. The approach has been generalized for systems with n
components, where n > 2 (cf. [PGGB708]). Further extensions of this approach allow
learning assumptions for symmetric A/G rules, i.e., the assumptions are learned for all

66

2.5. Verification and Validation of System Properties in Automated Safety-critical Systems

components of a system under analysis simultaneously (cf. [BGP03]), and for circular
A/G rules, i.e., the assumptions are learned for a system in which the first and the last
component in the proof chain of the rule’s premise coincide (cf. [PGGBT08]).

In the context of probabilistic systems, Kwiatkowska et al. [KNPQ10] present an
approach for compositional verification which builds upon the concepts in A/G reasoning
from [CGPO03], [GPB05] and [PGGB*08]. The targeted system models are represented
as PAs, which in this thesis are considered to be equivalent to MDPs (cf. Section 2.4.3).
The respective assumptions and guarantees are probabilistic safety properties, which
are represented as deterministic finite automata (cf. [KNPQ10]). The A/G triples on
which probabilistic A/G reasoning works are of the form (A)s,, M (G)s,, where M
is an MDP and (A)>,, and (G)>,,, are probabilistic safety properties (cf. [KNPQ10]).
Informally, this triple expresses that whenever the component M is part of system that
satisfies the assumption A with probability at least p4, then the system shall satisfy the
property G with probability at least pg (cf. [KNPQ10]).

For the asymmetric proof rule, the A/G semantics is defined as in [KNPQ10]. If
(A)>p, and (G)>,,, are two probabilistic safety properties each with their alphabets of
actions Act, and respectively Actg, and M is an MDP with its alphabet of actions
Actaq, where Actg C Acta U Act g, then the following holds:

(A)2p, M(G) 3y & VU € Sched pict)-(Priipace, (A zpa = Priuiaci)(G)zpe)

This means that, the probabilistic triple (A)s,, M(G)>,., holds true, if and only if
under all schedulers of M, if M is part of a system that satisfies A with probability at
least p4, then the system will satisfy G with probability at least pg.

Conversely, a triple (A)s,, M(G)>,. is false if and only if there exists a scheduler U
which satisfies the assumption (A)>,, and violates the guarantee (G)>,, (cf. [KNPQ10]).

Notation 2.5.1. M[Acta] denotes the extension of the MDP M with the alphabet Act 4.
This extension is obtained by adding to every state of M a self-loop labeled with an
action a, for each a € Acts \ Actpy (cf. [FKP10]). |

Kwiatkowska et al. [KNPQ10] use the asymmetric proof rule to exemplify how
probabilistic A /G reasoning works. Given two MDPs M; and My and two probabilistic
safety properties (A)s,, and (G)s>,,, with Acty C Actpy, and Actg C Acta U Actg,,
probabilistic A/G reasoning says that if the formulae v, and 15 hold, then the formula
Y also holds (cf. [KNPQ10]).

(1) - (true) My (A)>p,
(¥2) + (A)sps Mo (G)>pe
(¥) : (true)y My || Mz (G)>pe

The verification of a probabilistic A/G triple (A)>,, M (G)>p, is reduced to the
problem of multi-objective model checking (cf. [KNPQ10]). Multi-objective model
checking is applied to the product between the MDP M and the deterministic finite
automata that correspond to the assumption (A)>,, and respectively to the guarantee

(G)zpe (cf. [KNPQLO]).

[ASYMM-PROB]

67

Chapter 2. Fundamental Concepts and Approaches

Multi-objective model checking is introduced in [EKVY07], as an approach which
verifies MDPs with respect to multiple linear-time properties. Etessami et al. [EKVY07]
investigate model checking of MDPs with respect to both qualitative as well as quantitative
multi-objective queries. In general, the problem of multi-objective model checking is
formulated as follows. Given an MDP M, a set of linear-time properties ¢;, and a set of
probabilities p; € [0,1], with i = {1,...,k}, the goal is to find a strategy or a scheduler U
such that, for any 7, the property ¢; is satisfied with a probability of at least p; by a path
in M produced by the scheduler U (cf. [EKVY07]). Formally it must be shown that
U € Sched so that A (Pri{,(¢;) < p;) holds, where > € {>,>} (cf. [KNPQ10]).

Notation 2.5.2. Given an MDP M and a scheduler U € Sched ,, then

P (60) € P ({m € Pathsty | 7 k= ¢})
where:
e Paths, denotes the set of all paths through M when controlled by the scheduler
U (cf. [KNPQ10]).
o Pr{(¢;) denotes the probability that the property ¢; is satisfied by all paths in
the MDP M induced by the scheduler ¢ (cf. [KNPQ10]).
° Pr%({ﬂ € Paths% | T =Sched,, ¢i}) denotes probability that all infinite paths 7 in
M induced by the scheduler U satisfy the property ¢; (cf. [KNPQ10]).
[

Besides the asymmetric rule, Kwiatkowska et al. formulate and prove further rules for
probabilistic A/G reasoning in [KNPQ10]. Thus, two generalizations of the asymmetric
rule are formulated: the first generalization shows how the rule can be applied to a system
with more than two components, while the second generalization extends the asymmetric
proof rule to k assumptions, with k£ > 1 (cf. [KNPQ10]). Other A/G rules presented in
[KNPQ10] are an asynchronous proof rule which accounts for systems with asynchronous
components, and a circular proof rule. The A/G reasoning framework in [KNPQ10] is
extended in [KNPQ13] with compositional verification techniques and A/G proof rules
for a more general class of quantitative properties, which includes probabilistic w-regular
properties, e.g, probabilistic LTL properties and probabilistic safety properties, as well as
expected total cost or reward properties. The work in [KNPQ13] introduces numerical
queries in the context of A/G reasoning, in order to compute minimum and maximum
bounds for the probability with which a PA satisfies a given property.

Along the A/G reasoning techniques as they are briefly presented in this section,
there are various other methods for compositional verification. For example, Benveniste
introduces A/G contracts for non-probabilistic systems in [BCP07] and Delahaye extends
them with probabilities in [Dell0] and [DCL11]. Assume-guarantee contracts fall in
the A/G reasoning spectrum as the techniques presented in this section. Another
compositional verification method, compositional reachability analysis builds the global
state machine of system under analysis from its component processes in stages, based on
the specified system hierarchy (cf. [CK95]). Contextual reachability analysis includes
context constraints in compositional reachability analysis, in order to minimize the built
state machine with respect to system properties of interest (cf. [CK96]). Interface

68

2.5. Verification and Validation of System Properties in Automated Safety-critical Systems

automata are an automata-based language which captures in the same model both input
assumptions about the order in which the methods of a component are called, and output
guarantees about the order in which the component invokes methods of other components
in the system (cf. [dAHO1]).

2.5.3. Runtime Verification

When applied to an automated safety-critical system, design-time verification methods
work on the basis of an abstract representation of the system under analysis rather
than on the system itself, e.g., a finite state-transition model in model checking or a set
of theories in theorem proving. The abstract representation reflects the most relevant
aspects of the system under analysis, and checking it for correctness with respect to a
given property specification provides useful insights about the system itself.

When an automated safety-critical system is deployed in its operational environment, it
may behave slightly different than the technical system model verified during design-time.
One reason may be that some information is only available at runtime. Furthermore, the
environment in which the system is deployed may be very different from the environment
model built at design-time and used during the design-time verification process.

Runtime verification is considered to be a lightweight verification method, which
is complementary to design-time verification as well as to testing (cf. [LS09]), as it is
primarily performed at runtime. Bartocci et al. point out that runtime verification
is known in the scientific community also under various other names, e.g., runtime
monitoring, trace analysis, or dynamic analysis (cf. [BFFR18]). Some scholars consider
runtime monitoring to be a specific form of verification (cf. [BFFR18]). This is because
due to its name, runtime monitoring conveys the idea of an interaction which takes place
between the system under analysis and the monitor, while verification is regarded in
general as a more passive approach (cf. [BFFR18]). The notion of runtime verification
as it is understood in this thesis is given in Definition 2.5.13.

Definition 2.5.13 - Runtime Verification

Runtime verification is an activity in which verification techniques are used during the
runtime of a system under analysis in order to check whether a run of the system satisfies
or violates a given correctness property (cf. [LS09]). |

Notice that a run of a system under analysis is considered to be an infinite sequence
of system states or system actions (cf. [LS09]), and thus, similar to a trace of the system
(cf. Definition 2.5.7). Since the current system execution is a finite trace of a system (cf.
Definition 2.5.8), it can be said that the system execution is a finite, though continuously
extended, prefix of the corresponding evolving system run (cf. [LS09]). In comparison to
model checking, which asks whether a system trace or more general all system traces
fulfill a specified correctness property, runtime verification analyzes primarily system
executions (cf. [LS09]).

In order to verify whether an execution satisfies a given correctness property, runtime
verification uses monitors. A monitor can be regarded as a decision procedure which
decides whether the current system execution fulfills the correctness property and returns

69

Chapter 2. Fundamental Concepts and Approaches

a truth value true/false or yes/no (cf. [LS09]). The notion of runtime monitor as it is
understood in this thesis is introduced in Definition 2.5.14.

Definition 2.5.14 - Runtime Monitor

A runtime monitor is a computational entity, i.e. device or a decision procedure, which
executes in parallel to a system under analysis and observes its runtime behavior (cf.
[BEFR18]). When sufficient observations of the system behavior are gathered, the
monitor evaluates the observed system execution with respect to a given property and

yields a certain verdict (cf. [LS09], [BFFR18]). [

Observations of System Behavior

The notion of system behavior is connected to the way a system under analysis changes
over time, e.g., through an update of its internal state or by carrying out some action
which may affect its environment in a certain way (cf. [BFFR18]). Bartocci et al. describe
the behavior of a system under analysis in terms of the observation that can be made
about it (cf. [BFFRI18]). Observations can be made by inspecting the system state
at particular steps in the system execution, or by recording state changes or actions
(cf. [BFFR18]) which are carried out by the system and reflect the system evolution
throughout its execution. Observations made about a system under analysis are also
denoted as events (cf. [HR17], [BFFRI18]). An event is something that can happen
both in the system under analysis and in its environment (cf. [BFFR18]) and can be
represented as a data record received by the runtime monitor (cf. [HR17]). In this thesis,
the data records that pertain to an event are considered to be an interpretation of the
state variables. As such, runtime observations are considered in terms of system states.

System Property and Property Specification

The notion of property is related to the way some behavior of a system under analysis is
described. Bartocci et al. differentiate between the notion of property and the notion of
specification, with a property being a possibly infinite set of traces and a specification
being a (textual) artifact which describes a property, and therefore describes the set of
traces (cf. [BFFR18]). A specification is related to a concrete specification language,
while a property is an artifact which is unique and independent of a specification language,
that describes some behavior of a system under analysis (cf. [BFFR18]). Therefore a
property may have one or more specifications (cf. [BFFR18]). In this thesis, the notion
of property is considered to be related to the notion of requirement. In general, a property
or a requirement is considered to be a statement about a system under analysis or some
aspect of it. It can express a desired or an undesired behavior of the system. In this
thesis, the notion of property or requirement refers primarily to textual requirements
written in informal language, e.g., in English, and which are managed in requirements
catalogs using dedicated tools, e.g., IBM DOORS (cf. [AHDR18]). In turn, the notion
of property specification denotes the (textual) specification of the property in question,
written in a formal language.

70

2.5. Verification and Validation of System Properties in Automated Safety-critical Systems

Formal Specification Languages for Runtime Verification

Formal specification languages for runtime verification can be assigned to two categories:
executable or declarative (cf. [BFFR18]). When expressed in an executable language, e.g.,
as a state machine, a property specification is directly executable. In turn, declarative
languages, e.g., temporal logic, are used to formulate the property specification, from
which an executable monitor is then generated. Executable specifications tend to be
more at an operational level and less practical for capturing properties at a high-level
of abstraction. However, executable specification may also have more straightforward
monitoring algorithms (cf. [BFFR18]).

Bartocci et al. [BFFR18] review the families of specification languages used in runtime
verification. One of the most common temporal logics used in runtime verification is
linear temporal logic (LTL) [Pnu77|. There are two forms of LTL: future-time LTL and
past-time LTL. Future-time LTL is the classical LTL, which has has two basic modal
operators: X (Nezt) and U (Until), with the help of which it can be reasoned about
system executions in the future. These operators are used to define two further modal
operators: G (Globally) and F' (Eventually) (cf. [BFFR18]). Past-time LTL is a variant
of LTL which reasons about system executions situated in the past, using two modal
operators which are symmetric to the operators X and U: Previous as the dual of the X
operator and Since as the dual of the U operator (cf. [BFFR18]).

Over the years, LTL has received various extensions. One of these extensions is
interval temporal logic (cf. [CZ97], [ZZC05]). Rather than reasoning about discrete
events or states, interval temporal logic reasons over intervals, which are pairs of start and
end points. Formulas in interval temporal logic use binary relations to compare intervals,
e.g., check whether intervals overlap or are included in one another (cf. [BFFR18]).

Other extensions of LTL increase its expressiveness in order to allow the formulation
more complex properties. Frequency linear temporal logic annotates the usual U operator
of LTL with a rational number ¢ € QN [0, 1], e.g., » U%® ¢ means that ¢ should hold
with the frequency 0.5 until ¢ holds (cf. [BDL12]).

Formal specification languages belonging to the LTL family of temporal logics have a
qualitative view of time, i.e. they can express an ordering of events, but cannot relate
these events with the quantitative timeline in which these events occur (cf. [BFFR18]).
There are formal temporal logics which extend LTL with the notion of quantitative time
by annotating the underlying system trace with timestamps, e.g. metric temporal logic
(MTL) [TRO5] with its fragment metric interval temporal logic (MITL) as well as timed
LTL (TLTL) [BLS11]. MTL annotates modal operators with discrete time intervals, e.g.,
¢ Ups) ¥ means that ¢ holds at some point between 5 and 9 time units and ¢ holds
in every time instant before that. Furthermore, MTL uses the notion of congruence in
order to require that a formula holds periodically with respect to an absolute time (cf.
[BFFR18]). TLTL formulas can indicate that the time since the last occurrence of a
given event or until the next occurrence of the event is situated within a specific interval
I (cf. [BFFR18]). The formal logics which provide a quantitative notion of time are used
to reason about real-time systems.

71

Chapter 2. Fundamental Concepts and Approaches

Signal temporal logic (STL) [MNO04] and its different variations have been introduced
in order to reason about cyber-physical systems, which are a combination of digital
and physical systems. The dynamic behavior of digital systems can be described by
state-transition formalisms, e.g. automata, which produce discrete sequences of states or
of actions, while physical systems are modeled with differential equations, that output
executions in form of continuous signals and trajectories (cf. [BDD*18]). STL extends
MTL with numerical predicates over real-valued variables (cf. [BDD*18]). In STL,
a trace is not a discrete sequence of system states or system actions anymore, but a
collection of signals. A signal is defined as a function from a set of real-time points to a
value domain (cf. [BFFR18]). Numerical predicates over signals can be used to define
operators to capture different aspects of signals, e.g., the rising and falling edges of a
signal (cf. [MNO4]). STL provides a dense interpretation of time, which means that there
is no X operator to reason about the next state, because a next state cannot be uniquely
defined (cf. [BFFR18]).

STL has been extended in the last years beyond temporal properties and the new
extensions of STL offer the possibility to reason about other types of properties, e.g,
topological spatial requirements, e.g., the Signal Spatio-Temporal Logic (SSTL) pre-
sented in [BBM™15] and [NBC*15], the Spatial-Temporal Logic (SpaTeL) introduced in
[HJK*15], or the Spatio-Temporal Reach and Escape Logic (STREL) in [BBLN17].

Notice that this short presentation of formal languages used for property specification
in runtime verification is not meant to be an exhaustive review of research works in this
area. There are many more languages that go beyond the presented temporal logics
and their variants, e.g., regular expressions (cf. [AACT05]), rule systems (cf. [BRH10],
[Hav15]), languages that combine regular expressions with temporal logic (cf. [LS07]),
and many more (cf. [HR17], [BFFR18]).

In this thesis, LTL is used as a formal language to express the property specification
from which the runtime monitors are built.

Classification of Runtime Monitors

There are various types of runtime monitors, depending on when the monitoring of the
system occurs and how the runtime monitor is deployed and executed in relation of the
monitored system. With respect to the time when the monitoring is performed, there
are two categories of runtime monitoring: offline monitoring and online monitoring.

Offline monitoring, also called logging, is an analysis which is carried out on recorded
system executions. The execution of the monitor is independent of the execution of
the system, and thus, constraints with respect to the runtime overhead created by a
runtime monitor do not apply. Furthermore, since it has access to complete system
executions, offline monitoring can be used to perform global analysis over the recorded
system executions (cf. [BFFR18]). One big disadvantage of offline monitoring is that any
violation of the property specification is detected after the system execution terminates.
This is especially critical for automated critical-systems, as it reduces the chances to
apply appropriate measures to mitigate the effects of the hazardous event that led to the
property violation.

72

2.5. Verification and Validation of System Properties in Automated Safety-critical Systems

Online monitoring is the opposite of offline monitoring, as it is performed during
the system’s execution. It does not have the disadvantage of late detection or property
violation as is the case for offline monitoring. Online monitoring operates however
with partial system executions, i.e. up to the current execution step (cf. [BFFR18]).
Furthermore, there are low overhead constraints for online monitoring. Runtime monitors
are often deployed along their monitored systems and thus may share resources with one
another, e.g. computation time, memory or bus bandwidth (cf. [BFFR18]). Therefore,
it is important that monitor complexity with respect to the memory and computation
requirements is as low as possible, so as not alter the monitored system in terms of
its memory usage and response time and thus affect its functional and non-functional
behavior (cf. [BLS11]).

There are two kinds of online monitoring, with respect to how a runtime monitor is
executed in relation of the monitored system: synchronous online monitoring and asyn-
chronous online monitoring. When the online monitoring is performed in a synchronous
manner, the monitor and the system execute in lock-step (cf. [BFFR18]). Each time it
performs an action or generates an event, the monitored system waits for the runtime
monitor to process it before it carries on with the system execution (cf. [BFFR1§]).
In asynchronous online monitoring, the runtime monitor’s execution is decoupled from
the system’s execution (cf. [BFFR18]). The monitor evaluates the system actions at
its own pace and independently from the system (cf. [CFAI17]). In comparison to
synchronous monitoring, asynchronous monitoring typically yields lower overheads and it
is less intrusive in the system. Late detection of property violation can occur, especially
if the monitored system and the runtime monitor are deployed on an platform which does
not guarantee fairness between the executions of the both (cf. [BFFR18]). Notice that an
asynchronous monitor still executes alongside the monitored system and evaluates finite
system traces in an incremental fashion. Therefore asynchronous monitors are not to be
confused with offline monitors which execute after the system execution is terminated
and analyze prerecorded system traces (cf. [CFAILT]).

In order for runtime monitors to have knowledge of the actions performed by the mon-
itored system, the system must be instrumented. Instrumentation denotes a mechanism
used for the extraction of information from the monitored system, e.g., signals, events
or system actions, as well as other information of interest (cf. [BFFR18]). Instrumen-
tation can be applied both to hardware and software systems for the purpose of online
monitoring. Cassar et al. [CFAI17] compare various instrumentation techniques and the
monitoring methodologies and tools in which these techniques have been implemented.

Runtime Verification vs. Testing

Runtime verification bears similarities with testing, since it does not consider each possible
execution of the system, but only one execution or a finite set of system executions (cf.
[LS09]). Testing is usually carried out by stimulating the test object with a set of test
inputs and checking whether the produced output corresponds to the one expected by
the test engineers. For the activity of testing, test cases are defined by test engineers as
finite sequences of system inputs and system outputs (cf. Section 2.5.1).

73

Chapter 2. Fundamental Concepts and Approaches

Runtime verification is closer to oracle-based testing (cf. [LS09], [BLS11]). In oracle-
based testing, test cases are comprised of test inputs, a precondition, expected result
and postcondition. The expected result and the postcondition are also denoted as the
oracle information and respectively the oracle procedure (cf. Section 2.5.1). The test
oracle observes the system execution with the test inputs provided in the test cases and
compares the outputs emitted by the test object with the expected output specified by
the oracle (cf. Definition 2.5.9). In terms of runtime verification, a test oracle acts as a
runtime monitor (cf. [BLS11]).

The difference between oracle-based testing and runtime verification lies in the way
the oracle and respectively the runtime monitor are obtained. While the test oracle is
usually defined directly by systems engineers, the runtime monitor is often built manually
or automatically synthesized from a property specification written in a formal language
(cf. [LS09]). However, this line of demarcation between oracle-based testing and runtime
verification begins to blur, due to the usage of model checking to automatically generate
test case from formally specified requirements (cf. Section 2.5.1). In fact, test oracles can
be realized through runtime monitors (cf. [KFK14]). There is however a more obvious
difference between testing and runtime verification. In contrast to testing, runtime
verification rarely aims to exhaustively test a system under analysis (cf. [LS09]).

2.6. Summary

The goal of this chapter was to present several fundamental concepts and approaches
on which this thesis is based. The first section of this chapter introduced the notions
of safety-critical system, functional safety and safety of the intended functionality.
This section explained also the concepts of automated system and autonomous system,
with a presentation of the degrees of automation/autonomy recorded in the literature.
The first section then defined the notion of uncertain environment and highlighted its
characteristics.

The second section of this chapter discussed the system life cycle and the development
process proposed in the international standards ISO 26262 and [SO/PAS 21448, highlight-
ing the artifacts produced in the development process that contribute to engineering the
safety of automated safety-critical systems. The presentation of the system development
process is followed in the third section of this chapter by a discussion of the specification
and modeling formalisms used in this thesis for the formal specification of system require-
ments and modeling the behavior of automated safety-critical systems. The third section
of this chapter introduces two formal logics, TCTL and PCTL, for specification of the
system properties. In the forth section of this chapter, the modeling formalisms timed
automata and MDPs, are introduced for modeling of automated safety-critical systems.

The final section of this chapter gives an overview of the methods used for the
verification and validation of automated safety-critical systems with respect to specific
system properties. Thus, this section presents briefly the theoretical foundations of
testing, of various approaches for design-time verification and of runtime verification.

74

Chapter 3.

Problem Analysis

3.1.
3.2.
3.3.

3.4.
3.5.

3.6.
3.7.
3.8.
3.9.

3.10.

3.11.

Motivational Example: Mobile Service Robot 76
Overall Development Process 81
Requirements Elicitation and Analysis 83
3.3.1. Informal Specification of System Requirements 83
3.3.2. Formal Specification of System Requirements 88
Safety Analysis 95
System Designo 100
3.5.1. Usage of Formal Models in System Design 101
3.5.2. Environment Modelo 102
3.5.3. Technical System Model 104
3.5.4. Overall System Model 104
3.5.5. Specification of System Properties 108
3.5.6. Design-Time Verification 109
System Implementation oo 112
System Test 113
Requirements Validation 118
Analysis of Emerging Challenges 118
3.9.1. Challenges of Design-Time Verification 119
3.9.2. Challenges of Testing 120
Scope of this Thesiso 123
3.10.1. Introduction of Runtime Monitoring of Environment Assumptions 124
3.10.2. Research Questions of this Work 125
SUMMATY o o 126

The goal of this chapter is to carry out a problem analysis and identify the challenges that
need to be addressed in this work. In order to achieve this goal, this chapter produces
the following artifact as output:

Research Questions. The research questions formulate in a clear manner the problems
addressed in this thesis. Once defined, the research questions will serve as a point
of reference for the remainder of this work.

)

Chapter 3. Problem Analysis

In order to create the research questions, a discussion on the challenges of this work must
be performed. The basis of this discussion is constituted by a small motivational example,
which is introduced in Section 3.1. Section 3.2 gives an overview of the development
process used for the design and development of the example system. The following sections
take a more in depth look at each phase of the development process: from requirements
analysis (Section 3.3) and safety analysis (3.4), through system design (Section 3.5) and
system implementation (Section 3.6), up to system test (Section 3.7) and requirements
validation (Section 3.8). Several issues arisen during the design-time verification and
system testing are identified and discussed in Section 3.9. As a consequence of these
problems, the approach of this thesis is briefly introduced in Section 3.10. Subsequently,
the challenges that emerge from it are analyzed and the research questions of this work
are defined. In Section 3.11, a summary of the main ideas presented in this chapter is
given.

3.1. Motivational Example: Mobile Service Robot

This section gives a high-level description of the example system used as basis for the
problem analysis of this thesis. The system in question is a mobile service robot moving
autonomously in an uncertain environment. An abbreviated version of this example
has already been introduced in a previous paper [AAHR16]. Nevertheless, for the sake
of completeness of the problem analysis, details of the example system presented in
[AAHR16] are reiterated in this section.

A physical overview of the mobile service robot, and its environment is depicted in
Figure 3.1. In this schematic display, the robot drives to its goal, while two obstacles move
from the opposite direction on the same lane as the robot. The environment features two
other obstacles, one stationary and one dynamic, which occupy the neighboring left and
right lanes. The robot is equipped with sensors, which allow it to observe the changes
in the environment in real time. The robot’s sensors are configured so that the field of
view spans up to a finite horizon hp, represented by the grey area in front of the robot
in Figure 3.1. Notice that, the fitting of the sensors on the robot allows for the robot to
observe only the environment changes which occur in front of it. Due to these sensory
limitations, the robot has only partial knowledge of its environment.

The environment is represented as a subset of the two-dimensional space spanned by
the Cartesian coordinate system. In order to simplify the analysis, several considerations
are made with respect to the physical environment and to the robot and the obstacles
which move in this environment. Firstly, the robot and the obstacles in its environment
are considered to be rigid objects. Notice that in physics, a rigid object is a solid object
in which the deformation caused by external forces applied on the object is so small
that it can be neglected (cf. [RP13]). In order to simplify the analysis on the motion
of rigid objects, each kinematic quantity which describes the motion of a rigid object,
e.g., velocity, acceleration, can be expressed in relation to one of the particles of the
object, chosen as a reference point (cf. [RP13]). Typically, this point is chosen to be the
center of mass of the rigid object. In this way, it is possible to approximate the robot

76

3.1. Motivational Example: Mobile Service Robot

— 04 _
Vo, = VMax = 0

Static
Obstacle
04

vg € (0, Vl\lflax] hg

e
() 0.

o, € (0,732,] o, € (0,135,

— R

R
dCallision Goal

Dynamic
Obstacle
0,

Dynamic
Obstacle
03

Robot

R 0
dBrake dMuxVel

0
Vo, € (0, V5]

0,
[Legend |

dfonision - collision distance of the robot dz,"axl,el - maximum distance covered by the visible obstacle
dBrake - emergency braking distance of the robot, on the robot’s lane if it moves with the maximum velocity
in relation of the robot’s current velocity at time assumed for any dynamic obstacle during the robot’s
cg — robot’s safety net (dependent on the robot’s processing time) processing and braking time
hg — visual horizon of the robot’s sensors Vo, i € [1..4] - current velocity of obstacle 0;
Vg - current robot velocity) voi i € [1..4] - maximum velocity of the obstacle 0;
R Max
Vpax- Maximum robot velocity

Figure 3.1.: Mobile Service Robot: Physical Overview of the Motivational Example.

and the obstacles in its environment to discrete points in the two-dimensional space.
The notion of object is henceforth interchangeable with that of robot and obstacle in
robot’s environment, even if the obstacle is a human being. Secondly, several physical
characteristics of the lanes on which the robot and the obstacles move in the physical
environment are abstracted from, e.g., lane width, lane margins, and lane curvature.
Thus, the lanes are considered to be straight lines in the Cartesian plane.

Any object in this environment, including the robot, has a positive velocity limited by
a specific maximum value, which is considered as a physical upper bound for the current
velocity of the object. Before describing further the physical overview of the motivational
example, several notations must be introduced. These notations are considered to be
effective for the remainder of this work.

Notation 3.1.1. The coordinates of an object, be that the robot itself or an obstacle,
are represented by the lane and the position on the lane where the respective object
is situated. The lane is denoted by the variable y, while the position on the lane is
represented by the variable x. The current velocity of an object is expressed by the
variable v, while its specific maximum velocity is denoted by vys4s.

Any variable that refers to a feature of the robot contains the subscript or respectively
the superscript R. Conversely, to denote that a variable refers to a feature of an obstacle,
the subscript or respectively the superscript O is used. Thus,

1. (xR, yr) are the coordinates of the robot,

2. vg and v, are the current velocity and the specific maximum velocity of the

robot,

7

Chapter 3. Problem Analysis

3. (zo,yo0) are the coordinates of the obstacle O,
4. vo and v§,, are the current velocity and the specific maximum velocity of the
obstacle O, and
5. (28, yE. 1) are the coordinates of the robot’s goal position or destination.
|

The behavior of the robot is kept simple. As it starts to drive, the robot accelerates
until it reaches its maximum velocity. It continues to drive with this velocity until it
reaches its destination or until it is forced to brake due to collision danger.

Whenever the robot detects a collision danger, there is a certain amount of time
which passes by from the moment when the robot receives the sensor data until the
moment when it acts upon this data. This time is henceforth denoted as the robot’s
reaction time and it consists of three main components: (1) the time to record the sensor
data and send it to the robot’s main processing unit, (2) the time it takes the robot’s
processing unit to process the sensor data and compute the necessary action, and (3) the
time to send the action command to the robot’s motor controller. Notice that recording
and processing the sensor data, computing the necessary action, and sending the action
command to the actuators are activities which depend heavily on the computational
power of the robot’s hardware and software platform. The processing of the sensor data
consists in this example of the computation of the collision distance performed by a
primitive collision avoidance mechanism with which the robot is equipped. During its
reaction time, the robot continues to drive with its current velocity vg for a certain
distance cg, as shown in Equation (3.1):

_ R
CrR = VR * tReaction (31)
R _ 4R R R
tReaction - tSensor + tProcessing + 2fActuatm"
where:
e v denotes the robot’s current velocity, and
o th .. isthe reaction time of the robot accumulated from three components:

— t& ., which is the time necessary to record the sensor data,

- t];mcessmg, which is the time needed to process the sensor data and compute a
corresponding action, and

— 8 ator, Which represents the time necessary to send the action command to
the robot’s actuators.

In order to ensure that the robot does not actively collide with an obstacle during the
processing of its sensor data, a region as wide as the distance cg is established around
the robot and is factored in the computation of its collision distance. This is the green
region around the robot in Figure 3.1 and it is henceforth denoted as the robot’s safety
net.

If a static or dynamic obstacle is situated inside the area spanned by the collision
distance of the robot, then the robot perceives the obstacle as a collision danger and
initiates collision avoidance maneuvers. There are two types of maneuvers which the

78

3.1. Motivational Example: Mobile Service Robot

robot employs in case of collision danger: (1) brake to a standstill and wait for the
moving obstacle to pass by and (2) change to a safe lane.

In this example, the main task of the robot during its processing step is the computa-
tion of the collision distance d%,;;..;,, based on the data received from its sensors. Notice
that this means that any computation of the collision distance is performed in relation
to the visible obstacles, stationary or dynamic, in its environment. The collision distance
between the robot and a moving obstacle is calculated as in Equation (3.3):

dR = CR + dgmke + d]\OJaxVel (33)

Collision

where:
e cp is the safety net of the robot, defined as a function of the robot’s current velocity
VR,

e d& . denotes the current braking distance of the robot, in relation of the robot’s

current velocity vg, and

o d%..ve is the distance travelled by a visibile obstacle O, during the robot’s reaction

and braking time, while moving with the maximum velocity assumed for any
dynamic obstacle in the robot’s environment.

In order to illustrate the role of the robot’s reaction time, and by extension that of
its safety net, in the computation of the collision distance, a simple scenario involving
the robot and a visible obstacle O moving on the same lane is depicted in Figure 3.2.
The robot and the dynamic obstacle drive towards each other starting from their initial

v >0 vp>0 vp =0 vp>0 vo >0 vy >0
—_— — — — -«
Robot; Robot, Robot; Obstacles Obstacle, Obstacle,
1 1 1 1 1 1
1 1, Cr 1 1 1 1
€-===>
oo o o ® ® l
le-mmm>! 1 k l g 1
: R : : : dlgobatﬂ‘rake dgabotReaction : :
: : dgrake R diaxvel ’: :
1 1 1 |
: : dgallision : :
A
hg
Legend:
Vg - current robot velocity V- current obstacle velocity
Robot;,i € [1..3] - position of the robot on the lane | Obstacle;, i € [1..3] - position of the dynamic obstacle on the lane
dR iision- collision distance of the robot A%, botarake - distance covered by the obstacle during the robot’s braking time,
dgmke - emergency braking distance of the robot while driving with the maximum velocity assumed for any dynamic obstacle in the
in relation of the robot’s current velocity environment
cg - safety net of the robot A% botreaction - distance covered by the obstacle during the robot’s reaction time,
(dependent on the robot’s reaction time) while driving with the maximum velocity assumed for any dynamic obstacle
dR Liision- collision distance of the robot in the environment
hg —visual horizon of the robot’s sensors A% axver - Maximum distance covered by the obstacle if it moves during the robot’s
reaction and braking time with the maximum velocity assumed for any dynamic
obstacle in the environment

Figure 3.2.: Mobile Service Robot: Computation of the Collision Distance between the
Robot and a Moving Obstacle.

positions, denoted Robot; and Obstacle; respectively. Figure 3.2 shows that, initially, the
obstacle is already inside the visual horizon of the robot’s sensors. During the processing

79

Chapter 3. Problem Analysis

of its sensor data, the robot travels the width of its safety net and reaches its second
position Roboty. At the same time, the dynamic obstacle arrives at position Obstacles,
having traveled the distance d9,;,;zection- At this position, the obstacle is already situated
inside the collision distance of the robot. Upon completion of the processing step, the
robot triggers the brakes in order to avoid the collision and comes to a full stop in position
Roboty on the lane. Meanwhile, the dynamic obstacle travels the distance d,,,;5ur. and
reaches the position Obstacles. Note that the robot is stationary at the moment when
the obstacle reaches the boundaries of its safety net, which is the desired behavior of the
robot.

Observe that, according to Figure 3.2, the computation of the collision distance in
Equation (3.3) accounts for both the maximum distance covered by the dynamic obstacle
O during the robot’s reaction time (d%,,,;peaction) @5 Well as the maximum distance
traveled by the obstacle during the braking time of the robot (d9,;,:prure)- AS soon as the
obstacle has passed by the robot and is outside of its safety net, the robot can resume
the drive towards its destination.

Note that if the robot detects a stationary obstacle, the distance traveled by the
obstacle becomes null and the respective collision distance is computed as follows:

dR = dgmke + CRr (34)

Collision

The robot stops when it detects a stationary obstacle on the boundary of its safety
net and checks whether another lane is safe to move to. If the robot finds another safe
lane, then the robot changes to this lane and continues its drive towards its destination.

Each obstacle in the robot’s environment belongs in one of the two categories at
a given moment in time, i.e., it is either a stationary obstacle or a dynamic obstacle.
Similarly to the mobile service robot, each obstacle O in its environment is characterized
by its coordinates, (2o, yo), which encode the lane on which it is situated and its position
on that lane, as well as its current velocity vo. Also specific to each obstacle O is
its maximum velocity, denoted v{),,, which represents a physical upper bound of the
obstacle’s current velocity. The stationary obstacles in the robot’s environment are
considered to be in a permanent state of rest, meaning that these obstacles do not move
at all. As such, for any stationary obstacle O;, ¢ € N+, the following holds: vp, = 0 and
Vo, = vj\ojax. In turn, a dynamic obstacle O;, j # i, j € N5 moves on its own lane, driving
towards the robot from the opposite direction, with a current velocity vo, < v Tn this
simple example, each dynamic obstacle is considered to have as destination the origin of
the Cartesian coordinate system, (0,0), and once it has reached its destination, it will
stop. On its way towards its destination, the dynamic obstacle can arbitrarily increase or
decrease its velocity, but cannot change to another lane. When a dynamic obstacle stops,
it becomes a stationary obstacle, entering a permanent state of rest. Since dynamic
obstacles are not allowed to change their lanes, faster obstacles can overcome slower ones
only by driving through them. In a similar manner, dynamic obstacles can pass by the
robot by driving through it. However, at the moment when a dynamic obstacle drives
through it, the robot must be stationary, i.e., vg = 0, otherwise the event is categorized
as an active collision caused by the robot (cf. Section 3.4).

80

3.2. Overall Development Process

3.2. Overall Development Process

The example system used for the problem analysis is a mobile service robot, commissioned
to drive autonomously to a given destination. For safety-critical systems, such as
autonomous robots, a plan-driven development process is appropriate (cf. [Som14al).
Thus, for the development of the example system the V-model [RB0§] as displayed in
Figure 3.3 has been followed. Notice that the V-model depicted in Figure 3.3 is a light
version of the one used by Mauritz [Maul9].

High-level Description of the
Example System
(Motivational Example)

Requirements Validation

Requirements Elicitation and Analysis Safety Analysis

Analysis of the Example System and
Definition of the System Requirements

Hazard Identification
and Risk Assessment

\

Specification of
System Safety Requirements

System Requirements

System/Subsystem/
System Component Design
Design of the
Technical System/

Subsystem/System
Component Model

= =

Specification of Tested System/
System Safety Requirements Subsystem/Component

System/Subsystem/
System Component Test

System Test with
requirements-based

generated Test Cases

Design of the
Environment Model
Activity in the V-model f
= development process = =

Legend:

Implemented System/
Sub-system/Component

Technical System/
Subsystem/Component Model

I Activity performed in the
(Name) = development of a system under
analysis \
Artifact resulted from an activity in
= the process development
(Name)

—

S Sub , e
) Y
Implementation

Process flow between phases of
= the development process

Figure 3.3.: Overall System Development Process.

The first phase of the development process of the mobile service robot is requirements
elicitation and analysis. This phase allows the requirements engineers to discover,
understand, articulate, and document the users’ needs and the constraints under which
the system is supposed to operate (cf. Section 2.2). For the mobile service robot, the
high-level description of the system’s functionality presented in Section 3.1 serves as
input to the requirements analysis, whose result is a set of system requirements gathered
in a functional system specification.

The next phase of the development process, system design, is based on the requirements
in the functional system specification and consists of three parts: functional system
design, technical system design, and component specification (cf. Section 2.2). Functional
system design allows the system requirements to be mapped to system functions and
creates a functional system architecture, in which the interfaces and the communication
protocols between the system functions as well as the interfaces between the system

81

Chapter 3. Problem Analysis

and its environment are defined. In technical system design it is decided which system
functions are realized by hardware and which are implemented by software. The system
functions realized in software are mapped to the corresponding software components,
which constitute the software system architecture. Additionally, the technical architecture
of the system is defined, which is comprised of the hardware components on which the
system functions are executed together with the communication network between the
hardware system components. During component specification, the interfaces with other
components, the inner structure and component behavior are defined for each software
component. For the mobile service robot, the functional system architecture consists of a
technical system model and an environment model, which are connected with each other
through the system-environment interface. The technical system model describes the
desired behavior of the robot as specified in the functional system specification, while
the environment model depicts the expected behavior of the obstacles in the robot’s
environment.

During safety analysis, the functional system specification and the functional system
architecture are subject to a hazard analysis and risk assessment. The end result of the
safety analysis is a safety requirements specification. The safety requirements specify
measures which need to be applied in order to ensure that no hazard occurs, or if it
occurs, to put in place specific mitigation techniques in order to minimize the harm
severity and its consequences. The safety requirements are then fed back in the system
design process and are incorporated in the functional system specification as additional
requirements. For the mobile service robot as example system, a hazard analysis and
risk assessment is performed on the basis of the high-level description of the example
system in order to identify the safety requirements of the robot.

The next step in the system development is the system implementation. In this
step, the functionality of the system and the safety mechanisms are primarily realized in
software (cf. [Maul9]). The implementation of the software components is carried out
under consideration of all the relevant aspects of the real world (cf. [SZ16]). This step
takes as input the software system architecture modeled in a specific modeling language,
and produces a full software implementation of the system. The implementation may
be done manually or the source code may be generated automatically if the model
of the software architecture is created with a toolchain which supports model-based
development, e.g., MATLAB/SIMULINK [UPC12], ANSYS SCADE [CPP17]. For the mobile
service robot, there is no implementation carried out. Instead, for the purpose of the
problem analysis in this thesis, the technical system model and the environment model
are run in parallel in a simulation, in order to illustrate and analyze the behavior of the
robot in its environment.

After their implementation, each software component is tested with a series of test
cases in what is called a system component test. Each test case covers a particular
input /output combination, meaning that for a given set of test inputs a test case specifies
an expected output. The goal of the system component test is to check that the component
works correctly and completely as required by its specification (cf. [SLS14c]). In parallel
to the software components, the respective hardware on which the software components
are later deployed is also realized and tested (cf. [SZ16]). The software components which

82

3.3. Requirements Elicitation and Analysis

have successfully passed the component test, are gradually integrated into sub-systems
and the sub-systems are in turn integrated with each other to build the whole software
system. As the software integration progresses, software integration tests are performed
in order to check whether the software components interact with each other as specified
in the software architecture (cf. [SZ16]). The fully integrated software system is then
installed on the target hardware platform and the whole system is checked for correct
behavior in a comprehensive system integration test (cf. [SZ16]). Following this, the
integrated system undergoes a system test in a physical test environment at the producer’s
site. While the system component test and the integration tests are performed against
the respective technical specifications from the developer’s point of view, the system test
looks at the system from the customer’s point of view and checks whether the system as
a whole meets the specified system requirements (cf. [SLS14c]). Besides testing, other
verification methods are adopted at times, e.g., model checking (cf. [BKO08]). In the
example of the mobile service robot, the parallel composition of the technical system
model and the environment model is checked against the system requirements in the
functional system specification with the help of a model checking tool.

The requirements validation is the last stage of testing in the system development
process. In this step, the system stakeholders test the system on customer’s site against
the customer requirements (cf. [SLS14c|). The customer requirements define acceptance
criteria which have been agreed upon in advance. The system must meet the predefined
acceptance criteria before it is deployed and commercialized. In order to systematically
derive test cases from the customer requirements, systematic methods such as automated
test case generation via model checking can be applied (cf. [AHDRI18]). For the mobile
service robot, no requirements validation has been performed. Instead, the parameters
of the environment model are manipulated in order to emulate unforeseen situations,
which may appear during testing in a physical environment on customer’s site, and the
technical system model is checked together with the new environment model against the
specified requirements.

3.3. Requirements Elicitation and Analysis

Requirements elicitation and analysis is the first step in the development phase and
is performed using as input the high-level description of the system’s functionality,
introduced in Section 3.1. An informal specification of the system requirements is derived
and presented in Section 3.3.1, after which the requirements are formalised in Section
3.3.2.

3.3.1. Informal Specification of System Requirements

The system in this example is a robot commissioned to drive towards and reach a given
destination, without actively colliding with any obstacle in its environment. There are
two decisions that were made in the high-level description of the mobile robot with regard
to the representation of the environment. These decisions have an impact on the tasks of

83

Chapter 3. Problem Analysis

system design thereafter. Firstly, remember that the environment is defined as a subset
of the two-dimensional space built by the Cartesian coordinate system. Secondly, the
majority of the physical characteristics of both the robot and the obstacles as physical
objects are abstracted from and they are considered to be discrete points in the Cartesian
two-dimensional space. However, the robot and the obstacles in its environment are
considered to retain one physical trait, i.e., each is considered to have a current positive
velocity limited by a specific maximum value. Furthermore, it is considered that the
robot’s environment is populated with dynamic and stationary obstacles. Note that in
case of stationary obstacles, both the current and the maximum obstacle velocity are
null.

The robot’s sensors are not considered to be flawless. Moreover, it is considered that
the sensors’ field of view is limited by its specific maximum range, denoted by hg, which
is set in the sensors’ configuration. Note that the maximum range of the sensors is the
maximum distance to which the sensor can pick up reflective light and return an accurate
distance measurement.

The specification of system requirements and safety requirements is often done and
organized through informal textual documents (cf. [AHDR18]). In the best case, the
informal textual documents are broken down into lists of individual requirements and
are maintained using a dedicated tool, e.g., IBM DOORS (cf. [AHDR18]). Whether the
requirements are maintained as simple textual documents or with the help of dedicated
tools, the requirements are initially written in natural language, which is by definition
imprecise and ambiguous. Ambiguity in the requirements can cause various system
stakeholders to have different understandings of the required system functionality (cf.
[RS14]). One method to avoid ambiguities in the requirements’ formulation is to use
requirements templates or requirements patterns. A requirements template is basically a
construction plan which lays down the building blocks necessary for the formulation of re-
quirements (cf. [JPQT16], [RS14]). In [JPQT16], the basic rules for writing requirements
are presented: (1) requirements are always described in the active form, (2) requirements
are always written as complete sentences, (3) requirements express processes or activities
with the help of process verbs, e.g., drive or brake, and (4) exactly one requirement is
formulated for each process verb. These rules have been observed and applied in the
formulation of the system requirements for the mobile service robot.

In the functional system specification of the robot, a process verb, e.g., drive, accom-
panies a modal verb, e.g., shall. The modal verb shows the different legal meanings that
a requirement may have for various stakeholders. In [JPQT16], three modal verbs are
considered for the formulation of requirements: shall, should, and will. All requirements
formulated with shall are compulsory for the system implementation. Requirements
formulated with should represent a stakeholder’s wish, are not binding and do not have
to be implemented. However, their implementation increases stakeholder satisfaction,
and their documentation improves communication between the development team and
the system stakeholders (cf. [JPQT16]). A requirement formulated with will serves as
preparation for a functionality which is planned to be integrated in the future. The
development team is obliged to consider this requirement in the system implementation,
even if the implementation of this functionality is not tested at first (cf. [JPQT16]). All

84

3.3. Requirements Elicitation and Analysis

requirements of the mobile service robot are formulated with the modal verb shall, and
therefore are compulsory in the system implementation.

To begin with, several high-level functional requirements, depicted in Table 3.1, define
which actions the mobile service robot is allowed to execute and which actions are
excluded from the functionality of the robot. Thus, in order to reach its destination the
robot must be able to drive forwards (FR1), but also change to another lane in case it
needs to overcome an obstacle or avoid a collision danger (FR2). In this respect, dynamic
obstacles in the robot’s environment are more restricted because they cannot change
lanes (FR2). In order to simplify the dynamics of the example system, the mobile service
robot cannot drive backwards, a constraint which applies also to the dynamic obstacles
in the robot’s environment (FR3). Remember that the mobile service robot and the
obstacles in its environment are stripped of their physical dimensions and are abstracted
to discrete points in the two-dimensional Cartesian space. This makes it possible to
talk about faster obstacles overcoming slower obstacles by driving through them (FR4).
However, this is does not apply to the mobile service robot, because it would represent
a safety risk for the robot. Furthermore, there is another aspect in which the mobile
service robot is distinct from the dynamic obstacles in its environment. While the mobile
service robot, once stopped, may resume its driving, dynamic obstacles remain stationary
once they have stopped moving (FR5). The field of view of the robot’s sensors stretches
up to a specific distance in front of the robot, which is configurable in advance. Due to
the physical limitations of its sensors, there are areas of the environment which the robot
cannot perceive. These areas of the environment are called the blind spots of the robot.
Figure 3.1 gives a visual representation of the field of view of the robot’s sensors, i.e.,
the gray area spanned up to the finite horizon hg, and implicitly, of the blind spots of
the robot, i.e., any area situated outside sensor field of view of the robot. Any obstacle
situated in a blind spot of the robot cannot drive in the same direction as the robot
(FR6). Considering the physical overview of the motivational example given in Figure
3.1, this means that any obstacle situated in these blind spots is not allowed to follow
the robot and overtake the robot from behind or from the neighboring lane. Notice that
this prohibits also dynamic obstacles to lead the robot, since a leading obstacle becomes
a following obstacle if the robot chooses to overtake it. Finally, the robot cannot jump
over several lanes, in the same way that dynamic obstacles in the robot’s environment
are not permitted to execute any lane jumps (FR7).

On a functional level, the mobile service robot has two main operation modes which
are derived from the high-level description of the system’s functionality in Section 3.1:
normal operation and collision avoidance.

The normal operation mode of the mobile service robot consists of all the activities
which the robot performs as a system in order to achieve its goal. The system requirements
regarding the normal operation of the robot are depicted in Table ?7. In the motivational
example, the goal of the mobile service robot is to drive autonomously towards a given
destination (FR8) and reach it (FR9). To drive towards its destination, the robot must
be able to accelerate up to its specific maximum speed (FR8.1) and maintain this speed
as long as no collision danger is detected (FR8.2). Should the robot be forced to stop
due to collision danger, it must be able to resume its driving if the obstacle has passed

85

Chapter 3. Problem Analysis

Table 3.1.: Mobile Service Robot: Requirements for Allowed and Forbid-
den System Actions in the System’s Environment.

‘ 1D ‘ Requirement Text

FR1 The robot shall be able to drive forwards, in an environment
where dynamic obstacles also move forwards.

FR2 The robot shall be able to change to a safe target lane, in an
environment in which dynamic obstacles do not change lanes.

FR3 The robot shall not be able to drive backwards, in an environ-
ment in which dynamic obstacles do not drive backwards.

FR4 The robot shall be able to overcome obstacles only by changing
to another lane, in an environment in which dynamic obstacles
pass by other obstacles by driving through them.

FR5 If stopped, the robot shall be able to resume its driving, in an
environment in which dynamic obstacles which have become
stationary do not resume their movement.

FR6 The robot shall be able to perceive the space in front of itself up
to a specific configurable sensor horizon limit, in an environment
in which obstacles situated in the blind spots of the robot do
not drive in the same direction as the robot.

FR7 The robot shall not be able to jump over lanes, in an environ-
ment in which obstacles do not jump over lanes.

by (FRS&.3) or if the robot detects a safe target lane on which it can continue its driving
(FR8.4). Furthermore, if the robot detects a safe target lane, than it must be able to
change to this lane in order to continue the drive towards its destination (FR8.5). As the
robot comes nearer its destination it must be able to slow down (FR9.1), and to stop,
when it has reached its destination (FR9.2).

The collision avoidance mode of the mobile service robot contains all the activities
which the robot must carry out in order to avoid collision danger. Not only does a
collision of the mobile service robot with an obstacle in its environment represent a safety
risk and can cause damages both to the robot as well as to the obstacle, it also impedes
the robot from carrying out its task and reaching its predefined destination. For this
reason collision avoidance belongs to the functionality of the mobile service robot.

The requirements which address collision avoidance in the functional system specifi-
cation are depicted in Table ??. In order to avoid collision danger, the mobile service
robot must be able to first detect the collision danger in front of itself inside its sensors’
horizon (FR10), and then to apply collision avoidance measures (FR12).

86

3.3. Requirements Elicitation and Analysis

Table 3.2.: Mobile Service Robot: Requirements for the System’s Normal
Operation Mode.

‘ ID ‘ Requirement Text ‘

‘ FRS ‘ The robot shall drive towards a given destination. ‘

FR8.1 | The robot shall accelerate until it reaches a specific maximum
speed, as long as it has not reached its destination and as long
as it has not detected any collision danger.

FRS8.2 | The robot shall continue driving with its specific maximum
speed, as long as it has not reached its destination and as long
as it has not detected any collision danger.

FRS&.3 | The robot shall resume driving, if it has stopped due to collision
danger and if it has not reached its destination and if it the
obstacle has passed by.

FRS8.4 | The robot shall resume driving, if it has stopped due to collision
danger and if it has not reached its destination and if it detects
at least one safe target lane.

FRS&.5 | The robot shall resume accelerating, if it detects at least one
safe target lane during its brake maneuver.

‘ FR9 ‘ The robot shall reach the given destination. ‘

The robot shall start braking, when it approaches its destina-
tion.

FRO.1

‘ FR9.2 ‘ The robot shall stop, when it reaches its destination. ‘

There are two ways in which the mobile service robot can avoid collision: (1) change
to a safe target lane, in case such a lane is detected (FR12.1), or (2) start to brake, in
case no safe target lane is detected (FR12.2). For it to be able to apply these measures,
the robot must also be able to detect safe target lanes (FR11). Even though the robot
may be forced to brake in order to avoid collision danger, it does not necessarily apply
immediately the emergency brakes which bring it to a full stop. Instead, the robot must
be able to check whether further drive with reduced velocity is possible (FR13).

If further drive is possible, the robot must be able to maintain the new speed (FR13.2),
in order to cover as much ground as possible in its drive towards its destination. Otherwise,
the robot must apply the brakes until it comes to a full stop (FR13.3). Further drive is
considered possible if no collision danger is detected on the ego lane (FR13.1). Once the
robot has come to a standstill due to collision danger, it shall remain at rest as long as it
has not detected a safe target lane and the obstacle has not passed by (FR14).

87

Chapter 3. Problem Analysis

Table 3.3.: Mobile Service Robot: Requirements for the System’s Colli-
sion Avoidance Mode.

\ID

Requirement Text ‘

FR10 | The robot shall detect collision danger in front of itself in its
sensor horizon.

FR11

The robot shall detect safe target lanes. ‘

FR12 | The robot shall apply collision avoidance measures, if it detects
collision danger on the ego lane.

FR12.1 | The robot shall change to a safe target lane, if it detects collision
danger on the ego lane and if it detects a safe target lane.

FR12.2 | The robot shall brake, if it detects collision danger on the ego
lane and if it does not detect any safe target lane.

FR13 | The robot shall check if further drive with reduced speed is
possible.

FR13.1 | The robot shall consider that further drive with reduced speed
is possible if it detects no collision danger on the ego lane.

FR13.2 | The robot shall reduce its speed and maintain it, if further
drive with reduced speed is possible.

FR13.3 | The robot shall brake until it stops, if further drive with reduced
speed is not possible.

FR14 | The robot shall remains at rest, if it has stopped due to collision
danger and as long as it has not detected a safe target lane and
as long as the obstacle has not passed by.

3.3.2. Formal Specification of System Requirements

System requirements in the functional system specification are defined as conditions or
capabilities which a system must meet or possess in order for the end users to solve
a problem or achieve an objective (cf. [BHKS12]). At the same time, it is important
for a system to meet its requirements, in order to achieve compliance with a contract,
regulation, standard or any other form of formally imposed document (cf. [ISO10]).
The system requirements constitute the basis for capturing and communicating the
needs of different stakeholders, managing the scope and the system boundaries, and
verifying and validating the system (cf. [BHKS12]). Natural language is predominant
in requirements documents, as it is considered to be the most effective in gaining the
customers understanding and agreement (cf. [BHKS12]). Nevertheless, systematic

88

3.3. Requirements Elicitation and Analysis

analyses are required for the purpose of verification and validation of the system. Usually,
such analyses are aided by formal methods, which encompass the formalization of system
requirements in a specific formal language, e.g., temporal logic. This raises, however,
additional issues. One one hand, customers are rarely prepared to sign a contract in which
the requirements specification is written only in a formal language (cf. [BHKS12]). On
the other hand, the system development team needs a precise, unambiguous specification
of the system’s functionality, which can be used as reference during the verification and
validation process. Furthermore, requirements formalization is not a trivial task (cf.
[Hol02]). It requires expertise in the area of formal methods as well as knowledge of the
application domain in which the system requirements are formulated (cf. [Buz19)]).

Several research works have been concerned with bridging the gap between natu-
ral language requirements and formal language specification. One area of research in
this direction is goal-oriented requirements engineering, which “uses goals for eliciting,
elaborating, structuring, specifying, analyzing, negotiating, documenting and modifying
requirements”[Lam01]. Goals are defined as objectives which the system under develop-
ment is required to achieve. The main activity in goal-oriented requirements engineering
is requirements elaboration through the refinement and operationalization of goals. Dari-
mont et al. [DLI6] introduce a technique which provides support for formal reasoning
about goals and an approach for their refinement and operationalization. This approach
uses generic refinement patterns organized in a library which also defines strengthening
and weakening relationships between abstract goal formulations. Goals identified during
the requirements engineering phase are refined through an AND/OR direct acyclic graph
(cf. [DLI6], [PMM*07]). Parent goals, defined at a higher level, are refined into child goals
by asking How-questions, while parent goals can be identified by asking Why-questions.
Goals defined at a higher level are more coarse-grained and require usually several agents
- humans, software programs, or devices - for their realization, while low level goals are
situated on technical level and can be realized by individual agents. Requirements are
terminal goals which cannot be refined any further and which fall into the responsibility
of a single agent belonging to the system under development. Various temporal patterns
expressed in temporal logic, e.g.,achieve or maintain, are used in order to obtain the goal
refinement structure (cf. [DLI6], [Lam01]). These patterns are extended in [PMM107]
with real-time temporal constructs. At the end of the goal refinement, a goal model is
obtained, which prescribes a set of intended system behaviors, where a behavior is a
temporal sequence of system states (cf. [PMM™07]). Goals are operationalized as a set of
operations or actions. The applications of these operations are state transitions along the
behaviors prescribed by the goal model. The operationalization of goals defines for each
state transition a triple consisting of precondition, trigger condition and postcondition
(cf. [PMMT07]).

Other research works focus specifically on the problem of requirements formalization in
temporal logics. Buzhinsky [Buz19] carries out a survey of approaches for the formalization
of requirements into temporal logics for the purpose of model checking. The formalization
of requirements poses several challenges even for experts in the field of formal methods, e.g.,
ambiguity of natural language and the changes occurred in the grammatical structure
of natural language requirements when these are translated in a temporal logic (cf.

89

Chapter 3. Problem Analysis

[Buz19]). The surveyed approaches for requirements formalization fall into one of the two
categories: (1) direct formalization of natural language requirements and (2) requirements
formalization through statistical machine translation.

Direct formalization of requirements comprises several methods, each with its own
approach angle towards the problem of requirements formalization. For instance, pattern-
based approaches use the concept of property specification pattern, inspired by the
patterns in software design [Gaml1], in order to establish a direct connection between
requirements formulated in natural language and certain types of temporal logic formulas
(cf. [Buzl9]). A property specification pattern is defined as a “generalized description
of a commonly occurring requirements with respect to the permissible state or event
sequences in a finite-state model of a system” [DAC98, DAC99]. Dwyer et al. [DAC98]
propose a system of property specification patterns, which is organized as a hierarchy
based on the semantics of the specific patterns. Three categories of patterns are defined
in this pattern system: (1) occurrence, e.g., the absence pattern, (2) ordering, e.g., the
precedence pattern, and (3) compound, e.g., chain precedence which is a generalization
of the precedence pattern (cf. [DAC9S]).

Flake et al. [FMRO00] and Konrad and Cheng [KCO05] use structured English grammars
for selected subsets of the English language in the context of real-time systems to translate
requirements written in natural language into specific patterns based on the system
of patterns proposed by Dwyer et al. [DAC98]. Structured English grammars can
also be applied for the specification of complex robotic missions (cf. [MTP*19]). The
structured English grammar is used in conjunction with patterns as basic building
blocks and operators which allow the composition of patterns (cf. [MTP*19]). The
patterns are gathered in a catalog of patterns and are classified according to three
concerns: (1) core movement patterns, which express how robots should move in an
environment, (2) avoidance patterns, by which the robot’s movements are constrained
in order to avoid occurrence of undesired behavior, and (3) trigger patterns, which
describe reactive behavior based on stimuli (cf. [MTBP19], [MTP*19]). Bitsch proposes
a catalog of safety patterns used for the formal specification of safety requirements of
industrial automation systems (cf. [Bit01]). For each safety pattern, Bitsch gives the
natural language specification accompanied by the formal specification in CTL. In the
classification of the safety patterns, Bitsch takes into consideration the terminology used
in industrial automation systems, the constructs specific to CTL as a formal specification
language, and formulation of the safety requirements in natural language (cf. [Bit00]).
Using this criteria, the author differentiates safety requirements in several categories:
static vs. dynamic requirements, general guarantee of occurrence vs requirements on
execution sequences, requirements on constraint behavior, on permitted behavior and on
conditional guarantee for constraint behavior, requirements on beginning and duration of
validity and of exact chronological succession, real-time requirements for time triggered
and event triggered system (cf. [Bit00]).

Other direct formalization approaches use formal grammars as fixed translation
models between natural language requirements and their formal specification. Remaining
in the domain of task and motion planing for robotic systems, a structured subset of
English serves as an intermediate layer between the logical formalism and the natural

90

3.3. Requirements Elicitation and Analysis

language in order to formulate the user specification for task and motion planing of robot
controllers (cf. [KGFPO8]). Kress-Gazit designs the structured, controlled language
using a formal grammar, and uses it in conjunction with LTL to generate robot actions
and trajectories which satisfy the user specifications expressed in natural language (cf.
[KGFP08]). To translate requirements from natural language to temporal logic, Fantechi
et al. [FGR™94] build a context-free grammar and a dictionary based on a corpus of
natural language requirements from the domain of reactive systems. The translation
process takes place in two steps: sentence analysis to extract relevant information from
the input sentence, e.g., time quantification, and construction of a parsing tree for the
input sentence, from which the temporal logic formula is then generated. Nelken and
Francez [NF96] use discourse representation theory as an intermediate level between
natural language and temporal logic. The proposed method takes specification discourses
as input and it parses them with a parser written on the basis of a unification-based
grammar formalism. The result of the parser, a discourse representation structure, is
used as basis for the generation of the temporal logic formula (cf. [NF96]).

Nikora uses machine learning and natural language processing techniques to differenti-
ate between temporal and non-temporal requirements (cf. [Nik05]). Furthermore, Nikora
and Balcom take Dwyer’s patterns system to categorize the temporal requirements under
analysis and use learning models built with machine learning techniques to identify the
most frequently occurring LTL patterns within a set of temporal specifications. In total,
a number of eight requirements patterns are identified, e.g., the existence, universality,
and precedence patterns, similar to those in Dwyer’s system of property specification
patterns (cf. [NB09]).

Mauritz proposes a pattern-based approach for the structuring of the system re-
quirements (cf. [Maul9]). The requirements are formulated in an informal specification
in a controlled natural language, with one sentence per system requirement. In his
approach, Mauritz superimposes his requirements pattern over the system requirements,
which allows the identification of various parts of the domain knowledge, e.g., subject
of the system requirement, its properties, system actions and relationships with other
objects. The parts of the domain knowledge are then organized in types inside a domain
model, which is then used as input for the formalization with typed first-order logic (cf.
[Maul9)).

Another approach which aims to bridge the gap between natural language requirements
and their formal specification is represented by CATIA STIMULUS. The STIMULUS
language enables the specification of requirements in a manner which resembles textual
requirements specification. For this purpose, the language uses the notion of system to
encapsulate statements and macros, which accept statements as parameters, in order to
define scoping and typing rules (cf. [JG16]).

In a similar approach to that of Mauritz [Maul9] and that of Jeannet and Gaucher
[JG16], this thesis defines domain specific concepts for the purpose of requirements
formalization for the mobile service robot. These concepts are translated into first-order
logic predicates, since they are later used in further computations throughout this thesis.
The first concepts to be defined are concerned with the robot approaching its destination

91

Chapter 3. Problem Analysis

and the robot reaching its destination. Notice that the destination of the mobile service
robot is specified by Cartesian coordinates of its goal position.

Definition 3.3.1 - Robot Near Destination

Let (zg,yr) be the coordinates of the robot’s current position and (z%,,,, y%,,;) be the
coordinates of the robot’s given destination. The robot is considered to be near its
destination if xg + d% , = x& . where di , is the braking distance of the mobile
service robot with respect to the robot’s current speed vg. |

Definition 3.3.2 - Robot Reached Destination

Let (zgr,yr) be the coordinates of the robot’s current position and (zg,yg) be the
coordinates of the robot’s goal position. The robot is considered to have reached its
destination if g = 2%, [

The first-order logic predicates corresponding to Definitions 3.3.1 and 3.3.2 are defined
in Equations (3.5) and (3.6) respectively.

nearDestination : (vp+d% . == 2%) (3.5)

destinationReached : (xp == 2%) (3.6)

Notice that the predicate in (3.6) does not require the robot’s lane to coincide with
the destination lane at the end of the robot’s journey. This can be attributed to the
decision process used by the robot when it chooses a lane change over braking to a
standstill in case of collision danger and several lanes are safe.

Since it aims to cover as much ground as possible, the robot changes to the lane that
offers the longest distance to the visible obstacle situated on that lane. The consequence
of this is that there are executions of the overall system model in which, at the end of its
journey, the robot does not land on the destination lane, i.e., yr # y&, .-

The next concept which needs to be defined is that of collision danger. Notice that
the robot can perceive an obstacle as a potential collision danger only if the obstacle is
visible to the its sensors. Therefore, it is necessary to define beforehand the notion of
visible obstacle, which is done in Definition 3.3.3.

Definition 3.3.3 - Visible Obstacle
Let n € Ny be the number of obstacles in the environment of an autonomous mobile
robot. An obstacle O;,i € [1..n] is considered to be a wisible obstacle for the robot if and
only if the following two statements are true simultaneously:
1. —cr <o, — xp < hp,
2. VO]',OJ‘ 7é Ol,j S [1TL]
a) if —cgr <xp, —xp <0and —cg < ro; —rr < 0 then zo, — g > o, — Tr.
b) ifOSIOi—.TRShR al’ldOSJIOj —xr < hp thenin—xR<xoj — TR.
|

Notice that the first statement of Definition 3.3.3 requires that the visible obstacle is
situated inside the robot’s sensor horizon, or if the obstacle has already passed by the
robot, inside its safety net.

92

3.3. Requirements Elicitation and Analysis

The second statement requests that the visible obstacle is in the direct line of sight
of the robot’s sensors, i.e., no other obstacle is interposed between itself and the robot.
As an example, consider the physical overview of the robot’s environment in Figure 3.1.
Once the dynamic obstacle O, enters the sensor horizon of the robot it becomes a visible
obstacle for the robot. However, the same cannot be said about the obstacle O3. The
obstacle Oy blocks the line of sight of the robot’s sensors, which leads to the obstacle
O3 not being a visible obstacle for the robot even when it is situated inside the visual
horizon of its sensors.

The first-order logic predicate corresponding to Definition 3.3.3 is introduced in
Equation (3.7):

VisibleObstacle : YO;.0; # O; AN {[~ (—cgr < xo, —2r N xo, — 2R <0
N —cr < w0, —Tr N To;, —Tr <0)
V xp, —Trp > To; —CL’R] vV (37>
[(0<zo, —xr N x0o, — xR < hp
N 0<z0, —rr N 20, — TR < hpR)
V xo, —xr < To; — J]R]}

in which O;,i € [1,n] is the visible obstacle and O; # O;, j € [1,n] is a random obstacle
in the robot’s environment.

Since the dynamic obstacles in the robot’s environment cannot change their lane,
the obstacles situated on the robot’s lane are the only ones which represent potential
collision dangers for the robot. Thus, it becomes important to distinguish the obstacles
on the ego lane from all the other obstacles in the environment. For this purpose, the
parameterized first-order logic predicate defined in Equation (3.8) is used:

Visible ObstacleOnLane(y) : VisibleObstacle N (yo, ==) (3.8)

Finding out whether an obstacle is visible on the ego lane is done with a call of the
predicate VisibleObstacleOnLane(yg) with the ego lane as parameter yg, in which every
appearance of the variable y is substituted with the variable yg.

Having defined the notion of visible obstacle situated on ego lane, it is now possible
to establish whether an obstacle constitutes a collision danger for the mobile service
robot. This is done through Definition 3.3.4.

Definition 3.3.4 - Collision Danger
Let n € N5y be the number of obstacles in the environment of an autonomous mobile
robot. An obstacle O;,i € [1..n] is considered to be a collision danger on a given lane for
the robot if and only if the following two statements are true simultaneously:

1. the obstacle O; is a visible obstacle on the given lane, and

2. the obstacle O; is situated inside the collision distance of the robot.

The corresponding first-order logic predicate is depicted in Equation (3.9):
CollisionDangerOnLane(y) : VisibleObstacleOnLane(y) A

(3.9)
(0 < To — xR) A (':EO — TR < d}g’ollision)

93

Chapter 3. Problem Analysis

Notice that, since dynamic obstacles are not allowed to change lanes (FR2), only
those obstacles situated on the ego lane represent a potential collision danger for the
mobile service robot. However, the first-order logic predicate defined in Equation (3.9)
allows more flexibility and can be used for checking any lane in the robot’s environment
for collision danger due to its parameter y. Checking whether there is a potential collision
danger on the ego lane is done by calling the predicate CollisionDangerOnLane with the
ego lane yg as parameter, which substitutes every occurrence of the variable y in the
predicate CollisionDangerOnLane with the variable yg.

The mobile service robot has two maneuvers at its disposal which it can use in order
to avoid collision danger. The first maneuver enables the robot to brake until it comes to
a full stop, while the second one lets the robot change to a safe target lane. The concept
of safe target lane for an autonomous mobile robot is introduced in Definition 3.3.5.

Definition 3.3.5 - Safe Target Lane

Let n € Ny be the number of obstacles in the environment of an autonomous mobile
robot. A lane in the environment of the robot is considered to be a safe target lane if
and only if there is no visible obstacle on the lane which is situated inside the collision
distance of the robot. O

In order to facilitate the use of Definition 3.3.5 throughout this work, a first-order
logic predicate corresponding to the notion of safe target lane must be introduced. Notice
that for the definition of this predicate, an auxiliary predicate must be defined, which
denotes the visible obstacles situated outside the robot’s collision distance, as shown in
Equation (3.10).

VisibleObstacle Outside CollisionDistance : Visible Obstacle N

(3.10)
(IO — IR > d}g‘ollision)

Notice that there are two situations in which a lane is considered to be safe according
to Definition 3.3.5. Firstly, in the trivial case, a target lane is considered to be safe if
there are no visible obstacles situated on this lane. Secondly, in the more complex case,
if there are visible obstacles which occupy the target lane, they must be situated in front
of the robot outside of the area spanned by the robot’s collision distance, or behind the
robot and outside of its safety net.

The two auxiliary predicates introduced in Equation (3.8) and Equation (3.10) are
used in the construction of the safe target lane predicate, as shown in Equation (3.11):

SafeTargetLane(y) :— VisibleObstacleOnLane(y) V
(VisibleObstacleOnLane(y) A (3.11)
VisibleObstacleOutside CollisionDistance)

Liveness Properties

The system requirement FR9 states that the robot shall reach a given destination. Such
a requirement is formalized as a liveness property. A liveness property asserts that

94

3.4. Safety Analysis

“something good eventually happens”, i.e., a specific condition is guaranteed to hold or
an event is guaranteed to happen at some future moment in time. See Chapter 2 for an
introduction on liveness properties in the context of design-time verification. Informally,
the liveness property corresponding to requirement FR9 can be formulated as follows:

Liveness Property (Informal Specification). The robot shall eventually reach its
destination.

CTL is chosen for the specification of this liveness property. In CTL [CES81], liveness
can be expressed with the path formula AF. The operator A is the universal path
quantifier, which requires that a certain property holds on all computation paths of a
system model. Thus, the property AF1) denotes that on all computation paths F holds.
That is, it states that on all computation paths there is a state which satisfies ¢ that
is eventually reached. In the case of the robot’s liveness property, v is the predicate
destinationReached, as illustrated in Equation (3.12).

6 : AF (destinationReached) (3.12)

Notice that the liveness property is very similar to the existence pattern identified by
Dwyer et al. [DAC98], which states that a given state or event must occur within a scope.
In the example of the mobile service robot, the scope is represented by all computation
paths of the robot’s system model.

The property in Equation (3.15) expresses that the robot inevitably reaches its
destination at some time in the future. Notice that, for the liveness property to be
satisfied, it is considered sufficient that the robot reaches the position of its destination
point, and not necessarily the lane on which this point is situated. Remember that this
can be attributed to the decision process of the robot and its goal to cover as much
ground as possible on its drive towards its destination. When the robot has to perform a
lane change and can choose from several safe target lanes, it chooses the lane which offers
the longest distance without visible obstacles in sight. Thus, there exist computation
paths on which the robot reaches the z-position of its destination, but not the lane, that
is the y-position, on which the destination is situated.

3.4. Safety Analysis

The mobile service robot is a safety-critical system which takes mission- and safety-critical
decisions while driving through a heterogeneous dynamic environment towards a given
destination. Such environments are characterized by the presence of a wide range of
obstacle types, including humans. The decisions of the mobile service robot have the
potential to threaten the safety of the robot itself and potentially cause harm to the
persons and other obstacles in the robot’s environment. Harm is defined as physical injury
or damage to the health of persons by ISO 26262 [Int11b] and ISO/PAS 21448 [Int19],
while ANSI D.16.1 [Ass17] associates two categories to the notion of harm, namely injury
brought on persons and damage caused to property. Koopman and Wagner [KW16] point
out to a safety principle established in the safety-critical application domains, which

95

Chapter 3. Problem Analysis

states that safety must be demonstrated and not assumed (cf. [KW16]). This means that
safety-critical systems should be considered unsafe, unless convincing arguments are made
for the safety of the system under analysis (cf. [KW16]). National and international
authorities impose regulations for autonomous safety-critical systems which require
the system manufacturers to provide sufficient proof that their systems are safe before
receiving permission for commercialization.

System safety describes the extent to which the system under analysis is free of
hazards (cf. [GK19]), which further translates into the absence of unreasonable risks of
physical harm (cf. [Int11b]) for the system as well as for the environment in which it
operates. In order to bring up sufficient proof for the system safety, a process of safety
analysis must be carried out, which uses specific methods for the identification, analysis
and classification of hazards and assessment of the subsequent risks for the system.
The international standards ISO 26262 [Int11g] and ISO/PAS 21448 [Int19] recommend
several methods for the analysis of hazards and assessment of risks, e.g., HAZOP, FTA,
or FMEA (cf. Section 2.2). Notice that hazards may occur due to factors related to the
system itself, e.g., malfunctioning behavior or deficiencies in the specified behavior (cf.
[Int11b]), but also due to factors external to the system, e.g., “passive” infrastructure or
environmental conditions in which the system operates (cf. [Int19]). Mauritz performs
a safety analysis for lane change assistant system, using the recommendations and the
process defined by ISO 26262 (cf. [Maul9]). The prerequisites for the safety analysis
required by ISO 26262 is the definition of the system under analysis and its preliminary
architectural information (cf. [Intllc]). Through FTA, fault events are tracked to specific
system components defined in the hardware and software architecture of the lane change
assistant, e.g., sensors, perception functions, situation assessment and behavior planing,
and actuators (cf. [Maul9)]).

For the example of the mobile service robot, the high-level description of the system
functionality given in Section 3.1 and the system requirements described in the functional
system specification in Section 3.3 are taken as input for the HARA method. The HARA
analysis performed on the mobile service robot is shown in Table 3.4 and defines a
classification of the aspects which are relevant for the hazard analysis together with
equivalence classes or parameter values. The most important aspects for the hazard
analysis are:

e the location where the mobile robot operates, e.g.,

Location := {Indoors, Outdoors}

e the geometry of the physical world in which the robot moves specified through the
parameters the number of lanes np4,.s and the ground inclination agroung, €-g-,

Physical WorldGeometry := {(NLanes > 3, QGround = 0°), ...}
e the driving conditions, e.g.,

DrivingConditions := {(Dry, Non-slippery), (Wet, Slippery), . .. }

96

3.4. Safety Analysis

e the environment in the sensor horizon of the robot, e.g.,

Environment := {(StraightRoad, DynamicObst),
(StraightRoad, StationaryObst), ... }

e the system usage, e.g., driving towards a predefined destination,
e the system behavior:

SystemBehavior = RobotLaneChangingBehavior x RobotDrivingBehavior
RobotDrvingBehavior = { Accelerating, FullSpeedDrv, ReducedSpeedDrv,
Braking, Stopped }

RobotLaneChangingBehavior = { LeftLaneChange, RightLaneChange,
LaneKeep}

e the environment behavior, which refers to the behavior of the obstacles situated in

the robot’s sensor horizon, e.g., a dynamic obstacle overtaking a slower obstacle.

The system behavior consists of a combination of the lane changing behavior and
the driving behavior of the mobile service robot. This combination is modeled as the
Cartesian product between the set of actions or related to the robot’s lane changing
behavior and the set of actions describing the robot’s driving behavior.

The lane changing behavior of the robot is triggered in case a collision danger is
detected. Remember that in case of collision danger the robot, the robot has two
alternatives: either change to a safe target lane or brake to a standstill and wait until
the dynamic obstacle which triggers the collision danger has passed by. Notice that in
the search for a safe target lane, the lane on the right (RightLaneChange) or the lane on
the left of the robot (LeftLaneChange) may turn out to be safe for the robot to continue
its drive. If however no other safe lane is detected, then the robot keeps its current lane
(LaneKeep). This is consistent with the requirement FR7 in Table 3.1, which does not
allow the robot to jump over lanes.

The driving behavior of the robot encompasses actions which allow the robot to
accelerate (Accelerating), drive with maximum speed (FullSpeedDrv), brake in case of
collision danger or when it approaches its destination (Braking), drive with reduced
velocity rather than brake to a standstill (ReducedSpeedDrv) or stop (Stopped).

Notice that the selection of the parameters relevant for the hazard analysis is dependent
on the task which the system is supposed to perform and on the environment in which
the system operates. In fact, the presence of certain aspects in the HARA analysis may
warrant the consideration of other aspects which are, in a way, dependent on the former.
Take for example the location and driving conditions. It makes sense to consider the
driving conditions when the operational environment is located outdoors. However, the
mobile service robot is considered to operate in an indoor environment. As such, the
driving conditions do not play an important role and are not further considered in HARA
analysis carried out in Table 3.4. The values of the relevant parameters are combined
with each other in order to create individual situations, with one situation being depicted
in one table row of Table 3.4. There are an uncountable number of ways in which the

97

Chapter 3. Problem Analysis

obstacles in the robot’s environment may behave. Thus, neither the list of identified
situations nor the list of selected parameters are considered to be complete.

For every identified situation, the HARA analysis defines a possible hazard and the
potential effect this hazard may have. Take for the example situation H1 depicted in Table
3.4, in which the mobile service robot drives indoors on a straight road with dynamic
obstacles and with two or more lanes. Imagine there is a dynamic obstacle O; moving
with velocity vo, on the ego lane towards the robot. Furthermore, behind obstacle O
and on the same lane with it, there is a second dynamic obstacle Oy which moves with
velocity vp, > vp,. Since obstacle O, moves behind obstacle O, only obstacle O, is a
visible obstacle (cf. Definition 3.3.3). The robot is accelerating, so that it can reach its
maximum velocity and thus cover more ground on its journey towards its destination.
Obstacle Oy overtakes obstacle O;. In such a situation, the hazard is that the robot
does not activate any collision avoidance maneuvers, e.g., braking, due to very little to
no reaction time. The potential effect of this hazard is a frontal crash with obstacle
O,, which represents an active collision caused by the robot with an obstacle from its
environment.

98

66

Table 3.4.: Mobile Service Robot: Hazard Analysis and Risk Assessment.

ID | Location Phys. Environment| System | System Environment Hazard Potential
World Usage Behavior Behavior Effect
Geometry
H1 | Indoors | Nianes > 3, | StraightRoad, | Driving Accelerating Dynamic obsta-| No robot’s | Front
A Ground =0° DynamicObst | towards a cle overtakes a | brake crash
given des- slower obstacle possible
tination on the ego lane
in front of the
robot
H2 | Indoors | npgnes > 3, | StraightRoad, | Driving FullSpeedDrv Dynamic obsta- | No robot’s | Front
A Ground =0° DynamicObst | towards a cle accelerates on | brake crash
given des- the ego lane in possible
tination front of the robot
H3 | Indoors | npges > 3, | StraightRoad, | Driving FullSpeedDrv Dynamic obsta- | No robot’s | Front
A Ground =0° DynamicObst | towards a cle changes to the | brake crash
given des- ego lane in front possible
tination of the robot
H4 | Indoors | npges > 3, | StraightRoad, | Driving LeftLaneChange | Dynamic obsta- | No robot’s | Side crash
& Ground =0° DynamicObst | towards a cle moving from | brake possible
given des- behind to over-
tination take the robot
H5 | Indoors | Nianes = 3, | StraightRoad, | Driving Braking Dynamic obsta- | No robot’s | Rear crash
A Ground =0° DynamicObst | towards a cle moves in a | stop possible
given des- blind spot behind
tination the robot
H6 | Indoors | Nignes = 3, | StraightRoad, | Driving Braking Stationary obsta- | No robot’s | Front
Q Ground =0° StationaryObst| towards a cle starts to move | stop crash
given des- on the ego lane in possible
tination

front of the robot

sIsAreuy, Ajo5eq pg

Chapter 3. Problem Analysis

Safety Properties

The HARA analysis carried out on the example of the mobile service robot has identified
several hazards. For each of these hazards, the potential effect is a collision with an
obstacle in the robot’s environment actively caused by the robot. Safety requirements
must be formulated for the robot in order to avoid these hazards and their effects on
system and its environment.

Notice that a safety requirement can be formulated as formal safety property, since
the intention of a safety requirement is to prevent the hazardous event over which it is
formulated from ever happening. At a general level, a safety property informally states
that “nothing bad ever happens”. For the purpose of this example, the robot’s safety
property derived from the results of the HARA analysis is transcribed to the following
informal specification in natural language:

Safety Property (Informal Specification). The robot must never actively collide
with any obstacle in its environment.

The safety property is formally specified CTL. In CTL, one way to formulate a safety
property is AGv. The operator A requires that a certain property is satisfied on all
possible computation paths of the overall system model. The second operator G is the
Globally-operator, which requests that a given property holds on the entire subsequent
path. This is expressed in Equation (3.13) where ® is the part contained inside the curly
brackets.

¢ : AG [(yr == yo,) N\ (xo0, — tr > —cg) N (xo, — zr < cg) = (vg ==0)] (3.13)

The property in Equation (3.13) translates to the robot being stationary, i.e., vg = 0,
at the moment when a visible obstacle, situated on the same lane as the robot, reaches
the safety net of the robot. Once the obstacle is outside the borders of its safety net,
the robot is considered to be out of danger and able to resume its journey towards its
destination. A visual interpretation of the safety property is given in Figure 3.4.

Note that there is no reference made in the safety property with respect to the current
velocity of the dynamic obstacle. Since the property is supposed to capture the desired
behavior of the robot and not that of the dynamic obstacle, the latter is depicted in
Figure 3.4 at the border of the robot safety net with a positive non-zero velocity. This is
consistent with the system requirements in the functional system specification introduced
in Section 3.3 of this chapter, namely that the movement of dynamic obstacles passing
by the robot is emulated by their drive through the robot.

3.5. System Design

The system design of the mobile service robot is carried out on the basis of the system
requirements in the functional system specification introduced in Section 3.3. Section
3.5.1 gives a short overview of how formal models are used in system desing to capture

100

3.5. System Design

Static
Obstacle

Goal

Dynamic
Obstacle

Dynamic
Obstacle

0,

Dynamic
Obstacle
0,

Legend:

Vg - current robot velocity Vg, L € [1..4] - current velocity of obstacle 0;

cg —robot’s safety net (dependent on the robot’s processing time) v,?,ilx,i € [1..4] - maximum velocity of the obstacle 0;
hp — visual horizon of the robot’s sensors

Figure 3.4.: Mobile Service Robot: A Visual Interpretation of the Safety Property.

different perspectives of the system under analysis. During the system design, a system
model is created for the mobile service robot in Section 3.5.2; along with a model of
the system environment, which is presented in Section 3.5.3. The system model of the
mobile service robot and the environment model are combined in an overall system model,
which is depicted in Section 3.5.4 along with the choices made for the modeling of the
communication between the system and its environment.

3.5.1. Usage of Formal Models in System Design

Models rarely capture the entire system under study, since the size and complexity of
most systems makes this an impossible task (cf. [SST18]). Therefore, a model is an
abstraction of the system under study (cf. [Rod15]), which is built with an intended
goal in mind, e.g., a mobile service robot tasked to drive autonomously towards a given
destination. Although the model is a simplification of the actual system, it must be
able to answer questions in place of the original system as if it were the system itself
(cf. [JOO1], [Rod15]). The fundamental question which must be answered is whether the
system under study satisfies the system requirements defined in the functional system
specification.

Different models can be developed for a system under study, which represent the
system from different perspectives, e.g., external, interaction, structural or behavioral
(cf. [Som14b]). An external perspective describes the context or the environment of the
system, while an interaction perspective models the interactions between the system and
its environment, or between the system components. The structural perspective allows

101

Chapter 3. Problem Analysis

the modeling of the inner structure of the system, as the system is refined into system
functions through functional system design and into the respective software and hardware
components during technical system design. In turn, a behavioral perspective models
the dynamic behavior of the system and how it responds to events and external stimuli
(cf. [Som14b]). The two models developed for the example of the mobile service robot
comprise the external perspective, the interaction perspective as well as the behavioral
perspective. The behavioral perspective is depicted in the system model, as the system
model describes the desired behavior of the robot as specified in the system requirements.
The environment model illustrates both the external and the behavioral perspective, since
this model describes on an abstract level the environment of the mobile service robot
as well as the dynamic behavior of the obstacles situated in the robot’s environment.
The interaction perspective models how the robot interacts with the obstacles in its
environment, e.g., variables that emulate the robot’s sensors observe obstacle features
such as obstacle velocity.

Notice that the models created during system design have a double role. On one
side, the design models can be used to communicate the requests of the software system
architects on how the system is to be implemented. On the other side, these models can
be verified against the system requirements in the functional system specification, in
order to show whether the abstract representation of the system in interaction with its
environment model satisfy the defined system requirements.

The system design process is usually carried out in an iterative manner, and the
specific design activities can be interleaved with activities necessary to check whether the
designed system model satisfies the system requirements. During the initial development
iteration, the system designers develop a first version of the system model according to
their understanding of the system requirements. The system model is then subject to
reviews by experts, which can be accompanied further by other methods, e.g., simulation,
testing, or formal verification, in an effort to obtain a system model which conforms to
the system requirements. Should there be any inconsistencies in the system model with
respect to the system requirements, the system designer can revisit the designed models
and make the necessary adjustments. The process is repeated until a system model is
obtained, which satisfies the defined system requirements.

Formal verification methods can be used at design-time to check whether the developed
system model satisfies the specified system requirements. In case the system designers
decide to use formal verification, it can be beneficial to design the system model and
the environment model with verification in mind, in order to facilitate the usage of
design-time verification methods on these models.

3.5.2. Environment Model

In the example of the mobile service robot, two models are created during the system
design phase, a model of the autonomous system and a model of its environment. In
an effort to create a system model in accordance with the system requirements, these
models are created with formal verification in mind, which is carried out also in the
system design phase.

102

3.5. System Design

The autonomous system and its environment in the motivational example are modeled
as two distinct UPPAAL timed automata, which are an extension of the timed automata
formalism introduced by Alur and Dill in [AD94]. See Section 2.4.1 in Chapter 2 for the
main definitions with respect to the notion of timed automata. For the sake of brevity
and without impending the full description of the example, both models are depicted
only through abstract representations of their corresponding timed automata.

The environment model describes the behavior of the obstacles in the system’s
environment and is illustrated in Figure 3.5. This automaton is henceforth referred to as
the obstacle automaton.

In order to model the robot’s environment illustrated in Figure 3.1, four instances of
the obstacle automaton are necessary, i.e., three for modeling the respective dynamic
obstacles and the forth for describing the stationary obstacle. In order to create several
instances of it, an automaton template modeled in the UPPAAL model checker must be
provided with a set of parameters. In the motivational example, several parameters are
defined for the UPPAAL template corresponding to the obstacle automaton: identification
number of the obstacle, position of the obstacle on its lane, and a boolean flag which
models whether the obstacle is stationary or not.

m?
[Destination not reached]
{update position and velocity}

m?
[Obstacle._is static]

m?
Idle [Destination not reached] Move
m?
S [Destination reached]
= {obstacle becomes static}
T @
e
=0
O 9
= N
S5 Legend:
E [g] — transition guard g
=~ {u} —transition update u
c? —receiver channel ¢

The obstacle automaton has three locations, the initial location Init and the locations
Idle and Move. The transition from Init to Idle serves as an initialization step for the
obstacles, i.e., the parameters of each obstacle are initialized with their respective values
and are stored in a shared data structure. When in Idle, an obstacle can be either
stationary or it can start to move towards the robot in a continuous motion. Assuming
that there are n obstacles in the robot’s environment, remember that each obstacle

Figure 3.5.: Mobile Service Robot: Environment Model.

103

Chapter 3. Problem Analysis

O;,i € [1..n] has a specific maximum bound for its current velocity, which is denoted
v$i . For a stationary obstacle, the corresponding instance of the obstacle automaton
remains in the location Idle and its maximum velocity is considered to be null. In the
case of a dynamic obstacle, the corresponding automaton instance enters the location
Move and chooses arbitrarily from the interval (0,v$},,] a value for the current velocity
each time the dynamic obstacle O; executes a move. Based on its current velocity, the
new position of the obstacle O; is computed and updated in the shared data structure.
The automaton is modeled so that each moving obstacle has a destination, and upon
reaching it, the obstacle comes to a full stop, i.e., the automaton enters the location
Idle. This behavior ensures that the dynamic obstacles will eventually stop moving and

become stationary.

3.5.3. Technical System Model

The technical system model, also called the robot automaton, is depicted in Figure 3.6
and describes the robot’s behavior. Initially, the automaton is in its initial location,
Idle, as the robot has not yet started to move. At the same time, Idle is also the
final location, in which the automaton enters when the robot reaches its destination. As
long as the robot has not reached its maximum velocity, the automaton remains in the
location Accelerate. The robot drives with maximum velocity, as long as no collision
danger is detected, i.e., the automaton enters the location Drive and remains there for
as long as possible. Should the robot detect a collision danger or should it approach its
destination, then the automaton enters the location Brake, which enables the robot to
reduce its velocity, and eventually, come to a standstill (location Stop).

Nevertheless, before braking to a standstill, the robot checks to see whether it can
drive further, albeit with a reduced velocity. This is can be justified by the inherent
purpose of mobile service robots, i.e., to autonomously reach their destination and to
cover as much ground as possible in the process before having to brake. While the robot
is braking, it may happen that another lane becomes safe to move on. Remember that a
lane is considered to be safe if no visible obstacles are detected inside the region spanned
by the robot’s collision distance. The robot can use the opportunity of changing to a
safe lane in order to drive farther rather than trigger the emergency brake. However, if
no lane change is possible, then the collision danger persists and the robot is forced to
brake until it comes to a full stop, i.e., the automaton enters the location Stop.

3.5.4. Overall System Model

In order to perform the computations for the collision distance, the robot needs to know
the current position of the obstacle and its current velocity, both computable from the
received sensor data. In order to emulate the robot’s sensors, the robot automaton
communicates with the obstacle automaton using shared variables. In UPPAAL, this
kind of variables are modeled with the help of global variable declarations. Figure
3.7 illustrates the section of global declarations in the UPPAAL project created for the
modeling of the motivational example.

104

3.5. System Design

m? m?
[Collision danger and m? [No further drive possible]
other lane safe] A [Collision danger and no other lane safe or near destination] {reduce speed}

{change lane} {reduce speed}

m?
[Further drive possible]

{maintain speed}

Brake

m?
[No collision danger]
{update position}

m? —
(%2]
[Maximum velocity not reached] g 3
{increase speed} =3
& Legend:

[g] — transition guard g
{u} — transition update u
c? —receiver channel c

Stop

m?
m? [No other lane safe and
[Reached destination] obstacle not passed by]

Figure 3.6.: Mobile Service Robot: Technical System Model.

Note that the structure obstacle_t defines a type which contains all the information
which the robot must know about an obstacle: its coordinates in the environment,
its current velocity and its current status. Each time a dynamic obstacle moves, the
respective instance of the obstacle automaton updates the obstacle’s current position
and velocity in the corresponding element of the list obstacle. The information stored
in this list emulates the sensor data, which is received by the robot and used further in
its processing step. As mentioned in Section 3.5.2, the obstacle automaton is modeled so
that dynamic obstacles have a destination, which in this example is the point of origin of
the Cartesian coordinate system. Upon reaching this point, dynamic obstacles become
stationary. This means that, in addition to its position and velocity, the status of each
dynamic obstacle must also be updated in the shared list of obstacles.

As a side note, each numerical variable in the obstacle type structure has its value
domain restricted by an upper bound. During the creation of the overall system model,
restriction of variables domains is applied in order to decrease the size of the model.
While the restriction of the variable domain is a deliberate decision taken during modeling
to reduce the size of the model’s state space, UPPAAL supports further techniques for
dealing with the state space explosion problem (cf. Section 2.4.1).

As an autonomous system, the robot performs during its runtime operation three
specific activities:

e sensing - capturing the runtime environment through its sensors,

e processing - reasoning on the basis of the received sensor data and planing of the

corresponding actions, and

e acting - execution of the planned actions.

105

Chapter 3. Problem Analysis

TE&,C:\Users\Adina\Documents\PhDResearch\sse—dissertation\prototypes\m0bilefservice—robot\modeIs\MobiIeSewiceRobot.x... - O
File Edit View Tools Options Help

Da@o¢|aaa[{a-<-we

Editor | Simulator | ConcreteSimulator | Verifier | Yggdrasil

L Vs 2z 7 .
A Autheor: Adina Aniculaesei -

// Copyright: TU Clausthal, 2015-2017

‘&b Coordinator
) Obstacle
- # System declarations

// Global Declarations

const int Cbstacles = 4; // Number of obstacles

typedef int[0,Obstacles-1] cbstacle_id; // Range type for obstacle id

const int Lanes = 3; // Number of lanes

typedef int[0,Lanes-1] lane_t; // Range type for lanes

const int MaxPos = 110; // Upper bound for the robot and cbstacle positions
typedef int[0,MaxPos] pos_t; // Range type for the robot and obstacle positicns
const int MaxVelObs = 5; // Upper bound for the obstacle velocities

typedef int[0,MaxVelCbs] cbstaclevel t; // Range type for the l:)bstacle velocities

// -=> Obstacle type structure
typedef struct

{

pos_t pos; VI
lane t lane; /7
cbstaclevel _t v; I
bool static; A7 I
} ckstacle t;
// -=»> List of obstacles
cbstacle t obstacle[Cbstacles];
// --» Channels
[broadcast chan initialize, m; Y]
£ >

Figure 3.7.: Mobile Service Robot: Declarations of Shared Variables in UPPAAL.

From this general description of the robot’s behavior, it follows that the actions performed
in the acting phase are a consequence of the received sensor data, which record the
changes occurring in the environment. On one hand, from the perspective of the concrete
actions executed in acting phase, i.e., braking in case of collision danger, it can be
considered that the environment influences the behavior of the robot. On the other hand,
seen at an abstract level, the robot performs the activities intrinsic to an autonomous
system independently of the changes taking place in its environment. Regarded at the
same abstract level, the activities performed by the robot do not exert any influence on
what changes occur in its environment.

In order to model the robot and its environment as two entities acting independently
of each other, a coordinator is added to the overall system model in order to overview the
communication between the robot automaton and the obstacle automaton and ensure
fairness between them. Similarly to the robot and its environment, the coordinator is
described using UPPAAL timed automata. For the sake of consistency with the depiction
of the other two automata, Figure 3.8 illustrates not the actual UPPAAL timed automaton
modeling the coordinator, but an abstract representation of it.

106

3.5. System Design

initialize! |
. m!
Init Move {x =0}
1]

[x <=
Legend:
[inv] — state invariant inv
{u} - transition update u
¢! — emitting channel ¢
x — clock variable x

Figure 3.8.: Mobile Service Robot: Coordinator Model in the Motivational Example.

The coordinator automaton has two locations, the initial location Init and the
location Move. On the transition from Init to Move, the coordinator automaton sends an
initialization command to all the instances of the obstacle automaton via the communi-
cation channel initialize. Upon receiving this command, each instance of the obstacle
automaton is initialized with the corresponding parameter values and the information is
stored in the shared obstacle list. Through this step, it is ensured that the information
about the initial state of the environment becomes available for the robot, before the
robot executes any move. This is justified by the robot’s necessity to have access to
initial information about its environment in order to be able to plan its route towards its
destination.

Following the initialization step, the coordinator automaton sends movement com-
mands to the robot automaton as well as to all the instances of the obstacle automaton.
According to the environment model in Section 3.5.2, the movement command sent to
the obstacle automaton leads to different behaviors, depending on the status of each
obstacle in the environment. Thus, stationary obstacles are required to remain idle
(location Idle in Figure 3.5), while dynamic obstacles are requested to move forward
with random velocity (location Move in Figure 3.5). With each executed move, an instance
of the obstacle automaton updates the position, velocity and status information of the
corresponding obstacle in the shared obstacle list.

Notice that the coordinator model also defines a clock, modeled by the variable
xr € R5¢N[0,1]. The motivation for the clock variable is two-folded. On one hand, it
helps to ensure fairness between the technical system model and the environment model,
as neither the robot automaton nor the obstacle automaton are allowed to spend more
than one time unit for the execution of a transition. On the other hand, the number
of the symbolic states of the overall system model computed by UPPAAL during model
checking is drastically reduced by the bound set on the clock variable.

The coordinator automaton sends its commands to the robot and obstacle automata
via broadcast channels. This type of channels allows 1-to-many synchronizations. The
intuition behind broadcast channels is the following: an edge with synchronization label
e! emits a broadcast on the channel e and any enabled edge with synchronization label
e? will synchronize with the emitting automaton. This means that an edge which emits
on a broadcast channel can always fire, provided that its guard is satisfied. The update

107

Chapter 3. Problem Analysis

on the emitting edge is executed first. In the coordinator automaton, this update is
represented by the clock reset on the edge sending on channel m. The update on the
receiving edges are executed left-to-right in the order in which the processes are given in
the system definition. In this way, before its every move, the robot automaton has access
to the latest information about the obstacles in its environment.

The overall system model, composed of the coordinator automaton, the robot au-
tomaton and four instances of the obstacle automaton, is depicted in the upper part of
Figure 3.9. In the lower part of Figure 3.9, a schematic sequence diagram illustrates
the communication between the components of the overall system model. The parallel
composition and the communication between UPPAAL automata is realized through
shared variables and synchronization channels (cf. Section 2.4.1).

o | . Instance of the

Inzgi?;?ngic:?e LT = lle] = F el = T |z = ~ [T =7 '_|L obstacle automaton

automaton - - - - - for the static obstacle

on the right lane
= Instances of the

Instance of the JF) obstacle automaton

robot automaton . for the dynamic obstacles

on the left lane

and center lane

1
|
]
88,
:
ERSE
|
i

(&)
ETE T e T e e e e

Initialization step for
the instances of the
obstacle automaton

=
g
=
g
=
g

(&)

R RN n NN an NN 2R NE

Ll

E @

i
| B W

Movement step for the
instances of the robot

automaton and of the
obstacle automaton

i

@
v (8
&

&l
&

(&)

@
8]
3

Figure 3.9.: Mobile Service Robot: Overall System Model and Communication between
its Components in the Simulator Panel of UPPAAL.

3.5.5. Specification of System Properties

Both the safety property as well as the liveness property of the mobile service robot
are formalized in TCTL, which is the specification language recognized by the UPPAAL
model checker. The formal language TCTL is a real-timed variant of CTL, created to
express properties about timed automata (cf. Section 2.3.1). As such, several operators
are similar to those introduced by CTL. For example, the operator A retains its semantic
from CTL, by which it is required that a certain property be satisfied on all possible
execution paths of the overall system model. The operator [J has the same semantic as

108

3.5. System Design

the Globally-operator known from the CTL language, by which it requires that a given
property holds on the entire subsequent path (cf. Section 2.3.1).

The safety property introduced in Equation (3.13) is translated in TCTL in Equation
(3.14).

¢ AO {forall (i : int[0,n — 1]) (robot.lane == obstacles[i].lane)
and (obstacles[i].pos — robot.pos > —robot.c) (3.14)
and (obstacles[i].pos — robot.pos < robot.c) '
imply (robot.v == 0)}

In a similar manner to its safety property, the liveness property of the mobile service
robot is also expressed in TCTL. The operator A carries the same semantic as in the case
of the safety property. The operator ¢ is the UPPAAL specific notation for the operator
F(finally), which requires that a given property is eventually satisfied (cf. Section 2.3.1).
This means that, on all computation paths of the overall system model, there is a state
that satisfies the given property and which is eventually reached. The TCTL formula in
Equation 3.15 corresponds to the CTL liveness property from Equation 3.12.

0 : AQ(robot.pos — robot.goalPos > 0) (3.15)

Notation 3.5.1. The following correspondence is defined between the notations used in
Equations 3.14 and 3.15 and those introduced in Notation 3.1.1:
1. (robot.pos, robot.lane) = (xg, yr),
2. (robot.goalPos, robot.goalLane) = (z& .,y),
robot.c £ cp,
robot.v = vg, and
(obstaacle[i].pos, obstacle[i].lane) = (zo,, yo,)-

O W

3.5.6. Design-Time Verification

For model checking, the overall system model is built as network timed automaton
through the parallel composition of all the instances of the technical system model, of the
environment model and of the coordinator model. See Chapter 2 for a general definition
of the parallel composition of timed automata. According to this definition, the set of
states of the network automaton is the Cartesian product of the sets of states of all
instances of its component automata.

The first step in illustrating the application of model checking on the motivational
example is to discuss which state variables play a role in the modeling of the robot
automaton and which in that of the obstacle automaton.

The state of the robot automaton is defined by

_ R R R
SpR = (xR7yR7UR7UMax7xGoalﬂyGoal>hR7CR) (316>

in which hg is the visual horizon of the robot’s sensors and cp is its safety net. For all
the other state variables, the notations introduced in Section 3.1 apply.

109

Chapter 3. Problem Analysis

In a similar manner, the state of the obstacle automaton instance corresponding to
an obstacle O; is defined by

so, = (20, Yo,, Vo,, V5 . isStatico,),i € [1..n] (3.17)

where n € Ny is the number of obstacles, while isStatico, is a flag which is true if the
obstacle O; is stationary and false otherwise. For the other state variables, the notations
established in Section 3.1 are valid.

The verification of the network automaton against a given property specification
follows a straightforward approach. The UPPAAL model checker performs a reachability
analysis, in which it computes the set of reachable states for the network automaton.
During this analysis, the set of reachable states is spanned into a tree, with the initial
state of the network automaton as the root of the tree and the reachable states as its
nodes. The model checker examines each node of the tree and checks whether the given
property is satisfied or not. In case the model checker finds a state which violates the
given property, then it provides not only the verification result but also a counterexample,
which consists of the path in the spanning tree that leads to the respective state. This
approach is applied for the verification of both properties in Equation (3.13) and in
Equation (3.15).

Several of the state variables are used to model the collision avoidance algorithm
implemented in the robot automaton. Some of these variables are present also in the
specification of the safety property. For the sake of brevity, the representation of the
network automaton states in the spanned tree uses only the state variables which are
used to formulate the specification of the safety property. Thus, the states of the network
automaton displayed in the spanning tree consist of the robot coordinates, the coordinates
of the obstacles in the robot’s environment as well as the robot’s velocity and its safety
net. Each state of the network automaton is denoted by the tuple

S = ((xR7 yR)a (:L‘Olv y01)7) (:L‘Onv yOn)7 UR, CR) (318)

where n € Ny is the number of obstacles.

The motivational example consists of a mobile robot and its environment with three
dynamic obstacles and one stationary obstacle. A visual representation of the initial
state of the corresponding network automaton is given in Figure 3.10. Initially, both the
robot and the dynamic obstacles are stationary, i.e., vg = 0 and vp, = 0,Vi € [1..n]. The
maximum velocity of the robot is v, = 4, while the dynamic obstacles O;,i € {1,2,3}
have, for the sake of simplicity, the same maximum velocity v$;, . = 2. The visual horizon
of the robot’s sensors is set at hgp = 30 distance units. In order to simplify the analysis,
the safety net of the robot is considered to be constant and one distance unit wide, i.e.,
cr = 1, although in reality it is a function of the current robot velocity vg. According
to its visual representation depicted in Figure 3.10, the initial state of the network
automaton can be represented as sy = ((0, 1), (60, 0), (80, 1), (100, 1), (60,2),0,1).

In Figure 3.11 the inner details of the verification of the robot’s behavior with respect
to its safety property are illustrated. The path highlighted in the spanning tree shows
the brake maneuver, starting in state ((48, 1), (40,0), (58,1), (78, 1), (60, 2), 3,1), which

110

3.5. System Design

(60,2)
o—
Static Obstacle O,
0y _
UMax = 0
Goal
(0,1) hg =30 , (80,1) (100,1)
Q= I @ -
cg=1 Dynamic Dynamic

Robot Obstacle 0, Obstacle O3
Vl\’fiax =4 Ulf/l)zax =2 vlgfzx =2

(60,0)

@
Dynamic Obstacle 0,
vi =2
Legend: Max —
(0,1) —initial position of the robot (60,0) —initial position of the dynamic obstacle 0,
(100,1) — goal coordinates (80,1) —initial position of the dynamic obstacle 0,
hg — visual range of the robot’s sensors (100,1) —initial position of the dynamic obstacle O
cg — robot’s safety net (dependent on the robot’s processing time) (60,2) —initial position of the static obstacle O,
R . . .o 0; . . .
Vpmax - Maximum velocity specific to the robot Vpax -~ Maximum velocity specific to obstacle 0;,
i€[1.4]

Figure 3.10.: Mobile Service Robot: A Visual Representation of the Network Automaton’s
Initial State in UPPAAL.

the robot triggers because it perceives the dynamic obstacle Oy as a collision danger in
its environment. Notice that the obstacle Ojz is situated further behind the obstacle O,
and thus invisible to the robot, even if it has already entered its sensor horizon.

When the obstacle O, reaches its safety net, the robot has already come to a full stop,
i.e., the network automaton enters the state ((51,1),(35,0),(52,1),(74,1), (60,2),0,1).
Once the obstacle O, has left its safety net, the robot resumes its drive as illustrated in
the state ((52,0),(32,0),(48,1),(71,1),(60,2),1,1) of the network automaton. Notice
that in this state, the robot chooses to change the lane rather than to accelerate to its
maximum velocity only to be forced to brake later due to the collision danger posed by
the dynamic obstacle Oz. The only safe lane is Ly, since O; has already driven by the
robot and the lanes L; and Ly are occupied by the obstacles O3 and O, respectively.

There is one state in the network automaton in which the robot always satisfies its
safety property, namely when the robot is at rest in its initial position. However, the
robot is an autonomous system which is assigned a task that can be completed only by
driving towards and reaching a given destination. Therefore, it is important to show that
the robot satisfies its safety property while fulfilling its assignment. The fact that the
robot completes its assignment can be proven by the verification of the liveness property
in Equation (3.15). In Figure 3.12, a view of the verifier panel in the graphical user
interface of the UPPAAL model checker displays the verification result for the safety
property and the liveness property, i.e., both are satisfied.

111

Chapter 3. Problem Analysis

((0,1), (60,0), (80,1),
(100,1), (60,2), 0,1

((1,1), (58,0), (78,1),
(98,1),(60,2),1,1)

((3,1), (56,0), (76,1),
(96,1), (60,2),2,1)

((45,1), (42,0), (60,1)
(80,1), (60,2), 4,1)
((48,1), (40,0), (58,1)
(78,1), (60,2), 3,1)

((50,1), (38,0), (56,1),
(77,1),(60,2),2,1

((51,1), (37,0), (54,1),
(75,1), (60,2),1,1)

((51,1),(35,0),(52,1),
s = ((xr, Yr), (X0,,Y0,)» (X0,) Y0,), (X045, Y0,)» (X0, Y0,): Vrs CR) (74,1), (60,2),0,1)
— state in the spanned tree

(xg,yr) —robot’s coordinates ((51,1),(34,0),(50,1),
(X0, Yo,) — coordinates of the dynamic obstacle 0;,i € [1..4] (72,1),(60,2),0,1)

Vg - current robot velocity ((52,0),(32,0), (48,1),
cg — robot’s safety net (71,1),(60,2),1,1)

Legend:

Figure 3.11.: Mobile Service Robot: Spanning Tree Path Showing its Satisfied Safety
Property.

3.6. System Implementation

The system implementation consists of the implementation of the functional and technical
system architecture. The systems functions defined in the functional system architecture
are realized mainly through software components which in turn make up the software
architecture of the system. Depending on the way in which the system development
process is organized, a part of software components can be developed by the system
manufacturer while the development of the rest of the software components is outsourced
to multiple suppliers of software solutions. By comparison, hardware components are not
constructed by the system manufacturer, but are acquired from multiple vendors, e.g.,
laser scanner or infrared sensors for autonomous robots.

Each software component is implemented in an agreed upon programming language,
e.g., C/C++. The source code of the software components can be manually written or
generated from models, e.g., finite state machines [KJ10, HMU14], Statecharts [Har87]
or signal flow graphs [FPEN15]. Code generation from models is in fact model-to-text
(M2T) transformation, which is a key of model-driven development (cf. [Rod15]). There
are various commercial toolchains which support model-based software development, e.g
MATLAB/SIMULINK [BD97], ASCET-SD [LBBZ97], or ANSYS SCADE [CPP17]. The code
generators included in these toolchains ensure that the M2T transformation is performed
correctly, and that the generated code is a correct implementation of the model. In
addition to code generation, these toolchains allow the simulation of the designed model.
The system engineers can via simulation try out different scenarios with various system

112

3.7. System Test

19 C:\Users\Adina\Documents\PhDResearch\sse-dissertation\prototypes\mobile-service-robot\models\MobileServiceRobotxml.. = =
File Edit View Tools Options Help

BaBdc/aaaR@= e

Editor | Simulator | ConcreteSimulator Verifier | yggdrasil

Overview

A<> robot.pos - robot.goalPos = 0)

A[] forall (i : obstacle id) (robot.lane == obstacle[i].lane) and (cbstacle[i].pos - robot.pos >= -1) and (cb... [ESSSSESEssm

Remove

Comments

Query
All forall (i : obstacle_id) (robot|ane == obstacle(illane) and (obstacle(i].pos - robotpos == -1) and (obstacle[i).pos - robot.pos <= 1)imply robotv ==0

Comment

This property expresses when an obstacle situated on the same lane as the robot is inside the robot's safely net, then the robot must be stationary, i.e. have zero velocity.
Thus, the robot does not purposefully cause collisions with the obstacles in its environment.

Status
Established direct connection to local server ~
Academic) UPPAAL version 4.1.19 (rev. 5649), September 2014 -- server.

[A<> robot.pos - robat.goalPos >= 0 .
Verification/kernel/elapsed time used: 67,391s / 0,781s / 68,1685. Liveness property
Eegdent/vi@a\ memory usage peaks: 276.192KB / 576.124KE. < satisfied

roperty is satisfied
[A[] forall (i : obstacle_id) (robot.lane == obstaclei).lane) and (obstacle[i].pos - robot.pos >= -1) and (obstacle[i].pos - robat.pos <= 1) imply robotv == 0
Verification/kernel/elapsed time used: 84,734s / 0,172s / 94,880s. Safety property
Eegdent/vi@a\ memory usage peaks: 388.644KB / 781.624KE. < satisfied

roperty is satisfied v

Figure 3.12.: Mobile Service Robot: Safety Property and Liveness Property Visualized
in UPPAAL.

parameter configurations and can manipulate the system environment model in order to
see whether the designed system model conforms to the specified system requirements.

No implementation is carried out for the models defined in the example of the mobile
service robot as they are described in Section 3.5. Instead, the facility of simulation
provided by the UPPAAL model checker has been used in order to analyze the system
model with respect to the defined system requirements.

3.7. System Test

Testing is the next phase in the development process, following the system’s implementa-
tion. During testing, the test object is subject to various stimuli and the result of its
computations is compared to the expected values defined by the test engineers (cf. Section
2.5.1). With the exception of the system component test, where software components are
individually tested, the test object is in all the other test phases tested in interaction with
its environment. Depending on the hierarchy level at which the test object is situated
in the system, its environment consists of a technical environment and/or a physical
environment (cf. Section 2.5.3). Notice that, since irrespective of its granularity, any test
object has an environment, the approach for system testing described in this section can
be applied at any defined system level.

In the example of the mobile service robot, the overall system model consisting of the
technical system model and the environment model (cf. Section 3.5) is verified against
the robot’s safety requirement using model checking. In order to carry out the system

113

Chapter 3. Problem Analysis

test, tests have to be constructed for the mobile service robot. Remember that the system
test is meant to check whether the system as a whole conforms to the defined system
requirements (cf. Section 3.2). Model checking is a method for systematic generation
of test cases by building trap properties from formal requirements (cf. Section 2.5.1).
This method has been firstly applied in previous research in aeronautics domain (cf.
[WRHMO06], [SWRH10]) and subsequently transferred to automotive control systems (cf.
[AHDR18]). The counterexample generated as a result of model checking the system
against the trap property provides the test inputs for a test case which satisfies the
original system requirement.

Besides test inputs, a test case contains also preconditions and postconditions for the
test case’s execution and the expected output (cf. Section 2.5.1). Checking whether a
system S passes a given test case tc can be done with the help a test oracle. There are
various methods to create test oracles. One of them is to derive test oracles as property
monitors from the system requirements themselves. (cf. Section 2.5.1). In the example
of the mobile service robot, a test oracle has been derived from its safety property in the
form of a property monitor.

Notice that, during the execution of a test case, the property monitor observes the
system execution which has served as basis for the respective test case and compares in
each state of the system trace the result of system execution with the expected result.
The system satisfies its property specification if the result of the system execution and
the expected result coincide in every state of the observed system execution. This can be
expressed in predicate formalisms over system traces, e.g., in temporal logic such as LTL.
In LTL, safety properties can be expressed using the formula G . The safety property
for the motivational example, denoted by ¢, is illustrated in its LTL form in Equation
(3.19), where 1 is the part contained in the curly brackets.

¢:G{(yr == yo) N (xo —xr > —Cr) AN (x0 — xR < cg) — (vg ==0)} (3.19)

Note that in Equation 3.19 the pair (2o, yo) denotes the current coordinates of a visible
obstacle in the robot’s environment.

In order to derive a monitor from the robot’s safety property ¢, the conditional
statement in the curly brackets must be transformed in a well-formed formula composed
of several atomic predicates connected by logical conjunction and disjunction. For this
purpose, the safety property is first broken down into the following predicates:

® p1iYr ==Yo ® p3:To — TR S CR

Secondly, to transform the conditional statement the material implication rule defined
in propositional logic is used. This rule, written in the sequent notation, is given in
Equation 3.20.

(P—=Q)F (=PVQ) (3.20)

By applying the material implication rule, the conditional statement in the runtime
safety property ¢ is substituted by a disjunction in which the antecedent is negated. In

114

3.7. System Test

this way, the property monitor My, depicted in Equation 3.21, is derived from the safety
property ¢.
My : =(p1 Ap2 Ap3) V Dy (3.21)

The property monitor M, is then evaluated in each state of a system trace and yields a
certain verdict. If there is a state in the system trace for which the property monitor M,
returns false, then the robot’s behavior in the runtime environment violates the safety
property ¢.

For the sake of consistency with the design-time verification, the notation for the
system states is reused for the system test of the mobile service robot. Thus, a state in a
system execution of the robot is denoted by the same tuple s = ((zr,yr), (zo,,%0,), " ,
(zo,,Y0,), VR, Cr), With n € Ny as the number of obstacles. The values of the state
variables in the initial state of the network automaton are used as initial values for
the system test of the robot. In order to simplify the analysis during system test, the
safety net of the robot is set to be constant and one distance wide, i.e., cg = 1,
although in reality it varies with the current robot velocity vg. Thus, the initial
state for any finite system trace is represented, as in the design-time verification, by
so = ((0,1),(60,0), (80,1), (100, 1), (60,2),0,1). The visual representation of the initial
system state used at design-time remains valid also for system test.

Before illustrating the system test of the safety property ¢, several definitions and
notations regarding the evaluation of the property monitor M, must be introduced.

Definition 3.7.1 - Variable Interpretation

Let X be a finite set of state variables taking values in R>q. An interpretation v over X
is a function v : X — R>(which associates each variable z € X with its concrete value
V($) S Rzo. [|

Notation 3.7.1. In order to define the evaluation of the property monitor My, the following
notations are established.
1. For any obstacle O;,i € [1..n], O + O; is a mapping relation by which the variables
zo,Yo € X are evaluated to the values of the variables xp,,yo, € X respectively.
This is denoted by O — O; = {v(x0) = v(x0,), v(y0) = v(yo,)}-
2. The evaluation of a boolean predicate p with the coordinates of an obstacle O;,
i € [1..n] is denoted by p[O +— O;].
[|

Definition 3.7.2 - Evaluation of the Property Monitor M,

Let n € N5y be the number of obstacles in the robot’s environment. The evaluation of
the property monitor M, for the property specification ¢ with the coordinates of an
obstacle O;, i € [1..n] is defined as

M¢[O —> Oz] oot —|(p1[0 — Oz] /\pg[O — Oz] /\]?3[0 — Ol]) V Py

115

Chapter 3. Problem Analysis

In Figure 3.13, a system trace of the robot as well as the corresponding monitor trace
are depicted. Table 3.5 presents in detail the evaluation of the safety property monitor
My in each state illustrated in the system trace. The evaluation of the property monitor
in each state of the system execution considers only those obstacles which are visible to
the robot in that respective state.

M[0 - 0] =
Mg[O » 0] =T Mg[O - 0] =T Mg[0 » 03] =
M¢[O-—>04]=T M¢[0v—>04]— My[0 » 04] =
((30,1),(45,0),(65,1), (4 (36 0) GG 1), ((50,1),(28,0), (49,1),
(85 1) _) 1]) (74 1) 1) (()(1,1),((\(1,2),(),1)
x > o—> —>0—> . —>¥—> 4>X—>¥
A A
((26,1),(47,0),(66,1), ((34,1),) ((v ((42,1),(41,0), (60,1), ((50,1),(30,0), (51,1)
(87,1),(60,2),4,1) (83, 1) ((» I) (79,1), (60,2),4,1) (68,1),(60,2),0,1)
’M¢[0r—>01]:T; ‘ M¢[0-—>01]= ; My[0 - 0] =T; Mg[O = 0] =T
My[0 > 0,] =T; Mg[0 - 0,]1 =T; Mg[0 = 04] =T;
My[0 » 04] = Mg[0 » 0,] =T
Legend:
M- oracle for the test cases of the safety property ¢ realized as a property (xg, yg) — robot’s coordinates
monitor (X0;,Yo0,;) — coordinates of the obstacle 0;,

Mg[O - 0;],i € [1..4] - evaluation of oracle My with the coordinates of 0;

s = ((xp, Yr): (XOIIYOI)' (XOZIYOZ)' (xog’YO3)' (x04’YO4)' VR, CR)
— state in the system trace

i €[1..4]
Vg — current robot velocity
cgr — robot’s safety net

Figure 3.13.: Mobile Service Robot: A System Execution and the Corresponding Evalua-
tion of the Safety Property Monitor M, during System Test.

One relevant example is the state ((26, 1), (47,0), (66, 1), (87,1), (60,2),4,1). Notice
that obstacle Oy at coordinates (47,0) is the only visible obstacle for the robot, and as
such it is the only obstacle for which the evaluation of the property monitor takes place.
Further down the system trace, in state ((42, 1), (41,0), (60, 1),(79,1), (60,2),4, 1), the
property monitor My is evaluated not only for the obstacles Oy and Oy, but also for
the obstacle O;. This is because the former two obstacles are situated inside the visual
horizon of the robot’s sensors, while the latter has driven past the robot but has not yet
exited its safety net. According to Definition 3.3.3, all three are visible obstacles in the
robot’ sensor horizon, and as such must be monitored. The same situation occurs in the
last state of the depicted system trace, in which Oy, O3 and O, are the visible obstacles
for the robot.

Notice the state ((50,1),(30,0),(51,1),(68,1),(60,2),4,1) in the system trace. In
this state, the robot becomes stationary at the moment when obstacle O reaches its
safety net, which means that the robot’s safety property is satisfied.

116

LTT

Table 3.5.: Mobile Service Robot: Detailed View in the Evaluation of the Safety Property Monitor
My with respect to the Visible Obstacles in the Robot’s Environment.

System State Predicate Predicate Predicate Predicate Monitor
P1:YrR == Yo P2iTo—TR > —Cr | P3P0 —Tr < CR | paiVR==0 | My:~(p1Ap2/Ap3)Vps
(, ,(66,1), pl[O — Ol] =F p2[0 — 01] =T p3[O — Ol] =F Ps = F Md)[O — Ol] =T
(87,1),(60,2),1,1)
(, ,(65,1), pl[O — 01] =F pg[O — 01] =T p3[0 — 01] =F P4 = F M¢[O — 01] =T
(85,1), 4,) pl[O — 04] =F pg[O — 04] =T pg[O — 04] =F M¢[O — 04] =T
()) | i[O O =F | polO— O] =T p3O—= O] =F | py=F My[O — O] =T
(83,1), 4,1) PO = Og) =T | po[O = Oo] =T p3lO = Oq] = F My[O = Op] =T
p1[0|—>04] =F p2[0|—>04] =T p3[0|—>04] =F M¢[Ol—>04] =T
(,(41,0), , p1[0>—>01] =F p2[0>—>01] =T p3[0|—>01] =T p4:F M¢[Ol—>01] =T
(79,1), 4,) pl[O — 02] =T pQ[O — 02] =T pg[O — 02] =F M¢[O — OQ] =T
pl[OHOd =F pQ[O'—>O4] =T p3[0|—>04] =F M¢[O|%O4] =T
(,(36,0), | 2[O= Og] =T | poO = Oo] =T p3O— Og) =F | py=F My[O = O] =T
(74,1), ,9,) pl[O — 04] =F pz[O — 04] =T pg[O — 04] =F M¢[O — 04] =T
(,(30,0), , pl[OHOQ] =T pg[O'-)OQ] =T pg[O'-)OQ] =T p4:T M¢[Ol—>02] =T
(68,1), ,U,) pl[O — 04] =F pg[O — 04] =T p3[O — 04] =F M¢[O — 04] =T
(,(28,0), , p1[0|—>02] =T pz[O'-)OQ] =T p3[0l—>02] =T p4=T M¢[Ol—>02] =T
; 0,1) i[O = O3] =T | p[O— O3] =T P3O O3] = F MylOw O3] =T
pl[Or—>O4] =F pQ[OHOAL] =T pg[Ol—)O4] =F M¢[O'—)O4] =T

1S9, WoYsAG)¢

Chapter 3. Problem Analysis
3.8. Requirements Validation

Requirements validation is the last stage of testing in the system development process,
before the system becomes operational. In this phase, the focus lies on checking whether
the developed system fulfills the customer requirements (cf. [SLS14c|). Acceptance
criteria that have been agreed upon in advance with the customer are checked before
the system is deployed and commercialized (cf. Section 3.2). These criteria are often
described as unambiguously as possible in the contract between the system manufacturer
and the customer (cf. [SLS14c]).

Along acceptance criteria agreed with the customer, further checks of the system
with focus on the legal and safety regulations can take place during during requirements
validation. In practice, the system manufacturer will have included the acceptance criteria
as system requirements in the functional system specification as well as the relevant safety
regulations in the safety analysis process, so that these can be reflected in the system
design and implementation and verified during system tests. Therefore, for requirements
validation, some if not all of the system tests can be rerun on on customer’s site, in order
to show that the defined acceptance criteria have been met (cf. [SLS14c]). Consequently,
methods used for the construction of test cases for system test can be used to create test
cases for requirements validation. In order to systematically derive test cases from the
customer requirements, systematic methods such as automated test case generation via
model checking can be applied (cf. [WRHMO06], [SWRH10], [AHDR18]).

Tests performed by customers are called acceptance tests. These tests are carried out
under realistic conditions in the physical test environment at the producer’s site and
in the real world at customer’s site, in order to mimic the user’s experience as much
as possible (cf. [Maul9]). For the mobile service robot, no requirements validation has
been performed. Instead, unforeseen situations which may appear in the real world
on customer’s site are emulated through the manipulation of the parameters of the
environment model. The technical system model is subsequently checked together with
the new environment model against the specified requirements (cf. Section 3.2).

3.9. Analysis of Emerging Challenges

In the previous section, design-time verification and testing have been applied on the
motivational example in order to ensure the correctness of the example system with
respect to the given properties specification.

The goal of this section is to analyze the challenges raised by the application of these
methods on this specific example and extrapolate these findings for the entire class of
autonomous safety-critical systems, of which the example system is an instance. The
issues posed by design-time verification are discussed in Section 3.9.1, while the problems
raised by runtime verification are presented in Section 3.9.2.

118

3.9. Analysis of Emerging Challenges

3.9.1. Challenges of Design-Time Verification

Design-time verification methods can prove the correctness of an autonomous safety-
critical system with respect to a formal system requirement specification. These methods
work on the premise that any relevant information regarding the system’s operational
environment is known in advance at the system’s design-time. This information is then
used in the creation of the technical system model and of the environment model, which
are given as input to the verification tool along with the formalized system requirement.
Consider the example of the mobile service robot presented in Chapter 3. In this example,
the information considered known a priori at the system’s design-time is represented by
the maximum bound for the velocities of the obstacles in the robot’s environment. The
value of the maximum bound is then used to model the computations performed during
the planing phase, i.e., collision distance calculations. In Section 3.5, the maximum
bound for the obstacles velocities is considered to be v{,,, = 2. The three dynamic
obstacles present in the robot’s environment have their specific maximum velocities set
at vfjm = 2,i € {1,2,3}. In these conditions, Figure 3.12 shows the expected result for
the verification of the robot’s safety property, i.e., the property is satisfied.

Autonomous safety-critical systems are highly complex systems which receive hetero-
geneous sensor data as input from their environment. This raises scalability issues with
design-time verification methods. Specifically, model checking techniques suffer from
the state space explosion problem which limits drastically the size of the systems that
can be verified. Furthermore, unforeseen changes may occur in the system’s operational
environment after the release and commissioning of the autonomous system. By definition,
design-time verification methods applied to autonomous systems can reason only on the
basis of information available at design-time. Although the technical system model and
the environment model can be extended in further iterations of the development process
in order to address the changes appeared in the operational environment, this can lead to
an overall system model which may be too large for the design-time verification to give a
result in a reasonable time. In order to illustrate this, consider the initial state of the
overall system model represented in Figure 3.10 to which the system designer brings the
following changes. The environment model is modified so that the dynamic obstacles in
the robot’s environment move with a specific maximum velocity of v$i,, = 3,7 € {1,2,3}.
In response to the changes in the environment model, the technical system model is
adjusted accordingly by setting the maximum bound for the obstacles velocities also to
v$,, = 3. Verifying the robot’s safety property in these conditions should yield the same
result as before, i.e., the safety property should be satisfied. However, the modification of
the specific maximum velocities of the dynamic obstacles leads to an exponential increase
in the size of the overall system model, and as a consequence, to the state space explosion
problem. Figure 3.14 illustrates a view of the verifier panel of the UPPAAL model checker,
in which the verification of the robot’s safety property does not terminate due to the
exhaustion of the memory space.

Moreover, there is an uncountable number of unforeseeable situations that can occur
in the real environment, which makes it impossible to construct a complete model of the
environment at design-time.

119

Chapter 3. Problem Analysis

'QC:\Users\Adina\Du(uments\PhDResear(h\ssefd\'ssertat\'on\protutypes\mubilefservi(efrubot\models\MubileServi(eRobut.xml . = 0

File Edit View Tools Options Help
RBaE ¢ aaqR@=-e

Editor | Simulator | ConcreteSimulator Verifier | yggdrasi

Overview

<> (robot.pes - robot.goalPes »= 0) (%]

Check
Insert
Remove

Comments

Error “4

All forall (i - obstacle_id) (robs 6 ServerException: tv==0
\

Query

|<html>14emc1y exhausted. Se

Comment

This property T ¥, i.e. have zero velocity.
Thus, the robot does not purposefully cause collisions with the obstacles in its environment. .
State space exp|05|on
during the verification of

the safety property

Status
Establshed direct connection to local serve

(Academic) UPPAAL version 4.1.19 (rev. 5649), September 2014 - server.
Disconnected.
Estabished direc
(Academic) UPP)
[AT] foral (i : obstace_id) (robot.lane == obstace(].lane) and (obstadelil-pos - robot.pos >= -1) and (obstade[].pos - robot.pos <= 1) mply robot.v == 0 1
pisconnected. |

v. 5649), September 2014 - server.

Figure 3.14.: Mobile Service Robot: State Space Explosion Problem Visualized in UP-
PAAL.

3.9.2. Challenges of Testing

System test can be used complementary to design-time verification in order to overcome
the presented scalability issues of the latter and add more flexibility in checking that
the behavior of the system under test fulfills the system requirements specification. For
specific application domains, e.g., the automotive industry, testing is considered to be
the main method of verification (cf. [Int11f], [Intlla]). Test oracles can be used to
detect the incorrect behavior of an autonomous system with respect to a given property
specification when the system under test executes a defined test case. The test oracle
can be extracted from the property specification itself in the form of a property monitor.
The monitor observes an execution of the system and the result of the system execution
is compared with the expected result in each observed system state. If there exists a
state in the system execution for which the result computed by the system under test
deviates from the expected result, then the property monitor returns the verdict false,
signaling that the property specification is falsified by the respective test case.

Testing as a method to verify the behavior of the robot in its physical environment
presents several challenges. Consider that the system developers want to test the following
scenario. After the release of the mobile service robot, the physical environment for which
the robot was planned may evolve and not correspond anymore to the environment model
developed at design-time. To test such a situation, the test engineers deploy the system
in a controlled test environment, in which they have introduced several changes with
respect to the environment model developed during the system’s design phase. These
changes represent the increased specific maximum velocities of the obstacles O; and Os,

120

3.9. Analysis of Emerging Challenges

namely v{},. = v{2,. = 3. At the same time the test engineers leave unchanged the

maximum bound for the obstacles velocities used by the robot in the computation of

its collision distance, i.e., v{;,, = 2. This is to reflect that the system designers are not

aware of the changes occurred in the controlled test environment with respect to v$7

and v$? . The initial system state effective at the robot’s system test in the controlled

test environment is depicted in Figure 3.15.

(60,2)
— e
Static Obstacle 0,
Ve = 0
Goal
(0,1) hg = 30 . (80,1) (100,1)
cg=1 Dynamic Dynamic
Robot Obstacle 0, Obstacle O3
Ut = 2 Vi =3
(60,0)
Dynamic Obstacle 0,
0,
v, =3
Legend: e
(0,1) —initial position of the robot (60,0) — coordinates of the dynamic obstacle 0;
(100,1) — goal coordinates (80,1) — coordinates of the dynamic obstacle 0,
hgr —visual horizon of the robot’s sensors (100,0) — coordinates of the dynamic obstacle O3
cg — robot’s safety net (dependent on the robot’s processing time) (60,2) — coordinates of the static obstacle O,
v,?l"ax - maximum velocity specific to obstacle 0;,
i€[1.4]

Figure 3.15.: Mobile Service Robot: A Visual Representation of the Initial System State
during System Test.

Figure 3.16 depicts a system execution of the mobile service robot along with the
corresponding trace of the property monitor M, in the context of the newly changed
physical environment. Notice the system state ((49,1), (32,0), (57,1),(70,1), (60,2),3,1)
in which the robot starts to brake due to the collision danger represented by obstacle
O,. In this state, both obstacles O, and O, are visible to the robot’s sensors and
monitored by the property monitor My. Even though the obstacle O3 has a specific
maximum velocity larger than that of Oy, the former is not necessarily faster than
the latter, as shown in the system execution depicted in Figure 3.16. This proves to
be an advantage for the robot. The robot’s brake maneuver ends in the system state
((52,1),(23,0),(53,1),(61,1),(60,2),0,1), as the robot comes to a standstill and waits
for obstacle O, to pass by. Once the obstacle Oy has left its safety net, the robot may
resume its drive towards its destination. On its way, the robot detects another collision
danger represented by obstacle O3. At this moment, the robot has several alternatives:
brake to full stop and wait for the obstacle to drive by or change to a safe lane.

Notice that from the point of view of the system test, the situation presented in
Figure 3.16 is identical to the one illustrated in Figure 3.13. This is because the property

121

Chapter 3. Problem Analysis

monitor cannot detect the evolution which has taken place in the physical environment
of the robot during the system test, i.e., the specific maximum velocities of obstacles O
and Oj are larger than the maximum bound used by the system designer at design-time.

M¢[0 g 02] =T;
My[0 - 0,] =T; My[0 > 0,] =T; My[0 - 03] =T;
My[0 - 0,] = T; My[0 > 04] = T; My[0 - 0,] = T;
((30,1), (46,0), (65,1), ((49,1),(32,0), (57,1), ((52,1),(20,0), (51,1),
(85,1), (60,2),4,1) (70,1),(60,2),3,1) (58,1),(60,2),0,1)
((26,1),(47,0),(66,1), ((34,1), (43,0), (64,1), ((42,1),(38,0), (60,1), ((52,1),(23,0), (53,1),
(87,1), (60,2),4,1) (82,1), (60,2),4,1) (76,1), (60,2),4,1) (61,1), (60,2),0,1)
| My[0~0,]=T; | Myl[0 = 0] =T; My[0 = 0,] = T; My[0 = 0,] =T;
My[0 = 0,] =T;
Legend:
M- oracle for the test cases of the safety property ¢ realized as a property (xg,Yr) — robot’s coordinates
monitor (x0;,Y0,;) — coordinates of the obstacle 0;,
Mg[O ~ 0;],i € [1..4] - evaluation of monitor My, with the coordinates of 0; i€[1..4]
s = ((xr, ¥&), (x0,,¥0,): (X0, ¥0,), (x03ﬂy03)r (x04'y04)rvR:CR) Vr —curre?t robot velocity
— state in the system trace cg — robot’s safety net

Figure 3.16.: Mobile Service Robot: Evaluation of the Safety Property Monitor My
showing the Safety Property ¢ fulfilled during System Test.

Nevertheless, the evolution occurred in the physical test environment of the robot can
lead to situations in which the robot actively collides with obstacles in its environment,
thus violating its safety property. To illustrate this, consider the system execution
depicted in Figure 3.17 which takes place under the same initial conditions. Notice the
system state ((44, 1), (24,0), (67,1), (64,1), (60,2),4,1) in which obstacle O, is overtaken
by obstacle O3, as the latter moves with maximum velocity and therefore is faster than
the former. Since the maximum bound used for obstacles velocities at design-time is
smaller than the actual velocity of Os, the monitor M, detects a violation of the robot’s
safety property in the system state ((55,1),(17,0), (61,1),(56,1),(60,2),3,1), i.e., the
robot is still moving at the moment when the dynamic obstacle O3 has reached its safety
net.

In contrast to design-time verification, which looks at the entire system state space,
system test uses property monitors to observe only the system states during the current
system execution. Therefore testing is incomplete and can only show the presence of
errors in a system, but is not adequate to show their absence (cf. [Dij72]). This is
illustrated in Figure 3.17, in which a violation of the robot’s safety property occurs,
i.e., the robot actively collides with obstacle O3. However, in order to ensure its safe
operation in its operational environment, an autonomous safety-critical system must be
thoroughly tested. In the automotive domain, to be certified as safe with fulfillment of
its designated ASIL, a safety-critical automotive system must pass specific tests, e.g.,

122

3.10. Scope of this Thesis

My[0 » 0,] =T; Mg[0 > 03] =T;
| My[0 - 0,]=T; | My[0 = 0,] =T; My[0 - 0,]=T;
((22,1),(39,0),(71,1), ((38,1),(27,0), (66,1), ((53,1),(17,0), (61,1),
(79,1, ?0,2). 4,1) (67,1),uy:), 1,1) (57,1), (60,2),3,1)
((18,1), (42,0),(72,1), ((34,1),(30,0), (68,1), ((42,1), (24,0), (65,1), ((55,1), (14,0), (59,1),
(82,1),(60,2),4,1) (70,1),(60,2),4,1) (64,1),(60,2),4,1) (56,1),(60,2),2,1)
| My[0~0,]=T; | | My[0 - 0,]=T; | My[0 - 05] = T; My[0 = 05] = F;
My[0 = 0,] = T; M0~ 0,] =T;
Legend:
M- oracle for the test cases of the safety property ¢ realized as a property (xg, Yg) — robot’s coordinates
monitor (%0, Yo,) — coordinates of the obstacle 0;,
Mg[0 » 0Oy],i € [1..4] - evaluation of oracle My with the coordinates of 0; i€[1..4]
s = ((xg, Yr), (xol,yol), (xoz,yoz), (xoa,yo3), (xo4,yo4). VR, CR) v - current robot velocity
— state in the system trace cg — robot’s safety net

Figure 3.17.: Mobile Service Robot: Evalution of the Safety Property Monitor M, showing
the Safety Property ¢ disproved during System Test.

road tests required by ASIL C/D. Yet, it is infeasible to test with the required level of
thoroughness, e.g., validation of a ﬁ h for an autonomous vehicle would require billions
of hours of driving in representative environments. In addition, test may have to be

repeated several times in order to achieve statistical significance (cf. [KW16]).

Moreover, testing cannot fully address controllability challenges of the autonomous sys-
tem. Notice that the system is the primary exception handler in case of beyond-specified
operational conditions as illustrated in Figure 3.17. The inherent uncertainty in the
operational environment introduces the issue of nondeterminism in testing. Consequently,
certain edge cases that may be of interest to the system designer are difficult to exercise,
as it is difficult to construct a situation in which the physical environment provides the
necessary conditions to run a particular test case (cf. [KW16]).

3.10. Scope of this Thesis

Based on the analysis performed in the previous section, it is this section’s purpose to
define the scope of this work. Thus, the section starts with an introduction of Runtime
Monitoring of Environment Assumptions, the novel approach proposed by this work
(Section 3.10.1). It continues by analyzing the challenges that arise from this approach
and outlines the scope of this work by defining four research questions that are to be
addressed in this thesis (Section 3.10.2).

123

Chapter 3. Problem Analysis

3.10.1. Introduction of Runtime Monitoring of Environment
Assumptions

In the motivational example, model checking is performed under the premise that the
dynamic obstacles in the robot’s environment move with a maximum velocity known
beforehand by the system designer. This premise is not formulated as an explicit
assumption, yet it is used in the algorithm for the collission distance computation
performed by the mobile service robot. The collision distance computation is part of the
technical system model, which put together with the environment model through parallel
composition in an overall system model. The overall system model and a formalized
system requirement are given as inputs to the model checking tool. If the verification
terminates, then the model checker gives an answer to the question whether the overall
system model satisfies the formalized system requirement or not. In case of large models,
design-time verification methods show scalability issues. Specifically, model checking has
been shown to suffer from the state space explosion problem, which limits considerably
the size of the models that can be verified.

System test is used to complement design-time verification and overcome its scalability
issues. During system test, monitors extracted from the formal specification of the
robot’s requirements used to check whether the behavior of the robot fulfills the system
requirements. During testing, the robot is stimulated with test input data and the
monitor observes its execution, comparing the result computed by the robot with the
result expected by the monitor in each observed system state. The monitor returns the
verdict false in case there is a state in which the result computed by the system deviates
from the expected result. However, after the robot’s release and commissioning in its
operational environment, the implicit assumptions used during the system design may
not be valid. This is possible either because these assumptions were false from the start
or the environment for which the robot has been planned has evolved in such a way that
the premises under which the robot has been designed and developed are no longer valid.
Furthermore, the monitors extracted from the formal requirements specification cannot
detect whether these assumptions are valid or not, because there is not explicit definition
of these assumptions design-time. Invalid assumptions can lead to situations in which
the robot actively collides with an obstacle, thus violating its safety property.

In order to address this issue, this thesis proposes a novel approach which extends
the proof objectives to checking whether the premises under which the system has been
developed remain valid at runtime. Specifically, for the purpose of this approach, the
concept of environment assumptions is defined.

Definition 3.10.1 - Environment Assumption

An environment assumption represents a characteristic of the real environment of an
autonomous safety-critical system. This characteristic is presumed known at the design-
time of the system. Reasoning about the satisfiability of an environment assumption is
performed on the basis of the system’s observations of its real environment. An example
of such an assumption is the maximum bound for the obstacles velocities used by the
robot in the motivational example for the computations of its collision distance. |

124

3.10. Scope of this Thesis

During design and development of autonomous safety-critical systems, environment
assumptions are used in designing the algorithms which help control such systems. In
order to reason about the correctness of such systems with respect to a given property
specification, this thesis proposes an approach complementary to design-time verification,
which explicitly describes the environment assumptions and uses this description as
a basis for building the runtime monitors. This approach is referred to as Runtime
Monitoring of Environment Assumptions.

3.10.2. Research Questions of this Work

The previous section introduced the reader to the general idea of the approach Runtime
Monitoring of Environment Assumptions, while the purpose of this section is to discuss
the challenges brought forth by this approach and outline the research questions of this
thesis. These challenges must be overcome in order for the approach presented in this
work to be applicable.

Based on the problem analysis performed in this chapter, the general research question
of this thesis is formulated as follows:

How can design-time guaranteed environment assumptions be used at runtime
to continuously validate the design-time verification result with respect to
autonomous safety-critical systems operating in uncertain environments?

The first challenge of the proposed approach is to find an adequate form to express
in the most general way possible the environment assumptions of a autonomous safety-
critical system. For this purpose, a description language is needed to describe assumptions
in the from of quantities such maximum obstacle velocity, but also dynamic aspects such
as the behavior of dynamic obstacles over the course of time. Besides being expressive
enough, the description language for environment assumptions must be kept as simple
as possible in order for it to be amenable to runtime monitoring. Thus, based on the
general question, it is possible to derive the first research question of this work:

Research Question 1 (RQ-1) How can environment assumptions and their relation to
the system’s safety requirement specification be explicitly and formally described?

In order to answer RQ-1, a method anchored in the phases of the system development
process will be used to explicitly define the environment assumptions at system’s design-
time. Firstly, a requirements analysis will be carried out on a revisited version of
the motivational example. The next step will be a safety analysis using as input the
description of the revisited motivational example and the system requirements elicited
through the requirements analysis. The result of safety analysis will be used to produce
an informal specification of the environment assumptions, which are seen as an extension
of the informal specification of the system’s safety requirements obtained during the
phase of requirements analysis. Using a requirement pattern designed explicitly for this
purpose, the safety requirements specification will be systematically extended with the
specification of the environment assumptions. The result is a catalog of extended safety
requirements, which will be formalized with the help of an appropriate formal language.

125

Chapter 3. Problem Analysis

Thus, the answer to the first research question is a method for the explicit definition
and formalization of environment assumptions using the phases of the system development
process. This method will not only formally describe the environment assumptions of
an automated safety-critical system, but also emphasizes their relationship to its safety
requirement specification.

Reasoning about a system’s correctness at runtime will be done not by monitoring
the safety requirement specification of the system. Instead, its environment assumptions
are subject to observation and monitoring. For this purpose, the formal description of
the environment assumptions developed in response to RQ-1 is used to construct the
corresponding runtime monitors. These monitors are henceforth denoted as environment
assumptions monitors. Thus, the second research question of this thesis can be defined
as follows:

Research Question 2 (RQ-2) How can the formal description in RQ-1 be used to
construct environment assumptions monitors?

In order to answer RQ-2, a method is defined for the construction of runtime monitors
using the formal description of the environment assumptions.

The approach presented in this thesis must be applied on several real-world example
systems in order to demonstrate its applicability. Therefore, a third and last research
question is derived from the general question:

Research Question 3 (RQ-3) How can the applicability of this approach be demon-
strated for real-world safety-critical systems?

In order to answer RQ-3, two case studies will be built around two real-world autonomous
safety-critical systems, a mobile service robot and automotive system function used for
the speed estimation of a moving vehicle. The RMEA concept will be applied for each of
these systems, explicitly defining environment assumptions at system’s design time and
using runtime monitoring to validate them during system’s operation.

The final purpose is to investigate the extent to which the runtime monitors of
the environment assumptions can guarantee the system correctness with respect to
its property specifications. Thus, it will be demonstrated that Runtime Monitoring
of Environment Assumptions is a suitable approach for extending to operation time
the guarantees obtained at design-time for the correctness of automated safety-critical
systems.

3.11. Summary

The goal of this chapter was to perform a problem analysis and clearly highlight the
issues which will be addressed in this thesis. In order to do this, the chapter started
with the introduction of a motivational example. Current state of the art verification
methods have been applied on the example and an analysis of the ensuing challenges
has been carried out. Consequently, the approach Runtime Monitoring of Environment
Assumptions has been introduced and the challenges that emerge from it have been
analyzed.

126

3.11. Summary

On the basis of this analysis, the scope of this work has been outlined through the
definition of the following general research question:

How can design-time guaranteed environment assumptions be used at runtime
to continuously validate the design-time verification result with respect to
autonomous safety-critical systems operating in uncertain environments?

Further, the following three research questions have been derived from the general research
question:

Research Question 1 (RQ-1) How can environment assumptions and their relation
to the system’s property specification be explicitly and formally described?

Research Question 2 (RQ-2) How can the formal description in RQ-1 be used to
construct environment assumptions monitors?

Research Question 3 (RQ-3) How can the applicability of this approach be demon-
strated for real-world case studies?

127

Chapter 4.

Solution Concept

4.1. Runtime Monitoring of Environment Assumptions 130
4.1.1. Integration in the System Development Process 131
4.1.2. Overview of Concept 132
4.1.3. Runtime Monitoring of Environment Assumptions by Example . . 136

4.2. Revisiting the Motivational Example 143

4.3. Requirements Elicitation and Analysis 149
4.3.1. Informal Specification of System Requirements 149
4.3.2. Formal Specification of System Requirements 154

4.4. Safety Analysis 156
4.4.1. HARA Analysis of the Revisited Motivational Example 156
4.4.2. “Safe Enough” for Autonomous Safety-Critical Systems 161
4.4.3. Extending Safety Requirements with Environment Assumptions . 163
4.4.4. Informal Specification of Extended Safety Requirements. 165
4.4.5. Formal Specification of Extended Safety Requirements 167

4.5. System Design 174
4.5.1. Environment Model 174
4.5.2. Technical System Model 180
4.5.3. Design Time Verification 185
4.5.4. Analysis of the Environment Assumptions 186
4.5.5. Formal Definition of Environment Assumptions Monitors 188

4.6. System Implementation 191
4.6.1. Implementation of the System Model 191
4.6.2. Realization of the Environment Model 192
4.6.3. Realization of the Environment Assumptions Monitors 192

4.7. System Test 193
4.7.1. Testing the Implemented System 194
4.7.2. Testing Environment Assumptions Monitors 194

4.8. Requirements Validation 194
4.8.1. Environment Assumptions Validation via Runtime Monitoring . . 194

4.9. Summary 195

129

Chapter 4. Solution Concept

In Section 3.10.2 the research questions which are to be tackled by this work were intro-
duced and motivated. Research question RQ-1 deals with finding an appropriate method
for the explicit and formal definition of environment assumptions, while the research
question RQ-2 aims to use this formal definition for the construction of environment
assumptions monitors. The goal of this chapter is to address these two research questions
and to describe in detail the approaches that will be used to solve the two research
questions. In order to achieve this goal, this chapter produces the following two artifacts
as output:

Method for Explicit Definition of Environment Assumptions. The first artifact
is a method for the explicit definition of environment assumptions at th design
time of automated safety-critical systems using an appropriate formal language.
This method defines not only the environment assumptions but also emphasizes
their relation to the safety requirement specification of the system. This artifact
contributes directly to research question RQ-1.

Method for Construction of Environment Assumptions Monitors. The second
artifact of this chapter is a method to build monitors for the environment assump-
tions based on their explicit formal definition. This artifact contributes directly
to research question RQ-2.

In order to create these artifacts, the chapter is structured as follows. Section 4.1
discusses the integration of the runtime monitoring of the environment assumptions in
the development process from Chapter 3 and gives an overview of the concept on the
basis of a simple example. Section 4.2 revisits the motivational example and introduces
further environmental factors, which are relevant for the specification of environment
assumptions in the given example. The following sections go through each phase of the
development process and emphasize the additional steps necessary for the integration
of the runtime monitoring of environment assumptions, starting with the requirements
analysis (Section 4.3) and safety analysis (Section 4.4), continuing with system design
and implementation (Section 4.5 and Section 4.6), and ending with system test (Section
4.7) and requirements validation (Section 4.8). Section 4.4 and Section 4.5 are strongly
related to research questions RQ-1 and RQ-2 respectively, as these sections create the
two artifacts of this chapter, the environment assumptions description language and the
monitor construction method. Section 4.9 concludes with a summary of the ideas and
concepts presented in this chapter.

4.1. Runtime Monitoring of Environment Assumptions

As seen in Chapter 3, environment assumptions are an integral part of the system design
process and may exist and may be used implicitly at design-time. However, in order
to verify autonomous safety-critical systems, an explicit definition of the environment
assumptions specification is necessary at design-time. This thesis proposes a concept
by which environment assumptions can be defined explicitly and formally specified at
design-time. The formal specification of environment assumptions is then used as a basis

130

4.1. Runtime Monitoring of Environment Assumptions

for the construction of their respective monitors. The monitors are, in turn, used for
the validation of the environment assumptions during the system’s operation. Section
4.1.1 illustrates the integration of this concept in the overall system development process,
while Section 4.1.2 gives an overview of the concept and explains on the basis of a simple
example its general functioning.

4.1.1. Integration in the System Development Process

For the development of the example system, the V-model is the chosen development
process, since its plan-driven approach is appropriate for safety-critical systems. In order
to properly introduce the approach of Runtime Monitoring of Environment Assumptions
(RMEA), activities existent in the current development process must be extended accord-
ingly. Figure 4.1 depicts the necessary extensions undertaken in the system development
process.

High-level Description of the
Example System
(Motivational Example)

Requirements Elicitation and Analysis Safety Analysis %" Requirements Validation
/ : It - P
Analysis of the Example System and Hazard Identification i Specification of i Runtime Monitoring of
Definition of the System Requirements and Risk Assessment { Environment Assumptions { | Environment i
= =) =l =
Specification of Specification of =
System Requirements | System Safety Requirements extended with System Safety Requirements extended with Tested System/
\ Environment Assumptions Environment Assumptions Subsystem/Component

System/Subsystem/
System Component Design

Design of the

i o
Technical System/ | System Test with

| requirements-based

Subsystemlsyst‘;em | generated Test Cases
i

- Activity in the V-model

development process
- Activity performed in the =l
development of a system Technical System/ Implemented System/
under analysis Subsystem/Component Model Sub-system/Component
- Activity performed in the development \

of a system under analysis as a result

of the RMEA approach System/Subsystem/System Component

Artifact resulted from an activity

o Implementation of the Technical
in the development process

System/Subsystem/System
Component Model

Artifact resulted from an activity in the
_ development process as a result of
the RMEA approach

Implementation of the Environment
Assumption Monitors

Process flow between phases of the
- development process

Figure 4.1.: Overall System Development Process: the changes pertaining to this thesis’
approach are highlighted in orange.

The phase of safety analysis is the first phase of the development process in which
specific activities in support of the RMEA approach are undertaken. In this phase, hazard
identification and risk analysis is used in order to identify hazards which may occur
due to invalid environment assumptions and derive an appropriate specification of the

131

Chapter 4. Solution Concept

system safety requirements. The artifact resulting from the safety analysis phase is the
system safety requirements specification extended with a specification of the environment
assumptions. The extended safety requirements specification is used along with the
system requirements resulted from the requirements elicitation and analysis to carry
out the system design phase. As the system design progresses, the system is refined
down to system component level. For the various levels of abstraction in the system
design, the system designers create the corresponding artifacts, e.g., technical models
which describe the structure and the behavior of the system components, of the system’s
sub-systems, and of the system itself. In addition to the technical system model, the
system design phase specifies also a model of the environment in which the system is
designed to operate. These models serve then as a basis for the implementation of the
respective part of the system. Along the implementation of the technical system model,
the system engineers design and implement specific monitoring components, which will be
used to check the validity of the environment assumptions during the system’s operation.
These components are henceforth denoted as environment assumptions monitors. During
the system test phase, the implemented system as well as the environment assumptions
monitors are tested. The implemented system is tested using requirements-based test
cases obtained automatically via model checking. In turn, the test cases for testing
of the environment assumption monitors are built so that they reflect violations of
the environment assumptions and check whether these violations trigger the respective
environment assumption monitors. The system test phase is followed by the requirements
validation phase, in which the environment assumptions of the system under analysis are
validated in the system’s operational environment.

Notice that the RMEA approach is applicable at any system hierarchy level. The
environment of the test object may vary depending on the hierarchy level at which
the test object is situated. If the test object is represented by the whole system to be
deployed, then the corresponding environment is the physical world. However, if the test
object is a system component or a subsystem of the system under analysis, then the
corresponding environment is a combination of a technical environment and the physical
world. At component and subsystem level, the technical environment of the test object
consists of the hardware and software components and subsystems with which the test
object communicates through its interfaces. During the test phase, the test object is run
in parallel to its environment and is stimulated with inputs from it. During the phase of
requirements validation, the environment assumptions are validated during the system’s
execution in its operational environment.

4.1.2. Overview of Concept

The problem analysis performed in Chapter 3 has shown on the basis of an example
that, with respect to the detection of property violations in autonomous safety-critical
systems, both design-time verification and system testing raise several issues. In the
motivational example, design-time verification uses the premise that maximum velocity
with which the dynamic obstacles move in the robot’s environment is known in advance
at system design-time. This premise is not formulated as an explicit assumption, yet it

132

4.1. Runtime Monitoring of Environment Assumptions

is used in the design of the collision distance algorithm performed by the mobile service
robot. The collision distance computation is part of the technical system model, which is
put together with the environment model via parallel composition in an overall system
model. The latter is then verified against a formalized system requirement via model
checking. If the verification terminates, then the model checker gives an answer to the
question whether the overall system model satisfies the formalized system requirement or
not. In case the overall system model does not satisfy the formalized system requirement,
then the model checker returns a system trace as a counterexample. The counterexample
is usually represented as a sequence of system states starting in the initial state of the
overall system model and ending with the error state. In case of large models, design-time
verification methods show scalability issues. Specifically, model checking has been shown
to suffer from the state space explosion problem, which limits considerably the size of
the models that can be verified.

System test is used to complement design-time verification and overcome its scala-
bility issues. During system test, monitors derived from the formal specification of the
robot’s requirements are used to check whether the robot’s behavior fulfills the system
requirements. Throughout the system test, the robot is stimulated with test input data
and the monitor observes its execution, comparing the result computed by the robot with
the result expected by the monitor in each observed system state. The monitor returns
the verdict false in case there is a state in which the result computed by the system
deviates from the expected result. However, after the robot’s release and commissioning
in its operational environment, the implicit assumptions used during the system design
may not be valid. Furthermore, the monitors extracted from the formal requirements
specification cannot detect whether these assumptions are valid or not, because there
is not explicit definition of these assumptions at design-time. Invalid assumptions can
lead to situations in which the robot actively collides with an obstacle, thus violating its
safety property.

In order to address these limitations, this thesis proposes RMEA as a novel approach
to extend the quality assurance goals of autonomous safety-critical systems towards
the runtime monitoring and validation of environment assumptions explicitly defined at
design-time.

RMEA is a safety engineering approach for autonomous safety-critical systems, which
is integrated in the system development process of such systems (see Figure 4.1). An
overview of this approach is depicted in Figure 4.2. The approach is anchored in the
system development process and uses the artifacts produced in the different phases of
the development process. There are three phases of the development process in which
the RMEA approach plays a decisive role: system design, system test, and requirements
validation. Each of these phases defines specific quality assurance goals that contribute
to the realization of the RMEA approach and are highlighted in Figure 4.2.

During system design, two abstract models, SM and EM, are constructed in order
to describe the desired system’s behavior and the a priori knowledge of its operational
environment, which the system designer has at design-time. In accordance with the
definitions introduced in Section 2.5.2, SM is the technical system model, while EM
represents the environment model. The quality assurance goal of the system design

133

Chapter 4. Solution Concept

System Design L

0 -
VMaxassumed = 2:0

o1
Vo, € [0.0, Vprq,]

SM | |EA—]
Y= (Vz:xx < Vftaxassumed)
({implemented by)) ({checked by)) ((implemented by)) ({checked by))
System Test
y
Mgy
Mw = M.
Moo " [

{(VWtaxobservea(®) € (0.0, Vaxrest])}]

0 o
[(Vitaxobserved < Vitaxassumed)]

((observes))

_ ((tested as))
Requirements

((tested as))

Validation

0 —
VMaxassumed = 2:0

ES [

TMy,

Trmo

(wsorsersea > 00D}

TMgy4
=

TMy

o, € [0.0, VoL

0 0
[(Vitaxobserved < Viaxassumed)]

ot O
UMax = (TMga)
£ |TCy

((alert))

((observes))

Legend:

SM - technical system model
IS —implemented system
TS — tested system

|4 - environment assumptions interface
EA - set of environment assumptions, i € EA

EM - environment model
CE ~ controlled environment
OE - operational environment

¢ — safety property
TCy - set of test cases for the system’s
safety property

Mg, - set of environment assumptions monitors, My, € Mg,
TMgy4 - set of tested environment assumptions monitors, TMy, € TMg4

M,
nM;‘,’— trace of monitor observations for monitor My,
™, . .
"mf;'— trace of monitor observations of the tested monitor for monitor TM,,

. e N 0; . . 0 . . .
vy - velocity Vpraxrest - Max. test velocity of obstacle 0;,i > 0 Vprax - Max. specific velocity of obstacle 0;,i > 0
VY axobserved - cONCrete monitor observation VhaxTest - Max. test velocity of any obstacle in the environment Vo, - current velocity of obstacle 0;,i > 0
0 - 0 - 0i
VMaxobservea(T) = o2 r](Vu,(f)) VMaxTest = TEJ((VMLXT(&S[)

M E ¢ -—Mis a model of the property specification ¢ or model M satisfies the property specification ¢
© - qualitati goal of the r

ive phase in the 1t process

V]
Ay - qualitative assurance goal fulfilled under the assumption that (A) is fulfilled

= - part of the development process steps —> - communication channels for data transfer

Figure 4.2.: Illustration of Solution Concept With Example Values.

phase is to verify the safety requirement ¢. During system design, the technical system
model is verified together with the environment model against the safety requirements
specification under consideration of environment assumptions specification that are
explicitly defined at design-time. Both the safety requirements specification as well as
the environment assumptions are artifacts which result from the safety analysis carried
out on the example system. The models SM and EM are executed in parallel during the
design-time verification and exchange information with each other through a common
interface. This interface corresponds to the parallel composition of two abstract models as
defined in the literature (cf. [Hoa78|, [SAV04]), which is then extended with a description
of the environment assumptions. The parallel composition operator enhanced with the
description of the environment assumptions is denoted by || g4, where FA represents a set
of environment assumptions defined at design-time. The description of the environment
assumptions is given by a formal language, which is presented in Section 4.5.

The phase of system design is followed by the system test. During system test, the
implemented system IS is run in parallel with the environment assumptions monitors
in a controlled environment CFE. Two quality assurance goals are set up for the system

134

4.1. Runtime Monitoring of Environment Assumptions

test phase: (1) ensure that the implemented system is a faithful implementation of
the technical system model, e.g., by using back-to-back tests (cf. [AHDR18], [Lig09]),
and (2) ensure that the implemented system behaves correctly with respect to its safety
requirements, e.g., by using requirements-based test cases generated with the help of model
checking (cf. Section 2.5.2). Additionally, the RMEA approach presented in this thesis
introduces a third quality assurance goal: test of the environment assumptions monitors
MEga. The set of environment assumptions monitors run in parallel to the implemented
system and observe the inputs received by the implemented system from the controlled
environment. An alert mechanism is implemented in the monitors, which is triggered
whenever a potentially dangerous situation is detected in the monitor observations. Since
CFE is a controlled environment, the test engineers can make specific changes to it, which
would trigger the alert mechanism in the environment assumptions monitors. In this way,
it can be checked whether changes in the controlled environment which contravene to
the environment assumptions are detected by the environment assumptions monitors.
Notice that the implemented system fulfills its safety requirement ¢ only if the monitor
observations of the controlled environment CFE fulfill the environment assumptions EA.
This translates into the fact that the test cases T'C, built from the safety requirement ¢
are passed only if each of the environment assumptions monitors My, € Mgy evaluates

. . . . M
to the truth value true on its respective trace of monitor observations 7.

The system test is followed by the requirements validation. Similar to the system test
phase, there are specific quality assurance goals defined for the requirements validation
phase. One goal is to validate the safety requirement specification ¢, i.e., to ensure that
the tested system TS satisfies the safety requirement ¢. The RMEA approach introduces
an additional quality assurance goal: wvalidation of the environment assumptions EA.
For this purpose, the tested system TS is set up in its operational environment OF, on
the customer’s site. The test engineers can use the same test cases TC used during
the system test phase. The validation of the environment assumptions is realized with
the help of the set of environment assumptions monitors T'M g4. Notice that the safety
requirement ¢ is valid only if every environment assumption in the set of environment
assumptions EA is valid. This translates into the fact that the test cases T'Cy are passed
only if every environment assumptions monitor M, € TM g4 evaluates to the truth
value true on its respective trace of monitor observations mry0.

The approach proposed in this thesis is developed on the basis of three premises:

e the implemented system IS is a faithful implementation of the technical system
model SM,

e the tested system TS preserves functionally the system behavior modeled in SM
and implemented by IS, and

e the controlled environment CF is a faithful implementation of the environment
model EM.

The first premise can be achieved by employing code generators which translate
formal models into the corresponding source code of a programming language of choice,
and at the same time, can guarantee the correctness of this transformation. For example,

135

Chapter 4. Solution Concept

the qualified code generators of ASCET-DEVELOPER' or the ANSYS ScADE KcG 2 can
translate finite state machines into C code. Methods of code generation from formal
methods with guarantees for the correctness of the code transformation are out of scope
of this thesis.

The second premise can be addressed during system test and the requirements
validation phases through a separation of concerns between the system under test and
any other artifacts which are necessary to carry out these phases of the development
process. In the phase of system testing, the environment assumptions monitors Mgy
are not allowed to change the functionality of the implemented system IS. The same
considerations apply for the requirements validation phase with respect to the the tested
environment assumptions monitors TM g4 and the tested system TS. This separation of
concerns is important in order to preserve in the implemented system IS and respectively
in the tested system TS the description of the system behavior which is conveyed through
the technical system model SM. Before giving an example of change in the system’s
functionality, notice first that during the system test phase and respectively during the
requirements validation phase, an alert mechanism implemented in the environment
assumptions monitors is triggered whenever a violation of an environment assumption is
detected in the controlled environment C'E and respectively in the operational environment
OFE. An example of change in the system’s functionality would be that the environment
assumption monitor triggers a reconfiguration or adaptation of the system which is
not defined in the technical system model SM. Methods of system reconfiguration and
adaption that can be used to handle the alert message emitted by the environment
assumptions monitors during system test and during requirements validation are out of
the scope of this thesis and are not discussed further.

The third premise requires methods to translate and automatically integrate formal
models of the environment model in a simulation environment. For specific application
domains of autonomous safety-critical systems, e.g., automotive, controlled environments
do not encompass only simulation environments, but also laboratory test stands and field
test tracks. The realization of controlled environments such as test stands and test tracks
in accordance with the environment model requires further methods, some of which are
specific to the manufacturer of the autonomous safety-critical system. The complexity
of the controlled environment depends on amount of resources which the system design
team is willing to invest in its realization. Such methods are also excluded from the
scope of this thesis.

4.1.3. Runtime Monitoring of Environment Assumptions by
Example
In order to see how the proposed approach works concretely, let us consider as an example

the mobile service robot introduced in Section 3.3 and go through every phase of the
concept presented in Figure 4.2. As already mentioned in the previous section, this

https://www.etas.com/en/products/ascet-developer.php
2https://www.ansys.com/products/embedded-software/ansys-scade-suite

136

https://www.etas.com/en/products/ascet-developer.php
https://www.ansys.com/products/embedded-software/ansys-scade-suite

4.1. Runtime Monitoring of Environment Assumptions

concept is anchored in the system development process presented in Figure 4.1. Before
starting with system design, requirements elicitation and analysis and safety analysis
are performed in order to derive the functional requirements specification and the safety
requirements specification for the mobile service robot. The result of the safety analysis
is the safety requirements specification extended with environment assumptions. The
safety requirement specification has been derived through safety analysis carried out on
the mobile service robot in Section 3.4. For the sake of simplicity, the formal specification
of the safety requirement defined in CTL in Section 3.4 is reiterated in Equation (4.1).

¢ AG [(yr ==yo,) N (x0, — TR =2 —cr) N (To, — R < cr) > (v ==0)] (4.1)

The safety requirement ¢ states that the mobile service robot must be stationary
if any obstacle O; is situated on its lane and inside the safety net spanned by the
robot’s reaction distance cg. If the safety requirement is not fulfilled, then a collision
between the robot and the obstacle O; is imminent. How safety analysis can be used to
derive environment assumption and how these assumptions extend the existing safety
requirements specification is discussed in Section 4.4. For the purpose of this example, let
us consider that the environment assumptions have been derived and explicitly defined.
The rest of this section walks through every phase of the proposed concept and shows on
the basis of the small example brought on in Figure 4.2 how the concept works.

System Design

The quality assurance goal of the system design phase is to verify the safety requirement ¢.
This is achieved with the help of design-time verification, specifically with model checking
(cf. Section 2.5.2). Model checking is a formal verification method (cf. [Pel01]), which
allows the automated analysis of dynamic systems that can be modeled by state-transition
systems (cf. [CHV1S]).

The input for the model checking procedure is a formal model of the system under
analysis and a formal specification of the system requirement to be verified (cf. [BKO08]).
As already discussed in Section 3.5, the formal model given as input to the model checker
consists in fact of two models, the technical system model and the environment model.
The two models are combined through parallel composition with each other as depicted
in Figure 4.2. The parallel composition of the two models is extended with a formal
specification of the environment assumptions. In the example displayed in Figure 4.2, the
technical system model SM uses the constant v$,, 4.umeas = 2-0 to designate the assumed
maximum obstacle velocity in the robot’s environment. The environment model EM
defines for each obstacle O;,7 > 0 the current velocity vp, and the maximum velocity

oS, which is specific for each obstacle:

0.0 < vo, <V, v0, =2.0,i € Ny, (4.2)

The set of environment assumptions FA contains only one environment assumption
1 € FA, which is formulated with respect to the upper bound for the velocities of the

137

Chapter 4. Solution Concept

obstacles which populate the robot’s environment. The environment assumption 1 is
defined by the predicate in Equation (4.3):

v O; O
¢ : Vi UMaz S UMazAssumed (43)

From the values used in the example during system design (cf. Figure 4.2), it is fairly
easy to notice that the environment assumption in Equation (4.3) is valid, and as such,
the safety requirement specification ¢ is satisfied.

The formal specification of the explicitly defined environment assumptions is used
at design-time to build the environment assumptions monitors. To each environment
assumption there is a corresponding environment assumptions monitor. Thus, the set of
environment assumptions monitors Mg, contains the environment assumptions monitor
My, € Mga, defined in Equation (4.4), which corresponds to the environment assumption
Y introduced in Equation (4.3):

. ,0 O
Mw > UMazObserved S U MazAssumed (44)

Notice that the environment assumptions monitor M, compares two variables
VS usrssumed AN VS aropserned- DUTINEG system test and requirements validation, the envi-
ronment assumptions monitor is evaluated throughout the entire execution of the system
under analysis. Therefore, the two variables v, Assumed A0 VS aropservea €A1 be Tegarded
as functions over the system’s execution steps. The first one, v, 4.cumeq> 15 defined as a
constant function in the technical system model SM:

O .
U MazAssumed N — RZO

o (4.5)
UMawAssumed(T) = QO,V TN
while the second one, v, opserveds 1 @ function introduced by the environment assumption
monitor M. Notice that v, opservea describes the maximum observed obstacle velocity
for any visible obstacle in the robot’s environment, which varies throughout the system
execution:
U]\O/[axObserved :N— RZO

U]?/[a:EObserved(T) = i>622f(()77_]<l001 (t))7VT € N

(4.6)

System Test

In the system test phase, the quality assurance goal introduced by the RMEA approach
is the test of the environment assumptions monitors Mgs. The implemented system
IS maintains the assumed maximum velocity at v, 4..umes = 2-0 as defined in system
design, while in the controlled environment CFE, the upper limit of the current obstacle
velocity vp, is given by a maximum test velocity v ., that is defined by the test
engineers:

0.0 < Vo, < U]?/[iaxTesw?’. S N21 (47)

138

4.1. Runtime Monitoring of Environment Assumptions

The environment assumptions monitor is evaluated at every execution step 7 € N
during the system test of the implemented system, as shown in Equation (4.8):

def
Mw[T] = U]\O4ax0bserved(7—) S v]?/[axAssumed(T) (48)

Since it executes parallel to the implemented system in the controlled environment,
the environment assumptions monitor M, is constantly evaluated against a finite trace
of monitor observations of the form shown in Equation (4.9):

My _ /O

o o o

Tyo = (UMazObsem)ed(O)? UMazObserved(1)7) UMazObse'r'ued(T - 1)’ U MazObserved (7—)) (49)

The corresponding monitor trace myy, of the environment assumptions monitor M, is
shown in Equation (4.10):

ﬂ-Md) :((UJ\O/[azObsemed (0) ’ v]\04a9:Assumed (0))) (U]\O/[azObsemed(]') ’ U]\O4aatAssumed(1)) (4 10)

ety (UJ?/[azObserved(T)7 UJ%accAssumed<T)))

During system test, the upper bound of the current obstacle velocity vo, is v$f, 7., for
an obstacle O;,i € N>y (cf. Equation (4.7)). The upper bound for v, opserved(7), T > 0
is denoted v}, 7es:

0.0 S UZ(\)Jaa:Observed(T) S v]\04aacTest (411>

and can be derived from the Equations (4.6) and (4.7) as:

def 0;
U]\O/[azTest = r5;1>6L1X(1)M¢133Te5t) (412)

The system test phase can be used by the test engineers in a two-fold manner. On one
side, the test engineers can develop requirements-based test cases in order to check the
implemented system with respect to its safety requirement. On the other side, the test
engineers can design test cases to test the environment assumptions monitor. Notice that
the environment assumption 1 is defined explicitly at design-time. The test engineers are
aware of it and can choose v, 7., such that a violation of the environment assumption
is forced and test if environment assumptions monitor M, is triggered by this violation.

Consider the example illustrated in Figure 4.2, specifically the values used in the
system test phase. By choosing v$: ..., € {1.0,1.5,2.0} the test engineers create test
cases to show that the implemented system IS fulfills the safety property ¢. Thus, if
the maximum test velocity is maintained at v$} .., < 2.0 for all obstacles O;, then the
monitor observation trace 70 satisfies the environment assumptions monitor M, € Mpa,
ie., WAA//I[’(”) = M,. By the results of the design-time verification, the safety requirement
specification ¢ is also satisfied. On the other hand, test engineers can design test cases
in order to target and test specifically the environment assumptions monitors defined
in system design. By choosing UﬂojazTest € {2.5,3.0,3.5} it is possible to build a monitor
observations trace that does not satisfy the environment assumptions monitor My, € Mp4.
Once it is triggered, the environment assumptions monitor M, sends an alert message to
the implemented system IS.

139

Chapter 4. Solution Concept

Requirements Validation

In the requirements validation phase, the quality assurance goal introduced by the RMEA
approach is the validation of the environment assumptions FA. This is achieved with
the help of the set of tested environment assumptions monitors T'M g4. Requirements
validation shows that the tested system TS fulfills the safety requirement ¢ under the
premise that the set of environment assumptions FA are valid. However, this depends on
the maximum velocities of the obstacles in the robot’s operational environment. These
velocities are unknown during the robot’s operation time. The consequence is that,
if the environment assumptions are not valid, then no statement can be made as to
whether the safety requirement of the mobile service robot is satisfied or not. In order to
demonstrate this, consider the system trace in Figure 4.3, which also depicts the traces of
the environment assumption monitor 7'M, € TM g4 and the trace of the test oracle M,.
Both the environment assumption monitor 7'M, and the test oracle My are evaluated
only with respect to the obstacles visible inside the robot’s sensor horizon. In order to
simplify the analysis and maintain consistency with the analysis carried out in Chapter
3, the robot’s sensor horizon is set up at hg = 30 distance units, while the robot’s safety
net is considered to be constant and as wide as one distance unit, i.e., cg = 1.

My[0» 0] =T;

Mg[O - 0] =T;

Mg[0 - 03] =T;

M¢[0 [d 04] = T,'

My[0 > 0] = T;
Mg[0 = 0,] =T;

Mg[0 > 0,]=T;

My[0 - 0, =T;

TMy[t] =T; TMy[t +2] = F; TMy[t+5] =T; TMy[t+8] =T;
((26,1),(47,0),(66,1), ((34,1), (44,0), (64,1), ((46,1),(40,0), (59,1), ((52,1),(35,0), (53,1),
(84,1),(60,2),4,1) (80,1), (60,2),4,1) (74,1),(60,2),3,1) (66,1),(60,2),0,1)
((30,1),(45,0), (65,1), ((42,1), (42,0), (60,1), ((51,1),(37,0), (55,1), ((52,1),(33,0),(51,1),
(82,1),(60,2),4,1) (76,1), (60,2),4,1) (67,1),(60,2),1,1) (64,1),(60,2),0,1)

My[0 - 0,] =T;

Mg[0 = 0,] =T;

TMy[t+1] =T;

My[0 - 0,] =T;

Mg[0 - 0,] =T;

Mg[0 = 0,] =T;

TMy[t+4] = F;

Mg[0 - 0,] =T;

Mg[0 > 0,]=T;

Mg[0 > 04] =T;

Mg[0 - 0] =T;

TMylt+7] =T;

Mg[0 = 0,] =T;

TMy[t +9] = F;

Legend:

M — oracle for the requirements-based test cases T'Cy, of the safety property ¢
Mg[O0 » 0;],i € [1..4] - evaluation of oracle My, with the coordinates of 0;
TM,, - tested environment assumption monitor for the environment assumption | Vr ~current robot velocity

_ cg — robot’s safety net
s = ((xg, ¥r) (%0, , (%0, , (%0, , (X0, L, VR C,
((xe yR.) (x0,:¥0,): (*0,:¥0,), (X0, ¥0,), (X0, ¥0,), VRs €R) t € N — step in the system execution
— state in the system trace

(xg,YRr) — robot’s coordinates
(x0;,Y0,) — coordinates of the obstacle 0;,i € [1..4]

Figure 4.3.: Mobile Service Robot: Application of RMEA to a System Trace with valid
Environment Assumption ¢ and valid Safety Requirement ¢.

Notice that the environment assumption monitor TM,, € T'M g4 evaluates to the truth
value true on the trace depicted in Figure 4.3, i.e., the maximum observed obstacle velocity
VS unObservea 18 NEVEr larger than the maximum assumed obstacle velocity v, ssumed-
Furthermore, the test oracle My also evaluates to true, which means that the safety
requirement ¢ is valid for the trace shown in Figure 4.3. Remember that the safety

140

4.1. Runtime Monitoring of Environment Assumptions

requirement demands that the robot is stationary if there is an obstacle situated on the
ego lane and inside the robot’s safety net. In order to see this, notice the system states at
the steps t + 8 and ¢ + 9, with t € N. At step ¢t + 8 the robot is stationary at coordinates
(52,1) and obstacle O is situated on the ego lane inside the robot’s safety net at position
(53,1). At step t + 9, obstacle Oy passes by the robot arriving at position (51, 1). Notice
that at execution step t + 9 obstacle O, is still situated inside the safety net of the robot,
which is why the robot remains stationary at position (52,1). According to the system
requirements defined in Section 3.3, the robot eventually picks up his drive towards his
destination as soon as obstacle O, has exited its safety net.

Environment assumptions defined at design-time may be invalid at the robot’s
operation time or become invalid as the robot progresses with its drive towards its
destination. An example of an invalid environment assumption is shown in Figure 4.4.
The question is what can be said about the validity of the safety requirement in case
the environment assumptions are invalid. For this purpose consider the system and
monitor trace depicted in Figure 4.4. At step ¢t + 1 the environment assumptions monitor
TM is evaluated to the truth value false because the current velocity of the obstacle
O, situated on the left lane, is vp, = 3.0, and thus exceeds the maximum assumed
velocity 1§, Aseumed = 2-0. Once the environment assumptions monitor is triggered, an
alert message is sent to the system, which can react in a variety of ways. One possible
reaction of the mobile service robot is to start braking. At execution step ¢t + 2, obstacle
O, situated on the ego lane, also accelerates to velocity vp, = 3.0 and maintains this
velocity until step ¢+ 4, when it increases again its velocity up to vp, = 4.0. Despite this,
the robot is able to brake to a standstill at step ¢ + 4 and thus avoid an active collision
and fulfill its safety requirement. This is because the robot has started to brake as soon
as the environment assumptions monitor 7'M has been triggered by the behavior of
obstacle O;.

Consider now the system and monitor trace depicted in Figure 4.5. This trace features
at time point ¢ the same system configuration as the trace displayed in Figure 4.4. Similar
to the trace in Figure 4.4, the trace in Figure 4.5 depicts obstacle O; on the left lane as
it increases its speed at step ¢ + 1 to vp, = 3.0. In turn, obstacle Os, situated on the ego
lane, increases its velocity at step t 4+ 2 to vp, = 3.0 and maintains it until execution step
t + 3. Despite obstacle O, decreasing its velocity to vp, = 2.0 at step ¢ + 4, the robot
causes an active collision with obstacle Oy. The robot violates its safety requirement ¢,
i.e., for obstacle O, the test oracle M, is evaluated to the truth value false. The violation
of the safety requirement ¢ happens because the robot does not start to brake as soon as
the environment assumption becomes invalid at step ¢ + 1. Instead, the robot begins to
brake one step later at execution step t 4 2, as soon as it perceives obstacle Oy inside its
collision distance. The brake maneuver carried out by the robot at step ¢ + 2 turns out
to be too late for the avoidance of an active collision.

It is worth noticing that the approach proposed in this thesis is applicable at any
hierarchy level in the system under analysis, independent of the granularity of the test
object. Remember that the test object can be either a software system component,
a subsystem or even the whole system, while the environment of the test object is

141

Chapter 4. Solution Concept

M¢[0 = 0,]=T;

Mg[0 - 0,]1=T;

Mg[0 - 0,]=T;

Mg[0 - 0,] =T;

My[0 - 0,] = T;

My[0— 0,]=T; Mg[0 » 0,] =T;

Mg[0 = 0,] =T;

My[0 0, =T;

TMy[t] =T; TMylt+2] =F;

TMy[t+4] =T;

((26,1), (49,0), (50,1),

TMy[t +6] =T;

((33,1),(43,0),(45,1),

(84,1),(60,2),4,1) (80,1), (60,2),2,1)

((36,1)
(76,1),(60,2),0,1)

,(37,0),(38,1), ((36,1),(32,0), (31,1),

(72,1),(60,2),1,1)

((30,1),(46,0), (48,1),
(82,1),(60,2),3,1)

My[0 - 0,] =T;
My[0 - 0] =T;
My[0 0, =T;
TMy[t +1] = F;

((35,1), (40,0), (42,1),
(78,1), (60,2),1,1)

My[0 - 0] =T;
My[0 - 0,] =T;
My[0 > 0,] =T;
TMy[t+3] = F;

Legend:

((36,1),(35,0),(35,1),
(74,1), (60,2),0,1)

M¢[O = 04]1=T;
My[0 - 0] =T;
My[0 - 0,]=T;
TMy[t+5]=T;

((37,1),(30,0), (28,1),
(70,1),(60,2),2,1)

Mg[0 = 0,] =T;
TMy[t +7] = F;

M, — oracle for the requirements-based test cases T'Cy of the safety property ¢
Mg[0 = 0;],i € [1..4] - evaluation of oracle My with the coordinates of 0;

s = ((xr Y&, (xolr)’ol)' (xazd’oz)v (x03'y03)‘ (xo4'YD,,)' VR, CR)
— state in the system trace

TM,, — tested environment assumption monitor for the environment assumption ¢

(xg,YRr) — robot’s coordinates

(x0;, Y0,) — coordinates of the obstacle 0;,i € [1..4]
Vg — current robot velocity

cg — robot’s safety net

t € N —step in the system execution

Figure 4.4.: Mobile Service Robot: Application of
Environment Assumption 1 and

Mg[0 = 0,] =T;
My[0 - 0,] =T;
M¢[0 =0, =T;
TMy[t +2] = F;

((34,1), (43,0), (45,1),
(80,1), (60,2),3,1)

Mg[0 - 0,1 =T;
My[0 > 0] =T;
TMylt] = T;

((26,1), (49,0), (50,1),
(84,1), (60,2), 4,1)

RMEA to a System Trace with invalid
valid Safety Requirement ¢.

Mg[0 - 0,]=T;
Mg[0 = 0,] = F;
Mg[0 = 0,] =T;

TMy[t+4]=T;

((39,1), (37,0), (40,1),
(76,1), (60,2),1,1)

((30,1), (46,0), (48,1),
(82,1),(60,2),4,1)

My[0 - 0, =T;
My[0 - 0] =T;
My[0 - 0, =T;
TMy[t +1] = F;

Legend:

. X

((37,1),(40,0), (42,1),
(78,1), (60,2),2,1)

My[0 0, =T;
My[0 - 0] =T;
My[0 - 0,] =T;
TMy[t+3] = F;

M — oracle for the requirements-based test cases T'Cy of the safety property ¢
Mg[0 & 0;],i € [1..4] - evaluation of oracle My, with the coordinates of 0;
TMy, - tested environment assumption monitor for the environment assumption ¢

s = (%R ¥&): (X0, ¥0,), (X0, Y0,) (X043 Y0,): (x0,, Y0,), Vrs €R)
— state in the system trace

(xg,YRr) — robot’s coordinates

(x0;, Y0,) — coordinates of the obstacle 0;,i € [1..4]
Vg — current robot velocity

cg — robot’s safety net

t € N —step in the system execution

Figure 4.5.: Mobile Service Robot: Application of RMEA to a System Trace with invalid
Environment Assumption ¢ and invalid Safety Requirement ¢.

142

4.2. Revisiting the Motivational Example

essentially a combination of a technical and physical environment, depending on the level
of abstraction at which the test object is situated.

4.2. Revisiting the Motivational Example

Chapter 3 presented the first version of the motivational example as a basis for the
problem analysis of this thesis. The motivational example is centered around the a
mobile service robot which moves autonomously in an uncertain environment. Several
constraints were formulated with respect to the robot’s environment, in order to simplify
the problem analysis. The environment is represented as a subset of the Cartesian
plane, in which the robot and the static and dynamic obstacles in its environment
are approximated to discrete points. Each obstacle O; is characterized by its current
velocity vp, and its current position (zo,,yo,). The current velocity of each obstacle
O; has an upper bound represented by its specific maximum velocity U]\O/f(m. Thus, for
any obstacle Oy, the following holds: vo, € [0.0,v%,,]. Furthermore, the first version
of the motivational example presented in Chapter 3 put very specific constraints on
the behavior of the obstacles situated in the environment of the mobile service robot.
Thus, dynamic obstacles were allowed to move forwards and overcome slower obstacles
by driving through them. However, dynamic obstacles were forbidden to change lanes,
move backwards, or drive in the same direction as the robot if they were situated in one
of its blind spots. Moreover, dynamic obstacles which have become stationary were not
allowed to resume their movement.

This section revisits the motivational example and relaxes some of these constraints,
while other constraints are kept in place. Firstly, dynamic obstacles are allowed to
change lanes. Notice that a dynamic obstacle O;,7 € N>; can change to another lane if
it wants to overcome a slower or a stationary obstacle O;, j # 4,7 € N>;. Furthermore,
stationary obstacles are allowed to start moving, while dynamic obstacles which have
become stationary are allowed to resume their movement. The constraints that remain
unchanged are that dynamic obstacles are forbidden to move backwards and to move in
the same direction as the robot if they are situated in one of its blind spots.

A physical overview of the revisited motivational example is given in Figure 4.6. In
order to simplify the analysis, the environment of the mobile service robot is populated
by one obstacle, denoted O;. Obstacle O, is able to move forwards, increase and reduce
its velocity, i.e., accelerate and brake, come to a stop, and then resume its movement
again.

With respect to lane changing, there are several rules are introduced that obstacle
O; has to abide by, which are illustrated in Figure 4.7. The cases 1 to 4 illustrate lane
changes permitted for obstacle O, while cases 5 and 6 depict forbidden lane changes.
Thus, if obstacle Oy is situated on one of the outer lanes - lane 0 or lane 2 - at step ¢,
then it is allowed to change to the middle lane, i.e., lane 1, at step ¢t + 1. The opposite is
also permitted, i.e., if obstacle O is situated on the middle lane at step ¢, then it can
change to one of the outer lanes at step ¢ + 1. However, obstacle O, is not allowed to

143

Chapter 4. Solution Concept

Vg € (01 171\’flax] h'R

R
dCollision

]
Vo, € [0, Vpuy]

01
VMax

o o 0-
} Pleysw, D) = Leyy(w,0) € Eyyy
2 w=0

[. 0 [.
D P(fineGrt + 1 | efine(1,0) = 1,0ise () € Efane

=0
—
Dynamic

Goal

>T<€

o
dMaxVel

R
dBrake

Obstacle
0,

Legend:

AR 1ision - collision distance of the robot
dR. ke - emergency braking distance of the robot,
in relation of the robot’s current velocity at time
cgr — robot’s safety net (dependent on the robot’s processing time)
hg — visual horizon of the robot’s sensors
Vg - current robot velocity

A% axver - maximum distance covered by the visible obstacle
on the robot’s lane if it moves with the maximum velocity assumed
for any dynamic obstacle during the robot’s processing and braking
time

Vo, current velocity of obstacle Oy

V)\?ﬁzx - maximum velocity of the obstacle Oy

R)
Viax~ Maximum robot velocity E23, - set of events with respect to changes in the obstacles velocity

ef,);l(w, t) -event representing that obstacle 0, has the velocity w at step t
EP ne- set of events with respect to obstacle lane changes

el (j,t) - event representing that obstacle O; is situated on lane j at
step t, with j € [0, 1y gnes — 1] and nygnes = 3 the number of lanes

Figure 4.6.: Physical Overview of the Revisited Motivational Example.

jump over several lanes between two consecutive steps, i.e., if obstacle O, is situated on
lane 0 at step t, then it cannot change directly to lane 2 at step ¢t + 1 and vice versa.

Remember that in case of collision danger, the original version of the motivational
example presented in Section 3.1 allows the robot to change to a lane situated farther
away if it detects it to be a safe target lane. It is worth noticing that the lane changing
rules defined in Figure 4.7 for the obstacles in the robot’s environment are also imposed
for the robot itself. With the introduction of the lane changing rules, in case of collision
danger the robot checks whether the left lane or the right lane are safe target lanes. In
case one of these lanes is safe, then the robot executes a lane change. Otherwise, the
robot keeps its lane.

Notice that the behavior of obstacle O; is inherently uncertain. Consider for example
first case and second case in Figure 4.7 in which the dynamic obstacle O; drives on
one of the outer lanes, lane 0 or respectively lane 2, and is allowed to change to lane 1.
Although obstacle O; has the possibility to move to lane 1, it may choose to continue its
movement on its current lane. A similar way of thinking applies to the third and fourth
case in Figure 4.7, where obstacle O; has three choices, namely staying on its current
lane, changing to the left lane, or changing to the right lane. With respect to the fifth
and sixth case depicted in Figure 4.7, one would think that given the rules imposed on
lane changing in the robot’s environment, the only choice for obstacle O; is to maintain
its current lane. However, it is possible that obstacle O; chooses to ignore these rules

144

4.2. Revisiting the Motivational Example

| Casel | case2 Case 5 |
| Lane 0 Lane 1 Lane 2 : Lane 0 Lane 1 Lane 2 Lane 0 Lane 1 Lane 2 |
| L | el . |
| /" Dynamic \\‘ | / Dynamic / Dynamic \‘\‘ I
Stept+1 [| Obstacle | I | Obstacle | | Obstacle | l
I Y . 0, / | N r,/' \\\ 0, |
|
| Dynamic | Dynamic Dynamic \ |
Step t | | Obstacle Obstacle |
0, 0,
| | |
| | |
L ' 1
______________ —————————————— g —————— — ———— — —
| Case3 Case 4 Case 6 |
| | |
| Lane 0 Lane 1 Lane 2 { Lane 0 Lane 1 Lane 2 Lane 0 Lane 1 Lane 2 |
| J | I '
| TN I 7 TN i TN |
|,,’/ Dynamic | /" Dynamic /" Dynamic ‘\I
Stept +1 | 3 1 t i
P ' Obstacle | , Obstacle / \ Obstacle /
N0, A | o 01 . 0 |
1/ SR SR
| \) |) _ |
| Dynamic | Dynamic Dynamic |
Step t I Obstacle | Obstacle Obstacle |
0. 0 (0]
| ! | 1 1 I
: | :
_______________ U S |
Legend:

O - Obstacle position at current time t

———> - Current obstacle lane/direction

'\l ,‘ - Prospective obstacle position at future time t + 1

———> - Allowed obstacle lane/direction change

=3 - Forbidden obstacle lane/direction change

Figure 4.7.: Overview of the Rules for Lane Changing in the Revisited Motivational

Example.

and jump over two lanes between two consecutive steps, thus executing an illegal lane

change.

Environment uncertainty can be modeled using the probabilities theory. Several
notations are introduced to represent the uncertainty in the lane changing maneuvers of
the visible obstacles in the robot’s environment. These notations are considered to be
effective for the remainder of this work.

Notation 4.2.1. This notation introduces the sample space, the event space and the prob-
ability function related to the lane changing maneuvers of the obstacles in environment
of the mobile service robot. Let i € N>; be a natural number which indexes through the
obstacles in the robot’s environment.
1. The sample space for the lane changing maneuvers is the set of all possible outcomes

of a lane change of the obstacles and is denoted by 2/4ne:

QLane d:ef {07 17 <y NLanes — 1}

where n € N, n > 1 is the number of lanes.
2. The event space for the lane changing maneuvers is a set of events in the sample
space Qe and is denoted by EY, -

(4.13)

EQ.. € {e% () | 7 € Vaneri € Noy} (4.14)

Lane

145

Chapter 4. Solution Concept

3. A single event in the event space E9, _ is represented by a set of outcomes in the
sample space Q1q,. and is denoted by e Ldne(7) C Qrane-
4. The event 2! (j) denotes that the visible obstacle O is situated on lane j € Qpgpe:

¢2ine(i) < (Yo, = J) (4.15)

5. Each event in the set EY . is observed over the sequence of steps in the system
execution. Therefore, it is possible to talk about an event taking place at step t,
which is denoted by e%i _(j,1):

€2 (G.) E (yo,(t) = j) (4.16)
[]

It is worth noticing that the rules for lane changing depicted in Figure 4.7 introduce
conditionality between the events in set Y, which also poses the need for conditional
probabilities. For the motivational example revisited in Figure 4.6 there are three cases
to be considered in which conditional probabilities for lane changing can be computed:

1. Obstacle O; moves on lane 0 at step t. The legal moves which obstacle O; can

execute at step ¢t + 1 are to keep moving on lane 0 or change to lane 1. The change
to lane 2 is illegal according to the rules introduced in Figure 4.7:

P(eLane(O t+) | eLane<O7t>>+
P(eLane<]' t+]') | eLane<07t>>+ (417)

P(eLane(2 t+]‘) | eLane()) =1

2. Obstacle O; moves on lane 1 at step t. The legal moves which obstacle O; can
carry out at step £ + 1 are to remain on lane 1 or change to lane 0 or to lane 2.

P(eane(L,t+1) | eh(1,6)+
P(eZane(0,t+ 1) | eDhe(1,6))+ (4.18)
P(eLane(2 t+) | eLane<17t>> =

3. Obstacle O; moves on lane 2 at step t. The legal moves which obstacle O; can
execute at step t 4+ 1 are to maintain the movement on lane 2 or change to lane 1.
The change to lane 0 is illegal according to the rules introduced in Figure 4.7:

P(eDine(2:t + 1) | €23,(2,1))+
P(eDie(Lit + 1) | €23,e(2,0))+ (4.19)
P(eDine(0. 8+ 1) | €23,0(2.1)) =
In general, if a visible obstacle O;,7 € N> is situated on lane k € {0,...,n —1},n €
N, then the conditional probabilities P(e9: (j,t41) | €2 (k,t)) with j € {0,...,n—1}

are computed at each execution step t. Naturally, the sum of these probabilities always

amounts to 1:
n—1

> Pt +1) | efie(k 1) =1 (4.20)

J=0

146

4.2. Revisiting the Motivational Example

The mobile service robot works on the premise that obstacle O; abides by the lane
changing rules presented in Figure 4.7. In order to represent this and also to account for
the possibility of obstacle O; executing an illegal lane change, the probabilities of illegal
lane changes can be set to be lower than the probabilities of legal lane changes.

Besides the lane changing behavior of obstacle O, another source of uncertainty is
related to its velocity, since obstacle O; can accelerate, brake, come to a halt and then
start its movement again. Several notations are introduced to represent the uncertainty in
the velocity changes of the visible obstacles in the robot’s environment. These notations
are considered to be effective for the remainder of this work.

Notation 4.2.2. This notation introduces the sample space, the event space and the
probability function related to the velocity changing maneuvers, i.e., acceleration, braking,
or stopping, of the obstacles in environment of the mobile service robot. Let ¢ € N>y be
a natural number to index through the visible obstacles in the robot’s environment.

1. The sample space for the velocity changing maneuvers of obstacle O; is the set of

all possible outcomes of a change in velocity for obstacle O; and is denoted by Q%%,:

. def .
Q?/zzl = [0'07/0]?/11az] (421>

2. The event space for the velocity changing maneuvers is a set of events in the sample

space Q%, and is denoted by E%i:

B € (e (w) | w e 0,0 € Noy} (4.22)

3. A single event in the event space E?,;l is represented by a set of outcomes in the
sample space Q7¢, and is denoted by e$,(w) C Q%
4. The event e?/—jzl(w) denotes that the visible obstacle O; has its current velocity equal

O;
to w € QY

: def

eVi(w) = (vo, = w) (4.23)

5. Each event in the set EY, is observed over the system execution. Therefore it is

possible to talk about an event taking place at execution step ¢, which is denoted
by e?/zizl(wa t)

eD(w, t) = (vo, (1) = w) (4.24)

[|
In general, for the visible obstacle O;,7 € Ns; the probabilities P(e$:;(w,t 4 1)) with
w € 0,05] are computed at each step t. Naturally, the sum of these probabilities
always amounts to 1:
O3
Y Maz
3 P (w,t +1) =1 (4.25)
w=0
With the notations introduced in in this section, the velocity and lane changing
maneuvers carried out over time by obstacle O are described by probability distributions,

147

Chapter 4. Solution Concept

which express the probability of being on a given lane or moving with a given velocity
for obstacle O;. Theoretically, the execution of the mobile service robot is infinite or can
strech over a very long period of time, which makes computing probability distribution
over the entire system execution unfeasible. Therefore, system designers can establish
time windows of a specific length during which the probability distributions for velocity
and lane changing maneuvers can be computed.

Notice that the current velocity of the obstacle as well as the lane on which the
obstacle maneuvers are modeled as discrete random variables. Before discussing the
modeling of the obstacle lane and obstacle velocity as discrete random variables, it
is worth looking at how their respective sample spaces are defined. While for lane
changes, the sample space and the event space remain unchanged for every obstacle in
the robot’s environment, for events describing obstacle velocity changes the sample space
and respectively the event space are specific to each obstacle in the robot’s environment.
This is because all obstacles in the robot’s environment have the same lanes at their
disposal, i.e., the lanes identification numbers do not change, while for each obstacle
there is a specific maximum velocity vfj@, that may be different for every obstacle. The
representation of the obstacle’s lane as a discrete random variable does not raise any
issues as there is a finite number of lanes and the lanes can be counted and respectively
uniquely identified by their assigned identification number. However, the modeling of the
obstacle’s velocity as a discrete random variable merits a more extensive discussion. The
current velocity vo, of an obstacle O; is situated in the interval [0.0,v$]. As a discrete
variable, the current velocity vp, of obstacle O; changes throughout the system execution
by taking discrete values from the interval [0.0,v$;]. A constant offset A can be used in
order to discretize the velocity interval. The offset A can be chosen in such a way that it
reflects also the desired precision in the decimal point for the current obstacle velocity.
For the example of the mobile service robot an offset of A =1 has been chosen. Due to
the discretization, the obstacle velocity takes a finite number of values. This will prove
to be useful later in the system design for the purpose of design-time verification via
model checking, as the system and the environment can be represented by finite state
models, thus simplifying considerably their analysis during design-time. An approach
closer to reality is representing the obstacle velocity as a continuous random variable. In
this case the obstacle velocity can take an infinite number of values from the interval
[0.0,v$;,]. This translates to the system and the environment models having an infinite
state space, which may lead to the state space explosion problem during the design-time
verification via model checking.

The behavior of the mobile service robot remains simple. The robot is commissioned
to drive towards a given destination. As it starts to drive, the robot accelerates until it
reaches its specific maximum velocity. It drives further with this velocity until it reaches
its destination or until it detects a collision danger and it is forced to brake. Once the
collision danger has passed away, the robot resumes its drive towards its destination.
In order to determine collision danger, the robot computes its collision distance with
respect to the visible obstacles in its environment. To review the details of the collision
distance computation the reader is directed to Section 3.1 in Chapter 3 of this thesis.

148

4.3. Requirements Elicitation and Analysis

4.3. Requirements Elicitation and Analysis

This section takes the informal description of the revisited motivational example from
Section 4.2 and derives an informal specification and a formal specification of the system
requirements, which are presented in Section 4.3.1 and Section 4.3.2 respectively.

4.3.1. Informal Specification of System Requirements

The system requirements in this section are formulated according to the patterns and
rules introduced in [JPQT16]: (1) requirements are always written in the active form,
(2) requirements are always written as complete sentences, (3) requirements express
processes or activities with the help of process verbs, e.g., accelerate or brake, and (4)
exactly one requirement is formulated for each process verb (cf. Chapter 3).

The high-level description of the motivational example given in Section 4.2 serves as a
basis for the informal specification of the system requirements in this section. The system
in the motivational example is a robot commissioned to drive towards a predetermined
destination without actively colliding with any obstacle in its environment. While the
behavior of the robot remains unchanged, the informal description provided in the
revisited motivational example in Section 4.2 relaxes several constraints describing the
allowed and forbidden behavior of the obstacles in the robot’s environment. The informal
description of the revisited motivational example shows that the behavior of the obstacles
in the robot’s environment is probabilistic in nature, since an obstacle has a probabilistic
choice between several actions that it can execute, e.g., either remain on its current lane
or change to another lane. Some of the system requirements introduced in Section 3.3
are therefore reformulated in order to capture the probabilistic nature of the obstacles’
behavior in the robot’s environment.

A systematic method has been applied to in order to give an overview of the whole
catalog of system requirements in the revisited motivational example and to compare the
reformulated system requirements with respect to the original requirements (see Figure
4.8). The requirements are displayed in a table form, one requirement in each table row,
and identified by their original requirements identification numbers used in Chapter 3.
For comparison purposes, the original and the reformulated text of each requirement are
displayed next to each other, with the reformulated part being highlighted in bold italic
text.

Original . . .
Requirement Original Requirement Text Part of the Original Requirement Text with
D Reformulated Part

Figure 4.8.: Systematic Method for the Display and Comparison of the Reformulated
System Requirements with the Original System Requirements.

Similarly to the requirements elicitation and analysis carried out in Chapter 3, the
complete catalog of system requirements for the revisited motivational example is depicted
three tables. Table 4.1 shows the allowed and forbidden system actions in the system’s

149

Chapter 4. Solution Concept

environment, while the following two tables describe the system requirements related to
the normal operation mode (Table 4.2) and respectively the collision avoidance mode of
the mobile service robot (Table 4.3).

The majority of the requirements that underwent reformulation belong to Table 4.1,
which, along with the robot’s actions, describes also the allowed and forbidden behavior of
the obstacles in the robot’s environment. Due to the probabilistic nature of the obstacles’
behavior, the reformulated requirements specify also a lower or an upper bound for the
probability with which the respective behavior is expected to take place. To begin with,
the requirements referring to the forwards movement (FR1) the and the remaining at
rest of the dynamic obstacles in the robot’s environment (FR3) specify the probabilities
for two complementary events. Dynamic obstacles are expected to move forwards, which
is expressed by the high probability of occurrence, i.e., at least 0.95 (FR1). At the same
time, dynamic obstacles become temporary stationary with a probability of occurrence
of at most 0.05 (FR3). Furthermore, dynamic obstacles situated in the blind spots of the
robot are not allowed to drive in the same direction as the robot, which is described by a
low probability of occurrence, i.e., at most 0.0001 (FR6).

The stop behavior of obstacles in the robot’s environment is described probabilistically
in FR5, which allows dynamic obstacles, once stopped, to resume their movement with a
probability of 0.05. The obstacles’ behavior with respect to lane changing is formulated
in requirements FR2, FR4 and FR7. While FR2 and FR4 address legal lane changes
in accordance with the rules depicted in Figure 4.7, FR7 describes illegal lane changes
which may be executed by obstacles in the robot’s environment. Although jumping over
several lanes is illegal (see Figure 4.7), FR7 accounts for the possibility that there may
be obstacles in the robot’s environment which choose to ignore these rules and specifies
a probability of 0.01 execute a jump over several lanes. In turn, legal lane changes are
executed according to a normal probability distribution (FR2 and FR4).

The probabilistic behavior of the obstacles in the robot’s environment may affect
the capability of the robot to reach its destination. There may exist situations in which
the robot does not reach its destination, due to the behavior of obstacles in the robot’s
environment, e.g., an obstacle unexpectedly blocking the path of the robot. This means
that there is no absolute certainty that the robot reaches its predefined destination. In
order to account for such situations, the functional system requirement FR9 specifies a
probability of at least 0.95 for the event that the robot reaches its destination.

150

161

Table 4.1.: Requirements for the allowed and forbidden system actions in the system environment: comparison between

initial and revisited motivational example.

ID

Requirement Text in the Initial Motivational Ex-
ample

Requirement Text in the Revisited Motivational Ex-
ample

FR1

The robot shall be able to drive forwards, in an environ-
ment where dynamic obstacles also move forwards.

The robot shall be able to drive forwards, in an environ-
ment where dynamic obstacles move forwards with
a probability of at least 0.95.

FR2

The robot shall be able to change to a safe target lane,
in an environment in which dynamic obstacles do not
execute lanes changes.

The robot shall be able to change to a safe target lane, in an
environment in which dynamic obstacles execute legal
lane changes according to the uniform probability
distribution.

FR3

The robot shall not be able to drive backwards, in an
environment in which dynamic obstacles do not drive
backwards.

The robot shall not be able to drive backwards, in an environ-
ment in which dynamic obstacles become temporary
stationary with a probability of at most 0.05.

FR4

The robot shall be able to overcome obstacles only by
changing to another lane, in an environment in which
dynamic obstacles pass by other obstacles by driving
through them.

The robot shall be able to overcome obstacles only by chang-
ing to another lane, in an environment in which dynamic
obstacles pass by other obstacles by executing a
legal lane change according to the uniform proba-
bility distribution.

FR5

If stopped, the robot shall be able to resume its driving,
in an environment in which dynamic obstacles which
have become stationary do not resume their movement.

If stopped, the robot shall be able to resume its driving, in an
environment in which dynamsic obstacles which have
become stationary resume their movement with a
probability of at most 0.05.

FR6

The robot shall be able to perceive the space in front of
itself up to a specific configurable sensor horizon limit, in
an environment in which obstacles situated in the blind
spots of the robot do not drive in the same direction as
the robot.

The robot shall be able to perceive the space in front of
itself up to a specific configurable sensor horizon limit, in
an environment in which dynamic obstacles situated
in the blind spots of the robot drive in the same
direction as the robot with a probability of at most
0.0001.

FR7

The robot shall not be able to jump over lanes, in an
environment in which obstacles do not jump over lanes.

The robot shall not be able to jump over lanes, in an
environment in which dynamic obstacles jump over
lanes with a probability of at most 0.01.

SISA[euy, pue UOIRIDI[H syuowoImboyy “&F

¢Sl

Table 4.2.: Requirements for the normal operation mode of the robot: comparison between initial and revisited version the

motivational example.

ydoouoy) uornjog - roydey))

ID Requirement Text in the Initial Motivational Ex- | Requirement Text in the Revisited Motivational Ex-

ample ample
| FR8 | The robot shall drive towards a given destination. The robot shall drive towards a given destination.

FRS.1 | The robot shall accelerate until it reaches a specific max- | The robot shall accelerate until it reaches a specific max-
imum speed, as long as it has not reached its destination | imum speed, as long as it has not reached its destination
and as long as it has not detected any collision danger. | and as long as it has not detected any collision danger.

FR8.2 | The robot shall continue driving with its specific maxi- | The robot shall continue driving with its specific maximum
mum speed, as long as it has not reached its destination | speed, as long as it has not reached its destination and as
and as long as it has not detected any collision danger. | long as it has not detected any collision danger.

FR&.3 | The robot shall resume driving, if it has stopped due to | The robot shall resume driving, if it has stopped due to
collision danger and if it has not reached its destination | collision danger and if it has not reached its destination and
and if it the obstacle has passed by. if it the obstacle has passed by.

FR8.4 | The robot shall resume driving, if it has stopped due to | The robot shall resume driving, if it has stopped due to
collision danger and if it has not reached its destination | collision danger and if it has not reached its destination and
and if it detects at least one safe target lane. if it detects at least one safe target lane.

FR8.5 | The robot shall resume accelerating, if it detects at least | The robot shall resume accelerating, if it detects at least
one safe target lane during its brake maneuver. one safe target lane during its brake maneuver.

FR9 | The robot shall reach the given destination. The robot shall reach the given destination with a proba-

bility of at least 0.95.

FR9.1 | The robot shall start braking, when it approaches its | The robot shall start braking, when it approaches its desti-

destination. nation.
| FR9.2 | The robot shall stop, when it reaches its destination. | The robot shall stop, when it reaches its destination. \

€al

Table 4.3.: Requirements for the collision avoidance mode of the robot: a comparison between initial and revisited

motivational example.

ID Requirement Text in the Initial Motivational Ex- | Requirement Text in the Revisited Motivational Ex-
ample ample

FR10 | The robot shall detect collision danger in front of itself | The robot shall detect collision danger in front of itself in
in its sensor horizon. its sensor horizon.

| FR11 | The robot shall detect safe target lanes. | The robot shall detect safe target lanes.

FR12 | The robot shall apply collision avoidance measures, if it | The robot shall apply collision avoidance measures, if it
detects collision danger on the ego lane. detects collision danger on the ego lane.

FR12.1| The robot shall change to a safe target lane, if it detects | The robot shall change to a safe target lane, if it detects
collision danger on the ego lane and if it detects a safe | collision danger on the ego lane and if it detects a safe target
target lane. lane.

FR12.2| The robot shall brake, if it detects collision danger on | The robot shall brake, if it detects collision danger on the
the ego lane and if it does not detect any safe target | ego lane and if it does not detect any safe target lane.
lane.

FR13 | The robot shall check if further drive with reduced speed | The robot shall check if further drive with reduced speed is
is possible. possible.

FR13.1] The robot shall consider that further drive with reduced | The robot shall consider that further drive with reduced
speed is possible if it detects no collision danger on the | speed is possible if it detects no collision danger on the ego
ego lane. lane.

FR13.2| The robot shall reduce its speed and maintain it, if | The robot shall reduce its speed and maintain it, if further
further drive with reduced speed is possible. drive with reduced speed is possible.

FR13.3| The robot shall brake until it stops, if further drive with | The robot shall brake until it stops, if further drive with
reduced speed is not possible. reduced speed is not possible.

FR14 | The robot shall remains at rest, if it has stopped due to | The robot shall remains at rest, if it has stopped due to
collision danger and as long as it has not detected a safe | collision danger and as long as it has not detected a safe
target lane and as long as the obstacle has not passed | target lane and as long as the obstacle has not passed by.
by.

SISA[euy, pue UOIRIDI[H syuowoImboyy “&F

Chapter 4. Solution Concept

4.3.2. Formal Specification of System Requirements

Due to the inherent uncertainty which characterizes the operational environment of an
autonomous safety-critical system, the concept of absolute correctness of a safety-critical
system with respect to its system requirements is replaced by upper and/or lower bounds
on the probability that desired system behavior may occur. This further leads to the
realisation that system requirements of autonomous safety-critical systems are in fact
probabilistic in nature.

In the spirit of the specification pattern system proposed by Dwyer et al. in [DACIS,
DAC99|, Grunske develops the specification pattern system ProProST which allows
system designers to specify probabilistic properties for a system under analysis. Each
pattern describes a generalized recurring property, i.e., probabilistic existence, and
provides a formal specification template in continuous stochastic logic (CSL) (cf. [Gru08]),
which is an extension of PCTL for CTMCs (cf. [ASSB96], [BKH99]). Furthermore, the
formal specification templates provided in the ProProST pattern system can also be
formulated in PCTL and in PCTL* for discrete-time models (cf. [Gru08]). Another formal
language which allows the formulation of probabilistic requirements is the STIMULUS
language [JG16]. The STIMULUS language enables the description of probabilistic
requirements in a manner which bridges the gap to the textual requirements specification.
Toennemann uses this capability of the STIMULUS language in order to define a scenario-
based test generation strategy, which introduces randomization into the testing process
and defines the probabilities with which certain events are expected to take place (cf.
[Toe20]).

The definition of the concept of collision danger plays a central role in the formal
specification of the system requirements. In Chapter 3, the concept of collision danger
is predicated on the environment constraint which prohibits dynamic obstacles in the
robot’s environment from performing lane changes. The relaxation of this constraint in
the revisited motivational example justifies a reworking of the collision danger concept,
as shown in Definition 4.3.1.

Definition 4.3.1 - Collision Danger
Let n € Nyg be the number of obstacles in the environment of an autonomous mobile
robot. An obstacle O;,i € [1..n] is considered to be a collision danger for the robot if
and only if the following two statements are true simultaneously:
1. the obstacle O; is a visible obstacle, and
2. the obstacle O; is situated inside the collision distance of the robot.
|

Notice that the ability of the dynamic obstacles to carry out lane changes means
that, for the mobile service robot, the collision danger may come not only from obstacles
situated on the ego lane, but also from obstacles which move on other lanes. The
corresponding first-order logic predicate is depicted in Equation (4.26). Notice that the
revisited predicate for collision danger is formulated with the help of the non-parametric

154

4.3. Requirements Elicitation and Analysis

predicate for visible obstacles, which has been introduced in Definition 3.3.4 and Equation
(3.9) in Chapter 3.

CollisionDanger : VisibleObstacle N

(4.26)
(0 S ro — $R) A (5170 — IR S dgollision)

Liveness Properties

The system requirement FR9 is part of the functional system requirements, which
describe the normal operation mode of the system in Table 4.2, and states that the
robot shall reach the given destination. Such a requirement is usually formalized as a
liveness property, which asserts that “something good eventually happens” (cf. Chapter
3). Nevertheless, this requirement is also probabilistic in nature due the uncertainty in
the robot’s environment caused by the probabilistic obstacle behavior. A probabilistic
liveness property specifies a lower bound on the probability with which a specific condition
is supposed to hold or an event is expected to happen. Informally, the probabilistic
liveness property corresponding to requirement FR9 can be formulated as follows:

Probabilistic Liveness Property (Informal Specification). The robot shall even-
tually reach its destination with a probability of at least 0.95.

The probabilistic computational tree logic (PCTL) is chosen for the specification of
this liveness property. In PCTL [HJ94, CG04], liveness can be expressed with one of the
state formulae Ps,(F) or Ps,(F1) (cf. [KSZ14]). The PCTL state formula Ps,(F)
requires that, under all schedulers, the event represented by the path formula Fi) occurs
with at least probability p (cf. [BAAFK18]). The operator F' is the existential quantifier
which asserts that a state or a set of states of the system model which satisfy the property
1) is eventually reached. In the case of the robot’s liveness property, v is the predicate
destinationReached, as illustrated in Equation (4.27).

0 : Psoos (F destinationReached) (4.27)

Notice that the liveness property is very similar to the probabilistic existence pattern
identified by Grunske [Gru08|, which states that a given state or event will hold eventually
within a specific time bound. However, in Equation (4.27), no time bound is specified.
In the example of the mobile service robot, this means that, with a probability of at least
0.95, the robot will eventually reach its destination, without placing any constraint on
how much time it takes for the robot to arrive at its destination.

Notice that there is no relation of equivalence between the PCTL liveness property in
Equation (4.27) and the CTL liveness property introduced in Equation (3.12) in Chapter
3. As a matter of fact, there is no qualitative PCTL formula which is equivalent to AF
(cf. [BKO8]). In general, the PCTL formula P-o(F) is equivalent to the CTL formula
EF 4 (cf. [BKO0S]).

155

Chapter 4. Solution Concept

4.4. Safety Analysis

Thi

s section carries out the safety analysis using the HARA method based on the high-level

description of the system functionality in the revisited motivational example presented
in Section 4.2 and the system requirements described in Section 4.3. Ensuring absolute
safety for autonomous safety-critical systems in dynamic and uncertain environment is

not

feasibly possible and often manufacturers try to build a “safe enough” system for

their costumers. Therefore, the HARA analysis carried out in Section 4.4.1 is followed by
an analysis in Section 4.4.2 of what “safe enough” means for users of autonomous safety-

crit

ical systems. As a result of the HARA analysis, the system safety requirements are

extended with the respective environment assumptions in Section 4.4.3. Their informal
specification is shown in Section 4.4.4, while the respective formal specification is depicted
in Section 4.4.5.

4.4.1. HARA Analysis of the Revisited Motivational Example

For

the hazard analysis carried out in this section, the same aspects are considered as

in Section 3.4, with the equivalence classes and parameter values corresponding to the
revisited motivational example. The aspects considered for the safety analysis in this
section are:

156

e the location where the mobile robot operates:
Location := {Indoors, Outdoors}

e the geometry of the physical world in which the robot moves, specified through
three parameters, namely the number of lanes n4,.s € N5, the ground inclination
Ground € Rso, and the curvature of the road Yrpea € R>o:

Physical WorldGeometry := {(nranes > 3, AGround = 0°, YRoad = 0°), ... }
e the driving conditions:
DrivingConditions := {(Dry, Non-slippery), (Wet, Slippery), ... }
e the environment in the sensor horizon of the robot:

Environment := { DynamicObst, StationaryObst, TemporaryStationaryObst }

e the system usage, such as driving towards a predefined destination,
e the system behavior:

SystemBehavior := RobotLaneChangingBehavior x RobotDrivingBehavior

RobotDrivingBehavior := { Accelerating, FullSpeedDrv, ReducedSpeedDrv,
Braking, Stopped }

RobotLaneChangingBehavior := { LeftLane Change, RightLaneChange, LaneKeep}

4.4. Safety Analysis

e the environment behavior, which refers to the behavior of the obstacles situated in
the robot’s sensor horizon:

EnvironmentBehavior := ObstLaneChangingBehavior x ObstDrivingBehavior

ObstLaneChangingBehavior == ObstDepartLane x ObstAction x ObstArrivalLane

ObstAction := { LeftLaneChange, RightLaneChange, LaneKeep,
LaneJump}

ObstDrivingBehavior := ObstSpeed x ObstDirection x ObstLocation

ObstSpeed := { FullSpeed, HighSpeed, LowSpeed, Stopped }

ObstDirection := { Opposing, Following, Leading, RunningAway}

ObstLocation := ObstPosition x ObstLane

ObstPosition := {InFront, Behind}

where ObstDepartLane, ObstArrivalLane, ObstLane € Q. and Stopped, FullSpeed,
HighSpeed, LowSpeed, C Q?/;l.

The environment behavior consists of a combination of the lane changing behavior
and the driving behavior of the obstacles in the robot’s environment. This combination is
modeled as the Cartesian product between the set of events related to the lane changing
behavior and the set of events describing the obstacles driving behavior. The events
modeling the lane changing behavior of a visible obstacle specify the obstacle’s depart
and arrival lane along with the respective action carried out by the obstacle. Notice that
the depart lane and the arrival lane are elements of the sample space 274,.. For the
sake of simplicity, the events modeling the obstacle lane changing behavior are referred
hereafter only by the action executed by the obstacle. Thus, the lane changing behavior
with respect to a visible obstacle consists of the following events: (1) LaneKeep - obstacle
stays on its current lane, (2) LeftLaneChange - obstacle makes a lane change to the lane
on its left, (3) RightLaneChange - obstacle makes a lane change to the lane on its right,
and (4) ObstLaneJump - obstacle jumps over one or several lanes.

The driving behavior in the robot’s environment is in turn modeled by events which
describe the speed, the direction of movement, and the location of the obstacle. The
events which describe the obstacle speed are: (1) FullSpeed - obstacle drives at full
speed, (2) HighSpeed - obstacle drives with high speed, (3) LowSpeed - obstacle drives
with low speed, and (4) Stopped - obstacle is stopped. Notice that the events FullSpeed,
HighSpeed, LowSpeed, and Stopped are elements of the sample space Q(‘),;l specific to
the velocity changes of obstacle O;,7 € N>, visible in the robot’s environment. The
position of the obstacle is expressed in relation of the robot. Thus, the obstacle can be
situated in front of the robot (InFront) or behind the robot (Behind). The movement
direction of the obstacle is also considered in relation of the robot. In general, for a
moving physical object the notion of movement direction is strongly related with the
concept of orientation. For an autonomous robot in particular the orientation of a robot
is also called bearing or heading direction (cf. [TBF05]). The orientation of the robot
described by an angle 6 together with its position expressed in Cartesian coordinates
(xg, yr) makes the robot’s pose with respect to the Cartesian coordinate system (z,y).

157

Chapter 4. Solution Concept

Opposing Obstacle

Robot Dynamic Obstacle 04
Lane i
\" N
(xR’yR) (x011y01)
Following Obstacle
g Dynamic Obstacle 04 Robot

Lane i @ @
(X0, }’01)\-/ (xR, }’R)k/

Leading Obstacle
Robot Dynamic Obstacle 04

Lane i Q Q
(xg, yR)\/ (xol' yol)\-/

Dynamic Obstacle 04 Robot

Lane i n Q
(xolx}’ol)v (xR, yR)\/

Running Away Obstacle

Legend:
(xR, yR).— current position of the robot (x0,)Yo,;) — current position of obstacle
—> — orientation vector for the robot —> - orientation vector for the obstacle 0,

i € [0,npgnes — 1] —lane index
Npanes — NUmMber of lanes

Figure 4.9.: Visual Intuition of the Movement Directions of Dynamic Obstacles with
respect to the Mobile Service Robot.

The requirement FR6 prohibits dynamic obstacles situated in the blind spots of the
robot to move in the same direction as the robot, as this can lead to a collision actively
caused by the robot. In Figure 4.6 these are areas situated in front of the robot beyond
its sensor horizon, areas of the neighboring lanes not covered by the robot’s sensors, and
areas behind the robot outside its safety net. In order to detect collision dangers and
avoid possible collisions, the robot must be able to recognize the direction of movement
of the dynamic obstacles in its environment relative to itself. The HARA analysis carried
out in this section defines specific events that can be used to describe the direction of
movement for dynamic obstacle in relation of the robot: (1) Opposing - the obstacle
drives in front of the robot in the opposing direction of movement, (2) Following - the
obstacle drives behind the robot in the same direction of movement, following the robot,
(3) Leading - the obstacle drives in front of the robot in the same direction of movement,
leading the robot, and (4) RunningAway - the obstacle drives behind the robot in the
opposing direction of movement, distancing itself from the robot. Figure 4.9 gives a
visual intuition of the events defined for the movement direction of dynamic obstacles.
The movement direction of dynamic obstacles is described from the robot’s point of view.
This dimension is orthogonal to the one expressed in the requirements FR1 and FR3

158

4.4. Safety Analysis

in Table 4.1, which talk about the forwards movement and the backwards movement of
dynamic obstacles in the robot’s environment from the obstacle’s point of view.

The values of the defined parameters are combined with each other in order to create
unique concrete situations, with one situation being depicted in one table row of Table
4.4. There is an uncountable number of ways in which the obstacles in the robot’s
environment may behave. Thus, neither the list of identified situations nor the list of
selected parameters are considered to be complete. Furthermore, the presence of some
parameters depends on other parameters. Depending on the location of the robot’s
environment, it makes sense to consider driving conditions, for example in case of an
outdoors environment, or to leave them out of the HARA analysis, like in case of an
indoors environment.

The HARA analysis defines for every identified situation a possible hazard and
the potential effect which the hazard may have. Throughout the HARA analysis it is
considered that the operational environment of the robot is situated indoors, consists
of a straight road with three lanes and ground inclination of 0°. The environment is
populated with dynamic obstacles. The three lanes are identified through the index
i € 4{0,...,NLanes}, Where npgues = 3. Initially, lane 0 is considered to be the ego
lane. In all the situations identified in the HARA analysis, the system usage remains
unchanged, namely that the robot drives towards a given destination. The situations
identified through this analysis can be roughly split into two categories. The first category
emphasizes the lane changing behavior of the obstacles in the robot’s environment, while
the second category highlights their driving behavior.

Take for example the situations H1 depicted in Table 4.4, in which the mobile service
robot drives at full speed towards its given destination. Consider there is a dynamic
obstacle O; moving from the opposite direction on the ego lane (Opposing). With
probability of 0.9999, obstacle O continues to move on the ego lane (LaneKeep), instead
of executing a lane change. The hazard is that the robot does not activate any collision
avoidance measures in time, e.g. changing to a safe lane. The potential effect of this
hazard is that the robot does not brake on time, which may result in a frontal crash with
obstacle O; actively caused by the robot. A slightly different example is the situation
H2, in which the robot accelerates on lane 0 towards its destination. Consider that on
lane 1 two dynamic obstacles Oy and O3 move from the opposite direction (Opposing),
with obstacle O3 situated behind obstacle O,. With probability of 0.9999, obstacle O3
executes a legal lane change to lane 0 (RightLaneChange) on the ego lane, in an attempt
to pass by the obstacle O,. The hazard in this situation is that the robot has very little
to no reaction time and therefore does not deploy any collision avoidance maneuvers,
e.g. braking. The potential effect is a frontal or side crash with the obstacle O3 actively
caused by the robot. Notice that situations H1 and H2 are two examples of the first
category of situations which focuses on the lane changing behavior of the obstacles in
the robot’s environment. At the same time, both situations exemplify legal moves with
respect to the lane changing behavior - O; maintaining its lane in H1 and O3 making a
lane change from lane 1 to lane 0 in H2.

159

091

Table 4.4.: Mobile Service Robot - Hazard Analysis and Risk Assessment in the Revisited Motivational Example.

ID | Locatioh Phys. Environment| System Us-| System Be-| Environment Hazard | Potential
World age havior Behavior Effect
Geometry

H1 | Indoors | Nianes = 3, | DynamicObst | Driving to-| FullSpeedDrv | Opposing movement, | No Frontal
A Ground = 0°, wards a given LaneKeep on the ego | robot’s crash
YRoad = 0° destination lane with P > 0.9999 | brake

H2 | Indoors | npgnes > 3, | DynamicObst | Driving to-| Accelerating | Opposing movement, | No Frontal/
A Ground = 0°, wards a given RightLaneChange to | robot’s Side crash
YRoad = 0° destination the ego lane with P > | brake

0.9999

H3 | Indoors | Nignes = 3, | Temporary Driving to- | FullSpeedDrv | Opposing movement, | No Frontal
QGround = 0°, | Stationary wards a given LowSpeed on the ego | robot’s crash
YRoad = 0° Obst destination lane with P > 0.5 stop

H4 | Indoors | npgnes = 3, | DynamicObst | Driving to-| Braking Following movement | No Rear crash
A Ground = 0°, wards a given in blind spot on the | robot’s
YRoad = 0° destination ego lane with P > | stop

0.001

H5 | Indoors | Nignes > 3, | DynamicObst | Driving to-| FullSpeedDrv | Opposing movement, | No Side crash
QA Ground = 0°, wards a given LaneJump on the ego | robot’s
YRoad = 0° destination lane with P > 0.1 brake

H6 | Indoors | Nianes = 3, | DynamicObst | Driving to-| FullSpeedDrv | Opposing movement, | No Frontal
A Ground = 0°, wards a given FullSpeed on the ego | robot’s crash

destination

YRoad = 0°

lane with P > 0.9999

brake

ydoouoy) uornjog - roydey))

4.4. Safety Analysis

A third example of lane changing behavior is the one depicted in situation H5. The
robot drives on lane 0 at full speed towards its destination. Consider that on lane 2 a
dynamic obstacle O moves from the opposite direction (Opposing). With probability of
0.1, obstacle O, makes a lane jump from lane 2 to lane 0 (LaneJump). In such a situation,
the hazard is that the robot does not activate any collision avoidance maneuvers, e.g.
braking, due to very little to no reaction time. The potential effect of this hazard is a
side crash with obstacle O, actively caused by the robot. In contrast to the situations
H1 and H2, the situation in H5 represents an illegal lane change.

Three examples of the driving behavior of the obstacles in the robot’s environment
are depicted in situations H3, H6 and respectively H4 of Table 4.4. In the situations
H3 and H6 the robot drives at full speed towards its predefined destination. In H3,
the temporary stationary obstacle Os starts to move with probability of 0.5 (LowSpeed)
on the ego lane in the opposite direction with respect to the robot (Opposing). In H6,
a dynamic obstacle Og drives at full speed on the ego lane with probability of 0.9999
(FullSpeed) in the opposite direction of the robot (Opposing). In both situations, the
hazard is that the robot cannot brake to a full stop, which may have as a consequence a
frontal crash with the obstacles Os and respectively Og actively caused by the robot. In
H4, the robot is braking, while a dynamic obstacle O; situated in a blind spot of the
robot is following it with a probability of at least 0.001. The hazard is that the robot
cannot finish the braking process and cannot come to a full stop, which may have as a
potential effect a rear crash with obstacle O7 caused by the robot.

4.4.2. “Safe Enough” for Autonomous Safety-Critical Systems

The HARA analysis carried out on the example of the mobile service robot has identified
several hazards. For each of these hazards, the potential effect is a collision with an
obstacle in the robot’s environment actively caused by the robot. The collision is a
safety-critical event and potentially causes harm or damages both to the robot as well as
to the obstacles in its environment. In order to avoid such hazards and their effects on
the system and its environment, the system designers define safety requirements which
are used during the system development process to verify and validate the system.

The safety of autonomous safety-critical systems which operate in uncertain, dynamic
environments cannot be ensured on an absolute basis. Instead there is always some
residual risk, which remains after all implemented safety measures have been deployed
(cf. [Int97b], [Int11b]). This type of risk appears due to the uncertainties present in the
system’s operational environment and is not covered by the implemented safety measures.
How much residual risk is acceptable for autonomous safety-critical systems is a question
which has been researched by various authors. Blumenthal et al. [BFBBI] examine
different approaches for assessing whether autonomous vehicles are acceptably safe. These
approaches have been gathered through interviews with different stakeholders in the area
of autonomous driving, with a survey of the general public and through review of literature.
The report categorizes the identified approaches in three different categories: safety as
a measurement, safety as a process, and safety as threshold. Safety as a measurement
is defined as a quantitative measure for the safety performance of autonomous vehicles

161

Chapter 4. Solution Concept

using data-driven evidence and it can be indicated by a leading measure, i.e. measures of
pre-crash driving behavior, or by a lagging measure, i.e. measures of collisions and post-
collision outcomes (cf. [BFBBI]). Safety as a process indicates the developer behavior
necessary for the achievement of safety, which encompasses the engineering efforts in
system-level verification and validation that together with other practices, e.g. technical
standards, compliance with goverment regulations and safety culture, contribute to a
safety case (cf. [BFBBI]). Safety as a threshold can be defined as a goal based on human
driving performance, or as a goal based on the technological potential of the autonomous
driving system (cf. [BFBBI]).

Liu et al. [LYX19] set to find out what safety as threshold predicated on the driving
performance of the human driver is and ask the question How safe is safe enough? with
respect to self-driving vehicles in a survey conducted between October and November 2016
in China. Liu et al. [LYX19] introduce two quantitative metrics for risk measurements:
risk frequency which describes the likelihood of the occurrence of traffic crashes with
a specific risk severity, and risk-acceptance rate which is defined as the percentage of
the respondents which are ready to accept traffic scenarios, given specific risk frequency
and risk severity. Both risk metrics introduced by Liu et al. are expressed at two
different levels: as one fatality per certain population number and as one fatality per
vehicle-kilometers traveled. Through interviews with the survey subjects, the authors
determined the risk-acceptance rates for traffic scenarios with varying risk frequencies in
human-driven vehicles and in self-driving vehicles. Based on the given risk-acceptance
rates the acceptable risk frequencies were predicted for both human-driven vehicles
as well as for self-driving vehicles. The predicted risk frequencies for human-driven
vehicles were compared with those predicted for self-driving vehicles, thus giving the
tolerable risk criterion, while the predicted risk frequencies of self-driving vehicles were
compared against the current global road traffic risk, which gives the broadly acceptable
risk criterion. With respect to the tolerable risk criterion, the results of the study carried
out by Liu et al. [LYX19] show that autonomous driving vehicles should be four or five
times as safe as human drivers, meaning that the usage of autonomous vehicles should
reduce 75% — 80% of current driver-related traffic fatalities in order to be accepted by
the general public (cf. [LYX19]). With respect to the broadly acceptable risk criterion,
the authors found out that that the predicted risk frequencies in self-driving vehicles
needs to be two orders of magnitude lower than the current global road traffic risk (cf.
[LYX19]).

Waycaster et al. [WMBT18] carried out a study with respect to new regulations
and other reactions, e.g. recalls, to fatal accidents in different modes of transportation
implemented between 2002 and 2009 (cf. [WMB™18]). In addition, the authors study two
major fatal accident investigations from commercial aviation and two major automotive
recalls associated with fatal accidents and estimate the cost per expected fatality prevented
for these reactions. The authors suggest that individuals increase their demand for safety
if an automated system is in charge.

In a study to replicate the “better-than-average” effect, Nees [Neel9] interviewed a
sample of US drivers and asked them to rate (1) their own perceived ability to drive
safely, (2) the ability of current vehicles with automation to drive safely and (3) their

162

4.4. Safety Analysis

desired level of safety before they would accept self-driving cars. The author took into
consideration three outcomes of the desired safety of the participants, namely the desired
safety level of self-driving cars (1) before such vehicles are allowed on public roads, (2)
before the participants would feel reasonably safe riding in such vehicles, and (3) before
the participants themselves would buy a self-driving vehicle, all other things being equal
(cf. [Neel9]). The results show that 80.9% of the interviewed subjects consider themselves
more safe than average (higher that the 50" percentile). Furthermore, 66.1% of the
sample rated themselves as more safe than the current self-driving cars, while 68, 1%
desired self-driving cars to be safer than they perceives themselves to be (cf. [Neel9]).
Nevertheless, according to the results of the study, the modal participant expressed that
they desired a level of safety in the 95™ up to the 99" percentile. The author suggests
that the participants may not have been using their own perceived safety percentile as
a mean for comparison but instead wished that self-driving car be as safe as the best
human drivers (cf. [Neel9]).

4.4.3. Extending Safety Requirements with Environment
Assumptions

The safety analysis carried out in this section identified various hazards which have
as potential effect the collision of the mobile service robot with one of the obstacles
which populate its environment. These hazards can occur at runtime due to the obstacle
behavior which does not correspond anymore to the environment assumptions defined
and used by the system developers in the system’s design phase. To guard against the
causes which lead to the identified hazards, the environment assumptions are captured
explicitly in the safety requirements specification of the system.

The HARA analysis identifies two categories of situations that can lead to hazards
with safety-critical potential effects. The first category relates to the lane changing
behavior of the obstacles in the robot’s environment, while the second category takes
into consideration the driving behavior of the obstacles. It follows that the environment
assumptions formulated to guard against such situations will refer on one side to the
lane changing behavior of the obstacles and on the other side to their driving behavior.
Notice that there does not exist a 1-to-1 relation between the hazardous event and
the environment assumption that covers it. In fact, one environment assumption can
correspond to more than one situations that result in hazards with safety-critical effects.
Figure 4.10 depicts a requirements pattern which is applied in order to extend the safety
requirements specification of the mobile service robot with the environment assumptions.

The pattern proposed in Figure 4.10 is inspired by the work of Rupp and Die Sophisten
[JPQ™16]. Similar patterns have been proposed by Mauritz [Maul9] and Toennemann
[Toe20]. The requirements pattern proposed by Mauritz is used to formulate the system
requirements for a lane change assistant (cf. [Maul9]). In turn, the pattern presented by
Toennemann is used to formulate the functional system specification of an automotive
function, which supervises the correct application of voltage to the motor based on the
target current and on the measured current (cf. [Toe20]).

163

Chapter 4. Solution Concept

Extended Safety Requirement (ESR)

AWith” - Probabilistic i Main Clause || ,with”- || Probabilistic Subject Modal || Process
" Connector || Particle || Expression d Verb Verb

Conditional |\ | Process Object/ ||
Particle

Verb Property Particle Expression Cblect] JElace

Figure 4.10.: Pattern for the Safety Requirements Specification extended with Environ-
ment Assumptions.

The extended safety requirement consists of two parts: an environment assumptions
clause and a requirement main clause. The environment assumption clause contains the
following parts: (1) conditional particle, (2) subject, (3) process verb, (4) object, (6)
probabilistic expression preceded by (5) the with-particle, and optionally (7) a conjunction
particle. The conditional particle introduces a logical statement about an event or an
action taking place in the system’s environment. The action is described with the help
of the process verb and is executed by the subject. The action carried out by the subject
can change a property of the subject or can affect an object. The object represents
an item or an actor on which the effects of the action executed by the subject are
reflected. Optionally, the place can be specified where the subject of the environment
assumption executes the action specified in the process verb. The probabilistic expression
preceded by the with-particle specifies the probability with which the subject is assumed
to perform the action described by the process verb. The conjunction particle allows to
combine several assumptions through logical conjunction. Some environment assumptions
may refer to the same aspect of the environment and can be combined with each other
through the conjunction particle, while other environment assumptions work better if they
are expressed separately. Therefore, it is left to discretion of the system requirements
engineers to appreciate and decide whether the usage of the conjunction particle is
appropriate or not.

The main clause of the safety requirement is built in a similar manner to the envi-
ronment assumption and consists of the following parts: (1) main clause connector, (3)
probabilistic expression, preceded by (2) the with-particle, (4) subject, (5) modal verb,
(6) process verb and (7) object. The main clause connector is a particle which connects
the requirement main clause to the environment assumption. The probabilistic expression
specifies the probability with which the subject executes a certain action, described by
the process verb. The modal verb describes different legal meanings which a requirement
may carry for different system stakeholders, and can be one of the three verbs: shall,
should, or will. (cf. Chapter 3). The modal verb is followed directly by the process verb
in the main clause, unless the action expressed by the process verb is negated. In this
case, the negation particle not is interposed between the modal verb and the process
verb and is considered to be part of the modal verb construction. The negation is used
when the process verb specifies an action which the subject is forbidden to carry out,
e.g. shall not accelerate. The object represents an item or an actor which is affected
by the action executed by the subject. Notice that the object of the requirement main
clause can be the subject of the environment assumption, e.g. an obstacle in the robot’s

164

4.4. Safety Analysis

environment. Optionally, the place can be specified where the action described through
the process verb is executed by the subject.

4.4.4. Informal Specification of Extended Safety Requirements

The potential effect of the hazards identified through the HARA analysis is an active
collision of the robot with an obstacle in its environment. In order to guard against the
effect of these hazards on the system and its environment, system designers define safety
requirements, which are used in the system development process to verify and validate
the behavior of the system in its environment.

A safety requirement can be formulated as formal safety property, since the intention
of a safety requirement is to prevent a specific hazardous event from ever happening.
At a general level, a safety property informally states that “nothing bad ever happens”.
In order to meet the desired level of safety expressed in user interviews [Neel9], the
safety property must specify a quantitative level for the probability with which the safety
property holds. For the purpose of this example, the robot’s safety property derived from
the results of the HARA analysis is transcribed into the following informal specification
in natural language:

Probabilistic Safety Property (Informal Specification). With a probability of at
least 0.99, the robot shall not collide actively with any obstacle in its environment.

Environment assumptions are captured explicitly and extend the safety requirements
specification of an autonomous safety-critical system in order to protect the system
against the environment behavior which can lead to the safety hazards identified through
the HARA analysis. For the example of the mobile service robot, the analysis identifies
two types of events that can lead to hazards with safety-critical potential effects. The
first type of events is triggered by the lane changing behavior of the obstacles while the
second type of events relates to their driving behavior. The environment assumptions
can belong to one type or the other depending on what type of hazardous events they
cover. The extension of the safety requirements with the environment assumptions is
carried out according to the requirements pattern introduced in Section 4.4.3.

The safety requirement of the mobile service robot extended with various environment
assumptions is shown in Table 4.5. The last column of the table also shows which of
the hazards identified in the HARA analysis are covered by the respective extended
safety requirements. Notice that while the probabilistic expression in the requirement
main clause specifies a lower bound or an upper bound for the probability with which
the subject carries out a certain action, the probabilistic expression in the environment
assumption can also specify the probability distribution with which the subject of the
environment assumption is assumed to execute specific actions.

165

991

Table 4.5.: Mobile Service Robot - Safety Requirement extended with Environment Assumptions.

ID Environment Assumption Clause Requirement Main Clause Covered
Haz-
ards

ESR1 | If dynamic obstacles in the robot’s sensor horizon | then with a probability of at least 0.99 the robot | H1 and

execute legal lane changes with the uniform proba- | shall not collide actively with any obstacle in its | H2
bility distribution, environment.

ESR2 | If dynamic obstacles in the robot’s sensor horizon | then with a probability of at least 0.99 the robot | H5

execute illegal lane changes with a probability of at | shall not collide actively with any obstacle in its
most 0.01, environment.

ESR3 | If dynamic obstacles follow the robot in a blind | then with a probability of at least 0.99 the robot | H4

spot of the robot sensors with probability of at | shall not collide actively with any obstacle in its
most 0.0001, environment.

ESR4 | If dynamic obstacles in the robot’s sensor horizon | then with a probability of at least 0.99 the robot | H6

change their velocity during their drive with the | shall not collide actively with any obstacle in its
histogram distribution (0,0.125,1,0.75,2,0.125,3), | environment.

ESRS5 | If temporary stationary obstacles start moving in | then with a probability of at least 0.99 the robot | H3

the robot’s sensor horizon with a probability of at
most 0.05,

shall not collide actively with any obstacle in its
environment.

ydeouoy) uornjog - reyder)

4.4. Safety Analysis

4.4.5. Formal Specification of Extended Safety Requirements

To formalize the extended safety requirements, several domain specific concepts which
appear in these requirements must be translated into first-order logic predicates. These
concepts describe occurrences in the robot’s environment in which obstacles are involved:
active collision, legal and illegal lane change executed by an obstacle in the robot’s
environment, obstacle following the robot, and stationary obstacle starting to move. The
first concept to be defined is that of active collision introduced in Definition 4.4.1.

Definition 4.4.1 - Active Collision
Let n € N>y be the number of visible obstacles in the environment of an autonomous
mobile robot. Then it is said that an active collision is caused by the mobile robot if
and only if the following two conditions hold simultaneously.

1. the robot is not stationary and

2. there exists an obstacle O;, i € {1,...,n}, which is situated on the ego lane and

inside the robot’s safety net.
[|

The corresponding first-order logic predicate is given in Equation (4.28). Notice that the
predicate in Equation (4.28) is the negation of the bracket expression in the equation of
the safety property in Section 3.4.

ActiveCollision : 30;. =(vg == 0) A ((yr == yo,)\

(—cr < zo, — 2Rr) A (To; — TR < CR)) (4.28)

The next two concepts to be defined are those of legal lane change and respectively illegal
lane change executed by an obstacle in the robot’s environment.

Definition 4.4.2 - Legal Lane Change
Let n € N>, be the number of visible obstacles in the environment of an autonomous
mobile robot.Then it is said that legal lane change occurs in the mobile robot’s environment

if and only if for each visible dynamic obstacle O;, i € {1,...,n}, the index difference
between the two lanes occupied by the obstacle at two consecutive steps t and ¢ + 1 is
equal to 1. [|

The corresponding predicate is shown in Equation (4.29).

LegalLaneChange : YO;. =(yo,(t) — yo,(t + 1) == 0) A (|yo,(t) — yo,(t + 1)| == 1)
(4.29)

Definition 4.4.3 - Illegal Lane Change
Let n € N> be the number of visible obstacles in the environment of an autonomous
mobile robot. Then it is said that illegal lane change occurs in the mobile robot’s

environment if and only if there exists a dynamic obstacle O;, i € {1,...,n}, for which
the index difference between the two lanes occupied by the obstacle at two consecutive
steps t and ¢ + 1 is larger than 1. [|

167

Chapter 4. Solution Concept

The corresponding predicate is shown in Equation (4.30).
IllegalLaneChange : 30;. |yo,(t) — yo,(t +1)] > 1 (4.30)

A visual intuition for an obstacle following the robot has already been introduced
in Figure 4.9. The robot and the dynamic obstacle O; are represented in the Cartesian
coordinate system in Figure 4.11. Notice that the respective orientation angles of the
robot and of obstacle O; are 6z = 0° and 6o, = 0°, which means that both have the
same direction of movement.

The representation of the robot and the obstacle in Figure 4.11 is consistent with the
HARA analysis carried out in Section 4.4.1, in which the environment is considered to
be a straight road. This can simplify the analysis considerably as only the orientation
angles 0° and 180° must be considered. For the case when obstacles change their lane,
the direction vector of the obstacle is decomposed into its respective z-component and
y-component and only the xz-component is considered in the further analysis. Since the
environment of the mobile service robot is a straight road, a simpler method can be
used to determine whether an obstacle moves in the same direction as the robot on
the = axis or not. Instead of using the angle 6, to express the orientation of obstacle
O;, the difference between two consecutive positions on the lane of obstacle O; and the
algebraic sign of this difference can be used to show whether obstacle O; moves in the
same direction as the robot or not. This decision will help the design-time verification,
since any additional variable introduced to model a specific feature of the system or
of its environment leads to an increase in the state space of the overall system model.
Definition 4.4.4 introduces the concept of movement in the same direction for the robot
and an arbitrary obstacle O;,7 € N> in the robot’s environment.

Definition 4.4.4 - Same Movement Direction

Let n € N> be the number of visible obstacles in the environment of an autonomous
mobile robot. Then it is said that dynamic obstacles have the same movement direction
as the mobile robot if and only if there exists at least one obstacle O;, i € {1,...,n}, for
which the difference between two consecutive positions at steps ¢ and ¢ + 1 has the same
algebraic sign as the difference between the robot’s consecutive positions at steps ¢ and
t+ 1. |

The corresponding predicate is presented in Equation (4.31):

SameMovementDirection : 30;.sgn(zgr(t) — xp(t + 1)) == sgn(zo,(t) — zo,(t + 1))

(4.31)
where sgn : R — {—1,0, 1} is the signum function with
-1, <0
sgn(x) =40, x=0
1, x>0

Definition 4.4.5 - Following Obstacle in Robot’s Blind Spot
Let n € N>; be the number of obstacles in the environment of an autonomous mobile

168

4.4. Safety Analysis

y A
Lane 2
Dynamic Obstacle 04 Robot Goal
Lane 1 @ @ _
R R
(X0, Y0,) (%R, YR) (*XGoal» YGoal)
4 Lane 0 >
(0,0) x
Legend:
(x,;, Yr) ; current position of the robot (X0, Yo,;) — current position of obstacle
(XGoal Yeoar) — POsition of the robot’s destination 0;,i € {1,2}
—> — orientation vector for the robot —> — orientation vectors for the obstacles
0;,i € {1,2}

Figure 4.11.: Representation of a Dynamic Obstacle Following the Robot in the Cartesian
Coordinate System.

robot. Then it is said that there is a following obstacle in a blind spot of the robot if and
only if there exists a dynamic obstacle O;, ¢ € {1,...,n}, which has the same movement
direction as the robot and is situated outside the robot’s safety net. [|

The corresponding predicate is presented in Equation (4.32):

FollowingObstacleInBlindSpot : 30;. SameMovementDirection (4.32)

N xo, (t) — $R<t> < —CR '

The last concept to be defined is that of obstacle movement (re)start. This concept

applies on one side to stationary obstacles which start to move, thus becoming dynamic

obstacles and on the other side to dynamic obstacle which have been forced to stop and
then resume their movement.

Definition 4.4.6 - Obstacle Movement Restart

Let n € N>; be the number of visible obstacles in the environment of an autonomous
mobile robot. Then it is said that obstacles restart their movement in the robot’s
environment if and only if there exists at least one obstacle O;, i € {1,...,n}, which is
stationary at step ¢ and has a velocity larger that zero at step ¢ + 1. [|

The corresponding predicate is found in Equation (4.33):

ObstacleMovementRestart : 30;.v0,(t) == 0 Avo,(t +1) >0 (4.33)

169

Chapter 4. Solution Concept

Definition 4.4.7 - Formal Specification of Extended Safety Requirements

Let RegMainClause be the the requirement main clause of an extended safety requirement
ESR i, i € N>y. Let ReqProb be a probability expression that defines the probability with
which the main clause of ESR i is required to be satisfied. Let EnvAssumptionClause
be the environment assumption clause of the extended safety requirement ESR i. Let
EnvAssumptionProb be a probability expression that specifies the probability with which
the environment assumption clause is required to be satisfied. Then the formal specifica-
tion of the extended safety requirement ESR i is given in Equation (4.34):

Py assumptionprob(EnvAssumptionClause) — Pregpros(RegMainClause) (4.34)
[|

Both the environment assumption clause as well as the requirement main clause are
formalized as path formulae which are required to be satisfied with a certain probability
specified by the respective probability expression. As already known, P is the probability
operator introduced in the logic PCTL. Grammar 4.1 depicts the fragment of the PCTL
grammar which is used to describe the path formula. The fragment of PCTL is described
in extended Backus-Naur form (EBNF). In this description, X and U denote the temporal
operators Nezt and respectively strong Until of the PCTL logic. The usual temporal
operators, F' (Eventually), G (Globally) can be derived from the strong Until operator.
The complete PCTL syntax is given in Chapter 2.

(EnvAssumptionClause) ::= (PathFormula)

(ReqgMainClause) ::= (PathFormula)

(PathFormula) ::= "X’ (StateFormula) | (StateFormula) *U’ (StateFormula)
{

StateFormula) ::= "true’ | (AtomicProposition)
| =" (StateFormula)
| (StateFormula) N’ (StateFormula)

Grammar 4.1.: PCTL Grammar Fragment in EBNF for the Path Formula in the Extended
Safety Requirements.

Grammar 4.2 depicts the EBNF grammar used for the formal definition of the prob-
ability expression. Grammar 4.2 provides two possibilities to specify the probability
expressions of the environment assumption clause and requirement main clause respec-
tively: (1) the probability expression defines a probability bound and (2) the probability
expression defines a probability distribution. Notice that the part of the EBNF grammar
corresponding to the specification of the probability distribution is inspired by the work
of Herold et al. [HKW*08] and the UML Profile for Schedulability, Performance and
Reliability [Obj05]. The specification of the probability bound uses the same comparison
operators as in the syntax of PCTL introduced in Section 2.3.2. The specification of the
probability distribution has been added in order to account for environment assumptions

170

4.4. Safety Analysis

which specify such probability distribution. There are eight probability distributions
defined in Grammar 4.2: (1) uniform, (2) binomial, (3) normal, (4) Poisson, (5) gamma,
(6) exponential, (7) Bernoulli, and (8) the histogram distribution.

Each probability distribution has its specific parameters. The uniform distribution has
two parameters a,b € R>(that designate the start and the end of the sampling interval.
The binomial distribution has two parameters, namely the probability of success p € [0, 1]
and a positive integer n € Z>, which defines the number of independent experiments.
The normal or the Gauss distribution has two parameters, namely the mean value u € R
and the standard deviation o € R. The Poisson distribution has one parameter, the
constant mean rate A\ € R.g with which a given number of events occurs in a fixed
interval. The gamma distribution has two parameters: a positive integer k € Z>(and the
mean value a € Ry, which are given as inputs in the formula of the gamma distribution,

%. The exponential distribution has one parameter, the mean value \7!, with

A € R.y. The Bernoulli distribution has one parameter, a probability p € [0, 1].

171

Chapter 4. Solution Concept

(EnvAssumptionProb) ::= (ProbabilityEzpression)

(ReqProb) = (ProbabilityBound)

(ProbabilityEzpression) := (ProbabilityBound) | { ProbabilityDistribution)

(ProbabilityBound) := (ComparisonOperator) (RealNumber)

(ComparisonOperator) == ‘="]‘>" | > | <] ‘<

(RealNumber) ::= (Number) ’ .~ (Number)

{ Number) = (Digit) | (Number) (Digit)

(Digit) a=0 |1 2|03 |08 67 | T] 8 | Y

(ProbabilityDistribution) ::= (Uniform) | (Binomial) | (Normal) | (Poisson)
| (Gamma) | (Ezponential) | (Bernoulli) | (Histogram)

(Uniform) = Tuniform’ ’(" (RealNumber) ’, (RealNumber) ')’

(Binomial) ::= ’binomial’ ’(" (Number) ’)’

(Normal) = "normal’ '(" (RealNumber) ’,” (RealNumber) ')’

(Poisson) ::= "poisson’ (" (RealNumber) ’)’

(Gamma) = "gamma’ (" (Number) ’) (RealNumber))’

(Exponential) ::= ’exponential’ ’(" (RealNumber))’

(Bernoulli) = 'bernoulli’ '(’ (RealNumber) ’)’

(Histogram) ::= "histogram’ '(* {(RealNumber) ’," (RealNumber)}*, (RealNumber))’

Grammar 4.2.: EBNF Grammar for the Probability Expression in the Extended Safety
Requirements.

172

€LT

Table 4.6.: Mobile Service Robot: Informal and Formal Specification of the Safety Requirement

extended with Environment Assumptions.

| ID | Informal Specification | Formal Specification

ESR1 | If dynamic obstacles execute legal lane changes in the | Pyuiform(0,2)(G LegalLangeChange) —
robot’s sensor horizon with the uniform probability dis- | Psg.99(G —ActiveCollision)
tribution, then with a probability of at least 0.99 the
robot shall not collide actively with any obstacle in its
environment.

ESR2 | If dynamic obstacles execute illegal lane changes in the | P<qo1(F IllegalLangeChange) —
robot’s sensor horizon with a probability of at most 0.01, | P>g.99(G —ActiveCollision)
then with a probability of at least 0.99 the robot shall
not collide actively with any obstacle in its environment.

ESR3 | If dynamic obstacles follow the robot in a blind spot | P<q.o01 (£ FollowingObstaclelnBlindSpot) —
of the robot sensors with probability of at most 0.0001, | Psg.99(G —ActiveCollision)
then with a probability of at least 0.99 the robot shall
not collide actively with any obstacle in its environment.

ESR4 | If dynamic obstacles in the robot’s sensor horizon change | Pristogram{(0,0.125),(1,0.75),(2,0.125),3} (G ObstacleVelocityChange)
their velocity during their drive with the histogram | — Psg.99(G —ActiveCollision)
distribution {(0,0.125), (1,0.75), (2,0.125), 3}, then with
a probability of at least 0.99 the robot shall not collide
actively with any obstacle in its environment.

ESR5 | If temporary stationary obstacles start moving in the | P<5(F ObstacleMovementRestart) —

robot’s sensor horizon with a probability of at most 0.05,
then with a probability of at least 0.99 the robot shall
not collide actively with any obstacle in its environment.

P>o.99(G —ActiveCollision)

sisATeuy Ajo5eg Ff

Chapter 4. Solution Concept

The histogram distribution is in fact an ordered collection of one or more pairs that
identify the start of an interval and the probability that applies within that interval
starting from the leftmost interval. Additionally, one end-interval value for the upper
boundary of the last interval is defined (cf. [Obj05]). The EBNF grammar of the
probability expression can be easily extended to account for other probability distributions.
Using the grammars introduced for the path formula and for the probability expression,
the extended safety requirements can be fully formally specified. Their formal specification
is depicted alongside the respective informal specification in Table 4.6.

4.5. System Design

The system design of the mobile service robot in the revisited motivational example is
carried out on the basis of the functional system specification introduced in Table 4.1,
Table 4.2, and Table 4.3 (cf. Section 4.3), as well as the safety requirements specification
introduced in Table 4.6 (cf. Section 4.4). The system design for the mobile service
robot consists of the creation of the technical system model and the environment model.
Section 4.5.1 and Section 4.5.2 present the design of the environment model and the
technical system model respectively using the modeling language PRISM. Section 4.5.3
illustrates on an exemplary basis the design-time verification of the safety requirement
extended with one of the explicit environment assumptions in Table 4.6. Section 4.5.4
analyses the environment assumption used in the design-time verification. Although this
analysis is carried out on an exemplary basis, its goal is to give a method for mapping the
environment assumptions at the level of the technical system model and the environment
model. Using this mapping, the respective environment assumptions monitors are defined
in Section 4.5.5.

4.5.1. Environment Model

The PRrIsM language is a state-based modeling language, which is based on the formalism
of reactive modules developed by Alur and Henzinger in [AH99] (cf. Section 2.4.3). The
language supports several formalisms which can be used to describe probabilistic systems,
e.g., DTMC, CTMC and MDP (cf. Section 2.4.3).

In general, the environment model is represented by several modules, one module for
each obstacle in the robot’s environment. Since in the revisited motivational example
the robot’s environment is populated by the dynamic obstacle O; (cf. Figure 4.6 in
Section 4.2), the environment model consists only of one PRISM module which models
the behavior of this obstacle.

The environment model EM is designed as an MDP, which is henceforth denoted
Mpgu. A state in Mgy, is an interpretation of the state variables specific to EM. The
set of variables of the environment model EM is denoted Vgs. These variables describe
the state of the dynamic obstacle Oy, e.g., yo, € Vgu denotes the current lane of obstacle
O1, and are defined in the respective PRISM module.

174

4.5. System Design

There are initial values and value ranges defined for each of the state variables in
Veu. Both the initial values of local variables as well as the interval bounds of their
value ranges are defined through specific constants. Several mathematical notations are
introduced in order to allow a better handling of these constants and variables throughout
this analysis. The left side of the each notation carries out the name of the constant or
variable as it is defined in the PRiSM language which is mapped to the corresponding
mathematical notation on the right side. Notice that these notations are consistent with
and extend the notations introduced in Section 3.1 and Section 4.2. These notations are
effective for the remainder of this work.

Listing 4.1 depicts the local variables used in the PRISM obstacle module, while
Notation 4.5.1 introduces a mapping to the corresponding notations used henceforth in

these thesis.

1 /] = e e e
2 // -- OBSTACLE MODULE

3 [l ==sccsssssessssosossoooooooooossoooooossoooossos
1 module obstacleO1

)]

€ // Local Variables
7 A S e
8

// position on lane and lane of obstacle 01

8
9 x01 : [0..maxpos] init x01_init;

0 y01 : [0..n-1] init y01_init;

1

2 // current velocity of obstacle 01

// state of obstacle 01 {IDLE_01, MOVING_O1}
s01 : [IDLE_01..MOVING_01] init IDLE_01;

D
8 // flag is true if obstacle 01 is static and false otherwise

1
1
1
13 v01 : [0..v01_Max] init O0;
1
1
1
1
1
19 static0l : bool init true;

21 // Module Commands
22 Jlj s=s===ssss=c=ssssccsssscccssscccsssoooossoomossooooeseoooes
23 40 ooe

> endmodule
)

Listing 4.1: Mobile Service Robot: Local Variables used to describe the State of the
Environment Model.

Notation 4.5.1. The following mapping correspondence is defined for the local variables
used in the PRISM obstacle module, which describe:
e the current obstacle coordinates:

(zO1,y01) def (xo,,Y0,), To, € [0, maxpos], Yo, € Qrane
e the current obstacle velocity:
001 & vo,, Vo, € [0,v5%,]
e the current status of obstacle Oy, i.e., static or dynamic:
staticO1 %< statico,

where statico, is a boolean flag that evaluates to true if obstacle O is static, and

to false otherwise.
[|

175

Chapter 4. Solution Concept

Listing 4.2 shows the constants that are used to define the initial values and the interval
bounds for the local variables of the obstacle module.

N N

B W N

o Ot

-~

NN NN NN NN
0]

mdp

Y S e e e

// TECHNICAL SYSTEM MODEL

S S S e S e S S S S e S I S S S I e

//

A e e e S s e e e e e S S

// ENVIRONMENT MODEL

A e e S S S S S S S S S S e B e B e e eSS S

// -- CONSTANTS FOR THE ENVIRONMENT GEOMETRY

A e S e e S eSS S e B e Sl

const int n = 3; // number of lanes

const int maxpos = 100; // end of the lane

A e et iy

// -- CONSTANTS FOR THE OBSTACLE STATE

/] —mmm e

const int IDLE_01 = O; // obstacle 01 state

const int MOVING_01 = 1;
e

const int vO01_Max = 3; // maximum specific obstacle velocity

] e e e e e e e e

const int x01_Init = 60 // initial values for coordinates of obstacle 01
const int y01_Init = 1;

e e e e e e e e e e S S S S S

const double p_ILC = 0.01; // probability for illegal lane change

const double p_RLC = 1/3; // probability for legal right lane change
const double p_LLC = 1/3; // probability for legal left lane change
const double p_NLC = 1/3; // probability for keeping the lane

A e e e S e e e e e bt eSS ey

const int mo = 1; // rate that the obstacle is moving

const double p_MOVE = 0.05; // probability of stationary obstacle starting to move
const double p_STOP = 0.05; // probability of dynamic obstacle having stopped
/] —mm e mmmmmmm— oo

// -- OBSTACLE MODULE

Y e e

//

Listing 4.2: Mobile Service Robot: Constants used to describe the State of the
Environment Model.

Notation 4.5.2. The following mapping correspondence is defined for the constants of the
PRrisMm obstacle module, which describe:

176

e the specific maximum velocity of obstacle Os:
v01_Maz & o

e the probability for obstacle O; to temporary stop or to remain at rest (STOP) and
for obstacle Oy to start or to resume its movement (MOVE):

p_STOP ¥ psrop p MOVE ¥ prove

e the initial values for the obstacle’s coordinates:
(xOZilm't, yO1 7[m't) o (xIOnlitJ ylonlit)a ‘r]Onlit S [07 maxpos], y%it € QLane

e the probabilities for obstacle O; to jump over several lanes also denoted as illegal
lane change (ILC), for obstacle O; to execute a legal lane change to its left lane
(LLC), for obstacle O to carry out a legal lane change to its right lane (RLC) and
for obstacle to maintain its lane also denoted as no lane change (NLC):

p ILC ¥ pic p LLC ¥ pioc

p_RLC dof PRLC p_NLC aof PNLC

4.5. System Design

Dynamic obstacle Oy is situated at its initial position (%%,,7%%,) and moves towards
its destination, the origin point of the Cartesian coordinate system (0,0). In order to
reach its destination, obstacle O; employs velocity changing as well as lane changing
maneuvers. These maneuvers are carried out through specific PRISM commands. A
command in the PRISM modeling language has the general form shown in Equation (2.1)
in Section 2.4.3.

The obstacle O; is modeled as a probabilistic automaton with two states: IDLE_01
and MOVING_01. The behavior of obstacle O; is described by the PRISM commands in
Listing 4.3, Listing 4.4, and Listing 4.5. Listing 4.3 and Listing 4.4 shows the commands
for the velocity changing maneuvers for temporary stationary obstacles and respectively
for dynamic obstacles in the PRisM module of obstacle Oy.

1 e
// -- OBSTACLE MODULE

] = -

1 module obstacleO1

w N

5
6 // Local Variables

7] e
8 7l coo

9
0 // Module Commands

1

1

1

13 /] e e

14 [move] (s01=IDLE_01) & (x01<=0) & (static01)

15 -> mo:(s01’=IDLE_01);

16

17 // [2]. IDLE -> IDLE or

18 // IDLE -> MOVING

19 /] e

20 [move] (s01=IDLE_01) & (x01>0) & (static01)

21 -> 0.5:(s01°=MOVING_01) + 0.5:(s01’=IDLE_01);

22

23 // [3]1. MOVING -> MOVING or

24 // MOVING -> IDLE

25 A —————e—ee—eeeee--

26 [move] (s01=MOVING_01) & (x01>0) & (static01) & (v01=0) & (x01-v01_Max>=0)
27 -> 1-p_MOVE:(s01’=IDLE_01) & (v01°=0) & (x01’=x01) & (static01’=true) +

28 1/8*p_MOVE:(s01’°=MOVING_01) & (v01°’=1) & (x01’=x01-1) & (static01’=false) +
29 3/4*p_MOVE:(s01’=MOVING_01) & (v01’=2) & (x01°=x01-2) & (static01’=false)+
30 1/8xp_MOVE:(s01°=MOVING_01) & (v01°’=3) & (x01°=x01-3) & (static01’=false);
31

32 70 cao

o

34 endmodule

Listing 4.3: Mobile Service Robot: Forwards Movement Commands for Temporary
Stationary Obstacles in the Environment Model.

Notice that obstacle O; is initially a stationary obstacle and the obstacle module is in
state IDLE_01. If obstacle O, is stationary and already at the obstacle’s destination point
(0,0), then the obstacle module maintains the state IDLE_01 (command [1] in Listing
4.3). In this state, if obstacle O; is not already at its destination point, it can either
further remain stationary or it can become a dynamic obstacle and start to drive towards
its destination point (0,0). The choice which obstacle O; has to make in state IDLE_01
is a probabilistic one, controlled by the uniform discrete probability distribution (0.5, 0.5)
(command [2] in Listing 4.3). During its drive, obstacle O; has a probabilistic choice of
either becoming temporary stationary or continuing its drive towards its destination point
(0,0) (command [4] in Listing 4.4). Should it become temporary stationary, obstacle O,
is presented again with the probabilistic choice between staying stationary or becoming

177

Chapter 4. Solution Concept

again a moving obstacle (command [3] in Listing 4.3). The difference between a temporary
stationary obstacle and a dynamic obstacle is modeled through the boolean flag statico,
and the obstacle current velocity vo,, along with the state of the obstacle module. If O,
is a dynamic obstacle, then the boolean flag statico, evaluates to the truth value true,
the current obstacle obstacle velocity is strictly a positive number, i.e. vo, > 0, and the
obstacle module is in state MOVING_01. Notice that the command [3] in Listing 4.3 and
command [4] in Listing 4.4 model the requirements FR1 and FR3 from Table 4.1 in the
environment model.

During its movement, obstacle O; chooses probabilistically from the interval [0, v{]
a value for its current velocity (command [3] Listing 4.3 and command [4] in Listing
4.4). Based on its current velocity, the new position of the obstacle Oy is computed and
updated (command [5] in Listing 4.4). The obstacle module is modeled so that, once
it reaches its destination point (0,0), it comes to a full stop, i.e., the obstacle becomes
definitive stationary and the obstacle module enters the state IDLE_01 (commands [6]
and [7] in Listing 4.4).

1 B s

2 // -- OBSTACLE MODULE

& A e

! module obstacleO1

5

6 // Local Variables

7 Jf ====s=scccsssssssssssssssssssssssssssoooooooooooosoossooses

8 J) oos

9

10 // Module Commands

11 A e e T a aa

12 0 oo

13
14 // [4]. MOVING -> MOVING or
15 /7 MOVING -> IDLE
16] ====ssssssscsssscoososssosossoosossoosoosossssoossssoososss
17 [move] (s01=MOVING_01) & (x01>0) & (!static01) & (v01>0) & (x01-v01_Max>=0)
18 -> p_STOP:(s01’=IDLE_01) & (v01’=0) & (x01°=x01) & (static01’=true) +

19 1/8%(1-p_STOP) : (s01’=MOVING_01) & (v01’=1) & (x01’=x01-1) & (staticO1’=false) +
20 3/4%(1-p_STOP) :(s01’=MOVING_01) & (v01°’=2) & (x01’=x01-2) & (static01’=false)+
21 1/8*(1-p_STOP) :(s01°=MOVING_01) & (v01’=3) & (x01°=x01-3) & (static01’=false);
29
23 // [5]. MOVING -> MOVING
24 /] e e
25 [move] (s01=MOVING_01) & (x01>0) & (!static01) & (v01>0) & (x01-v01_Max<0) & (x01-v01>=0)
26 -> mo:(s01°=MOVING_01) & (x01°’=x01-v01);
27
28 // [6]1. MOVING -> MOVING
29] e
30 [move] (s01=MOVING_01) & (x01>0) & (!static01) & (x01-v01<0)
31 -> mo:(s01’=MOVING_01) & (x01°’=0);
32
83 // [7]1. MOVING -> IDLE
34 A
35 [move] (s01=MOVING_01) & (x01<=0) & (!static01)
36 -> mo:(s01’=IDLE_01) & (staticO01’=true) & (v01’=0);
37
38 7 oo
39

10 endmodule

Listing 4.4: Mobile Service Robot: Dynamic Obstacle Forwards Movement
Commands in the Environment Model.

Notice that the velocity changing behavior of obstacle O; underlies a probability
distribution defined with the constants psrop and pyove (cf. Listing 4.2). It is also worth
noting that the probability for a stationary obstacle to start moving is considered to be
0.05 as formulated in requirement FR5 of the functional system specification. Listing 4.5

178

4.5. System Design

shows the PRISM commands with which the lane changing behavior of obstacle Oy is
modeled.

1 [s e e e
2 // -- OBSTACLE MODULE

: /] e e e e e -
4 module obstacleO1

€ // Local Variables
7 A

8 77 aco

g

0 // Module Commands

1 [======s===s==sss=ssssssssssssssssosossssoossssssossssssosos
%) 70 coo

>

1 // [8] Probability distribution for obstacle 01 to leave lane 1

5] e e
) [move] (s01=MOVING_01) & (v01>0) & (y01=1)

17 -> p_LLC:(y01’=0) + p_RLC:(y01’=2) + p_NLC:(y01’=1);

18

19 // [9] Probability distribution for obstacle 01 to leave lane O
20 F AR e e e LT
21 [movel (s01=MOVING_01) & (v01>0) & (y01=0)

22 -> p_ILC:(y01°=2) + (1-p_ILC)/2:(y01°’=1) + (1-p_ILC)/2:(y01°’=0);
2t

24 // [10] Real probability distribution for obstacle 01 to leave lane 2
25 [oo m o s oo o o o o e e o o o o D D o 5 5 D 2 5 S D S 5 S D
26 [move] (s01=MOVING_01) & (v01>0) & (y01=2)

27 -> p_ILC:(y01’=0) + (1-p_ILC)/2:(y01°’=1) + (1-p_ILC)/2:(y01’=2);
28

29 endmodule

Listing 4.5: Mobile Service Robot: Set of Commands for Obstacle Lane Changes in
the Environment Model.

Depending on the lane on which obstacle O, is situated, its probabilistic lane changing
behavior is governed by a different probability distribution. Initially, obstacle O; is
situated on lane 1 (cf. Listing 4.2), which is the ego lane of the mobile service robot (cf.
Listing 4.7). The lane changing behavior from lane 1 to the other two lanes is governed by
a probability distribution defined through the constants prrc, prre, and pyre (command
[8] in Listing 4.5). In turn, if the obstacle O; is situated one of the other two lanes, lane
0 or lane 1, then the probability distribution that controls the lane changing behavior of
the obstacle is defined through the constant p;,¢ (commands [9] and [10] in Listing 4.5).
All the constants pertaining to the obstacle model are defined in Listing 4.2.

pic = 0.01 PRLC = PNLC
1-(n—2)*pirc

D) y Yo, = 0

1-(n=2)*prrc

PNLe = — 5%, Yo, =n—1 PLLC = PNLC
Lo=Bene - yn € {1,...,n—2}

Notice that the probability for an illegal lane change carried out by obstacle Oy
is considered to be 0.0001 as expressed in requirements FR7 of the functional system
specification. The probability for obstacle O; to keep its lane as well as the probability of
obstacle Oy to carry out a legal lane change are computed on the basis of the probability
of illegal lane change and are uniformly distributed.

179

Chapter 4. Solution Concept

4.5.2. Technical System Model

The technical system model is represented by a PRISM module, which models the behavior
of the mobile service robot. The technical system model SM is designed as an MDP,
which is henceforth denoted Mgy;. A state in Mgy, is an interpretation of the state
variables specific to SM. The set of variables of the technical system model SM is denoted
Vsur. These variables describe the state of the mobile service robot, e.g., ygr € Vsur
denotes the current lane of the robot, and are defined in the PRiSM robot’s module. The
set of variables Vg, is divided into four distinct subsets of variables:

V Vlnternal U VAssumed U VObsemed U VPred'Lcted

where:

o VoM C Vg is a set of variables which describe exclusively the system’s state of
the technical system model, e.g., g, yr € Vinternai,

o VM . C Vsu is a set of variables that describe assumed facts about the future
behavior in the system’s environment, e.g., p%£¢ e VM

o VM . C Vs is a set of variables which descrlbe the system observations of the
current behavior in its environment, e.g., y9b ... € VoM)

o VoM ... C Vs is a set of variables which describe the system predictions of the
future behavior in the system’s environment, e.g., ygiedicted e VM i

Similar to the environment model, there are initial values and value ranges defined
for each of variables in Vg),. The initial values of the local variables as well as the
interval bounds of their value ranges are defined through specific constants. As with the
environment model, several notations specific to the technical system model must be
introduced in order to allow a better handling of these constants and variables throughout
this analysis. In each notation on the left side there is the name of the constant or
variable as it is defined in the PrIiSM language. This name is mapped to the corresponding
mathematical notation on the right side. Similar to the notations introduced for the
environment model, the mathematical notations pertaining to the technical system model
are consistent with and extend the notations introduced in Section 3.1 and Section 4.2.
These notations are effective for the remainder of this work.

Listing 4.6 depicts the local variables used in the PRiSM robot module, while Notation
4.5.3 introduces a mapping to the corresponding notations used henceforth in these thesis.

180

4.5. System Design

1 Dl == e e e e e
2 // -- ROBOT MODULE
3 Jfj ===========c========================c========c=============
1 module robot
D
6 // Local Variables
rd // ___
8 // current robot coordinates
9 xR : [0..maxpos] init xR_Init; // position on lane

10 yR : [0..n-1] init yR_Init; // lane

11

12 // current robot velocity
3 vR : [0..vR_Max] init O;

SIS

// robot state {IDLE_R, ACCEL_R, DRIVE_R, BRAKE_R, STOP_R}

D e e e e
0
£l

: [IDLE_R..STOP_R] init IDLE_R;

7

: // observed obstacle lane

9 y01_Observed : [0..n-1] init y01_Observed_Init;

0
21 // predicted obstacle lane
22 y01_Predicted : [0..n-1] init y01_Predicted_Init;
25
24 // Module Commands
25 A
26 J0 ooo
27
28 endmodule
29

Listing 4.6: Mobile Service Robot: Local Variables in the Description of the State of
the Technical System Model.

Notation 4.5.3. The following mapping correspondence is defined for the local variables
used in the PRISM robot module, which describe:
e the current robot coordinates:

(.I’R, ?JR) d:ef (meyR)a TR € [07 maxpos], YR € QL(me

the current robot velocity:

def R
vR = vg, vg € [0, v,

the robot’s observation through its sensors of the lane on which the dynamic
obstacle O is currently situated:

def 0O, 01
yO]iObserfued = Yobserved: YObserved S QLane

the robot’s prediction of the lane on which the dynamic obstacle O; will be situated
in the next computation step:

. def 0O, O
yOJ 7P’f’€dZCt€d = Ypredicted» YPredicted € QL‘”L@

Notice that the variables which describe the robot observation y9;.,,..; and the robot
prediction Y9 ;.4 Of obstacle Oy’s lane take values from the same sample space Qzgne
as the variable yg, which models the current lane of the robot.

Listing 4.7 shows the constants that are used to define the initial values and the interval
bounds for the local variables of the robot module. Among the defined constants, there
are several which are used to describe the robot’s observations, the robot’s predictions

181

Chapter 4. Solution Concept

and its environment assumptions with respect to the lane changing behavior of the
dynamic obstacle O;.

(IR lo S, BTN I

int yR_Init

int xR_Goal = 100; // robot goal coordinates
int yR_Goal = 1;

double mr = 1; // rate that the robot moves

int vO0_MaxAssumed = 2; // maximum assumed obstacle velocity

double p_ILC_Assumed = 0.01; // assumed probability for Illegal Lane Change (ILC)
double p_RLC_Assumed = 1/3; // assumed probability for legal Right Lane Change (RLC)
double p_LLC_Assumed = 1/3; // assumed probability for legal Left Lane Change (LLC)
double p_NLC_Assumed = 1/3; // assumed probability for No Lane Change (NLC)

Listing 4.7: Mobile Service Robot: Constants used in the Description of the the

State of the Technical System Model.

Notation 4.5.4. The following mapping correspondence is defined for the constants of the
PRrisM robot module, which describe:
e the robot’s sensor horizon:

182

hR % h

the specific maximum velocity of the robot:

def
vR_Max = v,

the initial values for the robot’s coordinates:

(zR_Init, yR_ Init) o ($§n’ta yﬁw’t)

the coordinates of the robot’s destination:

('IRf GOGZ? ny GOGZ) d:ef (:L‘]g’oal7 ygoal)

the initial value for the robot’s observation of obstacle O; lane:

yO1__Observed__Init def ygismedfm,g

4.5. System Design

e the maximum assumed obstacle velocity for obstacle Os:

def
v0_MazAssumed = v 1voumed

e the assumed probabilities for obstacle O; to execute an illegal lane change (ILC) by
jumping over several lanes, for obstacle O; to execute a legal lane change to its left
lane (LLC), for obstacle O; to carry out a legal lane change to its right lane (RLC),
and for obstacle O; to maintain its lane also denoted as no lane change (NLC):

p ILC Assumed def pﬁ{;ﬁbme y p LLC Assumed df pﬁ?sgmed
p RLC Assumed phte » NLC Assumed & phLe

e the initial value for the robot’s prediction of obstacle O; lane:

yO1_Predicted_Init %< yQt o0

The behavior of the technical system model is described through the PRISM commands
of the robot module. An excerpt of the set of commands pertaining to the robot module
is shown in Listing 4.8. The robot module has five possible states IDLE R, ACCEL R,
DRIVE R, BRAKE_ R, and STOP_R. Initially, as the robot has not yet started to move, the
robot module is in state IDLE_R. At the same time, this state is also the final state, in
which the automaton enters when the robot reaches its destination. The mobile service
robot is commissioned to drive towards a given destination (FRS8). As long as the robot
has not reached its maximum velocity, the robot module remains in the state ACCEL_R
(FR8.1). The robot drives with maximum velocity, as long as no collision danger is
detected, i.e., the robot module enters the location DRIVE_R and remains there for as
long as possible (FR8.2). Should the robot detect a collision danger or should it approach
its destination, then the robot module enters the location BRAKE_R (FR9.1 and FR12),
which enables the robot to reduce its velocity, and eventually, come to a standstill (state
STOP_R).

183

Chapter 4. Solution Concept

1 [l ============s=c====s===s===s===c=s-=====s-o-==sssoss=ssso=os
2 // -- ROBOT MODULE

3 A e e e e Rttt e
4 module robot

5

6 // Local Variables

7 e E B R R BB S s L EE L b LS e e e e e E e e e
8 //

9
10 // Module Commands
11 A e
12 // [1]1. IDLE -> IDLE:
13 A e
14 [move]l] sR=IDLE_R & (!'robot_dest_reached | collision_danger)
15 -> mr:(sR’=IDLE_R) & (y01_Observed’=y01);

16

17 // [2]. IDLE -> ACCELERATE:

18 A e e e e it
19 [move] sR=IDLE_R & (!'robot_near_dest & !collision_danger & !robot_cruise_vel_reached)
20 -> mr:(sR’>=ACCEL_R) & (y01_Observed’=y01);
21
22 // [3]. ACCELERATE -> ACCELERATE:
23 e e S e e e e e e e Lt e S e e e
24 [move] sR=ACCEL_R & (!robot_near_dest & !robot_cruise_vel_reached &
25 (tcollision_danger | obstacle_passed_by)) & (xR+vR+1<maxpos)
26 -> mr:(sR’>=ACCEL_R) & (vR’=vR+1) & (xR’=xR+vR+1) & (y01_Observed’=y01);
27
28 I wca
29
30 endmodule
31

Listing 4.8: Mobile Service Robot: Excerpt of the Set of Commands in the Technical
System Model.

1 B

2 // -- ROBOT MODULE

3 [=ccemmmcccossssssssssss s eSS S S S S OO EECooSSSSSSS S S SSS

1 module robot

5

6 // Local Variables

7 Jf ======ssccsssssssssssssssssssssSssssSoooooooooooososssoooss

8 A oo

9

10 // Module Commands

11 AR RO L R L L L L L L L LE R LI E L LT LECEL LT EL L

12 70 oos

13

14 // [18] Assumed probability distribution for obstacle to leave lane 0
15 [move]l y01_Observed=0 -> p_ILC_Assumed:(y01_Predicted’=2) +

16 (1-p_ILC_Assumed)/2:(y01_Predicted’>=1) +

17 (1-p_ILC_Assumed)/2:(y01_Predicted’=0);

18

19 // [19] Assumed probability distribution for obstacle to leave lane 2
20 [move] yO01_Observed=2 -> p_ILC_Assumed:(y01_Predicted’=0) +
21 (1-p_ILC_Assumed)/2:(y01_Predicted’=1) +
22 (1-p_ILC_Assumed)/2:(y01_Predicted’=2);
23
24 // [20] Assumed probability distribution for obstacle to leave lane 1
25 [move] y01_Observed=1 -> p_LLC_Assumed:(y01_Predicted’=0) +
26 p_RLC_Assumed:(y01_Predicted’=2) +
27 p_NLC_Assumed:(y01_Predicted’=1);
28
29 endmodule

Listing 4.9: Mobile Service Robot: Assumed Probability Distribution defined in the
Technical System Model for Obstacle Lane Changing Events occurring
in the Environment Model.

An alternative collision avoidance maneuver to braking to a standstill in case of
collision danger is changing to a safe lane. The mobile service robot is able to detect a
safe lane and change to it in case of collision danger (FR12.1). This is justified by the
purpose of the mobile service robot, i.e., to autonomously reach their destination and to
cover as much ground as possible in the process before having to brake. Remember that a
lane is considered to be safe if no visible obstacles are detected inside the region spanned
by the robot’s collision distance. The robot can use the opportunity of changing to a safe

184

4.5. System Design

lane and resume accelerating in order to drive further, rather than trigger the emergency
brake. However, if no lane change is possible, then the collision danger persists and the
robot is forced to brake until it comes to a full stop, i.e., the robot module enters the
state STOP_R. As long as the collision danger persists and no other target safe target lane
is detected, the robot remains in a state of rest, i.e., the robot module maintains the
state STOP_R (FR14).

Notice that even in case of collision danger and with no other safe target lane detected,
the mobile service robot has a further alternative before braking to a standstill. Thus,
the robot is able to check whether it can drive further, albeit with a reduced velocity
(FR13.1 and FR13.2). This accounts for the possibility that the obstacle representing
the collision danger may reduce its speed, thus allowing the robot to drive further with
reduced velocity, rather than braking to a full stop. If it cannot drive further with
reduced velocity, then the robot applies the brakes until it reaches a full stop (FR13.3).
While the robot is braking or after the robot has reached a standstill due to collision
danger, it may happen that another lane becomes safe to move on (FR8.4 and FRS.5).
The robot then changes to the safe target lane and continues its drive until it reaches its
destination.

In order to assess which lane is safe, the robot module uses predictions of the lane
on which obstacle O; will find itself in the next computation step based on the robot’s
observations of the obstacle lane in the current step. Notice that the robot updates its
observations of the obstacle lane at each transition that takes place between the between
the states IDLE_R, ACCEL_R, DRIVE R, BRAKE R, and STOP_R of the robot module. Listing
4.9 shows the PRISM commands of the robot module which are used to compute the
robot’s predictions with respect to the obstacle lane. Notice that the computation of
the robot’s prediction of the obstacle lane occurs probabilistically based on assumed
probability distributions, that define the probability of an illegal lane change carried out
by obstacle Oy, the probabilities that the obstacle O; executes a legal lane change to the
right lane and respectively to the left lane, as well as the probability that the obstacle
O1 keeps its current lane.

4.5.3. Design Time Verification

For the design-time verification, the overall system model is verified against the extended
safety requirement ESR2, which is formally specified in Table 4.6. The overall system
model, consisting of the parallel composition between the technical system model and
the environment model, is modeled as an MDP in the PRIsM modeling language. The
extended safety requirement ESR2, formally specified in Table 4.6, is translated as a
multi-objective property in PCTL and verified with the PR1SM model checker. Table 4.7
shows the multi-objective property alongside the formal specification of ESR2, together
with its verification result.

185

Chapter 4. Solution Concept

Table 4.7.: Mobile Service Robot: Verification of Extended Safety Requirement ESR2
expressed as Multi-objective Property.

ID Formal Specification Multi-objective Property | Verification
Result
ESR2 | P<oo1(F lllegalLangeChange) | multi(P<= 0.01 [F v

— P>0.99(G = ActiveCollision) | IllegalLaneChange] ,
P>=0.99 [G -
ActiveCollision)

4.5.4. Analysis of the Environment Assumptions

This section carries out an analysis of the environment assumptions defined explicitly
during the system design-time. The goal of this analysis is to map the environment
assumptions on the technical system model SM and the environment model EM and
use this mapping to construct the respective environment assumptions monitors.

This analysis is carried out on an exemplary basis, i.e., not all environment assumptions
are taken under analysis. The considered example is environment assumption of the
extended safety requirement ESR2 in Table 4.6, which covers the illegal lane changing
behavior of obstacle O;. For the sake of simplicity, ESR2 is reiterated in Equation (4.35):

P-o.o1(F IllegalLange Change) — P>g.99(G = ActiveCollision) (4.35)

Remember that informally, ESR2 requires that if the visible dynamic obstacle O,
executes an illegal lane change with a probability of at most 0.01, then with a probability
of at least 0.99 the robot shall not cause an active collision with obstacle O;.

Using Definition 4.4.3 and Definition 4.4.1 of the first-order predicates for illegal lane
change and active collision, Equation (4.35) can be rewritten as Equation (4.36):

Peoor[F ([yo, (t) — yo, (t + 1)| > 1)] = P50.09[G ((vr == 0) V =((yr == yo,)A

(—en < 70, —) A (10, — 7 <)) 20
where yo, (t) and yo, (t + 1) represent the current lane of obstacle Oy at the consecutive
steps ¢ and respectively ¢ + 1.

In order identify the elements of ESR2 and understand their semantic, the rewritten
ESR2 in Equation (4.36) must be matched with the general formal specification for
extended safety requirements given in Definition 4.4.7 in Section 4.4.5. Thus, the
following elements of ESR2 are identified:

F (lyo, (t) — yo, (t + 1) > 1) represents the environment assumption clause,

0.01 is the upper bound of the environment assumption’s probability,

e G ((vp==0)V=((yr == y0,) N (—cr < 20, —2r) N (z0, — xr < CR))) represents
the main clause of the extended safety requirement ESR2, and

0.99 is the lower bound for the probability of main clause of ESR2.

186

4.5. System Design

Notice that the environment assumption P<qo1[F (|yo,(t) — yo,(t + 1)] > 1)] can be
rewritten as:

P IF (Jyo,(t) = yo, (t +1)] > 1)] < 0.01 (4.37)

In Equation (4.37), the upper bound for the environment assumption is computed
through the probability distribution function P#M that is defined in the technical system
model SM. This function is used by the robot to compute the assumed probabilities of
occurrence for the events which describe the lane changing behavior of obstacle O; in its

environment. The probability distribution function PPM is defined in Equation (4.38):

Lane

P[ﬁi\ge : D0m<y811)semed) X Dom(yg;edicted) — [07 1]

NLC SM __
P Assumed> A =0

Lane
LLC SM __
pSM O " O1 t 1)) = PAssumed> ALane =1 <438>
Lane(yObser'ued()7yPredicted(+)) - RLC ASM . 1
P Assumed> Lane —
ILC SM
PAssumed> |AL(me| > 1

o o : o o
where Aiﬁe = yOll)served (t) _yP;edicted<t+1)' Notice that Dom(yOg)semed) and D0m<yP;edicted)
are the domains of the variables y9}.....; and respectively y9% ... with Dom(y9h..rved) =

O
Qrane and Dom(Yp, gicted) = 2 Lane-

The probability distribution function Pf¥ is modeled with state variables of the

Lane
technical system model SM. Thus, PfM takes as input the lane of obstacle O; at step ¢
as observed by the robot, y9t...... € VEM and the lane of obstacle Oy at step t + 1 as
predicted by the robot, y%. .. € VEM The output of the probability distribution
function is modeled with the constants pﬁ@imed?pﬁgsimewpﬁégmewpgiﬁmed < Vﬁ%umed?
which represent the assumed probabilities for obstacle O; to execute an illegal lane
change, to execute a legal lane change to its left lane, to carry out a legal lane change to

its right lane, and to maintain its lane also denoted as no lane change.

From a functional point of view, the semantic of the probability distribution function
PSM s as follows. The robot observes that obstacle Oy is situated on lane y9).... .
at step ¢ and predicts that the obstacle will occupy the lane y%* ;. .., at computation
step t + 1. Notice that, in case AYM £ 0, the probability function Pf¥ denotes the
assumed probability with which obstacle O; changes from the observed lane 49! . . to
the predicted lane Y92 jieq in the next computation step ¢ + 1. In case AFY =0, then
the probability function PfM expresses the assumed probability with which obstacle O;

maintains its current lane in the next computation step ¢ + 1.

The environment assumption clause in Equation (4.37) asks whether obstacle O,
eventually executes an illegal lane change. The lane changing behavior of obstacle Oy is

187

Chapter 4. Solution Concept

governed by the probability distribution function PEZM which is used in the environment

model EM. The probability distribution function is defined in Equation (4.39):

PEM " Dom(yo,) x Dom(yo,) — [0,1]

pnie, AM =0

PrLLc, AE%E =1 (4'39)
P (yo, (t),y0,(t + 1)) = Lo

PRLC, ALane =-1

piLc, ‘Ag%e‘ >1
where APM = yo (t) — yo, (t + 1). Notice that Dom(yo,) is the domain of the variable
Yo, with Dom(yo,) = QLane-

The probability distribution function PEM is modeled with state variables of the
environment model EM. Thus, PEM takes as input the lane of obstacle Oy at steps ¢ and
t+1, yo, € Vem. The output of the probability distribution function is modeled with
the constants p;.co, prrc, Proc, PnLe € Veum, which represent probabilities of occurrence
for obstacle O; to execute an illegal lane change, a legal lane change to its left lane, a
legal lane change to its right lane, or to maintain its current lane also denoted as no lane
change.

From a functional point of view, the semantic of the probability distribution function
PEM g as follows. Obstacle O is situated on its current lane o, at step t. Notice that,

Lane

in case APM £ (), the probability function PEM denotes the probability modeled in
the environment model EM with which obstacle O; changes from its current lane to
another lane in the next computation step ¢ + 1. In case A¥M = () then the probability
function PEM expresses the modeled probability in the environment model EM with
which obstacle O; maintains its current lane in the next computation step ¢ + 1.

In this way the environment assumption in Equation (4.37) can be rewritten as:

PLEaAT{e(yOl (t)7 Yo, (t + 1)) S P[i%e (ygll)served (t)v yg;edicted(t + 1)) (440)

The environment assumption in Equation (4.37) is in fact an instance of the more
general form in Equation (4.41). In Equation (4.41), X represents a feature of the
environment which can be observed and about which assumptions can be made during
system design-time, e.g., the lane of an obstacle in the environment of the mobile service
robot. For the environment feature X, the current value, the observed value and the
predicted value are modeled by the variables =, T opserved, and respectively pregicied-

P)]?M(-T(t), -T(t + 1)) < P)EM(xObserved(t)a xPTedicted(t + 1)) (441)

4.5.5. Formal Definition of Environment Assumptions Monitors

Environment assumptions monitors are used to check the validity of environment assump-
tions during system test and requirements validation. The environment assumptions

188

4.5. System Design

monitors Mgy run in parallel to the implemented system IS and make observations of
the controlled environment C'E. During the observation of the controlled environment, an
environment assumptions monitor produces a specific monitor observation trace, which
is then checked against the respective environment assumption.

In order to model the monitor observations, the environment assumptions monitor
can introduce its own set of variables. To give a general definition for the environment
assumptions monitors, further notations are introduced that are considered effective
hereafter in this thesis.

Notation 4.5.5. The set of variables of the implemented system IS is denoted Vig.
Similarly to the technical system model SM, the Vjg is partitioned into the following
subsets:

VIS - Vlnternal U VAssumed U VObser'ued U VPredzcted

where:
o VB . C Vi is a set of variables which describe exclusively the state of the
1mplemented system IS,
o VI 1 C Vg is a set of variables which describe assumed facts about the future
behavior in the environment of the implemented system 1.S.
o VL ea C Vis is a set of variables which describe the observations of the imple-
mented system IS of the current behavior in its environment.
o VB . ..a C Visisaset of variables which describe the predictions of the implemented
system .S of the future behavior of the system’s environment.
Since the implemented system I.S is a concrete implementation of the technical system
model SM (cf. Figure 4.2 in Section 4.1), the following relation exist between their
respective set of variables:

Vlnternal anternal
VAssumed = VAssumed
VObserved = VObserved

VPredzcted = VPredzcted

The set of variables which model the relevant features of the controlled environment
CFE is denoted Vgg. Since the controlled environment C'E is a concrete realization of
the environment model EM (cf. Figure 4.2 in Section 4.1), the following relation exist
between their respective set of variables:

Ven € Veg

The set of variables introduced by the environment assumption monitor M, is denoted
VY, - [|

¥

Based on the analysis carried out in the previous section, this section proposes a
method to derive runtime monitors for environment assumptions. The method is shown
in Figure 4.12 and is rooted in the RMEA concept depicted in Figure 4.2 (cf. Section
4.1.2).

189

Chapter 4. Solution Concept

sM SM 4
vAssumed D Xissumed XEm € VEM
c = c
M obs
Vis > Xl qumed ————— xo Xcg €V
Assumed Assumed X observed CE CE
Legend:
SM — system model EA — set of environment assumptions EM — environment model
IS —implemented system 1 € EA —an environment assumption | CE — controlled environment
formulated about the environment
XM med € Vi imea - Variable defined in | feature X Xgm € Vg - variable defined in EM that
SM that describes an assumed fact about | Mg, — set of runtime monitors for the describes the behavior of feature X in
the future behavior of feature X in the environment assumptions EA the environment model
environment model My, € Mg, — runtime monitor for the
environment assumption Xcg € Vg - variable defined during
x5 cumed € VA sumea - variable defined in system test that describes the behavior
. M .
IS that describes an assumed fact about xogﬁsemed € Vy,,- variable defined of fgature X in the controlled
the future behavior of feature X in the o . . environment
. additionally in the environment
controlled environment assumptions monitor My, to model the
) P A L obs — a function that maps the variable
monitor’s observation of variable x.g . My
Xcg onto the variable x,,/

Figure 4.12.: Construction Method for Runtime Monitors of Environment Assumptions.

At design-time, the environment assumption v is explicitly formulated using variables
defined in the technical system model and in the environment model. Specifically, for
an environment feature X the environment assumption 1) uses the variable 25 = €
yiM . and the variable zy € Vi to compare the future behavior assumed about
feature X in the technical system model with the actual behavior of feature X described
in the environment model.

In system test, the runtime monitor M, of the environment assumption ¢ introduces
additional variables in order to observe the behavior of environment feature X in the
controlled environment. The behavior of feature X in the controlled environment is
encoded through the variable x¢g, and its observation is carried out in the runtime
monitor M, through the variable x]gg‘;med € Vu,. Thus, the runtime monitor M,
compares the future behavior assumed about environment feature X in the implemented
system with the actual behavior of feature X exhibited in the controlled environment.
Notice that since the implemented system is a concrete realization of the technical system
model, the environment assumptions defined explicitly and used during system design
are also adopted in the system implementation, i.e., %~ =254 = = Based on the

construction method depicted in Figure 4.12, Definition 4.5.1 gives a general description
of runtime monitors for environment assumptions.

Definition 4.5.1 - Environment Assumptions Monitor

Let X be a feature of the controlled environment CE. Let xpy € Ve be a variable
which describes the behavior of feature X in the environment model EM. Let 254 . €
ViM 4 be a variable which describes in the technical system model SM an assumed

fact about the behavior of X in the environment model EM. Let 2%~ . € VI be

190

4.6. System Implementation

a variable which describes in the implemented system IS an assumed fact about the
behavior of environment feature X in CE. Let xcp € Vg be a variable which describes
the behavior of feature X in C'E. Let > be a binary comparison operator in {<, <, >, >}.
Let ¥ be an environment assumption defined as:

1/) : miﬁium@d DM TEm (442)

Then, the corresponding environment assumption monitor My is defined as:
LIS M
Mw " T Assumed Pl xOlﬁsemed (443>

where xﬂggiemed € Vi, represents the observation of x¢g through the function obs:

obs : Dom(zcp) — Dom(xgg‘;md) (4.44)

M,
xOl:i’erved = Obs(‘rCE)

4.6. System Implementation

This section presents the implementation of the artifacts developed in system design:
implementation of the technical system model (Section 4.6.1), realization of the environ-
ment model (Section 4.6.2), and implementation of the environment assumption monitors

(Section 4.6.3).

4.6.1. Implementation of the System Model

The technical system model is described in Section 4.5.2 and, together with the environ-
ment model is part of the overall system model. The technical system model describes
the behavior of the mobile service robot. Remember that the robot uses an assumed
probability distribution to make predictions about the lane changing behavior of the
dynamic obstacle Oy in its environment. Based on the assumed probability distribution
for different lane changing events and the current observed state of obstacle Oy, the robot
predicts the lane on which the dynamic obstacle might move in the next computation
step (cf. Section 4.5.2). The robot predictions are used in the calculation of the robot’s
collision distance and its determination if a collision danger exists, which in turn informs
the robot’s subsequent actions, e.g., braking in case of collision danger.

The implementation of the technical system model is realized with the help of the ROS
2 framework (cf. [MFG*22]). The behavior described by the MDP of the mobile service
robot is implemented in a C++ ROS 2 node. This ROS 2 node controls a Robotino
mobile platform simulated in the GAZEBO? simulation software.

3http://gazebosim.org/

191

http://gazebosim.org/

Chapter 4. Solution Concept

4.6.2. Realization of the Environment Model

The environment model is described in Section 4.6.2 and is part of the overall system
model. The environment model describes the behavior of the obstacles in the environment
of the mobile service robot. The motivational example presented in Section 4.2 features
a single dynamic obstacle in the robot’s environment. Remember that the dynamic
obstacle chooses in a nondeterministic manner between forwards movement on its current
lane, changing to another lane, and stopping. These events are in turn governed by
specific probability distributions. Therefore, the formalism used for the description of
the environment model is an MDP. A C+4 ROS 2 node implements the behavior of the
dynamic obstacle described by this MDP.

The physical environment, consisting of a road with three lanes is built in the
simulation software GAZEBO. Similar to the mobile service robot, the dynamic obstacle is
represented by a Robotino* mobile platform placed in the physical environment simulated
in GAZEBO. The Robotino platform representing the dynamic obstacle is controlled by
the ROS 2 node that implements the obstacle’s behavior.

4.6.3. Realization of the Environment Assumptions Monitors

In the revisited motivational example, the environment assumptions defined during
system design are probabilistic in order to account for the behavioral uncertainty in the
system’s environment. The method presented in Section 4.5.5 for the construction of
environment assumptions monitors is applicable to non-probabilistic and probabilistic
environment assumptions. Consider as an example the lane changing behavior of obstacle
Oq, and specifically the environment assumption with respect to illegal lane change
events produced by obstacle O;. The environment assumptions monitor observing illegal
lane change events compares the assumed probability of occurrence with the relative
frequency of occurrence of such events in the environment of the mobile service robot.
Thus, for the realization of runtime monitors for probabilistic environment assumptions,
the notion of observed relative frequency of occurrence must be introduced. This notion
is described in Definition 4.6.1, while in Definition 4.6.2 it is shown how the notion of
observed relative frequency of occurrence is used in the realization of runtime monitors
for probabilistic environment assumptions.

Definition 4.6.1 - Observed Relative Frequency of Occurrence

Let X be a feature in the controlled environment C'E. Let x¢r € Ver be a variable which
describes the behavior of feature X in CE. Let ¢!, o D€ a specific event with respect to
rop. Let nopsered(€l,,,) be the number of times that event e, has been observed in
the controlled environment C'E throughout the observations history. Then the observed
relative frequency of occurrence for the event e;CE in the environment C'E' is computed as

“https://robots.ros.org/robotino/

192

https://robots.ros.org/robotino/

4.7. System Test

the ratio between the number of event observations of eiCE and the number of all event
observations regarding x¢p in the observations history:

N Observed (e;zv cE)

Zj N Observed (ejl CE)

fObserved = 77:7.j eN (445>

Definition 4.6.2 - Realization of Runtime Monitors for Probabilistic Environ-
ment Assumptions

Let X be a feature of the controlled environment CE. Let gy € Vey be a variable
which describes the behavior of feature X in the environment model EM. Let €
be a specific event modeled in the environment model EM with respect to xgy. Let
P imed € Vi imeq De the probability of occurrence for the event e’ assumed in the
technical system model SM. Let pgy be the probability of occurrence for the event
¢! modeled in the environment model EM. Let < be a binary comparison operator in
{<,<,>,>}. Let ¢ be a probabilistic environment assumption formulated with respect

TEM
to the event e} :
EM

¢ : pi{gumed X PEM (446>

Let zcrp € Ve be a variable which describes the behavior of feature X in CE. Let

€, ., be a specific event in the controlled environment C'E corresponding to the event e;EM

modeled in the environment model EM. Let p&t € VI be the probability of

%

occurrence for the event ¢;, assumed in the implemented system I.5. Let fo €V ’
be the observed relative frequency of occurrence for the event e, . Then the runtime
monitor M, of the environment assumption v is realized by comparing the assumed
probability of occurrence with the observed relative frequency of occurrence for the event
Con

M,
Mw : p[S > fObﬁerved (447)

Assumed

The monitor is built as a separate ROS2 node which runs in parallel to the ROS2
node that controls the mobile service robot. The monitor makes observations of the
robot’s environment by taking in the sensor data received by the robot and evaluates if
the respective environment assumption is still valid or not.

4.7. System Test

In Section 4.1.2, two quality assurance goals have been specified for the phase of system
test: test of the implemented system, which is discussed in Section 4.7.1, and test of the
environment assumptions monitors Mga, which is presented in Section 4.7.2.

193

Chapter 4. Solution Concept

4.7.1. Testing the Implemented System

During system test, the implemented system IS is stimulated with test input data and
executed in the controlled environment C'E. The goal is to check whether IS satisfies the
safety requirement ¢ throughout its execution in C'E. The test input data is provided by
test cases designed by test engineers during the system test phase. Another approach to
built relevant test cases is through counterexample generation (cf. Section 2.5.2).

For the revisited motivational example the test cases are generated via model-checking
using the safety requirement specification P> .99(G —ActiveCollision). Table XXX depicts
the test cases used for the test of the implemented system.

4.7.2. Testing Environment Assumptions Monitors

The environment assumptions monitors Mg, serve to check if the set of environment
assumptions FA defined at design-time are valid during the execution of the implemented
system IS in the controlled environment C'E. During system design, the explicitly defined
environment assumptions have been used in the design-time verification of the technical
system model SM with respect to the safety requirement ¢ (cf. Section 4.1.2). Testing
the environment assumption monitors Mg, involves the construction of test cases that
reflect behaviors of the environment which would invalidate the respective environment
assumptions.

For the environment assumption P<g 1 (F' IllegalLangeChange) the runtime monitor
is defined as follows:

The test cases defined for the environment assumptions monitor are depicted in Table

YYY:

4.8. Requirements Validation

Two quality assurance goals have been defined for the requirements validation phase
in Section 4.1.2: validation of the safety requirement ¢ and validation of the set of
environment assumptions FA. Rather than performing validation of both the safety
requirement ¢ and the environment assumptions FA, the concept of this thesis uses
runtime monitoring to carry out only the validation of the environment assumptions
EA (cf. Section 4.8.1). The rationale behind this is as follows: in case the environment
assumptions are valid, then due to the design-time verification results and the system
test results, the system fulfills also the system safety requirements. If the environment
assumptions are not valid then no statement can be made as to whether the system
fulfills its safety requirement or not.

4.8.1. Environment Assumptions Validation via Runtime Monitoring

For the validation of the environment assumptions, the system implementation described
in Section 4.6.2 is considered to be the tested system T'S. In turn, a single dynamic
obstacle is present in the operational environment OF, whose lane changing behavior

194

4.9. Summary

is not governed by a given probability distribution as in the controlled environment
CFE. Instead, the dynamic obstacle randomly changes between the three lanes of the
environment simulated in GAZEBO. The validation of the environment assumptions
defined at system’s design-time is done exemplary for the environment assumption
Po.01(FllegalLangeChange). The corresponding monitor requires that the relative
frequency of occurrence with which the dynamic obstacle eventually carries out an illegal
lane change in the robot’s environment is at most 0.01. The environment assumption
monitor is implemented as a C++ ROS 2 node, which runs in parallel to the ROS2 node
that controls the mobile service robot. The monitor accesses the input sensor data received
by the robot from its environment and computes continuously the relative frequency that
the dynamic obstacle executes an illegal lane change. The relative frequency is computed
over a maximum number of 200 seconds.

4.9. Summary

The goals of this chapter were (1) to find a method to explicitly and formally specify
environment assumptions at design-time and (2) to develop an method to build runtime
monitors using the formal specification of the environment assumptions defined at design-
time.

The method for the explicit and formal specification of environment as-
sumptions is integrated with the system development process (cf. Section 4.1.1) and
consists of the following steps that were presented in detail in Section 4.4:

1. Definition of functional system requirements through the requirements elicitation
and analysis phase carried out on a high-level description of the system under
development,

2. Identification of safety hazards through a HARA analysis carried out on the
high-level description of the system under development,

3. Identification of the safety requirements and the environment assumptions that
cover the respective safety hazards,

4. Extension of the system safety requirements with the environment assumptions
using a specifically designed requirements pattern,

5. Formal specification of environment assumptions using a fragment of PCTL,

6. Design of the technical system model and the environment model using functional
system requirements and extended safety requirements as input, and

7. Design-time verification of the technical system model and the environment model
against the system safety requirements under the consideration of the explicitly
defined environment assumptions.

The method for the construction of runtime monitors for environment
assumptions is rooted in the RMEA concept (cf. Section 4.1.2) and consists of the
following steps that were presented in detail in Section 4.5:

1. Analysis of the environment assumptions on an exemplary basis,

2. Mapping the environment assumptions on the technical system model and the

environment model, i.e., identifying the variables defined in the technical system

195

Chapter 4. Solution Concept

model and respectively the environment model that contribute to the formulation
of the respective environment assumptions,

3. Mapping the variables identified in the technical system model on the implemented
system,

4. Definition of variables that model the observations of the controlled environment
carried out by the runtime monitor, and

5. Formal definition of the environment assumption monitor using first-order logic.

196

Chapter 5.

Case Studies

5.1. Case Study 1: Mobile Service Robot 198
5.1.1. Evaluation in the Operational Environment in the iserveU Project 198
5.2. Case Study 2: Automotive System Function for Accurate Vehicle Speed

Estimation 203
5.2.1. Overview of Vehicle Speed Estimation Function 204
5.2.2. Requirements Elicitation and Analysis 205
5.2.3. Safety Analysis 206
5.2.4. System Designo L 213
5.2.5. System Implementation 225
5.2.6. System Test 225
5.2.7. Requirements Validation, .. 229
5.3, Summary . o.o.o. ..o 231

In Section 3.10.2 the research questions which are to be tackled by this work were
introduced and motivated. Chapter 4 addressed RQ-1 and RQ-2 and proposed the RMEA
concept as an answer to the two research questions, which consists of a method for the
explicit and formal definition of environment assumptions and a method for using this
formal definition for the construction of environment assumptions monitors.

The goal of this chapter is to address the research RQ-3 and evaluate the feasibility
of the RMEA concept on real-world systems. In order to achieve this goal, this chapter
produces the following two artifacts as output:

Evaluation of the RMEA Concept on a Mobile Service Robot. The first artifact
is the evaluation of the RMEA concept on the first case study described in
this chapter: a mobile service robot method commissioned to to carry out a
transportation task autonomously towards a predefined destination. This artifact
contributes directly to research question RQ-3.

Evaluation of the RMEA Concept on an Automotive System Function. The
second artifact is the evaluation of the RMEA concept on the second case study
presented in this chapter: an automotive system function in charge of estimating
and displaying the speed of a moving vehicle on its instrument board. This artifact
contributes directly to research question RQ-3.

197

Chapter 5. Case Studies

In order to create these artifacts, the chapter is structured as follows. Section 5.1 presents
the first case study built around the mobile service robot, while Section 5.2 describes
the second case study constructed around the vehicle speed estimation function. Section
5.3 concludes the chapter with a summary of the evaluation results in the two presented
case studies.

5.1. Case Study 1: Mobile Service Robot

The first case study of this thesis is carried out on the basis of a mobile service robot
commissioned to drive autonomously to a given destination without actively causing any
collision with obstacles in its physical environment. Since the modeling of the robot’s
behavior and that of its environment as well as the implementation of the environment
assumptions monitors has been discussed in the previous chapters, this section focuses on
the evaluation of the environment assumptions monitors in the operational environment
(Section 5.1.1).

5.1.1. Evaluation in the Operational Environment in the iserveU
Project

The evaluation took place in the scope of a use case defined in the iserveU project!.
Before going deeper in the evaluation of the environment assumption monitor, a short
presentation of the iserveU project, its goal and use cases, is in order. This project had
as a goal the prototype development of a mobile service robot as an intelligent transport
system and the necessary technologies for the execution of logistics tasks in a hospital
environment (cf. [GRR'16]). Four use cases were considered in the scope of the project
(cf. [GRR*16]):

planned repetitive transport tasks,

unplanned (ad-hoc) transport tasks,

guidance services and cooperative transport tasks, and

remote management and control to support the mobile service robot in case
unforeseen situations appear in the environment that are not manageable by the
robot.

In the first use case, planned repetitive tasks were transportation tasks that were
planned in advance and executed on a regular basis and for which the pick-up and the
drop-off points as well as the scope of the transport were fixed, e.g., transport of goods
deliveries from the truck loading bay to the hospital’s warehouse (cf. [GRR16]). The
second use case addressed unplanned (ad-hoc) transport tasks. In contrast to planned
repetitive tasks, such tasks could not be planned in advance and were related to the
transportation of consumable supplies, e.g., fetching medical material or a crate of water
from the hospital’s warehouse to a hospital ward (cf. [GRR*16]). The third use case

W=

IThe full name of the iserveU project is “Intelligente modulare Serviceroboter-Funktionalititen im
menschlichen Umfeld am Beispiel von Krankenhdusern” (Engl.: “Intelligent modular functionalities
for service robots in a human environment using hospitals as an example”)

198

5.1. Case Study 1: Mobile Service Robot

dealt with guidance services and cooperative transport tasks which the mobile service
robot was required to carry out inside the hospital. Cooperative transport tasks referred
to tasks which the mobile service robot executed in cooperation with hospital personal,
e.g., helping nurses deliver lunch to the patients on the hospital ward. Guidance services
represented services offered through the mobile service robot by which the robot escorted
patients to and from diagnostic rooms and therapy stations (cf. [GRRT16]).

The forth use case defined in the scope of the iserveU project focused on remote
management and control, which was applied to support the mobile service robot in
any unforeseen situation that appeared in the robot’s environment and which the robot
was not able to manage on its own. The scope of the forth use case has been used to
define an environment assumptions monitor for the mobile service robot and evaluate
it in the robot’s operational environment. In the iserveU project, the operational
environment of the mobile service robot has been restricted to one aisle of a hospital
ward in Katharinenhospital in Stuttgart (cf. Figure 5.1), which was populated both with
static and dynamic obstacles.

15m 7m 13,5 m

v K

Legend:

(A) — starting position

(B) — waiting room

(C) —the endpoint of hospital aisle with elevators
(D) — reception of the hospital ward

(E) — coffee kitchen

(F) —elevators

Figure 5.1.: Map of the Hospital Ward where the Mobile Service Robot has been evaluated
in the iserveU Project (cf. [GRRT16]).

In the context of iserveU, the behavior of the mobile service robot as well as that of
the dynamic obstacles have been modeled as shown in Section 3.5.3 and respectively in
Section 3.5.2, while the robot’s safety property has been specified in TCTL as shown
in Section 3.5.5. For the sake of convenience, the safety property formulated in Section

199

Chapter 5. Case Studies

3.5.5 is reiterated in Equation (5.1). Notice that Equation (5.1) is the same as Equation
(3.14) in which the notations from Notation 3.5.1 were used.

¢ AO {forall (i : int[0,n — 1)) (yr == yo,) N (xo, — TR > —CR)

A (zo, — Tr < cg) — (Vg == 0)} (5.1)

Furthermore, the environment assumption has also been specified in TCTL, as shown
in Equation (5.2).

¢ AQ {forall (i : int[0,n — 1)) (v, <v$)} (5.2)

MaxAssumed

Notice that the environment assumption considered in the iserveU project requires
that the specific maximum velocity of the dynamic obstacles in the robot’s environment
does not exceed a predefined value (cf. Equation (5.2)). This environment assumption
has been used in iserveU to compute a safety distance, also denoted as collision distance
in Section 3.1, which the robot has to maintain towards the dynamic and stationary
obstacles in its environment. The design-time verification has been carried out with
the UPPAAL model checker. In order to enable the verification of the robot’s safety
property during its operation, two runtime verification components were developed: (1)
a runtime monitor for the environment assumption and a (2) test oracle for the robot’s
safety property.

The environment assumptions monitor has been formulated as in Equations (4.4) and
(4.6) in Section 4.1.3. For the sake of convenience, the environment assumptions monitor
formulated in Section 4.1.3 is reiterated in Equation (5.3).

O O
Mw G [UMazObserved S UMaxAssumed] (53)

where U]?/IamObsemed(T) = Max;>o,telo,r] (Uoi <t>>7 VT € N.

The test oracle has been formulated for the robot’s safety property as in Equation
(3.21) in Section 3.7. For the sake of convenience, the test oracle formulated in Section
3.7 is reiterated Equation (5.4).

My : G [=((yr == yo) N (Yyr == yo) N (yr == yo0)) V (vg == 0)] (5.4)

The environment assumptions monitor has been used to validate the environment
assumption during the operation of the mobile service robot on the hospital ward, while
the test oracle has been used to check whether the robot’s compliance with its safety
property, i.e., whether the robot actively caused a collision or not during its operation.

During its evaluation on the hospital ward, the mobile service robot was tasked to
transport a package with materials from point (B) to point (E). Since its starting position
was point (A) during the evaluation, the path followed by the mobile service robot was:
(A) — (B) — (D) — (E). Notice that, the robot only passes by point (D) on its way to
point (E), since point (E) is its final destination. Point (D) was nevertheless the point
where dynamic obstacles started their movement towards point (A) or point (B), e.g. a
nurse pushing a cart with medical materials. The evaluation of the mobile service robot

200

5.1. Case Study 1: Mobile Service Robot

in the context of the remote management and control use case took into consideration
only the path from point (B) to point (E). Figure 5.2 shows the mobile service robot
during its transport assignment on its way towards point (E). During the evaluation,
personal employed in the project acted on a voluntary basis as stand-ins for nurses or
visitors on the hospital ward project personal. This was done to avoid insurance issues
and to avoid disturbing the hospital ward’s daily activities.

Mobile service robot
equipped with sensors:

laser scanner, ultrasonic,
camera, secondary radar, etc.

Package with
medical materials

Figure 5.2.: Mobile Service Robot en route from Point (B) to Point (E) on the Hospital
Ward (cf. [GRR*16]).

Several test cases have been used to carry out the evaluation. Table 5.1 depicts the
test cases used for the evaluation. Following inputs are considered for each test case:
vl - specific maximum velocity of the robot,
hg - visual horizon of the robot’s sensors,

Vs dssumed - Taximum assumed obstacles velocity,
VS arObserved - aXimum observed obstacles velocity, and

e 0§, - specific maximum velocity of dynamic obstacles.

During the execution of a test case, the robot’s current velocity and the obstacle’s
current velocity vary in their respective value domains: vg € [0,v%,.] and respectively
vo € [0,vY,,,]. The robot applied constant acceleration until it reached its v . When
it detected a collision danger or when it was approaching its destination point the
robot started to brake in order to decrease its velocity. As for the dynamic obstacles,
no restriction was placed on their acceleration or braking behavior. Instead, it was
considered that a dynamic obstacle chooses randomly its current velocity vp from the
value domain [0,v%,,]. Notice that the maximum observed obstacle velocity v$,.opserved
was equal to the specific maximum obstacle velocity v§},,, but this is not true in general.
Consider as an example an automated vehicle moving on a highway, with a specific
maximum velocity of 200 km/h, for which the maximum observed velocity is lower than
200 km/h. The test cases used during the evaluation on the hospital ward have been
generated automatically via model checking during system test (cf. Section 3.7).

201

Chapter 5. Case Studies

Table 5.1.: Mobile Service Robot: Test Cases for the Evalua-
tion on the Hospital Ward.

(1D [| b | Reosmes | vt | |
TC1 |02 |15 |02 0.2 02 |
TC2 (02 |15 |02 0.3 03 |
TC3 |02 |15 |02 | 0.25 1025 |
TC4 |02 |16 |02 0.3 03 |
TC5 (02 |14 |02 0.3 03 |
TC6 (02 |14 |02 | 0.25 1025 |
TC7 |02 |13 |02 0.3 03 |
TCs (02 |12 |02 0.3 03 |
TCY [02 12 |02 1 0.25 025 |

Each test case has been executed ten times during the evaluation. Notice that, for a
given test case, there were no two executions alike. This is because dynamic obstacles
changed their velocity randomly, which in turn had an effect on the robot’s behavior, e.g.,
the robot triggered the brake or changed to the side lane in order to avoid the obstacle.
There were two questions posed for the evaluation in the iserveU project:

1. What effect does the (in)validity of environment assumptions have on the assessment
results of the safety property during system operation time?

2. What effect does the size of the visual horizon of the robot’s sensors have on the
assessment results of the safety property during system operation time?

Figure 5.3 shows the evaluation results of the robot test cases that have been executed
on the hospital ward in the iserveU project. Notice that in test case TC1 the environment
assumption is valid, therefore no violations of the robot’s safety property took place.
In the test cases TC2 and TC3 the environment assumption has been invalidated by
the maximum observed obstacle velocity, which led to violations of the robot’s safety
property taking place during the execution of these two test cases.

Compared to test case TC2, the test cases TC5 and TC7 decrease the visual horizon
of the robot’s sensors to 1.4 m and respectively 1.3 m. Although the number of safety
property violations in TC5 is twice as large as the number of safety property violations
in TC2, the decrease in the visual range of the robot’s sensors from 1.4 m to 1.3 m in
TC5 and TC7 does not influence the number of the robot’s safety property violations in
these test cases. The same can be said about test cases TC6 and TC9, where a change
in the range of the robot sensors’ horizon did ot change the number of safety property
violations. This is not the case with test cases TC3 and TC6, where the number of safety

202

5.2. Case Study 2: Automotive System Function for Accurate Vehicle Speed Estimation

5 6 7 8 9

Test Case Number

90%

% of Safety Property Violations

N w Iy (% [<2) ~ o]
o o o o o o o
X xX X X X X X

=
o
xR

9
Q
oo I
°0
0% .
1 2 3

Figure 5.3.: Mobile Service Robot: Results of the Test Cases Evaluation on the Hospital
Ward in the iserveU Project.

property violations in TC6 is four times as large as in TC3. Similarly, the number of
safety property violations in TC5 and respectively TC7 is twice as much as the number
of safety property violations in TC2.

The answer to question (1) of the evaluation is that invalid environment assumptions
lead eventually to a violation of the robot’s safety property. The effect of invalid
environment assumptions can be counteracted if a larger upper limit for the robot’s
sensor horizon is chosen, as shown by test case TC4. With respect to question (2) of the
evaluation, no definitive answer can be given, as the number of safety property violations
stagnates in TC6 and TC9, and respectively in TC5 and TC7, or it increases drastically
in case of test cases TC3 and TC6, and TC2 and TC5 or TC2 and TC7. A reason for
this could be a cumulative effect between the invalid environment assumption and the
respective decrease in the robot’s sensor range. However, more tests need to be carried
out in order to give a definitive answer to question (2) posed in the iserveU evaluation.

5.2. Case Study 2: Automotive System Function for
Accurate Vehicle Speed Estimation

The second case study of this thesis is carried out on the basis of an automotive system

function in charge of the accurate speed estimation of a driving vehicle. This section

presents the application of this thesis’ concept introduced in Chapter 4 to the vehicle speed
estimation function. An abbreviated version of the vehicle speed estimation function

203

Chapter 5. Case Studies

has already been introduced in previous papers (cf. [AZR20, AVZR21]). Nevertheless,
for the sake of completeness of this case study’s presentation, details of the vehicle
speed estimation function presented in [AZR20] and [AVZR21] are reiterated in this
section. Section 5.2.1 presents an overview of the speed estimation function, while the
following sections discuss the specific development phases carried for this function: (1)
requirements elicitation and analysis (Section 5.2.2), (2) safety analysis (Section 5.2.3),
(3) system design (Section 5.2.4), (4) system implementation (Section 5.2.5), (5) system
test (Section 5.2.6), and (6) requirements validation (Section 5.2.7).

5.2.1. Overview of Vehicle Speed Estimation Function

Indicating the vehicle speed is a basic functionality introduced in vehicles at the beginning
of the 20" century, which gains more attention in the context of advanced driving
assistance systems and autonomous driving. This is done by a gauge installed in the
vehicle which measures and displays the instantaneous speed of the car in miles per hour
(mph), kilometer per hour (kph), or both (cf. [AZR20]). It is already possible from the
perspective of the technical feasibility to obtain precise measurements of a vehicle speed
by using high-quality reference measurement systems, e.g., inertial measurement unit
(IMU) or differential GPS (D-GPS). The integration of such measurement systems in a
series vehicle is however expensive for the automotive original equipment manufacturers
(OEMSs) and eventually cost-prohibitive for the end users. Therefore, the speed displayed
on the instrument board of a commercialized series vehicle is not a precise measurement
but an estimation of the actual vehicle speed performed with an accepted tolerance level
and without using a reference measurement system (cf. [AVZR21]).

Recent vehicle speed estimation algorithms rely on measurements of the vehicle’s
wheel speed, which can be taken with onboard wheel speed sensors. In addition to the
vehicle’s wheel speed, these estimation algorithms also use the tire circumference for
the computation of the vehicle speed. Depending on the current driving situation, the
vehicle’s tires are subject to a variety of deformations, due to the inherent elasticity
of rubber. These deformations are also influenced by nondeterministic environmental
factors, e.g., external temperature and road conditions, which make it impossible to
obtain an exact value of the tire circumference of a driving vehicle (cf. [AVZR21]).
Various approaches to estimate a vehicle speed have been patented throughout the years
(cf. [Kos94],[DGRW04],[SHL17],[CIT20]).

The vehicle speed estimation function considered for this case study has been intro-
duced in a previous paper (cf. [AZR20]). The function has been developed in the course
of the research project Accurate Vehicle Speed Estimation (Ger.: Genaue Geschwindigkeit-
sermittlung), which was carried out in collaboration with an automotive OEM. The
function uses GPS and wheel speed sensor data to carry out an estimation of the vehicle’s
tire circumference and compute the vehicle speed. The vehicle speed estimation function,
denoted henceforth as VSE, has four major components or modules: (1) module M1
- estimation of the tire circumference, (2) module M2 - plausibility check of the tire
circumference, (3) module M3 - computation of the vehicle speed, and (4) module M4 -

204

5.2. Case Study 2: Automotive System Function for Accurate Vehicle Speed Estimation

Vehicle Speed Estimation Function (VSE)

M1 M3 M4
. Tire Circumference Computation of Postprocessing of
Estimation the Vehicle Speed the Vehicle Speed

M2
Plausibility Check of
Tire Circumference

Figure 5.4.: Vehicle Speed Estimation Function: High-level Overview (cf. [AVZR21]).

post-processing of the vehicle speed curve, which includes rounding and smoothing (cf.
[AZR20], [AVZR21]). An overview of the VSE function is given in Figure 5.4.

5.2.2. Requirements Elicitation and Analysis

The requirements for the VSE function are derived from compulsory regulations. Let
Upisplay D€ the speed displayed on the dashboard of the ego-vehicle and vge, be the actual
vehicle speed. A directive of the Council of the European Economic Community imposed
in 1975 the requirement in Equation (5.5) for the speed indicated by a car’s speedometer
(cf. [Eurb]):

k
0 S UDisplay — VReal S 0.1- VReal + 4 Tm (55)
under the precondition that:
km
40 < Ve < 120 e (5.6)

The proposed vehicle speed estimation algorithm must satisfy the requirement in Equa-
tion (5.7) introduced by the assessment protocol of the European New Car Assessment
Programme in 2017 (cf. [Eura]).

k
0 S UDisplay — VReal S by Tm (57)

This requirement must be held under the assumption that the vehicle does not drive
slower than 50 kTm or faster than 120 kTm:

k
50 < Vet < 120 Tm (5.8)

Notice that the lower bound of the deviation between vpjspiay and vgey is set to
zero due to the safety reasons. This means that the vehicle speed indicated on the

205

Chapter 5. Case Studies

speedometer should never undercut the actual speed of the vehicle. The deviation
between the displayed speed and the real speed of the vehicle plays an important role in
further decisions which the driver or an assistance system may take during driving. Thus,
in case the displayed speed is lower actual vehicle speed, it is possible that the driver
or the driving assistance system might decide on a too conservative braking strategy or
may not activate the brakes at all, which may lead to a collision actively caused by the
ego-vehicle.

Besides implementation details of the VSE function, the OEM has also provided
the target vehicle configuration in the course of the project. The target configuration
has been used to derive further constraints, which define the physical limits of the tire
circumference and the physical boundaries of the wheel speed measured by the wheel
speed sensor. The minimum and maximum values of the tire circumference are denoted
tCmin and tcp,q, and represent its lower and upper physical limits. Notice that these
physical boundaries are specific for each tire profile. The VSE algorithm assumes the
following boundaries for tcgeq, the actual tire circumference:

tCMz'n S tCReal S tCMax

teymn = 2118 mm, tcpre: = 2293 mm

The physical boundaries of the tire circumference and the maximum vehicle speed

error of 5 kTm allowed by the NCAP requirement serve as a basis to derive the lower and

upper physical limits, wp, and wpze,, for the current wheel speed weoyprens Mmeasured by
the wheel speed sensor:

WMin S W Current S WMaz

1 1
Win = 6.056 —, warey = 15.738 —
s 5

5.2.3. Safety Analysis

The HARA method is used for the safety analysis for the speed estimation function. For
the hazard analysis, the following aspects along with the respective parameter values
and equivalence classes are considered:

e the [ocation where the vehicle operates:

Location := { Qutdoors}

e the geometry of the physical world in which the vehicle moves, specified through two
parameters, namely the number of lanes 14,0 € Nsg, the road slope agyeq € Rsg
and the curvature of the road Yrewa € R>o:

PhysicalWorldGeometry := {(Nianes > 1, Qroad < 12%, Yroaa = 0°), ...}

e the driving conditions:

DrivingConditions := {(Dry, Non-slippery), (Wet, Slippery), . .. }

206

5.2. Case Study 2: Automotive System Function for Accurate Vehicle Speed Estimation

the environment of the speed estimation function:

Environment := Technical Environment x PhysicalEnvinronment
TechnicalEnvironment := { CANBus, ESC'}
PhysicalEnvironment := { UrbanArea, RuralArea, AlpineArea, . .. }

the function usage, such as estimation of vehicle speed,
the system behavior refers to the behavior of the vehicle in which the speed
estimation function is operating:

SystemBehavior := { Accelerating, FullSpeedDrv, ReducedSpeed Drv,
Braking, Stopped }

the environment behavior, which refers to the behavior exhibited in the technical
environment and in the physical environment of the speed estimation function:

EnvironmentBehavior := TechnicalEnvBehavior X Physical EnvBehavior
TechnicalEnvBehavior := {ESC, ...}
ESC = { (5 VehicteRunning = true, arqy < 0.0001,

Arong < 0.001, Weurrent > 0), ... }
PhysicalEnvBehavior = {GPS,...}
GPS = {(sgps = true,egps < 0.15),...}

Notice that the environment of the speed estimation function is a combination of the
technical environment in which the function operates and of the physical environment
in which the ego vehicle drives. The technical environment of the speed estimation
function consists of all the hardware and software components with which the speed
estimation function interacts, e.g., electronic stability control (ESC). The behavior of
these components is exhibited through their respective interfaces. In the case of the
ESC component, the respective component interface provides information whether the
vehicle is actually running or not through the boolean flag s venicicRunning, the lateral and
longitudinal acceleration of the vehicle, arq and areng, as well as the vehicle wheel speed
WCurrent-

The physical environment is situated outside of the vehicle in which the speed
estimation function operates. The behavior in the physical environment is captured with
specific vehicle sensors which provide relevant sensor input data to the speed estimation
function. In this case, the GPS sensor provides information about whether a valid GPS
signal is detected or not through the boolean flag sgpg as well as the respective GPS
data error egpg.

The values of the parameters defined in the HARA analysis are combined with each
other creating unique concrete situations, each of these situations being depicted in
one table row of Table 5.2. Notice that there is an uncountable number of situations
which may appear during the driving of the ego vehicle. Therefore, neither the list of
identified situations nor the list of parameters are considered to be complete. Notice that,

207

Chapter 5. Case Studies

depending on the vehicle manufacturer, the definition of the technical environment as
well as that of the physical environment varies, since different vehicle manufacturer use
different approaches for the speed estimation. Depending on the concept for the speed
estimation algorithm, the vehicle manufacturer may use inputs from other functions
or from different sensors. Furthermore, the presence of some parameters in the HARA
analysis is dependent on other parameters. This is visible in the description of the physical
environment behavior. Notice that the physical environment of the speed estimation
function is also the physical environment in which the ego vehicle moves. Thus, with
respect to the physical environment of the VSE function, it makes sense to talk about
the driving conditions, e.g., wet and slippery road, or about the geometry of the physical
environment, e.g., a road slope g larger than 12%, since these have an impact on
the estimation of the vehicle speed. With regard to its technical environment, the data
provided by the ESC, e.g., vehicle wheel speed, is available only when the vehicle is
running.

Table 5.2 illustrates the hazards identified through the HARA analysis carried out on
the speed estimation function. Fach row in the table shows a unique concrete situation
as a combination of concrete parameter values considered in the HARA analysis. In H1,
the vehicle drives with full speed on a straight road with dry and non-slippery surface
and a road gradient smaller than 12% situated in a rural area. The ESC provides a
longitudinal acceleration above 0.001, while the lateral acceleration is under 0.0001. Due
to the high acceleration the vehicle speed may be overestimated, which leads to an false
display of the vehicle speed on the instrument board of the vehicle. A similar situation is
depicted in H2, except that instead of driving at full speed the vehicle is braking abruptly.
As a result, a skidding effect occurs and the lateral acceleration is larger than 0.0001.
This may lead to the overestimation of the vehicle speed and an inaccurate speed being
displayed on the vehicle speedometer.

208

60¢

Table 5.2.: Vehicle Speed Estimation Function: Hazard Analysis and Risk Assessment.

ID | Location | Physical Driving Environ- | Function | System Environment | Hazard | Potential
World Condi- ment Usage Behavior Behavior Effect
Geometry | tions
H1 | Outdoors | areeq < 12%, | Dry, RuralArea | Estimate | FullSpeedDrv| (s vehicieRunning =| Overest. | False
YRoad = 0° Non-slippery Vehicle true, of ve-| speed
Speed arong > 0.001, | hicle display
arqee < 0.0001), | speed
(sgps = true,
(¥ed =2 S 015)
H2 | Outdoors | apeeq < 12%, | Dry, RuralArea | Estimate | Braking (8 VehicleRunning =| Overest. | False
YRoad = 0° Non-slippery Vehicle true, of ve- | speed
Speed arong < 0.001, | hicle display
arqe > 0.0001), | speed
(sgps = true,
egprs < 015)
H3 | Outdoors | apoeqa < 12%, | Dry, UrbanArea | Estimate | Accelerating | (S venicieRunning =| Overest. | False
YRoad = 0° Non-slippery Vehicle true, of ve- | speed
Speed arong < 0.001, | hicle display
arqg < 0.0001), | speed
(SGPS = t’f’UG,
egps > 0.15)
H4 | Outdoors | apeeq < 12%, | Dry, UrbanArea | Estimate | Accelerating | (S vehicierunning =| Overest. | False
YRoad = 0° Non-slippery Vehicle true, of ve- | speed
Speed Arong < 0.001, | hicle display
arqe < 0.0001), | speed
(SGPS = false,
€Eqgps — N(IN)
H5 | Outdoors | areeq > 12%, | Dry, AlpineArea| Estimate | Accelerating | (s vehicieRunning =| Overest. | False
YRoad > 0° Non-slippery Vehicle true, of ve-| speed
Speed arong < 0.001, | hicle display
arqe < 0.0001), | speed

(SG’PS = tT’U@,

€Eaqprs S 015)

uoryewr)sy poadg a[oIoA 93LINIIY I0f UOIPOUN,] UIHISAS SATIOWOINY 7 APNIG 9S8 “Z°C

Chapter 5. Case Studies

A different type of situation is presented in H3 and respectively H4, where the vehicle
accelerates smoothly on a straight road with a dry non-slippery surface and road gradient
smaller than 12% situated in an urban area. Due to the position of the GPS satellites
and the large buildings in the urban area, the GPS device mounted on the ego vehicle
may not acquire a valid GPS signal or it may receive GPS data which has an error larger
than 0.15. In these situations, the hazard is that the vehicle speed is overestimated
and a false speed is displayed on the vehicle’s speedometer. In situation H5, the vehicle
accelerates smoothly on a curved road with a road gradient larger than 12% situated
in an alpine area. Although the vehicle drives in an alpine area, the GPS sensor of the
vehicle receives valid GPS signals with a GPS data error less than 0.15. Nevertheless,
the hazard is that the vehicle speed is overestimated due to the road slope which is
larger than 12%. The potential effect of this hazard is that the speedometer displays an
inaccurate speed estimation of the vehicle.

Due to the uncertainty inherent to the environment of the VSE function, the NCAP
requirement is formulated as a probabilistic safety property. The NCAP requirement is
transcribed into the following informal specification in natural language:

Probabilistic Safety Property (Informal Specification). With a probability of at
least 0.95, the speed estimation function shall not underestimate the real vehicle
speed and it shall not overestimate it by more than 5 kTm

Table 5.3 presents the safety requirement of the speed estimation function, which
is extended with various environment assumptions by using the requirement pattern
introduced in Figure 4.10 (cf. Section 4.4.3). The last column of the table also shows
which of the hazards identified in the HARA analysis are covered by the respective
extended safety requirements. Notice that the environment assumptions refer to the
technical environment as well as the physical environment of the speed estimation
function. It is also worth noting that there is no 1-to-1 relation between extended safety
requirements and the respective hazards covered by them. Thus, the extended safety
requirement ESR1 addresses the environment assumptions concerning the GPS data error
and covers the hazards H3 and H4. The extended safety requirement ESR2 addresses
the assumption regarding the geometry of the physical world in which the vehicle is
moving, and thus, covers the hazard H5, while ESR3 and ESR4 address the environment
assumptions referring to the longitudinal and lateral acceleration of the ego vehicle and
cover the hazards H1 and H2 respectively.

The formal specification of the extended safety requirements of the VSE function is
built using the Definition 4.4.7 along with Grammar 4.1 and Grammar 4.2 (cf. Section
4.4.5). The formal specification is depicted alongside the respective informal specification
in Table 5.4.

210

11¢

Table 5.3.: Vehicle Speed Estimation Function: Safety Requirement extended with Environment Assumptions.

ID Environment Assumption Clause Requirement Main Clause Covered
Hazards
ESR1 | If the vehicle receives a valid GPS signal that has | then with a probability of at least 0.95 the speed | H3 and H4
an error less than 0.15 with a probability of at least | estimation function shall not underestimate the
0.75, vehicle speed and it shall not overestimate it by
more than 5 kTm
ESR2 | If the vehicle drives on a road that has road gradient | then with a probability of at least 0.95 the speed | H5
less than 12% with a probability of at least 0.99, | estimation function shall not underestimate the
vehicle speed and it shall not overestimate it by
more than 5 kTm
ESR3 | If the vehicle’s longitudinal acceleration is less than | then with a probability of at least 0.95 the speed | H1
0.001 with a probability of at least 0.99, estimation function shall not underestimate the
vehicle speed and it shall not overestimate it by
more than 5 kTm
ESRA4 | If the vehicle’s lateral acceleration is less than 0.0001 | then with a probability of at least 0.95 the speed | H2

with a probability of at least 0.99,

estimation function shall not underestimate the
vehicle speed and it shall not overestimate it by
more than 5 %

uoryewirysy poadg a[oIoA 93LINIIY I0f UOIIOUN,] WINISAS dATIOWOINY 7 APN3G 9se) 7'

¢l¢

Table 5.4.: Vehicle Speed Estimation Function: Informal and Formal Specification of the Safety Requirement

extended with Environment Assumptions.

| ID

Informal Specification

| Formal Specification

ESR1

If the vehicle receives a valid GPS signal that has an error
less than 0.15 with a probability of at least 0.75, then
with a probability of at least 0.95 the speed estimation
function shall not underestimate the vehicle speed and
it shall not overestimate it by more than 5 kTm

Psor5(G [(sgps = true) A (egps < 0.15)]) —
PZO.QS(G [(O S UDisplay — UReal) A (UDisplay — VUReal S 5)])

ESR2

If the vehicle drives on a road that has road gradient
less than 12% with a probability of at least 0.99, then
with a probability of at least 0.95 the speed estimation
function shall not underestimate the vehicle speed and
it shall not overestimate it by more than 5 lch

P=099G [apoaa < 12%] = Ps0.95(G [(0 < Upispiay —
UReal) A (vDisplay — UReal S 5)])

ESR3

If the vehicle’s longitudinal acceleration is less than
0.001 with a probability of at least 0.99, then with a
probability of at least 0.95 the speed estimation function
shall not underestimate the vehicle speed and it shall
not overestimate it by more than 5 "”Tm

PZO.QQ(G {aLong < 0()()1]) — P20_95(G {(0 < UDisplay —
UReal) A (UDisplay — UReal S 5)])

ESR4

If the vehicle’s lateral acceleration is less than 0.0001
with a probability of at least 0.99, then with a prob-
ability of at least 0.95 the speed estimation function
shall not underestimate the vehicle speed and it shall
not overestimate it by more than 5 ’“Tm

P099(G [are: < 0.0001]) = Ps0.95(G [(0 < Vpisplay —
UReal) A (UDisplay — VReal S 5)])

sorpnjyg ose) ¢ I1o3dey)

5.2. Case Study 2: Automotive System Function for Accurate Vehicle Speed Estimation

5.2.4. System Design

During the system design phase, a functional abstraction is created for the VSE function
represented in Figure 5.4. The functional abstraction uses mathematical functions that
work on infinite domains. The construction of the functional abstraction follows the
systematic approach depicted in Figure 5.5. This approach is carried for the VSE function
as a whole as well as for each of the function’s modules.

@ Data Type Definition for @ Data Type Definition for @ Data Type Definition for
Function Inputs Function Outputs Intermmediary Results

®

Definition of Application Parameters for each Function Module

Declaration of the Mathematical Function Definition of the Mathematical Function
(Function Signature) (Function‘s Computation Steps)

Figure 5.5.: Vehicle Speed Estimation Function: Overview of Approach for Construction
of the Functional Abstraction (cf. [AVZR21]).

Table 5.5 summarizes the data types for the input parameters and the output of
the VSE function, while Table 5.6 displays the data types of the intermediary results
obtained in each of the modules M1 to M4. Table 5.5 and Table 5.6 specify for each
defined data type (1) the name of the data type, (2) the corresponding mathematical
set, (3) the parameter category which is associated with the respective data type, (4) the
mathematical function in which the respective parameter is used, and (5) an informal
description of the data type. As an example, consider the data type T'SpeedGPS, defined
as equivalent to the set of real positive numbers R for the GPS speed of the ego vehicle,
which is used as input parameter in the VSE function.

The application parameters used in the VSE function are defined in Table 5.7. For
each application parameter, Table 5.7 provides (1) the parameter name, (2) the parameter
value, (3) the parameter data type, (4) the mathematical function in which the application
parameter is used, and (5) an informal description of the parameter. Notice that some of
the application parameters defined in Table 5.7 are of data types introduced in Table 5.5,
e.g., eSS, 4 € TErrorGPS.

It is worth noticing that the defined data types build an abstract data type system,
with operations that abide by mathematical laws independently of how the concrete data
types are implemented in the automotive function and represented on the target control

unit (cf. [AVZR21]).

213

v1c

Table 5.5.: Vehicle Speed Estimation Function - Definition of Data Types for the Function Inputs and the Function Outputs
in the Functional Abstraction.
Data Type Name | Corresponding Parameter Mathematical Data Type Description
Mathematical Set | Category Function

TSpeedGPS R Input Parameter | VSE Data type for the GPS speed of the

ego vehicle
| TErrorGPS | R | Input Parameter | VSE | Data type for the GPS error \

TLongAccel R Input Parameter | VSE Data type for the longitudinal ac-
celeration of the ego vehicle

TLatAccel R Input Parameter | VSE Data type for the latitudinal accel-
eration of the ego vehicle

TRoadSlope R Input Parameter | VSE Data type for the angle of the road
inclination

TWheelSpeed R Input Parameter | VSE Data type for the wheel speed of
the ego vehicle

TVehicleRunning Bool Input Parameter | M2 Data type for the flag indicating
whether the ego vehicle is running
or not

TIndex N Input Parameter | tcErrorEstimation | Data type for the index indicating
the current iteration in the estima-
tion of the tire circumference error

TDisplaySpeed R>o Output VSE Data type for the ego vehicle speed
displayed on the vehicle’s instru-
ment board

TDisplaySpeed R Output VSE Data type for the ego vehicle speed
displayed on the vehicle’s instru-
ment board

sorpnjyg ase) "¢ 1oydey)

qIc

Table 5.6.: Vehicle Speed Estimation Function - Definition of Data Types for the Intermediary Results in the Functional

Abstraction.
Data Type Name | Corresponding Parameter Mathematical Data Type Description
Mathematical Set | Category Function
TFEstimatedSpeed R>o Intermediary Re- | M3 Data type for the estimated vehicle
sult speed without postprocessing
TPlausibleTC R>o Intermediary Re- | M2 Data type for the tire circumference
sult obtained after the plausibility check
TSlopeLimitedTC Ry Intermediary Re- | M2 Data type for the tire circumference
sult obtained after applying the slope
limiting filter
TEstimatedTC R Intermediary Re- | M1 Data type for the estimated tire
sult circumference
TErrorEstimatedTC | R>q Intermediary Re- | M1 Data type for the estimated error
sult of the tire circumference
TStandardTC R>o Intermediary Re- | M1 Data type for the standard tire cir-
sult cumference
TErrorUpdateTC R Intermediary Re- | M1 Data type for the error update of
sult the tire circumference
TValidGPSError Bool Intermediary Re- | gpsErrorValid Data type for the flag indicating
sult whether the GPS data is valid or
not
TValidRoadSlope Bool Intermediary Re- | roadSlopeValid | Data type for the flag indicating
sult whether the road slope is below the
admitted threshold or not
TValidLongAccel Bool Intermediary Re- | longAccelValid | Data type for the flag indicating
sult whether the longitudinal accelera-
tion of the ego vehicle is valid or
not
TValidLatAccel Bool Intermediary Re- | lat AccelValid Data type for the flag indicating

sult

whether the lateral acceleration of
the ego vehicle is valid or not

uoryewirysy poadg a[oIoA 93LINIIY I0f UOIIOUN,] WINISAS dATIOWOINY 7 APN3G 9se) 7'

91¢

Table 5.7.: Vehicle Speed Estimation Function - Definition of Application Parameters.

Parameter| Parameter| Measurement | Parameter Mathematical | Parameter Description

Name Value Unit Data Type Function

a —0.5152 - R M1 First coefficient in the polynomial ap-
proximating the standard tire circum-
ference

b 0.07646 - R M1 Second coefficient in the polynomial ap-
proximating the standard tire circum-
ference

c 2175 - Ry M1 Third coefficient in the polynomial ap-
proximating the standard tire circum-
ference

w 0.1 - R>o N0, 1] M1 Weighting factor for the estimated error
of the tire circumference

ajL\ngf'Assumed 0.001 = TLongAccel M1 Upper bound assumed for the longitu-
dinal acceleration of the vehicle

ak®l i ccumea | 0-0001 = TLatAccel M1 Upper bound assumed for the lateral
acceleration of the vehicle

afiad, o | 12% - TRoadSlope M1 Upper bound assumed for the angle of
the road inclination

eSEs cumea | 0-15 - TErrorGPS M1 Upper bound assumed for the GPS data
error

te vin 2118 mm TPlausibleTC M2 Lower bound assumed for the tire cir-
cumference

tC o 2293 mm TPlausibleTC M2 Upper bound assumed for the tire cir-
cumference

P 20 Er R>o M2 Slope limitation for the estimated tire

circumference, corresponds to 20 mm in
3 s.

sorpnjyg ase) "¢ 1oydey)

5.2. Case Study 2: Automotive System Function for Accurate Vehicle Speed Estimation

The declaration of a mathematical function in the functional abstraction is in fact the
signature of the mathematical function. The signature of a mathematical function consists
of the function’s name, the data types and names of the function’s input parameters and
the data type of the function’s return value. The definition of the mathematical function
is the function’s block in which the computation steps of the function are described.
The definition of the mathematical function is formulated through a walk-back from the
function’s output towards the function’s inputs, in a similar manner to the notation in
functional programming (cf. [AVZR21]).

The walk-back approach applies for the definition of any mathematical function in
the functional abstraction, independent of the level at which this function is defined
in the hierarchy of the functional abstraction. This is best visible in the definition
of the mathematical function VSE in Equation (5.11). In the following sections, the
functionality of the modules M1 to M4 is explained in more detail using the definitions
of the respective mathematical functions.

VSE : T'VehicleRunning x TSpeedGPS x TErrorGPS x TLongAccel x

5.9

TLatAccel x TRoadSlope x TWheelSpeed — TDisplaySpeed (5.9)
T'DisplaySpeed VSE (T VehicleRunning s venicieRunnings

TSpeedGPS vgps, TErrorGPS egps, (5.10)

TLongAccel arong, TLatAccel arq,
TRoadSlope aroaq, TWheelSpeed w current)

VSE (S VehicieRunning, VGPSs €GPSs @Long, @Lats O Roads WCurrent) = UDisplay

UDisplay = M4 (UEstimated)

VEstimated = M3 (UJC'urrenh Zchlausible) (511>
tcPlausible = M2 (8 Vehicle Running» tCEstimated)

tCE'stimated =M1 (UGP57 €GPS, ALong; A Laty XRoad wCurrent)

Estimation of the Tire Circumference

Module M1 computes the estimation of the vehicle’s tire circumference, which is modeled
by the respective mathematical function in Equations (5.12) to (5.14). As shown in
Equation (5.14), the estimated tire circumference has two components: the standard tire
circumference and the tire circumference error. The first component is an approximation
of the standard tire circumference based on the measurements of the vehicle’s wheel
speed, while the second component is an estimation of the tire circumference error on
the basis of selected GPS sensor data (cf. [AZR20]).

The standard tire circumference tcgigngarg 18 approximated based on the measurements
of the ego vehicle’s wheel speed weyyrent, according to the polynomial defined for tcsiandara
in Equation (5.14). The application parameters a, b, and ¢ used in the polynomial of
tCstandara are defined in Table 5.7.

217

Chapter 5. Case Studies

M1 : TSpeedGPS x TErrorGPS x TLongAccel x TLatAccel x

5.12
TRoadSlope x TWheelSpeed — TFEstimatedTC ()
TEstimatedTC M1 (TSpeedGPS vgps, TErrorGPS egps, TLongAccel arong, (5.13)
TLatAccel arq, TRoadSlope agoaq, TWheelSpeed wcyrrent) '
M1 (UGPSa €GPS ALongs ALaty XRoad) wCurrent) = tCEstimated
tCEstimated - AtcEstimated + tcStandard
Atcpsiimated = tcErrorEstimation (veps, €Gps, @Longs OLat, (5.14)

QRoad) W Current iu tcStandaTd)

: 2
tCStandard = ax* Sln<w0urrent - 7T) + b * (wCurrent - 10) +c

tcErrorEstimation : T'Speed GPS x TErrorGPS x TLongAccel X TLatAccel x
TRoadSlope x TWheelSpeed x TIndex x TStandardTC (5.15)
— TFErrorEstimatedTC

TErrorEstimatedTC tcErrorEstimation (T'SpeedGPS vgps, TErrorGPS egps,
TLongAccel arong, TLatAccel apqy,
TRoadSlope aroaq, TWheelSpeed w cyrrent,
TIndez i, TStandardTC Atcsiandard)

(5.16)
tcErrorEstimation (UGP37 €GPS, aLonga ALaty XRoads WCurrent s ’i, tcStandard)
- AZtcE‘sz&imated
Atc ni ,7/- = 0
AtCEst'L'mat‘ed = it .
(1 — w) * AtCgstimated + W * AtCypdate, © > 0 A updateFlag
2.5 1000 (5.17)

Atc]m’t =

W Current 3.6
Atc Update — tCET”f’O’/’UpdCLt@ (tCStandardu VaGps, wCur'rent)

updateFlag =gpsErrorValid (egps) N roadSlopeValid (agoaq) N
longAccelValid (apong) N latAccelValid (ap.:)

The tire circumference error AtCggimated 1S estimated on the basis of the GPS sensor
data, which consists of measurements of the GPS vehicle speed as well as information
about the quality of the received data. The quality of the GPS data is expressed by a
GPS error factor. A strong GPS signal means a high quality of the received GPS data,
which in turn translates in low GPS error factor (cf. [AZR20]). In the first iteration,
the tire circumference error Atcgsymated 1S initialized with the value of Ater,;. The

218

5.2. Case Study 2: Automotive System Function for Accurate Vehicle Speed Estimation

subsequent iterations update the tire circumference error Atcggimared ON-the-fly based on
the current GPS measurements. Thus, the estimated error of the tire circumference is a
function of the previous estimated value of this error and an update based on current
GPS sensor data, weighted by the weighting factor w defined as an application parameter
in Table 5.7 (cf. [AZR20]). The update of the tire circumference error occurs only
when the updateFlag in the tcErrorEstimation function evaluates to the truth value
true. This is achieved only if the information received by the VSE function from the
technical and physical environment is valid. From the technical environment, the function
receives the longitudinal acceleration ar.n, and the lateral acceleration ar,:. From the
physical environment, the speed estimation function receives inputs regarding the GPS
data error egps and the road slope ag..q. The validity of the received information is
checked in the functional abstraction of the speed estimation function with the help of the
first-order predicates gpsErrorValid, roadSlopeValid, longAccelValid, and latAccel Valid,
whose respective mathematical functions are declared and defined in Equations (5.18) to
(5.21).

gpsErrorValid : TErrorGPS — TValidGPSError
TValidGPSError gpsErrorValid (TErrorGPS egps)
gpsErrorValid (egps) = flagGPSError

ﬂagGPSETTOT = (SGPS - true) A (eGPS S ef/[]:fAssumed)

(5.18)

roadSlopeValid : T'RoadSlope — TValidRoadSlope
TValidRoadSlope roadSlopeValid (TRoadSlope & goaq)

roadSlopeValid (ageeq) = flagRoadSlope

flagRoadSlope = (atroaa < aﬁ?zdflssumed)

(5.19)

longAccelValid : TLongAccel — TValidLongAccel
T'ValidLongAccel longAccelValid (TLongAccel arong)
longAccelValid (are,y) = flagLongAccel

flagLongAccel = (apon, < ay)

— YMazxAssumed

(5.20)

lat AccelValid : TLatAccel — TValidLatAccel
TValidLatAccel lat AccelValid (TLatAccel apq;)
lat AccelValid (ar.) = flagLatAccel

flagLatAccel = (apq < aJL\;;xAssumed)

(5.21)

In order to comply with the Euro NCAP requirement, the update to the tire cir-
cumference error is computed with adequate GPS data that satisfy the environment
assumption with respect to the GPS error. Any other GPS data that does not fulfill the
environment assumption are discarded. The mathematical function tcErrorUpdate, whose
declaration and definition is given in Equations (5.22) to (5.24), specifies a mechanism

219

Chapter 5. Case Studies

AtCrmax
A
l{ '] ']
| |
Atcgps Atcgps : tceps
A GPS
4 A ' \ I tCpax + AtCMax
GPS GPS
tCpin tCMeasured tCﬁzﬁil
| |
I - tegis + Atcyax
1\ v J
AtCMax

Legend:

tcPs reqa — Measured GPS tire circumference

tcﬁ,f,f — GPS tire circumference with minimum
negative GPS error

tcghs — GPS tire circumference with maximum

positive GPS error

Atcgps — tire circumference error corresponding to
the maximum positive GPS error

Atcprax — maximum tire circumference error allowed
by the Euro NCAP requirement

tcgps - good value of the GPS measured tire circum-
ference chosen to compute the error update of the
estimated tire circumference

Figure 5.6.: Vehicle Speed Estimation Function: Visual Intuition of the Mechanism for
Adequate GPS Data Selection (cf. [AZR20]).

220

5.2. Case Study 2: Automotive System Function for Accurate Vehicle Speed Estimation

by which intervals of adequate GPS data are identified and selected from the whole data
set received by the vehicle’s GPS sensor. A visual intuition of this mechanism is depicted
in Figure 5.6.

tcErrorUpdate : T'Standard TC x TSpeed GPS x

(5.22)
TWheelSpeed — TErrorUpdateTC

TErrorUpdate TC tcErrorUpdate (T'StandardTC' tcsiandara, TSpeedGPS veps,
TWheelSpeed wcurrent)

(5.23)
tCErrorUpdate(tCSt(mdarda VGPSs, wCurrent) = Atc Update
AtCUpdate = tcgps — tCStandard
teSing + (tfim + Atcia)
tcgps = 5
tCJ\GJ];f = tc]\(;J];iured + AtCGPS
GPS GPS
tCMin = theasured - AtCGPS (524)
tCMeasured -
W Current
GPS
AtCGPS — € MazAssumed * 1000
W Current
5 1000
AtCMM ==

*
W Current 3.6

Plausibility Check of the Tire Circumference

Each tire profile specifies lower and upper limits for the tire circumference, which represent
the physical boundaries of the real and of the estimated tire circumferences. In order to
have an estimation of the vehicle speed as accurate as possible, plausibility checks are
carried out in order to eliminate any outliers (cf. [AZR20]).

Module M2, whose mathematical function is declared and defined in Equations (5.25)
to (5.27), filters out the physically impossible values of the estimated tire circumference
by using the physical boundaries defined for the tire circumference in Table 5.7. Notice
that before the plausibility check is performed, the estimated tire circumference is filtered
with a slope limiting filter, which ensures that the difference between the current value
and the old value of the estimated tire circumference does not exceed the threshold of
20 mm in 3 s defined by the application parameter P (cf. Table 5.7). This is necessary in
order to ensure that only relevant data is used for the estimation of the tire circumference
(cf. [AZR20]).

221

Chapter 5. Case Studies

M2 : TVehicleRunning x TEstimatedTC — TPlausibleTC (5.25)

TPlausibleTC M2 (TVehicleRunning s vehicieRunning, T EstimatedTC' t¢gstimatea) (5.26)

M2 (3 Vehicle Running tCEstimated) = tcPlausible

tcPlausz’ble = max(TCMm; min<tCSlopeLimited7 TCMaz))

tcSlopeLimited = {

SlopeLimitatiO”(pr€<tCPlausible)7 tcEstimated); SVehicleRunning = true

ZtCE'stimateai, S VehicleRunning — false

(5.27)

slopeLimitation : TPlausibleTC x TEstimatedTC — TSlopeLimitedTC (5.28)

TSlopeLimitedTC' slopeLimitation(TPlausible TC' tcH v,

_ o (5.29)
TEstimatedTC' tcyen wrea)
SlopeLimitation(tcgllgusiblw tcgsezgmated) = tcSlOPELimitEd
Old
tCSiopeLimited = tcPlausible + SgTL(A) * P? |A| > P (5 30)
opeLimited — .
tcgsegmated’ |A| = P

o New Old
A= tCEstimated - tcPlausible

Notation 5.2.1. pre is an operator used in Equation (5.27) to obtain the value of a given
parameter computed in a previous iteration. The pre operator is defined as follows:

pre :R x N — R

x, k=20
pre(z, k) def) pre(z), k=1
pre(pre(pre(...pre(x)))), k>1

k

sgn denotes the sign function and it is used in Equation (5.30) to determine the sign of
the difference between the new tire circumference value estimated in the current execution
step and the old tire circumference value computed through the plausibility check in the
previous execution step. The sgn function is defined as follows:

222

sgn: R —{-1,0,1}

-1, <0
sgn(x) L0, 2=0
1, >0

5.2. Case Study 2: Automotive System Function for Accurate Vehicle Speed Estimation

Should the difference between the two values of the estimated tire circumference
be larger than the margin of 20 mm in 3 s, then it means that data necessary for the
estimation of the tire circumference has been missing, e.g., when the vehicle is not
running. In such a case, the old value of the estimated tire circumference is discarded
since it is not useful anymore. In such a case, the computation continues with the
new estimated tire circumference (cf. [AZR20]). This is reflected by the mathematical
function slopeLimitation declared and defined in Equations (5.28) to (5.30).

Computation of the Vehicle Speed

Module M3, modeled by Equations (5.31) to (5.33), computes the instantaneous speed of
the vehicle using the plausible tire circumference and the current wheel speed measured
by the vehicle’s wheel speed sensors.

M3 . TWheelSpeed x TPlausibleTC — TFEstimatedSpeed (5.31)

TEstimatedSpeed M3 (TWheelSpeed wcyrrent, TPlausible TC' teprausipie) (5.32)

M‘? (wCur'renta tcPlausible) = UEstimated

3.6 (5.33)

VEstimated = 1000 * Wourrent * tCPlausible

Postprocessing of the Vehicle Speed

The speed displayed on instrument board of the ego vehicle is computed from the
estimated vehicle speed by rounding it off so that it matches the speedometer’s value
range. Since sudden moves of the pointer needle on the speedometer may be confusing for
the driver, a smoothing function is applied to the resulting curve of the vehicle speed in
order to avoid the needle bouncing back and forth at every small change in the estimated
vehicle speed (cf. [AZR20]).

M} : TFEstimatedSpeed — TDisplaySpeed (5.34)

TDisplaySpeed M/ (TEstimatedSpeed vggsimated) (5.35)

M4 (UEstimated) = UDisplay
Upisplay = smoothSpeedCurve (Vgounded) (5.36)

VRounded = roundVehicleSpeed (Vgsiimated)

Design-Time Verification

For the design-time verification, the functional abstraction of the VSE function is modeled
as an MDP in the PRISM modeling language. The design-time verification is shown

223

Chapter 5. Case Studies

Table 5.8.: Vehicle Speed Estimation Function: Verification of Extended Safety Require-
ment ESR1 expressed as Multi-objective Property.

ID Formal Specification Multi-objective Property | Verification
Result
ESR1 PZU»75(C; [(SGPS —= multi (P>= 0.75 [G \/

true) A (egps < 0.15)])| ((sGPS = true) & (eGPS
— P20.95<G [(0 S UDisplay — <= 015))] 5 P>=0.95 [G
Vgeat) N (UDispiay — Vkeat < D)]) | ((0 <= vDisplay - vReal)
& (vDisplay - vReal <=
5)1)

in this section exemplary on the basis of the extended safety requirement ESR1. The
extended safety requirement ESR1, formally specified in Table 5.4, is translated as a
multi-objective property in PCTL and verified with the STORM model checker. Table 5.8
shows the multi-objective property alongside the formal specification of ESR1, together
with its verification result. The translation to multi-objective properties of the other
three extended safety requirements specified in Table 5.4 is shown together with the
respective design-time verification results in Appendix A.

Definition of Environment Assumptions Monitors

The construction of runtime monitors for environment assumptions is shown exemplary
in this section on the basis of the environment assumptions clause of the extended safety
requirement ESR1 specified in the Table 5.8. Notice that the environment assumption in
ESRI1 requires that with a probability of at least 0.75, the VSE function receives a valid
GPS signal with an error of less an 0.15 (cf. Table 5.4). This means that, according to
this environment assumption, at least 75% of the GPS data received by the ego vehicle’s
GPS sensors is represented by valid GPS signals, which carry a data error of at most
0.15 7 for the GPS-measured vehicle speed. Equation (5.37) formalizes this environment
assumption in PCTL.

P20.75<G [(SGPS == true) VAN (eGPS < 015)]) (537)

The environment assumption in Equation (5.37) can be rewritten as in Equation
(5.38):

PZO.?E)(G wGPSE'Tmr> (538)

where Y gpseqor denotes the event in which the ego vehicle’s GPS sensors receive a valid
GPS signal with a GPS data error of at most 0.15 **:

Yapsprmor < (sgps == true) A (egps < 0.15) (5.39)

224

5.2. Case Study 2: Automotive System Function for Accurate Vehicle Speed Estimation

Notice that probabilities are expressed over theoretically an infinite number of execu-
tion steps. However, the execution of the environment assumptions monitor at runtime
is finite. Therefore, instead of probabilities of occurrence of a given event, the relative
frequency of occurrence of the respective event is computed (cf. Section 4.5.5).

The environment assumption monitor is defined in Equation (5.40) according to the
Definition 4.5.1 (cf. Section 4.5.5):

. GPSError GPSError
M¢GPSEr7~or G (Observed = P Assumed) (540)
where fSESETor represents the relative frequency of occurrence and p§LSETer ig the

assumed probability of occurrence for the event ¥ gpsgor- The assumed probability of
occurrence for the event 1 apggmor is specified in ESR1 as p§LoEmer — (.75, while the

Assumed
relative frequency of occurrence fSESET™™ is computed as shown in Equation (5.41):

GPSError
GPSError __ T Observed (5 41)
Observed N :

where N represents the total number of trials or events taken into consideration and

nGPSErrer represent the absolute frequency of occurrence for the event ¥gpsamor-

5.2.5. System Implementation

The VSE function is implemented in MATLAB/SIMULINK. The physical environment
of the function is the outdoors physical environment in which the vehicle drives. Two
inputs from the physical environment measured by the respective vehicle sensors are
relevant for the speed estimation function: the road inclination and the GPS sensor data
which comprises the GPS-measured vehicle speed and the GPS error associated with
it. The technical environment of the speed estimation function is represented by all the
vehicle hardware and software components which communicate through their interfaces
with the speed estimation function. In this case, it is the ESC component which provides
the measurements of the vehicle wheel speed as well as the longitudinal and lateral
acceleration of the vehicle. The inputs from the physical environment as well as the ones
from the technical environment are sent via a CAN bus to the speed estimation function.
A specific component, also implemented in MATLAB/SIMULINK, maps the input data
received through the CAN bus from the technical and physical environment of the speed
estimation function. This component has been provided in the course of the research
project by the automotive OEM, who acted as partner in the project.

5.2.6. System Test

During system test, the goals are to test the speed estimation function itself as well as
the environment assumptions monitors. The test of the speed estimation function is done
with the help of the test oracle defined for the its safety requirement. Through the test of

225

Chapter 5. Case Studies

the safety requirement monitor it can be checked whether the speed estimation function
satisfies the safety requirement specification in the controlled environment. The test of
the environment assumptions monitors checks whether the monitors are able to detect
violations of the specific environment assumptions. Since the system test takes place in a
controlled environment, the test engineers can devise specific tests in order to trigger
the environment assumptions monitors, e.g., relative frequency of occurrence of a large
GPS error, i.e., egpg > 0.15, is larger than 0.25 for a finite number of execution steps of
the VSE function. System test cases can be defined manually based on expert domain
knowledge or can be built based on counterexamples automatically generated through
model checking the abstract model of the VSE function. Chapter 2 discusses several
methods for the automated generation of test cases for probabilistic and non-probabilistic
systems. Specific test drives with test vehicles can be used in order to gather input data
for the developed test cases.

For the system test of the speed estimation function, the test engineers at the
automotive OEM partner collected data using the OEM’s own field test vehicles. The
collected test data corresponds to two driving scenarios: (1) smooth driving and (2)
dynamic, sportive driving. The traveling time corresponding to the collected data
amounts to 1000 s, which represents approximately 16.7 minutes.

Scenario 1: Smooth Driving

The first scenario illustrates the ideal situation, in which the driver adopts a smooth
driving style, with no abrupt acceleration or braking. Figure 5.7 depicts the monitor
traces of the environment assumptions monitor regarding the GPS data error.

With respect to the monitor for the GPS data error, there are several data points in
which a large GPS error, situated above the maximum assumed GPS error, is visible.
However, the relative frequency of the data points showing small GPS error is larger
than the assumed probability of occurrence, which is why the environment assumption
for the GPS data error is still valid.

The first scenario is depicted in Figure 5.8 through two graphics. The upper graphic
shows (1) the 2D GPS-measured vehicle speed, (2) the ADMA-measured vehicle speed,
which is considered to be the ground truth, and (3) the upper bound for the vehicle speed
allowed by the Euro NCAP requirement. The lower graphic in Figure 5.8 shows the test
oracle for the safety requirement of the VSE function. The test oracle compares the
deviation between the displayed speed and the actual vehicle speed with the maximum
speed deviation permitted by the Euro NCAP requirement.

Notice that the scenario illustrated in Figure 5.8 falls right in the margins specified
by the Euro NCAP requirement and preconditions. The value range of the actual
vehicle speed is situated between 50 kTm and 130 kTm The ADMA speed curve depicts
a relatively smooth driving style, with clear-cut acceleration at about 410 s into the
trip and deceleration segments at roughly 580 s and 640 s into the trip and continuous
periods of time of driving with almost constant speed. The performance evaluation of the
VSE function shows that in the first scenario the vehicle speed deviation vp;spiay — Vgear 15

226

5.2. Case Study 2: Automotive System Function for Accurate Vehicle Speed Estimation

GPS Error

eGPS_Observed [m/s]
eGPS_MaxAssumed [m/s]

GPS Error [m/s]

0 100 200 300 400 500 600 700 800 900 1000

Travel Time [s]

Figure 5.7.: Vehicle Speed Estimation Function: Environment Assumption Monitor for
the GPS Data Error during the Smooth Driving Scenario.

between ca. 0.5 k"Tm and ca. 3.0 kTm, which satisfies the Euro NCAP requirement specified
in Equation (5.7).

Scenario 2: Dynamic Driving

The second scenario depicts a situation, in which the driver adopts a more dynamic
driving style, with abrupt acceleration and sudden brakes, which alternate frequently
throughout the first 250 s of the trip. Figure 5.9 illustrates the monitor traces for the
environment assumption monitor regarding the GPS data error.

Similarly to the smooth driving scenario, there are several data points in which a
large GPS error, situated above the maximum assumed GPS error, is visible. However,
the relative frequency of the data points showing small GPS error is significantly larger
than the assumed probability of occurrence, which is why the environment assumption
for the GPS data error is still valid.

Similarly to the first scenario, the second scenario is depicted in Figure 5.10 through
two graphics. The upper graphic shows (1) the 2D GPS speed, (2) the ADMA speed,
and (3) upper bound for the vehicle speed allowed by the Euro NCAP requirement. The
lower graphic in Figure 5.10 shows the trace of the safety requirement monitor which
depicts the vehicle speed deviation as estimated by the speed estimation function in
relation of the maximum speed deviation between the displayed speed and the actual
vehicle speed permitted by the Euro NCAP requirement.

227

Chapter 5. Case Studies

Test Data (2D GPS Speed and ADMA Speed) and NCAP Upper Bound

2D GPS Speed [km/h]|
ADMA Speed [km/h]
NCAP Upper Bound [km/h]

Vehicle Speed [km/h]

0 100 200 300 400 500 600 700 800 900 1000

Travel Time [s]

Safety Requirement Monitor

—— Algorithm Performance [km/h]
NCAP Upper Bound Vehicle Deviation
NCAP Upper Bound [km/h]

Vehicle Speed Deviation [km/h]

0 100 200 300 400 500 600 700 800 900 1000

Travel Time [s]

Figure 5.8.: Vehicle Speed Estimation Function: Test Data and Test Oracle of the Safety
Requirement in the Smooth Driving Scenario (cf. [AZR20]).

228

5.2. Case Study 2: Automotive System Function for Accurate Vehicle Speed Estimation

GPS Error

eGPS_Observed [m/s] ‘
eGPS_MaxAssumed [m/s]

GPS Error [m/s]

0 100 200 300 400 500 600 700 800 900 1000

Travel Time [s]

Figure 5.9.: Vehicle Speed Estimation Function: Environment Assumption Mon-
itor for the GPS Data Error during the Dynamic Driving Scenario.

The abrupt changes in the curve of the vehicle’s longitudinal acceleration are reflected
also in the curve of the vehicle speed measured through the vehicle’s standard GPS
sensors and through the ADMA sensor. The ADMA speed curve has a value range
between 0 kTm and 180 kTm throughout the vehicle’s trip. In the first 230 s, the ADMA
speed oscillates in the interval [0, 120] kTm, with abrupt speed-ups and sharp brakes, which
alternate frequently. Notice that, after approximately 60 s, the estimation of vehicle
speed deviation vpispiay — Vrea is stabilized between a minimum of ca. 0.5 % and a
maximum of ca. 3.5 kTm, thus satisfying the Euro NCAP requirement.

Notice that, during the first 100 s at about 50 s into the vehicle’s trip, the estimated
vehicle speed deviation drops down to —1 kTm, meaning that the actual vehicle speed is
underestimated. This occurrence can be attributed to the fact that, at that time, the
ADMA speed decreases down to 0 %, i.e., the vehicle has stopped. No valid wheel speed
measurements can be collected while the vehicle is stopped. In this case, the test oracle
of the safety requirement reports a violation of the Euro NCAP requirement.

5.2.7. Requirements Validation

Requirements validation is the last stage of testing before the system under test becomes
operational. In this phase, acceptance tests are carried out together with the customer
in order to see whether the acceptance criteria defined in advance are met by the system
under test. Such tests are carried out both in the physical test environment of the system
developer as well as in the operational environment at customer’s site (cf. Section 3.8). At

229

Chapter 5. Case Studies

Test Data (2D GPS Speed and ADMA Speed) and NCAP Upper Bound

— 2D GPS Speed [km/h]]
] ADMA Speed [km/h]
— NCAP Upper Bound [km/h]

Vehicle Speed [km/h]

0 100 200 300 400 500 600 700 800 900 1000
Travel Time [s]

—— Algorithm Performance [km/h]
Vehicle Deviation
4 NCAP Upper Bound [km/h]

Vehicle Speed Deviation [km/h]

0 100 200 300 400 500 600 700 800 900 1000

Travel Time [s]

Figure 5.10.: Vehicle Speed Estimation Function: Test Data and Test Oracle of the Safety
Requirement in the Dynamic Driving Scenario (cf. [AZR20]).

230

5.3. Summary

the end of the project Accurate Vehicle Speed Estimation, the speed estimation function
was still under development, awaiting a preliminary positive review from the certification
authority so that it could enter the series production phase, in which the function is
integrated on the target hardware and extensive hardware and software integration tests
are carried out. Therefore, no requirements validation took place during the timeline of
the project.

5.3. Summary

The goal of this chapter was to evaluate the feasibility of the RMEA concept on real-
world systems. Thus, this chapter presented two case studies built around two such
systems. The first case study is built around a mobile service robot commissioned to
autonomously execute transportation tasks in a hospital environment. The second case
study investigates the feasibility of the RMEA concept on an automotive system function
in charge of estimating and displaying the speed of a moving vehicle on the vehicle’s
instrument board.

The applicability and feasibility of the RMEA concept for real-world safety-critical
systems were demonstrated through the two case studies presented in this chapter. For
each case study, the application of the RMEA concept discussed in detail the artifacts
that are produced during the different phases of the system development process:

1. Catalog of functional and safety requirements,

Catalog of safety hazards derived through HARA analysis,

Catalog of environment assumptions that cover the respective safety hazards,
Design-time models of the system under analysis and its environment

Runtime monitors for the environment assumptions, and

Test cases used to test both the system under analysis and the environment
assumptions monitors.

S G W

231

Chapter 6.

Contributions with respect to Related
Work

6.1. Obtaining Environment Assumptions 233
6.1.1. Manual Methods for Specification of Environment Assumptions . 234
6.1.2. Automated Methods for Obtaining Environment Assumptions . . 237

6.2. Assumptions in Verification and Validation Processes 241
6.2.1. Assumptions in Design-time Verification 241
6.2.2. Controller Synthesis and Environment Assumptions 243
6.2.3. Combining Design-time Verification with Runtime Validation . . . 245

6.3. Comparison of the Proposed Approach with Related Work 249
6.3.1. Comparison with the Manual Methods for Environment Assump-

tions Specification L Lo 249
6.3.2. Comparison with Automated Methods for Obtaining Environment
Assumptions 251
6.3.3. Comparison with Methods that integrate Assumptions in Verifica-
tion and Validation Processes 252
6.4. Summary 256

The goal of this chapter is to analyze the related state-of-the-art research work in
the scope of this thesis, compare it with the approach presented in this thesis and
then emphasize the contributions brought forth by this thesis in relation of the related
research. Section 6.1 presents various approaches by which environment assumptions can
be obtained, while Section 6.2 discusses approaches for the verification and validation of
environment assumptions. In Section 6.3, the approach used in this thesis is compared
with the techniques found in related research. Section 6.4 concludes this chapter with a
short summary of its findings.

6.1. Obtaining Environment Assumptions

Environment assumptions have to be explicitly defined in order to carry out design-time
verification and runtime validation of automated safety-critical systems. Environment

233

Chapter 6. Contributions with respect to Related Work

assumptions can be obtained in two distinct ways: (1) either they are directly specified
by experts with specific domain knowledge (cf. Section 6.1.1), or (2) they are learned or
synthesized from monitor observations of the system’s environment (cf. Section 6.1.2).

6.1.1. Manual Methods for Specification of Environment
Assumptions

The concept of assumption, formulated with respect to the environment of a system
or a system’s component, is rooted in compositional verification (cf. [AL93]). Two
research areas in which assumptions play an important role have distinguished themselves
throughout the years: assume-guarantee contracts and agent-based systems.

Assume-Guarantee Contracts

Assume-guarantee contracts are technique in the spectrum of compositional verification,
more specifically of A/G reasoning (cf. Section 2.5.10). Benveniste et al. [BCPO7]
propose a formal concept for A/G contracts with application for safety-critical embedded
systems. Their concept allows the description of component interfaces and component
behavior, as well as the composition of components. A component consists of an
interface, an expected behavior, and one or more implementations of this behavior (cf.
[BCPOT7]). A/G contracts are used to describe the expected component behavior using
pairs of assumptions and guarantees defined over the set of ports and flows specified in
the component interface. The concept of A/G contracts in [BCP07] is extended with
probabilities in [DCO08]. A probabilistic contract has associated with it a probability
distribution, that is defined over the history of values received on the component’s ports
that are not controlled by the contract. The system models targeted in [BCP07] and
[DCO8] are non-probabilistic. In contrast, [Dell0] and [DCL11] extend the probabilistic
A /G contracts to be applicable also to probabilistic systems. The system under analysis
and the contracts formulated on its components are represented by sets of system
executions or are described through formal logics, e.g, LTL or a quantitative variant of
CTL introduced by Alfaro in [dAAFH"04], called discounted CTL (cf. [Dell0], [DCL11]).
The system taken under consideration in [Dell0] is the precision time protocol (PTP),
which is a protocol used for the synchronization of clocks in a computer network.

Arts et al. [ADT14] use A/G contracts for the verification of the communication
protection mechanism defined in the AUTOSAR standard . This protection mechanism
is defined as a library of functions that detect communication faults, e.g., message loss
or message corruption, in the transmission of safety-critical data between the ECUs
of a vehicle (cf. [ADT14]). The system under analysis which uses the communication
protection mechanism of the AUTOSAR standard is a simplified version of an airbag
system (cf. [ADT14]). The system components are modeled in the SMV language and the
A /G contracts defined for each component are specified in LTL with past operators. The
behavior of each component is verified against its A/G contract using the NuSMv model

Thttps://www.autosar.org

234

6.1. Obtaining Environment Assumptions

checker. The state machine describing the components’ behavior is used to generate
test cases in order to ensure compliance with its implementation in the C language (cf.
[ADT14]).

Li [LNSV*17] and Nuzzo [NLSV*T19] use A/G contracts to verify closed-loop control
systems with probabilistic requirements. The probabilistic constraints used in the
assumption and guarantee of an A/G contract are specified with stochastic signal
temporal logic (StSTL). Verification tasks of bounded StSTL contracts, e.g., compatibility,
consistency, or refinement checking, as well as synthesis of model predictive control
strategies are reformulated as mixed integer optimization problems. The approach is
applied on an aircraft power distribution system.

In [Glel4], the A/G safety goals of a technical system are obtained through safety
analysis. The safety goals are behavioral properties that are defined for each hazard
identified through hazard analysis. The technical system and its environment are modeled
as two agents. Each agent can control their own state and actions and can monitor the
actions and state of the other agent. Formally, the agents are encoded as mode transition
systems and the behavioral properties are specified with PCTL* (cf. [Glel4]). Each A/G
pair of a safety goal has its guarantee assigned to the functions of the system agent and
the assumption to the tactics of the environment agent. Based on the specified safety
goals, there are safety measures defined that contain the corresponding safety modes and
actions (cf. [Glel4]).

Assume-guarantee pairs are used also in [GFN19] to verify models of cyber-physical
machines (CPM). The verification results are delivered within formal model-based
assurance cases (FMACs). An FMAC is an assurance case which uses a formal model
to derive evidence for the top-level claims. The FMAC consists of the specification of a
CPM, which describes the system behavior, a set of assumptions and a set of guarantees
(cf. [GFN19]). A system is formalized as a generalized hybrid program, that can be
specified with differential dynamic logic (dL) [Pla08]. The assumptions are defined as
predicates over the monitored variables by the CPM, while the guarantees are defined
as predicates over the internal variables of the CPM as well as the variables which
are monitored and controlled by the CPM (cf. [GFN19]). The approach defines two
patterns for assurance cases. One pattern is for the construction of assurance cases and
the other pattern is for their extension. The extension of an assurance case happens
through the refinement of the CPM model, the weakening of its assumptions and the
addition of further guarantees. Both patterns show how assurance results from previous
engineering steps can be preserved (cf. [GFN19]). The approach is applied to a mobile
ground robot. The mobile ground robot is modeled in a formal modeling language which
implements the differential dynamic logic (dL) of [Pla08] in ISABELLE/UTpP [FBC*20].
The patterns are formalized in ISABELLE/SACM [NFGK], while the proofs are carried
out with ISABELLE/HoL [Nip02].

Assumptions in Agent-based Systems

Verification of agent-based systems is another area in which the concept of assumption is
important. Rational agents represent a computation model which is used to describe the

235

Chapter 6. Contributions with respect to Related Work

functioning of decision-making components in hybrid autonomous systems (cf. [FDW13]).
The rational agent makes discrete decisions, which are then translated into continuous
control actions of the hybrid autonomous system. In order to verify such components, the
respective agents are modeled in the language GWENDOLEN [DMO8], while the properties
to be verified are specified in a belief-desires-intentions (BDI) logic [Ra096]. The BDI
logic is in fact LTL, extended with specific modal operators, that are used to check the
agent’s beliefs, goals, actions and intentions (cf. [FDW13]). The verification is carried
out with the model checker Agent Java Path Finder (AJPF) [DFWBI12], which extends
the model checker Java Path Finder (JPF) 2 with mechanism for the checking of agent
properties. The AJPF model checker together with the agent programming language
GWENDOLEN and the BDI logic are subsumed to the MCAPL framework, which is used
for the verification of agent-based systems modeled in GWENDOLEN (cf. [FDW13]). This
framework is applied in several use case scenarios in urban search and rescue, autonomous
satellites and adaptive cruise control systems (cf. [DFL*16]). In each use case scenario,
environment assumptions are formulated as logical statements in the BDI logic in order
to derive further properties of the system under analysis. In the scenario of urban
search and rescue, the environment assumptions refer to the robot sensors and actuators,
e.g., whether the its sensors detect a human correctly and whether its motor control
functions correctly (cf. [DFL*16]). In the autonomous satellite scenario, assumptions are
formulated with respect to different components, e.g., the planing component, which is
assumed to deliver a plan to get the satellite in a desired position on the agent’s request
(cf. [DFL*16]). The scenario of the adaptive cruise control, inspired by the one presented
in [LPN11], makes assumptions with respect to the distance between the ego vehicle and
the leading vehicle and with regard to the presence of another vehicle on the left lane
before the ego vehicle changing to that lane (cf. [DFL*16]). Instead of being formalized
explicitly as logical statements in an extension of LTL, the assumptions are sometimes
considered as part of the environment model (cf. [FDAT18b]). The environment model
is generated from trace expressions formalized in PROLOG and is used for verification of
the agent with the model checker AJPF (cf. [FDA'18b]). The trace expressions used
to generate the environment model are also used to generate runtime monitors, that
are used to check whether the real environment validates the assumptions made in the
environment model (cf. [FDAT18b]).

Rational agents are also used to model a component in charge of high-level control
and autonomous decision-making in the Curiosity Mars rover (cf. [CFLT20]). The agent-
environment interface describes the decisions of the agent in response to inputs received
from the environment. This interface is modeled in DAFNY [Leil0], using preconditions
and postconditions as well as loop invariants (cf. [CFL*20]). The rational agent is
programmed in GWENDOLEN, while the other components in the Mars rover that interact
with the agent are implemented in RoOs. The communication between the rational agent
and the ROS components is implemented via a client-server model similar to ROS services
(cf. [CFL*20]). Different tools are used to verify the rational agent, its interface with its
environment and underlying communication between the client and server nodes. Thus,
the rational agent is verified with the AJPF model checker against properties expressed in
BDI logic. The agent-environment interface modeled in DAFNY defines specific functions

236

6.1. Obtaining Environment Assumptions

that can access the information received from the environment, e.g., wind speed or
radiation. It enables the verification of safety properties regarding the agent’s behavior
under the premise that the information received from the environment is interpreted
correctly by the agent (cf. [CFL*20]). The verification of the agent-environment interface
is carried out with the automated theorem prover Z3 [dMBO08], that is integrated in
the DAFNY tool. The assumptions used in the DAFNY model are checked at runtime
using the framework ROSMONITORING [FCF*21]. The monitors are synthesized from
properties written in Runtime Monitoring Language (RML) [Fra20].

A further approach which uses rational agents to model autonomous control systems
is Limited Instruction Set Agent (LISA), proposed in [IQV16]. LISA allows the definition
of predicates for sensory perception and action feedback, which allow the agent to be
aware of the consequences of its own actions (cf. [IQV16]). Along with with its sensory
perception and action feedback, the agent’s goals are considered to be part of its set of
beliefs (cf. [IQV16]). A rational agent modeled in LISA can be compiled into a DTMC or
an MDP. A transition in a DTMC corresponds to an action of the agent’s plan triggered
by a change in the agent’s beliefs, in which changes of action feedback and sensory
perception are given with known probability distributions (cf. [IQV16]). A transition in
an MDP is similar to a transition in a DTMC, except that the agent’s plan selection
involves a nondeterministic choice, because the number of applicable plans is larger than
the number of triggering events (cf. [IQV16]). The authors propose to use the generated
PRrISM model both for design-time and runtime verification (cf. [IQV16]). Their proposal
is to carry out the runtime verification through the agent’s function for plan selection.
In this sense, the plan selection function of the rational agent is considered to take as
inputs the current set of beliefs and desires of the agent and produce as output one plan
that is most likely to succeed based on the set of the agent’s desires (cf. [IQV16]). For
the selection of the agent’s plan, the authors of [[QV16] propose to use the probability
values resulted from the verification of the PRisM model against predefined queries (cf.
[IQV16]). The LISA approach is shown on the example of an autonomous surface vehicle
used for mine detection and disposal (cf. [IQV16]).

6.1.2. Automated Methods for Obtaining Environment Assumptions

The research discussed in Section 6.1.1 represents a range of approaches in which
the environment assumptions are specified manually. Defining relevant environment
assumptions requires a high level of knowledge, often at expert level, about the system
under analysis and its environment. This often means a white box view of the system,
in which the system designer has a thorough understanding of the system behavior in
the system’s environment. There are, however, other ways of obtaining environment
assumptions. One approach is to learn the assumptions under which the system under
analysis satisfies its system requirements. Another way is through the observation of the
system behavior in its environment. This section presents learning-based approaches
for the generation of assumptions and specification mining approaches, that are used
to extract the relevant environment assumptions from the observation of the system
behavior in its environment.

237

Chapter 6. Contributions with respect to Related Work

Learning-based Methods for Assumptions Generation

Learning-based assumptions generation has been introduced for non-probabilistic systems
and discussed extensively in [CGP03], [GPB05], [PG06], [GGP07], and [PGGB*08]. It
is a compositional verification technique, in the spectrum of assume-guarantee reasoning.
This technique relies on the learning algorithm L* and model checking, in order to learn
assumptions in an iterative manner. A brief intuition on the workings of this technique
is given on the example of an asymmetric proof rule for non-probabilistic systems with
two components in Section 2.5.2. The approach is complete, because it ensures that if
the system satisfies its property, then there always exists an assumption that can be
used to carry out the verification in a compositional manner (cf. [PGGB*08]). This
approach is demonstrated on several subsystems developed at NASA for the control
of planetary rovers (cf. [CGPO03|, [PG06]). In the application of this approach, the
systems are represented as finite labeled transition systems. The learned assumptions
are deterministic finite state machines encoded as such in the LTSA tool (cf. [CGP03])
or as processes encoded in the modeling language PROMELA of the SPIN model checker
(cf. [PGO6]).

An alternative approach to learning-based assumption generation is assume-guarantee
abstraction refinement (AGAR) (cf. [GBPGO08]). For a system M ||M,, the AGAR
approach computes assumptions as conservative abstractions of the interface behavior of
M. To give an intuition of how AGAR works, consider the proof rule ASYMM in Section
2.5.2. In each iteration, the computed assumption A satisfies 11 by construction and it is
only verified against 1o (cf. [GBPGO8]). If the verification succeeds, then it is shown that
the system M; || M, satisfies the property G. Otherwise, the generated counterexample is
analyzed to see if it is caused by over-approximation in the abstraction or if it is related to
an actual error in the system M || Ms. In case of a spurious counterexample, this is used
to refine the assumption A (cf. [GBPGO08]). This approach is similar to counterexample-
guided abstraction refinement (CEGAR) [CGJT00] with a few differences between the
two approaches. Counterexample-guided abstraction refinement computes abstractions of
programs based on a set of abstraction predicates, using spurious counterexamples to refine
these abstractions. The abstractions computed with CEGAR are over-approximations of
the program under analysis (cf. [CGJT00]). By comparison, AGAR works on actions
of finite automata and computes under-approximations of these finite automata, which
represent the assumptions used for A/G reasoning (cf. [PGGB™08]). In contrast to the
learning-based assumption generation method in [CGP03] and [PGGB*08], AGAR does
not require that the computed assumptions are deterministic, which may result in smaller
assumptions (cf. [GBPGO08]). Smaller assumptions are further obtained by combining
AGAR with alphabet refinement (cf. [GBPGO08] and [PGGB*08]).

Feng et al. [FKP10] adapt the approach in [PGGB*08] for learning assumptions for
asynchronous probabilistic systems and demonstrate this approach for the asymmetric
proof rule. Given a probabilistic safety property (G)>,. and a system M, || M, consisting
of the parallel composition of two components M; and M,, the approach attempts to find
the probabilistic assumption (A)>,, that can be used to verify M; || My with respect to
the property (G)sp (cf. [FKP10]). Both components M; and M, are modeled as MDPs.

238

6.1. Obtaining Environment Assumptions

The assumption (A)s,, and the property (G)s,, are probabilistic safety properties,
which are represented as deterministic finite automata (cf. [FKP10]). Similar to the
work in [PGGB*08], the algorithm L* interacts with a teacher through membership
queries and conjectures, in order to establish whether a word is an element of the target
language, and respectively, whether the deterministic finite automata hypothesized by
the L* algorithm accepts the target language (cf. [FKP10]). The deterministic finite
automata conjectured by the L* algorithm represents an assumption, which is later used
to verify the second premise of the asymmetric proof rule, (A)s,, Ma(G)>,., with the
probabilistic model checker PrisM. If the triple (A)s,, Mo(G) >, is disproved, then
teacher provides a counterexample, which is further used to refine the assumption (cf.
[FKP10]). A triple (A)>,, M(G)>,,, is disproved if there exist a scheduler o of M[Act 4]
that satisfies the assumption (A)>,, but disproves the guarantee (G)>,, (cf. Section
2.5.2). The counterexample generated by the teacher has the form (o, w,c), where o is a
finite-memory scheduler, (o, w) is a witness for (4)>,, and (o, ¢) is a counterexample for
(G)>pe (cf. [FKP10]). The presented approach is quantitative, as it computes lower and
upper bounds on the probability ps of G being satisfied (cf. [FKP10]). The approach
is applied to the case study of a resource arbiter module adapted from [PGO06], that
is part of the control software of planetary rovers (cf. [Fenl4]). In [FHKP11], this
approach is adapted to learn probabilistic assumptions for synchronous probabilistic
systems. The assumptions are represented as probabilistic finite automata, while the
components of the system are represented as probabilistic input/output automata, whose
parallel composition results in a DTMC (cf. [FHKP11]). In addition, the work in
[Fen14] presents a method for learning assumptions for probabilistic systems, whose
components are DTMCs encoded as boolean formulae. In turn, the assumptions are
represented as interval DTMCs (cf. [Fenl4]). Notice that, although learning assumptions
for non-probabilistic systems is complete (cf. [PGGB™08]), the learning approach applied
for probabilistic systems may not yield any probabilistic assumption, as this assumption
may not exist.

Komuravelli et al. [KPC12] apply the AGAR approach to compute assumptions for
labeled probabilistic transition systems (LPTS). Such systems display both probabilistic
and nondeterministic behavior, thus essentially being equivalent to a PA (cf. [KNPQ13]).
In contrast to non-probabilistic systems in which the counterexamples are traces in finite
labeled transition systems (cf. [GBPGO8]), in an LPTS counterexamples are stochastic
trees obtained during failed simulation checks. These counterexamples are further used
to refine the inferred assumptions. Both the generated assumptions as well as the system
property to be verified are represented as LPTS (cf. [KPC12]).

Specification Mining Methods for Assumptions Generation

Besides learning-based methods and AGAR, specification mining techniques represent
another possibility for the automated generation of assumptions. Specification mining
techniques can be used to generate additional assumptions, that are added to an original
property specification in order to make it realizable. A formal property specification
is realizable if a correct-by-construction controller can be generated through synthesis

239

Chapter 6. Contributions with respect to Related Work

from it, otherwise the respective property specification is not realizable. An under-
constrained environment or an over-constrained system can lead to an unrealizable
property specification (cf. [Lil4]). An under-constrained environment means that the
assumptions expressed about the environment are too weak. An over-constrained system
means that the guarantees which the system has to hold are too strong. Li proposes
a specification mining technique which relies on synthesis from General Reactivity
(GR(1)) formulae (cf. [LDS11], [Lil4]). GR(1) is a strict A/G fragment of LTL, i.e.,
GR(1) formulae have the general form v, — 15, where 1, represents the environment
assumption, and v, is the system guarantee (cf. [MR15]). A controller synthesized
from a given specification fulfills the respective specification by construction. Thus,
the guarantee 15 holds only when v, is valid (cf. [WTM12]). The specification mining
method proposed by Li [Lil4] takes a library of GR(1) specification templates and a
counter-strategy as input and produces a candidate assumption as output. In the first
step of this approach, GR(1) synthesis is carried out on the original property specification.
If it is not realizable, then the GR(1) synthesis produces a counter-strategy, that contains
the next steps executed by the environment agent in response to the current output
of the system agent (cf. [Lil4]). The second step of this approach uses the library of
GR(1) specification templates and applies specification mining in an attempt to find a
specification in the library that is satisfied by the counter-strategy of the environment
agent (cf. [Lil4]). In the third step, the property specification mined out of the GR(1)
templates library is negated and added to the original property specification in order to
make the latter realizable (cf. [Lil4]). Notice that this works because of the law of double
negation, i.e., since the mined property specification is satisfied by the counter-strategy
of the environment agent, adding its negation to the original property specification
constrains the environment agent in such a way that the new property specification may
be realizable, i.e., an implementation for a system controller can be generated from it.
The process consisting of the three steps discussed above is carried out in an iterative
manner, until all specifications in the library of GR(1) specification templates have been
checked out or the resulting specification is realizable (cf. [Lil4]).

In [LSSS14], Li uses the same approach to synthesize strategies for a human-in-
the-loop controller from a GR(1) fragment of LTL for SAE level 3 vehicle automation.
The synthesized human-in-the-loop controller consists of an automatic controller, a
human operator and an advisory control mechanism that orchestrates the sharing of
responsibilities between the automated controller and the human operator (cf. [LSSS14]).

Introspective environment modeling is an approach introduced by Seshia in order to
deal with the uncertainties related to the dynamics of the environment model and those
regarding the state of environment objects (cf. [SS16], [Ses19]). In this approach, the
system’s behavior and its interface to its environment are analyzed in order to extract a
representation of the environment in which the correct functioning of the system with
respect to a formal property specification is guaranteed (cf. [Ses19]). The problem of
introspective environment modeling is reduced to the problem of synthesizing a controller
from a GR(1) specification. It uses the approach in [LDS11], in which counter-strategies
of the environment are automatically generated through reactive synthesis applied on
an unrealizable property specification. The generated counter-strategy constitutes the

240

6.2. Assumptions in Verification and Validation Processes

basis of the environment assumption, which makes the resulting property specification
realizable. The approach is demonstrated on a simplified autonomous driving scenario
(cf. [Ses19)).

In another research work, Krismayer [Kri20] proposes an approach for mining system
constraints for complex systems, e.g., systems of systems, on the basis of system execution
logs. Since the proposed approach allows for different input formats, the system execution
logs are parsed in order to obtain a uniform event format, used for the subsequent
steps of the constraint mining process (cf. [Kri20]). From the resulting event logs,
the proposed mining method identifies various types of event sequences which allows
mining of temporal constraints with respect to event occurrence, event order, and event
timing (cf. [Kri20]). In the next step of the constraint mining approach, feature vectors
containing event data are extracted from each event sequence. The feature vectors serve
as a basis to derive value constraints as well as hybrid constraints, the latter type of
constraints being a combination between temporal and value constraints (cf. [Kri20]).
The resulting constraints are filtered, grouped and ranked, according to predefined criteria,
e.g., duplicate constraints are removed, similar constraints are grouped together, and
constraints are ranked according to their confidence (cf. [Kri20]).

6.2. Assumptions in Verification and Validation
Processes

While Section 6.1 focused on reviewing methods for obtaining environment assumptions,
this section takes a look at related work that illustrate the usage of assumptions in
verification and validation processes. This section reviews related work in which envi-
ronment assumptions are used in relation with design-time verification approaches (cf.
Section 6.2.1), as well as research work that address the combination of design-time
verification and runtime validation approaches and the role of environment assumptions
in the development process (cf. Section 6.2.3). Additionally, related work that bring
controller synthesis approaches in relation with environment assumptions is discussed (cf.
Section 6.2.2).

6.2.1. Assumptions in Design-time Verification

This section takes a look at design-time verification approaches that are used in relation
with assumptions. One of these techniques is theorem proving. Mitsch et al. [SKA13]
present the verification of an autonomous robot via the theorem prover KEYMAERA
with respect to two types of safety properties: (1) passive safety, i.e., the robot does not
actively collide with obstacles in its environment, and (2) passive friendly safety, i.e., the
robot allows dynamic obstacles in its environment sufficient maneuvering space, so that
the obstacles can avoid a collision with it (cf. [SKA13]). The dynamic obstacles in the
robot’s environment are considered to have an arbitrary continuous motion, with a known
upper bound on their velocity (cf. [?]). The robot and the obstacles in its environment
are modeled as a hybrid system, which describes both discrete control choices and the

241

Chapter 6. Contributions with respect to Related Work

continuous physical motion, i.e. discrete computations of actuator values for braking
translate into a continuous motion of slowing down. Both the hybrid system and the
safety properties are expressed in differential dynamic logic (dL) (cf. [SKA13]).

In [MGVP17], two additional types of safety properties are added for the verification
of ground robots: (3) static safety, i.e. the robot does not collide with static obstacles,
and (4) passive orientation safety, i.e. imperfect coverage of the robot’s sensors is
allowed, meaning that not everything in the robot’s environment is visible to the robot
(cf. [MGVP17]). As in [SKA13], the obstacles are considered to have an arbitrary
continuous motion, only with a known upper bound on their velocity. Besides this, there
are further specific assumptions made about the obstacle movement, for every type of
safety property considered - static safety, passive safety, passive friendly safety, and
passive orientation safety (cf. [MGVP17]). Examples of assumptions on the obstacle
movement are the known maximum velocity of obstacles in case of passive safety property
or that obstacles remain stationary and do not move in case of static safety property (cf.
IMGVP17]). Differential dynamic logic is used to model the hybrid system that consists
of the robot and the obstacles in its environment as well as to specify the safety properties.
The design-time verification is carried out with the theorem prover KEYMAERA X. In
[CFL*20], the interface between a decision-making component of the Curiosity Mars
rover and its environment is modeled as a DAFNY model and verified with the Z3 theorem
prover, integrated in the DAFNY tool.

Besides theorem proving, assumptions are also used in relation with other design-
time verification techniques, e.g., model checking. Section 6.1.1 gives an overview of
approaches in which model checking is used in obtaining assumptions for automated
control systems as well as for the verification of such systems. In some of the presented
approaches assumptions are obtained manually for automated control systems modeled
with the help of rational agents. In each of these approaches, the verification of such
systems is usually carried out with the help of the AJPF model checker (cf. [FDW13],
[DFL*16], [FDAT18b]). The PrisM model checker is used for the verification of rational
agents in which changes of action feedback and sensory perception are given with known
probability distributions (cf. [IQV16]). Another way to obtain assumptions is by learning
them from observations of the system behavior in its environment (cf. Section 6.1.2). In
learning-based assumption generation, a teacher interacts with the learning algorithm L*
and provides an answer to the question whether the assumption conjectured by L* is the
right assumption or not (cf. Section 6.1.2). The teacher is in fact a model checker which
provides the required answer by checking if the system under analysis satisfies its system
property under the assumptions conjectured by the L* algorithm (cf. Section 6.1.2). The
verification is carried out with different model checkers e.g., LTSA model checker (cf.
[CGPO03], [GPBO05], [GGP07], [GBPGOS], and [PGGB*08]) or the SPIN model checker
(cf. [PGO6]). In learning-based assumption generation for probabilistic systems, the
verification is carried out with the PRISM model checker (cf. [FHKP11], [Fen14]).

Different verification techniques can also be combined to verify modular software
systems, e.g., in autonomous space robots (cf. [FCD*19]). The software system of the
autonomous robot consists of several subsystems: a vision subsystem, a planner, a plan
reasoning agent and a hardware-software interface (cf. [FCD*19]). The subsystems of

242

6.2. Assumptions in Verification and Validation Processes

the robot software system are arranged in a pipeline from the vision subsystem down to
the hardware-software interface, and the assumptions of each subsystem are considered
to follow from the guarantees of the previous subsystem (cf. [FCD19]). The A/G
properties are formulated in first-order logic (FOL) for each subsystem as high-level
node specifications, and LTL to reason about combinations of such specifications (cf.
[FCD*19]). Theorem proving is used to verify the planner, while model checking is
applied for the verification of the plan reasoning agent (cf. [FCD*19]).

6.2.2. Controller Synthesis and Environment Assumptions

Given a system under analysis, formal verification methods used at design-time, e.g.,
model checking, verify a formal system model against a formal property specification,
and provide an answer as whether the system model is correct with respect to the
property specification or not. The formal system model is represented usually as a finite
state-transition system, while the property specification is formalized in a temporal
logic formula (cf. Section 2.5.2). Rather than verifying an existing system model with
respect to a formal property specification, reactive synthesis is an automated procedure
to obtain a correct-by-construction system from a temporal logical specification, more
explicitly an LTL formula (cf. [MR15]). The system implementation obtained as a result
of reactive synthesis is an automaton which accepts inputs from the environment and
produces the system output. The assignments of the input and output variables satisfy
the property specification on every infinite run of the automaton (cf. [MR15]). The
obtained implementation is used to control the system under analysis. Therefore, reactive
synthesis is sometimes denoted as controller synthesis (cf. [UPC12], [WF12]).

Various synthesis techniques are applied for robot controllers which interact with
dynamic environment agents. In [UPC12] and [WUB*12], synthesis is used in an
incremental manner to compute progressively a set of policies for a robot interacting with
several independent environment agents. The dynamic agents in the robot’s environment
are modeled as Markov chains, while the robot is modeled as a deterministic finite
transition system for the deterministic case (cf. [UPC12] or as an MDP for the stochastic
case (cf. [WUB™12]). The objective for the robot is to maximize the probability of
behaving according to a its given specification, which is expressed in a safety fragment
of LTL, namely co-safe LTL (cf. [UPC12], [WUB*12]). In [WF12], a collection of
environment models are available to the robot, with each model corresponding to a
different mode of the environment. It is considered that the system is not aware of
the current environment mode, that is also subject to change during execution. The
robot is modeled as an MDP, while the environment models are depicted as Markov
chains. The robot has two objectives, namely to maximize the expected probability
and respectively the worst-case probability to satisfy a specification given in LTL. In
[WUBT13|, the synthesis approach computes control policies for multi-agent systems in
which robots interact with each other and with environment agents that may not be
completely independent. Both the robots and the environment agents are modeled as
MDPs and the specification is given in LTL (cf. [WUB™13]). Chen et al. [CKSW13] take
a different approach to controller synthesis. They apply multi-objective model checking

243

Chapter 6. Contributions with respect to Related Work

in an urban driving scenario, in which the system and the adversarial environment are
modeled as the two players of a stochastic two-player game. The multi-objective queries
formulated for the stochastic game are conjunctions of LTL formulae or conjunctions
of reward functions (cf. [CKSW13]). The approach is implemented with PRISM-games
[CFK™13], which is an extension of the PRISM model checker for stochastic games.
Reactive synthesis underlies two main challenges. On one side, synthesis of controller
strategies from LTL specifications has a large worst-case complexity, i.e., double expo-
nential in the length of the formula (cf. [MR15]). On the other side, declarative property
specifications which are closer to informal system requirements than LTL formulae are
difficult to write using LTL operators (cf. [MR15]). In order to reduce the complexity of
controller synthesis for LTL specification, the work in [WTM12] proposes the method
of receding horizon, which breaks the synthesis problem into a set of smaller problems.
Instead of planing out the robot motion from the initial state to the goal state, the idea
of receding horizon is to plan out the execution of an autonomous robot only for a short
segment ahead, starting from the currently observed state and without considering all the
possible behaviors of the environment (cf. [WTM12]). The specification for the controller
synthesis is a GR(1) formula, of the general form ¥, — 1, where 1), is denoted as the
environment assumption, and s as the system guarantee (cf. [WTM12]). Since the
synthesized controller fulfills the specification by construction, the guarantee 1, holds
only when v, is valid. Should v, be invalidated, the system generates a new goal by
removing the problematic transition from the finite transition system (cf. [WTM12]).
To address the issues of reactive synthesis, Maoz et al. [MR15] propose an approach
which relies on using the LTL specification patterns identified by Dwyer in [DAC99] and
transforming the respective LTL formulae in GR(1) formulae. GR(1) is a fragment of
LTL, for which a symbolic synthesis algorithm is provided by Piterman [PPS06] and
Bloem [BJPT12]. The goal of the GR(1) synthesis is finding a controller that satisfies a
formal property specification given over a set of variables which describe the environment
state and respectively the system state (cf. [MR16]). The GR(1) synthesis problem
is formulated as a game between a system player and an environment player. The
synthesis problem for GR(1) specifications defines the variables which are controlled by
the environment player and by the system player, the constraints used to formulate the
environment assumption and the system guarantee, as well as the winning condition of
the game (cf. [MR15]). Three types of constraints are used for the formulation of the
environment assumption and the system guarantee: (1) constraints placed on the initial
states of the automaton, (2) safety goals, and (3) liveness or justice goals (cf. [MR15]). If
the environment fulfills the environment assumptions then the behavior of the generated
controller meets the system guarantees. The winning condition is formulated as an
implication between the liveness goals of the environment player and the liveness goals
of the system player. Using a LEGO forklift controller as an example, Maoz and Ringert
show that 52 out of the 55 specification patterns proposed in [DAC99] can be used to
express assumptions and guarantees in the GR(1) fragment of LTL (cf. [MR15]). In
[MR], GR(1) is used as the kernel of the SPECTRA language, which is introduced in
[MR] as a specification language for reactive systems. The 52 LTL specification patterns,
translated previously in [MR15] in the GR(1) fragment of LTL, constitute the catalog of

244

6.2. Assumptions in Verification and Validation Processes

patterns associated with language Spectra, to which user-defined patterns can be also
added. The language SPECTRA is accompanied by SPECTRA TOOLS, which is a set
of analysis tools, including a controller synthesis tool to obtain correct-by-construction
system controllers (cf. [MR]).

GR(1) synthesis is also applied to extract controllers from scenario-based specifications.
The work in [MS12] introduces A/G scenarios, which extend live sequence charts (LSCs)
with support for environment assumptions (cf. [MS12]). Live sequence charts are a visual
formalism used for the scenario-based modeling of system behavior. They represent
an extension of message sequence diagrams by universal and existential modalities (cf.
[MS12]), which allow the specification of mandatory, possible, and forbidden scenarios
(cf. [HMOS8]). A/G scenarios can express safety assumptions, i.e., what the environment
is assumed never to do, as well as liveness assumptions, i.e., what the environment is
assumed to eventually always do. The semantics of the A/G scenarios is defined in
terms of GR(1) and a game-based synthesis algorithm is used to generate a correct-by-
construction controller (cf. [MS12]). The extension of LSCs through A/G scenarios
does not introduce new constructs in the LSCs language, instead it embeds assumptions
implicitly in the scenario definition (cf. [MS12]).

Greenyer [Grell] extends modal sequence diagrams to specify real-time requirements
and environment assumptions, in order to find inconsistencies in scenario-based specifica-
tions of mechatronic systems. The problem of finding inconsistencies in modal sequence
diagrams is mapped to the problem of synthesizing wining strategies in two-player games
(cf. [Grell]). Assumptions are specified by assumption modal sequence diagrams, which
are annotated with the respective stereotype defined in an UML profile specific for modal
sequence diagram specifications. The modal sequence diagrams are mapped to a network
of timed game automata that are used with UPPAL TIGA for the purpose of controller
synthesis (cf. [Grell]).

6.2.3. Combining Design-time Verification with Runtime Validation

In [MGVP17], Mitsch et al. verify models of autonomous robots controllers against four
different safety properties - static safety, passive safety, passive friendly safety, and passive
orientation safety - using the theorem prover KEYMAERA X (cf. Section ??7). The model
of the robot controller is formalized in dL. In addition to the design-time verification
carried out with KEYMAERA X, the authors use MODELPLEX [MP16], a feature of
KEYMAERA X, in order to synthesize runtime monitors. The generated monitors include
assumptions about obstacles as well as on the evolution domain of the hybrid dynamics
and on the robot’s decision on the next maneuver, e.g., braking, accelerating or staying
at rest (cf. [MGVP17]). The synthesized monitors are then used to verify the compliance
between the robot’s implementation and the verified model of the robot’s controller (cf.
[MGVP17]). The runtime monitors synthesized with MODELPLEX are integrated in the
verification pipeline VERIPHY (cf. [BTM™18]).

In [MP18], a controller in a train control system is verified offline against an explicit
model of physics. The verified model is used to synthesize online monitors that check at
runtime the implementation of the controller. The monitors synthesized from the physics

245

Chapter 6. Contributions with respect to Related Work

model make assumptions on the model’s continuous dynamics between sampling points
(cf. [MP18]). This is done in order to account for partial observability due to uncertainty
in the sensor data and partial controllability due to actuator disturbances (cf. [MP18]).
The machine code implementation of the runtime monitors is obtained with VERIPHY
(cf. [MP18]).

Desai et al. [DDS17] combine program model checking with runtime verification
for validating the correctness of high-level robotic modules, that carry out the robot’s
discrete decision making and planing. The decision-making components and the planing
components receive inputs from the robot’s physical environment as well as from low-level
closed-loop controllers, that implement the robot’s continuous dynamics (cf. [DDS17]).
The high-level decision-making and planing logic is modeled and verified with the event-
driven programming language P. During model checking, the analysis carried out on
the P modules uses assumptions to abstract the robot’s continuous dynamics to a
discrete behavior (cf. [DDS17]). The assumptions placed on the low-level controllers
are formalized with the help of STL templates. The STL formula is learned from a set
of robot trajectories and are instantiated with parameters inferred through regression
analysis. The STL formula is then evaluated on an observed trajectory of the robot using
an online monitor (cf. [DDS17]).

Ferrando [Fer19] uses model checking to verify runtime monitors at design-time
against desired LTL properties, before using them to monitor the system during its
operation. Often, runtime monitors are generated from LTL specifications. Rather than
LTL properties, Ferrando uses trace expressions to construct the runtime monitors (cf.
[Fer19]). Trace expressions represent a formalism more expressive than LTL, developed
especially for the runtime verification of multi-agent system (cf. [AFM16]). In contrast to
monitors constructed from trace expressions, a monitor generated from an LTL property
satisfies the respective property by construction (cf. [Ferl9]). In order to ensure that
runtime monitors built from trace expressions satisfy the desired LTL properties, Ferrando
generates an over-approximation of the trace expression, which is then verified against
the LTL property using the SPIN model checker (cf. [Fer19)]).

In [CTT19a], Cimatti et al. use runtime verification to monitor partially observable
systems. Assumptions modeled as fair transition systems are placed on the unobservable
part of the system under analysis. Such an assumption can be a detailed model of
the system under analysis or a constraint on a set of boolean variables (cf. [CTT19a]).
The authors use the NUXMV model checker [CCD*14] to synthesize a runtime monitor
from the LTL property to be verified, using as inputs also the assumptions placed
on the unobservable parts of the system (cf. [CTT19a]). The output of the runtime
monitor depends on the information extracted from the partial observations of the system.
The synthesized monitor has therefore a four-value semantic: (1) the LTL property is
satisfied under the given assumption, (2) the LTL property is disproved under the given
assumption, (3) the assumption is violated by the system under analysis, and (4) the
result of the monitoring is inconclusive (cf. [CTT19al). The approach is implemented in
the tool NURV, which extends the NuXMv model checker for runtime verification (cf.
[CTT19b]). The system under analysis is a factory assembly line system specified in LTL

246

6.2. Assumptions in Verification and Validation Processes

(cf. [CTT19al]). The LTL properties considered for monitoring are the LTL specification
templates defined in Dwyer’s catalog of specification patterns in [DAC99] (cf. [CTT19a]).

In [HL19], Haupt and Liggesmeyer introduce an approach to derive rule-based safety
monitors in order to observe the system state in adaptable autonomous systems and
trigger mitigating actions, in case any safety violations are detected. The safety rules
are derived through a HARA analysis, which takes into consideration the operational
modes of the system and the system configurations associated with each of its operational
modes (cf. [HL19]). An automation system used in agricultural machines serves as an
example system for the application of this approach (cf. [HL19]). In [BHL], the authors
present an approach for context-aware safety assurance of autonomous vehicles. They
use a meta-model to differentiate between the system under analysis and the elements in
its context. Furthermore, HARA analysis is applied to extract safety-critical parameters
that can be used to define safety rules for the system monitoring during its operation (cf.
[BHL)).

Dinh and Holvoet [DH20b] propose a framework to verify the decision making of
robotic agents that operate in open environments. The item under analysis is the decision-
making component of an unmanned air vehicle for pylon inspection (cf. [DH20b]). This
component interacts with the agent’s physical environment as well as with other technical
components of the robot, e.g., on one side sensors and perception algorithms, and on
the other side, motion planing, control algorithms and actuators (cf. [DH20b]). The
perception algorithm is considered to produce continuous data and a discrete abstraction
is applied on its output so that this output can be used by the robot’s decision-making
component (cf. [DH20b]). Rather than building an environment model for it, the
authors specify the environment of this component as a set of LTL assumptions over the
data received by the decision-making component from the perception component before
the discrete abstraction is applied on it (cf. [DH20b]). The authors use the NuXmv
model checker to verify the robot’s decision-making component against system properties
expressed in the property specification language of NUXMv, which is LTL with past and
future operators (cf. [DH20b]). The LTL assumptions are derived on the basis of the
authors’ domain knowledge and the counterexamples produced during the verification
with the NUXMV model checker (cf. [DH20b]). This study is extended in [DH20a] with
other model checkers than NuUXMv, e.g., PROB, SPIN, and ALLOY.

Reich and Trapp [RT20] introduce in their vision paper the framework SINADRA
for situation-aware dynamic risk assessment. The framework combines design-time and
runtime methods in order to build runtime monitors for situation-aware autonomous
vehicles. At design-time, the SINADRA framework proposes to build a risk causality model
through a risk and causality analysis that uses as inputs the vehicle’s ODD specification
and the behavioral models of the autonomous driving function (cf. [RT20]). The authors
propose to transform the risk causality model into a Bayesian network model and use
the latter at design-time to build a safety argument to show that the risk in specified
ODD is not underestimated. The tables of conditional probabilities in the Bayesian risk
model use as parameters the probability distributions of the situation factors defined in
the vehicle’s ODD specification (cf. [RT20]). At runtime, the nominal driving function
perceives the performance-relevant of the environment and produces the intended ego

247

Chapter 6. Contributions with respect to Related Work

vehicle behavior. The risk-relevant features are observed by the SINADRA monitors,
which estimate the perception uncertainty for each risk-relevant feature (cf. [RT20]).
The monitors use the Bayesian risk model and the estimated perception uncertainties
in order to check the intended behavior of the vehicle for residual risk. The estimated
residual risk is then given as input to a decision-making component, which provides the
corresponding risk control measure (cf. [RT20]).

A similar approach is presented in [RSST20] for engineering of runtime safety monitors
for cyber-physical systems. The notion of the proposed engineering framework relies
on the notion of dependability digital identity (DDI) (cf. [RSS*20]). This is defined as
an integrated set of data models created at design-time by system engineers, that are
used to build dependability arguments for the system under analysis (cf. [RSST20]). A
DDI is formed as a modular assurance case, and contains claims about the dependability
guarantees given by the system under analysis to other systems, supporting evidence
for the dependability guarantees in the form of various models as well as demands
from the other systems connected with the system under analysis, that are necessary to
support the claims (cf. [RSST20]). The data models of a DDI serve also as a basis to
build conditional safety certificates as a runtime assurance method for the system (cf.
[RSST20]). Conditional safety certificates define failures modes together the respective
variable bounds, context-specific constraints for which the variable bound must be valid,
and a confidence level required for the assurance of the variable bounds (cf. [RSS*20]).
Conditional safety certificates support information abstraction and use boolean logic to
express the safety guarantees and the safety demands for the system under test. The
approach is demonstrated for a cooperative vehicle platooning function (cf. [RSST20]).

In their position paper, Ruchkin et al. [RCSL21] propose an approach for computing
the overall assurance measure with which a learning-based autonomous system carries
out its mission successfully. The proposed approach leverages design-time guarantees, by
identifying what assumptions underlie these guarantees and develop runtime monitors that
compute probabilistic confidence measures for these assumptions (cf. [RCSL21]). The
system under analysis, an autonomous underwater vehicle in charge of pipeline inspections,
and its environment are modeled as a hybrid system. The design-time verification is
carried out in the form of reachability analysis with the tool VERISIG (cf. [RCSL21]). The
assumptions formulated in the example refer to the vehicle dynamics and the perception
module, which is implemented with neural networks, e.g., the system’s perception module
provides accurate readings up to a predefined error bound (cf. [RCSL21]). In order
to establish the relation between the assumptions violations and the violation of the
system requirements, the authors carry out an assumption effect analysis, a technique
which is considered similar to HARA (cf. [RCSL21]). Furthermore, they propose to use
probabilistic analysis to derive the confidence output of the assumptions monitors from
the observed behavior of the system components. The confidence measures computed by
the individual assumptions monitors are given as input to the overall assurance monitor.
The latter computes the assurance measure that the system fulfills its mission successfully
(cf. [RCSL21)).

Watanabe et al. [WKLS18] integrate runtime monitoring in a development workflow
in order to improve the safety of a vehicle during development and deployment stages.

248

6.3. Comparison of the Proposed Approach with Related Work

The proposed development workflow starts with a set of requirements that the vehicle
system under development must be designed to satisfy. Based on the system requirements
the engineer constructs contracts that formally specify guarantees for the components
behavior to be implemented and the assumptions on the environment (cf. [WKLS18]).
The authors in [WKLS18] propose automatic synthesis to generate a runtime monitor
from the specified contracts. The runtime monitors has two goals: (1) detection of
potential faults during component test that may lead to a violation of the component’s
guarantee and (2) ensuring that the system components do not violate their assumptions
during system integration (cf. [WKLS18]). The approach is applied for two automotive
functions, a cooperative pile-up mitigation system and a false-start prevention system.
The contracts are formalized in STL, the runtime monitor is generated as a C++ program
or a MATLAB S-function, and the monitoring tool BREACH [Don10] is used to carry out
the runtime monitoring (cf. [WKLS18]).

6.3. Comparison of the Proposed Approach with
Related Work

This section compares the approach presented in this thesis with the related work reviewed
in Section 6.1 and Section 6.2.

6.3.1. Comparison with the Manual Methods for Environment
Assumptions Specification

This section takes a look at the manual methods for environment assumptions specification
presented in Section 6.1.1 and compares them with approach introduced in this thesis.

Similar to this thesis, Arts et al. [ADT14] recognize the need to make explicit
assumptions for the verification of safety requirements in safety-critical systems and use
A /G contracts to achieve this. The A/G contracts used to verify the communication
protection mechanism defined in the AUTOSAR standard are non-probabilistic and are
used only for the design-time verification of the protection mechanism (cf. [ADT14]). In
contrast, this thesis uses the environments assumptions in the design-time verification of
the system’s safety requirements (cf. Section 4.5), and then as basis to create runtime
monitors that are used during system test (cf. Section 4.7) and requirements validation
(cf. Section 4.8).

The probabilistic contracts proposed in [DCL11] allow computational model with
a more restricted level of nondeterminism than an MDP because it assumes a unique
global distribution for the choice of the next system state. By comparison, the safety-
critical systems analyzed in this thesis through design-time verification methods are
modeled as full MDPs (cf. Section 4.5). Li [LNSV*17] and Nuzzo [NLSV*19] focus
on the verification of StSTL A /G probabilistic contracts formulated as a mixed integer
optimization problem. In contrast, this thesis uses probabilistic model checking to verify
probabilistic safety requirements under probabilistic environment assumptions formalized

249

Chapter 6. Contributions with respect to Related Work

in PCTL (cf. Section 4.4 and Section 4.5). Furthermore, this thesis integrates the explicit
specification of environment assumptions in a full-fledged system development process (cf.
Section 4.1), while Li [LNSV*17] and Nuzzo [NLSV*19] focus on leveraging probabilistic
A /G contracts for design-time verification and controller synthesis.

Gleirscher [Glel4] formulates A/G safety goals in PCTL*, yet in contrast to this
thesis, does not verify them explicitly. In [GFN19], the theorem prover ISABELLE/HoL
is used to verify a mobile ground robot with respect to A/G pairs. Although a lot
can be automated, theorem proving is still a semi-automated method for checking the
correctness of a system with respect to given property (cf. Section 2.5.2). User input
is required to guide the formal proof, e.g., by adding or removing axioms from the
proof (cf. Section 2.5.2). In contrast, this thesis applies model checking to verify safety-
critical systems with respect to their safety properties under consideration of explicitly
defined environment assumptions. The A/G safety goals in [Glel4] are derived through
safety analysis, similar to this thesis which uses safety analysis to derive both the safety
requirements (cf. Section 3.4) and the environment assumptions (cf. Section 4.4). Similar
to this thesis, Gleirscher’s approach to the discovery of the A/G safety goals is integrated
with the system development process and uses the artifacts obtained during the phases
of system design and safety analysis (cf. [Glel4]). Nevertheless, Gleirscher’s approach
stays primarily on the left side of the V-model and does not address the phases of system
test and requirements validation (cf. [Glel4]). By comparison, the approach presented
this thesis is integrated with the full development process starting from the requirements
analysis and safety analysis, continuing with the system design, system implementation
and system test, and ending with the requirements validation (cf. Section 4.1).

The verification approaches for agent-based systems presented in [FDW13] and
[DFL*16] use BDI logic to formulate the assumptions of an agent about its environment.
In [FDAT18b] the assumptions of the agent about its environment are part of the
environment model itself. The environment model is then used both for the verification
of the agent via model checking as well as to generate runtime monitors, that validate
the assumptions made in the environment model against the real environment of the
agent. In [CFL*20], the agent-environment interface is modeled with the DAFNY tool,
verified at design-time with the Z3 theorem prover and checked at runtime with the
ROSMONITORING framework, with monitors synthesized from properties written in
the RML language. In contrast to the works in [FDW13], [DFL*16], [FDA18b], and
[CFL*20], this thesis proposes a concept that can handle verification and validation of
both non-probabilistic and probabilistic environment assumptions. In this thesis, the
environment assumptions are explicitly defined as a result of safety analysis, and not
considered part of the environment model as in [FDAT18b]. In [IQV16], changes in
sensory perception and action feedback are provided with certain probability distributions,
while the rational agent is modeled as a DTMC or an MDP, and verified with the PRiSM
model checker. In contrast to this thesis, the work in [IQV16] neither defines explicitly
any environment assumptions nor does it show how the specification of environment
assumptions may be integrated in a comprehensive system development process.

250

6.3. Comparison of the Proposed Approach with Related Work

6.3.2. Comparison with Automated Methods for Obtaining
Environment Assumptions

This section takes a look at the manual methods for environment assumptions specification
presented in Section 6.1.2 and compares them with approach introduced in this thesis.

Rather than having environment assumptions derived manually through the HARA
analysis as it is done in this thesis, the learning-based approaches in [CGP03]. [GPB05],
[PG06], [GGPOT7], and [PGGB'08] use the learning algorithm L* and model checking to
generate assumptions for non-probabilistic systems. The learned assumptions as well
as the guarantees are deterministic finite automata. The AGAR approach discussed
in [GBPGO8] does not require the generated assumptions to be deterministic, which in
turn results in smaller assumptions. These learning approaches are adapted for learning
assumptions in asynchronous probabilistic systems (cf. [FKP10]) and for synchronous
probabilistic systems (cf. [FHKP11]). In [Fenl4|, assumptions are learned for probabilis-
tic systems whose components are DTMCs and are encoded as boolean formulae. The
assumptions learned for probabilistic systems take the form of deterministic finite au-
tomata (cf. [FKP10]), probabilistic finite automata (cf. [FHKP11]), interval DTMCs (cf.
[Fen14]), or labeled probabilistic transition systems (cf. [KPC12]). From the perspective
of the system development process, learning-based methods can be mapped to the phase
of system design. System engineers need to provide an environment model with which
the technical system model can interact and a system requirement to be verified, even
before environment assumptions can be automatically generated.

Assumptions are also generated via specification mining methods such as the ones
presented in [LDS11], [Lil4], [LSSS14], and [Ses19]. These methods take a property
specification that is not realizable and attempt to synthesize a correct-by-construction
controller from it by adding additional assumptions to an under-constrained environment
of the system. From the perspective of the system development process, these methods
are a combination between the phases of system design and system implementation.

It is worth noticing that the learning-based approaches and the specification mining
methods presented in Section 6.1.2 are not integrated in the full-fledged system develop-
ment process. In fact, these methods can be mapped either to the phase of system design,
as is the case with the learning-based approaches for assumptions generation, or are situ-
ated at the intersection between the phases of system design and system implementation,
as in the case of specification mining methods. Other phases of the system development
process, requirements analysis, system test and requirements validation, are not taken
into consideration. Furthermore, the assumptions obtained through the application of
such methods are not formulated informally. Instead, these assumptions are specified in
the respective formal language, e.g., GR(1) property specification or deterministic finite
automata. As such, gaps may appear between the expectations of the system designers
and those of other system stakeholders, e.g., end-users, since it is not expected that every
system stakeholder has a working knowledge of the respective formal language.

251

Chapter 6. Contributions with respect to Related Work

6.3.3. Comparison with Methods that integrate Assumptions in
Verification and Validation Processes

By comparison with [SKA13], this thesis uses model checking instead of theorem proving
as design-time verification method. The safety requirement of the mobile service robot is
comparable to the passive safety property introduced in [SKA13], which forbids the mobile
service robot to actively collide with any obstacles in its environment. Furthermore, the
safety requirement formulated for the mobile service robot is more comprehensive that
the static safety property defined in [MGVP17], since it considers not only stationary
but also dynamic obstacles in the robot’s environment. Although the work in [MGVP17]
introduces assumptions for each of the safety properties they analyze, their concept
does not account for uncertainties in the system’s environment that might be reflected
in probabilistic assumptions. Furthermore, rather than defining them directly as in
[MGVP17], this thesis illustrates how environment assumptions can be derived through
safety analysis and be integrated in the system development process.

In [DH20b], a framework is proposed for the verification of decision-making com-
ponents in robotic agents that operate in open environments. The decision-making
component of the robot interacts with sensors and perception algorithms on one side as
well as motion planing, control algorithms and actuators on the other side. The output
of the perception algorithm is discretized so that it can be used by the decision-making
component (cf. [DH20b]). The environment of the decision-making component is specified
as a set of LTL assumptions over the data from the perception component before the
discrete abstraction is applied on it (cf. [DH20b]). The assumptions are derived based
on the author’s domain knowledge and counterexamples produced during model checking
of the decision-making component against the LTL system properties (cf. [DH20b]).
By comparison with [?], this thesis derives environment assumptions through a HARA
analysis. Furthermore, the concept of this thesis to allow the design-time verification of
non-probabilistic systems as well as system that exhibit probabilistic and nondeterministic
behavior under explicitly defined non-probabilistic as well as probabilistic environment
assumptions.

Another work that sets out to make environment assumptions explicit is [DFL*16]. In
contrast with this thesis, the concept presented in [DFL*16] does not consider uncertainty
in the environment expressed via probabilistic assumptions. One scenario presented in
[DFL*16], adaptive cruise control, illustrates assumptions related to vehicles situated
in physical environment of the ego vehicle (cf. [DFL*16]). By comparison, this thesis
also presents environment assumptions related to the dynamic behavior of obstacles in
the physical environment of a mobile service robot (cf. Section 4.4). The other two
scenarios presented in [DFLT16], urban search and rescue and autonomous satellite, take
into account the technical environment of the decision-making agent, which consists of
other components with which the agent interacts, e.g., sensors, actuators, and planing
component (cf. [DFL*16]). In turn, this thesis considers environment assumptions which
are related to the technical environment of the vehicle speed estimation function, e.g.,
longitudinal and lateral acceleration, as well as to the vehicle’s physical environment, e.g.,
road gradient and GPS signal error (cf. Section 5.2.3). In [FDAT18b], a continuation of

252

6.3. Comparison of the Proposed Approach with Related Work

the work in [DFL*16], runtime monitors are used to detect assumptions violations in the
environment of rational agents. However, these assumptions are not explicitly defined, as
in the present thesis. Instead, they are considered to be embedded in the environment
models defined at design-time (cf. [?]).

Izzo et al. [IQV16] consider the probabilistic behavior of the environment of an
autonomous surface vehicle. In contrast to this thesis, no explicit environment assump-
tions are made that are verified at design-time and validated at runtime. Instead, the
probabilistic environment model is used to carry out design-time and runtime verifica-
tion. Farrell [FCD*19] combines model checking and theorem proving to verify different
software components in modular autonomous space robots. The concept presented in
[FCD*19] follows the A/G reasoning approach, in which A/G properties are formulated
for each software component of the system. However, the approach allows only for
non-probabilistic assumptions, which are formulated in LTL. Furthermore, it is not clear
where the assumptions come from and how are they integrated in the system development
process.

In the synthesis approaches presented in [UPC12], [WUB*12], [WF12] and [WUB*13],
[CKSW13], the knowledge about the environment behavior is encoded in the models
used to represent the dynamic agents that exist in the system’s environment. Although
multi-objective model checking has been shown to be a good technique for composi-
tional verification, especially for probabilistic assume-guarantee reasoning (cf. [FKNP11],
[FKN*11]), the work in [CKSW13] does not explicitly specify assumptions about the
adversarial environment in which the system operates. Though environment assumptions
are formulated in [WTM12], the authors do not clarify how they obtain these assump-
tions, nor how their approach would integrate in a system development process such
as the V-model. Furthermore it is worth noticing that, although explicitly defined, the
environment assumptions are not explicitly and independently monitored. Instead, a
GR(1) specification of the form 1, — 15 is verified with the specific goal to generate a
new goal ¢, in case 1), is invalid.

The reactive synthesis approaches introduced in [MR15], [MR16], and [MR] transform
LTL formulae from Dwyer’s catalog of specification patterns [DAC99] to GR(1) formulae,
which are then used to synthesize correct-by-construction controllers. The LTL patterns
translated in GR(1) are associated with the language SPECTRA, which is a specification
language for reactive systems introduced in [MR]. In contrast with this thesis, these
approaches do not consider probabilistic assumptions, although the authors of [MR] claim
that an adaptation of the SPECTRA language to accommodate probabilistic assumptions
is possible. In [MS12], GR(1) synthesis is used to construct controllers from A/G
scenarios. Assume-guarantee scenarios are introduced in [MS12] to extend live sequence
charts with environment assumptions. The environment assumptions are not explicitly
defined by specific constructs of the live sequence charts language, as it is done in this
thesis. Instead they are embedded implicitly in the scenario definition (cf. [MS12]).
Assumptions can be formulated also in graphical modeling languages. Greenyer specifies
assumptions by assumptions modal sequence diagrams, in order to find inconsistencies
in the scenario-based specification of mechatronic systems (cf. [Grell]). Assumption
modal sequence diagrams are identified through a specific UML stereotype. For the

253

Chapter 6. Contributions with respect to Related Work

purpose of controller synthesis, the modal sequence diagrams are mapped to a network
of timed game automata, which are then analyzed with UpPAAL TiGA (cf. [Grell]).
In comparison to this thesis, the approach in [Grell] does not allow for probabilistic
assumptions.

Several works combine design-time verification and runtime validation to check the
correctness of safety-critical systems. In [MP18], a controller in a train control system
is verified offline against an explicit model of physics. From the verified physics model,
online monitors are synthesized that check at runtime the implementation of the controller.
The synthesized monitors make assumptions on the physics model’s continuous dynamics
between sampling points, in order to account for partial observability due to uncertainty
in the sensor data and partial controllability due to actuator disturbances (cf. [MP18]).
Compared to [MP18], this thesis considers assumptions on the behavior of obstacles in
the environment of a mobile service robot (cf. Section 4.3 and Section 4.4) and sensor
uncertainty with respect to GPS sensor data for a vehicle speed estimation function
(cf. Section 5.2). Model checking are combined with runtime verification [DDS17] to
validate the correctness of high-level robotic modules, that carry out the robot’s discrete
decision making and planing. Assumptions are made during model checking of the
decision-making and planing logic in order to abstract the robot’s continuous dynamics
to a discrete behavior (cf. [DDS17]). Rather than formulating the assumptions directly
in STL for the low-level controllers of the robot, these are learned from robot trajectories
and parameterized with parameters obtained through regression analysis (cf. [DDS17]).
By comparison with this thesis, the approach presented in [DDS17] does not account
for uncertainty in the robot’s environment, and as such does not allow probabilistic
assumptions.

The work in [Fer19] focuses on gaining trust in the specification of a system before
using that specification to monitor the system itself. For this purpose, runtime monitors
obtained from trace expressions are verified at design-time via model checking against
desired LTL properties, before being used to monitor the system during its operation
(cf. [Fer19]). However, this thesis brings forth the argumentation that environment
assumptions are integral part of such a specification and must be explicitly defined and
monitored in order to successfully verify the system during design-time and validate it
during operation time. In [CTT19a], runtime verification is used to monitor partially
observable systems. Assumptions in the form of fair transition systems are placed on the
unobservable parts of the system. These assumptions are used as inputs in the generation
of runtime monitors from LTL properties. In contrast to this thesis, assumptions in
[CTT19a] may take the form of a detailed model of the system under analysis or a
constraint on a set of boolean variables (cf. [CTT19al). It is worth noticing that these
assumptions are not explicitly monitored as it is done in this thesis, but are used as
inputs for the generation of runtime monitors.

Haupt and Liggesmeyer [HL19] use rule-based safety monitors to observe the system
state in and trigger mitigating actions, in case any safety violations are detected. The
safety-rules are derived through a HARA analysis under consideration of the system
context. By comparison with this thesis, the work in [HL19] does not consider envi-
ronment assumptions explicitly neither during system design-time nor during runtime.

254

6.3. Comparison of the Proposed Approach with Related Work

Furthermore, the proposed approach does not make any quantitative provisions for the
uncertainty which is inherent to contexts of autonomous systems.

Although the work in [RT20] uses design-time and runtime methods, it adopts a
completely different approach in comparison to this thesis. In this thesis, environment
assumptions are explicitly defined at design-time and used for the design-time verification
of the system under analysis. At runtime, the environment assumptions are validated
with the help of runtime monitors constructed from the explicit environment assumptions
specification and tested during system test.

The approach presented in [RT20] aims to build probabilistic runtime risk monitors
for situation-aware autonomous vehicles. At design-time, the authors propose to use
risk causality models derived through a risk and causality analysis and modeled as
Bayesian networks in order to build a safety argument that shows that the risk in the
vehicle’s ODD specification is not underestimated (cf. [RT20]). Runtime monitors use
the Bayesian risk model and estimated perception uncertainties to check the intended
behavior of the vehicle for residual risk (cf. [RT20]). In contrast, this thesis carries
out design-time verification during system design in order to give a mathematical proof
of the system correctness with respect to its safety property under explicitly defined
environment assumptions. Furthermore, these assumptions are validated at runtime in
order to guard the system against unforeseen situations.

In [RSST20], modular assurance cases are used at design-time to build dependability
arguments for the system under analysis. These assurance cases contain the dependability
guarantees given by the system under analysis to other systems, supporting evidence for
the dependability guarantees in the form of various models, and demands from the other
systems connected with the system under analysis, that are necessary to support the
claims (cf. [RSST20]). Conditional safety certificates are used at runtime for the system
validation and define failures modes together their variable bounds, context-specific
constraints for the variable bounds, and a confidence level for the assurance of the
variable bounds (cf. [RSS*20]). In contrast to this thesis, the work in [RSST20] uses
assurance cases and conditional safety certificates to give a method for the construction
of safety cases for automated cyber-physical systems. It does not present a practical
concept for the derivation and explicit definition of environment assumptions, their usage
in design-time verification validation during system operation time, as it is done in this
thesis.

In the position paper in [RCSL21], an approach is proposed that aims to identify
what assumptions underlie the design-time guarantees of an autonomous underwater
vehicle for pipeline inspection and develop runtime monitors that compute probabilistic
confidence measures for these assumptions (cf. [RCSL21]). Although the authors
formulate assumptions with respect to the vehicle dynamics and the perception module,
these assumptions are vague and are not measurable. Furthermore, they do not provide a
formal specification for these assumptions nor do they make explicit how these assumptions
are used during the design-time verification with the reachability analysis tool VERISIG.
The authors propose to use probabilistic analysis to built assumptions monitors. However,
it is not clear how this could work in the absence of a formal specification for probabilistic
assumptions.

255

Chapter 6. Contributions with respect to Related Work

In [WKLS18], runtime monitoring is integrated in a development workflow to improve
the safety of a vehicle during development and deployment stages. The authors use the
system requirements to build A/G contracts that formally specify guarantees for the
component’s behavior to be implemented and the assumptions on the environment (cf.
[WKLS18]). The authors in [WKLS18] propose automatic synthesis to generate a runtime
monitor from the specified contracts. The runtime monitor has two goals: (1) detection
of a violation of the component’s guarantee and (2) detection of a violation of the
component’s assumptions during system integration (cf. [WKLS18]). The assumptions
and the guarantees are formulated in STL. In comparison with this thesis, the work in
[WKLS18] does not show how the assumptions can be used in design-time verification.
Furthermore, their concept does not allow for probabilistic assumptions, which could be
used to address the uncertainty inherent to the system environment.

6.4. Summary

This chapter introduced state-of-the-art research work related to the scope of this
thesis. In order to do this, the chapter started by presenting methods for obtaining
environment assumptions. Two distinct ways have been identified by which environment
assumptions can be obtained: (1) direct manual specification by experts with domain
knowledge or through learned-based methods or synthesis from observations in the
system’s environment. Further, this chapter discussed approaches that used environment
assumptions in verification process at design-time or in validation process during system
runtime. Furthermore, the chapter took a deeper look at research work that combined
design-time verification and runtime validation at the role(s), if any, which environment
assumptions play in the system development process. The chapter concluded with a
thorough comparison between the RMEA approach introduced in this thesis and all the
presented research work.

The conclusion gained from this chapter is that, although some approaches empha-
sized the necessity for an explicit definition of environment assumptions, none of the
approaches presented in the research work has given a concept for the usage of environ-
ment assumptions that is general enough to be applicable both to probabilistic as well as
non-probabilistic systems and at the same time practically integrated in a full-fledged
system development process.

256

Chapter 7.

Summary and Conclusion

7.1. Discussion of Results 257
7.1.1. Contributions 258
7.1.2. Limitations of this Thesis and Future Work 260

T2, SUMMATY o v o e e e e 264

This chapter concludes this thesis by discussing in Section 7.1 the contributions
brought forward by this thesis and the limitations of this work. Starting from these, the
directions for future research are presented. Section 7.2 summarizes the whole thesis.

7.1. Discussion of Results

This section discusses the results obtained in this thesis. This discussion is divided in
two parts: (1) discussion of the thesis contributions in Section 7.1.1 and (2) discussion of
the limitations identified for the approach presented in this thesis as well as directions
for future research in Section 7.1.2.

Chapter 3 analyzed the problem that is addressed in this work. As a result of the
problem analysis, the general research question of this thesis was derived:

How can design-time guaranteed environment assumptions be used at runtime
to continuously validate the design-time verification result with respect to
autonomous safety-critical systems operating in uncertain environments?

In order to provide an answer to it, the general research question was refined into
three more precise research questions. These research questions were introduced in
Section 3.10.2 and are reiterated in this section as a point of reference for the discussion
regarding the contributions of this thesis in Section 7.1.1.

Research Question 1 (RQ-1) How can environment assumptions and their relation
to the system’s property specification be explicitly and formally described?

Research Question 2 (RQ-2) How can the formal description in RQ-1 be used to
construct environment assumptions monitors?

Research Question 3 (RQ-3) How can the applicability of this approach be demon-
strated for real-world safety-critical systems?

257

Chapter 7. Summary and Conclusion

7.1.1. Contributions

The main contribution of this thesis is the RMEA approach. It is a safety engineering
approach which combines the design-time verification and runtime validation of explicitly
defined environment assumptions in order to ensure the safety of automated safety-critical
systems.

In order to realize the RMEA approach, three main contributions are produced in
this thesis, each in response to one of the resarch questions.

Method for the Explicit and Formal Definition of Environment Assumptions

This method is integrated with the system development process and uses its
specific phases and their corresponding artifacts in order give an explicit and
formal definition of environment assumptions. Based on a high-level description of
the system under development, the functional system requirements were defined
during the phase of requirements elicitation and analysis. The same high-level
system description was used to carry out the safety analysis and derive safety
hazards that could appear during system operation. Then, safety requirements
and environment assumptions were defined that cover the respective safety hazards.
The environment assumptions were used to extend the system safety requirements,
denoted from then on as extended safety requirements. A requirements pattern is
designed and applied in order to produce the informal specification of the extended
safety requirements. Their formal specification was realized through TCTL for non-
probabilistic systems and using a fragment of PCTL for probabilistic systems. The
functional system requirements and the extended safety requirements served then
as an input for the design of the technical system model and the environment model.
Using the environment assumptions, these models were verified at design-time
against the system safety requirements. The result of the design-time verification
showed that the technical system model satisfied the system safety requirements
under the consideration of the explicitly defined environment assumptions. The
method for the explicit and formal definition of environment assumptions is in
response to RQ-1.

Method for the Construction of Environment Assumptions Runtime Moni-

258

tors This method is rooted in the concept of the RMEA approach and takes
the formal definition of environment assumptions as input and produces as out-
put environment assumptions monitors. For the construction of environment
assumptions monitors to succeed, it was important to understand how the explicit
definition of environment assumptions on the requirements level was mirrored at
system design level. Environment assumptions constitute the interface between
the technical system model and the environment model. An analysis of this
interface was carried out and the environment assumptions were mapped on
the technical system model and the environment model. The mapping of the
environment assumptions on the technical system model was then projected on the
implemented system. Further variable definitions were introduced to model the
observations of the environment assumptions monitors in the system environment.

7.1. Discussion of Results

The definition of the environment assumptions monitors combined variables of
the implemented system and variables that modeled the monitor’s observations
in the system environment. On a concrete level, the monitors were defined as
predicates in first-order logic. The method for the construction of environment
assumptions monitors is in response to RQ-2.

Demonstration of the Applicability of the RMEA Concept on two Real-world
Safety-critical Systems In order to demonstrate the applicability of the RMEA
approach on real-world systems, this thesis presented two case studies built around
(i) an autonomous mobile service robot commissioned to execute transportation
tasks in a hospital environment and (ii) an automotive function which estimates
and displays a moving vehicle’s speed on its instrument board. For each system
taken into consideration, the created artifacts follow the specific phases of the
system development process, thus demonstrating the applicability of the RMEA
concept on the respective system. The two case studies on which the applicability
of the RMEA approach was demonstrated represent the response to RQ-3.

In addition to the high-level discussion of the main contributions of this thesis, it is
worth giving a more detailed description of the contributions by discussing the artifacts
and results produced for each research question.

This thesis addressed RQ-1 by developing a method for the explicit and formal
definition of environment assumptions. The development of this method is aligned with
the system development process. As such, the phases of the development process are
constituting steps of this method and the artifacts obtained as a result of the respective
development phases contribute to the final result of this method, i.e. the explicit formal
definition of environment assumptions. The artifacts that resulted in each step of the
method are highlighted in heavy print. The first step of this method is the requirements
elicitation and analysis. The second step of this method is the safety analysis using
HARA. These two steps share the same input, i.e., a high-level description of the system
under development. The output of the requirements elicitation and analysis is a catalog
of functional system requirements. The output of the HARA analysis is a catalog
of extended safety requirements. An extended safety requirement consists of a safety
requirement extended with explicitly defined environment assumptions. The environment
assumptions cover specific safety hazards, that were identified through a HARA analysis.
The informal specification of the extended safety requirements is formulated
using as a tool a requirements pattern that was specifically design for this purpose.
The formal specification of the extended safety requirements is created by using
an EBNF grammar for the probability expression in the extended safety requirements
and temporal logic for the clauses of the environment assumption and the main safety
requirement. The environment assumptions were used for the design-time verification of
the overall system model with respect to the system safety requirements. The overall
system model consists of the parallel composition between the technical system model
and the environment model. These models were created during system design on the
basis of the functional system requirements and of the extended safety requirements. The
design-time verification was carried out with the PRisM model checker in the first case

259

Chapter 7. Summary and Conclusion

study and with the STORM model checker in the second case study. For the verification
with PRISM and respectively STORM, the extended safety requirements were formalized
in a fragment of PCTL, a formal language supported by both model checkers.

In response to research question RQ-2, a method for the construction of runtime
monitors for environment assumptions was developed. The method takes as input the
formal specification of an explicitly defined environment assumption and produces as
output the formal definition of the respective runtime monitor. The artifacts that resulted
throughout the application of this method are highlighted in heavy print. The first step
of this method is the analysis of the environment assumptions. This step is followed
by the mapping of the environment assumptions on the technical system model and
the environment model. Through this mapping, relevant variables are identified in the
technical system model and in the environment model, that contribute to the definition
of the environment assumptions. The variables identified in the technical system model
are then mapped on the implemented system. This step is then followed by the definition
of variables that model the observations of the environment assumptions monitor. In the
final step of this method, the formal definition of the environment assumptions
monitors is constructed using variables from the implemented system and variables
introduced with the runtime monitor itself to model its observations of the system
environment. For the purpose runtime validation, the environment assumptions monitors
are defined in first-order logic.

In order to address research question RQ-3, two case studies were conducted. The goal
of these case studies was to demonstrate the applicability of the RMEA concept on two
different real-world safety-critical systems. The first case study was built around a mobile
service robot which was commissioned to execute transportation tasks autonomously in a
hospital environment. The second case study considered an automotive system function
which estimates and display’s the speed of a moving vehicle on its instrument board. As
a result of the application of the RMEA concept, the following artifacts were produced
for each case study:

Catalog of functional and safety requirements,

Catalog of safety hazards derived through HARA analysis,

Catalog of extended safety requirements that cover the respective safety hazards,
Design-time models of the system under analysis and its environment,

Runtime monitors for the environment assumptions, and

Test cases to test both the system under analysis and the environment assumptions.

SR

7.1.2. Limitations of this Thesis and Future Work

The contributions of this thesis were introduced in the previous sections. In this section
limitations of this thesis approach as well as opportunities for future research directions
are discussed.

260

7.1. Discussion of Results

Limitations regarding the System Development Process

The V-model is the system development process that was used in this thesis. International
standards recommend it for the development of safety-critical systems (cf. [Int11lb],
[Int19]). The premise of the V-model is that the system artifacts produced on the left
branch of the system development process, e.g., system specification, use cases, and
environment model, are completely documented and validated. This idea corresponds
to the closed-world assumption. Nevertheless, in this thesis, automated safety-critical
systems are considered to operate under the open-world assumption. This means that
the system artifacts produced on the left side of the V-model, e.g., requirements catalog
and system design models, are inherently incomplete.

Rather than using the classical V-model as a development process which relies on the
closed-world assumption, it seems reasonable to use a system development process that
operates under the open-world assumption. An engineering approach for dependable
autonomous systems that operates under the open-world assumption is presented in
[AHDRI18|. The approach proposes developing and testing runtime monitors at design-
time based on the system artifacts available in the current development iteration, and
then deploying the runtime monitors alongside the tested system in the operational
environment (cf. [AHDR18]). During operation, the runtime monitors collect data with
respect to the system behavior, e.g., whether the system satisfied its current requirements
or not. These data are logged and used in the following iteration of the system development
in order to improve the system design artifacts (cf. [AHDR18]). Mauritz [Maul9] has
already introduced a quantitative monitor in order to log the runtime data and has
shown how this can be used to find new test cases for a lane keep assist system. However,
the analysis of the data and the development of the test cases was done manually (cf.
[Maul9]). One possible future research direction is automatizing the process of the
runtime data analysis and the improvement of the system design artifacts.

Limitations regarding the Elicitation and Analysis of System Requirements

The system’s functional requirements together with its safety requirements are used as
input for the design of system models and for the design-time verification use as input
the catalog of the functional system requirements. The underlying premise is that the
functional system requirements are fully known, are complete, and are unambiguously
specified (cf. [KW16]). In fact, requirements for an automated safety-critical system
may change during the system development process several times, e.g., through the
addition of new functionality to the system. The natural language in which system
requirements are formulated is imprecise and ambiguous. Formal verification methods
employed at design-time affords system designers the mathematical proof that the
developed system model satisfies the specified system requirement. In order to carry out
formal verification, the system requirement must be expressed in a formal language, e.g.,
PCTL. Although research works have been developed that try to bridge it, e.g., through
property specification templates, requirements patterns, or the use of natural language
processing methods, a semantic gap between system requirements formulated in natural

261

Chapter 7. Summary and Conclusion

language and their respective formal specification may still exists due to the requirements
complexity for automated safety-critical systems. Using requirements patterns can help
reduce the ambiguity of natural language. However, developing a requirement pattern
that is able to encompass all system requirements is difficult and often depends on what
the particularities of the system under analysis are. As an example, the requirements
pattern developed in this thesis does not account for timing requirements.

Automated safety-critical systems often have components highly complex machine-
learning algorithms, e.g., deep learning neural networks used to process large amounts of
sensor data automated vehicles in order to create an environment model of the vehicle.
Requirements for such components cannot be formulated in the classical way, using
natural language. Instead, the training data gathered for training the neural networks
could be considered as a requirement for the machine-learning component. However,
explaining why a particular set of training data is a good requirement for a given system
component is challenging without further knowledge of what the rest of the system does.

Future research work can be aimed at the development of methods to automatically
extract new requirements from the data logged during system operation, and using the
new requirements to improve and make the system requirements complete. Runtime
monitors can be used to comb through the data logged during system operation and
detect any emergent system behavior, from which then new requirements specification can
be extracted via specification mining methods (cf. [AAK™22]). Specification completion
methods must be also developed that can take the mined requirements specification as
input and use it to complete the existent requirements specification of the system.

Limitations regarding the Derivation of Environment Assumptions

In this thesis, environment assumptions are derived the same as safety requirements
through the HARA analysis. The purpose of the safety analysis is to identify possible
safety hazards for the automated safety-critical systems, by analyzing the defined system
behavior as well as possible changes in the environment factors. However, any safety
analysis is inherently incomplete. The incomplete set of hazards identified through the
safety analysis leads to incomplete set of environment assumptions.

Future work in this area relates to addressing the incompleteness of environment
assumptions by observing the behavior of the other environment agents and use specifi-
cation mining techniques to extract environment assumptions from it. Various learning-
based methods and specification mining techniques have been discussed in Section 6.1.2.
Learned-based methods rely on a combination of the L* algorithm and model checking
in order to learn assumptions in an iterative manner. Specification mining methods
generate additional assumptions in order to make an original property specification
realizable through the implementation of a controller. Since a specification is realizable
if a correct-by-construction controller can be synthesized from it, specification mining
methods deal with some of the challenges in controller synthesis, e.g., the complexity of
the synthesis algorithm which is double exponential in the length of the formula in case
of LTL specifications (cf. [MR15]).

262

7.1. Discussion of Results

Limitations regarding System Design and System Implementation

The technical system model and the environment model were created manually during
design-time based on the specification of the functional system requirements and the
specification of the safety requirements extended with environment assumptions. For
more complex automated safety-critical systems, there is a gap between the system design
model and the requirements. The system was implemented manually. For complex safety-
critical systems manual implementation may prove cumbersome as the challenge is to
ensure consistency of the system implementation with the system design models. Qualified
code generators, e.g., KCG of the ANSYS SCADE toolchain, have proven successful in
addressing this problem for engineered systems. Another possibility is to use reactive
synthesis in order to generate correct-by-construction from formal property specifications
(cf. [MR15], [MR15]). In this way, the phase of designing system model is bypassed,
because the synthesized controller is both its own model and its implementation. The
challenge of reactive synthesis is the computational complexity of the synthesis algorithm
which depends on the length of the formal specification formula (cf. [MR15]).

Future research directions in regard of system design and system implementation
are to investigate methods for controller synthesis from probabilistic requirements under
probabilistic assumptions. Notice that, in case of probabilistic systems, learning-based
methods may not yield any assumptions that can be used to make a probabilistic system
requirement realizable through a controller implementation.

The environment assumptions monitors developed in this thesis can be viewed as
dependability cages for the system environment, however without the component for fail-
operation reaction defined in the architecture of the dependability cage (cf. [AHDR18],
[HABR22]). Future research work regarding the development of the environment assump-
tions monitors can concentrate on the adaptation of the monitors so that data can be
logged during operation time, particularly data in which violations of the environment
assumptions are visible. Furthermore, environment assumption monitors could be applied
in future research to detect whether the automated safety-critical system is still operating
in the boundaries of its ODD or not.

Limitations regarding System Test and Requirements Validation

Test cases are developed in this thesis with respect to the safety requirements can be
complete only with respect to the set of system requirements and the set of environment
assumptions. Edge test cases are difficult to identify systematically identified due to the
incompleteness of the system requirements and of the environment assumptions.

Future work regarding system test should address methods to enrich the system
test suite with new unique test cases. One possibility is to expand specification mining
techniques with test case generation techniques in order to obtain new test cases from new
system requirements and environment assumptions learned from runtime logs recorded
during system operation.

During requirements validation, the environment assumptions defined for the system
under analysis are tested in the operational environment via the environment assumptions

263

Chapter 7. Summary and Conclusion

monitors. The success of the requirements validation depends heavily on the performance
of the sensors. Perception systems may have difficulties detecting color variations due
to shadows. Large reflective surfaces may make determining object positions or even
recognizing the object at all very difficult. Delay in receiving sensor data can also affect
the performance during requirements validation. The requirements validation of the
mobile service robot took place in a hospital ward, in which very few reflective surfaces
existed so that the performance of its ultrasound sensor array and its laser scanner
was essentially not affected. In case of the automotive speed estimation function, the
requirements validation did not take place due to a pending preliminary review from
German certification authority.

Future work with respect to requirements validation entails running extensive field
tests in different operational environments with changing characteristics.

7.2. Summary

This chapter has summarized this thesis by outlining the main contributions, limitations
and future work.

Due to their safety-critical nature, automated safety-critical systems benefit from ver-
ification and validation methods that ensure the safety of the system. Formal verification
methods make use at design-time of formal system models in order prove the system
correctness with respect the system safety property specification. When designing the
system model, system engineers rely often on several implicit assumptions about the
system environment which are used in the computations of the system model. The result
of design-time verification methods is only as good as the model and some the methods
suffer from scalability problems, e.g., model checking, or are only partially automated,
e.g., theorem proving. Testing is used to complement the design-time verification and
check the system against the system requirements via test oracles. During system opera-
tion, sfety hazards may appear not due to the malfunctioning of the system, but rather
because of unforeseen events that occur in the operational environment of the system.
These events invalidate the environment assumptions used by system designers during
design-time. Since the environment assumptions are not explicitly defined, there is no
way for the system under test to be aware that its environment assumptions have become
invalid.

The RMEA approach is a safety engineering approach which proposes that environ-
ment assumptions are explicitly defined and formally specified at design-time and then
validated during system operation. The approach develops a method for the explicit
and formal definition of environment assumptions which is integrated with the system
development process and uses its specific phases and their corresponding artifacts in
order obtain a formal specification of environment assumptions. The formal specification
of the environment assumptions is used for the definition of environment assumptions
monitors. The applicability of the approach has been demonstrated on two real-world
automated safety-critical systems: (1) a mobile service robot used for transportation

264

7.2. Summary

tasks on a hospital environment, and (2) an automotive function for the accurate vehicle
speed estimation.

265

Appendix A.

Addendum to Case Study 2: Vehicle
Speed Estimation Function

A.1. Design-time Verification of Extended Safety
Requirements ESR2 - ESR4

This appendix shows how the design-time verification of the speed estimation function
works for the extended safety requirements ESR2, ESR3, and ESR4, that have been
formally specified in Table 5.4. The extended safety requirements are translated as a
multi-objective property in PCTL and verified with the STORM model checker. Table
A.1 shows each multi-objective property alongside the corresponding formal specification
of the extended safety requirement, together with its verification results. The translation
to multi-objective property of ESR1 and the respective design-time verification results is
shown in Section 5.2.4.

267

89¢

Table A.1.: Vehicle Speed Estimation Function - Extended Safety Requirements
ESR2 - ESR4 expressed as Multi-objective Properties.

ID Formal Specification Prism Multi-objective Properties VeriﬁcatiorT
Result
ESR2 Pz(]‘gg((; [(},’Road < 12%}) — on_gg,(G [(O < | multi(P>= 0.99 [G (roadGradient <= v
UDisplay — UReal) A\ (/UDz'splay — VReal S 5)]) 0. 12)] 5 P>=0.95 [G ((0 <= vDisplay -
vReal) & (vDisplay - vReal <= 5))])
ESR3 PZ(].E)Q(G {G]ng < 0001]) — P20_95(G [(0 < multi(P>= 0.99 [G (aLong <= 0.001)1], v
VUDisplay — UReal) A (UDisplay — VReal < 5)]) P>=0.95 [G ((0 <= vDisplay - vReal) &
(vDisplay - vReal <= 5))]1)
ESR4 PZ().QQ(G [aLat < ()()U()lD — P20_95(G [(0 < | multi(P>= 0.99 [G (aLat <= 0.0001)] , v

UDisplay - UReal) A (UDisplay — VUReal S 5)])

P>=0.95 [G ((0 <= vDisplay - vReal) &
(vDisplay - vReal <= 5))])

uonour, uoryewsy peodg opIyoA g Apnig ose) o winpuoppy Y Xipuoddy

A.2. Definition of Runtime Monitors for the Environment Assumptions of ESR2 - ESR4

A.2. Definition of Runtime Monitors for the
Environment Assumptions of ESR2 - ESR4

For each environment assumption in the extended safety requirements ESR2 - ESR4
specified in the Table 5.4, the respective monitor is defined according to the Definition
4.5.1 (cf. Section 4.5.5). Equations (A.1) to (A.3) show the monitors defined for the
environment assumptions regarding the road slope, the longitudinal acceleration, and
the lateral acceleration of the vehicle.

. RoadSlope RoadSlope
MwRoadSlope . G (Observed 2 P 4ssumed) (Al)
. LongAccel LongAccel
MwLongAcBel . G (Observed Z P Assumed) (A2>
. LatAccel LatAccel
M¢LatAccsl G (Observed Z pAssumed) (AS)

Roads LongAccel s
where py2eco b = (.99, pom97 ¢ = (.99, and pi¥accel = (.99 are the assumed probabilities
of occurrence specified for the events v grogdsiope; Vrongaceet, a0d Yrgracee in ESR2, ESR3,

and respectively ESRA4.

The events ¥ roadsiope, VrongAccels A0d Y raiaceer ave defined in Equation (A.4), Equation
(A.5), and respectively Equation (A.6):

7ﬂRoadSlope d:ef (aRoad S 012) (A4)
77DL07LgAccel d:ef (aLong < 000]—) (A5)
Uratace = (ara < 0.0001) (A.6)

The relative frequency of occurrence for each of the three events is computed as shown
in Equations (A.7) to (A.9):

RoadSlope
RoadSlope T Observed (A 7)
Observed N :
LongAccel
LongAccel __ N Opserved (A 8)
Observed N '
nLatAccel
LatAccel __ '"Observed (A 9)
Observed — N :

In Equations (A.7) to (A.9), N represents the total number of trials or events
: : : 1" Roadsl LongAccel
taken into consideration, while n o b, ngmarec’ and nkatdeeel yepresent the absolute

frequencies of occurrence for the events ¥ roadsiope; Vrongaccer, and respectively ¥ raaccer-

269

Appendix A. Addendum to Case Study 2: Vehicle Speed Estimation Function

Road Gradient

—_— roadGradient_Observed [%]
roadGradient_MaxAssumed [%]

40

20

-20

Road Gradient [%]

-40

-60

0 100 200 300 400 500 600 700 800 900 1000

Travel Time [s]

Figure A.1.: Vehicle Speed Estimation Function: Environment Assumption Monitor for
the Road Slope during the Smooth Driving Scenario.

A.3. System Test of the Environment Assumptions
Monitors of ESR2 - ESR4

This section presents the evaluation of the monitor traces for the environment assumption
monitors regarding the road gradient, My, ..., the longitudinal acceleration My, . . .
as well as the monitor for the lateral acceleration My, ,,. .

A.3.1. Scenario 1: Smooth Driving

Figure A.1 depicts the execution of the environment assumptions monitor with respect to
the road gradient during system test. Figure A.2 shows the execution of the environment
assumptions monitors with respect to longitudinal and latitudinal acceleration during
system test. In each of the depicted graphics the yellow curve represents the observed
values, while the blue curve represents the maximum assumed value in the respective
monitor.

Notice that the environment assumptions of the road gradient, the longitudinal
acceleration and the lateral acceleration are valid because the values observed by the
respective environment assumptions monitors are distinctly situated under the maximum
assumed value throughout the traveling time of the ego vehicle.

270

A.3. System Test of the Environment Assumptions Monitors of ESR2 - ESR4

Vehicle Longitudinal Acceleration

25 along_Observed [mm/s?]
along_MaxAssumed [mm/s?]

Vehicle Longitudinal Acceleration [mm/s?]

0 100 200 300 400 500 600 700 800 900 1000
Travel Time [s]
Vehicle Lateral Acceleration

alat_Observed [mm/s?]
alat_MaxAssumed [mm/s?]

Vehicle Lateral Acceleration [mm/s?]

0 100 200 300 400 500 600 700 800 900 1000

Travel Time [s]

Figure A.2.: Vehicle Speed Estimation Function: Environment Assumptions Monitors for
the Longitudinal Acceleration and the Lateral Acceleration during Smooth
Driving Scenario.

271

Appendix A. Addendum to Case Study 2: Vehicle Speed Estimation Function

A.3.2. Scenario 2: Dynamic Driving

Figure A.3 illustrates the monitor traces for the road gradient environment assumption
monitor, while Figure A.4 shows the monitor traces for the longitudinal acceleration and
lateral acceleration of the vehicle logged during the dynamic driving scenario in system
test.

Road Gradient

—_ roadGradient_Observed [%]
roadGradient_MaxAssumed [%)]

40

20

-20

Road Gradient [%]

-40

-60
0 100 200 300 400 500 600 700 800 900 1000

Travel Time [s]

Figure A.3.: Vehicle Speed Estimation Function: Environment Assumptions
Monitor for the Road Slope during the Dynamic Driving Scenario.

Notice that the environment assumptions regarding the road gradient and the lateral
acceleration are valid, since the observed values distinctly lower than the maximum
assumed value throughout the entire duration of the vehicle’s trip.

With respect to the environment assumption monitor for the vehicle’s longitudinal
acceleration, the monitor trace displays data points situated above the line marking
the maximum assumed value of the longitudinal acceleration for the first roughly 230
s of the vehicle’s drive. Notice that during these approximately 230 s the curve of the
longitudinal acceleration varies in the interval [-2.0,2.5] 3*. This is indicative of abrupt
acceleration and braking with rapid changes between the two types of actions. For
this part of the vehicle’s drive, the environment assumption is not valid, because the
relative frequency of occurrence for small longitudinal acceleration values is less than the
assumed probability of occurrence. After 230 s, the longitudinal acceleration stabilizes
in the interval [—0.8,0.8] ™5, which is situated below the maximum assumed value for
the longitudinal acceleration of 1 *z* or 0.001 7. Thus, the environment assumption
with respect to longitudinal acceleration becomes valid after approximately 230 s in the
vehicle’s trip.

272

Vehicle Longitudinal Acceleration [mm/s?]

Vehicle Lateral Acceleration [mm/s2]

A.3. System Test of the Environment Assumptions Monitors of ESR2 - ESR4

Vehicle Longitudinal Acceleration

along_Observed [mm/s?]
along_MaxAssumed [mm/s?]

100 200 300 400 500 600 700 800 900 1000

Travel Time [s]

Vehicle Lateral Acceleration

alat_Observed [mm/s?]
alat_MaxAssumed [mm/s?]

100 200 300 400 500 600 700 800 900 1000

Travel Time [s]

Figure A.4.: Vehicle Speed Estimation Function: Environment Assumptions

Monitors for the Longitudinal Acceleration and the Lateral Accel-
eration Environment during the Dynamic Driving Scenario.

273

Bibliography

[AACT05]

[AAHRI16]

[AAK*+29)

[ABD*14]

[ACDO0]

[AD92]

[ADY4]

[ADT14]

Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren,
Sascha Kuzins, Ondiej Lhotak, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. Adding trace matching with free variables
to aspectj. ACM SIGPLAN Notices, 40(10):345-364, 2005.

Adina Aniculaesei, Daniel Arnsberger, Falk Howar, and Andreas Rausch.
Towards the verification of safety-critical autonomous systems in dynamic
environments. In Proceedings of the The First Workshop on Verification
and Validation of Cyber-Physical Systems, V2CPSQIFM 2016, Reykjavik,
Iceland, June 4-5, 2016., pages 79-90, 2016.

Mohamed Toufik Ailane, Adina Aniculaesei, Christoph Knieke, Andreas
Rausch, and Fauzi Scholichin. Towards specification completion for systems
with emergent behavior based on devops, 2022. Accepted at 9th Interna-

tional Conference on Computational Science and Computational Intelligence
(CSCT22).

Erika Abrahdm, Bernd Becker, Christian Dehnert, Nils Jansen, Joost-Pieter
Katoen, and Ralf Wimmer. Counterexample generation for discrete-time
markov models: An introductory survey. In Marco Bernardo, editor, Formal
methods for executable software models, volume 8483 of LNCS sublibrary: SL
2 - Programming and software engineering, pages 65—121. Springer, Cham,
2014.

R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems.
In Logic in computer science, pages 414-425. IEEE Comput. Soc. Press,
1990.

Rajeev Alur and David Dill. The theory of timed automata. In J. W.
de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg, editors, Real-
Time: Theory in Practice, pages 45-73, Berlin, Heidelberg, 1992. Springer
Berlin Heidelberg.

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183-235, April 1994.

Thomas Arts, Michele Dorigatti, and Stefano Tonetta. Making implicit
safety requirements explicit: An autosar safety case. In Computer Safety,
Reliability, and Security. SAFECOMP 201}, Lecture Notes in Computer

275

Bibliography

[AFM16]

[AHO9]

[AHDR18]

[AL93]

[AL09)]

[Alulb]

[Ang87]

[Ass17]

[ASSBY6]

[AVR19a]

276

Science, pages 81-92. Springer Nature Switzerland AG, Cham, Switzerland,
2014.

Davide Ancona, Angelo Ferrando, and Viviana Mascardi. Comparing trace
expressions and linear temporal logic for runtime verification. In Erika
Abrahdm, Marcello Bonsangue, and Einar Broch Johnsen, editors, Theory
and Practice of Formal Methods: FEssays Dedicated to Frank de Boer on
the Occasion of His 60th Birthday, pages 47-64. Springer International
Publishing, Cham, 2016.

Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal Methods
in System Design, 15(1):7-48, 1999.

Adina Aniculaesei, Falk Howar, Peer Denecke, and Andreas Rausch. Auto-
mated generation of requirements-based test cases for an adaptive cruise
control system. In Cyrille Artho and Rudolf Ramler, editors, 2018
IEEE Workshop on Validation, Analysis and Evolution of Software Tests
(VST@GSANER), pages 11-15. IEEE, 2018.

Mart\'mm Abadi and Leslie Lamport. Composing specifications. ACM Trans.
Program. Lang. Syst., 15(1):73-132, 1993.

Husain Aljazzar and Stefan Leue. Generation of counterexamples for model
checking of markov decision processes. In QEST 2009, pages 197-206, Los
Alamitos Calif., 2009. IEEE Computer Society.

Rajeev Alur. Principles of Cyber-Physical Systems. MIT Press, Cambridge,
MA, USA, 1 edition, April 2015.

Dana Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87-106, 1987.

Association of Transportation Safety Information Professionals. Ansi-d-16-
2017: American national standard, 2017.

Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. Verifying
continuous time markov chains. In Rajeev Alur and Thomas A. Henzinger,
editors, Computer Aided Verification, pages 269-276, Berlin, Heidelberg,
1996. Springer Berlin Heidelberg.

Adina Aniculaesei, Andreas Vorwald, and Andreas Rausch. Automated
generation of requirements-based test cases for an automotive function using
the scade toolchain. In Nadia Abchiche-Mimouni, Sebastian Herold, Mirco
Schindler, Christoph Knieke, Piotr Malak, and Tomasz Walkowiak, editors,
ADAPTIVE 2019: The FEleventh International Conference on Adaptive and
Self-Adaptive Systems and Applications, pages 69-74. TARIA, 2019.

[AVR19b)

[AVZR21]

[AZR20]

[BBLN17]

[BBM+15]

[BCOA]

[BCP07]

[BD97]

[BAA95]

Bibliography

Adina Aniculaesei, Andreas Vorwald, and Andreas Rausch. Using the
scade toolchain to generate requirements-based test cases for an adapative
cruise control system. In Loli Burgueno, Alexander Pretschner, Sebastian
Voss, Michel Chaudron, Jorg Kienzle, Markus Voélter, Sébastien Gérard,
Mansooreh Zahedi, Erwan Bousse, Arend Rensink, Fiona Polack, Gregor
Engels, and Gerti Kappel, editors, 2019 ACM/IEEE 22nd International
Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C), pages 502-512. ACM/IEEE, 2019.

Adina Aniculaesei, Andreas Vorwald, Meng Zhang, and Andreas Rausch.
Architecture-based hybrid approach to verify safety-critical autonomotive
system functions by combining data-driven and formal methods. In Cyrille
Artho and Rudolf Ramler, editors, 2021 IEEE International Conference on
Software Architecture Companion (ICSA-C), pages 139-148. IEEE, 2021.

Adina Aniculaesei, Meng Zhang, and Andreas Rausch. Data-driven approach
for accurate estimation and validation of the ego-vehicle speed. In Christoph
Knieke, Mo Mansouri, and Giulio Telleschi, editors, ICONS 2020: The
Fifteenth International Conference on Systems, pages 72-77. IARIA, 2020.

Ezio Bartocci, Luca Bortolussi, Michele Loreti, and Laura Nenzi. Monitoring
mobile and spatially distributed cyber-physical systems. In Jean-Pierre
Talpin, Patricia Derler, and Klaus Schneider, editors, Proceedings of the
15th ACM-IEFEE International Conference on Formal Methods and Models
for System Design, pages 146-155, New York, NY, USA, 09292017. ACM.

Ezio Bartocci, Luca Bortolussi, Dimitrios Milios, Laura Nenzi, and Guido
Sanguinetti. Studying emergent behaviours in morphogenesis using signal
spatio-temporal logic. In Alessandro Abate and David Safranek, editors,
Hybrid systems biology, volume 9271 of Lecture notes in computer science,
0302-9743, pages 156—172. Springer, Cham, 2015.

Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development: Coq’Art: The Calculus of Inductive Constructions. Springer
eBook Collection. Springer, Berlin and Heidelberg, 2004.

Albert Benveniste, Benoit Caillaud, and Roberto Passerone. A generic
model of contracts for embedded systems, 2007.

Robert H. Bishop and Richard C. Modern control systems. th ed Dorf.
Modern control systems analysis and design using MATLAB and SIMULINK.
Addison-Wesley, Menlo Park, Calif and Harlow, 1997.

Andrea Bianco and Luca de Alfaro. Model checking of probabilistic and
nondeterministic systems. In P. S. Thiagarajan, editor, Foundations of
Software Technology and Theoretical Computer Science, pages 499-513,
Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

277

Bibliography

[BAAFK18] Christel Baier, Luca de Alfaro, Vojtéch Forejt, and Marta Kwiatkowska.

[BDD+18]

[BDL04]

[BDL12]

[Bel57]

[BFBBI]

[BFFR18]

[BFL*18]

[BGP03]

[BH20]

[BHKS12]

278

Model checking probabilistic systems. In Edmund M. Clarke, Thomas A.
Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model
Checking, pages 963-999. Springer International Publishing, Cham, 2018.

Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos,
Oded Maler, Dejan Nickovi¢, and Sriram Sankaranarayanan. Specification-
based monitoring of cyber-physical systems: A survey on theory, tools and
applications. 10457:135-175, 2018.

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on uppaal.
In Marco Bernardo and Flavio Corradini, editors, Formal Methods for the
Design of Real-Time Systems: International School on Formal Methods for
the Design of Computer, Communication, and Software Systems, Bertinora,
Italy, September 13-18, 2004, Revised Lectures, pages 200-236. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004.

Benedikt Bollig, Normann Decker, and Martin Leucker. Frequency linear-
time temporal logic. In 2012 Sizth International Symposium on Theoretical
Aspects of Software Engineering, pages 85-92. IEEE, 2012.

Richard Bellman. Dynamic Programming. Princeton University Press,
Princeton, NJ, USA, 1 edition, 1957.

Marjory S. Blumenthal, Laura Fraade-Blanar, Ryan Best, and J. Luke Irwin.
Safe enough: Approaches to assessing acceptable safety for automated
vehicles.

Ezio Bartocci, Ylies Falcone, Adrian Francalanza, and Giles Reger. Introduc-
tion to runtime verification: Lectures on runtime verification - introductory

and advanced topics. LNCS, 10457:1-33, 2018.

Patricia Bouyer, Uli Fahrenberg, Kim Guldstrand Larsen, Nicolas Markey,
Joél Ouaknine, and James Worrell. Model checking real-time systems. In
Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem, editors, Handbook of Model Checking, pages 1001-1046. Springer
International Publishing, Cham, 2018.

Howard Barringer, Dimitra Giannakopoulou, and Corina Pasareanu. Proof
rules for automated compositional verification. 09 2003.

Simon Burton and Richard Hawkins. Assuring the safety of highly automated
driving: state-of-the-art and research perspectives, 2020.

T. Bures, P Hnetynka, P. Kroha, and V. Simko. Requirement specifica-
tions using natural languages. Technical Report D3S-TR-2012-05, Charles
University, Dec 2012.

[BHL]

[BHM*15]

[Bit00]

[Bit01]

[BJP*12]

[BK98]

[BKOS]

[BKHO9]

[BKH*+13]

[BLS11]

[BRB13]

Bibliography

Nikita Bhardwaj Haupt and Peter Liggesmeyer. Towards context-awareness
for enhanced safety of autonomous vehicles.

E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle
problem in software testing: A survey. IEEE Transactions on Software
Engineering, 41(5):507-525, 2015.

Friedemann Bitsch. Classification of safety requirements for formal ver-
ification of software models of industrial automation systems. In 15th
International Conference on Software and Systems Engineering and their

Applications (ICSSEA). CNAM — Paris, France, 2000.

Friedemann Bitsch. Safety patterns — the key to formal specification of
safety requirements. In U. Voges, editor, Computer safety, reliability and
security, volume 2187 of Lecture notes in computer science, 0302-9743, pages
176-189. Springer, Berlin and London, 2001.

Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv
Saar. Synthesis of reactive(1) designs. Journal of Computer and System
Sciences, 78(3):911-938, 2012.

Christel Baier and Marta Kwiatkowska. Model checking for a probabilistic
branching time logic with fairness. Distributed Computing, 11(3):125-155,
1998.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT,
Cambridge, Mass. and London, 2008.

Christel Baier, Joost-Pieter Katoen, and Holger Hermanns. Approximate
symbolic model checking of continuous-time markov chains. In Proceedings
of the 10th International Conference on Concurrency Theory, CONCUR
99, pages 146-161, Berlin, Heidelberg, 1999. Springer-Verlag.

Herman Bruyninckx, Markus Klotzbiicher, Nico Hochgeschwender, Gerhard
Kraetzschmar, Luca Gherardi, and Davide Brugali. The brics component
model: A model-based development paradigm for complex robotics soft-
ware systems. In Proceedings of the 28th Annual ACM Symposium on
Applied Computing, SAC ’13, page 1758-1764, New York, NY, USA, 2013.
Association for Computing Machinery.

Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verifi-
cation for 1tl and tltl. ACM Trans. Softw. Eng. Methodol., 20(4), 2011.

Ahmed Baig, Risza Rusli, and Azizul Buang. Reliability analysis using fault
tree analysis: A review. International Journal of Chemical Engineering and
Applications, 4:169-173, 01 2013.

279

Bibliography

[BRH10]

[BTFMOS]

[BTM*18]

[Buz19]

[BY04]

[CCD*14]

[CDGOT]

[CES1]

[CFAIL7]

[CFK*13]

280

H. Barringer, D. Rydeheard, and K. Havelund. Rule systems for run-
time monitoring: from eagle to ruler. Journal of Logic and Computation,
20(3):675-706, 2010.

Michael Bonner, Robert Taylor, Keith Fletcher, and Christopher Miller.
Adaptive automation and decision aiding in the military fast jet domain.
Human Performance, Situation Awareness and Automation: User-Centred
Design for the New Millennium, 12 2008.

Brandon Bohrer, Yong Kiam Tan, Stefan Mitsch, Magnus O. Myreen, and
André Platzer. Veriphy: verified controller executables from verified cyber-
physical system models. ACM SIGPLAN Notices, 53(4):617-630, 2018.

Igor Buzhinsky. Formalization of natural language requirements into tem-
poral logics: a survey. In 17th IEEE International Conference on Industrial
Informatics (INDIN), pages 400-406. IEEE, 2019.

Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms
and tools. In Jorg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors,
Lectures on concurreny and Petri nets, volume 3098 of Lecture notes in
computer science, 0302-9743, pages 87—124. Springer, Berlin and London,
2004.

Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio,
Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and
Stefano Tonetta. The nuxmv symbolic model checker. In Armin Biere
and Roderick Bloem, editors, Computer Aided Verification, pages 334-342,
Cham, 2014. Springer International Publishing.

Jose R. Celaya, Alan A. Desrochers, and Robert J. Graves. Modeling and
analysis of multi-agent systems using petri nets. In IFEFE International
Conference on Systems, Man and Cybernetics, 2007, pages 1439-1444,
Piscataway, NJ, 2007. IEEE Service Center.

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Logic of Programs,
Workshop, pages 52-71, Berlin, Heidelberg, 1981. Springer-Verlag.

Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingolfsdéttir. A
survey of runtime monitoring instrumentation techniques. In Adrian Fran-
calanza and Gordon J. Pace, editors, Proceedings Second International Work-
shop on Pre- and Post-Deployment Verification Techniques, PrePost@QiFM
2017, Torino, Italy, 19 September 2017, volume 254 of EPTCS, pages 1528,
2017.

Taolue Chen, Vojtéch Forejt, Marta Kwiatkowska, David Parker, and Aistis
Simaitis. Prism-games: A model checker for stochastic multi-player games.

[CFL*20]

[CG04]

[CGI+00]

[CGPO3]

[CHMS06]

[CHV18]

[CIT20]

[CK95]

[CK96]

Bibliography

In Nir Piterman and Scott A. Smolka, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 185191, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

Rafael C. Cardoso, Marie Farrell, Matt Luckcuck, Angelo Ferrando, and
Michael Fisher. Heterogeneous verification of an autonomous curiosity
rover. In Ritchie Lee, Susmit Jha, and Anastasia Mavridou, editors, NASA
formal methods, volume 12229 of LNCS Sublibrary: SL2 - Programming and
software engineering, pages 353-360. Springer, Cham, Switzerland, 2020.

Frank Ciesinski and Marcus Grofler. On probabilistic computation tree
logic. In Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, Joost-
Pieter Katoen, and Markus Siegle, editors, Validation of Stochastic Systems:
A Guide to Current Research, pages 147—-188. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In E. Allen Emerson and
Aravinda Prasad Sistla, editors, Computer Aided Verification, pages 154-169,
Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasareanu.
Learning assumptions for compositional verification. In Proceedings of the
9th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS’03, pages 331-346, Berlin, Heidelberg,
2003. Springer-Verlag.

J. Connelly, W. S. Hong, R. B. Mahoney, Jr., and D. A. Sparrow. Cur-
rent challenges in autonomous vehicle development. In Grant R. Gerhart,
Charles M. Shoemaker, and Douglas W. Gage, editors, Unmanned Systems
Technology VIII, volume 6230, pages 115-125. SPIE, 2006.

Edmund M. Clarke, Thomas A. Henzinger, and Helmut Veith. Introduction
to model checking. In Edmund M. Clarke, Thomas A. Henzinger, Helmut
Veith, and Roderick Bloem, editors, Handbook of Model Checking, pages
1-26. Springer International Publishing, Cham, 2018.

D. M. Chack, S. G. Inks, and C. M. Thompson. Vehicle speed control
system: Utility, 2020.

S. C. Cheung and J. Kramer. Compositional reachability analysis of finite-
state distributed systems with user-specified constraints. SIGSOFT Softw.
Eng. Notes, 20(4):140-150, 1995.

Shing-Chi Cheung and Jeff Kramer. Context constraints for compositional
reachability analysis. ACM Trans. Softw. Eng. Methodol., 5:334-377, 10
1996.

281

Bibliography

[CKSW13]

[CLO7]

[CPP17]

[CPS*1§]

[CTT19a]

[CTT19b]

[CZ97)

[DACOS)]

[DAC99]

282

Taolue Chen, Marta Kwiatkowska, Aistis Simaitis, and Clemens Wiltsche.
Synthesis for multi-objective stochastic games: An application to au-
tonomous urban driving. In Kaustubh Joshi, editor, Proc. 10th International
Conference on Quantitative Evaluation of SysTems (QEST’13), volume 8054
of LNCS Sublibrary: SL 1 - Theoretical computer science and general issues,
pages 322-337. Springer, Heidelberg, 2013.

Hugo Costelha and Pedro Lima. Modelling, analysis and execution of robotic
tasks using petri nets. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2007, pages 1449-1454, Piscataway, NJ, 2007. IEEE
Service Center.

Jean-Louis Colaco, Bruno Pagano, and Marc Pouzet. Scade 6: A For-
mal Language for Embedded Critical Software Development. In TASE
2017 - 11th International Symposium on Theoretical Aspects of Software
Engineering, pages 1-10, Nice, France, September 2017.

[an Colwell, Buu Phan, Shahwar Saleem, Rick Salay, and Krzysztof Czar-
necki. An automated vehicle safety concept based on runtime restriction of
the operational design domain. In Intelligent Vehicles Symposium, pages
1910-1917. 2018.

Alessandro Cimatti, Chun Tian, and Stefano Tonetta. Assumption-
based runtime verification with partial observability and resets. In Bernd
Finkbeiner and Leonardo Mariani, editors, Runtime Verification, pages
165—184, Cham, 2019. Springer International Publishing.

Alessandro Cimatti, Chun Tian, and Stefano Tonetta. Nurv: A nuxmv
extension for runtime verification. In Bernd Finkbeiner and Leonardo
Mariani, editors, Runtime Verification, pages 382-392, Cham, 2019. Springer
International Publishing.

Antonio Cau and Hussein Zedan. Refining interval temporal logic specifica-
tions. In Miquel Bertran and Teodor Rus, editors, Transformation-based
reactive systems development, volume 1231 of Lecture Notes in Computer
Science, pages 79-94. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property
specification patterns for finite-state verification. In Proceedings of the
Second Workshop on Formal Methods in Software Practice, FMSP 98, pages
7-15, New York, NY, USA, 1998. Association for Computing Machinery.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns
in property specifications for finite-state verification. In Proceedings of the

21st International Conference on Software Engineering, ICSE 99, pages
411-420, New York, NY, USA, 1999. Association for Computing Machinery.

Bibliography

[dAFH*04] Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Rupak Majumdar,

[AAHO1]

[DART15]

[DCOS]

[DCL11]

[DDS17]

[Del10]

[DF20]

[DFL*16]

[DFSW16]

[DFVA09]

[DFWB12]

and Mariélle Stoelinga. Model checking discounted temporal properties.
In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for
the Construction and Analysis of Systems, pages 77-92, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

Luca de Alfaro and Thomas A. Henzinger. Interface automata. ACM
SIGSOFT Software Engineering Notes, 26(5), 2001.

P. Damanab, Seyed Shamseddin Alizadeh, Yahya Rasoulzadeh,
P. Moshashaie, and Sakineh Varmazyar. Failure modes and effects analysis
(fmea) technique: a literature review. 4:1-6, 01 2015.

Benoit Delahaye and Benoit Caillaud. A model for probabilistic reasoning
on assume/guarantee contracts, 2008.

Benoit Delahaye, Benoit Caillaud, and Axel Legay. Probabilistic contracts:
A compositional reasoning methodology for the design of systems with

stochastic and/or non-deterministic aspects. Form. Methods Syst. Des.,
38(1):1-32, feb 2011.

Ankush Desai, Tommaso Dreossi, and Sanjit A. Seshia. Combining model
checking and runtime verification for safe robotics. In Shuvendu Lahiri
and Giles Reger, editors, Runtime Verification, pages 172-189, Cham, 2017.
Springer International Publishing.

Benoit Delahaye. Modular Specification and Compositional Analysis of
Stochastic Systems. Phd, Université Rennes 1, 2010.

Louise A. Dennis and Michael Fisher. Verifiable self-aware agent-based
autonomous systems. Proceedings of the IEEE, 108(7):1011-1026, 2020.

Louise A. Dennis, Michael Fisher, Nicholas K. Lincoln, Alexei Lisitsa, and
Sandor M. Veres. Practical verification of decision-making in agent-based
autonomous systems. Automated Software Engineering, 23(3):305-359, 2016.

Louise Dennis, Michael Fisher, Marija Slavkovik, and Matt Webster. For-
mal verification of ethical choices in autonomous systems. Robotics and
Autonomous Systems, 77:1-14, 2016.

Jordi Dunjo, Vasilis Fthenakis, Juan Vilchez, and Josep Arnaldos. Hazard
and operability (hazop) analysis. a literature review. Journal of hazardous
materials, 173:19-32, 09 2009.

Louise A. Dennis, Michael Fisher, Matthew P. Webster, and Rafael H.
Bordini. Model checking agent programming languages. Automated Software
Engineering, 19(1):5-63, 2012.

283

Bibliography

[DGRW04] H. Dittrich, V. Gértner, R. Rinck, and V. Wehren. Method for determining

[DH20a]

[DH20b]

Dij72]

[DJKV17]

[DLI6]

[DMOS]

[dMBOS]

[Don10)]

[dpa22]

[DWFZ12]

[EC82]

284

a vehicle reference speed: Utility, 2004.

Hoang Tung Dinh and Tom Holvoet. Verifying autonomous decision making
against environment assumptions: An experience report. In 2020 Fourth
IEEE International Conference on Robotic Computing (IRC), pages 327-335.
IEEE, 11/9/2020 - 11/11/2020.

Hoang Tung Dinh and Tom Holvoet. A framework for verifying autonomous
robotic agents against environment assumptions. 10 2020.

E. W. Dijkstra. The humble programmer. Communications of ACM,
15(10):859-866, 1972.

Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias
Volk. A storm is coming: A modern probabilistic model checker, 2017.

Robert Darimont and Axel van Lamsweerde. Formal refinement patterns
for goal-driven requirements elaboration. In Proceedings of the jth ACM
SIGSOFT Symposium on Foundations of Software Engineering, pages 179—
190. ACM Press, 1996.

Louise Dennis and Berndt Miiller. Gwendolen: A bdi language for verifiable
agents. 01 2008.

Leonardo de Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In
C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 337-340, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

Alexandre Donzé. Breach, a toolbox for verification and parameter synthesis
of hybrid systems. In Tayssir Touili, Byron Cook, and Paul B. Jackson,
editors, Computer aided verification, volume 6174 of LNCS sublibrary. SL 1,
Theoretical computer science and general issues, pages 167-170. Springer,
Berlin, 2010.

dpa. Autonomes fahren: Mercedes startet verkauf von ,drive pilot“. t3n
digital pioneers, 2022.

Clare Dixon, Alan F.T. Winfield, Michael Fisher, and Chengxiu Zeng.
Towards temporal verification of swarm robotic systems. Robotics and
Autonomous Systems, 60(11):1429-1441, 2012.

E. Allen Emerson and Edmund M. Clarke. Using branching time tem-
poral logic to synthesize synchronization skeletons. Science of Computer
Programming, 2(3):241-266, 1982.

[EKVY07]

[Eura]

[Eurb]

[FBC+20]

[FCD*19]

[FCF+21]

[FDA*+18a]

[FDA*18b]

[FDW13]

[Fen14]

[Fer19]

Bibliography

K. Etessami, M. Kwiatkowska, M. Y. Vardi, and M. Yannakakis. Multi-
objective model checking of markov decision processes. In TACAS, pages
50-65. 2007.

Euro NCAP. Assessment protocol - safety assist.

European Economic Community. Council directive of 26 june 1975 on the
approximation of the laws of the member states relating to the reverse and
speedometer equipment of motor vehicles: 75/443/eec.

Simon Foster, James Baxter, Ana Cavalcanti, Jim Woodcock, and Frank
Zeyda. Unifying semantic foundations for automated verification tools in
isabelle/utp. Science of Computer Programming, 197:102510, 2020.

M. Farrell, R. C. Cardoso, L. Dennis, C. Dixon, Michael Fisher, G. Kour-
tis, A. Lisitsa, Matt Luckcuck, and M. Webster. Modular verification of
autonomous space robotics. Arziv, abs/1908.10738, 2019.

Angelo Ferrando, Rafael C. Cardoso, Michael Fisher, Davide Ancona, Luca
Franceschini, and Viviana Mascardi. Rosmonitoring: A runtime verification
framework for ros. In Abdelkhalick Mohammad, Xin Dong, and Matteo
Russo, editors, Towards autonomous robotic systems, volume 12228 of LNCS
sublibrary: SL7 - Artificial intelligence, pages 387-399. Springer, Cham,
Switzerland, 2021.

Angelo Ferrando, Louise A. Dennis, Davide Ancona, Michael Fisher, and
Viviana Mascardi. Recognising assumption violations in autonomous sys-
tems verification. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 18, pages 1933-1935,
Richland, SC, 2018. International Foundation for Autonomous Agents and
Multiagent Systems.

Angelo Ferrando, Louise A. Dennis, Davide Ancona, Michael Fisher, and
Viviana Mascardi. Verifying and validating autonomous systems: Towards
an integrated approach. In Christian Colombo and Martin Leucker, editors,
Runtime verification, volume 11237 of LNCS sublibrary. SL 2, Programming
and software engineering, pages 263-281. Springer, Cham, Switzerland, 2018.

Michael Fisher, Louise Dennis, and Matt Webster. Verifying autonomous
systems. Commun. ACM, 56(9):84-93, September 2013.

Lu Feng. On learning assumptions for compositional verification of proba-
bilistic systems. Phd, University of Oxford, UK, 2014.

Angelo Ferrando. The early bird catches the worm: First verify, then
monitor! Science of Computer Programming, 172:160-179, 2019.

285

Bibliography

[FGR*94]

[FHKP11]

[FIN*11]

[FKN*11]

[FKNP11]

[FKP10]

[FMROO]

[FMR*21]

[FPENT15]

[Fra20]

286

A. Fantechi, S. Gnesi, G. Ristori, M. Carenini, M. Vanocchi, and P. Mores-
chini. Assisting requirement formalization by means of natural language
translation. Form. Methods Syst. Des., 4(3):243-263, May 1994.

Lu Feng, Tingting Han, Marta Kwiatkowska, and David Parker. Learning-
based compositional verification for synchronous probabilistic systems. In
9th International Symposium on Automated Technology for Verification and
Analysis (ATVA’11), volume 6996 of LNCS, pages 511-521, Taipei, Taiwan,
2011. Springer.

Ylies Falcone, Mohamad Jaber, Thanh-Hung Nguyen, Marius Bozga, and
Saddek Bensalem. Runtime verification of component-based systems. In
Gilles Barthe, Alberto Pardo, and Gerardo Schneider, editors, Software
engineering and formal methods, volume 7041 of LNCS sublibrary. SL 2,
Programming and software engineering, pages 204-220. Springer, Heidelberg,
2011.

Vojtéch Forejt, Marta Kwiatkowska, Gethin Norman, David Parker, and
Hongyang Qu. Quantitative multi-objective verification for probabilistic
systems. In Parosh Aziz Abdulla and K. Rustan M. Leino, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 112127,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

Vojtéch Forejt, Marta Kwiatkowska, Gethin Norman, and David Parker.
Automated verification techniques for probabilistic systems. In Marco
Bernardo and Valérie Issarny, editors, Formal methods for eternal networked
software systems, volume 6659 of Lecture notes in computer science, 0302-

9743, pages 53—113. Springer, Heidelberg, 2011.

Lu Feng, Marta Kwiatkowska, and David Parker. Compositional verification
of probabilistic systems using learning. In 2010 Seventh International
Conference on the Quantitative Evaluation of Systems, pages 133-142. IEEE,
9/15/2010 - 9/18/2010.

S. Flake, W. Miiller, and J. Ruf. Structured english for model checking
specification. In MBMV, 2000.

Michael Fisher, Viviana Mascardi, Kristin Yvonne Rozier, Bernd-Holger
Schlingloff, Michael Winikoff, and Neil Yorke-Smith. Towards a framework
for certification of reliable autonomous systems. Auton. Agents Multi Agent
Syst., 35:8, 2021.

Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. Feedback
control of dynamic systems. Pearson, Boston, seventh edition edition, 2015.

Luca Franceschini. RML: Runtime Monitoring Language. Phd, Universita
di Genova, Italy, 2020.

[Gam11]

[GBPGOS]

[GFN19]

[GGPOT]

[GID13]

[GK19]

[Glel4]

[GNP18]

[GPBOS5]

[Grell]

[GRR*16]

Bibliography

Erich Gamma. Design patterns: FElements of reusable object-oriented
software. Addison-Wesley professional computing series. Addison-Wesley;,
Boston, 39. printing edition, 2011.

Mihaela Gheorghiu Bobaru, Corina S. Pasareanu, and Dimitra Gian-
nakopoulou. Automated assume-guarantee reasoning by abstraction re-
finement. In Aarti Gupta and Sharad Malik, editors, Computer aided
verification, Lecture notes in computer science, 0302-9743, pages 135-148.
Springer, Berlin, 2008.

Mario Gleirscher, Simon Foster, and Yakoub Nemouchi. Evolution of
formal model-based assurance cases for autonomous robots. In Peter Csaba
Olveczky and Gwen Salaiin, editors, Software Engineering and Formal
Methods, pages 87-104, Cham, 2019. Springer International Publishing.

Mihaela Gheorghiu, Dimitra Giannakopoulou, and Corina S. Pasareanu.
Refining interface alphabets for compositional verification. In Orna Grum-
berg and Michael Huth, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 292-307, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

Meng Guo, Karl H. Johansson, and Dimos V. Dimarogonas. Revising mo-
tion planning under linear temporal logic specifications in partially known
workspaces. In 2013 IEEFE International Conference on Robotics and Au-
tomation, pages 5025-5032, 2013.

Mario Gleirscher and Stefan Kugele. Assurance of system safety: A survey
of design and argument patterns. Arziv, 1902.05537, 2019.

Mario Gleirscher. Behavioural Safety of Technical Systems. Phd, TU
Miinchen, Munich, Germany, 2014.

Dimitra Giannakopoulou, Kedar S. Namjoshi, and Corina S. Pasareanu.
Compositional reasoning. In Edmund M. Clarke, Thomas A. Henzinger,
Helmut Veith, and Roderick Bloem, editors, Handbook of Model Checking,
pages 345-383. Springer International Publishing, Cham, 2018.

Dimitra Giannakopoulou, Corina S. Pasareanu, and Howard Barringer. Com-
ponent verification with automatically generated assumptions. Automated
Software Engineering, 12(3):297-320, 2005.

Joel Greenyer. Scenario-based Design of Mechatronic Systems. Phd, Univer-
sitat Paderborn, Germany, 2011.

Tobias Gindele, Bernhard Rumpe, Andreas Rausch, Martin Vossiek, Peter
Gulden, Christian Schlegel, and Christian Verbeek. iserveU: Intelligente mod-
ulare Serviceroboter-Funktionalitdten im menschlichen Umfeld am Beispiel

287

Bibliography

[Gru0§]

[HABR22|

[Har87]

[Hav15]

[Hen18]

[HEZ*14]

[HJ94]

[HIJK*15]

[HKO07]

[HKNPO6]

288

von Krankenhéusern, 2016. Final report, Funding code 01IM12008A, un-
published.

Lars Grunske. Specification patterns for probabilistic quality properties.
In Proceedings of the 30th International Conference on Software Engineer-
ing, ICSE 08, pages 31-40, New York, NY, USA, 2008. Association for
Computing Machinery.

Felix Helsch, Iqra Aslam, Abhishek Buragohain, and Andreas Rausch.
Qualitative monitors based on the connected dependability cage approach.
In The 14th International Conference on Adaptive and Self-Adaptive Systems
and Applications (ADAPTIVE 2022), pages 46-55. IARIA, 2022.

David Harel. Statecharts: a visual formalism for complex systems. Science
of Computer Programming, 8(3):231-274, 1987.

Klaus Havelund. Rule-based runtime verification revisited. International
Journal on Software Tools for Technology Transfer, 17(2):143-170, 2015.

Christian Hensel. The Probabilistic Model Checker Storm: Symbolic Methods
for Probabilistic Model Checking. Phd, RWTH Aachen, Germany, 2018.

Jeff Huang, Cansu Erdogan, Yi Zhang, Brandon Moore, Qingzhou Luo,
Aravind Sundaresan, and Grigore Rosu. Rosrv: Runtime verification for
robots. In Borzoo Bonakdarpour and Scott A. Smolka, editors, Runtime
verification, volume 8734 of LNCS sublibrary: SL 2 - Programming and
software engineering, pages 247-254. Springer, Cham, 2014.

Hans Hansson and Bengt Jonsson. A logic for reasoning about time and
reliability. Formal Aspects of Computing, 6(5):512-535, 1994.

Iman Haghighi, Austin Jones, Zhaodan Kong, Ezio Bartocci, Radu Gros,
and Calin Belta. Spatel - a novel spatial-temporal logic and its applications
to networked systems. In Antoine Girard and Sriram Sankaranarayanan,
editors, Proceedings of the 18th International Conference on Hybrid Systems:
Computation and Control, pages 189-198, New York, NY, USA, 04142015.
ACM.

Tingting Han and Joost-Pieter Katoen. Counterexamples in probabilistic
model checking. In Orna Grumberg and Michael Huth, editors, Tools and
algorithms for the construction and analysis of systems, volume 4424 of
Lecture notes in computer science, 0302-9743, pages 72-86. Springer, Berlin
and London, 2007.

Andrew Hinton, Marta Kwiatkowska, Gethin Norman, and David Parker.
Prism: A tool for automatic verification of probabilistic systems. In Hol-
ger Hermanns and Jens Palsberg, editors, Tools and algorithms for the

[HKW+08]

[HL19]

[HMOS]

[HMAO03]

[HMU14]

[Hoa69]

[HoaT8§]

[Hol02]

[How60]

[HP85]

Bibliography

construction and analysis of systems, volume 3920 of Lecture notes in com-
puter science, 0302-9743, pages 441-444. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006.

Sebastian Herold, Holger Klus, Yannick Welsch, Constanze Deiters, Andreas
Rausch, Ralf Reussner, Klaus Krogmann, Heiko Koziolek, Raffaela Miran-
dola, Benjamin Hummel, Michael Meisinger, and Christian Pfaller. Cocome
- the common component modeling example. In Andreas Rausch, Ralf
Reussner, Raffacla Mirandola, and Frantisek Plasil, editors, The Common
Component Modeling Example: Comparing Software Component Models,
pages 16-53. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

Nikita Bhardwaj Haupt and Peter Liggesmeyer. A runtime safety monitoring
approach for adaptable autonomous systems. In Alexander Romanovsky;,
Elena Troubitsyna, Ilir Gashi, Erwin Schoitsch, and Friedemann Bitsch,
editors, Computer safety, reliability, and security, volume 11699 of LNCS
sublibrary. SL2 - Programming and software engineering, pages 166—177.
Springer, Cham, 2019.

David Harel and Shahar Maoz. Assert and negate revisited: Modal semantics
for UML sequence diagrams. Softw. Syst. Model., 7(2):237-252, 2008.

Hui-Min Huang, Elena Messina, and James Albus. Autonomy level spec-
ification for intelligent autonomous vehicles: Interim progress report. In
Proceedings of 20038 Performance Metrics for Intelligent Systems (PerMIS)
Workshop, 2003.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to automata theory, languages, and computation. Pearson custom library.
Pearson Education, Harlow, Essex, pearson new international ed. edition,
2014.

C. A. R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12(10):576-580, 1969.

C. A. R. Hoare. Communicating sequential processes. Communications of
the ACM, 21(8):666—-677, 1978.

Gerard J. Holzmann. The logic of bugs. SIGSOFT Softw. Eng. Notes,
27(6):81-87, 2002.

Ronald A. Howard. Dynamic Programming and Markov Processes. MIT
Press and John Wiley & Sons Inc., MA, USA, 1960.

D. Harel and A. Pnueli. On the development of reactive systems. In
Logics and Models of Concurrent Systems, pages 477-498. Springer, Berlin,
Heidelberg, 1985.

289

Bibliography

[HR17]

[Int97a]

[Int97b]

[Int11a]

[Int11b]

[Int11c]

[Int11d]

[Int1le]

[Int11f]

[Int1lg]

[Int19]

[IQV16]

[1SO10]

290

Klaus Havelund and Giles Reger. Runtime verification logics a language
design perspective. In K. G. Larsen, Luca Aceto, Giorgio Bacci, Giovanni
Bacci, Anna Ingolfsdottir, Axel Legay, and Radu Mardare, editors, Models,
algorithms, logics and tools, volume 10460 of Lecture notes in computer
science, 0302-9743, pages 310-338. Springer, Cham, 2017.

International Electrotechnical Commission. Iec 61508-1:1997 - functional
safety of electrical /electronic/programmable electronic safety related sys-
tems: Part 1: General requirements, 1997.

International Electrotechnical Commission. Iec 61508-4:1997 - functional
safety of electrical /electronic/programmable electronic safety related sys-
tems: Part 4: Definitions and abbreviations, 1997.

International Organization for Standardization. Iso 26262-10:2011: Road
vehicles - functional safety: Part 10: Guideline to iso 26262, 2011.

International Organization for Standardization. Iso 26262-1:2011: Road
vehicles - functional safety: Part 1: Vocabulary, 2011.

International Organization for Standardization. Iso 26262-3:2011: Road
vehicles - functional safety: Part 3: Concept phase, 2011.

International Organization for Standardization. Iso 26262-4:2011: Road
vehicles - functional safety: Part 4: Product development at the system
level, 2011.

International Organization for Standardization. Iso 26262-5:2011: Road
vehicles - functional safety: Part 5: Product development at the hardware
level, 2011.

International Organization for Standardization. Iso 26262-6:2011: Road
vehicles - functional safety: Part 6: Product development at the software
level, 2011.

International Organization for Standardization. Iso 26262-9:2011: Road
vehicles - functional safety: Part 9: Automotive safety integrity level (asil)-
oriented and safety-oriented analyses, 2011.

International Organization for Standardization. Iso/pas 21448 - road vehicles
- safety of the intended functionality, 2019.

Paolo Izzo, Hongyang Qu, and Sandor M. Veres. A stochastically verifi-
able autonomous control architecture with reasoning. In 2016 IEEE 55th
Conference on Decision and Control (CDC). IEEE, 2016.

ISO, IEC, IEEE. Iso/iec/ieee 24765:2010 - systems and software engineering:
Vocabulary, 2010.

[Jan15]

[JG16]

1J001]

[Jon83a]

[Jon83Db]

[JPQ*16]

[Kaf12]

[Kat16]

[KCO05]

[KDF12]

[KDJ*16]

[KFK14]

Bibliography

Nils Jansen. Counterexamples in Probabilistic Verification. Phd, RWTH
Aachen, Germany, 2015.

Bertrand Jeannet and Fabien Gaucher. Debugging Embedded Systems
Requirements with STIMULUS: an Automotive Case-Study. In 8th European
Congress on Embedded Real Time Software and Systems (ERTS 2016),
TOULOUSE, France, January 2016.

J. Bezivin and O. Gerbe. Towards a precise definition of the omg/mda frame-
work. In Proceedings 16th Annual International Conference on Automated
Software Engineering (ASE 2001), pages 273-280, 2001.

C. B. Jones. Tentative steps toward a development method for interfering
programs. ACM Trans. Program. Lang. Syst., 5(4):596-619, 1983.

Cliff Jones. Specification and design of (parallel) programs. volume 83,
pages 321-332, 01 1983.

Rainer Joppich, Andre Pfliiger, Stefan Queins, Chris Rupp, Kristina
Schone, Achim Stuy, and Alexander Voge. Master - schablone fiir alle
falle. https://www.sophist.de/MASTeR-Broschuere, 2016.

Peter Kafka. The automotive standard iso 26262, the innovative driver for
enhanced safety assessment & technology for motor cars. In Feng Changgen
and Li Shengcai, editors, 2012 International Symposium on Safety Science
and Technology, volume 45 of Procedia Engineering, pages 2—10. Elsevier
Ltd., 2012.

Joost-Pieter Katoen. The probabilistic model checking landscape*. In 2016
31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1-15, 2016.

S. Konrad and B.H.C. Cheng. Real-time specification patterns. In ICSE’05,
pages 372-381. IEEE, 2005.

Savas Konur, Clare Dixon, and Michael Fisher. Analysing robot swarm
behaviour via probabilistic model checking. Robotics and Autonomous
Systems, 60(2):199-213, 2012.

James Kapinski, Jyotirmoy V. Deshmukh, Xiaoqing Jin, Hisahiro Ito, and
Ken Butts. Simulation-based approaches for verification of embedded control
systems: An overview of traditional and advanced modeling, testing, and
verification techniques. IEEE Control Systems, 36(6):45-64, 2016.

Aaron Kane, Thomas Fuhrman, and Philip Koopman. Monitor based oracles
for cyber-physical system testing: Practical experience report. In 2014 44th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, pages 148-155. IEEE, 6/23/2014 - 6/26/2014.

291

Bibliography

[KGFPOg]

[KJ10]

[KM16]

[Kni02]

[KNPO2]

[KNPQI10]

[KNPQ13]

[KO19]

[Kos94]
[KPC12]

[Kri20]

[KSZ14]

292

Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. Translating
structured english to robot controllers. Advanced Robotics, (22):1343-1359,
2008.

Zvi Kohavi and Niraj K. Jha. Switching and finite automata theory. Cam-
bridge University Press, Cambridge UK and New York, 3rd ed. edition,
2010.

Felix Kossak and Atif Mashkoor. How to select the suitable formal method
for an industrial application: A survey, 2016.

John C. Knight. Safety critical systems: Challenges and directions. In
Proceedings of the 24th International Conference on Software Engineering,
ICSE ’02, pages 547-550, New York, NY, USA, 2002. ACM.

Marta Kwiatkowska, Gethin Norman, and David Parker. Prism: Proba-
bilistic symbolic model checker. In Anthony J. Field, editor, Computer
performance evaluation, volume 2324 of Lecture notes in computer science,
0302-9743, pages 200-204. Springer, Berlin and London, 2002.

Marta Kwiatkowska, Gethin Norman, David Parker, and Hongyang Qu.
Assume-guarantee verification for probabilistic systems. In Proceedings of the
16th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS’10, pages 23-37, Berlin, Heidelberg, 2010.
Springer-Verlag.

Marta Kwiatkowska, Gethin Norman, David Parker, and Hongyang Qu.
Compositional probabilistic verification through multi-objective model check-
ing. Information and Computation, 232:38-65, 2013.

Philip Koopman and Beth Osyk. Safety argument considerations for pub-
lic road testing of autonomous vehicles. In SAE Technical Paper Series,
SAE Technical Paper Series. SAE International400 Commonwealth Drive,
Warrendale, PA, United States, 2019.

F. Kost. Speed estimation process: Utility, 1994.

Anvesh Komuravelli, Corina S. Pasareanu, and Edmund M. Clarke. Assume-
guarantee abstraction refinement for probabilistic systems. In P. Mad-
husudan and Sanjit A. Seshia, editors, Computer Aided Verification, pages
310-326, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

Thomas Krismayer. Automatic Mining of Constraints for Eventbased Sys-
tems Monitoring. Phd, Johannes Kepler University Linz, Austria, 2020.

Joost-Pieter Katoen, Lei Song, and Lijun Zhang. Probably safe or live. In
Thomas Henzinger and Dale Miller, editors, Proceedings of the Joint Meeting

[KW16]

[Lam77]

[Lam01]

[Lan08]

[LBBZ97]

[LDS11]

[LDSW09]

[Leil0)

[LFD*19]

Lil4]

[Lig09]

Bibliography

of the Twenty-Third EACSL Annual Conference on Computer Science Logic
(CSL) and the Twenty-Ninth Annual ACMIEEE Symposium on Logic in
Computer Science (LICS), pages 1-10, New York, NY, 2014. ACM.

Phillip Koopman and Michael Wagner. Challenges in autonomous vehicle
testing and validation. In SAE World Congress. 2016.

L. Lamport. Proving the correctness of multiprocess programs. [IEEFE
Transactions on Software Engineering, SE-3(2):125-143, 1977.

Axel van Lamsweerde. Goal-oriented requirements engineering: A guided
tour. In Proceedings of the Fifth IEEE International Symposium on Re-
quirements Engineering, RE 01, page 249, USA, 2001. IEEE Computer
Society.

Arnaud Lanoix. Event-b specification of a situated multi-agent system:
Study of a platoon of vehicles. In Proceedings, pages 297-304, Las Alamitos
Calif., 2008. IEEE Computer Society.

U. Lefarth, U. Baum, T. Beck, and T. Zurawka. Ascet-sd - development
environment for embedded control systems. IFAC Proceedings Volumes,

30(4):85-90, 1997.

Wenchao Li, Lili Dworkin, and Sanjit A. Seshia. Mining assumptions for
synthesis. In Proceedings of the Ninth ACM/IEEE International Conference
on Formal Methods and Models for Codesign, MEMOCODE ’11, page 43-50,
USA, 2011. IEEE Computer Society.

Hui Liang, Jin Song Dong, Jing Sun, and W. Eric Wong. Software monitoring
through formal specification animation. Innovations in Systems and Software
Engineering, 5(4):231-241, 2009.

K. Rustan M. Leino. Dafny: An automatic program verifier for functional
correctness. In Edmund M. Clarke and Andrei Voronkov, editors, Logic for
programming, artificial intelligence, and reasoning, volume 6355 of LNCS
sublibrary. SL 7, Artificial intelligence, pages 348-370. Springer, Berlin,
2010.

Matt Luckcuck, Marie Farell, Louise Abigail Dennis, Claire Dixon, and
Michael Fisher. A summary of formal specification and verification of
autonomous robotic systems. In IFM, 2019.

Wenchao Li. Specification Mining: New Formalisms, Algorithms and Appli-
cations. Phd, University of California, Berkely, USA, 2014.

P. Liggesmeyer. Software-Qualitit - Testen, Analysieren und Verifizieren
von Software. Springer Spektrum, Heidelberg, Germany, 2009.

293

Bibliography

[LNSV*17] Jiwei Li, Pierluigi Nuzzo, Alberto Sangiovanni-Vincentelli, Yugeng Xi, and

[LPN11]

[LSO07]

[LS09]

[LSSS14]

[Luc21]

[LYX19]

[Maul9]

[MBL*13]

294

Dewei Li. Stochastic contracts for cyber-physical system design under
probabilistic requirements. In Proceedings of the 15th ACM-IEEE Inter-
national Conference on Formal Methods and Models for System Design,
MEMOCODE 17, pages 5-14, New York, NY, USA, 2017. Association for
Computing Machinery.

Sarah M. Loos, André Platzer, and Ligia Nistor. Adaptive cruise control:
Hybrid, distributed, and now formally verified. In Michael Butler and
Wolfram Schulte, editors, FM 2011, volume 6664 of LNCS sublibrary. SL 2,
Programming and software engineering, pages 42-56. Springer, Heidelberg,
2011.

Martin Leucker and César Sanchez. Regular linear temporal logic. In C. B.
Jones, Zhiming Liu, and Jim Woodcock, editors, Theoretical aspects of
computing - ICTAC 2007, volume 4711 of Lecture notes in computer science,
0302-9743, pages 291-305. Springer, Berlin, 2007.

Martin Leucker and Christian Schallhart. A brief account of runtime
verification. The Journal of Logic and Algebraic Programming, 78(5):293~
303, 2009. The 1st Workshop on Formal Languages and Analysis of Contract-
Oriented Software (FLACOS’07).

Wenchao Li, Dorsa Sadigh, S. Shankar Sastry, and Sanjit A. Seshia. Syn-
thesis for human-in-the-loop control systems. In Erika Abrahdm and Klaus
Havelund, editors, Tools and Algorithms for the Construction and Anal-
ysis of Systems, pages 470-484, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

Matt Luckcuck. Using formal methods for autonomous systems: Five
recipes for formal verification. Proceedings of the Institution of Mechanical
Engineers, Part O: Journal of Risk and Reliability, page 1748006X2110349,
2021.

Peng Liu, Run Yang, and Zhigang Xu. How safe is safe enough for self-
driving vehicles? Risk analysis : an official publication of the Society for
Risk Analysis, 39(2):315-325, 2019.

Malte Mauritz. Engineering of safe autonomous vehicles through seamless
integration of system development and system operation. Verlag Dr. Hut,
Miinchen, 2019.

Mieke Massink, Manuele Brambilla, Diego Latella, Marco Dorigo, and Mauro
Birattari. On the use of bio-pepa for modelling and analysing collective
behaviours in swarm robotics. Swarm Intelligence, 7(2):201-228, 2013.

[MC81]

IMFG*22]

MGVP17]

[MHB13]

IMJ11]

IMJS]

[MNO4]

[Mor21]

[MP16]

[MP18]

[MR]

Bibliography

J. Misra and K. M. Chandy. Proofs of networks of processes. I[IEEE
Transactions on Software Engineering, SE-7(4):417-426, 1981.

Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William
Woodall. Robot operating system 2: Design, architecture, and uses in the
wild. Science Robotics, 7(66):eabm6074, 2022.

Stefan Mitsch, Khalil Ghorbal, David Vogelbacher, and André Platzer.
Formal verification of obstacle avoidance and navigation of ground robots.
The International Journal of Robotics Research, 36(12):1312-1340, 2017.

Atif Mashkoor, Osman Hasan, and Wolfgang Beer. Using probabilistic anal-
ysis for the certification of machine control systems. In Alfredo Cuzzocrea,
Christian Kittl, Dimitris E. Simos, Edgar R. Weippl, and Li D. Xu, editors,
Security engineering and intelligence informatics, volume 8128 of LNCS
sublibrary. SL 8, Information systems and application, incl. Internet/Web
and HCI, pages 305-320. Springer, Heidelberg, 2013.

Atif Mashkoor and Jean-Pierre Jacquot. Utilizing event-b for domain
engineering: a critical analysis. Requirements Engineering, 16(3):191-207,
2011.

Atif Mashkoor, Jean-Pierre Jacquot, and Jeanine Souquieres. Transforma-
tion heuristics for formal requirements validation by animation. In 2nd
International Workshop on the Certification of Safety-Critical Software
Controlled Systems (SafeCert).

Oded Maler and Dejan Nickovic. Monitoring temporal properties of con-
tinuous signals. In Yassine Lakhnech and Sergio Yovine, editors, Formal
Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
volume 3253 of Lecture Notes in Computer Science, pages 152—-166. Springer,
Berlin, Heidelberg, 2004.

James Morris. Why is tesla’s full self-driving only level 2 autonomous?
Forbes, 2021.

Stefan Mitsch and André Platzer. Modelplex: verified runtime validation
of verified cyber-physical system models. Form. Methods Syst. Des., 49(1-
2):33-74, 2016.

Stefan Mitsch and André Platzer. Verified runtime validation for partially
observable hybrid systems. 2018.

Shahar Maoz and Jan Oliver Ringert. Spectra: a specification language for
reactive systems. Software and Systems Modeling.

295

Bibliography

[MR15]

IMR16]

IMRWO6]

IMS12]

[MTBP19)

[MTP+19]

[MV09]

[NBOY]

[INBC*15]

[Neel9)

296

Shahar Maoz and Jan Oliver Ringert. Gr(1) synthesis for 1t specification
patterns. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, pages 96-106, New York, NY,
USA, 2015. Association for Computing Machinery.

Shahar Maoz and Jan Ringert. Synthesizing a lego forklift controller in
gr(1): A case study. FElectronic Proceedings in Theoretical Computer Science,
202:58-72, 02 2016.

T. Merz, P. Rudol, and M. Wzorek. Control system framework for au-
tonomous robots based on extended state machines. In International Con-
ference on Autonomic and Autonomous Systems (ICAS’06), page 14. IEEE,
19-21 July 2006.

Shahar Maoz and Yaniv Saar. Assume-guarantee scenarios: Semantics and
synthesis. In Robert France, editor, Model Driven Engineering Languages
and Systems, volume 7590 of LNCS sublibrary. SL 2, Programming and
software engineering, pages 335-351. Springer, Heidelberg, 2012.

Claudio Menghi, Christos Tsigkanos, Thorsten Berger, and Patrizio Pel-
liccione. Psalm: Specification of dependable robotic missions. In 2019
IEEE/ACM 41st International Conference on Software Engineering: Com-
panion Proceedings, pages 99-102. IEEE Press, 2019.

Claudio Menghi, Christos Tsigkanos, Patrizio Pelliccione, Carlo Ghezzi,
and Thorsten Berger. Specification patterns for robotic missions. Arziv,
abs/1901.02077, 2019.

L. Molnar and S. M. Veres. System verification of autonomous underwater
vehicles by model checking. In OCEANS 2009-EUROPE, pages 1-10, 20009.

Allen P. Nikora and Galen Balcom. Automated identification of Itl patterns in
natural language requirements. In Proceedings of the 20th IEEE International
Conference on Software Reliability Engineering, ISSRE’09, pages 185-194.
IEEE Press, 2009.

Laura Nenzi, Luca Bortolussi, Vincenzo Ciancia, Michele Loreti, and Mieke
Massink. Qualitative and quantitative monitoring of spatio-temporal prop-
erties. In Ezio Bartocci and Rupak Majumdar, editors, Runtime verification,
volume 9333 of LNCS sublibrary. SL 2, Programming and software engineer-
ing, pages 21-37. Springer, Cham, 2015.

Michael A. Nees. Safer than the average human driver (who is less safe than
me)? examining a popular safety benchmark for self-driving cars. Journal
of Safety Research, 69:61-68, 2019.

[NF6]

[INFGK]

[Nik05]

[Nip02]

[NLSV*19]

[OAH*14]

[Obj05]

[OGT6]

[PCR*13]

[Pel01]

[Pet20]

[PGO6]

Bibliography

Rani Nelken and Nissim Francez. Automatic translation of natural language
system specifications into temporal logic. In Rajeev Alur and Thomas A.
Henzinger, editors, Computer Aided Verification, pages 360-371, Berlin,
Heidelberg, 1996. Springer Berlin Heidelberg.

Yakoub Nemouchi, Simon Foster, Mario GLEIRSCHER, and Tim Kelly.
Mechanised assurance cases with integrated formal methods in isabelle.

Allen P. Nikora. Classifying requirements: towards a more rigorous analysis
of natural-language specifications. In 16th IEEFE International Symposium
on Software Reliability Engineering (ISSRE’05), pages 10 p—300, 2005.

Tobias Nipkow, editor. Isabelle/HOL: A Proof Assistant for Higher-Order
Logic, volume 2283 of Springer eBook Collection Computer Science. Springer-
Verlag Berlin Heidelberg, Berlin, Heidelberg, 2002.

Pierluigi Nuzzo, Jiwei Li, Alberto L. Sangiovanni-Vincentelli, Yugeng Xi,
and Dewei Li. Stochastic assume-guarantee contracts for cyber-physical
system design. ACM Trans. Embed. Comput. Syst., 18(1), 2019.

Matthew O’Brien, Ronald C. Arkin, Dagan Harrington, Damian Lyons, and
Shu Jiang. Automatic verification of autonomous robot missions. In Davide
Brugali, editor, Simulation, modeling, and programming for autonomous
robots, volume 8810 of LNCS sublibrary. SL 7, Artificial intelligence, pages
462-473. Springer, Cham, 2014.

Object Management Group. Uml profile for schedulability, performance,
and time specification, 2005.

Susan Owicki and David Gries. Verifying properties of parallel programs:
An axiomatic approach. Commun. ACM, 19(5):279-285, 1976.

Edson Prestes, Joel Luis Carbonera, Sandro Rama Fiorini, Vitor A. M.
Jorge, Mara Abel, Raj Madhavan, Angela Locoro, Paulo Goncalves, Marcos
E. Barreto, Maki Habib, Abdelghani Chibani, Sébastien Gérard, Yacine
Amirat, and Craig Schlenoff. Towards a core ontology for robotics and
automation. Robotics and Autonomous Systems, 61(11):1193-1204, 2013.

Doron A. Peled. Software Reliability Methods. Texts in Computer Science.
Springer, New York, NY, 2001.

Dieter Petereit. Level-3-automation: Mercedes-benz drive pilot fahrt bis 60
stundenkilometer allein. t3n digital pioneers, 2020.

Corina S. Pasareanu and Dimitra Giannakopoulou. Towards a compositional
spin. In Antti Valmari, editor, Model checking software, volume 3925 of
Lecture notes in computer science, 0302-9743, pages 234-251. Springer,
Berlin, 2006.

297

Bibliography

[PGGBT08] Corina S. Pasareanu, Dimitra Giannakopoulou, Mihaela Gheorghiu Bobaru,

[Pla0g]

[PMM*07]

[Pnu77]

[Pnuss]

[PPS06]

[Put94]

[RAO92]

[Ra096]

[RBOS]

[RCSL21]

298

Jamieson M. Cobleigh, and Howard Barringer. Learning to divide and
conquer: applying the 1* algorithm to automate assume-guarantee reasoning.
Form. Methods Syst. Des., 32(3):175-205, 2008.

André Platzer. Differential dynamic logic for hybrid systems. Journal of
Automated Reasoning, 41(2):143-189, 2008.

C. Ponsard, P. Massonet, J. F. Molderez, A. Rifaut, A. van Lamsweerde, and
H. Tran Van. Early verification and validation of mission critical systems.
Form. Methods Syst. Des., 30(3):233-247, 2007.

Amir Pnueli. The temporal logic of programs. In 18th Annual Sympo-
sium on Foundations of Computer Science (sfes 1977), pages 46-57. IEEE,
10/31/1977 - 11/2/1977.

Amir Pnueli. In transition from global to modular temporal reasoning about
programs. In Krzysztof R. Apt, editor, Logics and Models of Concurrent
Systems, pages 123-144. Springer Berlin Heidelberg, Berlin, Heidelberg,
1985.

Nir Piterman, Amir Pnueli, and Yaniv Saar. Synthesis of reactive(1) de-
signs. In E. Allen Emerson and Kedar S. Namjoshi, editors, Verification,
model checking, and abstract interpretation, volume 3855 of Lecture notes in
computer science, 0302-9743, pages 364-380. Springer, Berlin and London,
2006.

Martin L. Puterman. Markov Decision Processes. John Wiley & Sons, Inc,

Hoboken, NJ, USA, 1994.
D. J. Richardson, S. L. Aha, and T. O. O’Malley. Specification-based

test oracles for reactive systems. In International Conference on Software
Engineering, pages 105-118. IEEE, 1992.

Anand S. Rao. Decision procedures for prepositional linear-time belief-desire-
intention logics. In Michael Wooldridge, Jorg P. Miiller, and Milind Tambe,
editors, Intelligent Agents II Agent Theories, Architectures, and Languages,
pages 33—48, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

Andreas Rausch and Manfred Broy. Die v-modell xt grundlagen. In Reinhard
Hohn and Stephan Hoppner, editors, Das V-Modell XT, eXamen.press.
Springer-Verlag, 2008.

Ivan Ruchkin, Matthew Cleaveland, Oleg Sokolsky, and Insup Lee. Confi-
dence monitoring and composition for dynamic assurance of learning-enabled
autonomous systems. In Fzio Bartocci, Ylies Falcone, and Martin Leucker,
editors, Formal Methods in Outer Space, volume 13065 of Lecture Notes in

[Rod15]

[RP13]

[RRRW14]

[RS93]

[RS14]

[RSS+20]

[RT20]

[RTC11]

[SAE1S]

[Sch21]

[SAV04]

Bibliography

Computer Science, pages 137-146. Springer International Publishing, Cham,
2021.

Alberto Rodrigues da Silva. Model-driven engineering: A survey supported
by the unified conceptual model. Computer Languages, Systems & Structures,
43:139-155, 2015.

Andy Ruina and Rudra Pratap. Introduction to Statics and Dynamics.
Oxford University Press, 2013.

Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas Wort-
mann. Code generator composition for model-driven engineering of robotics
component & connector systems. ArXiv, abs/1505.00904, 2014.

R. L. Rivest and R. E. Schapire. Inference of finite automata using homing
sequences. Information and Computation, 103(2):299-347, 1993.

Chris Rupp and Die SOPHISTen. Requirements Engineering and Manage-
ment, chapter 6, pages 115-156. Carl Hanser Verlag, Munich, Germany, 6
edition, 2 2014.

Jan Reich, Daniel Schneider, Ioannis Sorokos, Yiannis Papadopoulos, Tim
Kelly, Ran Wei, Eric Armengaud, and Cem Kaypmaz. Engineering of
runtime safety monitors for cyber-physical systems with digital dependability
identities. In Antonio Casimiro, Frank Ortmeier, Friedemann Bitsch, and
Pedro M. Ferreira, editors, Computer safety, reliability, and security, volume
12234 of LNCS Sublibrary: SL2 - Programming and software engineering,
pages 3—17. Springer, Cham, Switzerland, 2020.

Jan Reich and Mario Trapp. Sinadra: Towards a framework for assurable
situation-aware dynamic risk assessment of autonomous vehicles. In 16th
FEuropean Dependable Computing Conference, pages 47-50, Los Alamitos,
CA, 2020. IEEE Computer Society, Conference Publishing Services.

RTCA, Inc. Rtca 178c - software considerations in airborne systems and
equipment certification, 2011.

SAE International. Taxonomy and definitions for terms related to driving
automation systems for on-road motor vehicles, 2018.

Raimund Schesswendter. Autonomes fahren: Das bedeuten level 0 bis 5.
t3n digital pioneers, 2021.

Ana Sokolova and Erik P. de Vink. Probabilistic automata: System types,
parallel composition and comparison. In Christel Baier, editor, Validation
of stochastic systems, volume 2925 of Lecture notes in computer science,
Tutorial 0302-9743, pages 1-43. Springer, Berlin and London, 2004.

299

Bibliography

[Seg95|

[Ses19]

[SHL17]

[SKA13]

[SLS14a)]

[SLS14b]

[SLS14c]

[Som14a]

[Som14b]

SS71]

SS11]

SS16]

300

Roberto Segala. Modeling and Verification of Randomized Distributed Real
-Time Systems. Phd, Massachusetts Institute of Technology, Massachusetts,
USA, 1995.

Sanjit A. Seshia. Introspective environment modeling. In Bernd Finkbeiner
and Leonardo Mariani, editors, Runtime verification, volume 11757 of LNCS
Sublibrary: SL2 - Programming and software engineering, pages 15-26.
Springer, Cham, Switzerland, 2019.

D.P. Schmitt, A. Hasegawa, and S. Lachmayr. Systems and methods for
determining a speed limit violation: Utility, 2017.

Stefan Mitsch, Khalil Ghorbal, and André Platzer. On provably safe obstacle
avoidance for autonomous robotic ground vehicles. In Robotics: Science and
Systems, 2013.

Andreas Spillner, Tilo Linz, and Hans Schaefer. Software testing foundations,
chapter 2, pages 5-38. Rocky Nook Inc., Santa Barbara, CA, USA, 4 edition,
2 2014.

Andreas Spillner, Tilo Linz, and Hans Schaefer. Software testing foundations,
chapter 4, pages 79-104. Rocky Nook Inc., Santa Barbara, CA, USA, 4
edition, 2 2014.

Andreas Spillner, Tilo Linz, and Hans Schaefer. Software testing foundations,
chapter 3, pages 39-78. Rocky Nook Inc., Santa Barbara, CA, USA, 4 edition,
2 2014.

Ian Sommerville. Software Engineering, chapter 2, pages 29-57. Addison-
Wesley, Boston, MA, USA, 10 edition, 9 2014.

[an Sommerville. Software Engineering, chapter 5, pages 82-117. Addison-
Wesley, Boston, MA, USA, 10 edition, 9 2014.

Dana Scott and Christopher Strachey. Towards a mathematical semantics
for computer languages. Proceedings of the Symposium on Computers and
Automata, 21, 01 1971.

David J. Smith and Kenneth G. L. Simpson. The Safety Critical Systems
Handbook: A Straightforward Guide to Functional Safety: IEC 61508 (2010
Edition) and Related Standards, chapter 1, pages 3—20. Elsevier, Oxford,
UK, 3 edition, 2011.

Sanjit A. Seshia and Dorsa Sadigh. Towards verified artificial intelligence.
Arziv, abs/1606.08514, 2016.

[SST1§]

[SWH11]

[SWRH10]

[SZ16]

[TBFO05]

[Toe20]

[TPT+12]

[TRO5)

[UMR™*15]

[UPC12]

[WBB09]

Bibliography

Sanjit A. Seshia, Natasha Sharygina, and Stavros Tripakis. Modeling for
verification. In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith,
and Roderick Bloem, editors, Handbook of Model Checking, pages 75-105.

Springer International Publishing, Cham, 2018.

Matt Staats, Michael W. Whalen, and Mats P.E. Heimdahl. Programs, tests,
and oracles. In Richard N. Taylor, Harald Gall, and Nenad Medvidovi¢,
editors, 2011 33rd international conference on software engineering (ICSE
2011), page 391, New York, 2011. Curran.

M. Staats, M.W. Whalen, A. Rajan, and M.P.E. Heimdahl. Coverage metrics
for requirements-based testing: Evaluation of effectiveness. In NFM 10’
pages 161-170, Washington D.C., USA, 2010.

Jorg Schaeuffele and Thomas Zurawka. Automotive Software Engineering -
Grundlagen, Prozesse, Methoden und Werkzeuge effizient einsetzen. Springer
Fachmedien GmbH, Wiesbaden, Germany, 6 edition, 4 2016.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics.
Intelligent robotics and autonomous agents. MIT, Cambridge, Mass. and
London, 2005.

Jan Toennemann. Evaluation of a toolchain for model-based development
and requirements-based automatic test case generation, 2020.

Anton Tarasyuk, Inna Pereverzeva, Elena Troubitsyna, Timo Latvala, and
Laura Nummila. Formal development and assessment of a reconfigurable
on-board satellite system. In Frank Ortmeier and Peter Daniel, editors,
Computer safety, reliability and security, volume 7612 of LNCS sublibrary.
SL 2, Programming and software engineering, pages 210-222. Springer,
Heidelberg, 2012.

Prasanna Thati and Grigore Rosu. Monitoring algorithms for metric tempo-
ral logic specifications. FElectronic Notes in Theoretical Computer Science,
113:145-162, 2005.

Simon Ulbrich, Till Menzel, Andreas Reschka, Fabian Schuldt, and Markus
Maurer. Defining and substantiating the terms scene, situation, and scenario
for automated driving. In 2015 IEEE 18th International Conference on
Intelligent Transportation Systems, pages 982-988, 2015.

A. Galip Ulsoy, Huei Peng, and Melih Cakmakci. Automotive Control
Systems. Cambridge University Press, 2012.

Ralf Wimmer, Bettina Braitling, and Bernd Becker. Counterexample gen-
eration for discrete-time markov chains using bounded model checking. In

301

Bibliography

[WDF+16]

[WF12]

[WFCJ11]

[WJA+14]

[WIV+13]

[WKLS18]

[WMB™18]

[WOK™*16]

302

Neil D. Jones and Markus Miiller-Olm, editors, Verification, model check-
ing, and abstract interpretation, volume 5403 of Lecture notes in computer
science, 0302-97/3, pages 366-380. Springer, Berlin, 20009.

Matt Webster, Clare Dixon, Michael Fisher, Maha Salem, Joe Saunders,
Kheng Lee Koay, Kerstin Dautenhahn, and Joan Saez-Pons. Toward reliable

autonomous robotic assistants through formal verification: A case study.
IEEE Transactions on Human-Machine Systems, 46(2):186-196, 2016.

Tichakorn Wongpiromsarn and Emilio Frazzoli. Control of probabilistic
systems under dynamic, partially known environments with temporal logic
specifications. In 2012 IEEFE 51st IEEE Conference on Decision and Control
(CDC), pages 7644-7651. IEEE, 2012.

Matt Webster, Michael Fisher, Neil Cameron, and Mike Jump. Formal
methods for the certification of autonomous unmanned aircraft systems.
In Francesco Flammini, Sandro Bologna, and Valeria Vittorini, editors,
Computer Safety, Reliability, and Security, volume 6894 of LNCS sublibrary.
SL 2, Programming and software engineering, pages 228-242. Springer,
Heidelberg, 2011.

Ralf Wimmer, Nils Jansen, Erika Abrahdm, Joost-Pieter Katoen, and Bernd
Becker. Minimal counterexamples for linear-time probabilistic verification.
Theoretical Computer Science, 549:61-100, 2014.

Ralf Wimmer, Nils Jansen, Andreas Vorpahl, Erika Abrahdm, Joost-Pieter
Katoen, and Bernd Becker. High-level counterexamples for probabilistic
automata. In Kaustubh Joshi, editor, Quantitative evaluation of systems,
volume 8054 of LNCS Sublibrary: SL 1 - Theoretical computer science and
general issues, pages 39-54. Springer, Heidelberg, 2013.

Kosuke Watanabe, Eunsuk Kang, Chung-Wei Lin, and Shinichi Shiraishi.
Runtime monitoring for safety of intelligent vehicles. In Proceedings of the
55th Annual Design Automation Conference, DAC 18, pages 31:1-31:6, New
York, NY, USA, 2018. ACM.

Garrett C. Waycaster, Taiki Matsumura, Volodymyr Bilotkach, Raphael T.
Haftka, and Nam H. Kim. Review of regulatory emphasis on transportation
safety in the united states, 2002-2009: Public versus private modes. Risk
analysis : an official publication of the Society for Risk Analysis, 38(5):1085—
1101, 2018.

Mirko Wéchter, Simon Ottenhaus, Manfred Krohnert, Nikolaus Vahrenkamp,
and Tamim Asfour. The armarx statechart concept: Graphical programing
of robot behavior. Frontiers in Robotics and Al, 3, 2016.

Bibliography

[WRHMO06] Michael W. Whalen, Ajitha Rajan, Mats P.E. Heimdahl, and Steven P.

[WS05]

[WTM12]

[WUB*12]

[WUB*13]

[Xu21]

[ZZ.C05]

Miller. Coverage metrics for requirements-based testing. In Proceedings of
the 2006 International Symposium on Software Testing and Analysis, ISSTA
‘06, pages 25-36, New York, NY, USA, 2006. Association for Computing
Machinery.

David P. Watson and David H. Scheidt. Autonomous systems. Johns
Hopkins APL Technical Digest, (26):368-376, 2005.

Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray. Receding
horizon temporal logic planning. IEEE Transactions on Automatic Control,
57(11):2817-2830, 2012.

Tichakorn Wongpiromsarn, Alphan Ulusoy, Calin Belta, Emilio Frazzoli,
and Daniela Rus. Incremental temporal logic synthesis of control policies
for robots interacting with dynamic agents. In 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 229-236. IEEE,
10/7/2012 - 10/12/2012.

Tichakorn Wongpiromsarn, Alphan Ulusoy, Calin Belta, Emilio Frazzoli,
and Daniela Rus. Incremental synthesis of control policies for heterogeneous
multi-agent systems with linear temporal logic specifications. In 2013 IEEE
International Conference on Robotics and Automation, pages 5011-5018.
[EEE, 2013.

Wei Xu. From automation to autonomy and autonomous vehicles. Interac-
tions, 28(1):48-53, 2021.

Shikun Zhou, Hussein Zedan, and Antonio Cau. Run-time analysis of
time-critical systems. J. Syst. Archit., 51:331-345, 2005.

303

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Goals and Contributions of this Thesis
	Thesis Structure

	Fundamental Concepts and Approaches
	Definitions of the Problem Domain
	Safety-critical Systems
	Functional Safety and Safety of the Intended Functionality
	Automated Systems versus Autonomous Systems
	Uncertain Environments

	System Life Cycle and Development Process
	System Development Process according to ISO 26262
	System Development Process according to iso/pas 21448

	Property Specification for Automated Safety-critical Systems
	Timed Computation Tree Logic
	Probabilistic Computational Tree Logic

	System Modeling for Automated Safety-Critical Systems
	Timed Automata
	Short Overview of Modeling Formalisms for Probabilistic Systems
	Markov Decision Processes

	Verification and Validation of System Properties in Automated Safety-critical Systems
	Testing
	Design-time Verification
	Runtime Verification

	Summary

	Problem Analysis
	Motivational Example: Mobile Service Robot
	Overall Development Process
	Requirements Elicitation and Analysis
	Informal Specification of System Requirements
	Formal Specification of System Requirements

	Safety Analysis
	System Design
	Usage of Formal Models in System Design
	Environment Model
	Technical System Model
	Overall System Model
	Specification of System Properties
	Design-Time Verification

	System Implementation
	System Test
	Requirements Validation
	Analysis of Emerging Challenges
	Challenges of Design-Time Verification
	Challenges of Testing

	Scope of this Thesis
	Introduction of Runtime Monitoring of Environment Assumptions
	Research Questions of this Work

	Summary

	Solution Concept
	Runtime Monitoring of Environment Assumptions
	Integration in the System Development Process
	Overview of Concept
	Runtime Monitoring of Environment Assumptions by Example

	Revisiting the Motivational Example
	Requirements Elicitation and Analysis
	Informal Specification of System Requirements
	Formal Specification of System Requirements

	Safety Analysis
	hara Analysis of the Revisited Motivational Example
	"Safe Enough" for Autonomous Safety-Critical Systems
	Extending Safety Requirements with Environment Assumptions
	Informal Specification of Extended Safety Requirements
	Formal Specification of Extended Safety Requirements

	System Design
	Environment Model
	Technical System Model
	Design Time Verification
	Analysis of the Environment Assumptions
	Formal Definition of Environment Assumptions Monitors

	System Implementation
	Implementation of the System Model
	Realization of the Environment Model
	Realization of the Environment Assumptions Monitors

	System Test
	Testing the Implemented System
	Testing Environment Assumptions Monitors

	Requirements Validation
	Environment Assumptions Validation via Runtime Monitoring

	Summary

	Case Studies
	Case Study 1: Mobile Service Robot
	Evaluation in the Operational Environment in the iserveU Project

	Case Study 2: Automotive System Function for Accurate Vehicle Speed Estimation
	Overview of Vehicle Speed Estimation Function
	Requirements Elicitation and Analysis
	Safety Analysis
	System Design
	System Implementation
	System Test
	Requirements Validation

	Summary

	Contributions with respect to Related Work
	Obtaining Environment Assumptions
	Manual Methods for Specification of Environment Assumptions
	Automated Methods for Obtaining Environment Assumptions

	Assumptions in Verification and Validation Processes
	Assumptions in Design-time Verification
	Controller Synthesis and Environment Assumptions
	Combining Design-time Verification with Runtime Validation

	Comparison of the Proposed Approach with Related Work
	Comparison with the Manual Methods for Environment Assumptions Specification
	Comparison with Automated Methods for Obtaining Environment Assumptions
	Comparison with Methods that integrate Assumptions in Verification and Validation Processes

	Summary

	Summary and Conclusion
	Discussion of Results
	Contributions
	Limitations of this Thesis and Future Work

	Summary

	Addendum to Case Study 2: Vehicle Speed Estimation Function
	Design-time Verification of Extended Safety Requirements ESR2 - ESR4
	Definition of Runtime Monitors for the Environment Assumptions of ESR2 - ESR4
	System Test of the Environment Assumptions Monitors of ESR2 - ESR4
	Scenario 1: Smooth Driving
	Scenario 2: Dynamic Driving

	Bibliography

