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Introduction

1.1 Automotive Software Engineering

The automobile has become the technically most complex consumer product [1]. The fulfillment
of increasing customer requirements and strict legal requirements with regard to the reduction
of fuel consumption and pollutant emissions, as well as the higher demands on safety and new
driver assistance systems resulted in a steady increase in the deployment of onboard electronics
systems and software.

The amount of software in cars has been growing exponentially since the early 1970s, and one
can expect this trend to continue [2]. An important accelerator of this trend will be the introduc-
tion of automated and connected driving in the near future [3]|. Software-intensive systems and
functions are the major drivers for innovations in cars today [4]. In premium vehicles software is
responsible for up to 80% of the innovations [5]. Up to 40% of the production costs of a car are
due to electronics and software [2].

The requirements for automotive electronics differ significantly from other areas of consumer
electronics. The following special requirements and characteristics have to be considered in par-
ticular (cf. [6], [7]):

e Hard real-time requirements vs. limited resources: Automotive functions have to have
predictable behavior under all circumstances and have to react at the specified time. At the
same time, the storage and computational power on ECUs has to be kept as small as possible
in order to limit the costs as electric control units (ECUs) are built into a large number of
cars.

e High reliability and safety/security requirements vs. heterogeneity of domain
knowledge: Systems in an automobile must be reliable, safe and secure in all situations as
system failures can endanger human life. The system’s behavior depends to a large extend on
the behavior of software functions. Experts from different domains such as electrical, control,
and mechanical engineering are involved in the development of automotive functions. A lot of
their domain knowledge is integrated into the software, but is often not explicitly available.
Under these circumstances, ensuring a high degree of reliability, safety and security of systems
is a difficult task.

o Long product life cycles vs. short development cycles: The OEM has the duty to offer
service and spare parts for at least 15 years after the purchase of a vehicle due to the long
product life cycles. In contrast, software is changed at comparatively short intervals. During
the production period and even during the development phase, many new versions of a piece
of software are developed. This trend will be accelerated in the future by the introduction
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of connected services and new business models [8]. As a consequence of short innovation and
long life cycles a huge number of versions and configurations exist, which inter alia makes
maintenance very difficult.

e Software development as product line vs. software sharing: The high time and cost
pressure in the automotive market encourages reuse of components and software in different
vehicle projects leading to a high degree of variability within the software. Often, a product
line approach is used to handle variability. In addition, OEMs want to reduce costs by reusing
software in different engine control units of several suppliers. By applying software sharing,
code relevant artifacts are delivered from the OEM to the Tierl (supplier of OEM), or the
other way around, from Tierl to the OEM [9]. Each software from OEM and from Tierl is
developed orthogonally to each other as a separate product line and has to be combined and
configured adequately for building a product.

Moreover, automotive software systems shift towards cyber physical automotive systems:
The vehicles are connected - with each other, with objects in the surroundings and increasingly
also with external information systems or the mobile devices of the driver and other involved
persouns [10]. These cyber physical automotive systems are based on new system architectures and
development tools that address the complexity and enable the implementation and exploitation
of massive amounts of interconnected devices and software services as well as embedded software
in physical objects at different locations [10]. Under these conditions, the implementation of the
numerous requirements for electronic systems of vehicles represents a development task of a high
degree of difficulty [1].

The rapidly growing number of software-based features in the automotive domain asks for ded-
icated engineering approaches, models, and processes [4]. As key research challenges, Pretschner
et al. [7] identify the integration of heterogeneous subsystems from different sources as well as
their evolution and maintenance, and reuse.

1.2 Software Product Line Architectures

Today automotive manufacturers and suppliers design and implement complex applications by
mechanisms that allow them to implement such functionality on integrated platforms. This offers
the opportunity to build a variety of similar systems with a minimum of technical diversity and
thus allows for strategic reuse of components. This has resulted in a growing interest in software
product line approaches in the automotive systems domain [11].

Since the 1990s software product lines have been introduced as a major addition to existing
reuse approaches [12, 13, 14, 15]. Clements et al. [15] define a software product line (SPL) as a
family of systems that share a common set of core technical assets, with preplanned extensions
and variations to address the needs of specific customers or market segments.

In general, software product line engineering consists of two key processes, domain engineer-
ing and application engineering [16]. The aim of the domain engineering process is to define
and realize the commonality and the variability of the software product line. The process of
application engineering is responsible for deriving product line applications from the platform
established in domain engineering by exploiting the variability of the software product line [16].

Thiel et al. [11] present some challenges that automotive software engineering faces today
and discuss contributions SPL approaches could make to provide solutions for these challenges:

e Reduction of complexity: Automotive software platforms are typically developed in such
a way that they can be customized and used in hundreds of products. These platforms can



1.3 Life-Cycle Management and Managed Architecture Evolution 5

easily incorporate thousands of variation points and configuration parameters. Managing this
amount of variability is extremely complex and requires sophisticated modeling techniques.

e Improved architectural design practices: Software architectures for automotive systems
need to be comprehensive enough to capture and describe the multi-functionality and all
related issues.

e Improved evidence in modeling and evaluating quality attributes: A quality at-
tribute is a non-functional requirement of a software intensive system, e.g., reliability, mod-
ifiability, performance, usability and so forth. Like any other domain, software quality is
fundamental to any automotive system’s success. However, quality as a concept is very chal-
lenging to define, describe and understand.

e Design and evaluating architectures for family of systems: Architecture for a family
of systems helps identify the commonality among different systems and explicitly document
variability.

e Architecture knowledge management: The knowledge required to make suitable archi-
tectural choices is broad, complex, and evolving, and can be beyond the capabilities of any
single architect.

e Increased process efficiency: The current usage of models in automotive systems engi-
neering is insufficient and is far from realizing its full potentials. For instance, models are
used in isolated areas, without an integrated flow of information.

1.3 Life-Cycle Management and Managed Architecture Evolution

Software systems undergo continuing changes. Belady and Lehman [17] termed this dynamic
behavior of software systems evolution and carried out empirical research on about 20 releases of
the OS/360 operating system. The investigation led to five “laws” of software evolution: Continu-
ing Change; Increasing Complexity; The Fundamental Law of Program Evolution; Conservation
of Organizational Stability; and Conservation of Familiarity.

Software systems vary significantly in how easily they can be evolved to remain produc-
tive within a changing environment [18]. Cook et al. [18] call this quality of software systems
“evolvability”, defined as “the capability of software products to be evolved to continue to serve
its customer in a cost effective way”’. Hence, software evolvability is an attribute that describes
the software system’s capability to accommodate changes. Rowe et al. [19] give a more profound
definition of software evolvability, which also includes the term of architecture: “An attribute
that bears on the ability of a system to accommodate change in its requirements throughout the
system’s lifespan with the least possible cost while maintaining architectural integrity.”

In developing long-life systems, evolvability must be ensured throughout the whole life cycle.
Only by this way can software development be carried out efficiently and reliably and the pro-
ductive lifespan of the software systems can be prolonged [20]. The possibilities for implementing
changes are mainly determined by the software architecture [21]. Thus, software architecture
evolution becomes a critical part of the software life cycle [20]. To enable software architecture
evolution in the long term, architecture erosion and the growing of “accidental” complexity has
to be minimized as explained in the following:

Architecture erosion: An important challenge with regard to the architecture is to minimize
architecture erosion. In [22], de Silva and Balasubramaniam define architecture erosion as “the
phenomenon that occurs when the implemented architecture of a software system diverges from its
intended architecture.” In our product line based approach, the product line architecture (PLA)
constitutes the intended architecture whereas the architecture of the corresponding products of
the product line constitutes the implemented architecture. The PLA is designed initially and
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develops over time. It makes no difference whether the PLA is explicitly planned or exists only
implicitly in the minds of the participants. In the further development, it must be ensured that
the product architecture remains compliant with the PLA. However, due to the high time and cost
pressure in the automotive sector, it is not possible for every further development to be controlled
via the product line. Rather, some product-specific adjustments have to be made. This can lead
(intentionally or unintentionally) to a product architecture that differs in comparison to the PLA:
the architecture erodes. In the long term, this leads to reduced reusability and extensibility of
the software artifacts.

Growing of “accidental” complexity: In the evolutionary development of automotive soft-
ware systems, the range of functionalities grows steadily. Thus, the “essential” complexity of the
product line architecture increases continuously due to the growth of the number of functions.
However, the “accidental” complexity of the architecture of automotive software systems grows
disproportionately to the essential complexity as illustrated in Figure 1.1 [23]. The growth of
accidental complexity results from a “bad” architecture (product line architecture and product
architecture) with strong coupling and a low cohesion, which have evolved over the time. “Bad”
architectures increase accidental complexity and costs, hinder reusability and maintainability,
and decrease performance and understandability.

=%

3

Accidental complexity

Essential complexity

[ Further development >

Fig. 1.1. “Essential” vs. “Accidental” complexity

Further challenges with regard to evolvability are the huge number of versions and configu-
rations and the high degree of variability within the software. In addition, the parallel software
product line development at OEM and Tierl constitutes a great challenge with regard to evolv-
ability due to the increasing complexity of the integration tasks.

In the following paper, we propose an approach for managed evolution of automotive software
systems:

Andreas Rausch, Oliver Brox, Axel Grewe, Marcel Ibe, Stefanie Jauns-Seyfried,
Christoph Knieke, Marco Korner, Steffen Kiipper, Malte Mauritz, Henrik Peters,
Arthur Strasser, Martin Vogel and Norbert Weiss. 2014. Managed and Contin-
uous Evolution of Dependable Automotive Software Systems. In Proceedings of
the 10th Symposium on Automotive Powertrain Control Systems, pp. 15-51.

In this paper we have identified three main challenges to strengthen automotive software
systems engineering for the upcoming (r)evolution:

e Complexity of automotive software systems and engineering processes has still to
be manageable: Usually many variants of a vehicle exist — different configurations of comfort
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functions, driver assistance systems, connected car services, or powertrains can be variably
combined, creating an individual and unique product. To keep the development of vehicles
cost efficient, modular components with a high reuse rate cross different types of vehicles
are required. Thus, approaches from software product line engineering adapted to the special
demands of the automotive domain are required. With respect to innovative and sophisticated
functions, coming with the connected car and automated respectively autonomous driving
the functional complexity, the technical complexity, and the networked-caused complexity is
continuously and dramatically increasing. It is, and will be in future, a great challenge to
further manage the resulting complexity within the software product line.

e Flexibility of automotive software systems and engineering processes has still
to be provided: Developing a new vehicle takes in average about 4 years. Commodity
software used for vehicles, like operating systems, multimedia and infotainment software, or
network drivers, is updated up to five times faster during vehicle development. This relation is
even worse during vehicle operation. Customers expect that new functionality can be easily
integrated into vehicles in a plug & play manner. However, nowadays integration of new
hardware and software is very expensive. The adaptation of existing components is complex
and error-prone. In order to respond quickly to these requirements, the development process
must provide a high degree of flexibility.

e Dependability of automotive software systems and engineering processes has still
to be guaranteed: Although a high flexible development process and a high reuse rate of
automotive software components cross all vehicle types and variants are required, it is crucial
to guarantee a high degree of dependability. As dependability, we summarize the essential
software quality attributes for vehicles like availability, reliability, maintainability, safety, and
security. Due to the connected car and automated respectively autonomous driving, safety
and security becomes more and more critical. The actual high warranty costs of about 15%
to 20% from earnings before interest and taxes caused by errors in automotive software
have to be reduced. Guaranteeing dependability is a great challenge during development and
operation of automotive software systems.

To cope with these challenges, we have sketched out an improved and sophisticated engi-
neering approach for automotive software systems: Our engineering approach enables a managed
and continuous evolution of dependable automotive software systems based on software product
lines. It helps engineers to manage system complexity based on continuous engineering processes
to iteratively evolve automotive software systems and the corresponding software product lines,
and thereby guarantees the required dependability issues. To guarantee dependability, we have
demonstrated a continuous, test-driven development and operating approach. We have shown
how software product lines can support the derivation of test cases for the complete development
cycle.

1.4 Contribution

After introducing the fields I address in this thesis, I give a summary of my research objectives.
Afterwards, I will introduce a conceptual model with activities for managed evolution of auto-
motive software product line architectures, and I will explain the contributions to the research
objectives.
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1 Introduction

Research objectives:

1. Recovery and discovery of automotive software product line architectures: Soft-

ware architecture erosion often occurs during further development of software. With a high
degree of architecture erosion, a further development of the software is only possible at great
effort. Before approaches to minimize erosion can be applied, the architecture must first be
repaired. Architecture repair typically involves the two approaches recovery and discovery.
Recovery uses reverse engineering techniques to extract the implemented architecture from
source artifacts, and discovery hypothesizes its intended architecture [22]. Thus, we investi-
gate how these approaches can be adapted to recover the implemented automotive software
product line architecture from the developed products and to discover the intended product
line architecture.

Holistic approach for managed evolution of automotive software product line ar-
chitectures: In the automotive sector, it is not possible to carry out all further developments
within the product line. Rather, there may be further developments that do not take place
in the product line but at the level of the individual products. The reasons for this may be
the high time and cost pressure, but also the fact that sophisticated further developments
are initially to be tested within the scope of a prototype implementation. These further de-
velopments, which are separate from the product line, have to be transferred into product
line development at a later stage. To this end, a holistic approach must be developed that
adequately supports the two levels of development — product line and product — and their
interaction. We define the following sub-objectives in our holistic approach addressing the
architecture level (a.), and the software component level (b.) in automotive software product
line development, respectively:

a. Maintaining stability of the PLA and minimizing software product archi-
tecture erosion in real world automotive systems even if extensive further
development of the system takes place: The PLA should be based on appropriate
design principles that allow further developments with a minimal adjustment effort of the
PLA. At the same time, software product architecture erosion is to be minimized. Thus,
we use adapted approaches from architecture conformance checking in our approach.

b. High degree of reusability in real world automotive software development by
achieving a high scalability, and a high degree of usage of the software compo-
nents: The reuse of software components is achieved by a product-wide development for
different vehicle variants, as well as by reuse in subsequent products. However, the high
variability within the software components increases the complexity of the components
and thus makes reuse more difficult. From one vehicle generation to the next, functional-
ity differs mostly not more than 10%, while significantly more than 10% of the software is
re-written |7]. Thus, to increase reusability, we define two objectives: The software com-
ponents developed to derive products of a product line should be kept scalable so that
they can be used for as many variants as possible. Nevertheless, the software components
should be able to be reused over time in subsequent product generations. We call the
latter kind of reuse the degree of usage of a software component.

Based on these prerequisites we derive a conceptual model with activities for managed evolu-

tion of automotive software product line architectures (cf. [24] and [25]) as depicted in Figure 1.2.

The left part of Figure 1.2 depicts the recovery and discovery activity. This activity is performed
once before the long term evolution cycle (right side of Figure 1.2) can start and repairs an
initially eroded software architecture. The long term evolution cycle consists of two levels of de-

velopment: The cycle on the top of Figure 1.2 constitutes the development activities for product

line development, whereas the second cycle is required for product specific development. Not only
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Product line (PL)

PL-Requirements
PL-Design PL-Plan
PL-Check PL-Implement

Eroded

Software Product (P)
Recovery & )
Discovery P-Design P-Plan
Proft :@:
P-Check P-Implement

P-Requirements

Fig. 1.2. Conceptual model for managed evolution of automotive software product line architectures

both levels of development are executed in parallel but even the activities within a cycle may be
performed independently. The circular arrow within the two cycles indicates the dependencies
of an activity regarding the artifacts of the previous activity. Nevertheless, individual activities
may be performed in parallel, e.g., the planned implementations can be realized from activ-
ity PL-Plan, while a new PLA is developed in parallel (activity PL-Design). The large arrows
between the two development levels indicate transitions requiring an external decision-making
process, e.g., the decision to start a new product development or prototyping, respectively.

In the following I will briefly explain the basic activities of the conceptual model for the
managed evolution of automotive software product line architectures depicted in Figure 1.2. For
a more detailed definition of the activities, I refer to Section 4.1.

Software system and software component requirements from requirements engineering (PL-Re-
quirements) and artifacts of the developed product from the product cycle in Figure 1.2 (P to
PL) serve as input to the management cycle of the product line architecture (PLA). Activities
PL-Design and PL-Plan aim at designing, planning and evolving product line architectures.

The planned implementation artifacts are implemented in PL-Implement on product line
level whereas in P-Implement product specific implementation artifacts are implemented. For
the building of a fully executable software status for a certain vehicle project, the project plan
is transferred (PL to P) containing module descriptions and descriptions of the logical product
architecture integration plan with associated module versions. In addition, special requirements
for a specific project are regarded (P-Requirements). The creation of a new product starts
with a basic planned product architecture commonly derived from the product line (P-Design).
The product planning in P-Plan defines the iterations to be performed. An iteration consists of
selected product architecture elements and planned implementations. An iteration is part of a
sequence of iterations.

Each planned project refers to a set of implementation artifacts, called modules. These mod-
ules constitute the product architecture. The aim of PL-Check and P-Check is the minimization
of product architecture erosion by architecture conformance checking for automotive software
product line development. Furthermore, we apply architecture conformance checking to check
conformance between the planned product architecture and the PLA in P-Design.
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After sketching the conceptual model, I summarize the contribution of each of my publications:

In the paper [26] we present major challenges of automotive software engineering: Managing
complexity, providing flexibility and guaranteeing dependability. This paper does not address
singly one of my research objectives but instead points out challenges leading to the research
objectives. We also propose basic concepts towards a managed and continuous evolution of de-
pendable automotive software systems. The approach is demonstrated by a running example - a
brake system - from the automotive domain.

Furthermore, we conduct a systematic literature study, see Section 2.2, which is currently
in progress and will be published in a journal. The study is based on the conceptual model of
activities for the managed evolution of automotive software product line architectures (see Fig-
ure 1.2). We are interested in the coverage of the particular aspects of the conceptual model and,
thus, in the fields covered in current research and the research gaps, respectively. Furthermore,
we aim to identify the methods and techniques used to implement automotive software product
lines in general, and their usage scope in particular.

The following four papers address research objective one:

Automobile manufacturers cope with the erosion of their ECU software with a varying degree
of success. In the paper [27] we successfully applied a methodical and structured approach of
architecture restoration in the specific case of the brake servo unit (BSU). Software product lines
from existing BSU variants are extracted by explicit projection of the architecture variability
and decomposition of the original architecture. After initial application, this approach is capable
to restore the BSU architecture recurrently.

In the paper [24] we propose an approach for repairing an eroded software consisting of a
set of product architectures by applying strategies for recovery and discovery of the product line
architecture. In this paper we also sketch a holistic product line management approach.

As a prerequisite for repairing an eroded software, a validated set of product line require-
ments is needed. These product line requirements serve as the basis for a successful manageable
and evolvable PLA, too. Thus, we propose activity diagrams in conjunction with an executable
semantics for requirements validation: In [28] we introduce a foundation for a framework, which
enables a composition of operational semantics for activity diagrams. The composition is based
on fundamental semantic constructs with options enabling the definition of domain specific vari-
ants. By our approach, a clear and intuitive operational semantics for tool development can be
composed, which conforms to the informal semantics description of the UML.

The rest of my papers address research objective two:

The paper [29] presents an approach focusing on the long-term minimization of architecture
erosion in the automotive domain. We introduce a description language for the specification of the
logical product line architecture. Based on the description language we propose an approach for
architecture compliance checking to identify architecture violations as a means to prevent archi-
tecture erosion. Our approach is demonstrated by a tool and a running example from automotive
software engineering.

The work in [25] constitutes a key publication of my thesis: We propose a holistic approach
for a long-term manageable and plannable software product line architecture for automotive
software systems. Furthermore, we consider automotive product development and prototyping
based on software product lines, and propose an approach for architecture compliance checking
to avoid software erosion. The paper also includes a real world case study, a BSU software system
from automotive software engineering. The case study covers a period of five years, starting with
our design and implementation of a new BSU software for series production.

In [30] we deepen the approach for planning and evolving PLAs, which is a substantial
part of the holistic approach for managed evolution. Our approach helps engineers to manage



1.5 Structure of the Thesis 11

system complexity based on architecture design principles, techniques for architecture quality
measurements and processes to iteratively evolve automotive software systems.

The work in [31] proposes an approach to extract architectural concepts for the design of
automotive software product line architectures. Furthermore, we integrate this approach into
an evolutionary incremental development process and show how a knowledge based process for
architecture evolution and maintenance for architectural concepts can be implemented.

Furthermore, we propose a systematic model-based, test-driven approach to design a specifica-
tion on the level of modules, which is directly testable in [32]. The idea of test-driven development
is to write a test case first for any new code that is written. Then the implementation is improved
to pass the test case. We demonstrate our approach on a Selective Catalytic Reduction system,
a real world case study from automotive software engineering.

Prof. Dr. Rausch and I organized a special track “MAAPL: Managed Adaptive Automotive
Product Line Development” along with ADAPTIVE 2017 [33]. This special track focused on
topics related to adaptive product line development and life-cycle management for automotive
software. MAAPL contained both academic research papers as well as studies from industry
introducing interesting ideas for future work.

1.5 Structure of the Thesis

This thesis is structured as follows: Chapter 2 gives an overview on the related work and presents
the results of a systematic literature study on the topic of this thesis. Chapters 3 and 4 propose
the approach for managed evolution of automotive software product line architectures by summa-
rizing several of our papers. The first part of our approach - recovery and discovery of automotive
software product line architectures - is introduced in Chapter 3. Next, Chapter 4 describes the
holistic approach for long-term evolution of automotive software product line architectures. Fi-
nally, Chapter 5 concludes with an outlook on ongoing research.






2

Challenges in Developing Automotive Software Product
Line Architectures: A Survey

Many challenges in the domain of automotive software product line development are mentioned
in literature [34, 11]. Section 2.1 gives an overview of the corresponding literature and the related
work concerning the topics of my research questions. Motivated by the huge set of challenges in
this domain, there are many studies in which particular methods and techniques are proposed to
support the product line driven development of software in the automotive sector (see, e.g., [34]).
However, these approaches generally consider only partial aspects of development. An overview
on the set of available methods and techniques would help researchers and practitioners in the
field of automotive software product line engineering. Therefore, we conducted a systematic
literature study and present the results in Section 2.2.

2.1 Related Work

Automotive Software Engineering

Pretschner et al. [7] provide a comprehensive overview on the state of the art in automotive
software engineering. They identify research challenges in automotive software engineering, in
particular the integration, evolution, maintenance, and reuse, and explored potential benefits
of a seamless model-based development process as a possible solution. Furthermore, the study
provides a roadmap for research in this area.

Haghighatkhaha et al. [34] recently published a systematic mapping study that classifies and
analyzes the literature related to automotive software engineering. The review includes 679 arti-
cles from multiple research sub-areas, published between 1990 and 2015. They analyze research
activities, topics, types, and methods and reveal research gaps in automotive software engineer-
ing. A classification of the 679 articles is listed in an excel sheet including general information
for each article like abstract, title, year, authors, and research topic. This excel sheet can be
accessed by an online repository’.

Clarke et al. [35] identify essential areas of software engineering that will have a signifi-
cant impact on future automotive systems and systems development. The authors introduce
software product lines, global software development, service-oriented architectures, and mathe-
matical methods applied to software engineering as future research directions for the automotive
industry.

! See: https://www.dropbox.com/s/n7ix7h5yk9puavs/ASE _SMS_Repository 17022016.xlsx?d1=0
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Grimm [36] discusses major challenges of automotive software engineering and the most
important technological core competencies required to meet these challenges. Amongst other
things, future work will focus on the following fields: Model-based development of distributed
systems, elaboration of a product line approach for future in-vehicle software architectures, and
integration of processes, methods and tools from the different areas of software, mechanical, and
electrical engineering.

Gruszezynski [37] gives an overview on software engineering technologies in the automotive
industry and identified future research directions. Fabbrini et al. [38] provide a picture of the
achievements and the open issues in the European automotive industry and suggested future
research directions.

The work in [11] presents challenges that automotive engineering faces today and discusses
contributions software product line approaches could make to provide solutions for these chal-
lenges.

Software Product Line Engineering

Pohl et al. [16] propose a holistic approach on software product line engineering consisting of
two key processes, domain engineering and application engineering (see Section 1.2). A core
activity in software product line engineering constitutes variability management [15, 16]. Most
existing approaches in variability management can be classified as feature modeling and decision
modeling [39]. The main difference between both approaches is that feature modeling supports
both commonality and variability modeling, whereas decision modeling focuses exclusively on
variability modeling [40].

Harman et al. [41] present a survey on Search Based Software Engineering (SBSE) for SPLs
and highlighted some directions for future work. They identify the most active areas in SBSE
for SPLs: SPL testing, SPL feature selection, product line architecture (PLA) improvement, and
SPL feature extraction.

Furthermore, several surveys on product-line testing have been conducted: Engstrom and
Runeson [42] present a systematic mapping study on SPL testing. The main challenges identified
in the paper are the large number of tests, the balance between effort for reusable components
and concrete products, and handling variability. Lee et al. [43] survey the current SPL testing
approaches and highlight the challenges and key research perspectives in SPL testing. They
define a reference SPL testing processes as survey framework. Oster et al. [44] also address SPL
testing and presented a survey on the state-of-the-art of model-based testing (MBT) approaches
for SPL. They define a conceptual process model for SPL testing, which is used for a comparison
of the different testing approaches. Furthermore, they highlight the challenges and open research
topics in SPL testing.

Thiim et al. [45] propose a classification of SPL analyzes and survey and classify 123 existing
approaches for the analysis of SPL. They also provide a research agenda to guide future research
on SPL analyzes.

Chen et al. [46] discuss the findings from a systematic literature review in variability man-
agement in SPL. They present the chronological backgrounds of various approaches in variability
management and identify certain gaps that need to be filled by future research: Amongst other
things, they conclude, that only a few approaches address systematic process support for variabil-
ity management and that there is only limited support for evolution of variability. In addition,
they state the inability of most approaches to scale to large and complex product lines.

Schobbens et al. [47] present a survey on existing feature diagram variants. Based on the re-
garded feature diagram variants, they propose a generic formalization of the syntax and semantics
of feature diagrams.
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The work in [48] gives a systematic survey and analysis of existing approaches supporting
multi product lines and a general discussion of capabilities supporting multi product lines in
various domains and organizations. They define a multi product line (MPL) as a set of several
self-contained but still interdependent product lines that together represent a large-scale or ultra-
large-scale system. The different product lines in an MPL can exist independently but typically
use shared resources to meet the overall system requirements. According to this definition, a
vehicle system is also an MPL assuming that each product line is responsible for a particular
subsystem. However, in the following, we only regard classic product lines, since the dependencies
between the individual product lines in vehicle systems are very low, unlike MPL.

Measurement of Software Product Line Architecture Quality

Siegmund et al. [49] present an approach for measuring non-functional properties in software
product lines. The results are used to compute optimized SPL configurations according to user-
defined non-functional requirements. The method uses different metrics to measure three non-
functional properties: Maintainability, Binary Size, and Performance. Siegmund et al. also discuss
and classify the presented techniques to measure non-functional properties of software modules.

The work in [50] shows how automatic traceability, analyzes, and recommendations support
the evolution of SPL in a feature-oriented manner. They propose among other things a change-
impact analysis to assess or estimate the impact and effort of a change. Furthermore, they regard
metrics for architectural analysis. As a result, erosion and problems can be recognized at an early
stage, and counter-measures can be taken. The ideas are illustrated by an automotive example.

In [51], product lines are measured with the metric maintainability index (MI). The “Feature
Oriented Programming” is used to map an SPL to a graph. The values are transformed into
several matrices. Next, singular value decomposition is applied to the matrices. The metric MI
is then applied at different levels (product, feature, product line). The results show that by
using the metric, features could be identified that had to be revised. The number of possible
refactorings could be restricted.

In [52], several metrics are presented, which are specifically used for measuring PLAs. The
metrics are applied to “vADL”, a product line architecture description language, to determine
the similarity, reusability, variability, and complexity of a PLA. The measured values can be used
as a basis for further evolutionary steps.

Software Product Line Architecture Extraction

The aim of software product line extraction is to identify all the valid points of variation and the
associated functional requirements of component diagrams. The work in [53] shows an approach
to extract a product line from a user documentation. The Product Line UML-based Software
Engineering (PLUS) approach permits variability analysis based on use case scenarios and the
specification of variable properties in a feature model [54]. In [15], variability of a system char-
acteristic is described in a feature model as variable features that can be mapped to use cases.
In contrast to our approach, these approaches are based on functional requirements whereas our
approach is focused on products.

Software Product Line Architecture Design

Patterns and styles are an important means for software systems architecture specification and are
widely covered in literature, see, e.g., [55, 56]. However, architecture patterns are not explicitly
applied for the development of automotive software systems yet. For automotive industry, we
propose the use of architecture patterns as a crucial means to overcome the complexity.
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The work in [57] proposes a method that brings together two aspects of software architecture:
the design of software architecture and software product lines. Deelstra et al. [58] provide a
framework of terminology and concepts regarding product derivation. They have identified that
companies employ widely different approaches for software product line based development and
that these approaches evolve over time.

Reference Architectures

In [59], reference architectures are assumed to be the basis for the instantiation of PLAs (so-
called family architectures). The purpose of the reference architecture is to provide guidance for
future developments. In addition, the reference architecture incorporates the vision and strategy
for the future. The work in [59] examines current reference architectures and the driving forces
behind development of them to come to a collective conclusion on what a reference architecture
should truly be.

Nakagawa ct. al. discuss the differences between reference architectures and PLAs by high-
lighting basic questions like definitions, benefits, and motivation for using each one, when and
how they should be used, built, and evolved, as well as stakeholders involved and benefited by
each one [60]. Furthermore, they define a reference model of reference architectures [61], and
propose a methodology to design PLAs based on reference architectures [62, 63].

Software Erosion

In [22], de Silva and Balasubramaniam provide a survey of technologies and techniques either to
prevent architecture erosion or to detect and restore architectures that have been eroded. The
approaches discussed in [22] are primarily classified into three generic categories that attempt to
minimize, prevent and repair architecture erosion. The categories are refined by a set of strategies
to tackle erosion: process-oriented architecture conformance, architecture evolution management,
architecture design enforcement, architecture to implementation linkage, self-adaptation and ar-
chitecture restoration techniques consisting of recovery, discovery and reconciliation. However,
each approach discussed in [22] refers to architecture erosion for a single product architecture,
whereas architecture erosion in software product lines is out of the scope of the paper. Fur-
thermore, as discussed in [22], none of the available methods singly provides an effective and
comprehensive solution for controlling architecture erosion.

In [64], a method is described to keep the erosion of the software to a minimum: Consistency
constraints expressed by architectural aspects called architectural rules are specified as formulas
on a common ontology, and models are mapped to instances of that ontology. Those rules can,
e.g., contain structural information about the software like allowed communications. In [64], the
rules are expressed as logical formulas, which can be evaluated automatically to the compliance
to the PLA. These rules are extracted via Architecture Checker (ArCh) framework [65].

Van Gurp and Bosch [66] illustrate how design erosion works by presenting the evolution of
the design of a small software system. The paper concludes that even an optimal design strategy
for the design phase does not lead to an optimal design. The reason for this are unforeseen
requirement changes in later evolution cycles. These changes may cause design decisions taken
earlier to be less optimal.
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2.2 Systematic Literature Study

This section summarizes:

Christoph Knieke, Marco Kuhrmann, Andreas Rausch, Mirco Schindler, Arthur
Strasser and Martin Vogel. 2017. Managed Evolution of Automotive Software
Product Line Architectures: A Systematic Literature Study. Will be published
in a journal.

In this section we present an in-depth literature review based on a conceptual model of arti-
facts and activities for the managed evolution of automotive software product line architectures.
We are interested in the coverage of the particular aspects of the conceptual model and, thus, in
the fields covered in current research and the research gaps, respectively. Furthermore, we aim
to identify the methods and techniques used to implement automotive software product lines
in general, and their usage scope in particular. We use our conceptual model (cf. Section 1.4,
Figure 1.2) as a reference model to evaluate the current state-of-the-art.

The reminder of the section is organized as follows: In Section 2.2.1, we describe our research
approach, and present the results of our study in Section 2.2.2. Finally, the results are discussed
in Section 2.2.3.

2.2.1 Research Design

In this section, we describe our research design.

Research Method

The study at hand presents an in-depth literature study, which is grounded in [34]. Therefor,
following Kitchenham et al. [67] and Petersen et al. [68, 69], we use [34] as a so-called scoping
study that we utilize to investigate a specific topic in more detail. To investigate our research
questions, we implemented the following procedure:

Step 1 In the first step, we analyzed the scoping study [34] and carried out a data cleaning based
on the inclusion/exclusion criteria resulting from the research questions.

Step 2 In the second step, we removed multiple occurrences of papers in the data set following
the steps described in [70].

Step 3 In the third step, we read the papers and applied the rigor-relevance model as proposed
by Ivarsson and Gorschek [71].

Step 4 The forth step comprised a quality assessment following the approach described in [72].

Step 5 In the fifth step, we prepared the in-depth review. In this regard, we used the conceptual
model for software product lines from Section 1.4, which we used to further classify the papers
in the data set.

Step 6 Finally, we used the aforementioned conceptual model and the categorized papers to
conduct the in-depth review to answer the research questions.

The research approach above was implemented in a team of researchers with well-defined task
distribution to improve the validity of the findings.
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Research Questions

With the study at hand, we aim to understand the current state-of-the-art in holistic approaches
for a managed evolution of software product line architecture in automotive software engineering.
Specifically, we define our working hypothesis as follows: There is no holistic approach for a
managed evolution of automotive software product lines.

Table 2.1. Research questions addressed with the study at hand.

Research question and rationale

i

What is the current state-of-the-art in holistic approaches for managed evolution of automotive
software product lines?

We aim at collecting information about such holistic approaches and use our conceptual model
(cf. Section 1.4) as a reference model to evaluate the current state-of-the-art. Specifically, we
are interested into the coverage of the particular aspects of the conceptual model and, thus,
the fields covered in current research and research gaps, respectively.

RQ

RQ2 What particular methods and techniques are used to implement a managed evolution of auto-
motive software product lines?
We aim to identify the methods and techniques used to implement automotive software prod-
uct lines in general, and their usage scope in particular. For this, we analyze the available
literature and categorize and evaluate the contributions found according to a given schema
(Section 1.4).

Data Collection Procedures

The data collection is based on a previously conducted study [34], which we use as a scoping
study. In the following, we provide a brief summary of the scoping study’s contribution, before
we describe the selection process of papers relevant to the study at hand. Finally, we describe
how we selected the final set of papers for analysis.

As basic data source, we use the scoping study [34] and the complementing published dataset.
The scoping study has collected papers on Automotive Software Engineering, which were cate-
gorized into the seven research areas listed in Table 2.2.

In total, the scoping study [34] includes 679 papers, which were categorized into seven research
areas and 14 specific research topics. This dataset served as input for the data collection, which
is explained in detail in the following sections.

As introduced the scope of the study at hand is the field of software product lines. For this,
we used the scoping study and applied a multi-staged selection procedure for studies of interest:

1. Analyze the scoping study’s data and identify all papers on software product lines (incl.
synonyms):
a) Selection of papers based on title and abstract
b) Selection based on keywords? (incl. variants, upper-/lower case, etc.): SPL, family, ref-
erence architecture, variability, variant model, variability management, feature model,
feature tree, feature-oriented, derivate

2 While testing the selection criteria, we decided to exclude the keywords reusability, reuse, derive, and
feature, since they generated too many false positives.
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Table 2.2. Automotive Software Engineering research areas according to ISO/IEC 12207 PRM as found
in [34].

Research area and topics Total number of studies per area®
Agreement Processes (AGR) 5

e Agreement Support Group

Organizational Project-Enabling Processes (ORG) 48

e Organizational Project-Enabling Support Group

Project Processes (PRO) 14

e Project Support Group

Technical and Software Implementation Processes’ (ENG/DEV) 439

e System/Software Architecture and Design (131 studies).
e System/Software Qualification Testing (127 studies)

e Software Implementation (62 studies).

e System/Software Integration (44 studies)

e System/Software Requirement Engineering (35 studies).
e Software Construction (22 studies).
e Software Maintenance (18 studies).

Software Support Processes (SUP) 122

e Software Verification and Validation (71 studies).
e Software Quality Assurance and Review (48 studies).
e Software Documentation and Configuration Management (3 studies).

Software Reuse Processes (REU) 72

e Software Reuse

% Multiple assignments possible
® Summarized

¢) Result: This stage resulted into 87 paper (candidates); most of the papers selected are in
the REU group (Table 2.2)
2. Rating of the study candidates
a) Application of the rigor-relevance model [71]
b) Definition of a Threshold and selection of papers
c¢) Final data cleaning and preparation of the in-depth analysis
3. In-depth analysis

As mentioned before, in the final paper selection, we analyzed the 87 selected candidate studies
and, in a first step, applied the rigor-relevance model as proposed by Invarsson and Gorschek [71].
This model grades papers on the two parameters rigor (FROM-TO) and relevance (FROM-TO).
To select the studies of interest, we defined the threshold rigor + relevance > 2 to ensure that:

1. All high-quality papers (i.e., high-scored papers) are in the result set.
2. Papers that have a high relevance score but a poor rigor score are included.
3. Medium-scored but balanced papers are included.

Applying the rigor relevance model to the candidate studies, we selected 40 studies. These studies
were (again) checked with a particular focus on multiple occurrences. In order to finally clean the
dataset, we decided to prefer journal papers to conference papers, as we assume follow-up special
issue papers to have a higher maturity /quality. Eventually, we selected 35 primary studies for
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inclusion into the data analysis. The final evaluation and classification of the different studies is
summarized in Table 2.3. A quick overview of the studies selected can be found in Table 2.4.

Table 2.3. Evaluation and classification of the primary studies selected for analysis.

Id Ref RTF¢ CTF? Rigor Relevance
P8 [73] Evaluation Model 1.0 2.0
P22 [74] Solution Proposal Framework/Method/Technique 1.5 2.0
P43 |75] Evaluation Lessons Learned 3.0 3.0
P71 [76] Evaluation Framework/Method/Technique 1.5 2.0
P72 [77] Evaluation Lessons Learned 3.0 3.0
P79 [78] Evaluation Framework/Method/Technique 1.0 2.0
P86 [79] Evaluation Lessons Learned 2.0 4.0
P90 [80] Evaluation Model 2.0 3.0
P94 [81] Evaluation Framework/Method/Technique 1.0 2.0
P100 [82] Validation Framework/Method/Technique 2.5 1.0
P129 [83] Evaluation Model 2.0 4.0
P173 [84] Evaluation Framework/Method/Technique 1.0 2.0
P215 [85] Evaluation Lessons Learned 2.5 4.0
P218 [86] Experience Paper Lessons Learned 0.5 2.0
P220 [87] Experience Paper Lessons Learned 0.5 2.0
P221 |88] Experience Paper Lessons Learned 0.5 2.0
P223 [89] Experience Paper Framework/Method/Technique 1.0 2.0
P279 [90] Evaluation Framework/Method/Technique 1.0 3.0
P281 [91] Validation Guideline 1.0 2.0
P285 [92] Evaluation Framework/Method/Technique 1.5 4.0
P289 27] Evaluation Framework/Method/Technique 1.0 2.0
P300 [93] Evaluation Lessons Learned 1.0 2.0
P310 [94] Evaluation Framework/Method/Technique 1.0 2.0
P332 [95] Evaluation Framework/Method/Technique 1.0 1.0
P343 [96] Evaluation Framework/Method/Technique 1.0 2.0
P365 [97] Evaluation Framework/Method/Technique 1.0 1.0
P377 [98] Solution Proposal Framework/Method/Technique 1.0 1.0
P404 [99] Evaluation Lessons Learned 0.5 2.0
P468 [100] Experience Paper Lessons Learned 1.0 3.0
P493 [101] Experience Paper Framework/Method/Technique 2.0 3.0
P503 [102] Experience Paper Lessons Learned 0.0 2.0
P580 [103] Solution Proposal Framework/Method/Technique 1.0 3.0
P588 [104] Evaluation Framework/Method/Technique 1.0 3.0
P589 [105] Evaluation Framework/Method/Technique 1.0 2.0
P660 [106] Evaluation Framework/Method/Technique 1.0 2.0

“Research type facet, according to [107]
YContribution type facet, according to (68, 69]

Data Extraction and Dataset Quality Assessment

The data extraction and the quality assessment was performed in a combined manner. For this,
we developed a data sheet that was filled paper-wise. Table 2.5 shows the data extraction sheet.
The actual outcome of the quality assessment of the papers included in the study can be taken
from Table 2.6, respectively.
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Table 2.4. Overview of the primary studies selected for in-depth data analysis.

Id Ref Title

P8 [73] A component-based process for developing automotive ECU software

P22 [74] A model-based approach to innovation management of automotive control systems

P43 [75] A Survey on the Benefits and Drawbacks of AUTOSAR

P71 [76] An unadjusted size measurement of embedded software system families and its validation

P72 [77] Analysing defect inflow distribution of automotive software projects

P79 [78] AORE (aspect-oriented requirements engineering) methodology for automotive software product lines
P86 [79] Architecting automotive product lines: Industrial practice

P90 [80] Architecture for embedded open software ecosystems

P94 [81] Assessing merge potential of existing engine control systems into a product line

P100 [82] Automated diagnosis of feature model configurations

P129 [83] Automotive system development using reference architectures

P173 [84] Defining a strategy to introduce a software product line using existing embedded systems

P215 [85] Evolutionary architecting of embedded automotive product lines: An industrial case study

P218 [86] Experience of Introducing Reference Architectures in the Development of Automotive Electronic Systems
P220 [87] Experience with variability management in requirement specifications

P221 [88] Experiences from a large scale software product line merger in the automotive domain

P223 [89] Experiences of applying model-based analysis to support the development of automotive software product
lines

P279 [90] IVaM: Implicit variant modeling and management for automotive embedded systems

P281 [91] Lightweight introduction of EAST-ADL?2 in an automotive software product line

P285 [92] Managing complexity and variability of a model-based embedded software product line

P289 [27] Mastering Erosion of Software Architecture in Automotive Software Product Lines

P300 [93] Model transformation for high-integrity software development in derivative vehicle control system design
P310 [94] Model-based pairwise testing for feature interaction coverage in software product line engineering

P332 [95] On hardware variability and the relation to software variability

P343 [96] Optimizing the selection of representative configurations in verification of evolving product lines of dis-
tributed embedded systems

P365 [97] Relating requirement and design variabilities

P377 [98] Reuse of Software in Distributed Embedded Automotive Systems

P404 [99] Software behavior description of real-time embedded systems in component based software development
P468 [100] Towards integrated variant management in global software engineering: An experience report

P493 [101] Variation management for software product lines with cumulative coverage of feature interactions

P503 [102] Why does it take that long? Establishing Product Lines in the Automotive Domain

P580 [103] A process to support a systematic change impact analysis of variability and safety in automotive functions
P588 [104] A model-based approach to support the automatic safety analysis of multiple product line products
P589 [105] Supporting the automated generation of modular product line safety cases

P660 [106] Evaluating flexibility in embedded automotive product lines using real options

Analysis Procedures

The analysis procedures applied to the final dataset of 35 papers also followed a multi-staged
approach. In our analysis procedure, we applied a number standard analyses on the data already
provided by the original scoping study [34]. In particular, we used the provided data for analyzing
the research type facets [107] and the contribution type facets [68, 69]. Furthermore, we applied
the rigor-relevance model [71] for implementing study selection and further data analyses.
Grounded in these basic measures, we used the conceptual model for a managed evolution
from Section 1.4 as a classification schema. Five researchers classified the papers according to the
conceptual model from Section 1.4, which we used as a classification schema. For each element in
the classification schema, the individual researcher had to state whether or not a study makes a
major contribution to a specific element, e.g., product line design or product implementation. The
results were integrated and checked for agreement using Fleiss’ x [108]; the overall agreement in
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Table 2.5. Data extraction and study quality assessment sheet used in this study.

Category Questions

Data Extraction The data extraction was performed using the following key questions:

1.

2.

Which methods and or techniques are used?
e Are the same methods used for domain and application engineering?
e Are the methods/techniques used evaluated (see quality assessment)?
Is there a holistic approach?
e Are the different activities (Section 1.4) fully covered?
e Are there gaps?
e What are the consequences for a holistic approach?

Quality Assessment The quality assessment was carried out following the list of questions from
Kitchenham and Charters [72, p. 28] by asking the following questions:

1. How credible are the findings?

1.1. If credible, are they important?

3. How well does the evaluation address its original aims and purpose?

4. How well is the scope for drawing wider inference explained?

5. How clear is the basis of evaluative appraisal?

6. How defensible is the research design?

7. How well defined are the sample design/target selection of cases/docu-
ments?

8. How well is the eventual sample composition and coverage described?

9. How well was data collection carried out?

10. How well has the approach to, and formulation of, analysis been conveyed?
11. How well are the contexts and data sources retained and portrayed?

12. How well has diversity of perspective and context been explored?

13. How well have detail, depth, and complexity (i.e. richness) of the data
been conveyed?

14. How clear are the links between data, interpretation and conclusions —i.e.
how well can the route to any conclusions be seen?

e 15. How clear and coherent is the reporting?
e 16. How clear are the assumptions / theoretical perspectives/values that have

shaped the form and output of the evaluation?
18. How adequately has the research process been documented?

Each question was rated on a 5-point scale with: criterion is 1=not fulfilled at
all, 2—partially fulfilled, 3—basically fulfilled, 4—fulfilled to a large extent, and
5=completely fulfilled and very well implemented /documented. Please note that
the numbers for the individual questions are taken from [72, p. 28]. In Table 2.6,
we refer to these numbers to present the quality assessment for the particular
studies.
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Table 2.6. Quality assessment of the papers included in this study.

Paper Ref |1 113 4 5 6 7 8 9 10 11 12 13 14 15 16 18
P8 (73] 3 3 3 3 4 3 4 4 3 3 3 2 2 3 4 3 3
P22 [74] 4 4 5 3 3 3 2 3 2 3 3 3 3 4 4 3 4
P43 [75] 5 5 5 4 5 5 4 4 5 5 5 3 4 4 4 4 5
P71 [76] 5 4 4 3 4 4 3 3 3 3 3 3 3 4 4 3 4
P72 [77] 5 4 4 4 4 4 4 4 4 4 4 5 4 4 5 4 4
P79 (78] 3 3 3 3 3 2 3 3 2 3 3 2 2 3 3 3 3
P86 [79] 4 4 4 4 4 4 3 3 4 4 3 3 3 4 4 4 4
P90 80] 5 4 4 3 3 4 3 3 4 4 4 4 3 4 4 4 4
P94 81] 4 3 4 3 3 3 3 3 2 2 3 2 2 3 3 3 3
P100  [82] 4 3 4 4 4 5 4 4 5 4 4 4 4 5 5 4 4
P129  [83] 4 4 5 4 4 5 4 4 4 4 4 4 3 4 4 3 4
P173  [84] 4 3 4 3 3 3 3 2 2 2 3 3 2 3 3 3 3
P215  [85] 4 4 5 4 5 4 3 3 4 4 3 4 3 4 4 4 4
P218  [86] 4 4 4 3 2 3 2 2 3 2 3 4 2 3 3 2 3
P220  [87] 4 4 4 3 3 2 2 2 3 2 3 3 2 3 3 3 2
P221  [88] 4 4 3 3 3 3 2 3 2 3 3 2 3 3 3 3 3
P223  [89] 4 4 3 2 3 3 2 2 2 2 3 3 2 3 3 3 3
P279  [90] 4 3 4 3 2 3 2 2 2 2 2 3 2 3 3 2 3
P281  [91] 3 3 3 2 2 3 2 2 2 2 3 3 2 3 3 2 3
P285  [92] 4 4 4 3 3 3 3 3 3 3 3 2 2 3 4 3 3
P289  [27] 4 4 4 3 2 3 2 3 2 2 3 3 2 3 3 3 3
P300  [93] 4 3 4 3 3 3 4 3 3 3 3 2 2 3 3 3 3
P310  [94] 4 4 4 4 3 3 3 3 3 3 2 2 2 3 4 4 3
P332 [95] 4 4 4 3 4 3 3 3 2 3 3 3 2 3 4 4 3
P343  [96] 4 4 4 3 3 3 3 3 3 3 3 3 3 3 4 3 4
P365  [97] 4 4 3 3 2 3 2 3 3 3 2 3 3 3 3 3 3
P377  [98] 4 4 3 2 2 3 3 2 2 3 3 3 2 3 4 3 3
P404  [99] 4 4 4 3 3 3 3 3 2 3 2 2 2 3 4 3 3
P468 [100] |4 4 4 4 4 4 3 3 4 3 3 3 2 3 4 3 3
P493 [101] |4 4 4 3 4 4 3 3 3 4 3 3 4 4 4 4 4
P503 [102] [3 2 3 2 2 2 1 1 2 2 2 2 2 3 3 3 2
P580 [103] |4 4 3 4 4 3 3 4 3 3 3 3 3 3 4 4 4
P588 (104 (4 4 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3
P59 [105] [4 4 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3
P660 [106] [3 3 3 2 3 3 3 3 2 3 2 2 2 3 3 2 3

the studies’ classification was 0.72 (substantial agreement). This classification resulted into three
categories:

Category 1 This category includes those papers for which all five researchers agreed that a study
has a major contribution in a specific category. Finally, four papers were assigned to this
category.

Category 2 This category includes those papers for which three or four researchers agreed that
a study has a major contribution in a specific category. Finally, 22 papers were assigned to
this category.

Category 3 This category includes those papers for which one or two researchers only agreed that
a study has a major contribution in a specific category. Finally, nine papers were assigned to
this category.

The categories above are used in further in-depth analyses to, notably, evaluate the specific
contributions and the maturity of the contributions of the individual studies. Finally, we used
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the classification schema from Section 1.4 and the researchers’ rating to generate a mapping
table, which guides the in-depth content analysis.

Validity Procedures

As we reused an already published dataset resulting from an independently conducted scoping
study [34], we implemented several measures to improve the validity of our findings. First and
foremost, we relied on researcher triangulation, i.e., we always ensured that one researcher from
the team was not involved in a task and performed the quality assurance of that very task, e.g.,
in the rating of the contributions of the study, five researchers evaluated the studies and a sixth
researcher checked the evaluations and computed the agreement levels. Furthermore, we shuffled
the teams, e.g., data collection, quality assessment, and data analysis was performed by different
teams of two to three researchers.

2.2.2 Study Results

This section summarizes the results of our analysis. First, we provide general demographic in-
formation about the dataset, before we answer the individual research questions.

Result Overview

After the study selection, 35 papers remained in the result set. Figure 2.1 illustrates the pub-
lication frequency including the 3-year trend (red line) and the 5-year trend (black line). The
general publication frequency shows a growing interest in the research on automotive software
product lines starting in 2011.

memm

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

o

Fig. 2.1. Overview of the publication frequency including publication trend.

Based on the initial classification from the scoping study [34], we evaluated the remaining 35
papers for their research- and contribution type classification, which is illustrated in Figure 2.2.
This classification shows the majority of the papers contributing frameworks, methods and tech-
niques, and that most studies are classified as evaluation research. It has to be noted that the
papers from our result set have been filtered using the rigor-relevance model (see also Table 2.3).
Hence, due to the selection procedure, we expected mostly papers of type evaluation research.
Yet, the result set contains 23 papers of type evaluation research, which we consider an indication
towards practically relevant contributions. Furthermore, seven more papers from the result set
have been classified as experience paper, i.e., practical experience regarding automotive software
product lines have been reported.
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Fig. 2.2. Classification of the result set according to research typ facets and contribution type facets.

In a nutshell, we argue that our paper selection strategy resulted in a dataset that comprises
those studies reporting practical relevant knowledge about automotive software product lines,
which we investigate in more detail in the following sections.

State of the Art in Holistic Approaches for Managed Evolution of Automotive
Software Product Lines

In this section, we aim to answer research question RQ; (Table 2.1). As described in Section 2.2.1,
five researchers classified the papers according to the conceptual model from Section 1.4. The
classification was used to generate a mapping table for the in-depth content analysis. Based on
this mapping table, Figure 2.3 shows the assignment of the papers to the conceptual model from
Section 1.4. In Figure 2.3 a paper is annotated to an element if at least two researchers state
that the paper makes a major contribution to that specific element. A paper can be assigned to
more than one element if it contributes to several activities of the conceptual model.

Figure 2.3 shows the assignments of the selected primary studies to the activities of our
classification schema. According to our schema, none of the analyzed studies presents a holistic
approach for managed evolution of automotive software product lines. Yet, some studies provide a
certain coverage. For instance, study P377 [98] has been assigned to nine categories thus covering
three-quarters of the activities of our schema. It has also to be mentioned that this study only
received a score of 1.0 in the rigor-relevance evaluation (Table 2.3), i.e., it has barely received
the minimum score required for inclusion in the result set. The two primary studies P22 [74] and
P129 [83] have been assigned four times each, and studies P218 [86], P365 [97], and P493 [101]
have been assigned thrice. The remaining studies have been assigned once or twice only. In the
subsequent section we will regard all studies proposing an “overall approach/process” in detail.

To facilitate the evaluation we count the assignments of studies to activities of the classifica-
tion schema (Figure 2.3) and display the percentages of counts in Table 2.7. In total, there are
70 assignments to the 13 activities of the classification schema, i.e., a study has been assigned
on average to two activities. Two studies (P343 [96], P589 [105]) have been assigned to category
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Fig. 2.3. Assignments of the finally selected primary studies to the classification schema (Section 1.4)

to prepare the in-depth content analysis.

“Rest (unassigned)”. Here, none of the 13 activities in our classification schema has received at
least two assignments for the corresponding study.

Figure 2.3 and Table 2.7 reveal that the contribution of the studies concentrate on PL-Design
(37%), followed by Recovery & Discovery (11%), PL-Requirements (9%), PL-Plan (9%), and
PL to P (9%). Based on the accumulation of studies on the initial activities of the schema
we hypothesize that the studies in question are primarily concerned with the development of
new SPL rather than the long-term evolution of the product line. For example, architecture
conformance checking related activities required to prevent architecture erosion in the long term
is underrepresented in the studies: Only four studies (P72 [77], P100 [82], P365 [97], P493 [101])
can be found that our researchers have mapped to this appropriate fields.

Table 2.7. Number of assignments to the classification schema in Figure 2.3

Product Line (PL)

Product (P)

Design 26 (37%) 3 (4%)
Plan 6 (9%) 1 (1%)
Implement 5 (7%) 2 (3%)
Check 3 (4%) 1 (1%)
Requirements 6 (9%) 1 (1%)
PL to P 6 (9%)

P to PL 2 (3%)

Recovery & Discovery 8 (11%)

Rest (unassigned) 2

Remarkably few studies address the product specific development cycle (application engineer-
ing) and only study P72 [77] exclusively addresses the product specific development cycle. One
reason for this could be that no specific methods and techniques are required for the product
development cycle within a product line based development approach.
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Methods and Techniques to Implement Automotive Software Product Lines

In this section, we aim to answer research question RQ2 (Table 2.1). Specifically, we identify the
methods and techniques used to implement automotive software product lines in general, and
their application scope in particular. Table 2.8 provides a categorization, which is built based
on the in-depth content analysis (see Table 2.5). Furthermore, the table provides an overview
of the different studies and how their major contributions are applied, i.e., in the scope of the
product line as such and in the context of particular products derived from that product line. In
the following, we first provide an overview before we provide the details structured following the
categories listed in Table 2.8.

From the content analysis of the 35 selected primary studies we derived 12 categories—each
representing a cluster of methods and/or techniques. As already discussed, most of the papers
propose one method or technique and provide—if at all—a scoped evaluation only. That is,
Table 2.8 lists the topics of interest and, at the same time, provides some information about
topics of interest in automotive software product line research, however, based on the result
set, we can only derive a “fragmented” picture as several aspects are studies, yet in a fairly
isolated manner. Nonetheless, the result set shows that some topics are studied from different
perspectives, which indicates the variety of the subject field.

In the following, we discuss the different method/technique clusters individually and in more
detail.

Table 2.8. Methods and or techniques of the papers included in this study.

No. Methods and/or techniques Papers PL® P®
1 Architecture evolution process [79, 83, 85] X X
2 Cost/effort estimation [76, 81, 84, 106] X
3 Safety analysis [77, 103, 104, 105] X
4 Description languages [99] X X
5 Architecture reengineering [27] X
6 Model transformation [82, 89, 91, 92, 93] b'e
7 Model-based requirements engineering  [74, 78] X
8 Overall approach/process [92, 98, 102, 83, 86] X
9 Reference architectures [75, 80, 83, 86] X
10 SPL merging [81, 84, 88| X
11 Testing / Verification [94, 96] X
12 Variability management [73, 87, 90, 95, 97, 100, 101, 103, 104, 105] x x

@ Activities related to product line development (domain engineering) including Recovery & Discovery
b Activities related to product development (application engineering)

Architecture Evolution Process

This section discusses the studies P86 [79], P129 [83] and P215 [85], which were found address-
ing the architecture evolution process category—notably the maintenance and the long-term
evolution of software product line architectures.

Gustavsson and Eklund [79] discuss the architects’ work approach concerning the maintenance
in the context of an evolving/changing product line architecture (PLA). Authors conducted a



28 2 Challenges in Developing Automotive Software Product Line Architectures: A Survey

series of expert interviews with architects from Scania and Volvo Car. They found that the
process for managing changes of the PLA is very similar and that the found processes from
both companies can be mapped to a generic process, which consists of the five steps need,
impact analysis, solution, decision, and validation. All of these findings are based on conclusions
concerning the interviews and are not verified by a further case study.

The work of Lind and Heldal [83] is primarily focused on reference architectures, but also
addresses the evolution of architectures. They distinguish between revolutionary and evolution-
ary architecture processes, which are both discussed in [83]. In particular, authors argue that
reference architectures have to be continuously maintained, notably, it is necessary to evaluate ref-
erence architectures continuously to identify bottlenecks, which is key to initiate refactoring and
to support the architecture’s evolution. Hence, Lind and Heldal present an empirically-grounded
reference architecture development process, which contains activities that are primarily performed
for evolutionary architecting, e.g., activities “Synthesize, Evaluate, and Verify & Validate Archi-
tecture”. Such activities describe the architecture design, the measurement of architecture quality,
and the validation against the requirements in the context of an evolving architecture.

Axelsson [85] discusses revolutionary architecture process (RAP) and evolutionary architecture
processes (EAP). The specifically author focuses on the interplay of both processes and on how
the EAP is performed in practice. In an empirical study, reasons for changes in an architecture
are discussed, complemented by a discussion of affected attributes, technical aspects involved,
and decisions made. The study shows that RAP and EAP differ significantly. Also, Axelsson
states that most literature mainly describes RAP, whereas EAP lack studies and evidence.

In summary, the primary studies assigned to this category use similar activities for ana-
lyzing/describing the evolution of (automotive) software product line architectures. Key is the
process-support of the architecture processes, notably for architecture development and mainte-
nance/evolution. A cross-company analysis conducted by Gustavsson and Eklund [79] did reveal
similarities, which underpin the usefulness of a generalized /holistic concept.

Cost- /Effort Estimation

This section discusses the studies P71 [76], P94 [81], P173 [84], and P660 [106], which were
found addressing the cost-/effort estimation category. A number of studies consider the cost-
/effort estimation a key activity, especially in the course of planning a product line development
endeavor.

Kiebusch et al. [76] propose metrics to measure the size of an automotive software product
line. They argue that neither of the existing methods adequately measures the (unadjusted) size
nor estimates the cost of process-oriented automotive software product lines. For this, authors
propose the Process-Family-Points (PFP) analysis method to allow for size measurement and
effort estimation.

Yoshimura et al. [81, 84] address effort estimation methods with two studies: The approach
proposed in [81] describes a software clone analysis approach, and the approach discussed in [84]
proposes an estimation process based on the return on investment (ROI). Both approaches are
integrated into a process for merge potential assessment of existing variants, i.e., how to (eco-
nomically) reintegrate variants back into the product line. In [84], authors discuss an application
of this approach and present lessons learned and open issues. As lessons learned they discuss,
e.g., that software cloning may not be a good way to realize product line engineering, and that
ROI predictions can strongly motivate the management to invest in product line engineering,
and that architecture-centric clone analysis is a useful and practical approach to assess the merge
potential of the existing systems. Open issues are, e.g., clone visualization, clone refactoring, and
clone error reduction.
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Gustavsson and Axelsson [106] provide a method of evaluating system designs with the pur-
pose of enabling practitioners to systematically think about the future development of a system.
For this, they use the Real Options Theory [109, 110] that adds the possibility to put an economic
value on the system adaptability attribute and, thus, motivates architects to also anticipate the
actual value of future developments of an architecture.

In summary, the studies [76, 84, 106] use different methods to perform cost- and effort es-
timation actives in the course of planning software product line development. Furthermore, the
studies provide process models for practically applying these methods, and the studies present
evaluations of the respective approaches.

Safety Analysis

This section discusses the studies P72 [77], P580 [103], P588 [104], and P589 [105], which were
found addressing the safety analysis category.

Two studies address safety analysis for the development of safety-critical automotive software
product lines. Rana et al. [77] address the problem of selecting the appropriate Software Reliability
Growth Model (SRGM) of more than 100 currently existing SRGMs. Growth models are used
for evaluating the maturity or release readiness of a software before its release and, respectively,
for an optimal allocation of the test resources required. Rana et al. use a statistical model
to identify the distribution of defects, which helps selecting an appropriate growth model. A
case study conducted at Volvo Car Group is utilized to evaluate the proposed approach. They
evaluate six standard distributions on defect inflow data from four large software projects and
show that beta distribution provides the best fit to the defect inflow data. Second, Kafsmeyer et
al. [103] present an improved safety engineering approach for software product line development.
Their approach provides an integrated change impact analysis by combining their approach with
variability management. They apply their approach to an industrial example, a small part of
an Advanced Driver Assistant System (ADAS), to illustrate the benefits. As demonstrated by
the example, changes are propagated in one model for both variant management and safety
engineering.

De Oliveira et al. [104] propose an approach to support the generation of fault trees and
FMEA analyses for products derived from a software product line. Their approach aims at re-
ducing the effort required for performing safety analyses for the products. The study proposes a
process model for model-based safety analysis, which starts with a product line hazard analysis,
followed by a process step “Augmentation of PLA with failure logic” that describes how product
line architecture design elements, i.e., product line components, can fail and how they contribute
to the occurrence of hazards. Further steps include the definition of software product line config-
uration knowledge, product derivation, and safety assessment. In [105], de Oliveira et al. propose
an approach to support the automated construction of modular product line safety cases. The
approach uses different techniques like architecture failure modeling, functional failure modeling,
and component failure modeling. Note, that the three studies [103, 104, 105] are also assigned to
the category variability management for which we provide a further discussion.

Description Languages

This section discusses the study P404 [99], which was categorized in the description languages
category. For the development of a software product line, a suitable description technique is key
for supporting the specification of variability. Kim et al. [99] propose a concept to support the
functional view (software behavior) in the component-based software development (CBSD). The
approach introduces “signal flows” and “mode-dependent signal flows” for the specification of a
component. In this regard, important information is provided at the component level to support
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the understanding of the software’s behavior and to also understand dependencies among software
components when reusing and adapting software components. The approach is proposed in the
context of product line development in the automotive sector. However, the study does not
provide extensive details concerning the degree of appropriateness of the approach for product
line-driven development. The approach rather addresses a more general problem of software
development in the automotive sector.

Architecture Reengineering

This section discusses the study P289 [27]), which addresses the architecture reengineering. Archi-
tecture erosion has become a major challenge in automotive software engineering, which results
in a considerable effort for maintenance and software system evolution. Furthermore, architec-
ture erosion is a major problem affecting software reuse [24]. In this context, Strasser et al. [27]
propose an approach for reengineering an eroded software product line architecture. First, all
relevant variation points and the associated functional requirements of a component are identi-
fied. A variability analysis is performed by the Product Line UML-based Software Engineering
(PLUS; [54]) approach, which is also used to describe appropriate variability models. Based on
the analysis results of the product line extraction process, architecture components are identified
and designed in the next step. This approach can also be assigned to the recovery & discovery
activity.

Model Transformation

This section discusses the studies P100 [82], P223 [89], P281 [91], P285 [92], and P300 [93], which
were assigned to the model transformation category. Several studies utilize model transformation
techniques to transform artifacts of software product line development into different models, such
that techniques, e.g., for model analysis can be applied.

For instance, White et al. [82] propose an approach to debugging feature model configura-
tions and automating configuration evolution, called CURE (Configuration Understanding and
REmedy). Configurations and feature models can be transformed into constraint satisfaction
problems (CSP) to automatically diagnose errors and repair invalid feature selections.

Merschen et al. [89] present a prototypical framework for the analysis of embedded software
product lines. They analyze artifacts by transforming them into models, which are used in an
analysis process based on model transformation languages. The automated preprocessing is im-
plemented as model transformations in ATLAS Transformation Language (ATL) and Epsilon
Transformation Language (ETL).

Leitner et al. [91] introduce EAST-ADL2 in an automotive software product line including
a transformation from AUTOSAR to EAST-ADL2. Basic variability information can be auto-
matically extracted during the transformation step. Different mapping strategies are analyzed to
generate a correct model and to reduce losses in the transformation process. Furthermore, they
describe the implementation of the transformation process.

Polzer et al. [92] present a framework for model-based product lines of embedded systems.
The framework supports the (semi-)automated extraction of models from existing requirement-,
test-, and implementation artifacts.

Finally, Wang [93] presents a study on the application of model transformation techniques
on the development of automotive software product lines. The paper aims at understanding the
state-of-the-art techniques and to identify model transformation challenges in product-line-based
automotive software—motably to help developers choosing the model transformation technique
appropriate for the respective situation. Wang distinguishes between model transformation at the
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same abstraction level and model transformation across different abstraction levels. The transfor-
mations are implemented by using the tool GReAT (Graph Rewrite And Transformation). Wang
presents the results of a case study with a simplified enhanced cruise control system (eCCS).
As lessons learned, he states that model transformations with well-design transformation rules
vield consistent implementations across vehicle variations and can thus reduce the efforts to
create and maintain the design variations for different vehicles. In addition, Wang reveals that
current transformation features partially meet the needs of derivative design, and still require
improvement.

In summary, the studies [82, 89, 91, 92, 93] show that model transformation techniques
play a key role in the development of automotive software product lines. By means of model
transformations, tools and techniques can be used in the different process steps. The effort to
create and maintain design variations, e.g., for different vehicles, can be reduced. Well-design
transformation rules are crucial for the effectiveness of a model transformation.

Model-based Requirements Engineering

This section discusses the studies P22 [74] and P79 [78], which were assigned to the model-based
requirements engineering category. Requirements engineering requires appropriate support by
methods and techniques to capture and manage the requirements for a software product line to
maintain the high degree of variability.

For this, Gleirscher et al. [74] present an approach for integrating innovation management
with requirements and technology management. Requirements-based innovations are usually
motivated by newly elicited requirements or needs originating from market research, whereas
technology-based innovations are motivated by new or emerging technologies (e.g., specific plat-
form components and platform services). To identify innovations, they use models of feature
hierarchies, platform service hierarchies, and a platform component models. Furthermore, to
accomplish innovations they define activities for requirements-based innovations and technology-
based innovations.

Aoyama and Yoshino [78| present an aspect-oriented approach for the requirements engi-
neering in software product line development. Automotive systems often deal with a wide spec-
trum of interwoven functional and nonfunctional requirements. They apply a multi-dimensional
aspect-oriented modeling and analysis to generate multiple software product lines for automotive
systems. The approach separates intersecting non-functional requirements (NFR) into primitive
concerns (aspects) and introduces quantitative metrics of each NFR/aspect.

Overall Approach/Process

This section discusses the studies P285 [92], P377 [98], P503 [102], P129 [83], and P218 [86],
which were assigned to the overall approaches/processes category. Several studies propose an
overall approach and/or outline a process for automotive software product line development. In
some cases, specific methods and techniques are proposed, such that the respective studies are
also assigned to other categories in Table 2.8.

Polzer et al. [92] present a framework for model-based automotive software product lines
in which model transformations play an important role. The framework supports the creation
of context-specific views, which provide a detailed description of the domain engineering and
application engineering process tasks and artifacts. The approach also addresses the recovery and
discovery of an evolved product line using a model-extraction process. Finally, authors define a
product-derivation process for application engineering.

Hardung et al. [98] propose a framework to improve the reuse of automotive software. Their
framework is based on the Product Line Practice (PLP; [15]) process model. Authors explain how
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to perform the modularization of the product line core assets, which are contained in a function
repository. The process also defines how to develop products from that function repository using
a standard software core. Finally, authors list tools to support the processes.

Tischer et al. [102] present experiences regarding the introduction od product lines at Bosch
Gasoline Systems. Their study outlines the different relevant areas for SPL-based development,
e.g., architecture development, product-line scoping and core asset development, market-oriented
development, measurement of product line success, and product quality management. Further-
more, they discuss why the product line’s deployment at Bosch has been delayed.

Lind and Heldal [83] and Eklund et al. [86] both propose an architecture-centered development
approach and present detailed process descriptions. One focus of both studies is on reference
architectures so that the studies are discussed in detail in category reference architectures.

In summary, the studies of this category describe an overall development approach for au-
tomotive software product line development, but at different levels of detail and with different
focal points: the studies [83] and [86] are architecture-centered and contain more detailed process
descriptions. In contrast, [102] remains fairly vague and does not contain a process description;
instead, it provides an experience report. The other studies [92, 98] propose frameworks for soft-
ware product line development: [92] focuses on model-based development using techniques like
model transformation. The framework proposed in [98] allows for classifying software according
to possible ways of reusing it, and it links the development process to the environment, i.e.,
repositories and tools. However, specific guidelines for developing automotive software product
lines are not provided.

Compared to our classification schema (Section 1.4), neither approach [92, 98, 102, 83, 86|
covers all activities. For instance, recovery & discovery is only supported by [92]. Yet, the frame-
work in [92] does not address a product-specific development of implementation artifacts. Instead,
implementation is only performed during domain engineering and serves as the basis for product
derivation.

Reference Architectures

This section discusses the studies P43 [75], P90 [80], P129 [83], and P218 [86], which were assigned
to the reference architecture category. Several studies propose reference architectures as a key
element for the development of software product lines.

Martinez-Fernandez et al. [75] present a survey on the benefits and drawbacks of using the
software reference architecture AUTOSAR, an open industry standard for the automotive soft-
ware architecture between suppliers and manufacturers. They conducted an online survey that
addressed experienced AUTOSAR practitioners. They found standardization and reuse as most
popular benefits, and complexity and initial investment as most remarked drawbacks and risks
of using AUTOSAR.

Eklund and Bosch [80] proposed a reference architecture for embedded open software ecosys-
tems consisting of 17 key decisions resulting in four architectural patterns. The architectural
patterns are: device abstraction, data and service provision, device and information composition,
and safety-critical, certified and open application access. These patterns have to be instantiated
as a product line architecture for platform design. Furthermore, they define quality attributes
for the reference architecture: composability, deployability of new functions, stability over time,
configurability, consistent user interface, and dependability. Their approach is demonstrated with
a prototypically implemented architecture that satisfies selected key decisions and quality at-
tributes.

Lind and Heldal [83] study the research question “How can a reference architecture for au-
tomotive systems be developed in a component-based setting, and how is it utilized in product
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development to increase reuse?”. They focus on the definition of a development process with a
reference architecture as a core artifact. The process is divided into E/E architecture develop-
ment and E/E systems development. Their reference architecture is developed and maintained
during E/E architecture development and serves as the basis for developing a product-specific
architecture for E/E systems development. The proposed development process has been validated
in several steps by projects at Saab Automobile AB. The result of the validation shows that the
process works well at Saab.

Eklund et al. [86] propose an architecture-centered development process and describe how
reference architectures are used to improve the development process. Authors describe the de-
sign, verification, dissemination, and maintenance of the reference architecture. Based on their
experiences, they conclude that dissemination and maintenance require more resources than the
development of the reference architecture. The proposed process results on the experiences with
architecture-centered development at Volvo Cars.

Summarized, the studies [83] and [86] focus on the development process and how reference
architectures are embedded into the development process. In contrast, the work of Eklund and
Bosch [80] focus on the particular design of a reference architecture grounded in design decisions
and patterns. The benefits of drawbacks of the AUTOSAR reference architecture are presented
in [75]. As mentioned in [80], AUTOSAR assumes an integration-centric approach in which all
integration work concerning software components is done by an OEM. Yet, authors of [80] argue
that it is desirable to move away from integration-centric development of software towards a
development in a open software ecosystem.

Software Product Line Merging

This section discusses the studies P94 [81], P173 [84], and P221 [88], which were assigned to
the SPL merging category. If independently developed product lines, e.g., Diesel and Gasoline
software systems, share a high degree of common functionalities, merging those products into
one product line is reasonable.

The two studies by Yoshimura et al. [81, 84] primarily focus on effort estimation techniques for
software product line merging (as already discussed in the category cost/effort estimation). Both
studies also outline merging strategies. However, details about the actual process of performing
the merge are missing in both studies.

Tischer et al. [88] present their experiences from merging two large-scale software product
line development projects (a Diesel and Gasoline software system), which was motivated by the
high synergy potential. The merge was performed at the different levels: organization, software
architecture, development environment, and processes and methods. The study provides a com-
prehensive overview of the challenges and solutions chosen to merge these large-scale systems.

Testing/Verification

This section discusses the studies P310 [94] and P343 [96], which were assigned to the testing
and verification category. Due to the high degree of variability that results in a potentially huge
number of products, testing and verification of a software product line are challenging tasks.

Lochau et al. [94] present an approach of pairwise testing in the SPL context by providing
a mapping between feature models and a reusable test model in the form of statecharts. There-
fore, they investigate the relationship between feature-based coverage criteria and model-based
coverage criteria. A further contribution is a reasoning about the applicability of this approach.
The approach is validated by a case study from automotive software engineering.
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Scheidemann [96] proposes an incremental process using approximation algorithms for min-
imizing the number of configurations needed to verify the completeness of the configuration
space. For this purpose, the author introduces the concept of “locality sets” containing archi-
tectural elements that realize a functionality, which is concerned with a particular requirement.
The proposed algorithms either choose the minimum set of configurations necessary to verify all
requirements for all configurations, or to maximize the verification coverage of the software prod-
uct line as a whole by choosing the “best” configurations. A further contribution is a technique
for automatically determining commonalities in architecture and requirements.

Variability Management

This section discusses the studies P8 [73], P220 [87], P279 [90], P332 [95], P365 [97], P468 [100],
P493 [101], P580 [103], P588 [104], and P589 [105], which were assigned to the (general) variability
management category. Managing the variability within a software product line constitutes a
challenging task and is addressed by nearly one third of the studies from the result set.

Jin Sun et al. [73] propose a component-based development process based on variability types.
They identify several variability types that may occur in ECU-related development: variability of
software components, variability of logic components, variability of sensor components, variability
of actuator components, variability of setpoint generator components, variability of output device
components, and variability of component interfaces. Furthermore, they propose a process for
developing ECUs that focusses on managing the variability by using the introduced variability
types.

Boutkova [87] present their experiences with variability management in the requirements spec-
ification process at Daimler passenger car development. Based on these experiences, Boutkova
proposes a new feature-based variability management (FBVM) approach. This approach is ex-
tended by a decentralized variability modeling approach that supports variability modeling of
individual components and systems as well as modeling a product as a whole.

Graf et al. [90] propose a graph-based approach for variant modeling and management. The
approach focuses on managing, modeling, and combining the different kinds of knowledge in
software product line development, i.e., combining local expert knowledge with domain knowledge
provided by application groups, and the integration of overall management knowledge.

Brink et al. [95] propose an approach to link hardware and software variability models. Their
approach distinguishes between software and hardware variants using separate variability models.
They further distinguish two different kinds of dependencies between hardware- and software
product lines.

Millo and Ramesh [97] propose an approach to link the design-level variability with the
requirements-level variability. The requirements and designs are expressed as extended finite
state machines, so called Finite State Machines with Variability (FSMv). The variability between
designs and requirements is based on a conformance relation between design and requirements
models of the software product line features. An algorithm is proposed for checking conformance
between the models and is implemented on the verification tool SPIN.

Manz et at. [100] propose an approach for enabling traceability, integrated configuration
of software variants, and links using integrated feature modeling. An integrated feature model
considers the different development phases, abstraction layers, and development artifacts.

Kato and Yamaguchi [101] present an approach for variability management focused on pair-
wise feature interactions. They accumulate the occurrence of the feature interactions for all past
products using a feature interaction matrix to visualize feature interactions.

Kéafbmeyer et al. [103] propose a process for a model-based change impact analysis. They use
methods and techniques for safety analysis (see category safety analysis and configuration /variant
management, and focus on the combination of both.
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De Oliveira et al. [104] propose an approach to support safety analysis for software prod-
uct lines. Their approach provides guidelines regarding the use of model-based development,
safety analysis, and variability management tools. In [105], de Oliveira et al. also address safety
engineering in software product lines. They propose a method to support automated construc-
tion of modular product line safety cases. The method uses outputs provided by model-based
development, safety analysis, and variability management tools.

Summarized, variability management is addressed by the selected studies in different ways
using different methods and techniques. Several studies deal with the modeling of variability
(e.g., [73, 87, 90, 95, 97, 100, 101] and with the tracing of variability information across different
levels of abstraction, like requirements and design [97], hardware and software [95], or safety
analysis assets and design assets [103, 104, 105]. Three studies focus on the combination of
variability management and safety analysis and are thus also classified in category safety analysis
[103, 104, 105].

2.2.3 Summary and Discussion

We prepared the in-depth review by using a conceptual model for automotive specific software
product line development [25] (see Figure 1.2) as well as the results of a scoping study [34]
in the field of automotive software engineering. The in-depth review reveals that none of the
studies represents a holistic approach for managed evolution of automotive software product lines
according to the classification schema (Section 1.4). On average two activities of our classification
schema are addressed by the selected primary studies (see Figure 2.3). In addition, according to
the results of Section 2.2.2 most studies refer to activities related to product line development
(domain engineering) including Recovery & Discovery (86%). The analysis of the methods and
techniques in the previous section produces comparable results.

A further finding is the accumulation of studies addressing the first activities of the schema
like the product line design. This indicates that the focus is on how to build up a product line,
which is called revolutionary architecture process (RAP) in [85]. Axelsson [85] states that most
literature mainly describes RAP, whereas evolutionary architecture processes (EAP) lack studies
and evidence (see Section 2.2.2). Activities required for long term evolution (i.e., EAP according
to [85]) like architecture conformance checking are only addressed by few studies.

Remarkably, there is a low number of contributions concerning the product specific develop-
ment cycle, which may indicate a research gap or it may indicate, e.g., that only few specific
methods and techniques are required for product development within a product line based devel-
opment approach. However, further developments that are separate from the product line, have
to be transferred back into product line development at a later stage. The corresponding activity
P to PL of the conceptual model was solely subject of two studies [74, 81] according to the result
of the categorization depicted in Figure 2.3. But the proposed methods and techniques of both
studies [74, 81] have another focus (see Section 2.2.2) and do not support the actual objective of
activity P to PL. Here, we hypothesis a further research gap which has to be addressed in future
research towards a holistic approach for managed evolution of automotive software product line
architectures.
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Recovery and Discovery of Automotive Software Product
Line Architectures

With a high degree of erosion, a further development of the software is only possible at great
effort. Before approaches to minimize erosion can be applied, the architecture must first be
repaired. In this chapter, we investigate how approaches for architecture repair can be adapted
to be applied to automotive software product line architectures.

At first, Section 3.1 summarizes a paper where we applied a methodical and structured
approach of architecture restoration in the specific case of the brake servo unit (BSU). The
paper sketches how we apply basic concepts of software product line extraction and software
architecture re-engineering on automotive software product line development. As a prerequisite
for repairing an eroded software, a validated set of product line requirements are needed. These
product line requirements serve as the basis for a successful manageable and evolvable PLA too.
Thus, we propose activity diagrams in conjunction with an executable semantics for requirements
validation in Section 3.2. Finally, in Section 3.3, we propose an approach for repairing an eroded
software consisting of a set of product architectures by applying strategies for recovery and
discovery of the product line architecture. Here, the focus is to provide a scalable approach that
can be applied to a complete software status of an ECU whereas in Section 3.1 we only regard
a single function.

3.1 Mastering Erosion of Software Architectures in Automotive
Software Product Lines: A Case Study

This section summarizes:

Arthur Strasser, Benjamin Cool, Christoph Gernert, Christoph Knieke, Marco
Korner, Dirk Niebuhr, Henrik Peters, Andreas Rausch, Oliver Brox, Stefanie
Jauns-Seyfried, Hanno Jelden, Stefan Klie and Michael Kréamer. 2014. Mastering
Erosion of Software Architectures in Automotive Software Product Lines. In Pro-
ceedings of the 40th International Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM 2014 ), ser. LNCS, vol. 8327. Springer,
pp. 491-502.

In this paper we apply a methodical and structured approach of architecture restoration in
the specific case of the BSU. Software product lines from existing BSU variants are extracted by
explicit projection of the architecture variability and decomposition of the original architecture.
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3.1.1 Background: Case Example BSU

Originally there was a general variant of the software for controlling the evacuation of the vacuum
chamber of the BSU through the intake manifold. Later on a variant of BSU software was added,
that featured an electric vacuum pump for the evacuation. The software variance was constituted
by the presence or absence of a mechanical vacuum pump. When implementing the variability
into software the developers chose the simplest and fastest way: Since the mechanical vacuum
pump was installed only in diesel vehicles, the variance was realized by a query whether there is
a gasoline or diesel engine. This query was already used in other vehicle functions.

This solution established itself over time, but was insufficient with the introduction of hybrid
vehicles, as they may have both a gasoline engine and an electric vacuum pump. Therefore, the
developers extended the initial “gasoline or diesel engine” query by another query, whether it is a
hybrid vehicle. While this was purposeful to allow quick implementation of the BSU software for
hybrid vehicles, it no longer corresponded to the original motivation whether a vacuum pump is
available. Multiple implementations of such quick solutions in both actuator and sensor variance,
led to a complex, hardly maintainable and extensible BSU software system. An extensive analysis
and de novo establishment of a product line within the BSU software, an architecture regeneration
was required.

3.1.2 Approach for Architecture Restoration

Our approach consists of two essential activities that are called architecture regeneration and
long-term evolution (see Figure 3.1). The first activity aims to extract architectural significant
concerns that led to design decisions in the eroded model artifacts. All extracted concerns are
specified in the appropriate artifacts:

o feature model: Specification of corresponding vehicle variants. Associations to variation points
within the use case model and template architecture document the affect of a configured
variant in the model.

e use case model: Specification of functionality concerns as use cases of the application, which
represent functional requirements.

o template architecture: Specification of the components as resulting elements of the appropri-
ate design decisions. The template architecture provides a reusable application design for an
appropriate configuration in the feature model.

Associations between the resulting artifacts are used to track applied design decisions in the
template architecture. These tracks are considered for further development in a long term as
illustrated in Figure 3.1.

In our case study, we specify two use case groups and two variation points that match the
systems functionality. One use case group considers requirements that must be fulfilled by all ECU
configurations (uses core BSU control application) and another group that must only be realized
by some ECU configurations. The variation points that extend (modify) a certain functionality
at a defined point of behavior are associated with two features of the feature model. The two
feature-groups group other features that represent different variants of evacuation methods and
sensors. The group is associated with a variation point within the use case “control pressure
difference”. Every grouped feature can be independently selected for a valid ECU configuration.
Thereby we documented the extensibility requirements as variation points within the two use
cases.

The extracted product line requirements include significant design constraints that must be
considered by the architect. All components that are associated with the kernel use cases realize
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Fig. 3.1. Required activities for mastering erosion in software product line

the functionality BSU pressure control. All components that are associated with extended use
cases interact with the BSU pressure control through generic interfaces. Moreover a certain
extended use case is associated with components that realize the appropriate sensor concern.
These design decisions can be tracked and verified against further modifications to obtain a
modular design. This enables the interconnect of all components according to feature selection.
We call the final design “template architecture”.

A design decision that would cause additional dependencies between components associated to
different variation points of the BSU, violates the modularity. Our approach establishes a relation
between the variability models (functionality model) and the template architecture (architecture
model) by applying the extraction phase. In the BSU real world example all use cases are one-
to-one mapped to variation point features. The resulting feature model, use case model, and
template architecture are depicted and explained in the paper.

3.2 Simulation and Validation of Executable Requirements
Specification using Activity Diagrams

This section summarizes:

Christoph Knieke, Bjorn Schindler, Ursula Goltz and Andreas Rausch. 2012.
Defining Domain Specific Operational Semantics for Activity Diagrams. In IfI
Technical Report Series, IfI-12-04, Department of Informatics, TU Clausthal.

In this paper, we analyze common semantical constructs and possible options for the definition
of operational semantics for activity diagrams. Activity diagrams are supported by a number
of tools enabling not only the modeling but also the execution of activity models. Thereby,
models can be verified and validated by simulation. Tools for such issues have to meet various
requirements, depending on the domain of the system under development. For instance, the user
of a simulator may validate the model in various ways. In information systems (e.g., big financial
systems) the data processed by the system may be observed and various execution paths may
be tested step by step. Therefore, the user has to be involved in system decisions. Consequently
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the system has to stop at control nodes (see Figure 3.2). At reactive systems (e.g., automotive
ECU software) the behavior of external systems may be used for validation. The simulation has
to realize, for instance, an exact concurrent execution. At the process of Figure 3.2 actions A2
and A4 are modeled to be executed concurrently. Hence, connected control nodes may have to
be processed at once.

This example shows that tools need an adequate interpretation of the UML activity diagram
semantics, which goes beyond the provided options of the UML superstructure [111]. Neverthe-
less, we observed that these semantics are based on the same semantical constructs. Depending
on the domain, variants of these semantical constructs are used. To achieve an understanding
of the semantics of activity diagrams independently from the domain, common semantical con-
structs as well as the variants have to be analyzed. This enables unification and tool support for
defining domain specific operational semantics for UML 2 activity diagrams.

control node

Fig. 3.2. Complex system decisions

We propose a foundation for a framework that enables composition of operational semantics
for activity diagrams. The composition is based on fundamental semantic constructs with op-
tions enabling the definition of domain specific variants. By our approach, a clear and intuitive
operational semantics for tool development can be composed, which conforms to the informal
semantics description of the UML.

As an example, we introduce two tool developments based on particular operational semantics
composed in our approach. In both cases, activity diagrams are considered for the specification
of system requirements during the early development phase, which is used for validation. The
semantics as well as the tools are well evaluated at research projects and used for realistic system
developments. The first tool environment focuses on the modeling of information system behavior
[112] whereas the second tool aims at the modeling of reactive system behavior [113].
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3.3 From Product Architectures to a Managed Automotive Software
Product Line Architecture

This section summarizes:

Benjamin Cool, Christoph Knieke, Andreas Rausch, Mirco Schindler, Arthur
Strasser, Martin Vogel, Oliver Brox and Stefanie Jauns-Seyfried. 2016. From
Product Architectures to a Managed Automotive Software Product Line Archi-
tecture. In Proceedings of the 81st Annual ACM Symposium on Applied Com-
puting, ser. SAC’16. ACM, pp. 1350-1353.

In this paper we propose an approach for repairing an eroded software consisting of a set
of product architectures (PAs) by applying strategies for recovery and discovery of the PLA.
An explicit PLA definition constituting the top level architecture is important to coordinate the
shared development between the OEM and the suppliers. Each product that is developed has a PA
whose structure should be mapped onto the top level architecture. This top level architecture
describes the structure of all realizable PAs. However, because of software sharing an overall
assignment of top level groups to modules, and their interface, is missing. The knowledge of the
overall, product independent structure is not explicitly documented, and therefore exists only
implicitly in the minds of the participants. Further development of existing products and the
development of new products lead to an eroded PA as an initially demanded structure is not
available.

As a major challenge, we have to deal with product line development where a set of software
components - so called modules - constitutes the basis for deriving a huge number of products.
Therefore it is necessary to know about the derivable PAs from a given PLA. Two PLAs are
distinguished: Current derivable PAs are captured by the actual PLA (APLA). All planned PAs
for future development are captured by the target PLA (TPLA). In the Recovery & Discovery
phase we recover the APLA and discover a TPLA candidate.

In the Recovery & Discovery phase we are using domain specific expertise and architecture
related data from a repository to create the two PLAs. Figure 3.3 shows how the TPLA (step d))
and APLA (step ¢)) are created. For this purpose the APLA relevant elements are described by
the recovered structure from data mining (step b)) and from functional analysis (step ¢)) using a
set of PAs. The PAs are provided by step a). Due to the ease of handling in the first iteration of
step a) only some products are selected from the data dictionary. The following iterations extend
the scope to more products. In the following all steps are summarized.

a) Select products from data dictionary: The aim of this step is to derive a small set of
PAs to create common PLAs. Due to the huge number of products and their variants in the
data dictionary, a selection is crucial for the creation of the initial APLA. A product is based
on a software project. A software project defines the scope of modules, groups of modules,
groups of groups (hierarchy) and interfaces reused for integration. The interface is described
by modules and contains references to globally available variables. The required type and
the provided type of references are distinguished. To realize a communication between two
modules, it is necessary that one of the two modules provides the variable and the other
consuming module requires the variable. We call this a dependency. Variables themselves
store valuable data for the communication. A provided variable must also be declared (ANSI
C like) and is therefore owned by the declaring module. PAs consist of modules, groups, and
associated dependencies. All those elements have a set of data dictionary related attributes
with a special meaning, which are considered to determine the initial selection of PAs. A
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Fig. 3.3. Overview of phase Recovery & Discovery

problem arises when the exploration of extracted information is not manageable because of
the big data set. Therefore we define selection criteria to extract a smaller set of PAs from
the data dictionary. For example, we only select the most recent created module and project
versions.

Recover APLA candidates using data mining: A very common approach to recover
patterns and structures in large data sets is to use data mining methods and techniques. Many
various techniques exist and are used in practice with different advantages and disadvantages
for recovering an APLA. In this methodology we chose an approved approach, which provides
good results in the field of recovery structures in information systems. The approach is called
Spectral Analysis of Software Architecture (SPAA) [114, 115, 116] and is a generic approach
to cluster software elements by their dependencies.

The SPAA approach is divided into three steps: First, all dependencies between all elements
within the scope have to be identified. The type of dependency varies and depends on the
kind of system, e.g., for object orientated information systems dependencies like classical call,
extends, or implements relations are useful [115]. In the next step the constructed directed
graph has to be weighted - the higher the edge weight value the lower the probability of
cutting this edge in the clustering step. The weighted graph is clustered with a Spectral
Clustering algorithm considering that this is a good heuristic to solve this NP-hard graph
cut problem as described in [114] and [115].

As input data for the SPAA approach we choose all modules, which are contained in the
selected products. Between these modules we determine dependencies depending on the pro-
vided and declared variables (see step a)). In this case the edge weight is defined as the sum
of shared variables of the corresponding modules.

Often a heuristic is used to suggest the number of clusters. The preferred heuristic for Spectral
Clustering is the eigengap heuristic, due to the fact that Spectral Clustering determines the
eigenvalues of the normalized Laplacian, which are also used for this heuristic - described in
detail in [114] and [115]. The application of Spectral Clustering results in a cluster separation
of the weighted graph, as presented in [115] the modules can be clustered in a hierarchical
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way. Therefore the clusters have to be used as input data for the Spectral Clustering algo-
rithm again. These procedure can be repeated with each generated cluster until the level of
partitioning is satisfying. Summarizing, the elected data mining technique creates an APLA
of the selected products including a hierarchical grouping of modules and indicating the inter
group dependencies.

Recover APLA candidates using functional analysis: The aim of this step is to recover
an APLA candidate using a technique considering the functionality aspects. In the ECU
software development most of them are open/closed control loop related functions [117, 118].
At first we create a number of processing function related groups determined by expert
knowledge. For each group a set of modules is referenced using the product scope. The
references enable the tracing between PA elements and data dictionary modules. In the next
step, the dependencies between the groups are created. Thereby only variables are considered,
which need to be shared between groups. The scope of other variables remains restricted.
Some of the created groups may have a similar but more coarse grained function scope. Those
can be again aggregated together, which leads to a hierarchical structure. Applying the above
technique results in another APLA candidate, which consists of several hierarchical groups
and group dependencies.

Integrate APLA from APLA candidates: The steps b) and ¢) produce APLA candi-
dates by different recovery techniques. Instead of steps b) and c¢), other techniques from the
field of architecture recovery could be used. But exactly one APLA is required for the fol-
lowing managing activities (see Chapter 4). Therefore the integration of all available APLA
candidates is necessary. We propose two essential steps for integration: At first groups are
created representing the leafs of the APLA. Therefore the appropriate groups of the APLA
candidates are compared and evaluated for reuse. Next the dependencies between groups in
the APLA are determined. In the second step the aggregation of the leaf groups is created
reusing groups of the appropriate level from the APLA candidates. The resulting groups
are determined again by a comparison in an evaluation step. The second step is applied
iteratively for each available APLA candidate level.

Discover TPLA from automotive domain knowledge: As an initial starting point for
the following managing activities (see Chapter 4) a TPLA is needed. A TPLA contains at least
the planned structure compared to the APLA. This knowledge has to be identified by product
experts. As the architecture documentation is only available for individual projects, the
knowledge for planned changes considering a PLA must be imposed using domain knowledge.
To create the structure of a desired TPLA, group candidates and dependency candidates are
identified from standardized automotive specific reference architectures [119, 120]. The TPLA
is created iteratively considering the knowledge of experts.
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A Holistic Approach for Managed Evolution of Automotive
Software Product Line Architectures

4.1 Overall Development Approach

This section summarizes:

Christoph Knieke, Marco Korner, Andreas Rausch, Mirco Schindler, Arthur
Strasser and Martin Vogel. 2017. A Holistic Approach for Managed Evolution
of Automotive Software Product Line Architectures. In Special Track: Managed
Adaptive Automotive Product Line Development (MAAPL), along with ADAP-
TIVE 2017, IARIA XPS Press, pp. 43-52.

As discussed in [25] classical holistic approaches on software product line engineering have to
be adapted to the special requirements of the automotive domain: In the automotive sector, it is
not possible to carry out all further developments within the product line. Rather, there may be
further developments that do not take place in the product line but at the level of the individual
products. The reasons for this may be the high time and cost pressure, but also the fact that
sophisticated further developments are initially to be tested within the scope of a prototype
implementation. These further developments, which are separate from the product line, have
to be transferred into product line development at a later stage. In addition, we often have to
deal with an initially eroded software architecture which first has to be repaired as described in
Chapter 3.

A challenge is to minimize architecture erosion in the long term: The product line architecture
is designed initially and develops over time. In the further development, it must be ensured that
the product architecture remains compliant with the product line architecture. Thus, in order to
prevent architecture erosion in the future, architecture conformance checking is required for all
further developments.

In the following we will explain the basic activities of our approach as already introduced in
Section 1.4 and depicted in Figure 1.2 (see page 9). We have thematically grouped the activities:

1. Activity Recovery & Discovery aims at repairing an eroded architecture as described in
the previous chapter.

2. Activities PL-Requirements, P to PL, PL-Design and PL-Plan are used for planning and
evolving automotive software product line architectures. The focus is on the PLA design and
planning of development iterations.

3. Activities PL-Implement, P-Requirements, PL to P, P-Plan and P-Implement address au-
tomotive product development and prototyping. These activities describe the implementation
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aspects on the two levels — product line development and product development — including
testing and prototyping.

4. Finally, activities PL-Check, P-Design and P-Check deal with architecture conformance
checking. The aim is to limit product architecture erosion by techniques for monitoring
architecture conformance.

We briefly introduce the activities in the following using these thematic groups (for group 1., see
Chapter 3). Afterwards, Sections 4.2, 4.3 and 4.4 summarize several papers referring to the same
thematic groups for the activities. Table 4.1 gives a brief overview on the objectives of each of
the activities, including inputs and outputs.

We distinguish between the terms ‘project’ and ‘product’ in the following: A project includes
a set of versioned software components, so-called modules. These modules contain variability
so that a project can be used for different vehicles. A product on the other hand is a fully
executable software status for a certain vehicle based on a project in conjunction with vehicle
related parameter settings.

2. Planning and FEvolving Automotive Software Product Line Architectures

(PL-Requirements) Software system and software component requirements from requirements
engineering serve as input to the management cycle of the PLA. Errors occurring during the phase
of requirements elicitation and specification have turned out to be major reasons for the failure of
IT projects [121]. In particular, errors occur in case the requirements are specified erroneous or the
requirements have inconsistencies and incompleteness. Errors during the phase of requirements
elicitation and specification can be avoided by choosing an appropriate specification language
enabling the validation of the requirements. In [122], e.g., activity diagrams are considered for
the validation of system requirements by directly executable models including an approach for
symbolic execution and thus enabling validation of several products simultaneously.

(P to PL) Artifacts of the developed product from the product cycle serve as further input
to the management cycle of the PLA: The product documentation contains architectural adap-
tations and change proposals, which can be integrated in the PLA. Furthermore, the modified
modules in their new implementation are committed to the management cycle of the PLA for
integration in product line.

(PL-Design) Next, we consider the design of the PLA. Generally, a software system archi-
tecture defines the basic organization of a system by structuring different architectural elements
and relationships between them. The specification of “good” software system architecture is cru-
cial for the success of the system to be developed. By our definition, a “good” architecture is
a modular architecture, which is built according to the following: (a) design principles for high
cohesion, (b) design principles for abstraction and information hiding, and (c) design principles
for loose coupling. In [26], we propose methods and techniques for a good architecture design.
Based on these methods and techniques a new PLA is defined (called PLA vision) taking the new
requirements (PL-Requirements) and product related information (P to PL) into account. To
assess the quality of the designed PLA, it is necessary to measure complexity and to describe the
results numerically. In particular, we consider properties such as cohesion, coupling, reusability
and variability in order to draw conclusions about the quality of the PLA.

(PL-Plan) As further development of the PLA will effect a high number of products, the
changes have to be planned carefully in order to avoid errors within the corresponding products
and to avoid architecture erosion. Thus, the planning phase has to define a set of iterations
of further development towards the PLA vision. All allowed changes are planned as a schedule
containing the type of change and timestamp. It is planned, in which order the implementation of
corresponding modules should take place. It should be emphasized that there are many parallel



4.1 Overall Development Approach 47

Table 4.1. Explanation of the activities in Figure 1.2 (Section 1.4).

Product line (PL)

PL-Requirements

Eroded

Software

Recovery &
Discovery

PtoPL

P-Check H P-implement

Activity

Objective, Input/Output

1. Recovery and Discovery of Automotive Software Product Line Architectures:

Recovery & Dis- Recovery of the implemented PLA from the source artifacts (developed products) and

covery

discovery of the intended PLA. Input: Source artifacts (developed products). Output:
Implemented and intended PLA.

2. Planning and Evolving Automotive Software Product Line Architectures:

PL-Requirements Specification and validation of software system and software component requirements

P to PL

PL-Design

PL-Plan

by requirements engineering. Input: Requirements. Output: Software system and soft-
ware component requirements.

Providing product related information of developed product for integration into prod-
uct line development. Input: Developed product. Output: Product documentation and
implementation artifacts of developed products.

Further development of PLA with consideration of design principles. Application of
measuring techniques to assess quality of PLA. Input: Software system / compo-
nent requirements and documentation from product development. Output: New PLA
(called “PLA vision”).

Planning of a set of iterations of further development toward the PLA vision taking all
affected projects into account. Input: PLA vision. Output: Development plan including
the planned order of module implementations and the planned related projects.

3. Automotive Product Development and Prototyping:

PL-Implement

P-Requirements

PL to P

P-Plan

P-Implement

Implementation including testing as specified by the development plan for product
line development. Input: Development plan for product line. Qutput: Implemented
module versions.

Specification of special requirements for a certain vehicle product including vehicle
related parameter settings. Input: Requirements in particular from calibration engi-
neers. Qutput: Vehicle related requirements.

Defining a project plan by selecting a project from the product line. Input: Develop-
ment plan for product line. Output: Project plan.

Definition of iterations to be performed on product level toward the planned prod-
uct architecture. Input: Product architecture. Qutput: Development plan for product
development.

Product specific implementations including testing as specified by the development
plan for product development. Input: Development plan for product development.
Output: Implemented module versions.

4. Architecture Conformance Checking:

PL-Check

P-Design

P-Check

Minimization of product architecture erosion by architecture conformance checking
based on architecture rules. Input: Architecture rules and set of implemented modules
to be checked. Output: Check results.

Designing product architecture and performing architecture adaptations taking prod-
uct specific requirements into account. Compliance checking with PLA to minimize
erosion. Input: Project plan and product specific requirements. Quiput: Planned prod-
uct architecture.

Architecture conformance checking between PLA and PA. Input: Architecture rules
and set of implemented modules to be checked. Qutput: Check results.
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product developments, which must be taken into account when planning. Next, either affected
projects and modules are determined or a pilot project is selected.

Some further developments can lead to extensive architectural changes. In this case the effects
of the architectural changes on the associated projects have to be closely examined. For this
purpose further development projects can be defined as prototype projects for certain iterations
of the PLA. These projects are then tested within the product cycle.

3. Automotive Product Development and Prototyping

(PL-Implement) The former planning activity has determined the schedule for PLA adaptations
and product releases. Thus, on the implementation level, new versions of the software are planned,
too. Vehicle functions are modeled using a set of modules, specifying the discrete and continuous
behavior of the corresponding function. As required by ISO 26262 [123], each module needs to
be tested separately. Established techniques for model-based testing necessitate a requirements
specification, from which a test model can be derived. In practice, requirements are specified
by natural language and on the level of whole vehicle functions instead of modules so that test
models on module level can not be derived directly. Therefore, in [32], a systematic model-based,
test-driven approach is proposed to design a specification on the level of modules, which is directly
testable. The idea of test-driven development is to write a test case first for any new code that is
written [124]. Then the implementation is improved to pass the test case. Based on the approach
in [32] we use the tool Time Partition Testing (TPT) because it suits particularly well due to
the ability to describe continuous behavior [125]. The modules may be developed in ASCET or
MATLAB/Simulink.

(P-Requirements) Releasing a fully executable software status for a certain vehicle product
requires a specification of vehicle related parameter settings. Furthermore, special requirements
for a specific product may exist necessitating further development of certain implementation
artifacts. Building an executable software status for a certain vehicle product is realized by the
cycle at the bottom of Figure 1.2. In contrast, the product line cycle includes the development
of sets of software artifacts of all planned projects.

(PL to P) Automotive software product development and prototyping starts with selecting
a product from the product line. Therefore, the project plan is transferred containing module
descriptions and descriptions of the logical product architecture integration plan with associated
module versions.

(P-Plan) The product planning defines the iterations to be performed. An iteration consists
of selected product architecture elements and planned implementations. An iteration is part of
a sequence of iterations.

(P-Implement) An iteration is completed when all planned elements of an iteration are im-
plemented according to the test-driven approach of [32].

4. Architecture Conformance Checking

Architecture erodes when the implemented architecture of a software system diverges from its
intended architecture. Software architecture erosion can reduce the quality of software systems
significantly. Thus, detecting software architecture erosion is an important task during the de-
velopment and maintenance of automotive software systems. Even in our model-driven approach
where implementation artifacts are constructed with respect to a given architecture the intended
architecture and its realization may diverge. Hence, monitoring architecture conformance is cru-
cial to limit architecture erosion.

Each planned product refers to a set of implementation artifacts, called modules. These mod-
ules constitute the product architecture. The aim of PL-Check and P-Check is the minimization
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of product architecture erosion. In [64], a method is described to keep the erosion of the software
to a minimum: Consistency constraints expressed by architectural aspects called architectural
rules are specified as formulas on a common ontology, and models are mapped to instances of that
ontology. Based on this approach we are extracting rules from a PLA to minimize the erosion of
the product architecture. During the development of implementation artifacts the rules can be
accessed via a query mechanism and be used to check the consistency of the product architecture.
Those rules can, e.g., contain structural information about the software like allowed communica-
tions. In [64], the rules are expressed as logical formulas, which can be evaluated automatically
to check the compliance with the PLA.

(PL-Check) After each iteration planned in activity PL-Plan all related product architectures
have to be checked. As P-Check refers to one product only, the check is performed after all related
implementation artifacts of the product are developed.

(P-Design) The creation of a new product starts with a basically planned product architecture
commonly derived from the product line. For the development of the product, new functionalities
have to be realized and thus necessary adaptations to the planned product architecture are made.
In order to keep the erosion to a minimum we have to ensure the compliance to the architecture
design principles of the PLA. Therefore, we check consistency of the planned product architecture
by applying architecture rules from the PLA.

However, in the case of prototyping it may be desired that the planned product architecture
differs from PLA specifications. Thus, as a consequence, the architecture rules are violated.
As already pointed out, product related information is returned to the management cycle of
the PLA after product delivery. If the development of a product required a differing product
architecture with respect to the PLA, this could advance the erosion. Necessary changes must be
communicated to PL-Design and PL-Plan, so that the changes can be evaluated and adopted.
As changes to the PLA can have severe influences on all the other architectures the changes are
not applied immediately but considered for further development.

4.2 Planning and Evolving Automotive Software Product Line
Architectures

We introduce an approach for automotive software systems evolution by concepts for planning
and evolving product line architectures as already sketched in Section 4.1. First, we propose
methods and concepts to create adequate architectures with the help of abstract principles,
patterns, and describing techniques (see Section 4.2.1). Such techniques allow making complexity
manageable. Next, we suggest techniques for the understanding of architecture and measuring of
architecture quality (see Section 4.2.2). With the help of numerical results of these measurements,
we can make a statement about complexity, as well as conclusions about a system. Furthermore,
we describe how to plan development iterations and prototyping (see Section 4.2.3). Finally, we
give an approach for extracting and managing architectural concepts (see Section 4.2.4).

The following three subsections 4.2.1, 4.2.2 and 4.2.3 summarize:

Axel Grewe, Christoph Knieke, Marco Kérner, Andreas Rausch, Mirco Schindler,
Arthur Strasser and Martin Vogel. 2017. Automotive Software Systems Evo-
lution: Planning and Evolving Product Line Architectures. In Special Track:
Managed Adaptive Automotive Product Line Development (MAAPL), along with
ADAPTIVE 2017, TARIA XPS Press, pp. 53-62.
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4.2.1 Concepts for Designing Automotive Software Product Line Architectures

Design patterns, architectural patterns, and styles are an important and suitable means of spec-
ifying software architectures [55]. We subsume these under the term of architectural concepts.
An architectural concept is defined as: “a characterization and description of a common, abstract
and realized implementation-, design-, or architecture solution within a given context represented
by a set of examples and/or rules.”

At the architectural level, these are often associated with terms as a client-server system, a
pipes and filters design, or a layered architecture. An architectural style defines a vocabulary of
components, connector types, and a set of constrains on how they can be combined [55].

Architectural concepts can be described in the form of classical patterns, by describing a
particular recurring design problem that arises in specific design contexts and presents a well-
proven generic scheme for its solution. The solution scheme specifies all constituent components,
their responsibilities and relationships, and the way in which they will collaborate [56].

In the same way, we illustrate some examples that we worked out in our automotive domain
projects. Generally, the complexity of component-based control systems is increasing continu-
ously, since there are more and more functional dependencies between the individual compo-
nents. A mapping of these dependencies to point-to-point connections results in a huge, complex
and difficult to maintain communication network. This leads to a likewise huge effort in the field
of maintenance and further development for these software systems - small changes result in
high costs. This problem of a not manageable number of connections emerged in many indus-
trial projects we explored in our field studies. We present architectural concepts addressing this
problem in particular.

The five presented architectural concepts in this paper were developed within different in-
dustrial projects in the automotive domain involving different software architects and project
members. Nevertheless, there are similarities between the presented concepts, which become ex-
plicit by generalization and the representation by a uniform description language. Thereby, the
projects focused the same as well as varying problem issues and requirements. With the rep-
resentation technique supported by a uniform description language it was possible to reuse the
concepts in other projects to increase the quality in an early phase of development.

The architectural concepts presented in this paper are developed iteratively and in some cases
the development time took over one year. As a result from our field studies we can outline that
there are similarities between the architectural evolution of product lines and the abstract and
generic development process of concepts, which is not surprising. The evolution of an architectural
concept looks like the same - reuse and adaptation in other projects, which sometimes results
in a new concept. Besides we can observe that the different levels of abstraction we have for
architecture descriptions, we can find for concepts, as well.

Architectural concepts help to build a collective experience of skilled software engineers.
They capture existing, well-proven experience in software development and help to promote
good design practice [56]. The result of making these concepts explicit on this abstraction level
leads to discussions about architectural problems and generic solution schemes. In particular at
the product line architecture level the focus is shifted from the more technical driven problems
upon the more abstract and software architecture oriented issues. Over time this leads to new
architectural concepts that are documented, evaluated, maybe extracted from existing products,
but made explicit and integrated at the right places in the further development process.

Another very important aspect dealing with architectural concepts is the monitoring of the
concrete realizations of them. In our approach the Check activity takes care of it. All the presented
concepts can be represented by a logical rule set, as described in [65]. Related to the fact that all
elements of the software are subjects to the evolution process, architectural concepts can change
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or have to be adapted over time. This means that the violation of an architectural rule indicates
not always a bad or defective implementation, it can additionally give the impulse to review
the associated concept and the context. In our approach the assessment of the rule violation is
included in the Check activity and if there is an indication for a rule adaptation this will be
analyzed and worked out in detail in the next Design activity. Overall it leads to a managed
evolution.

4.2.2 Understanding of Architecture and Measuring of Architecture Quality

Software development is an evolutionary and not a linear process. The costs caused by errors
in software in the last years, especially in the automotive industry, are very high (15-20% from
earnings before interest and taxes). Thus, it is necessary to understand and evaluate the archi-
tecture to support further development. In a vehicle, software will occupy a larger and larger
part and the costs caused by errors will be rising. Therefore, it is important to control the quality
of the software continuously. Problems/Errors can be detected early so that the quality of the
software increases. The quality of the software depends in particular on the quality of the corre-
sponding software architecture. In our approach, we use PLAs for automotive software product
line development. PLAs are special types of software architectures. They do not only describe
one system, but many products that can be derived from this architecture. Variability of the
architecture, reuse of products, and the complexity are important values to assess the quality of
this architecture.

Today, metrics mainly focus on code level. The most common metrics are Lines of Code,
Halstead, and McCabe. In object-oriented programming (OOP), MOOD metrics and CK metrics
are used. However, these metrics are not suitable for measuring PLAs. For assessing a PLA, the
most important value is variability, as the degree of variability increases complexity in PLAs.
Further important values are complexity and maintainability of the possible products and the
PLA. As products shall be reused for other products, a high reuse-rate of products is an important
objective of the PLA. A high reuse-rate also implies a high focus on maintainability of the
products.

In our approach, we assess the modification effort, reuse rate and cohesion of a PLA since we
can thus evaluate the properties discussed above. Furthermore, we give formulas and examples
for the calculation of these metrics.

A software architect changes the PLA to fulfill new requirements. The aim is to implement the
new requirements with the least possible adaptation on the product/module level. We exemplarily
describe the procedure of applying change operations on a PLA.

4.2.3 Planning of Development Iterations and Prototyping

In our case the planning of further development involves several activities, e.g., performing
planning of each modification of PLA and PA. The problem arises when PL-Requirements or
P-Requirements needs to be realized within certain development time and within certain de-
velopment costs. Planning solves the problem by defining timed activities considering the effort
limitations.

Planning consists of a sequence of iterations. Iterations are defined as a number of architecture
elements that must be realized in a time period bounded by g4+ and tepg With tegre, tend €
N, tstart < tend- Within each time period the activities Design, Plan, Implement and Check are
ordered. The iteration is completed when all modifications are realized by Design, Implement,
and checked to be conform to architecture rules by Check. An example of a sequence of three
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iterations is shown in Figure 4.1: The expected result of modifications on PLA at several time
points is defined, which corresponds to PL-Plan. Moreover, the expected result of modifications
on PA are defined where products, modules and their mapping for three time points is shown in
Figure 4.1.

The effort caused to realize the planned number of architecture elements is estimated by the
activities Design and Implement, to achieve the PLA and PA development within given effort
limitations. In case of a deviation between planned and actual estimations the initial plan is
modified. Therefore, effort estimations are made by considering the necessary effort of PLA or
PA modifications from Design and from Implement.

In the following, details about effort estimations according to PLA and PA modifications are
presented to achieve estimation based planning. The first estimation concept is based on metrics
to evaluate the modification effort. For example, modification effort according to connection
structure and component structure is estimated by rating cohesion of components. Another
estimation concept is to evaluate the effort based on a modification realizing a new pattern in the
appropriate PLA or PA. Simple connection or component related modifications are lightweight,
pattern based structure modifications are heavyweight. Modifications rated as heavyweight often
involve a huge number of architecture components and products. Therefore, in such a case our
methodology suggests to outsource such heavyweight modifications into a prototype project. This
special case is dealt with in activity PL to P of our methodology.
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Fig. 4.1. Relation between PLA, products and modules
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4.2.4 Knowledge-based Architecture Evolution and Maintenance

This section summarizes:

Axel Grewe, Christoph Knieke, Marco Korner, Andreas Rausch, Mirco Schindler,
Arthur Strasser and Martin Vogel. 2017. Automotive Software Architecture Evo-
lution: Extracting, Designing and Managing Architectural Concepts. In Inter-
national Journal On Advances in Intelligent Systems, vol. 10, no. 3 & 4, pp.
203-222.

This paper is a substantial extension of the work in [30], summarized in the previous three
subsections. We propose an approach to extract architectural concepts (cf. Section 4.2.1) for
the design of automotive software product line architectures. Furthermore, we outline how this
approach can be extended to a holistic solution for managing architectural concepts during the
evolution of the system life-cycle.

Looking at different products and their architectures, the architectural concepts are very
helpful to create a common product line architecture. For this reason, we focused on the research
question how the developer’s best practice can be identified and reflected to the architectural
level. Figure 4.2 gives an overview on the approach to extract architectural concepts embedded
into an evolutionary incremental development process.
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Fig. 4.2. Overview of the approach to extract architectural concepts embedded into an evolutionary
incremental development process

To give a short introduction of the approach, we will give some general definitions of the
terms used in Figure 4.2 in the following. A Concept C is described by a set of Properties
P. For an Element E a so called Detector D is defined as the binary function d,; € D for a
concrete property p; € P and a concrete element e; € E:
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(4.1)

d, (e:) = 1 , iff the Element e; fullfills the Property p;
P00 , otherwise

An element can be a system artifact like a class, a function or a dependency between two
elements as well as a subset of artifacts and their dependencies on the realized systems. As shown
in Figure 4.2 the extraction is based on the realization of the systems. The system artifacts
respectively the source code elements are transferred to the so called System Snapshot &. It
represents the realization of a software system as a language independent model representation,
but including the links to the original source code elements. The used meta model is a further
development of the model used in [65], [126] and [127].

Another data pool is the Factbase §, which represents the fulfillment of concepts for the con-
crete elements. It is divided into three parts, two data-structures organized in a table-structure
listing facts referring to elements respectively to dependencies and one describing facts about el-
ements and the dependencies between them. These facts are organized in a graph-data-structure.

The last of the three data pools is the Concept Space (2. It stores all known concepts,
whereby a concept is represented as a named element and linked to its detector and examples,
which fulfill this concept.

Altogether the defined process for extracting architectural concepts consists of three activities
(blue boxes in Figure 4.2), which are performed iteratively and is called Extraction-Cycle. The
connecting element between these activities is the Configuration Y. Per iteration one configu-
ration o; € X' is created and used for the information exchange between the activities. Therefore
it includes all decisions, which are made in an activity.

The output of the approach is the so called Concept Performance Record, this record
informs about the concepts, which are found in the analyzed system realization.

Next, we summarize the selection, extraction and generalization activity: In the selection
activity an expert decides, which parts from the system should be analyzed and what is the
initial set of concepts, which should be used for it. The eztraction activity is fully automated and
generates first the Factbase based for the selected elements by executing each detector for each
element. After the Factbase has been enriched with new facts receptively potential new concepts,
a validation of these facts is carried out in the generalization activity by an expert.

For the extracting of new concept candidates within the extraction activity different clustering
algorithms and a statistical analysis were implemented and benchmarked. The input for all
algorithms is the generated Factbase. Statistical analysis based on the frequency analysis of
occurring patterns gave first indication for potential concept candidates but was not practicable
for a good automation of the extraction process. Therefore, different clustering algorithms were
used to group similar elements and to derive concept candidates from this clusters: Neural Gas
[128], Growing Neural Gas [129], and a Self-Organizing-Map (SOM) [130] orientated on the work
of Matthias Reuter [131], [132]. These algorithms are used to find concepts on the system element
level to detect special data-objects like TransferObjects [133], for example. In addition, they are
used to extract similar properties for the dependencies between elements to define different
types of dependencies like special communication channels or different kinds of relations like an
inheritance relation between two elements, which is typical for an object orientated realization,
for example.

To extract new facts from the facts represented in a graph-structure, we use the following
algorithms to find similarities and anomalies within the graph:

1. Graph Kernels [134],
2. Graph Clustering approaches like SPAA [114, 115, 116], and
3. t-SNE [135].
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For the creation of new detectors by training them with the representatives, a SOM is used. The
selection, parametrization and evaluation of suitable algorithms are an ongoing process and will
be focused in future work.

As visualized in the bottom of Figure 4.2 the approach can be embedded into an evolutionary
incremental development process. After each implementation step the realization can be analyzed.
Thereby the generated Concept Performance Record can support the system architect to get a
comprehension of the realized concepts. This information can be combined with the results from
the PL-Check and P-Check activity. As described the aim of the checking activities is to reduce
the erosion of a product architecture by architecture conformance checking. The output of these
activities is a list of violations. If the developer was not familiar with the architecture, for example,
and this is the reason for the violation, it can still be fixed during the next implementation step
by the developer, so that no erosion occurs. On the other hand it can be decided that the reason
for the violation is reasoned by a not suitable architecture. In this case the Concept Performance
Record can support by planning the architectural changes by making the aspects the developer
has in mind explicit on the architectural abstraction level.

An additional issue is the improvement of the evolution and maintenance process by the
monitoring of concepts. We can assume that the configuration and all data pools are stored in
a repository and will be versioned. So over time architectural concepts can be adapted to new
requirements or in consequence of new technologies, frameworks or programming paradigms, for
example. This can also lead to new concepts, which maybe replace old concepts, so it might be
possible that extracted concepts will disappear over time. But these changes can be detected with
the help of the detector mechanism, too, or in other words comparing two Concept Performance
Records from different versions of a product will lead to indications of mutations and/or dis-
placement of concepts. What on the other hand can help to detect product architecture erosion
at an early stage.

We demonstrate our approach on a real world example, the longitudinal dynamics torque
coordination from automotive software engineering. In the case study we describe how we apply
the approach to manage the complexity of the example system: First, we start with architecture
recovery and extract essential architectural concepts. Then, within several iterations, we design
the new PLA while continuously measuring architecture quality of each new design. We show
that the application of the approach paves the way for long-term maintenance and extensible
architectures.

4.3 Automotive Product Development and Prototyping

This section summarizes:

Henrik Peters, Christoph Knieke, Oliver Brox, Stefanie Jauns-Seyfried, Michael
Kréamer and Andreas Schulze. 2014. A Test-driven Approach for Model-based
Development of Powertrain Functions. In Agile Processes in Software Engineer-

ing and Ezxtreme Programming. 15th International Conference on Agile Software
Development, XP 2014, Springer-Verlag, pp. 294-301.

Vehicle functions are modeled using a set of modules, specifying the discrete and continu-
ous behavior of the corresponding function. As required by ISO 26262, each module needs to
be tested separately. Established techniques for model-based testing necessitate a requirements
specification, from which a test model can be derived. In practice, requirements are specified
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by natural language and on the level of whole vehicle functions instead of modules so that test
models on module level can not be derived directly.

In this paper we propose a systematic model-based, test-driven approach to design a specifica-
tion on the level of modules, which is directly testable (see Section 4.3.1). The idea of test-driven
development is to write a test case first for any new code that is written [124]. Then the im-
plementation is improved to pass the test case. In our approach we use the tool Time Partition
Testing (TPT) because it suits particularly well due to the ability to describe continuous behavior
[125]. The modules may be developed in ASCET or MATLAB/Simulink. Finally, we demonstrate
our approach on a Selective Catalytic Reduction system, a real world example from automotive
software engineering at Volkswagen (see Section 4.3.2).

4.3.1 Test-driven Approach

Continuous behavior and its testing have some specialties [136]. TPT is both a new testing
methodology for testing continuous behavior of embedded systems in the automotive domain
and a tool for supporting that methodology. TPT supports the activities modeling, execution,
evaluation, and documentation of tests [125].

The platform-independent construction of test models is performed using a graphical, state-
based notation. Entire sequences of test scenarios are decomposed to phases with states and
transition conditions. To execute test cases automatically formal definitions are assigned to each
element. All test cases of a scenario are derived from a single state machine using the classification
tree method by combining the variation points.

The execution of test cases is platform-dependent by means of a test engine. To run the
same test cases in a model-in-the-loop (MiL), a software-in-the-loop (SiL) or a hardware-in-the-
loop (HiL) test, an abstract intermediate code is used. During execution all signals involved are
recorded.

To evaluate the recorded signals properties have to be specified that must be met. The
definition of a test oracle is difficult if the recorded signals are complex and often it is impossible
to define the system’s behavior based only on the outputs. Therefore, the recorded signals are
abstracted in order to extract information and to allow general statements. For example, TPT
enables the simple evaluation of threshold crossing or the simple comparison with reference
signals. Any assessment can be valid globally or temporarily.

To start with our approach, some preparatory work is needed. The aim of the development is
to implement a complete function of the engine control unit. However, currently our approach is
limited on the development of a single module. Therefore, the function to be developed has to be
decomposed into components, which are further divided into modules. For the decomposition of
the function, an established procedure is used in the development process. During the first and
the second decomposition, the respective interfaces have to be specified (between components
and modules respectively). The result is a complete module architecture, in which each module
can be designed.

We have adapted the test-driven development (TDD) cycle for model-based development, as
well as enhanced it for model-based testing (MBT). Figure 4.3 shows the extended TDD cycle.

Each cycle starts with a requirement, which has to be implemented. Instead of writing a test
directly, the test model is extended — based on criteria, which are described more detailed later. In
this step, the necessary assesslets for specifying and checking the requirement and the necessary
testlets to produce the desired input data for the system under test (SUT) are modeled. In the
following the test cases are derived. TPT allows a manual selection of test cases and enables
an automatic generation based on the classification tree method. The following steps are closely
related to the original TDD approach, except that we refer to models instead of code.
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Fig. 4.3. Extended TDD cycle for model-based development

TDD focuses on unit tests to check the implementation. Since we use TDD to design a testable
specification, we are focusing on acceptance tests. To ensure a high coverage of the generated
code, we use coverage metrics like decision coverage for measuring the test quality.

Requirements are formulated with the aid of assesslets in TPT so that they can be viewed
directly as a testable specification. Therefore, some properties have to be met. At module level
the specification describes a required behavior. In order to observe behavior, signals are required,
so that we define two rules:

1. We demand at least one requirement per signal.
2. We demand at least one signal per requirement.

It should be pointed out that the behavior of the respective signal may depend on other
signals, characteristic values, curves, maps or system constants, which has to be considered.

In addition to these optional dependencies, a requirement has a unique name and via the
documentation capabilities of TPT it is possible to add further descriptions (e.g., natural lan-
guage comments, behavior or context diagrams, etc.). Furthermore, the conventional rules for
requirements engineering apply (atomicity, consistency, etc.).

Each requirement must be covered by an acceptance test. According to the TDD cycle a new
requirement may only be implemented if the corresponding acceptance test fails. This implies that
defects that are not detected by a test have to be reproduced by a test before the adaptation
of the system model is done [137]. Although acceptance tests are usually a kind of black-box
testing, these rules also apply to local signals of the respective module. That means that the
specification includes not only interface-related behavior. The test aspects of our approach can
be classified as a modification of grey-box testing.

4.3.2 Case Study

We demonstrate our approach on a selective catalytic reduction (SCR) software system, a real
world example from automotive software engineering at Volkswagen. The reduction of pollutant
emissions is an important challenge in the automotive domain. An exhaust after-treatment system
is the SCR. SCR is a means of reducing nitrogen oxides (NOx) contained in the exhaust emissions.
The software of SCR is divided into different components, e.g., the heater, the pump, and the
coordinator. The components itself are divided into modules. The pump component, for instance,
consists among other things of a module for the pressure build-up after start, the controller, and



58 4 A Holistic Approach for Managed Evolution of Automotive Software Product Line Architectures

the post-drive. In the paper we demonstrate the approach exemplarily on an excerpt of the
module for the pressure build-up after start.

The interface of the module consists of an input, which provides the pressure in the reduc-
ing agent line. Outputs are the required mass flow and the required duty cycle needed for the
pressure build-up. The starting point is an unspecified module except for the interface definition.
Therefore, we begin to specify the behavior of the mass flow signal. The behavioral specification
of the signal consists of four assesslets, where the first one specifies the valid range of the sig-
nal. The other three assesslets specify the behavior of the signal. During the specification of the
output it turns out that the modules’ behavior is dependent on an internal state of the module.
Therefore, a new, local signal for the specification of this state is introduced. Further outputs
are specified step-wise in the same manner.

To sum up, seven modules within the SCR functionality have been successfully developed.
In addition, the test quality was evaluated by means of decision coverage. The domain models
provide valuable information for the further integration of modules, e.g., for implementation in
fixed-point arithmetic.

4.4 Architecture Conformance Checking

This section summarizes:

Christoph Knieke, Marco Korner, Andreas Rausch, Mirco Schindler, Arthur
Strasser and Martin Vogel. 2017. Control Mechanisms for Managed Evolution
of Automotive Software Product Line Architectures. In International Journal
On Advances in Software, vol. 10, no. 3 & 4, pp. 191-210.

This paper is a substantial extension of the work in [25], summarized in Section 4.1 and
presents an approach focusing on the minimization of architecture erosion in the automotive
domain. We propose control mechanisms for a managed evolution of automotive software prod-
uct line architectures. First, we introduce a description language and its meta model for the
specification of the software product line architecture and the software architecture of the corre-
sponding products (see Section 4.4.1). Based on the description language we propose an approach
for architecture conformance checking to identify architecture violations as a means to prevent
architecture erosion (see Section 4.4.2). We demonstrate our methodology on a real world case
study, a brake servo unit (BSU) software system from automotive software engineering. To show
the benefits of our approach, we define several metrics on architecture and software level and
apply the metrics on the BSU example (see Section 4.4.3).

4.4.1 Architecture Description Language

The software architecture serves as input for the subsequent development steps, e.g., for im-
plementation and test. In this architecture, the software building blocks of the cars embedded
system are documented. Thereby, the implementation step follows the model-based development
approach, where code is generated from architecture models using tools of the industrial partner.
To model these architectures in the industrial projects we introduced the EMAB (Einheitliche
Modulare Architektur Beschreibung) architecture description language. The EMAB is applied
for the architecture extraction and the managed evolution approach presented in this paper. In
addition, the EMAB includes all aspects to describe the static structure of the project partners
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electronic control unit system domains. EMAB is used to describe two layered architectures con-
sisting of the logical architecture layer called DESIGN and the technical software architecture
layer called IMPLEMENT. Both are defined by the syntax and semantics of the EMAB meta
model elements. For each layer, the EMAB also defines the appropriate block diagram based
views for architecture description. In our approach, the two layers DESIGN and IMPLEMENT
refer to activities PL-Design/P-Design and PL-Implement/P-Implement, respectively.

In the paper, we illustrate the details of the EMAB syntax and appropriate semantics of the
DESIGN layer and IMPLEMENT layer and their appropriate views. Furthermore, we show and
explain the meta model in detail including the description language syntax and give an exemplary
instance of the meta model.

From the technical point of view, the EMAB models are stored as XML files. During the
export or import the file validity against the XML schema is checked. But not every model that
is valid against the XML schema, is also a valid architecture description. Therefore, in the paper
several rules are introduced for each layer in detail. These rules must be fulfilled to ensure the
validity of the description of the two architecture layers.

4.4.2 Checking Views and Activities

In contrast to the validation checking of an EMAB model instance, where a syntax and general
low-level semantic checking is performed, this subsection focuses on the individual product and
the corresponding product line. The architectural concepts defined by the dedicated architecture
and represented by its architectural rules are the input for this architecture conformance checking
activity together with the implemented modules, respectively the realized parts of the systems.
Output of a check is a set of violations, i.e., a list of pointers where the implementation does not
fulfill the defined architecture.

As it is known from the field of architectural concepts and design patterns, these can be
defined generally but it is not uncommon, that a software architecture contains more than one
concept or pattern. Thereby the patterns can be adapted or modified to meet special requirements
in a different level of specialization. Furthermore, the number of concepts and its variations
are increasing steadily in practice. On the other hand, it might happen that realized concepts
are dropped during the ongoing evolution steps. Hence, this activity has to be managed and
supported by tools to support architects and developers, and for making concepts explicit.

We provide different views toward visualizing the architecture of a product and a product line.
The EMAB meta model enables a mapping between elements of both views by the maeMapping
association: Elements of the IMPLEMENT layer, the so called module architecture elements,
are mapped to elements of the DESIGN layer, the so called logical architecture elements. The
specified connections between the module architecture elements have to correspond to the con-
nections between the mapped logical architecture elements. Otherwise, the checking activities
will detect an architecture violation.

In the paper the fundamentals of the checking views are described individually and explained
with the help of a simple example. Furthermore, the individual checking activities, which are
part of our methodology, are illustrated in detail.

Due to the high number of product lines existing in parallel and the high number of derived
and realized product variants it is not economical to implement such a checking activity without
a suitable tool support. Thereby the following use cases have to be supported:

1. Creation of architecture rules,
2. selecting the implemented artifacts,
3. selecting the right rules,
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4. performing the check and
5. visualizing the checking results to determine further actions.

For performing the checking activity we use an approach based on a logical fact base, as
described in [64] and [127].

4.4.3 Evaluation and Discussion

To evaluate our methodology, we present the quantitative analysis for the BSU software devel-
opment that is realized and maintained in cooperation with our project partner over a period of
5 years. In particular, we refer to the research objectives 2.a. and 2.b. as defined in Section 1.4:

1. Maintaining stability of the PLA and minimizing software product architecture erosion in
real world automotive systems even if extensive further development of the system takes
place.

2. High degree of reusability in real world automotive software development by achieving a high
scalability, and a high degree of usage of the software components.

We could show that we have met these objectives. In the paper we first propose metrics for
the evaluation criteria. Next, we apply our metrics to the BSU example. As a result, with regard
to objective 2.a., we could limit architecture erosion to a minimum: Only one minor violation
occurred in a period of five years. All further developments have followed the originally planned
architectural principles and thus resulted in a high stability of the PLA. Moreover, with regard
to objective 2.b. we were surprised at the high number of usage of the modules: Most modules
were used in all projects existing at that time. Only the scalability deteriorated in 2014 and
2015. But in 2016, the value has improved considerably again. Generally, a high degree of reuse
could be observed: Each module was reused on average in 35 projects. Even the high number of
potential variants could be managed with the approach.
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Conclusions

In this thesis, I proposed an approach for managed evolution of automotive software product line
architectures. Such a holistic approach is still missing as revealed by our systematic literature
study. Moreover, the systematic literature study indicates a research gap in the field of the long
term evolution of automotive software product line architectures.

As a first step of our methodology, we aim at repairing an eroded software architecture. Archi-
tecture repair involves the two approaches recovery and discovery. We show how these approaches
can be adapted to recover the implemented automotive software product line architecture from
the developed products and to discover the intended product line architecture.

Next, I proposed a holistic approach for a long-term manageable and plannable software
product line architecture for automotive software systems. The approach aims to close the gap
between product architectures and the product line architecture in the automotive domain. Thus,
we use adapted concepts like architecture design principles, architecture compliance checking, and
further development scheduling with specific adaptations to the automotive domain. The focus
is on improving reusability and enabling scalability, to manage a huge number of variants in real
world automotive systems.

For planning, designing and evolving automotive software product line architectures, func-
tional software systems complexity has to be managed. Therefore, we introduced an approach
based on modular, well-defined, and linked requirements as well as architectures. First, we pro-
posed methods and concepts to create adequate architectures with the help of abstract principles,
patterns, and describing techniques. Such techniques allow making complexity manageable. Next,
we suggested techniques for understanding of architecture and measuring of architecture quality.
With the help of numerical results of these measurements, we can make a statement about com-
plexity, as well as conclusions about a system. Finally, we described how to plan development
iterations and prototyping.

In our activities for automotive product development and prototyping we address the imple-
mentation level, where amongst other things new versions of the software are planned. Vehicle
functions are modeled using a set of modules, specifying the discrete and continuous behav-
ior of the corresponding function. As required by ISO 26262, each module needs to be tested
separately. Established techniques for model-based testing necessitate a requirements specifica-
tion, from which a test model can be derived. In practice, requirements are specified by natural
language and on the level of whole vehicle functions instead of modules so that test models
on module level can not be derived directly. Therefore, we proposed a systematic model-based,
test-driven approach to design a specification on the level of modules, which is directly testable.
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Furthermore, we introduced an approach for architecture compliance checking of automotive
software product line architectures. Modifications to a system that violate its architectural prin-
ciples can degrade system performance and shorten its useful lifetime. As the potential frequency
and scale of software adaptations increase to meet rapidly changing requirements and business
conditions, controlling such architecture erosion becomes an important concern for software ar-
chitects and developers. Therefore, we presented an approach focusing on the minimization of
architecture erosion in the automotive domain. We introduced a description language for the
specification of the logical product line architecture. Based on the description language we pro-
posed an approach for architecture compliance checking to identify architecture violations as a
means to prevent architecture erosion.

The presented methodology was derived and established in the context of several industrial
automotive projects: These are a brake servo unit (BSU) software system, a selective catalytic
reduction (SCR) software system and the longitudinal dynamics torque coordination. All of
them are part of the engine control unit software at Volkswagen. Moreover, for the recovery
and discovery phase we analyzed the complete software repository for the engine control unit
software with 21,734 module versions. Some results of our work were even successfully used in
series production at Volkswagen. As one result, we could limit architecture erosion to a minimum:
Only one minor violation occurred in a period of five years. All other further developments have
followed the originally planned architectural principles. Moreover, we were surprised at the high
number of reuse of the modules: Each module was reused on average in 35 projects. Even the
high number of potential variants could be managed with the approach. By the real world case
studies, we could show that we have met all research objectives as defined in Section 1.4.

As a future work, we aim at realizing a tool-chain enabling the architecture description of the
different architectures (product line architecture, product architecture, including versioning), the
measure and evaluation of quality attributes, as well as the integration of the ArCh-Framework
[64]. An associated challenge is the applicability of the tool-chain in a real world industrial project
that targets the erosion management in the field of automotive product line architectures and
product architectures used for automotive software sharing between the OEM and TIER1. Ap-
propriate abstraction techniques are crucial to cope with the huge set of adjustable parameters
within the ECU software and to manage variability. Thus, we are currently developing a con-
cept including a prototypical tool environment that enables the description and visualization of
variability.
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