
Stefan T. Ruehl

Mixed-Tenancy Systems

A hybrid Approach between Single and
Multi-Tenancy

SSE-Dissertation 9

Software
Systems
Engineering

Department of Informatics
Chair of Prof. Dr. Andreas Rausch

Mixed-Tenancy Systems
A hybrid Approach between Single and Multi-Tenancy

D o c t o r a l T h e s i s
(D i s s e r t a t i o n)

to be awarded the degree of
Doctor of Engineering

(Dr.-Ing.)

submitted by

Stefan T. Ruehl
fromDarmstadt

approved by the Department of Informatics,
Clausthal University of Technology

2014

Dissertation Clausthal, SSE-Dissertation 9, 2014

Chairperson of the Board of Examiners
Prof. Dr. Jürgen Dix

Chief Reviewer
Prof. Dr. Andreas Rausch

2. Reviewer
Prof. Dr. Urs Andelfinger

Date of oral examination: June 16, 2014

Cover picture: ©iStock.com/Serp77

Abstract

Multi-Tenancy is an architectural paradigm that is supposed to allow operators to
exploit economies of scale. This is due to the fact that a single instance of Multi-
Tenancy application serves multiple customers at the same time. Thus, operators
may utilize resources and facilitate application operations more efficiently. On
the other hand, however, a major drawback of Multi-Tenancy is the customers’
hesitation of sharing infrastructure, application code, or data with other tenants.
According to recent studies, this is due to the fact that one of themajor threats
of Multi-Tenancy is information disclosure due to a systemmalfunction, system
error, or aggressive actions by individual users. So far, the only approach in
research to counteract on this hesitation has been to develop new techniques to
enforce the isolation between tenants using the same instance.

This work tackles this challenge by proposing a novel approach that is referred
to as Mixed-Tenancy. It allows customers to express their deployment constraints
about if or even with whom they want to share the application. To be more
precise, the approach enables the customer to make that choice not just for the
entire application but specifically for individual application components and
their underlying infrastructure stack. Based on these constraints a deployment is
computed that uses infrastructure as efficiently as possible by being in compli-
ance with all constraints. Such a deployment is referred to as valid and optimal.
Thus, Mixed-Tenancy is an approach that allows operators to exploit economies
of scale by still keeping customers’ hesitations concerning the privacy threats of
Multi-Tenancy inmind.
This work contributes to the creation of Mixed-Tenancy systems by introduc-

ing a generic model that allows capturing customers’ deployment constraints.
Thereby, the model allows customers to express complex constraints (e.g. “shar-
ing shall only be permitted with companies from Europe but not with com-
petitors”) while still allowing the operator to keep its customer base secret. In
addition the problem of computing a valid and optimal deployment is formally
defined and analyzed. Furthermore, it is proven to be NP-hard and two intuitive
heuristics are introduced and compared.

Finally, this work evaluates the applicability of Mixed-tenancy by investigating
a case study in the area of cloud computing. This is done by introducingMixed-
Tenancy to an existing cloud application, called OpenERP, currently used in
industry. It thereby demonstrates that the Mixed-Tenancy approachmay indeed
be successfully applied to real-world systems.

v

F^r Carina (Bald-)Ruehl

Danksagung (Acknowledgments)

Nothing of me is original. I am the combined
effort of everybody I’ve ever known.

Chuck Palahniuk

Diese Arbeit ist nicht dasWerk einer einzelnen Person, sondern wäre nicht mög-
lich gewesen, ohne die Unterstützung vieler. Hiermit möchte ichmich bei eini-
gen noch einmal besonders bedanken.
Ich bedankemich bei Prof. Dr. Urs Andelfinger und Prof. Dr. Andreas Rausch,

meinen Doktorvätern, die mir die Möglichkeit gegeben haben, eine berufsbeglei-
tende Promotion durchzuführen undmich dabei unterstützt haben. Mir wurde
durchmeine Doktorväter eine exzellente Umgebung für die Entwicklung dieser
Arbeit geschaffen, in der es möglich war, im engen Dialog neue Ideen offen zu
diskutieren. Ich habe alle unserer vielen, teilweise kritischen, Diskussionen als
extrem fruchtbar und bereichernd empfunden.

DesWeiterenmöchte ichmich herzlichst bei Prof. Dr. Steffen Lange und Prof.
Dr. MarianMargraf von der Hochschule Darmstadt bedanken. Ohne sie wären
die formalisierten Darstellungen und Beweise in dieser Arbeit in der vorliegenden
Form nicht möglich gewesen. Bei Steffen Lange möchte ich mich besonders
für seine Geduld bei unseren ersten Terminen bedanken. Auch wenn mir die
Ästhetik von mathematischen Formalisierungen wahrscheinlich für den Rest
meines Lebens in seiner Gänze verschlossen bleiben wird, hat er mir doch einen
sehr guten Einblick gegeben.
DesWeiteren geht mein Dank an Prof. Dr. HolgerWache von der Fachhoch-

schule Nordwestschweiz für seine Unterstützung bei der Realisierung des Descrip-
tionModels mit Hilfe von Technologien aus demGebiet des SemanticWebs. Es
hat mich sehr gefreut, mit Dir daran zu arbeiten.
Diese Arbeit ist berufsbegleitend neben meiner Tätigkeit bei der T-Systems

entstanden. Sie wäre sicherlich nicht möglich gewesen, hätte ich nicht auch
durchmeinen Arbeitgeber ideale Bedingungen vorgefunden. Besonders danken
möchte ich hier meinem Vorgesetzten Dr. Stephan Verclas, Leiter des Innovation
Centers der T-Systems. Er hat diese Bedingungen fürmichmaßgeblich geschaffen.
Mein Dank geht aber auch anmeine Kollegen Sascha Steiner, Jens Paprotny und

ix

alle meine anderen Kollegen aus dem Innovation Center dafür, dass sie mir vor
allem gegen Ende der Promotionszeit genug Freiraum geschaffen haben, um die
Arbeit meinen Vorstellungen entsprechend abzuschließen. Zudem geht mein
Dank auch an Matthias Reinhard, Malte Rupprecht, Björn Morr und Candide
Orou-Yorouba, die es geschafft haben, diese Arbeit durch die Arbeit an ihren
Abschlussarbeiten und den damit verbundenen Diskussionen zu unterstützen
und zu bereichern. Kapitel 6 und Anhang B habe ich maßgeblich mit Ihnen
zusammen entwickelt.
Für die vielen inhaltlichen Diskussionen sowie die intensiven Reviews gegen

Ende geht mein Dank an Dr. Marcus Zinn undMichael Roth.
DesWeiteren danke ichmeinen Eltern, Antje und Bernd, sowie meinen Groß-

eltern, Karla und Jochen, die mich währendmeiner gesamten schulischen und
akademischen Ausbildung immer unterstützt und gefördert haben.
Letztendlich geht mein Dank an Carina Voigt, der ich diese Arbeit widme.

Carina hat mir in allen Phasen dieses Projektes stets zur Seite gestanden, hat
mich unterstützt undmir den Rücken frei gehalten. Sie hat stets meine Launen
ertragen undmir geholfen, auch nach Rückschlägen doch nicht das Ziel aus den
Augen zu verlieren. Ohne sie wäre die Arbeit nicht möglich gewesen.

Vielen Dank!

Stefan Tobias Ruehl
Erzhausen, den 18.04.2014

x

Contents

Abstract v

Contents xi

List of Figures xv

List of Tables xvii

List of Definitions xix

1. Introduction 1
1.1. Motivation . 1
1.2. Goals and Contributions of thisWork 2
1.3. Structure and Content . 3
1.4. ResearchMethodology . 4

2. Towards Mixed-Tenancy - A Problem Analysis 9
2.1. Fundamental Concepts and Approaches I 10

2.1.1. Relevant Stakeholders . 10
2.1.2. Component-Based Software 11
2.1.3. Single-Tenancy andMulti-Tenancy 12

2.2. Scope of thisWork . 14
2.2.1. Introduction of Mixed-Tenancy 15
2.2.2. Challenges of Mixed-Tenancy 17
2.2.3. Research Questions of thisWork 19
2.2.4. Limitations of Scope . 20
2.2.5. Deployment Configuration Generator 22

2.3. Application of Mixed-Tenancy in Cloud Computing 23
2.3.1. Introduction to Cloud Computing 23
2.3.2. Application of Mixed-Tenancy in Cloud Computing 25

2.4. Summary . 26

3. State of the Art 29
3.1. Research related toMulti-Tenancy 29

3.1.1. Realization of Multi-Tenancy 30
3.1.2. Variability of Multi-Tenancy Applications 33

xi

Contents

3.2. Related Approaches tackling Security Issue 36
3.2.1. Introduction of the UnderlyingMapping Study 36
3.2.2. RelatedWork tackling Data Breach 37

3.3. Summary . 39

4. Capturing Customers’ Deployment Constraints 41
4.1. Fundamental Concepts and Approaches II 43

4.1.1. First-order Logic . 44
4.1.2. Introduction of Graph Theory 44

4.2. Conceptual Analysis based on Requirements 46
4.2.1. Levels of Deployment . 46
4.2.2. DeploymentModels . 49
4.2.3. Groups . 51
4.2.4. Dimensions . 51
4.2.5. Virtual Tenants . 52

4.3. Process of Deployment Constraint definition 53
4.3.1. Customizing . 53
4.3.2. Tenant Grouping . 55
4.3.3. Constraint Definition . 55
4.3.4. Deployment Information Extraction 56

4.4. Generic Mixed-Tenancy DescriptionModel 58
4.4.1. Introduction of the Fundamental Idea 58
4.4.2. Foundations of the Formal Model 59
4.4.3. Application Components and Deployment Levels 61
4.4.4. Deployment Level Hierarchy Description 62
4.4.5. Structure of Dimensions, Groups, and Tenants 63
4.4.6. Description of DeploymentModels 65
4.4.7. Completeness of Deployment Constraints 66
4.4.8. Definition of the Deployment Information 67

4.5. Prototypical Realization . 68
4.5.1. Description of Realization Approach 69
4.5.2. Implementation of theModel using OWL 70
4.5.3. Model checking . 73
4.5.4. Extraction of Deployment Information 75

4.6. Evaluation . 77
4.6.1. Example Environment . 78
4.6.2. Scenario Definition . 80
4.6.3. Analysis of Results . 81

4.7. Summary . 84

5. Computation of a Valid and Optimal Deployment 87
5.1. Fundamental Concepts and Approaches III 89

5.1.1. Additional Concepts of Graph Theory 89
5.1.2. Concepts in Complexity Theory 90
5.1.3. Introduction of Graph Coloring and Clique Cover 91

xii

5.2. Formal Definition of the Deployment Problems 96
5.2.1. Problem Analysis . 96
5.2.2. Definition of the General Deployment Problem 100
5.2.3. Definition of the Elementary Deployment Problem 106

5.3. Analysis of Elementary Deployment Problem 109
5.3.1. Definition of a Solution as a Set of Clique Covers 109
5.3.2. Minimal Clique Cover on High Level 110
5.3.3. Minimal Clique Cover on Low Level 113
5.3.4. Minimal Clique Cover on Any Level 116
5.3.5. Complexity of the Elementary Problem 117
5.3.6. Introduction of Heuristics 118

5.4. Analysis of General Deployment Problem 120
5.4.1. Complexity of the General Problem 120
5.4.2. Generalization of Elementary Problem 121
5.4.3. Introduction of Heuristics 121

5.5. Evaluation . 124
5.5.1. Experimental Comparison of Heuristics 125
5.5.2. Application on Running Example 127
5.5.3. General Efficiency of Resource Utilization 128

5.6. Summary . 131

6. Case Study: ERP-System as Mixed-Tenancy Cloud Service 133
6.1. Conceptual Design of a Mixed-Tenancy Platform 135

6.1.1. Problem 1: Automated Deployment 135
6.1.2. Problem 2: CommunicationMechanism 137

6.2. Selection of Cloud Application . 143
6.2.1. An ERP-System as SaaS Offering - Requirements 143
6.2.2. Analysis of Available Open Source ERP-Systems 144
6.2.3. Introduction of OpenERP 145

6.3. Definition of OpenERP Scenario . 146
6.3.1. Introduction of Component-based OpenERP 147
6.3.2. Selection of Application Components 149
6.3.3. Definition of Deployment Levels 150
6.3.4. Creation of Example Scenario 151

6.4. Realization of Deployment Platform for OpenERP 152
6.4.1. Problem 1: Automatic Deployment 153
6.4.2. Problem 2: CommunicationMechanism 155

6.5. Evaluation and Discussion of Results 156
6.5.1. Evaluation of Mixed-Tenancy OpenERP 157
6.5.2. Discussion of Resource Utilization 158

6.6. Summary . 160

7. Summary and Conclusion 163
7.1. Discussion of Results . 163

7.1.1. Contributions . 164
7.1.2. Limitations and FutureWork 166

xiii

Contents

7.2. Summary . 170

A. Details related to Case Study 171
A.1. Description of Application Components 171
A.2. Evaluated Test Cases . 178

B. Mixed-Tenancy: Changes over Time 191
B.1. Problem Analysis . 191
B.2. Computation of a Migration Plan 194

B.2.1. Abstraction on a Problem of Graphs Theory 195
B.2.2. Complexity of Finding aMigration Plan 196
B.2.3. Computation of a Migration Plan 197

B.3. Conclusion . 199

C. Optimization considering limited Resource Availability 201
C.1. Problem Analysis . 201
C.2. Introduction of Bin-Packaging (with Conflicts) 204
C.3. Conclusion . 205

Bibliography 207

xiv

List of Figures

1.1. Illustration of ResearchMethodology 6

2.1. Illustration of Single andMulti-Tenancy (adapted from [CC06]) . . 13
2.2. Architectural Overview . 16
2.3. Description of Problem using Entity RelationshipModel 17
2.4. Prototype Architectural Overview 22

3.1. Results of Mapping Study [Sil+13] 37

4.1. Definition of DeploymentModels using Venn Diagrams 51
4.2. Description of Dimensions and Group Structure 52
4.3. Description of the Utilization Process 53
4.4. Description of the Deployment Constraint 56
4.5. Description Deployment Information Extraction 57
4.6. DescriptionModel as UML Class Diagram (incomplete) 58
4.7. Realization of the DescriptionModel using OWL (incomplete) . . . 71
4.8. Evaluation Scenario that Includes all Possibilities 78
4.9. Definition of Example Dimensions and Groups 79
4.10.Deployment Information of Scenario 3 83

5.1. Relationship between Clique and Independent set [KN09, pg. 58] . 89
5.2. Solving encountered Clique Cover by Coloring the inverse Graph . 95
5.3. An Example of a Valid and Optimal Deployment 97
5.4. Extremes how Customers may share Units of one Deployment Level 99
5.5. Description of Example’s Solution according to formal Definition . 100
5.6. Example why∼dli is Required . 103
5.7. Example not utilizing a minimal Clique Cover on highest Level . . 110
5.8. Corresponding Graphs for n = 2 (Lemma 2) 112
5.9. Example utilizingminimal Clique Cover on lowest Level 113
5.10.Alternative Solution - nominimal Clique Cover on lowest Level . . 114
5.11. Corresponding Graphs for n = 4 (Lemma 3) 115
5.12.Corresponding Graphs for n = 4 (Lemma 4) 117
5.13.Results of Example Introduced in Section 4.6 129

6.1. Automatic Deployment for two Deployment Levels [Rei13] 136
6.2. Overview of Communication Problem [Rei13] 137

xv

List of Figures

6.3. Overview of Pattern to Tackle the Communication Problem [Rei+14].139
6.4. Overview of the Connector Pattern [Rei13] 142
6.5. Example Installation of OpenERP with 4Modules [Rup13b] 147
6.6. Mixed-Tenancy Installation of OpenERP with 4Modules [Rup13b] 148
6.7. Deployment Level of the investigated Scenario [Mor14] 150

B.1. Trivial Example Migration . 194
B.2. Amore complex Example Migration 195
B.3. Optimal Migration Plan for more Complex Example 197
B.4. Vertices vs. Tenants (two Deployment Levels) [OY13] 198
B.5. Real-Time A* (Lookahead depth = 1) vs. Brute-Force [OY13] 199

C.1. An Example for a Valid and Optimal Deployment 203

xvi

List of Tables

4.1. Introduction of used Notation . 45
4.2. Mapping between Stacks and Application Components 79
4.3. Mapping between Tenants and Groups 80
4.4. Deployment Constraints for Scenario 3 82

5.1. Experimental Comparison of Approaches for Elementary Problem 126
5.2. Experimental Comparison of Approaches for General Problem . . 127

6.1. Summary of presented Patterns . 141
6.2. Details about Relevant Applications 145
6.3. Resource Demand for Mixed-Tenancy and Single-Tenancy scenario

(Required storage inmega bytes) . 159

A.1. Successfully Executed Test Cases . 190

C.1. Example Resource Limitation . 203
C.2. Example Resource Demand of Tenant 203
C.3. Example Resource Demand of Unit 204

xvii

List of Definitions

Definition 1. Software/Application Vendor 10
Definition 2. Operator . 10
Definition 3. Customer or Tenant . 11
Definition 4. User . 11
Definition 5. Application Component . 11
Definition 6. Single-Tenancy . 13
Definition 7. Multi-Tenancy . 13
Definition 8. Mixed-Tenancy . 15
Definition 9. Deployment Constraint . 15
Definition 10. Valid and Optimal Deployment 18
Definition 11. Deployment Information 19
Definition 12. Deployment Configuration 20
Definition 13. Deployment Configuration Generator 22
Definition 14. Mixed-Tenancy Deployment Platform 22
Definition 15. Cloud Service Provider . 23
Definition 16. DescriptionModel . 42
Definition 17. Utilization Process . 42
Definition 18. Deployment Level . 47
Definition 19. Deployment Unit . 47
Definition 20. DeploymentModel . 49
Definition 21. Group . 51
Definition 22. Dimension . 51
Definition 23. Virtual Tenant . 52
Definition 24. Deployment Computation Algorithm 88
Definition 25. General Mixed-Tenancy Deployment Problem 96
Definition 26. Elementary Mixed-Tenancy Deployment Problem 96
Definition 27. Resource . 98
Definition 28. Resource Demand of Tenant 98
Definition 29. Resource Demand of Unit 98
Definition 30. Execution Engine . 135
Definition 31. Initial Deployment . 192
Definition 32. Target Deployment . 192
Definition 33. Migration Operations . 193
Definition 34. Migration Plan . 193
Definition 35. Migration Graph . 196

xix

Chapter 1
Introduction

1.1. Motivation . 1

1.2. Goals and Contributions of thisWork 2

1.3. Structure and Content . 3

1.4. ResearchMethodology . 4

Computer Science has only two jobs -
one is creating complexity, the other is hiding it.

Georg O. Strawn

1.1 Motivation

Multi and Single-Tenancy are two architectural paradigms that describe how
Customers use instances of an application. The basic idea of Multi-Tenancy is
that multiple Customers (Tenants) use the same instance of an application at the
same time [CC06]. In order to be able to do that, theMulti-Tenancy application
needs to be able to separate the data of different Tenants from each other at run-
time [CC06; BZ10; SR11; WA11]. The major advantage of Multi-Tenancy is that it
allows Operators to utilize infrastructure resources most efficiently and allows
them to focus maintenance on just one version of the application [CC06; BZ10;
SR11]. According to recent studies, the major disadvantage of Multi-Tenancy
is, however, the threat of information breach. This means that data of one
Customer is accessible by another which may be a competitor [Clo13b; SK11;
Sri+12; OWA13a; Sil+13; KMMG13]. Due to thismanyCustomers have hesitations
towards the usage of Multi-Tenancy applications since they fear that their data
is disclosed due to a systemmalfunction, system error, or aggressive actions by
individual Users [PB10; SK11].
Single-Tenancy, on the other hand, is a paradigm according to which each

Customer gets its own, designated instance of the application and there is no
sharing between them [CC06; BZ10]. The advantage of this is that the security
threats ofMulti-Tenancy do not apply [Clo13b; SK11]. For Operators, on the other

1

Chapter 1: Introduction

hand, Single-Tenancy requires more utilization of infrastructure resources [CC06;
SK11; SR11].
This work proposes a novel approach that allows reaching a reasonable trade-

off between the Operators’ need for exploitation of economies of scale and the
Customers’ fear of privacy threats. This approach is calledMixed-Tenancy since
it is a hybrid approach between Single andMulti-Tenancy. It allows Customers
to specify their constraints about if or with which other Tenants they would
feel comfortable to share parts of an application and their underlying infras-
tructure. Based on all these Deployment Constraints expressed by Customers,
a deployment of the application is computed that uses minimal resources but
still applying to all Constraints. According to the computed deployment, the
Operator may deploy and provision the entire software system to provide it to
Customers.

1.2 Goals and Contributions of this Work

Based on the previous discussion, it is possible to express the general research
question of this work as follows.

How can Customers’ demand for expressing their Deployment Constraints
and Operator’s demand for having minimal cost both be satisfied at the
same time?

In order to answer this question, this work proposes the aforementionedMixed-
Tenancy approach. Thereby, this work compiles the following contributions.

Mixed-Tenancy Description Model A formal definition of a model will be
given that allows capturing Customers’ Deployment Constraints. Based on
this model, Customers will be able to express if or with whom they want to
share instances of ApplicationComponents. Theywill be able to do that not
just by describing explicitly with which other Tenants they feel or feel not
comfortable to share infrastructure, but also by usingmore abstract means
of description. Suchmeans would be, for example, defining Deployment
Constraints based on geographic regions (e.g. no sharing with Customers
from Asia), data protection law (e.g. only with companies following the
European data security acts), or industries (e.g. no sharing with competi-
tors). Further, it is possible to combinemultiple Deployment Constraints
to be more powerful (e.g. sharing only with companies from Europe but
not with competitors). However, the DescriptionModel presented in this
work will only serve as a generic framework that allows formulating these
kinds of Deployment Constraints. According to which Dimensions Cus-
tomers may define their Constraints is fully customizable for the Operator.
This allows for tuning the possible Deployment Constraints to the specific
application that shall be offered following the Mixed-Tenancy paradigm.
Furthermore, Deployment Constraints shall not just be expressible for the
Application Components but also for the underlying infrastructure stack.
This allows Customers to express that they may not feel comfortable to

2

Section 1.3: Structure and Content

share application instances with other Tenants, but sharing the underlying
virtual machine (a software based computer) may be acceptable. A proto-
typical realization of this model is created using technologies from the area
of SemanticWeb.

Deployment Computation Algorithm Based on all Constraints that are giv-
en by Customers, the Deployment Computation Algorithmwill compute a
deployment that applies to all given Deployment Constraints – the com-
puted deployment is Valid. Furthermore, in order to satisfy the Operators’
need for low operational cost, the algorithmmust produce a deployment
that not just covers all Deployment Constraints, but also only uses a mini-
mal amount of resources. The deployment is Valid and Optimal. This way
both stakeholders’ concerns, those of the Customers as well as those of
the Operator, are addressed. As part of this work a formal definition of the
optimization problemwill be given in order to have appropriate means for
analyzing the problem. Based on this, the complexity of the problemwill
be analyzed. Further, possible algorithmic approaches will be presented
and discussed.

Mixed-Tenancy Deployment Platform Once the Valid and Optimal Deploy-
ment has been computed, a platform is required that can deploy and oper-
ate a Multi-Tenancy application according to the Mixed-Tenancy paradigm.
This work will discuss and provide solutions for multiple challenges that
need to be tackled to create such a platform. These are the automatic deploy-
ment of a Multi-Tenancy application according to a computed deployment
and ways of establishing communication between different Application
Components deployed according to the Mixed-Tenancy. Furthermore, a
prototypical realization of a Mixed-Tenancy Deployment Platformwill be
described, which will be able to provision a real-world Multi-Tenancy enter-
prise resource planning system as aMixed-Tenancy application.

In order to evaluate the contributions of this work, all developed artifacts will
also be realized prototypically. This way realizability will be analyzed. Further-
more, all concepts developed in this work will be applied to a case study. It will
represent a scenario, how it would be found in a realistic environment. In fact,
an application that is used by many companies in industry will be altered the
way that it is deployable in a Mixed-Tenancy setting. This way the case study will
demonstrate real-world applicability.

1.3 Structure and Content

This work is structured as follows. Chapter 2: Towards Mixed-Tenancy - A Problem
Analysis , analyzes the problems to be addressed by this work in detail. In order
to do that, the chapter starts with an introduction of the problem domain and
relevant paradigms. Concepts, relevant for this work, will be defined in order to
have a solid foundation to analyze the problems that shall be tackled by this work.

3

Chapter 1: Introduction

The outputs of this chapter are the research questions that shall be addressed.
Furthermore, cloud computing is introduced as one possible area of application
for the presented approach of this work.
Based on the problem definition, Chapter 3: State of the Art continues this

work by doing an analysis of the state of the art. It, therefore, will analyze existing
approaches to tackle the challenges of this work, and point out how the approach
in literature differs from the approach presented in this work. The output of this
chapter will be the conclusion that the approach of this work is novel and has
not been presented in literature earlier.

Chapter 4: Capturing Customers’ Deployment Constraintswill present the first
contribution of this work, the Mixed-Tenancy DescriptionModel, which allows
to capture Customers’ Deployment Constraints. After introducing relevant con-
cepts for the chapter, it goes on by first conducting a requirements analysis to
find out what the DescriptionModel needs to be able to capture. After that a high
level process will be defined that demonstrates how the DescriptionModel may
be utilized for a specific Multi-Tenancy application. Based on this, the chapter
continues by introducing the DeploymentModel by defining it in a formal and
complete way. The chapter concludes with the description of a prototypical
implementation using technologies from the area of SemanticWeb.
Based on the DescriptionModel, it is possible to extract the Deployment In-

formation. This information captures which Tenants may share resources and
mark the input for Chapter 5: Computation of a Valid and Optimal Deployment
. In this chapter it is discussed how a Valid and Optimal Deployment may be
computed. It does that by first discussing the optimization problem and defining
it formally. Further, the complexity of the problemwill be analyzed. Based on
the formal definition, characteristics of a Valid and Optimal Deployment will be
analyzed. In addition, solution approaches will be discussed and compared that
are supposed to tackle the problem. The most suitable ones will be selected in
order to be used as a Deployment Computation Algorithm.

Chapter 6: Case Study: ERP-System as Mixed-Tenancy Cloud Servicewill analyze
the real-world applicability of the Mixed-Tenancy approach by conducting a
case study. Thus, a scenario will be discussed where a Cloud Service Provider
wishes to offer a Software-as-a-Service application that follows theMixed-Tenancy
paradigm. In order to achieve that goal, the chapter will describe the design and
realization of a Mixed-Tenancy Deployment Platform. Furthermore, an ERP-
Systemwill be selected that may be provisioned by this platform.

Chapter 7: Summary and Conclusion will conclude this work by summarizing
the results. Furthermore, the contributions with respect to the proposed research
questions will be summarized and the limitations of the presented approach will
be discussed.

1.4 Research Methodology

According to [MG95], [GVR02], and [GRV04] research in software engineering
may be categorized according to four research approaches. These are formula-

4

Section 1.4: Research Methodology

tive, evaluative, descriptive, and developmental. A major part of the research
conducted by this work may be categorized as developmental, as it deals with
“generating knowledge for explaining or solving general problems.” [MG95]. Further,
other parts of this work, especially those related to the case study and the Deploy-
ment Platformmay be considered evaluative. The evaluative research approach
is “involving methodologies that employ scientific methods, and usually consisting of
[...] model generation or observation followed by hypothesis generation and testing”
[MG95].

Furthermore, [GVR02] and [GRV04] aggregated several researchmethods that
are commonly used in the area of software engineering. Those that were utilized
in the creation of this work are the following.

Conceptual Analysis This method’s purpose is to gain knowledge by analyzing
a phenomena conceptually [GVR02].

Conceptual Analysis – Mathematical A conceptual analysis is performed by
utilizingmathematical techniques [GVR02].

Mathematical Proof This method’s draws conclusions by proving themmath-
ematically [GVR02].

Concept Implementation The primary purpose of this method is to provide a
proof of concept by implementation [GVR02].

Laboratory Experiment – Software This method’s purpose is to draw con-
clusions by conducting experiments [GVR02].

Case Study A case study “is an empirical method aimed at in investigating contem-
porary phenomena in their context” [RH09].

In fact, [GVR02] showed that the methods conceptual analysis, conceptual anal-
ysis – mathematical, and concept implementation are the dominant methods
used in the software engineering area. This work does not make an exception to
that end, as it also relies heavily on those three methods.
However, a detailed overview of how the results of this work were compiled

is given by Figure 1.1. Please note that the major artifacts that are going to be
created within this work are marked green. This work starts with conducting
an analysis of the problems and challenges that arise from theMixed-Tenancy
approach. The outputs of this are three research questions that shall be the scope
of this work. They deal with the capturing of Customer Deployment Constraints,
computation of a Valid and Optimal Deployment, and applicability of theMixed-
Tenancy approach in real-world scenarios.

These research questions will be addressed in sequential order starting with
the first. It deals with the creation of a model that allows the capturing of De-
ployment Constraints, called DescriptionModel. Thus, the first thing to be done
is to determine the necessary expressiveness of the DescriptionModel. Expres-
siveness refers to the Deployment Constraints the DescriptionModel is supposed

5

Chapter 1: Introduction

A
nsw

er
R

Q
-2

R
Q

-1

R
Q

-2

R
Q

-3

E
xpressiveness of

D
escription M

odel
P

rototype
R

Q
-1

A
nsw

er
R

Q
-1

Form
al D

efinition of
G

eneral P
roblem

P
rototype

D
eploym

ent P
latform

E
fficiently of

R
esource U

tilization

D
eploym

ent
P

latform
 C

oncept
A

nsw
er

R
Q

-3

S
uitable

A
pplication

C
A

R
efinem

ent based on
E

xpert Interview
s C

A
-M

 / M
P

C
I

C
haracteristics of S

olution
for G

eneral P
roblem

C
A

C
A

C
A (S

urvey)

C
I

C
S

C
A

-M

C
A

C
A

C
A

C
A

-M

C
A

D
escription M

odel
(form

ally defined)
U

tilization
P

rocess

C
S

 C
A

D
eduction

A
nsw

er of this w
ork:

C
A

M
ixed-Tenancy

Form
al D

efinition of
E

lem
entary P

roblem

C
om

putation
A

lgorithm

C
om

putation
A

lgorithm

P
rototype
R

Q
-2

LE
/S

C
haracteristics of S

olution
for E

lem
entary P

roblem

A
nalysis

E
xam

ple
S

cenario
C

A

G
eneral R

esearch Q
uestion:

H
ow

 can C
ustom

ers' dem
and for expressing their

D
eploym

ent C
onstraints and O

perator's dem
and for having

m
inim

al cost both be satisfied at the sam
e tim

e?

M
P

C
A

-M
 / M

P

C
A

-M
 / M

P

C
A

-M

C
I

C
A

M
P

C
A

-M

C
onceptual A

nalysis (C
A

)
C

onceptual A
nalysis - M

athem
atical (C

A
-M

)
M

athem
atical P

roof (M
P

)
C

oncept Im
plem

entation (C
I)

Laboratory E
xperim

ent – S
oftw

are (LE
-S

)
C

ase S
tudy (C

S
)

Fig
u
re

1.1.:Illustration
ofResearch

M
ethodology

6

Section 1.4: Research Methodology

to be able to capture. The necessary expressiveness was defined using an iter-
ative process. This process started by first coming up with an early version of
themodel based on literature and experience. This early version was presented
to several experts from both academia and industry. Based on their feedback,
the Description Model was extended and altered. It has gone through several
such iterations1. Once the expressiveness of the model is defined, the model
itself will be developed in a formal, unambiguous, and technology-independent
way. For the formal definition first-order logic is used since it allows to create un-
ambiguous models that represent a situation encountered by computer science
professionals [Hut11]. The output of this is the first artifact called Description
Model illustrated in Figure 1.1. Based on this formal definition a prototypical
implementation is presented. Using this prototype it is possible to evaluate if the
DescriptionModel allows capturing all aspects that it was supposed to. This eval-
uation is done using an example that encapsulates the full range of expressible
Deployment Constraints. Thus, the method of evaluation can be considered to
be a concept implementation and conceptual analysis.
The second research question deals with the creation of theDeployment Com-

putation Algorithm. The first step to tackle this question is to create a formal and
unambiguous definition of the problem to be addressed. It will be called General
Mixed-Tenancy Deployment Problem. The input for this definition is both the
research question and the formal description of theDescription Model. Based on
the formal problem definition, it is the first goal to analyze the structure of a
Valid and Optimal Deployment and the problem’s complexity. This is done for-
mally by using the conceptual analysis – mathematical andmathematical proof
methods. Furthermore, algorithmic approaches are proposed and their perfor-
mance guarantee is analyzed and proven. Due to the complexity of the problem,
these analyses are conducted not based on the General Problem but a simplified
version called the Elementary Problem. Conclusions gained from the Elementary
Problem are afterwards generalized for the General problem. The entire analysis
is based on the formalization of the optimization problem, thus, the method can
be considered as conceptual analysis – mathematical andmathematical proof.
However, to further elaborate on the performance of the proposed algorithmic
approaches especially in real-world scenarios, implementations will be created.
These implementations of the two approaches are afterwards compared based
on randomly generated problem instances. This comparison uses the laboratory
experiment – software researchmethod.
The third research question deals with an analysis of the applicability of the

Mixed-Tenancy approach in real-world. This research question was investigated
by conducting a case study. The case study of this work is performed by investigat-
ing a case in which theMixed-Tenancy approach is applied to deploy a real-world
application in the area of cloud computing. For this it was necessary to identify
a suitable application and develop a Deployment Platform. Using both, it is

1As an example, [RARV12] describes an early version of the model. Later in [RWV13] a more
sophisticated version is presented. Between both there are many iterations and expert inter-
views.

7

Chapter 1: Introduction

possible to analyze real-world applicability of theMixed-Tenancy approach.
Based on the results produced for all three research questions, it will be con-

cluded whether Mixed-Tenancy is a valid approach to tackle the aforementioned
general research question. For this conclusion, the resource utilization of the
Mixed-Tenancy approach will be analyzed.

8

Chapter 2
Towards Mixed-Tenancy - A Problem Analysis

2.1. Fundamental Concepts andApproaches I 10

2.1.1. Relevant Stakeholders . 10

2.1.2. Component-Based Software 11

2.1.3. Single-Tenancy andMulti-Tenancy 12

2.2. Scope of thisWork . 14

2.2.1. Introduction of Mixed-Tenancy 15

2.2.2. Challenges of Mixed-Tenancy 17

2.2.3. Research Questions of thisWork 19

2.2.4. Limitations of Scope . 20

2.2.5. Deployment Configuration Generator 22

2.3. Application ofMixed-Tenancy in Cloud Computing . . . 23

2.3.1. Introduction to Cloud Computing 23

2.3.2. Application of Mixed-Tenancy in Cloud Computing . . 25

2.4. Summary . 26

Every problem is a gift - without problems
we would not grow.

Anthony Robbins

It is the goal of this chapter to perform a problem analysis and clearly state what
problems are to be tackled by this work. In order to achieve this goal the chapter
produces the following artifact as output:

Research Questions The research questions clearly state the challenges ad-
dressed by this work. Once defined the research questions will serve as a
point of reference to the remainder of this work.

In order to create the research questions, the chapter starts by introducing the
fundamental concepts and approaches that make up the problem domain of
this work. One of these approaches, that are to be introduced, is Multi-Tenancy.

9

Chapter 2: Towards Mixed-Tenancy - A Problem Analysis

Multi-Tenancy bears certain opportunities for Operators. However, Customers
have hesitations towards usingMulti-Tenancy applications. This contradiction
will be discussed in detail and an approach is proposed that strives to dissolve
this contradiction. Thus, this chapter will define the scope of the study by
introducingMixed-Tenancy as the novel approach of this work. This is done by
first introducing the approach briefly and then analyzing the challenges that
arise from it. Based on these discussions the research questions of this work are
defined. To conclude the chapter, cloud computing will be introduced as one
possible area of application for the concept of Mixed-Tenancy. Cloud computing
still bears certain security threats that may be tackled by introducing Mixed-
Tenancy.

The chain of argument is structured as follows. Section 2.1 continues the chap-
ter with an introduction of the fundamental concepts and approaches relevant
for this chapter. Based on these, Section 2.2 defines the scope of the research that
is conducted by this work. Further, in Section 2.3 cloud computing is introduced
since the contributions of this work are applicable very well in this particular area
of business. The chapter concludes with a summary (Section 2.4) of the most
important points made by this chapter.

2.1 Fundamental Concepts and Approaches I

This section introduces fundamental concepts and approaches on which this
chapter builds upon. It does so by first introducing the stakeholders that are
involved with the problem domain. Based on this, the concept of component-
based software is introduced as an architectural paradigm for the applications
that may be provided using the novel approach of this work. Further, the con-
cepts of Single-Tenancy andMulti-Tenancy are described and distinguished. Each
subsection will introduce definitions, the remainder of this work builds upon.

2.1.1 Relevant Stakeholders

The first step towards the introduction of the problem domain is to define the
different stakeholders that are involved with it. For the remainder of this work
we distinguish the stakeholders Application Vendor, Operator, Customer/Tenant,
and User. The same or similar categorization of stakeholders into these four roles
has been done before by research that has been conducted in the same problem
domain (e.g. [Sch+12b; Mie10; Feh+14]). Those are the definitions of the four
stakeholders used by this work.

Definition 1 (Software/Application Vendor) An Application or Software
Vendor is a company that develops an application and provides it to the mar-
ket.

Definition 2 (Operator) TheOperator deploys, runs, andmaintains an appli-
cation on rented or owned hardware infrastructure. Based on this, it is provided
to the Customer.

10

Section 2.1: Fundamental Concepts and Approaches I

Definition 3 (Customer or Tenant) The entity called Customer or Tenant is
a company that consumes an application provided by the Operator. The term
Customer is used to refer to this entity from a business perspective. The technical
term for the same entity is Tenant. For the remainder of this work, both terms
will be used interchangeable as they refer to the same entity.

Definition 4 (User) A User is a person or employee that has access to an appli-
cation and, thus, interacts with it. Each User belongs to or is employed by exactly
one Customer/Tenant.

The terms that have just been defined, were introduced in a way as if they were
representing disjoint entities. In reality, however, it may be possible that a single
entity maymanifest itself as multiple different stakeholders. An example would
be a company that is Application Vendor as well as Operator at the same time
and, thus, not just develops an application but also deploys, runs andmaintains
the application. Furthermore, it would be possible that a particular company is
also using the application internally and, therefore, also becomes a Customer.
For the remainder of this work the stakeholders will be used as if they were

referring to separate entities. This is done, solely, in order to reduce complex-
ity and increase readability. It does not limit the applicability of this work’s
contributions.

2.1.2 Component-Based Software

The fundamental idea of a component-based software system is that the sys-
tem is a composition of a multitude of components, rather than being a huge
monolithic system. According to [Szy02, pg.3] a software component can be
defined as “executable unit of independent production, acquisition, and deployment
that can be composed into a functioning system”. Interfaces are used by components
to define which functionality and properties they provide to and require from
the environment and/or the surrounding system.

The primary advantages of component-based systems are that they often ben-
efit of enhanced adaptability, scalability, andmaintainability [Szy02]. Further,
another advantage of component-based systems is that a software systemmay
utilize both, components that are custom-made from scratch and those that are
bought from third-party vendors. This allows Software Vendors to increase the
efficiency of development.
Component-based software is one of the fundamental approaches this work

builds upon. The reason for this is that it is the goal of this work to allow Ten-
ants to express Constraints, about with which other Tenants they are willing
to share certain parts of the same application. These parts are the Application
Components that compose the application. Based on the definition of a software
component introduced by [Szy02], the following is a definition of what is referred
to as an Application Component within this work.

Definition 5 (Application Component) An Application Component is defin-
ed as a building block of an application that encapsulates atomic functionality.

11

Chapter 2: Towards Mixed-Tenancy - A Problem Analysis

All functionality and properties they provide to and require from other Appli-
cation Components shall be captured by a described interface, through which
all interaction flows. Furthermore, it is highly important for this work, that
Application Componentsmay be deployed independently from each other.

In fact, especially the focus onhaving the possibility for independent deployment
is of particular importance for this work. This is due to the fact that one of the
primary challenges is that Application Components are deployedmultiple times,
in order to be used by different Tenants. This is only possible if they may be
separated from each other. The challenges involved actually applying the Mixed-
Tenancy approach to a given application will be discussed in detail in Section
6.1.

2.1.3 Single-Tenancy and Multi-Tenancy

This section’s purpose is to discuss and define different styles of how Customers
may be served through the instance of an Application Component. This is done
by first introducing maturity models well-known from literature and then based
on them defining the relevant models for this work.
In general, it is possible that a single instance of an Application Component

may be used by only one Customer, or is shared by multiple Customers at the
same time. To elaborate on this in more detail, [CC06] defines four levels of
maturity for sharing instances. The levels build upon each other, whichmeans
that every level is distinguished from the previous one by the addition of one
additional characteristic. The following describes the four levels.

Level I: Ad Hoc/Custom At this level eachCustomer uses their own designated
instance that is specifically customized to their needs. Customization is
achieved throughmultiple different code implementations that are specific
to provide certain sets of features.

Level II: Configurable Similar to the first level, the second level also deploys
designated instances for every Customer. In contrast, however, all instances
are created based on the same code base. Customizations that are made for
specific Customers are purely done on a configuration level.

Level III: Configurable, Multi-Tenant-Efficient At this level ofmaturity, the
Operator only hosts a single instance for multiple Customers. The different
Customers’ data, however, are isolated from each other. The goal of that is
not to give any indication to Customers that they use a shared instance, but
promote the impression that the instance is designated to them. Further-
more, still all Customers shall be able to have specific customizations made
for them, providing unique feature sets and a unique user experience.

Level IV: Scalable, Configurable, Multi-Tenant Efficient Similar to the pre-
vious level, instances are being shared by multiple Customers and cus-
tomization is purely done by configuration. However, this time there is not
just one instance but multiple that are simultaneously used by multiple

12

Section 2.1: Fundamental Concepts and Approaches I

Customers. There is no fixed assignment of Tenants to specific instances but
the assignment is made based on the availability of resources. The advan-
tage of using a load-balanced farm is improved scalability, as it is possible
to increase and decrease the number of instances according to Customers’
demand.

2

Tenant A Tenant B Tenant C Tenant A Tenant B Tenant C

AC 1
Instance 1

AC 1
Instance 2

AC 1
Instance 3

AC 1
Instance 1

Figure 2.1.: Illustration of Single and Multi-Tenancy (adapted from [CC06])

Based on this categorization, for the remainder of this work the terms Single-
Tenancy andMulti-Tenancy will be used according to the following definitions.

Definition 6 (Single-Tenancy) The term Single-Tenancy refers to an Applica-
tion Component that is being deployed individually for every Customer, but all
Customers share the same code. Customizations are made purely on a configura-
tion level. This definition applies to maturity level two (Configurable).

Definition 7 (Multi-Tenancy) Multi-Tenancymeans that a single instance of
an Application Component serves multiple Customers. Due to configuration
each Customer may have a unique feature set and user experience. Furthermore,
different Customers are treated isolated from each other in order to hide the
fact that they are actually accessing shared instances. The definition applies to
maturity level three (Configurable, Multi-Tenant-Efficient).

These two definitions are also illustrated by Figure 2.1.
For Operators, theMulti-Tenancymodel is more desirable. This is due to the

fact, that it offers multiple opportunities for saving cost by exploring economies
of scale. Themajor point is that resources are shared betweenmultiple Tenants.
Thus, Operators will require less infrastructure to offer an application compared
to the Single-Tenancy model. But the required resources are not the only op-
portunity to save cost, the Operator may alsominimize the effort necessary for
maintaining a high number of instances [BZ10].
However, Multi-Tenancy comes with a price tag attached. For the Software

Vendor, an application following this approach is more complex to develop and
maintain, since the entire application needs to be built in the way that it can
handle the data of multiple Tenants simultaneously by still enforcing isolation

13

Chapter 2: Towards Mixed-Tenancy - A Problem Analysis

between them. Thus, this leads to higher effort and cost [BZ10]. The extra
complexity needs to be paid for by the Operator. Due to the increased complexity
of application development, a threat for Customers arises. If Multi-Tenancy is
not properly implemented, it may be possible that the isolation between Tenants
fails. This might lead to a situation in which one Tenant can access the data of
another [ZSLB09; PB10; SK11; Sri+12; Clo13b].
The benefit of Single-Tenancy is that these kinds of problems cannot occur.

This is due to the fact that in an environment in which instances are not shared,
additional mechanisms can be implemented to separate Tenants from each other.
For example, it would be possible to separate Customers by deploying them on
different virtual machines on the same physical server and installing firewall
rules that separate their networks. Furthermore, it may even be possible to
completely separate Tenants physically, using separate networks and servers.
From anOperator’s perspective, however, Single-Tenancy is less desirable since
it bears almost no opportunity for exploitation of economies of scale [CCW06;
BZ10; GKS13].

In order to conclude the discussion about Single-Tenancy andMulti-Tenancy it
is necessary to address onemore aspect. All Application Components are built
and deployed on a stack of infrastructure that they utilize. This infrastructure
stack may vary from Application Component to Application Component. For
example, it would be possible that an Application Component written in Java
would require a Java Application Server that is run on a Linux Server in a Virtual
Machine. Another Application Component created using Pythonmight require
a Python run time environment that is run onWindows and a physical Server.

In thematurity levels defined by [CC06], and the definitions given by this work
it was only stated that an instance of an Application Component is shared or
not. There has been nomention so far about the underlying infrastructure stack.
For the Multi-Tenancy model, where instances are shared, it is quite obvious
that the underlying infrastructure must be shared as well. For Single-Tenancy,
however, this statement may not be made that easy. It may be possible that
Single-Tenancy only applies to the instances Application Component, but the
underlying infrastructure or only parts of it are shared by different Customers.
It is up to the Operator of an application to determine for which parts of the
infrastructure stack Single-Tenancy shall be offered.
In the novel approach presented by this work, this choice is made by the

Customers themselves.

2.2 Scope of this Work

Based on the introduction of the fundamental concepts and approaches provided
by the last section, it is this section’s purpose to define the scope of this work.
In order to do so, the section starts with an introduction of Mixed-Tenancy, the
novel approach proposed by this work (Section 2.2.1). It continues by analyzing
challenges (Section 2.2.2) that arise from the approach and defines the scope
of this work by defining three research questions that are to be tackled (Section

14

Section 2.2: Scope of this Work

2.2.3). To define the scope of this research even further, Section 2.2.4 discusses
issues that will not be addressed by this work. To conclude the section, a high-
level overview of the target architecture will be given that will serve as a point of
reference for the reader (Section 2.2.5).

2.2.1 Introduction of Mixed-Tenancy

In the introduction of Single-Tenancy andMulti-Tenancy (Section 2.1.3) it was
discussed that both bear advantages and disadvantages for different stakehold-
ers. From a Customer’s perspective it is desirable not to share an instance using
Multi-Tenancy, as security and privacymay be decreased. From an Operator’s per-
spective, however, it is very desirable to have asmany Customers as possible share
the same application instance. This is due to the fact that it decreases operational
cost as well as maintenance (only a single instance needs to bemaintained) and
allows thereby exploiting economies of scale.

The novel approach that is presented in this work tries to satisfy both stakehold-
ers’ demands by finding a hybridway between Single-Tenancy andMulti-Tenancy.
It does that by allowing Customers to express specific constraints that define if
or with whom they feel comfortable to share resources, but still use application
instances most efficiently within the boundaries of what is acceptable for the
Customers. This approach is referred to as Mixed-Tenancy.

Definition 8 (Mixed-Tenancy) Mixed-Tenancy is a hybrid approach between
Single-Tenancy and Multi-Tenancy. It allows Customers to express their con-
straints about if or with which other Tenants they are willing to share resources.
Based on these constraints, a deployment is computed that uses minimal re-
sources in order to satisfy Operator’s concerns. Mixed-Tenancy is the novel ap-
proach of this work.

Within this work the basic idea of the approach is applied to component-based
Multi-Tenancy applications. Thus, it is possible that multiple instances of the
same Application Component might be deployed at the same time. This allows
Customers to express their constraints not just for the entire application at once,
but they can do that for every individual Application Component. These con-
straints are referred to as Deployment Constraints within this work.

Definition 9 (Deployment Constraint) A Deployment Constraint is a Cus-
tomer’s description of if or with which other Tenants resources may be shared.
It is necessary that a Tenant gives a number of Deployment Constraints for the
deployment of an entire application.

To illustrate this further Figure 2.2 depicts an example. In this example there are
four Tenants (A to D) and seven Application Components (1 to 7) an application
is composed of. The four Customers shall have the ability to express their Deploy-
ment Constraints about if or withwhom theywish to share instances of the seven
Application Components. The seven Components handle data that are different
in sensitivity. For this example Component 1 handles very sensitive/confidential

15

Chapter 2: Towards Mixed-Tenancy - A Problem Analysis

1

A

B

C

D

Tenants

<<uses>>

Dispatcher Execution Engine

1 Application Components
2

3

4

5

6

7

Figure 2.2.: Architectural Overview

data and Component 7 only handles data that is public knowledge. Sensitivity of
Application Component 2 to 6 are different degrees between those extremes. The
followingmay be examples of Deployment Constraints that shall be possible to
express.

• Tenant A is very concerned about security, thus, they demand that they do
not share instances with other Customers at all.

• Tenant B is concerned about security issues, thus, they demand that the
very sensitive Components (Application Component 1-2) are deployed
designated to them. For the Application Components handling data that
is categorized as middle sensitivity (Application Component 3-5), they
have the demand that they only share with companies that come from
Europe but which are not competitors. And finally, for the low-sensitivity
Application Components (Application Component 6-7) they are willing
to share with companies that are following data protection laws similar or
equal to those of the European Union.

• Tenant C is only little concerned with security, thus, they demand to only
share high sensitivity Application Components (Application Component
1-2) with Tenants from the EU or North America. For the middle sensitivity
Application Components (Application Component 3-5) they demand to
share only with companies that are not competitors. And for the low sensi-
tivity Application Components (Application Component 6-7) they do not
have Deployment Constraints and are willing to share with any Customers.

• Tenant D is not concerned about security at all. They trust in the applica-
tion’s implementation of Multi-Tenancy and are very price conscious. This
is why they do not have any Deployment Constraints towards the sharing
of instances.

In the example that was presented, Customers’ Deployment Constraints were
limited to the sharing of instances of Application Component. However, the

16

Section 2.2: Scope of this Work

approach proposed by this work shall go further than this. It shall be possible
for Customers to express not just Deployment Constraints for the sharing of
Application Components but also for the underlying infrastructure. An example
for this would be that the very security conscious Customer A requires, as stated,
designated instances of Application Components but would be willing to share
the underlying VirtualMachines and physical Servers with other Customers from
Europe but not with competitors.

2.2.2 Challenges of Mixed-Tenancy

The previous section gave an introduction to theMixed-Tenancy approach. Based
on this, it is this section’s goal to elaborate this even further by discussing the
challenges the Mixed-Tenancy approach bears. These challenges need to be
overcome in order to be able to apply the approach. In order to analyze the
challenges Figure 2.3 gives a generic overview of some of the challenges. As

Application

Application
Component

2

6

3

4

Deployment
Constraint

8

AC Instances

 7

Infrastructure
Layer 1

9

Infrastructure
Level

Tenant

User

1

5

Relationships
1: belongsTo
2: consistsOf
3: requires
4: has
5: includes

6: excludes
7: instantiates
8: deploys
9: uses

Colors
Black: Operator defined
Green: Customer defined
Red: Calculated

Figure 2.3.: Description of Problem using Entity Relationship Model

previously mentioned for this work, a Tenant represents a company that has a
number of Users that use the application. In Figure 2.3 this is indicated by the
entities Tenant and User as well as the relationship belongsTo (relationship 1).

In addition, it has previously been discussed that the approach that is utilized
in this work is based on the paradigm of component-based software. Due to
this, the application that is offered to Customers, is composed of a number of
ApplicationComponents. In the figure this is indicated by the entitiesApplication
and Application Component as well as the consistsOf -relationship (relationship 2).

17

Chapter 2: Towards Mixed-Tenancy - A Problem Analysis

All entities and relations that have just been introduced need to be defined by
the Operator. The Operator needs to define which application shall be offered,
what Application Components it is composed of, and which Tenants want to use
it.

Based on theOperator’s definition of the environment, it is possible for Tenants
to express their Deployment Constraints (using the elements marked red in the
figure). This is indicated in Figure 2.3 by the entity Deployment Constraint, the
property Infrastructure Level, as well as the relationships requires (relationship 9),
has (relationship 4), includes (relationship 5), and excludes (relationship 6). All this
means that a Tenant has to give a Deployment Constraint for every Application
Component they use. In fact, there may bemultiple Deployment Constraints,
one per Infrastructure Layer (e.g. Application Component Instances and Virtual
Machines). Moreover, a Deployment Constraint may also define with which
other Tenants resources shall be shared or not. The include and exclude relations
do just that. Furthermore, it is possible to express that a Customer does not want
to share a resource at all or has no Deployment Constraints with whom they
share. This may be covered by excluding or including all Tenants. Please note
that a muchmore sophisticated approach to capturing Customer Deployment
Constraints will be introduced as part of this work (in Chapter 4).

Expressing Customer Deployment Constraints using this model can be consid-
ered the first challenge of Mixed-Tenancy. This is due to the fact that the ability
to capture those constraints is a precondition for all following steps.

Based on the Customers’ description, the next challenge arises. In Section 2.2.1
it was stated that Mixed-Tenancy is an approach to address both, the Customers’
and the Operator’s concerns. For the Operator it is crucial that a minimum num-
ber of resources are being utilized in order to allow for exploitation of economies
of scale. Thus, the second challenge is to find a Valid and Optimal Deployment
based on the description given by the Customers.

Definition 10 (Valid andOptimal Deployment) A deployment is valid if
it applies to all Deployment Constraints that were defined by all Customers. It
is optimal if it causes only minimal cost by utilizing only a optimal number
of instances of the Application Component and the underlying infrastructure
layers1.

The structure of a Valid and Optimal Deployment is indicated by the items
marked red in Figure 2.3. In the figure there are two entities representing in-
frastructure layers, Application Component Instances and Infrastructure Layer 12.
The number of Units of each infrastructure layer needs to be determined by
an algorithm that determines the Valid and Optimal Deployment (instantiates-
relationship). Furthermore, it is necessary to determinewhich Tenant uses which

1Amore specific and formalized definition will be given in Chapter 5. Furthermore, the relation-
ship between the cost of a deployment and its required number of Application Component
Instances and the underlying infrastructure layers will be elaborated.

2Please note that there shall be additional infrastructure layers possible. This is going to be
further elaborated in Chapter 4.

18

Section 2.2: Scope of this Work

instances of Application Components (uses-relationship) and which Unit of
infrastructure layer 1 deploys which Application Component Instance (deploys-
relationship).
All previous steps are necessary to gather the requirements for a Deployment

and compute it. However, once a Valid and Optimal Deployment has been found,
it is necessary to realize it. This means that a given application is automatically
provisioned on a platform according to the defined Deployment.

2.2.3 Research Questions of this Work

The previous two sections (Sections 2.2.1 and 2.2.2) introduced the reader to the
general idea of theMixed-Tenancy approach and discussed challenges that arise
from this approach. Concluding from the problem analysis, the general question
of this research is formulated as follows:

How can Customers’ demand for expressing their Deployment Constraints
and Operator’s demand for having minimal cost both be satisfied at the
same time?

Based on this general question it is possible to derive the following, first research
question:

Research Question 1 (RQ-1) How can Customers’ Deployment Constraints
towards Mixed-Tenancy be described?

Research Question 1.1 (RQ-1.1) What shall be capturable in order to be
able to describe Deployment Constraints?

Research Question 1.2 (RQ-1.2) How is the description being perform-
ed by the participating stakeholder?

Research Question 1.3 (RQ-1.3) What does a model look like that is
capable of capturing Customers’ Deployment Constraints?

Within this work these questions are to be tackled by the creation of a description
approach that utilizes a DescriptionModel that allows capturing Deployment
Constraints. Based on all Deployment Constraints given by all Customers, it
is necessary to extract the information about which Tenants may share which
resources. For the remainder of this work this information is referred to as De-
ployment Information.

Definition 11 (Deployment Information) Deployment Information is cre-
ated based on all Deployment Constraints given by Customers. It describes
which Tenants may share which resources on an aggregated level.

The Deployment Information is the input for the next research question.

Research Question 2 (RQ-2) How can a Valid and Optimal Deployment be
found in a fast3 way?

3As commonly used in literature, fast is used in the way that it means in polynomial time
[Wan06; JM08]

19

Chapter 2: Towards Mixed-Tenancy - A Problem Analysis

It is the goal of this work to create an algorithm that is capable of computing
such a deployment based on the input provided by previous step. Further, Valid
and Optimal Deployment is captured by the Deployment Configuration.

Definition 12 (Deployment Configuration) TheDeploymentConfiguration
is a transfer document that is generated by the Deployment Configuration Gen-
erator (which will be introduced in Section 2.2.5). It describes a Deployment.

In order to determine the applicability of theMixed-Tenancy approach it would
be possible to implement a simple dummy application that may be deployed
in according to the Mixed-Tenancy approach. However, this work goes one
step further and tries to evaluate the applicability of the approach to existing
component-based Multi-Tenancy applications. Thus, the research questions
concerning this issue may be expressed by the following.

Research Question 3 (RQ-3) Is it possible to apply the Mixed-Tenancy ap-
proach to existing composite Multi-Tenancy applications?

Research Question 3.1 (RQ-3.1) How can a platform realizing Mixed-
Tenancy be created?

Research Question 3.2 (RQ-3.2) DoesMixed-Tenancy allow an Opera-
tor to use resources more efficiently as with Single-Tenancy?

These research questions shall be addressed by conducting a case study (Chapter
6). Within this case study, an existing suitable application used in industry is
identified and it is migrated to a Mixed-Tenancy platform. Based on the case
study, it will be possible to gain conclusions for which kind of applications the
Mixed-Tenancy approach is realizable.

2.2.4 Limitations of Scope

Based on the definition of research questions of this work, it is this subsection’s
goal to point out challenges that will not be addressed by this work4. This serves
the goal to describe the scope of this work inmore detail.

Changes over Time Once an application has been deployed according to De-
ployment Constraints given by Customers, it is very likely that this de-
ployment has to change over time. Triggers for this may be changes of
the Customer base (new Customers subscribe or existing Customers un-
subscribe), direct changes of existing Customers’ Deployment Constraints
(e.g. an existing Customer changes the previously expressed Deployment
Constraints), or indirect changes of existing Customers’ Deployment Con-
straints (e.g. a Customer extends their area of business by penetrating a new
market - theymay become a competitor to other Tenants). However, these
kinds of changes, that require changing an existing Deployment, will not
be covered by this work. This work is limited to creatingMixed-Tenancy for
a first-time deployment.

4In Chapter 3 related approaches will be presented that tackle some of these challenges.

20

Section 2.2: Scope of this Work

Functional Variability Functional variability is the variability an application
offers with respect to features. It will be discussed in Section 3.1.2 more
thoroughly. However, this type of variability will not be addressed by this
work. The scope of this work does not stand in contrast to approaches
that allow introducing functional variability. Some of the approaches may
be taken from the area of Software Product Lines. As part of this work’s
research, [RA11] analyzed opportunities to do that.

Collaboration Another opportunity that arises fromMixed-Tenancy is collabo-
ration between Tenants. Since Tenants may express with whom they wish
to share an instance of an Application Component, it would be possible to
enable collaboration between those Tenants by allowing them to access the
same data. This could be achieved by deactivating the isolation between
Tenants for this instance. However, this would require that the Application
Component has the functional variability to allow for such sharing. But
since functional variability is out of scope for this work, so is the opportu-
nity for collaboration. As part of this work, however, the opportunity has
previously been discussed in [RARV12].

Deployment Variability In reality it is often the case that an application offers
some kind of variability with respect to how it may be deployed. This kind
of variability is not considered in this work. For this work it is assumed, that
for every Application Component there is only one possible infrastructure
stack that requires to be deployed properly. This is done in order to decrease
complexity. If one Application Components would have multiple different
infrastructure stacks theymay rely on, there is a higher chance that infras-
tructure may be shared by different Application Components. Algorithms
to perform such amappingmay be reduced to the festival problem and have
been worked on by related work (e.g. [FLM10]).

Implementation of additional Security Measures Mixed-Tenancyhas been
introduced as an approach to increase security of Multi-Tenancy systems
by separating Tenants where Customers do not feel comfortable to share
infrastructure. The reason that this increases security is that it opens the
opportunity for deployment of additional security measures. Concerning
this issue, this work will not give a general comprehensive analysis of avail-
able and beneficial measures. This is due to the fact that these measures
would be very specific to a given environment (e.g. infrastructure stack,
used hypervisor for virtualization).

Non-Functional Requirements Considering the Customers’ ability to express
their requirements, this work is only limited to the expression of Deploy-
ment Constraints. Other non-functional requirements (e.g. Service Level
Agreements) are not covered by this work. There is related work with re-
spect to non-functional requirements andMulti-Tenancy applications (e.g.
[FLM10; Feh09]). However, the novel approach of this work is the definition
of Deployment Constraints.

21

Chapter 2: Towards Mixed-Tenancy - A Problem Analysis

Multi-tenancy
Composite
Application

Deployment
Platform

Mixed-tenancy
Application

Deployment
Configuration

Deployment Configuration Generator

Customer Constraints Capturing

Valid Deployment Calculation

Figure 2.4.: Prototype Architectural Overview

All the challenges that have just been introducedmay be seen as opportunities
for future research. Thus, they will be mentioned again in the final chapter
discussing opportunities for future research (Section 7.1.2).

2.2.5 Deployment Configuration Generator

All concepts that are developed in this work will be realized by implementing a
prototype. Figure 2.4 illustrates an abstract overview of it. The system represented
in black is the Deployment Configuration Generator.

Definition 13 (Deployment ConfigurationGenerator) The Deployment
Configuration Generator is the prototypical implementation of the contributions
of this work. It allows capturing Customers’ Deployment Constraints and com-
putes a Valid and Optimal Deployment. The output of it is the Deployment
Configuration.

TheDeploymentConfigurationGenerator consists of two sub-components called
Customer Constraint Capturing and Valid Deployment Calculation. Each of
these corresponds to one of the previously defined research questions (Customer
Constraint Capturing - RQ-1 and Valid Deployment Calculation- RQ-2).
The grays part of Figure 2.4 contribute to research question RQ-3. All of them

belong to the platform that realizes Mixed-Tenancy.

Definition 14 (Mixed-TenancyDeployment Platform) TheMixed-Tenan-
cy Deployment Platform receives the Deployment Configuration as input and,
based on it, creates a Mixed-Tenancy deployment of a Multi-Tenancy application
and provisions it.

These parts were created specifically for the case study presented by Chapter 6
and will be discussed in detail.

22

Section 2.3: Application of Mixed-Tenancy in Cloud Computing

2.3 Application of Mixed-Tenancy in Cloud Computing

This section introduces the reader to cloud computing as one possible area of the
application for the novel approach of this work. This is of particular importance
since the case study, conducted in Chapter 6, will demonstrate how the approach
may be used to provisionMixed-Tenancy cloud applications.

This section lays out the groundwork for this by first introducing cloud comput-
ing and then discussing why this Mixed-Tenancymay be beneficial for a Cloud
Service Provider and Customers.

2.3.1 Introduction to Cloud Computing

Over the previous couple of years cloud computing has been introduced as a
change of paradigm how IT will be managed in the future. This 21st century’s
model of computing anticipates a significant transformation of the computing
industry [Arm+09; Buy+09]. The model promises to no longer require service
Users to invest in new infrastructure but receive their computing services as a 5th

utility (after water, electricity, gas, and telephony). As a side-effect it eliminates
the risk for Users running into problems when operating their existing already
very complex infrastructure or adding new components to it. Instead, Customers
pay Cloud Service Providers only for the IT resources based on their usage.

Definition 15 (Cloud Service Provider) A Cloud Service Provider is a com-
pany that offers Cloud Services to their Customer. Every Cloud Service Provider is
also anOperator of a cloud service. In addition, theCloud Service Provider provides
the application to Customers following the cloud paradigm.

The advantage of cloud computing for aCloud Service Provider is that due to shared
resource pooling, they have the chance to exploit economies of scale.
When cloud computing became a buzzword, there were many definitions

available that each tried to grasp the term (e.g. [Buy+09; Arm+09]). However,
today the most commonly recognized definition is the one published by the
National Institute of Standards and Technology (NIST) in 2011 [MG11].

It defines cloud computing as follows.

“Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service
provider interaction. ” [MG11]

Furthermore, the NIST defines five essential characteristics, three service mod-
els, and four deployment models which are relevant to cloud computing. The
characteristics are [MG11]:

On-demand Self-Service Cloud services are provided to Customers without
further human interaction.

23

Chapter 2: Towards Mixed-Tenancy - A Problem Analysis

Broad Network Access Services are provided over standard networks that pro-
mote use of heterogeneous platforms.

Resource Pooling The Cloud Service Providers resources are pooled to serve
multiple Customers at the same time. This allows the Provider to exploit
economies of scale. This may be achieved throughMulti-Tenancy.

Rapid Elasticity For the service consumers the availability of resources seem
unlimited since resources are provisioned according to the current demand.

Measured Service Resource usage is monitored, controlled, and reported in
order to provide transparency for both the provider and consumer.

In addition, the following three service models are distinguished [MG11].

Infrastructure as a Service (also known as IaaS) The Cloud Service Provid-
er providing IaaS manages a large pool of computing resources, such as
storing and processing capacity. Customers use parts of this pool and are
charged based on their usage.

A well-known example for this IaaS is Amazon’s platform Amazon Elastic
Compute Cloud (Amazon EC2) [Ama13].

Platform as a Service (also known as PaaS) This service model adds more
value to the capabilities of IaaS by adding one additional abstraction layer.
Instead of supplying a virtualized infrastructure, PaaS provides a computing
platform and/or solution stack as a service on which Customers can deploy
and execute their applications. Thus, Customers do not have to deal with
the cost and complexity of buying andmanaging the underlying hardware
and software layers. The sizing of the hardware resources of the PaaS plat-
form is done in an elastic scalable way in order to generally provide as much
computing resources as the Customer demands.

A well-known example is the Google App Engine [Goo13].

Software as a Service (also known as SaaS) This is the service model with
the highest capability and service value. Instead of provisioning an in-
frastructure on which Customers can build their applications, SaaS adds
another abstraction layer and delivers entire applications to the Customer
over the Internet. These applications are commonly web-based and Users
access them bymaking use of a standard web-browser. SaaS providers usu-
ally offer these applications based on a pay-per-use fee. Customers, on the
other hand, do not have to be concerned with the installation, operation,
update etc. of the application or the infrastructure being used to host the
application. SaaS applications profit greatly from an environment that
adjusts to changing demands.

One of themore famous examples of an SaaS application is the Customer
RelationshipManagement System SalesForce.com [sal13].

Finally, according to the NIST definition the deployment models are [MG11]:

24

Section 2.3: Application of Mixed-Tenancy in Cloud Computing

Private Cloud This deployment model provides an exclusive cloud for every
single Customer. The cloudmay be operated by the organization itself or a
third party andmay exist on-premise or off-premise. If the private cloud is
operated by a third party off-premise, it is similar to classic outsourcing.

Community Cloud This model allows sharing the infrastructure within a dis-
tinct groupof organizations. This cloud is usually set up to the specific needs
and requirements of this group. It could bemanaged by the organizations
themselves or by a third party.

Public Cloud Using this deploymentmodel a cloud infrastructure is made avail-
able to the general public or a large industry group and is owned by an
organization selling cloud services. It is hosted at the site of a Cloud Service
Provider. This model is especially suitable for Customers with a need for a
cheap price and a highly standardized production environment. Therefore,
Customers must accept low data security and data privacy levels.

Hybrid Cloud The cloud is composed of two or more infrastructures following
different models (private, community, or public).

2.3.2 Application of Mixed-Tenancy in Cloud Computing

As discussed in the previous section one of the major benefits for the Cloud
Service Provider to offer cloud services, lies in the chance of exploiting economies
of scale. Multi-Tenancy, on the other hand, is a great architectural approach to
allow just that. It allows that multiple Customers share the same Application
Component and the underlying infrastructure. This is why SaaS-applications
heavily rely onMulti-Tenancy [ZSLB09; SK11; SKP13].
Due to this, multiple, maybe even competing Customers, share the same in-

stances of SaaS-applications and the underlying infrastructure. However, there
are security risks involved with doing so. These were analyzed by the Cloud
Security Alliance in the beginning of 2013.
The Cloud Security Alliance is a not-for-profit organization with amission to

promote the use of best practices for providing security assurance within cloud
computing, and to provide education on the uses of cloud computing to help
secure all other forms of computing [Clo13a].

In the beginning of 2013 the Cloud Security Alliance released [Clo13b], which
is a report that analyzed the top security threats of cloud computing. This report
is based on a survey of industry experts to compile professional opinion on the
greatest vulnerabilities of cloud computing. The result of the report were nine
critical threats for cloud security, that were ranked according to their severity5.
In this report the following number one threat in cloud computing was listed
whichmay be tackled by theMixed-Tenancy approach.

5Starting from themost sever threat the identified threats are: data breaches, data loss, account
or service traffic hijacking, insecure interfaces and APIs, denial of service, malicious insiders,
abuse of cloud services, insufficient due diligence, and shared technology vulnerabilities.

25

Chapter 2: Towards Mixed-Tenancy - A Problem Analysis

Data Breaches Themost severe threat according to Cloud Security Alliance is
the risk of data breach in a shared environment. The threat is that sensitive
internal data placed at Cloud Service Provider might fall into the hands of
competitors, for example due to flaws in the SaaS-application. It is quite
remarkable that 91% of the surveyed experts consider this threat to be
relevant. Furthermore, the threat is considered equally severe with respect
to perceived risk and actual risk.

Please note that similar descriptions of this cloud threat may be found in other
sources as well (e.g. [SK11; OWA13a; Sil+13; KMMG13]).
For SaaS-applications the threat of Data Breachmay occur onmultiple layers

of the application’s infrastructure stack. One certain danger is the implemen-
tation of Multi-Tenancy [SK11; KMMG13]. This is due to the fact that Multi-
Tenancy needs to be implemented by the developers throughout the application
[OWA13b]. However, these problemsmay not just occur on the application layer
but also on underlying infrastructure layers. In November 2012, for example, a
mixed team from research and academia succeeded in extracting private cryp-
tographic keys being used in other, neighboring virtual machines on the same
physical server [ZJRR12].

Applying this work’s contributions to the area of cloud computing comes quite
naturally when considering the threat that has just been introduced. As discussed
in Section 2.2, theMixed-Tenancy approach allows Customers to define their con-
straints if or with whom they wish to share infrastructure. Thus, Customers may
choose to define Deployment Constraints for those parts of SaaS-applications
that handle very sensitive data, theway that they do not share infrastructure at all
or do only share with a smaller group of Tenants. This will give the Cloud Service
Provider the chance to implement further techniques to ensure security (e.g. on a
network level). For those parts that do not handle sensitive data, Customers may
choose to share infrastructure with other Tenants and, thereby, gainmonetary
benefits.
When categorizing theMixed-Tenancy approach according to the definition

of deployment models given by the NIST (introduced in Section 2.3.1), the Cus-
tomer shall have the ability to choose between the different deployment models
on Application Component level and the underlying infrastructure. It is up to
the Customer to pick a private, public, or community model. In Chapter 4 a
sophisticatedmodel will be introduced that allows Customers to express their De-
ployment Constraints in a very detailed level. However, in the presented scenario
infrastructure is always hosted at a Cloud Service Provider’s site.
In Chapter 6 a case study will be conducted that analyzes the applicability of

theMixed-Tenancy approach in cloud computing.

2.4 Summary

It was the goal of this chapter to perform a problem analysis and clearly state
what problems will be tackled by this work. In order to do this the chapter started
by introducing paradigms and concepts that are relevant to the problem domain.

26

Section 2.4: Summary

Thus, the Application Vendor, Operator, and Customer/Tenant were introduced
as relevant stakeholders. Furthermore, the concept of component-based software
was discussed since this work deals with composite applications. The concepts of
Single-Tenancy andMulti-Tenancy were introduced as architectural approaches
how application instances may be used by Tenants. It was discussed that Multi-
Tenancy bears the threat of data breach. Thus, Tenants are often hesitant to use
Multi-Tenancy application. On the other hand, however, Multi-Tenancy allows
Operators to exploit economies of scale and, thus, is a beneficial approach to
decrease cost.
Based on this, Mixed-Tenancy was introduced as an approach that strives to

satisfy Customers’ needs for security and unwillingness to share resources, as well
as the Operator’s desire to utilize existing infrastructure as efficiently as possible.
After the problems related to Mixed-Tenancy had been discussed in detail, the
following general research question was defined.

How can Customers’ demand for expressing their Deployment Constraints
and Operator’s demand for having minimal cost both be satisfied at the
same time?

Further, from this general research question, the following three research ques-
tions were derived.

Research Question 1 (RQ-1) How can Customers’ Deployment Constraints
towards Mixed-Tenancy be described?

Research Question 2 (RQ-2) How can a Valid and Optimal Deployment be
found in a fast way?

Research Question 3 (RQ-3) Is it possible to apply the Mixed-Tenancy ap-
proach to existing composite Multi-Tenancy applications?

Furthermore, for RQ-1 and RQ-3 sub-questions were defined. In order to de-
fine the scope of this work even further, a detailed description was given about
challenges that are out of scope for this work.
The chapter concluded with the introduction of cloud computing as a pos-

sible area of application for the Mixed-Tenancy approach. Cloud computing
was introduced according to the well-accepted definition of the NIST [MG11].
Software-as-a-Service, one of the service models of cloud computing, deals with
the provisioning of entire applications from the cloud. For these kinds of appli-
cations, Multi-Tenancy is an important paradigm for Cloud Service Providers to
exploit economies of scale. However, according to recent studies, the risk of data
breaches is themajor threat of cloud computing today. Mixed-Tenancymay be
utilized as a tool to counteract against these risks.

27

Chapter 3
State of the Art

3.1. Research related toMulti-Tenancy 29

3.1.1. Realization of Multi-Tenancy 30

3.1.2. Variability of Multi-Tenancy Applications 33

3.2. Related Approaches tackling Security Issue 36

3.2.1. Introduction of the UnderlyingMapping Study 36

3.2.2. RelatedWork tackling Data Breach 37

3.3. Summary . 39

If I have seen further it is only by standing
on the shoulders of giants.

Sir Isaac Newton

In the previous chapter the scope of this work was analyzed and described. It is
this chapter’s purpose to describe the state of the art related to this work.
In order to do that, the chapter is separated into two major section. Section

3.1 discusses related work that addresses the realization and variability of Multi-
Tenancy applications.

In Section 2.3.2 the major security threats of cloud computing were identified
for which the Mixed-Tenancy approachmay be beneficial. Based on this, Section
3.2 introduces related approaches that allow to address this issue as well. This
section is based on a mapping study that identified many papers addressing
security threats in cloud computing. The chapter is concluded by a summary
given by Section 3.3.

3.1 Research related to Multi-Tenancy

In this section, research related toMulti-Tenancy is going to be presented. In order
to do that, Subsection 3.1.1 discusses howMulti-Tenancymay be realized. Based
on this, Subsection 3.1.2 discusses variability of Multi-Tenancy applications, and
introduces approaches to realize them.

29

Chapter 3: State of the Art

3.1.1 Realization of Multi-Tenancy

In Section 2.1.3 the two terms Single andMulti-Tenancy were introduced. Build-
ing upon this, it is this section’s purpose to elaborate further on the realization
of Multi-Tenancy.
So far it has been defined that Multi-Tenancy allows an Application Compo-

nent so servemultiple Customers at the same time. Therefore, the Application
Components isolate the data of different Tenants from each other. Up to this
point, however, no insight on the actual realization of Multi-Tenancy has been
provided. A first step towards doing this, is to report on how Customers’ data
may be separated. [CCW06] gives an overview by introducing three distinct
approaches for creating data architectures to realize Multi-Tenancy. These are the
following.

Separated Databases The simplest approach for data isolation is storing Ten-
ants’ data in separate databases. In general, computing resources and ap-
plication instances are shared between all Tenants, but the Tenants’ data
remains logically isolated from each other. Meta-data associated to each
database describeswhich Tenant uses it. Further, access is restricted through
the database security mechanisms. Thus, it is possible to prevent Tenants
from accidentally or maliciously accessing other Tenants’ data. The advan-
tage of this datamodel is that it is easy to extend to specific Customer needs,
restoring backups for a specific Tenant may be done very easily, and it offers
added security. Cost, hardware andmaintenance, however, are higher than
for the other alternatives since the number of Tenants that can be served by
a database server is limited to the number of databases it supports.

Shared Database, Separate Schemas The next approach is to store multiple
Tenants’ data in the same database but in separate schemas. Once a Tenant
first subscribes to use a given application, it is necessary to create a set
of database tables that are associated to this Tenant. Again, it is possible
to restrict access to those tables only to those Users that belong to the
authorized Tenant. This approach offers a moderate degree of logical data
isolation for security-conscious Tenants, and supports a larger number of
Tenants per database server. Themost significant drawback of this approach
is that Tenants’ data is harder to backup and restore since it is not possible to
restore a backup of an entire database. This would overwrite other Tenants’
data. Overall this approach will result in lower cost for the Operator at the
first approach.

Shared Database, Shared Schema The last approach’s idea is tohave a shared
database and a shared schema used bymultiple Tenants. Thus, a given table
will include records frommultiple Tenants. Individual records are associ-
ated to Tenants by a separate column (e.g. TenantID) in each table. Of the
three approaches presented, this one has the lowest demand for hardware
as it allows a database server to serve the largest number of Tenants (this is
especially true for applications that rely on a high number of tables). On

30

Section 3.1: Research related to Multi-Tenancy

the other hand, however, this approach requires additional development
effort to establish security mechanisms that ensure that a Tenant’s data is
never accessed by another Tenant, even in the event of unexpected bugs or
attacks.

Obviously, it is extremely important for Multi-Tenancy applications that every
aspect of the application is secure and data is only accessed by the authorized
Tenants. Thus, [CCW06] introduces four security patterns.

Trusted Database Connection There are twomethods commonly used to al-
low individual Users access different tables, views, queries, etc. These are
called impersonation and trusted subsystem. Following the impersonation ac-
cess method, the database is set up to grant access to individual Users. Thus,
if a User performs an action that requires interaction with the database, the
application will initiate a connection as this User. In the trusted subsystem
method, the application always connects to the database as itself. Thus, the
connection is independent of the identity of the User. The database grants
the application access to those database objects the application is allowed
to access. This method requires that additional security for limiting Users’
access on data is implemented in the application.

InMulti-Tenancy systems database access methods are a little bit more com-
plicated. This is due to the distinction between Tenants and Users. This
additional complexity may be tackled by a hybrid approach of imperson-
ation and trusted subsystem. In this approach the accessing permissions are
associated to the Tenants. If a User triggers a transaction with the database,
the application creates a database connection as this Tenant. This way the
database does not distinguish transactions caused by different Users of the
same Tenant. Thus, it is necessary that the application checks and grants
access to data of a Tenant based on Users.

Secure Database Tables If the earlier discussed approaches separate-database
and separate-schema are utilized, it is possible to grant access to Tenants on
a table level. This may be achieved through the GRANT SQL command.

Tenant View Filter If the shared schema approach is utilized, it is not possible
to use the secure database table approach. In this case, however, it is possible
to use SQL views. In SQL a view is virtual table defined by the result of a
SELECT query. Using views it is possible to create a Tenant specific virtual
table that only contains their data. Thus, it is possible to grant individual
Tenants access to their rows in a given table, while preventing them to access
other rows. None of the Tenants would get access to the source table - only
accessing their data through the view.

Tenant Data Encryption An additional way to protect the data of Tenants
placed in the database is encryption assigning a unique key to every Tenant.
This way data will remain secure even if it falls into the wrong hands.

31

Chapter 3: State of the Art

Based on these concepts as foundation, it is possible to introducemore related
work towards the realization of Multi-Tenancy. Much of the surrounding related
work is focused on the issues related to security of Multi-Tenancy.

In [BAT12] the specific risks in cloud computing due to Multi-Tenancy are
explored. Further, measures to counteract on these risks are analyzed. As a con-
clusion the paper states that Multi-Tenancy indeed introduces unique security
risks and their countermeasures fall in the following three categories: Gover-
nance, Control & Auditing Configuration, Design & ChangeManagement, and
Logical Security, Access Control & Encryption.

In [AGI12], TOSSMA is introduced. It is a Tenant oriented securitymanagement
architecture, that allows Tenants to define, customize, and enforce their security
requirements without having to go back to application developers for mainte-
nance or security customizations. Security attributes that are considered by the
approach are identity management, authentication, authorization, logging, and
cryptography.
[SR11] proposes a multi-tenant data architecture that allows to express cus-

tomizable privacy constraints. For this data encryption and information dis-
sociation is utilizes. This approach is based on customization features of SaaS
applications and the, previously introduced, shared database shared schema
approach.
Besides these security related issues, there is other research being done. In

[KM08], for example, amulti-tenant placementmodel is developedwhichdecides
for a new Tenant which server would best accommodate it. The decision is
mainly done based on available hardware resources such as CPU and storage. The
overall goal of the placement model is to achieve maximum cost savings without
violating any requirements of service level agreements.

Further, [Aul+08] introduces a new schema-mapping technique for implement-
ingMulti-Tenancy. It is called chunk folding. The basic idea is to partition logical
tables into vertical partitioned chunks. These are folded together into different
physical Multi-Tenancy tables and joined as needed. Using this technique, it
is possible to have a database model that is more scalable than the previously
introducedmodels.
In [Guo+07] a framework is provided that allows the design and implementa-

tion of high quality nativeMulti-Tenancy applications more efficiently. It does
that by proposing a new programming model and framework to simplify and
speed up the application development.
[MK11] discusses different options for introducingMulti-Tenancy to existing

applications. This requires initial reengineering effort. Thus, the paper introduces
a simple cost model for evaluating different options for implementing Multi-
Tenancy depending on the application at hand. It thereby considers the cost
for operation/life-cycle management, the expected number of Tenants and the
expected period of use.
[Koz11] proposes the SPOSAD architectural style, which describes the compo-

nents, connectors, and data elements of a multi-tenant architecture as well as
constraints imposed on these elements. This paper describes the benefits of such
an architecture and the trade-offs for the related design decisions.

32

Section 3.1: Research related to Multi-Tenancy

[CSL09] proposes an approach that allows to monitor Multi-Tenancy appli-
cations as well as resource allocation based on service level agreements. The
proposed architecture, thereby, considers that different Customers have different
requirements towards the service level agreements and allows to monitor the
quality per Tenant. This enables the Operators to react on abnormal status and
dynamically adjust resource usage.
Furthermore, [MUTL09] and [Mie08] discuss how services in a process-aware

service-oriented SaaS application can be deployed using different Multi-Tenancy
patterns. In the context of this paper Multi-Tenancy patterns are whether a
service is configurable or not and if it may host multiple Tenants at the same
time. Even if this paper sounds quite similar to this work, it actually differs in
many ways. First of all the research is focused on process-aware applications.
In addition, the main contribution of this work, that Customers may actually
express their Deployment Constraints, is not addressed at all.

An application offered as a service in the cloud is often configurable regarding
non-functional qualities, such as location or availability. In [Feh09] and [FLM10]
the challenge of resource allocation is addressed that arises if multiple Tenants
wish to use use these services by expressing their individual requirements. The
paper presented a framework that allows Operators to use distribution strategies
as well as to define themon their own. Optimizationmay be performed regarding
individually modeled resource and system properties. Again, although the paper
is related to the scope of this work, differs however as it did not address the issue of
Customer defined Deployment Constraints but focuses on other non-functional
requirements.
The ZDNet article [Wai08] addresses the issue of different flavors of Multi-

Tenancy, and the vendors that use it. In this article the term hybrid tenancy is
mentioned as a lesser-degree Multi-Tenancy where Customers only share lower
Levels of the infrastructure stack. The approach of this work may be seen as
an addition to this article as it allows to create such hybrid tenancy systems by
adding the notion of Customer specific Deployment Constraints.

3.1.2 Variability of Multi-Tenancy Applications

An earlier version of the following text has partially been published in [RA11].
For applications, or more generally speaking, information systems, there are

two general types of flexibility that are important [GS06]. The first one is called
flexibility in the pattern of use (flexibility-to-use) and refers to a manufacturing
machine’s ability to perform different operations [SS90; GS06]. For information
systems this corresponds to the number of Users’ requirements the information
system can coverwithout requiring amajor change. The second kind of flexibility
is called flexibility-to-change and describes an application’s extensibility and the
effort necessary to implement a major change. The possibilities for this range
from systems that cannot be changed at all, to systems that promote changes by
including a large set of opportunities (e.g. due to a modular architecture).
In order to distinguish the two different kinds of flexibility, it is necessary to

define what is meant by a major change. A major change of the information

33

Chapter 3: State of the Art

system can be defined as adjustments and modifications that require a fresh
system setup, re-compilation, re-installation or re-testing [GS06]. Applying this
to Multi-Tenancy applications, a major change would require the Operator to
change the code of the application and redeploy it for all Tenants. The following
compares the need for flexibility for both, Single-Tenancy and Multi-Tenancy
systems.

In a Single-Tenancy environment, a Tenant may require to have multiple Users
working on the same instance. Since the system instance is designated to serve
only a single Tenant, it can be adapted according to this Tenant’s needs. This
adaptationmay be done through customization capabilities that the application
provides, but also by altering the source code. Which way of adaptation is used
depends on the application’s customization capability and on the Customer’s
needs. Customization might concern all levels of the application (e.g. data
models, service/component realization, processes or user interfaces) [Nit09].
However, the adaptation is done prior to the application’s deployment. In case
the application shall be changed (e.g. due to changed requirements) a major
change would be necessary. Thus, themain type of flexibility a Single-Tenancy
application needs to provide is flexibility-to-change. Besides the flexibility-to-
change capability, it is very desirable for a Single-Tenancy application to provide
some degree of the flexibility-to-use since common applications may also offer
the ability to be adapted while the application is deployed and running (e.g.
selected language).

In contrast to Single-Tenancy applications, Multi-Tenancy applications require
to have their flexibility of the category flexibility-to-use. This is due to the fact
that it is not possible, in their case, to deploy an application instance specifi-
cally adapted to the needs of only one Customer. This concludes that the cus-
tomization of an application needs to be done specifically for a Tenant instead of
specifically for an application instance. If a Multi-Tenancy application is created
that offers a very strong variability of the flexibility-to-use kind, it will behave
differently, depending on the Tenant using it.
The challenge of introducing flexibility intoMulti-Tenancy applications has

been addressed in several related works. As an example, [Sun+08] discusses the
configuration issues and challenges related to it. In addition, the paper proposes
a competency model and a methodology framework that both aim to support
Software-as-a-Service vendors in planning and evaluating their configuration
and customizing strategies.

In [ADG02] and [DBV05] the configuration and customization of web services
is discussed. However, in this work customization is only done in the flexibility-
to-change phase.

In [Nit09] the issue of how to effectively and efficiently support configurability
inMulti-Tenancy software is addressed and a Software-as-a-Service architecture
to support configurability is proposed. In this work configurability data is imple-
mented in XML format. In contrast to this paper’s vision there is a strong focus
on a single case study instead of a general method.

In [LHLP10] an approach is presented to describe variability for Software-as-a-
Service applications. This approach can systematically describe variability points

34

Section 3.1: Research related to Multi-Tenancy

and their relationships, and assures the quality of the configuration inputs made
by the Customers. This work focuses on the creation of descriptions of variability
but not so much on the execution.

In [Zha+07] the authors propose a policy based Software-as-a-Service customiza-
tion framework that is realized through a design-time tooling and a run-time
environment. However, this work mainly focuses on the issues in service cus-
tomization for a given set of requirements.

In research the approach of software product lines has proven to be valuable
for the development of software products with a strong need for diversity [PBL10].
The basic idea is to apply the concept of large-scale production of goods tailored
to individual Customers (mass customization) to software [PBL10]. The approach
used to realize this starts by analyzing the required commonality and variability
of a product line. Based on this, a platform is created fromwhich the individual
applications that suit specific Customer’s needs are derived. However, creating
an application using software product lines means that the output is an appli-
cation instance that is specifically tailored, shipped, deployed and run for the
Customer. Thus, categorizing this concept according to the discussed categoriza-
tion of flexibility means that it is placed partially on the flexibility-to-change
area. Nevertheless, in software product lines there is a big collection of tech-
niques that allow to tackle this challenge which can be utilized in all phases of
the application’s creation (product architecture derivation, compilation, linking,
and run-time) [SGB05]. In [SGB05] a total of 16 possible software product lines
realization techniques were presented. Only six of them are actually usable in
the Linking, and run-time phase of an application and, thus, useable for Multi-
Tenancy applications. However, besides the realization techniques, software
product lines also bring techniques to capture variability of software. In literature
there are multiple approaches that apply these techniques toMulti-Tenancy.

In [Mie10] the author discusses bringing flexibility to the process layer of
process-based, service-oriented Multi-Tenancy applications. This is done by
creating variability descriptors that are transformed into a BPEL process model.

The different papers [Sch+12b], [SLW12], and [Sch+12a] propose an extended
feature model to express variability of functionality and service qualities for
Multi-Tenancy applications. These feature models allow different stakeholders
to express their requirements towards the application. Further, a concept for
dynamic configurationmanagement to address the identified requirements is
proposed. It is a staged configuration process that is capable of adding and
removing stakeholders dynamically. That allows for reconfiguration of variants
as stakeholders’ objectives change.

In [Wan+11] the authors use a hypergraph-based service model to represent
services and Multi-Tenancy applications. Based on these graphs, it is possible
to represent hierarchical service and application structures from which Multi-
Tenancy applications can be constructed that fulfill Customers’ needs.

35

Chapter 3: State of the Art

3.2 Related Approaches tackling Security Issue

In Subsection 2.3.2 amajor security threat of cloud computing was introduced
for which the Mixed-Tenancy approach is supposed to be beneficial. It is this
section’s purpose to present related work which discusses other approaches that
were trying to tackle the same problem, and relate them to the approach of this
work.

The section is based on a mapping study that was conducted in March 2013.
Thus, the section starts with an introduction of this study (Subsection 3.2.1).
Based on this, Subsection 3.2.2 will present related work regarding the security
threat.

3.2.1 Introduction of the Underlying Mapping Study

In [Sil+13] a systematic mapping study was conducted to identify literature that
deals with security threats in cloud computing. In this study the digital libraries
Elsevier Scopus, IEEExplore, ACMDigital Library, SpringerLink, Science Direct,
and Engineering Village were used to identify suitable literature. This was done
by applying the following filter rule: {[(Noncompliance with security) OR (key-
words for security)] AND [cloud computing solutions]} in the title or abstract or
keywords in the article. This resulted in the following search string:

("flaw" OR "risk" OR "threat" OR "vulnerabilit*" OR"unsafe" OR "un-
trust") AND
("security" OR "safe" OR "trust") AND
("cloud" OR "multi-tenan*" OR "*aas" OR "* as a service" OR "* as-a-
service")

Applying this search to all aforementioned sources reveals a total of 1011 publica-
tions. Due to the openness of the search string, many of these publications were
actually not in the research context. Thus, a manual inspection was performed,
where a superficial screening was used to filter the 1011 publication. This was
done by applying the following criteria1.

1. Inclusion Criteria

• Security in cloud computing as the main theme.

• The publication should have some relationship with one of the seven
threats2.

• The publication should have a proposed solution.

2. Exclusion Criteria
1Please note that the following enumeration is a direct quote, taken from [Sil+13]
2Please note that [Sil+13] relies on the 2010 version of the report on threats in cloud computing
by the Cloud Security Alliance. In contrast to the newer version, cited in Section 2.3.2, the
2010 version identified only seven instead of nine threats. However, the relevant threat, that
may be addressed by this work’s approach, data breaches, is found in both the 2010 and 2013
version.

36

Section 3.2: Related Approaches tackling Security Issue

• Duplication of publication.

• Journals not accessible online.

• Publications with related threat, but not active in cloud computing.

• Publications that only bring a revision or approach, without a proposal
of solution.

3. Relevance Criteria

• Papers with well-detailed solution proposal;

• Papers that have some kind of proposal validation, with statistical data,
experiment, etc;

• Papers focused in fulfilling some compliance;

Based on these criteria, the number of papers was stripped down to 661. Figure

Figure 3.1.: Results of Mapping Study [Sil+13]

3.1 gives an overview where those publication were found. The identified 661
publications were categorized according to the security threats identified by the
Cloud Security Alliance.

For this work, the authors of themapping study kindly provided their database
naming the 661 publications for the creation of this work. This database has
been filtered for the publications dealing with the security threat, data breaches,
addressed by this work. Those publications associated to the cloud computing
threat, were analyzed with respect to their relevance for this work. The most
relevant for this work are going to be presented in the next subsections.

3.2.2 Related Work tackling Data Breach

Themapping study [Sil+13] contained a total of 125 publications that address the
issue of data breach. For this work they were analyzed and the following is an
overview of the most relevant approaches for this work.

37

Chapter 3: State of the Art

In [RTSS09] opportunities for information leakage are investigated. To be more
precise, the authors investigate the Amazon EC2 as case study and show that it
is possible to map the internal cloud infrastructure in order to predict where a
target virtual machine will be deployed. Based on this information, it is possible
to place a new virtual machine co-located to the target and attack the target
virtual machine using cross-vm side-channel attacks to extract information.

Similar to the previous paper, [DM11] demonstrates, based on simulation, that
cloud computing systems that use open source code could be subject to a simple
malicious attack that degrades the availability of virtual machines. Further,
the authors discuss how this attack leads to virtual machine leakage, thereby
reducing the pool of resource available to Users.
In [LDPS10], the issues related toWindows guest cloud service resilience are

analyzed. Based on this, the authors propose an architecture, calledCReW (Cloud
Resilience for Windows) that allows to transparently monitor guest Windows
virtual machines and react on security breaches and system integrity violation in
order to improve the dependability ofWindows systems in cloud scenarios.

In [SMS10], the authors propose a new cloud based infrastructure which allows
to differentiate between applications and data. Based on this differentiation, the
authors introduce the concept of trusted data binding, enforcing policy usage
on application over data sets with the aid of trusted hardware such as the trusted
platformmodule. A prototypical implementation was provided in Amazon EC2
which allows software providers to upload software and data owners can search
for algorithms and use them to be executed privately on their data sets.

Based on the assumption that Cloud Service Providersmay be trusted, [Cha+11]
defines a trust, security and privacy preserving infrastructure. Thereby, the au-
thors open source software supports trust and reputationmanagement, sticky
policies with fine grained access control, privacy preserving delegation of author-
ity, federated identitymanagement, different levels of assurance and configurable
audit trails.
In [Okt+12], the authors propose a framework that allows to distribute data

and processing in a hybrid cloud. This is supposed to allow tomeet the conflict-
ing goals of performance, sensitive data disclosure risk and resource allocation
cost. The solution was implemented as an add-on tool for an Hadoop and Hive
based cloud computing infrastructure. In contrast to the research of this work,
[Okt+12] focuses strongly on distributing workloads between different cloud
types. This work’s primary purpose was to allow Customers to define Deploy-
ment Constraints for the creation of hybrid and/or community clouds.

There is a lot of research that deals with the encryption of data within a cloud.
As an example, both [Cao+11] and [Cao+14], both, address the issue of enabling
an encrypted cloud data search service. In [Cao+14], the authors define and
solve the problem of a privacy-preserving multi-keyword ranked search over
encrypted data in cloud computing. Further, they establish a set of strict privacy
requirements for such a secure cloud data utilization system.

Another work related to data encryption for the cloud is [PKZ11]. The authors
propose to identify and encrypt all functionally encryptable data. This refers
to all sensitive data that can be encrypted without limiting the functionality

38

Section 3.3: Summary

of the application on the cloud. For this purpose the authors present a tool
called silverline that allows to automatically identify all functionally encryptable
data, assign encryption keys to specific data subsets to decrease key management
complexity, and establish transparent data access at the User’s devices.

[LZL10] establishes a framework and supports a reference model for cloud com-
puting by adapting the concept of insurances. This model guarantees service
assurance, integrity and quality of service. It, therefore, uses quantitative or quali-
tativemetrics to apply the basis of the business value and risk assessment. For this
it applies calculations used for insurance premium and compensation calculation
in order to calculate the failures of the services offered in cloud environment.

Cloud computing and virtualization becomingmainstream has caused a need
for the ability to track data from creation to its current state. Thus, [Zha+12]
introduces an approach for tracking end-to-end data provenance, a meta-data
describing the derivation history of data. By utilizing and analyzing this prove-
nance, it detects various data leakage threats and alerts administrators and data
owners.
Similar to the previous paper, [AK12] also proposes an approach to track data.

It thereby proposes an architecture or systemwhich provides an intelligent track
in privacy manager and risk manager to address privacy issues which rule the
cloud environment.

3.3 Summary

This section introduced the current state of the art related to this work’s scope. In
order to do that, it started by introducing approaches and related work that are
dedicated to the realization of Multi-Tenancy. Further, thematter of variability
in Multi-Tenancy systems has been addressed. In order to do that it discussed
two types of variability: flexibility-to-use and flexibility-to-change. It was stated
that for Multi-Tenancy systems there is a strong focus on flexibility-to-use since
it enables an application to behave differently depending on the Tenant that is
using it.

The second part of this section presented related research that tackles security
issues inMulti-Tenancy. More specifically, this related work addresses the major
security issue addressed by this work: Data Breach. It did that based on amapping
study ([Sil+13]) that was found in literature. Thus, most relevant pieces of related
work were introduced.

The conclusion gained from this section is that the approach introduced by
this work is indeed novel and has not been presented in research earlier.

39

Chapter 4
Capturing Customers’ Deployment Constraints

4.1. Fundamental Concepts andApproaches II 43

4.1.1. First-order Logic . 44

4.1.2. Introduction of Graph Theory 44

4.2. Conceptual Analysis based onRequirements 46

4.2.1. Levels of Deployment . 46

4.2.2. DeploymentModels . 49

4.2.3. Groups . 51

4.2.4. Dimensions . 51

4.2.5. Virtual Tenants . 52

4.3. Process of Deployment Constraint definition 53

4.3.1. Customizing . 53

4.3.2. Tenant Grouping . 55

4.3.3. Constraint Definition . 55

4.3.4. Deployment Information Extraction 56

4.4. GenericMixed-TenancyDescriptionModel 58

4.4.1. Introduction of the Fundamental Idea 58

4.4.2. Foundations of the Formal Model 59

4.4.3. Application Components and Deployment Levels 61

4.4.4. Deployment Level Hierarchy Description 62

4.4.5. Structure of Dimensions, Groups, and Tenants 63

4.4.6. Description of DeploymentModels 65

4.4.7. Completeness of Deployment Constraints 66

4.4.8. Definition of the Deployment Information 67

4.5. Prototypical Realization . 68

4.5.1. Description of Realization Approach 69

4.5.2. Implementation of theModel using OWL 70

4.5.3. Model checking . 73

4.5.4. Extraction of Deployment Information 75

41

Chapter 4: Capturing Customers’ Deployment Constraints

4.6. Evaluation . 77

4.6.1. Example Environment 78

4.6.2. Scenario Definition . 80

4.6.3. Analysis of Results . 81

4.7. Summary . 84

Make everything as simple as possible,
but not simpler.

Albert Einstein

In Section 2.2.3 the research questions were introduced and motivated that
are to be tackled by this work. Research question RQ-1 deals with capturing of
Customers’ Deployment Constraints towards Mixed-Tenancy. The primary focus
of this chapter is to address this particular question and to describe an approach
that is capable of solving the problem. In order to do so, the creation of the
following artifacts are described in this chapter.

Description Model The first artifact is a formal and complete definition of
the DescriptionModel that allows Customers to specify their Deployment
Constraints.

Definition 16 (DescriptionModel) The Description Model is an appli-
cation independent model that allows to capture Deployment Constraints
towards a Mixed-Tenancy deployment. It is formally and completely de-
fined by this work.

Theprimary objective of theDescriptionModel is to be as generic as possible.
This means that the DescriptionModel is supposed to be reusable for a wide
variety of different Multi-Tenancy applications and environments. Thus,
the Description Model is the framework that defines which Deployment
Constraints may actually be expressed. The Description Model directly
contributes to research question RQ-1.3.

Utilization Process The Utilization Process specifies the steps that are neces-
sary to apply the DescriptionModel to a specific application. This is due to
the fact that the DescriptionModel is not specific to any particular applica-
tion, but is designed to be generic. As a result, the defined steps are not only
performed by the Customers, but also by the Operator of the application.

Definition 17 (Utilization Process) The Utilization Process defines the
necessary steps to apply the DescriptionModel to a specific application.

The Utilization Process directly contributes to research question RQ-1.2.

42

Section 4.1: Fundamental Concepts and Approaches II

Prototypical Realization The final artifact described by this chapter is a pro-
totypical realization of the Description Model. Based on it, it is possible
to execute the steps defined by the Utilization Process. This realization is
implemented using technologies from the area of SemanticWeb since they
provide beneficial means for realization. The realization represents one
integral part of the Deployment Configuration Generator (introduced in
Section 2.2.5). Further, the results will be applied within the case study in
Chapter 6. Thus, it will contribute to research question RQ-3.

In order to create these artifacts, the chapter is structured as follows. The chapter
starts with an introduction of fundamental concepts that are relevant for the
understanding of this chapter (Section 4.1). This section’s purpose is to support
readers without knowledge of first-order logic and graph theory. The actual con-
tent of this chapter starts with Section 4.2 by conducting a conceptual analysis
of the requirements which Operators and Customers may have towards the de-
scription of Mixed-Tenancy Deployment Constraints (contributing to research
question RQ-1.1). By doing so this section lays the foundation of the Description
Model and, thereby, determines what is going to be describable by the Descrip-
tionModel. Section 4.3 introduces the Utilization Process of how the Description
Model may be utilized by an Operator. The overall process as well as the individ-
ual steps are discussed in this section on a high level to introduce the general
idea. In Section 4.4 the DescriptionModel is introduced that allows to capture
Customers’ Deployment Constraints. This is done in a complete, formal, and
technologies-independent way by applying first-order logic. Based on the formal
description, the chapter continues by discussing one possible way of realization.
This is done by Section 4.5. Based on the realization, Section 4.6 continues by
evaluating the approach. This is done by discussing an example that captures a
variety of possible cases. The purpose of this is to demonstrate that the example
realization, that was created based on the formal Description Model, provides
the capabilities that were analyzed in the beginning of this chapter. The chapter
concludes with Section 4.7 by summarizing the results of this chapter.
Previously, this chapter has partially been published in [RWV13].

4.1 Fundamental Concepts and Approaches II

This section introduces the fundamental concepts and approaches that are rele-
vant for this chapter. For this chapter first-order logic will be used to formulate
the DescriptionModel. Thus, at this point a brief introduction is given and the
notation used in thiswork is defined. Furthermore, within theDescriptionModel
it is necessary to define graphs for means of representation. Thus, this section
will give a simple introduction of graph theory and standard graphs relevant to
this work.

43

Chapter 4: Capturing Customers’ Deployment Constraints

4.1.1 First-order Logic

The goal of logic in computer science is to serve as a language that allows to
create models that represent situations encountered by computer science profes-
sionals. Using these models it is possible to reason formally and, based on that,
conduct new arguments. The ability to do that formally, bears the advantage
that arguments are valid and can be defended rigorously [Hut11].
Propositional logic is a formal system in which formulas of a formal language

may be interpreted to represent propositions (e.g. “if company A is using the
application, company A is a Customer). In addition to propositional logic, first-
order logic is a formal system that allows to make general propositions about
entities. This is achieved by introducing the universal quantifier (read: “for all”)
and existential quantifier (read: “there exists” or “for some”) [Hut11]. The univer-
sal quantifier allows to express universal statements about certain elements (e.g.
“all companies that use the offered application are Customers”). The existential
quantifier allows to express universal statements about the existence of elements
(e.g. “all Customers must have a User”).

The notation used within this work to express logical statements is defined by
Table 4.1.

4.1.2 Introduction of Graph Theory

In mathematics and computer science graphs serve as mathematical models
that allow to analyze many concrete problems in the real-world. A graph in this
context is an abstract representation of a set of objects where some pairs of these
objects may be connected. The objects are represented by abstractions called
vertices, and connections between vertices are called edges [Wal07; BR12]. A
graph is commonly defined as a pairG = (V,E), with a finite set of vertices V and
a set of edges E ⊆ V × V . A graph is visualized through diagrams by depicting
dots representing the vertices and lines or curves representing edges. Graphsmay
be used to represent a wide variety of scenarios in the real-world and to formulate
concrete problems.

For this work the following terms shall be used.

Adjacent Two vertices are adjacent if they are connected by an edge.

Loop A loop is an edge connecting a vertex with itself.

Walk Awalk in a graph is a finite sequence of vertices in which two succeeding
vertices are connected by a node.

Cycle A cycle is a walk through a graph in which start and end are the same
vertex.

Undirected Edge An undirected edge is one which has no direction. Thus, it is
an unordered pair of vertices that can be represented graphically as a line
between two vertices.

44

Section 4.1: Fundamental Concepts and Approaches II

Symbol Example Interpretation
{ } {x0, . . . , x9} Set containing x0, . . . , x9
| {x | T (x)} Set containing all x that satisfy the condition T (x)
∪ A ∪B Union of setA andB
∩ A ∩B Intersecting of setA andB
× A×B Cartesian product of setA andB
\ A \B Difference of A and B (elements in A, but not in B)
⊂ A ⊂ B A is a subset ofB
⊆ A ⊆ B A is a subset of (or is included in)B
t A tB the setsA andB are disjoint
∈ a ∈ A Element a is part of setA
/∈ a /∈ A Element a is not part of setA
| | |A| Cardinality of setA
∧ A ∧B StatementA and statementB
∨ A ∨B StatementA or statementB
⊕ A⊕B Either statementA or statementB
→ A→ B StatementA implies statementB
↔ A↔ B StatementA is equivalent to statementB
∀ ∀x For all elements x
∃ ∃x There exists at least one element x
∃! ∃!x There exists exactly one element x
@ @x There exists no element x
: ∀x : T (x) For all x that satisfy the condition T (x) is true
v C v C ′ C is a refinement of C ′ (defined in Section 5.1.3)

Table 4.1.: Introduction of used Notation

Directed Edge A directed edge is an edge having a direction associated. Thus, it
is an ordered pair of vertices that can be represented graphically as an arrow
drawn between two vertices.

Graph theory distinguishes many different types of graphs. Those, relevant for
this chapter, are introduced in the following.

Undirected Graph An undirected graph is a graph with undirected edges that
may have loops and cycles.

Simple Graph A simple graph is an undirected graph that contains no loops.

Directed Graph A directed graph is a graph with directed edges that may have
loops and cycles.

Directed Acyclic Graph A directed acyclic graph is a directed graph without
cycles. This means there is no way to start at some vertex and follow a
sequence of edges that eventually loops back to the start.

Complete Graph A complete graph is a graph in which every vertex is adjacent
to every other vertex.

45

Chapter 4: Capturing Customers’ Deployment Constraints

4.2 Conceptual Analysis based on Requirements

This sectionmarks the first step towards the definition of the DescriptionModel.
First, it does that by analyzing the requirements about what the Description
Model it is supposed to be able to capture. Thereby it is determining the expres-
siveness of the DescriptionModel. Second, for every requirement a conceptual
design is proposed1.
The requirements were identified by an analysis of the problem domain. Fur-

thermore, interviews and discussions were conducted with experts from both
industry and academia. The interviewed industry experts were all employed in
globally operating IT companies, most worked in technical roles with contact to
Customers. Thus, they had expertise about themarket demand as well as good
understanding about realization. The experts from academia were all doing on
edge research in related fields. Some of themwere met at conferences, for others
specific meetings were arranged. Based on these discussions and the gathered
feedback, themodel was refined several times. Furthermore, aspects that came
up in these interviews that were not included in the work, may be found in the
future research section (Section 7.1.2). However, since expert interviews may not
be conclusive, Chapter 6 will analyze the applicability of the DescriptionModel
to real-world scenarios in detail by performing a case study. This will also give
conclusions about the quality of the requirements that were introduced by this
section.
The section starts by analyzing the environments in which Multi-Tenancy

applications shall be deployed and, based on this, determines requirements to
be met (Section 4.2.1). This is followed by an introduction of the Deployment
Models that shall be supported (Section 4.2.2). Deployment Models refer to
different styles of how Customers may express their Deployment Constraints.
Some of these DeploymentModels allow to exclude or include individual Tenants
or entire Groups of Tenants. Thus, the grouping of Tenants is discussed in Section
4.2.3 and the creation of collections of Groups, so-calledDimensions, is discussed
in Section 4.2.4.

It is a goal of the approach to keep Customer base secret. To be able to achieve
this goal, it is necessary to tackle a challenge that is discussed in Section 4.2.5.

4.2.1 Levels of Deployment

In order to create a DescriptionModel that shall be able to capture Customers’
Constraints towards Mixed-Tenancy deployments, it is necessary to take a look to
what a deployment has to look like. The goal of this work is to deploy composite
Multi-Tenancy applications following the Mixed-Tenancy paradigm, where every
Tenant may give Constraints to if or with which other Tenants they are willing to
share resources.

As discussed in Section 2.1.3, Multi-Tenancy is a paradigm that allows multiple
Tenants to share the same instance of an application and the entire underlying in-
frastructure stack. A Single-Tenancy application, on the other hand, is not shared
1A complete formal definition of all requirements is given by Section 4.4.

46

Section 4.2: Conceptual Analysis based on Requirements

bymultiple Tenants. It may, however, be possible that the Operator chooses to
have Tenants share some of the infrastructure stack. An example may be that the
Customers each use their own instance of the application (Single-Tenancy), but
all those instances are being deployed in the same virtual infrastructure.
It is the goal of this work to allow Customers to express their Deployment

Constraints for different layers of the infrastructure stack to increase their security
by still allowing the Operator to make use of economies of scale. Those layers
for which Deployment Constraints shall be expressible, this work refers to as
Deployment Levels.

Definition 18 (Deployment Level) A Deployment Level (or only Level) is a
slice of the infrastructure stack for which the Operator offers the possibility to re-
alizeMixed-Tenancy. A slice encapsulates one tomany layers of the infrastructure
stack2. Each Deployment Level needs to apply to the rules that will be discussed
in the following.

Definition 19 (Deployment Unit) There will be one or many instances of
every Deployment Level, once a deployment has been created. These instances
are referred to asDeployment Units.

Equal to the infrastructure stack, the Deployment Levels of one Application
Component are structured as stacks, each having none or one predecessor (lower)
and none or one successor (higher) Deployment Level. Whether an infrastructure
layer can/shall become a Deployment Level depends on if the following rules
apply:

A Deployment Level for Instances of Application Components needs to
be Defined This is due to the fact that this work is dedicated to composite
Multi-Tenancy applications. In order to realize the proposedMixed-Tenancy
approach, it is necessary that all Application Components are associated
to this Level. This Level is the highest Deployment Level of the stack of all
Application Components.

It is possible to create multiple Units of a Deployment Level This is a
necessary requirement since for this work separating Tenants means having
them use different instances. If this requirement could not be met, the
entire approach would not work.

The next (lower) Deployment Level shall be able to run multiple in-
stances of the current Deployment Level simultaneously This re-
quirement is necessary, as otherwise it would not be possible for the Tenants
to express their Constraints for every Deployment Level independently. An
example for aDeployment Level where this requirement cannot bemet is op-
erating system over a virtual machine. Given the case that a Tenant expresses
the requirement to use an individual instance of an operating system, this
would result in an individual instance of a virtual machine. This is due to

2The concept of the infrastructure stack was introduced in Section 2.1.3.

47

Chapter 4: Capturing Customers’ Deployment Constraints

the fact that a virtual machine will not be able to runmultiple operating
systems simultaneously. In case the Deployment Levels application server
and virtual machinewere created, it would be possible that a Customer with
the requirements of not sharing the same application server requirement
may still share the same virtual machine with other Tenants. Thus, this
requirement contributes to the Operator’s objective of using infrastructure
as efficiently as possible, but still it allows the Tenants more freedom of
defining their Deployment Constraints. This objective has previously been
introduced by Section 2.

Sharing of data between different Units of the same Deployment Level
shall be establishable if necessary In order to have a working platform,
it may be necessary that the instances of a particular Deployment Level
may share data. An easy example for this is creating a Deployment Level
for Application Components. In this case all instances that are used by the
same Tenant will need to share data. A more challenging example is an
application server. One of the tasks of an application server is to hold the
session that stores data related to the User currently using the application.
Thus, the application server Units that belong to the same Tenant (and
thereby to the User) will need to share the session data. For the proposed
system this is not a trivial task.

However, there may be Deployment Levels where communicationmay not
be necessary (e.g. virtual machine). In this case this requirement does not
need to be considered.

As this work deals with composite applications, it is possible that not all Applica-
tion Components share the sameDeployment Level stack. It may be the case that
different Application Components rely on different Infrastructure Stacks and,
therefore, on different Deployment Level stacks. In fact, it would be possible that
two Application Components belonging to the same application do not share
Deployment Levels at all, except of course the first one (which was stated to be
mandatory) that states that both are Application Components. Thus, it is neces-
sary that the DescriptionModel has the ability to capture multiple Deployment
Level stacks.
It may also be possible that the same Application Components of the same

composite application rely on similar but slightly different stacks. As an example,
take a scenario where all Application Components are being deployed on virtual
machines, but some also require an application server and some do not. In this
scenario both types of Application Components may share the same virtual ma-
chines if Customer Constraints permit it. In order to be able to realize this, it will
be necessary to capture all stacks of Deployment Levels. Since all Application
Components must belong to the first Deployment Level called instance, all De-
ployment Levels relevant for the deployment of an application can be captured
as a directed acyclic graph. The Application Components need to be associated
to those Deployment Levels they shall be deployed on (whichmust always be a

48

Section 4.2: Conceptual Analysis based on Requirements

stack). An example that captures all possible stacks that shall be supported by the
DescriptionModel is illustrated in Section 4.6.1.

4.2.2 Deployment Models

For every Application Component and Deployment Level the Customers have
to choose the Deployment Model according to which they want to express their
Deployment Constraint.

Definition 20 (DeploymentModel) A Deployment Model is a blueprint of a
Deployment Constraint. It defines the characteristics of if or how Tenants will be
able to express their Deployment Constraints for their deployment or a particular
Application Component and Deployment Level.

As discussed in Section 4.2.1, it is necessary for Customers tomake that choice
multiple times sinceDeploymentConstraints need to be defined for everyDeploy-
ment Level and every Application Component. The same Deployment Model
may be applied to multiple (or even all) Application Components and/or mul-
tiple (or even all) Deployment Levels. This means it is possible to specify that
the entire application is shared freely and publicly with other Tenants, on all
Deployment Levels. Application Components that process very sensitive data
may be assigned tomore restrictive DeploymentModels.
The following are the possible Deployment Models that shall be supported

by the Description Model. Each Deployment Model may be applied on every
Deployment Level.

Private

Following this DeploymentModel, a DeploymentUnit is deployed specifically for
a single Tenant. This specific Unit is not shared bymultiple Tenants. If applied to
a specific Application Component on the instance Deployment Level, the entire
application stops being a pure Multi-Tenancy application since this deployed Ap-
plication Component does not need to support Multi-Tenancy anymore. In fact,
it would be possible that a Customer demands that all Application Components
are deployed following the privatemodel. This would lead to a Single-Tenancy de-
ployment of a Mixed-Tenancy application. If another Deployment Model would
be chosen for lower Deployment Levels, it would still be possible for the Operator
to do some resource usage optimization.

Public

If this DeploymentModel is chosen, the Tenant states that sharing is permitted
with all other Tenants. Thus, Tenants using this Deployment Model have no
influence on with whom they are deployed. As this is the easiest way for the Op-
erator to deploy the application, it should also be the cheapest for the Customer.
For Customers, this may also be the right way for Application Components that
do not handle sensitive data.

49

Chapter 4: Capturing Customers’ Deployment Constraints

White Hybrid

This Deployment Model allows Customers to specify the choice with which spe-
cific Tenants or Groups of Tenants they feel comfortable to share Deployment
Units. A real-world application of this might be that a company demands that in-
dividual departments (belonging to the same company group) share an instance,
but any external Tenants are not allowed to use the same instance. Furthermore,
this DeploymentModel allows tomanage collaboration if applied to the instance
Deployment Level. It can be used to specify which specific Customers want to
share the same Application Component instance that allows collaboration, for
example, by deactivating the isolation of a Mixed-Tenancy component. However,
this is not further elaborated in this work.

Black Hybrid

In this DeploymentModel Customers can specify with which other Tenants or
Groups of Tenants they do not want to be deployed. A real Customer demand
that can be fulfilled using this DeploymentModel is that a Customer demands
not to be deployed with competitors (without specifically specifying who they
are) or they demand not to be deployed with another specific Customer.

Gray Hybrid

This Deployment Model allows Customers to do both, specifying with whom
they want to be deployed and with whom they do not wish to be deployed. Thus,
it provides the highest level of liberty to Customers to describe their Deployment
Constraints. The DeploymentModel allows Customers to specify, for example,
that they want to share a Unit only with Tenants from a specific geographic
region (e.g. Asia) but not with Tenants from a particular industry (e.g. the ones
they operate in).

Deployment Model Overview

In the previous paragraphs theDeployment Models Private, Public, White Hybrid,
Black Hybrid, and Gray Hybrid were introduced. These are the only Deployment
Models that shall be supported by the approach of this work. Each Deployment
Model has different capabilities to express the Constraints Tenants need to meet
in order to be deployable with the Tenant that expressed them. Thus, the way
deployable Tenants are determined is different depending on the chosen Deploy-
ment Model. This may simply be expressed using set theory. Figure 4.1 illustrates
this using Venn-Diagrams. A Gray Hybrid deployment, for example, may only
deploy those Tenants that were included and not excluded.
As visible in the figure the Gray Hybrid model would be sufficient to model

White Hybrid and Black Hybrid Constraints. This work chose to introduce all five
Deployment Models since it will very easily be possible to associate different
pricing strategies to each Deployment Model. This, however, is not further
elaborated in this work.

50

Section 4.2: Conceptual Analysis based on Requirements

1

Tenants

Excl.

Excl.

Excl.

Tenants

Incl.
Incl.

Incl.

Tenants

Incl. Incl.

Excl.

Excl.

Tenants

Tenants

Green = Tenants that may be deployed

Private

Public

White Hybrid

Black Hybrid

Gray Hybrid

Figure 4.1.: Definition of Deployment Models using Venn Diagrams

4.2.3 Groups

In the previous Sub-Section five Deployment Models were introduced. Some
of them provide the ability to the Customer to explicitly specify with which
other Tenants they wish or do not wish to share infrastructure. This inclusion
and exclusion, however, shall not only be done based on individual Tenants.
Furthermore, it shall be possible to exclude or include entire Groups of Tenants.

Definition 21 (Group) A Group is an entity that represents a commonality
multiple Tenants may share. All Tenants that share this commonality are associ-
ated to it.

For example, it would be possible to create a Group that represents a particular
industry (e.g. IT, TC, Pharmaceutical). All Tenants that belong to this industry
would be associated to it. Once this is done, it would be possible to easily realize
the requirement that a Tenantwishes not to share infrastructurewith competitors.
Itwould only benecessary to exclude the particular industries the Tenant operates
in. Thus, all Tenants associated to this Group (whichmeans operating in those
industries) would be excluded.

4.2.4 Dimensions

In the previous Section the requirement has been discussed that it shall be possi-
ble to categorize Tenants by grouping them. The Section gave an example for this
by grouping Tenants according to industries they operate in. This industry-based
grouping is only one possible way of grouping Tenants. There are a lot of others
possible. Within this work, the ways of how Tenants shall be grouped are refered
to as Dimensions.

Definition 22 (Dimension) ADimension is an entity that represents one pos-
sible subject according to which Tenants may be grouped. All Groups that con-
tribute to this Dimension are associated to it. Thus, as Groups represent common-
alities Tenants may share, a Dimension is in fact a collection of commonalities
that all contribute to the same subject.

The definition of one to many Dimensions shall be possible within the same
scenario. Thus, the Description Model proposed by this work is not limited to

51

Chapter 4: Capturing Customers’ Deployment Constraints

any particular Dimension. In fact, the idea is to have the Operator decide which
and howmanyDimensions they need for a specific application and targetmarket.
Each Dimension is realized by a collection of Groups. It shall be possible to
organize the Groups realizing the same Dimension as a directed acyclic graph (in
which the root is the Dimension). Figure 4.2 illustrates the proposed structure
to realize Dimensions. As visualized by the figure it is possible that Groups have

2

…

Group 1.1 Group 1.2 Group 1.n …

Group 2.1 Group 2.2 Group 2.n …
subSetOf subSetOf subSetOf

realizes realizes

realizes

Group 3.1 Group 3.n …
subSetOf subSetOf

D1 D2 Dn

Group Dimension

Figure 4.2.: Description of Dimensions and Group Structure

Subgroups that are a sub-set of them. The capability of structuring Groups like
that allows amuch finer-grained categorization of Tenants. An example would be
a Tenant being part of a certain sub-industry that belongs to a particular industry
(e.g. banks or insurances within the finance industry). However, once Customers
express to include or exclude a particular Group, they will also include or exclude
all Groups that are Subgroups of them (including Groups that belong transitively
to the Groups). This means excluding the finance industry will result in the
exclusion of banks and insurances.

4.2.5 Virtual Tenants

Previously, it was stated that Tenants shall be able to explicitly include or exclude
other Tenants (in addition to Groups). This may lead to a problem as a Tenant
might want to exclude companies that have not been Tenants of the application
yet.
The idea of this work is to tackle this problem with the goal of keeping the

Customer base secret. This may be accomplished by introducing the concept of
Virtual Tenants.

Definition 23 (Virtual Tenant) A Virtual Tenant is a company that exists in
themarket or might potentially exist but is not yet a Tenant of the application.

In the description of Deployment Constraints, the Virtual Tenants are treated
similarly to regular Tenants. The only difference is that only for regular Tenants
the deployments of the application will be computed and realized.

52

Section 4.3: Process of Deployment Constraint definition

Once a company becomes a Tenant of the application, the Virtual Tenant is
transformed to a regular Tenant. This is done by keeping all previously speci-
fied Deployment Constraints valid. This is also true for the opposite case. If a
company stops being a Customer, but there are still Constraints to consider, the
Tenant is transformed into a Virtual Tenant.

4.3 Process of Deployment Constraint definition

The previous section performed a first conceptual analysis of the requirements
Tenantsmay have towards the description ofMixed-Tenancy deployments. Based
on this, this section presents the Utilization Process as a next step towards the
solution of Research Question RQ-1.2.
Due to the fact that the solution of this work is intended to be as generic as

possible, the definition of Deployment Constraints is performed not just by the
Tenants but also by the Operator. The Utilization Process defines the necessary
steps to capture Customers’ Deployment Constraints. This is done by introducing
and discussing the necessary steps that belong to the process. The process is
illustrated by Figure 4.3

3

Customizing Tenant
Grouping

Constraints
Definition

Deployment
Information
Extraction

Figure 4.3.: Description of the Utilization Process

The foundation of the Utilization Process is the DescriptionModel that allows
to realize the entire description.

4.3.1 Customizing

The first step that needs to be taken in order to apply the approach of this work is
called customization. It was an objective of this work to create the Description
Model theway that it is as generic as possible, in order to be applicable to a variety
of applications. This is why this first step of the application process deals with
the customization of the Description Model to the specific application that is
supposed to be offered. Thus, this step is performed by the Operator.
The customization step consists of three activities that need to be performed.

They will be discussed in the following.

Entity Capturing

As stated before, it is the goal of this work to propose a generic model. Thus, the
first step is to capture the important entities for the given scenario. This includes
the Tenants that wish to use the application and the Application Components.
This is the purpose of this first customization activity.

53

Chapter 4: Capturing Customers’ Deployment Constraints

Deployment Level Definition

This activity’s purpose is the definition of the Deployment Levels. Section 4.2.1
introducedDeployment Levels and stated the rules all Deployment Levels need to
apply to. When the Operator defines the Deployment Level for their application,
these rules need to be fulfilled. Furthermore, it was stated that Tenants will have
the ability to express their Deployment Constraints for some of the Deployment
Levels.
Since the decision whether or not Deployment Constraints may be expressed

for a Deployment Level has impact on how optimal available resources may be
utilized, Operators should allow the definition of Constraints only for those
Deployment Levels where Customers demand it. However, there is no restriction
to the number of Deployment Levels that may be created.

Dimension and Group Definition

Dimensions are subjects according to which Tenants need to be categorized.
Based on this categorization, Tenants may exclude or include other Tenants from
sharing resources. This was introduced and discussed in Section 4.2.4.
The goal of this activity is the definition of the Dimensions and the Groups

that realize them. For this, the DescriptionModel only serves as the framework.
It does not give a restriction to the number of Dimensions or the number of
Groups realizing each Dimension. It is up to the Operator to determine the
specific Dimensions they want to provide to their Customers. This gives the
Operator the chance to take the requirements of their Customers into account
and define Dimensions according to their needs. Once a Dimension has been
defined, the creation of Groups needs to be done based on the target Customer
base. Since Groups will represent the commonalities that Customers have, the
target Customer base will give some insight on which Groups will be necessary.
For example, if the Dimension “Industries” was created, the industries in which
the target Customers operate, need to be captured by the Groups. The level of
abstraction Groups represent, however, needs to be determined by the Operator.
For the “Industry” example, it would be possible to create a specific Group for
banking and insurance, or a generic one for finance. Of course it would also
be possible to create the Groups banking and insurance that are Subgroups of a
finance Group.

The way the Operator defines the Groups has an impact on howwell resources
may be utilized. This is due to the fact that the more precise Customers may
express their DeploymentConstraints, the less restrictivewill their Constraints be
in the end. An example for this is a Customer that does not want to be deployed
with banks. If there is such a Group, the exclusion is limited to Tenants that
are banks. If the Operator only created a finance Group, the Customer will
exclude a higher number of Tenants, which leaves the Operator with less space
for optimization. Thus, it is in the interest of the Operator to have very detailed
means of categorizing Tenants within Dimensions in order to havemore space
for optimization.

54

Section 4.3: Process of Deployment Constraint definition

4.3.2 Tenant Grouping

The second step of the process is called Tenant grouping. Similar to the previous
step it is also executed by the Operator. Its goal is to categorize all Tenants that
wish to use the application. This means that it is necessary to execute this step
every time a new Tenant is introduced to the system or the data of an existing
one changes. Each Tenant needs to be assigned to at least one Group that realizes
a particular Dimension (this may be done transitively).

The reason that this needs to be done is that otherwise it would not be certain
that excluding a particular Groupmay actually result in excluding the Tenants
that apply to this commonality. Even though this process step seems easy and
straight forward at first it is not, once looked at it closer. The Tenant grouping
is a crucial step in order to create data on which Constraints may be defined.
If this data is flawed, Deployment Constraints defined by Tenants may not be
properly realized. For example, it may be possible that an Asian company is not
associated to the Asian Group (not directly nor transitively). If this is the case, an
exclusion of the Asian Group will not lead to a Deployment Constraint without
this particular Customer.

Problems caused by flawed datamay appear due to awide variety of reasons. For
example, a companymay extend or limit their area of business (e.g. regionally or
industry wise), or two companies maymerge. Furthermore, it might be possible
that a company specifically tries to flaw data in order to be deployed with a
competitor.
In order to avoid such things from happening, it is crucial that validation

processes and techniques are established that guarantee data validity. However,
thiswork is limited to the techniques of how these requirementsmaybedescribed.
Processes and techniques to keep data quality accurate are out of scope of this
work. However, a first idea of how this problemmay be tackled is briefly discussed
in Section 7.1.2.

4.3.3 Constraint Definition

In the previous Subsection it was explained how Dimensions are defined and
Tenants are grouped. Furthermore, in Section 4.2.2 the DeploymentModels were
introduced that are supposed to be offered to Customers. This Section now puts
all that together and discusses how Customers may express their Deployment
Constraints of a particular Application Component and Deployment Level.

Figure 4.4 gives an example. In order to describe the Deployment Constraints,
the Customer has to start by picking a Deployment Model. Then, the Tenant
has to specify to which Application Component (or Application Components)
and Deployment Level (or Deployment Levels) the Deployment Constraint shall
apply to. Once this is done, the final step is to give the Deployment Model
specific constraints. For a public or private deployment there is nothing to do
since the selection of the DeploymentModel already specifies completely how
infrastructure may be shared. For other DeploymentModels, however, it is nec-
essary to give more information. For a Gray Hybrid, for example, it is necessary

55

Chapter 4: Capturing Customers’ Deployment Constraints

4

GrayHybridDeployment

of for

belongsTo

excludes includes

AC 1 AC 2 AC n …
Application Components

…

Tenants

PublicDeployment

of for

DL 2
Group 1.1 Group 1.2 Group 1.n …

Group 2.1 Group 2.2 Group 2.n …
subSetOf subSetOf subSetOf

realizes realizes

realizes

DL 1

… D1 D2 Dn

n B A

Figure 4.4.: Description of the Deployment Constraint

to explicitly specify which Groups or Tenants shall be excluded and which shall
be included. Figure 4.4 indicates this by a deployment called “GrayHybridDe-
ployment”, which is for Tenant A and deploys Application Component 1. In
this example Tenant A specifies that they want to share an instance only with
Tenants associated to Group 1.1. Furthermore, they express that they do not
want to share this instance with Tenants associated to Group 2.1. According to
the specification of the Gray Hybrid model, this means that Tenant A only wants
to share an instance with Tenants associated to the Groups 1.1, 2.2, . . . , 2.n.
As discussed in Section 4.2.1 it is necessary that a Tenant specifies the De-

ployment Constraint of every Application Component multiple times, once per
Deployment Level. This is why in the example of Figure 4.4 Tenant A specifies
two Deployment Constraints of Application Component 1, one which is on De-
ployment Level 1 and one which is on Deployment Level 2. Furthermore, due to
the fact that the Deployment Units will be cascading into each other (according
to the rules defined in Section 4.2.1), it is necessary that lower-level Deployment
Constraints are equally or less restrictive than their predecessors. This will be
further elaborated in Section 5.

Since this step is performed by the Customer, it would be necessary to create an
easy-to-use user interface, for example, as part of a self-service portal. However,
this is out of scope for this work and is listed for future research (Section 7.1.2).

4.3.4 Deployment Information Extraction

Once all Tenants have expressed their Deployment Constraints for all Application
Components they use on all relevant Deployment Levels, it is possible to extract
the information that is needed for calculating Valid and Optimal Deployments.

56

Section 4.3: Process of Deployment Constraint definition

The information needed to do so is whether two Tenants are allowed to share
infrastructure or not. This needs to be done for every Application Component,
once per relevant Deployment Level. The information may be gained by the

A

B

C

D

E

7

Group 1

Group 2

belongs to

belongs to

belongs to

belongs to

Does not want to share with

A

E C

B

D

May share with
(Both tenants have no
constraint prohibiting sharing)

Step 1 –
Eliminate Groups

Step 2 –
Extract constraints

Input

excludes

includes

excludes

A

B

C

D

E

Figure 4.5.: Description Deployment Information Extraction

activities that are illustrated by Figure 4.5. The left column represents an example
inputwhere five Tenants are grouped into twoGroups. TheseGroups are included
and excluded by different Tenants in order to define their Constraints. Please
note that as Deployment Information extraction is done for every Application
Component and relevant Level, only those Groups are part of the input that have
an impact on the Deployment Constraints.
Based on this input, unnecessary informationmay be eliminated. Thus, step

one (Figure 4.5 middle) starts by removing the Groups from the input. Instead of
including or excluding Groups, Tenants now directly exclude other Tenants. The
include relationship of Tenant E was also transformed into exclude relationships.
Based on this, it is possible to extract which Tenants may share the resource

by checking if each combination of Tenants has Constraints between them or
not. This information can easily be represented by an undirected graph. For this
graph the nodes represent Tenants and edges represent whether two Tenants
may share infrastructure or not. In case two Tenants may share resources, they
would be connected by an edge. This is only the case if neither one of them has
Deployment Constraints that express that they shall not share resources.
Such a graph is needed for every Application Component, once per relevant

Deployment Level. All those graphs shall automatically be created once all De-
ployment Constraints have been described by the Tenants since they represent
an input for the Deployment Computation Algorithm. A prototypical imple-
mentation is described by Section 4.5 and an example application of this work is
described by Section 4.6.

57

Chapter 4: Capturing Customers’ Deployment Constraints

4.4 Generic Mixed-Tenancy Description Model

Section 4.2 dealt with a requirement analysis of what the DescriptionModel, that
is to be created in this chapter, shall be able to capture. Further, it introduced a
first conceptual analysis for the Description Model. Based on this, Section 4.3
discussed the process of how the Description Model may be applied to a wide
variety of applications. Based on these two Sections, it is this section’s purpose
to introduce the Description Model that is capable of realizing all previously
discussed requirements. This shall be done by providing a complete, formal, and
technology-independent model. To achieve this goal, first-order logic will be
utilized.
In order to do so, this section starts with a first, incomplete description of the

Description Model using the class diagram notation of the Unified Modeling
Language (UML). The purpose of this is to give a point of reference to the reader.
This allows to grasp the basic idea of themodel quickly. Based on this incomplete
discussion, the section continues by defining all aspects of the DescriptionModel
in detail.

4.4.1 Introduction of the Fundamental Idea

As stated by the introduction, this Section starts by giving a quick but incomplete
overview of the Description Model using UML class diagram notation [PP05;
OMG13b]. This is done by Figure 4.6. It illustrates the entities that were discussed

Private Public White Gray Black

of
for

1

*
*

Dimension isRealizedBy 1 *

X
X

X

onLevel X * *

ha
sS

ub
S

et

Tenant Group

*

1

AC

{Abstract}
Constraint

{Abstract}
Entity

*

includes

excludes
includes

excludes
* * * *

* * * * X X
 X

X

*
*
Level

hasSubLevel

isDeployedOn X * *

Figure 4.6.: Description Model as UML Class Diagram (incomplete)

in previous sections as classes. Furthermore, there are relations between these

58

Section 4.4: Generic Mixed-Tenancy Description Model

classes that may be used to describe Deployment Constraints. In Section 4.3.3 an
example was given in which Tenant A defined that they want to use Application
Component AC-1 as a public deployment on Deployment Level DL-1 (illustrated
by Figure 4.4). Realizing this based on the UMLModel wouldmean that there is
an object of the type Application Component, called AC-1. In addition, there is
an object A, of type Tenant and an objectDL-1 of type Level. According to the
process defined in Section 4.3, these objects would have been created by the Op-
erator as part of the first step called customizing (Section 4.3.1). Once this setup
ismade, the Tenant creates the aforementionedDeployment Constraint. In order
to do so, they would create an object of type Public (which is of type Constraint).
This object is then associated to AC-1 by using the of -relationship, to A by using
the for-relationship and toDL-1 by using the onLevel-relationship. Thus, the con-
straint is captured. Amore complex Constraint could be using one of the other
Deployment Models by creating an object of those classes. Depending on the
incomplete description, the object would have include or exclude-relationships
to Groups or Tenants.
Please note that the structure between Tenants, Groups and Dimensions, as

introduced by Subsection 4.2.3 and 4.2.4, is realized in the DescriptionModel
using the composite design pattern [GHJ94]. It allows that every Group may
havemultiple Subgroups as well as that Tenants may be associated to any Group.
An inclusion or exclusion of a Group shall also include all Tenants or Groups
that are directly or transitively connected to the Group through the hasSubSet-
relationship. However, this cannot be covered by a plain UMLmodel and, thus,
will be defined in the following using first-order logic.

4.4.2 Foundations of the Formal Model

In the previous subsection the basic idea of the Description Model was intro-
duced using UML notation. This is not sufficient in order to have a complete
and unambiguous description of the DescriptionModel since there are certain
structures that are not possible to be captured by a basic class diagram.
However, it is the goal of this work to provide a complete description of the

Description Model. The obvious approach to do that would be to extend the
existing superficial UML description with the definition of OCL Constraints
[OMG13a]. However, in order to have a more readable description, first-order
logic is applied to describe the entire Description Model. Another benefit of
using first-order logic for the description is that some of the definitions given
in this sectionmay be reused in Chapter 5. This chapter will deal with tackling
research question RQ-1.3 and requires some formal definition of the optimization
problem.
In order to describe the entire Description Model, the first step is to define

sets that represent the entities necessary for description. In addition to the sets
representing entities, the relationships between the entities will be defined as
finitary relation. The necessary sets and some of the basic functions are defined
in the following paragraphs.

59

Chapter 4: Capturing Customers’ Deployment Constraints

Definition of Entities

In order to capture and define all entities that need to be describable in the
Description Model, the following defines sets. Each set represents one class of
entities and its individuals. They correspond directly to the classes in the UML
description (created in the previous subsection).

T = {t1, . . . , tit} : Tenants (4.1)
AC = {ac1, . . . , aciac} : Application Components (4.2)
DL = {dl1, . . . , dlidl} : Deployment Levels (4.3)
D = {d1, . . . , did} : Dimensions (4.4)
G = {g1, . . . , gig} : Groups (4.5)

DC = {dc1, . . . , dcidc} : Deployment Constraints (4.6)
PR = {pr1, . . . , pripr} : Private DeploymentModel (4.7)
PU = {pu1, . . . , puipu} : Public DeploymentModel (4.8)
WH = {wh1, . . . , whiwh} : White Hybrid DeploymentModel (4.9)
BL = {bl1, . . . , blibl} : Black Hybrid DeploymentModel (4.10)
GR = {gr1, . . . , grigr} : Gray Hybrid DeploymentModel (4.11)

of -Relationship

The purpose of the of -relationship is to associate a Deployment Constraint to the
Application Component this constraint shall apply for. In order to capture this
formally, a finitary relation called of is defined by definition 4.12. It allows to
assign a set of Application Components to a given Deployment Constraint.

Every Deployment Constraint must have at least one Application Component
associated. Furthermore, it was stated by Section 4.2.2 that it shall be possible to
associate multiple Application Components to the same Deployment Constraint.
This allows the Tenants to express that multiple Application Components are
deployed in the same fashion. All this is defined by Equation 4.13.

of ⊆ DC × AC (4.12)
∀dc ∈ DC → ∃ ac ∈ AC : (dc, ac) ∈ of (4.13)

for-Relationship

The for-relationship associates Tenants to the Deployment Constraints they have
defined. Thus, Equation 4.14 defines the for-relation the way that it relates a
Deployment Constraint to a Tenant.

It shall not be possible to have multiple Tenants sharing the same Deployment
Constraint. Thus, a Deployment Constraint is always only associated to exactly

60

Section 4.4: Generic Mixed-Tenancy Description Model

one Tenant. This is expressed by Equation 4.15.

for ⊆ DC × T (4.14)
∀dc ∈ DC → ∃! t ∈ T : (dc, t) ∈ for (4.15)

onLevel-Relationship

It is also necessary to associate a Deployment Constraint to the Deployment
Levels it shall apply for. This is done by the onLevel-relation.

Equation 4.16 defines the onLevel-relation to relate a set of Deployment Levels
to any given Deployment Constraints. Furthermore, every Deployment Con-
straint shall apply to at least one Deployment Level because otherwise it would
not be used. The application of the same Deployment Constraint on multiple
Deployment Levels shall be possible as well. This is defined by Equation 4.17.

onLevel ⊆ DC ×DL (4.16)
∀dc ∈ DC → ∃ dl ∈ DL : (dc, dl) ∈ onLevel (4.17)

4.4.3 Application Components and Deployment Levels

In Section 4.2.1, Deployment Levels were introduced and it was stated that differ-
ent Application Components may be associated to different stacks of the same
Deployment Level-graph. In order to be capable of associating an Application
Component to a Deployment Level, a relation is required. Equation 4.18 defines
the isDeployedOn-relation that allows to express just that. Furthermore, Equation
4.19 states that every Application Component needs to be associated to at least
one Deployment Level. In fact, it has previously been defined (Section 4.2.1) that
every Application Component is associated to at least the instance Deployment
Level – dl1. Finally, Equation 4.20 defines that every Deployment Level shall
be used by at least one Application Component. This ensures that there are no
unused Deployment Levels in themodel.

isDeployedOn ⊆ AC ×DL (4.18)
∀ac ∈ AC → (dl1, ac) ∈ isDeployedOn (4.19)
∀dl ∈ DL→ ∃ac ∈ AC : (dl, ac) ∈ isDeployedOn (4.20)

Based on the definition, it is also possible that an Application Component is
deployed onmultiple Deployment Levels. Theminimum, however, is that it is
deployed on Level dl1.
Based on this definition, it is possible to introduce one additional constraint

in order to define the structure of a Deployment Constraint. The following
equation defines that a Deployment Constraint may only be associated to those
combinations of Application Components and Deployment Levels where at least

61

Chapter 4: Capturing Customers’ Deployment Constraints

one Application Component is actually deployed on the Deployment Level.

∀dc ∈ DC ∀ac ∈ AC ∀dl ∈ DL : (dc, ac) ∈ of ∧ (dc, dl) ∈ onLevel (4.21)
→ (ac, dl) ∈ isDeployedOn

4.4.4 Deployment Level Hierarchy Description

In Section 4.2 it was discussed that Deployment Levels represent slices of the
infrastructure stack. In order to be able to express their hierarchy, it is necessary
to introduce a relation called hasSubLevel (Equation 4.22).

hasSubLevel ⊆ DL×DL (4.22)

In order to be able to only permit a stack structure, it is necessary to define a
constraint that prohibits cycles. For this it is necessary to define the transitive
closure hasSubLevel∗ (Equation 4.23 and 4.24). Based on this, Equation 4.25
defines a constraint that prohibits cycles.

hasSubLevel∗ ⊆ DL×DL (4.23)
∀dl, dl′ ∈ DL : (dl, dl′) ∈ hasSubLevel∗

→ (dl, dl′) ∈ hasSubLevel (4.24)
∨ (∃dl′′ : (dl, dl′′) ∈ hasSubLevel∗

∧ (dl′′, dl′) ∈ hasSubLevel)
∀dl, dl′ ∈ DL : (dl, dl′) ∈ hasSubLevel→ (dl′, dl) 6∈ hasSubLevel∗ (4.25)

Based on these definitions, it is possible to define the hierarchy of Deployment
Levels in the shape of directed acyclic graphs.
As described in Section 4.2.1 it is possible that there are multiple stacks used

by different Application Components. Furthermore, it is possible that one stack
may have alternatives in it. Each Application Component needs to be associated
to those Deployment Levels it applies to. However, it may only be possible to
associate an Application Component to those Deployment Levels that belong
to the same stack and may not be alternatives. This may be expressed by the
following constraint.

∀ac ∈ AC ∀dl, dl′ ∈ DL : (ac, dl) ∈ isDeployedOn
∧ (ac, dl′) ∈ isDeployedOn (4.26)
→ (dl, dl′) ∈ hasSubLevel∗

∨ (dl′, dl) ∈ hasSubLevel∗

It has already been defined that every Application Component needs to be de-
ployed on Level dl1 (Equation 4.19). However, since every Application Compo-
nent always needs to belong to an entire stack, it has to be defined that every
Application Component must also belong to exactly one of the lowest Levels.

62

Section 4.4: Generic Mixed-Tenancy Description Model

This is expressed by the following.

∀ac ∈ AC → ∃! dl ∈ DL : (ac, dl) ∈ isDeployedOn (4.27)
∧ 6 ∃dl′ ∈ DL : (dl, dl′) ∈ hasSubLevel∗

As already discussed in Section 4.2, and already defined by Equation 4.19, Deploy-
ment Level dl1 is the instance Level to which all Application Components need
to be associated. However, what has not been defined yet, is that Level dl1 shall
be the only Top Level Deployment Level of the Deployment Level Graph. This is
defined by the following.

∀dl ∈ DL : dl 6= dl1 → (dl1, dl) ∈ hasSubLevel∗ (4.28)

The equation states that every Level is a transitive Sublevel of dl1. Since the graph
does not have cycles, this also states that dl1 is not a Sublevel of any other Level.

4.4.5 Structure of Dimensions, Groups, and Tenants

In Sections 4.2.3 and 4.2.4 the structure of Groups andDimensions was discussed.
For every Dimension it was stated that there may bemultiple Groups realizing
this Dimension. Furthermore, it was stated that it shall be possible that Groups
may have Subgroups. This Subgroup structure was supposed to be represented in
the shape of a directed acyclic graph. The structure was illustrated by Figure 4.2.
In Section 4.3.2 it was stated that Tenants shall be assigned to at least one Group
per Dimension. In order to be capable of modeling all these requirements, the
composite pattern [GHJ94] may serve as a blueprint for a realization that has the
benefit that it is easy and straight forward. How this may be achieved is described
in the following paragraphs.

Abstraction of Group and Tenant

The first step to describe the desired structure is to create a new set that serves as
an abstraction of Tenant and Group. This set is called entity (defined by Equation
4.29).

E = {e1, . . . , eie} : Entities (4.29)

In order to define entity as an abstraction of Tenant and Group, it is necessary to
define an inheritance-relationship between the entities.

∀e : e ∈ T ⊕ e ∈ G↔ e ∈ E (4.30)

As stated above, the DescriptionModel shall only cover the structure of Groups,
Tenants and Dimensions. Thus, there shall not be an object of the type entity.
This is also expressed by Constraint 4.303.

3In the UML class diagram (Figure 4.6) this is indicated by defining the class Deployment
Constraint as abstract.

63

Chapter 4: Capturing Customers’ Deployment Constraints

hasSubset-Relationship

The next step in order to be able to model the desired structure is the definition
of the hasSubset-relation that allows to define that a Group may have entities
as children. Equation 4.31 defines the relation in this way. This will lead to a
directed graph structure.

hasSubset ⊆ G× E (4.31)

Since a directed acyclic graph is needed, it is also necessary to prohibit cycles. In
order to do so a relation needs to be defined as transitive closure (Equation 4.24).

hasSubset∗ ⊆G× E (4.32)
∀g ∈ G∀e ∈ E : (g, e) ∈ hasSubset∗

→ (g, e) ∈ hasSubset (4.33)
∨ (∃e′ : (g, e′) ∈ hasSubset∗

∧ (e′, e) ∈ hasSubset)
∀g ∈ G∀e ∈ E : (g, e) ∈ hasSubset∗ → (e, g) 6∈ hasSubset∗ (4.34)

Based on this, it is possible to prohibit cycles such as it is done by Equation 4.34.
At this point the desired structure has been defined. Furthermore, due to the fact
that Tenants were defined to be entities as well, it is possible to assign Tenants to
Groups at any Level.

Definition of Dimensions

The final step to conclude themodeling of the Dimension, Group, and Tenant
structure is the modeling of Dimensions. The set has already been defined in
Section 4.4.2. The relation that allows to associate Groups to Dimensions is called
isRealizedBy. Equation 4.35 defines the relationship as a function that assigns a
set of Groups to any given Dimension.

isRealizedBy ⊆ D ×G (4.35)

It was stated in Section 4.2.4 that every Groupmay only belong to a single Dimen-
sion. Thismay be the case either directly associated by a isRealzedBy-relationship
or transitively by being a Subgroup of Groups that has a direct isRealzedBy-
relation. This is expressed by the Equations 4.37 and 4.38.

isRealizedBy∗ ⊆D ×G (4.36)
∀g ∈ G∀d ∈ D :(d, g) ∈ isRealizedBy∗

→ (d, g) ∈ isRealizedBy (4.37)
∨ (∃g′ : (d, g′) ∈ isRealizedBy
∧ (g′, g) ∈ hasSubset∗)

∀g ∈ G→ ∃!d ∈ D :(d, g) ∈ isRealizedBy∗ (4.38)

64

Section 4.4: Generic Mixed-Tenancy Description Model

The final constraint that needs to be defined is the aforementioned requirement
that every Tenant needs to be associated to at least one Group per Dimension.
This is defined by Equation 4.39.

∀t ∈ T ∀d ∈ D → ∃ g ∈ G : (g, t) ∈ hasSubset ∧ (d, g) ∈ isRealizedBy∗ (4.39)

4.4.6 Description of Deployment Models

In Section 4.2.2 and Section 4.3.3 the way Customers shall have to define their
Deployment Constraints was discussed. Since this also needs to be captured by
the DescriptionModel, it is defined by the following paragraphs.

Deployment Constraint Structure

In Section 4.4.2 it was defined that a Deployment Constraint needs to be asso-
ciated to exactly one Tenant, one or many Application Components, and one
or many Deployment Levels. Furthermore, a Deployment Constraint also needs
to be of a specific Deployment Model. The Deployment Models that shall be
supported by the DescriptionModel were discussed in Section 4.2.2. In order to
be able to realize this, the sets PR, PU ,WH,BL, andGRwere defined. These sets
shall be treated as Deployment Constraints. This is expressed by equation 4.40.

∀dc : dc ∈ PR⊕ dc ∈ PU ⊕ dc ∈ WH ⊕ dc ∈ BL⊕ dc ∈ GR↔ dc ∈ DC (4.40)

Furthermore, it was stated in Section 4.2.2 that there shall not be any other De-
ploymentModels supported but thementioned five ones. Thus, the Constraint
4.40 also states that every individual, that is of type Deployment Constraint,
must also be of the type of one of the Deployment Models. The usage of the
proposed inheritance structure avoids redundancy.

includes-Relationship

In Section 4.2.2 it was stated that the Deployment ModelsWhite Hybrid and Gray
Hybrid shall have the ability to include Groups or Tenants. This means that the
Customer specifies that they would feel comfortable to share with these Groups
or Tenants. Thus, it is necessary to define the relationship includes as a relation
thatmay be used between aWhite Hybrid or aGray HybridDeployment Constraint
and an entity. This is expressed by Equation 4.41. Furthermore, Equation 4.42
defines that a Deployment Constraint (eitherWhite Hybrid orGray Hybrid) may
include one tomany entities.

includes ⊆(WH × E) ∪ (GR× E) (4.41)
∀dc ∈ DC : dc ∈ WH ∨ dc ∈ GR→ ∃ e ∈ E : (dc, e) ∈ includes (4.42)

However, this does not define the entire functionality the Description Model
was supposed to capture. Section 4.2.4 stated that if a particular Group is being
included, all Groups and Tenants will be included that are a subset of this Group.

65

Chapter 4: Capturing Customers’ Deployment Constraints

This may be expressed by defining the transitive closure for the includes-relation.
This is done by Equation 4.44.

includes∗ ⊆(WH × E) ∪ (GR× E) (4.43)
∀e ∈ E ∀dc ∈ DC : (dc ∈ WH ∨ dc ∈ GR) ∧ (dc, e) ∈ includes∗

→ (dc, e) ∈ includes (4.44)
∨ (∃e′ ∈ E : (dc, e′) ∈ includes
∧ (e′, e) ∈ hasSubset∗)

excludes-Relationship

Similar to the just discussed include-relationship, the exclude-relationship may
be defined. It was discussed in Section 4.2.2 that the exclude-relationship is
necessary for the Deployment Models Black Hybrid and Gray Hybrid. It may be
used to exclude Tenants or Groups. Thus, it is defined as follows.

excludes ⊆(BH × E) ∪ (GR× E) (4.45)
∀dc ∈ DC : dc ∈ BH ∨ dc ∈ GR→ ∃ e ∈ E : (dc, e) ∈ excludes (4.46)

Similar to the includes-relationship, the excludes-relationship also works transi-
tively through the Group structure. This may be expressed using the following
Constraint.

excludes∗ ⊆(BH × E) ∪ (GR× E) (4.47)
∀e ∈ E ∀dc ∈ DC : (dc ∈ BH ∨ dc ∈ GR) ∧ (dc, e) ∈ excludes∗

→ (dc, e) ∈ excludes (4.48)
∨ (∃e′ ∈ E : (dc, e′) ∈ excludes
∧ (e′, e) ∈ hasSubset∗)

4.4.7 Completeness of Deployment Constraints

So far many constraints have been defined that define the DescriptionModel’s
structure. But there is one constraint left that needs to be defined in order to
ensure that complete information is available to extractDeployment Information.
Equation 4.49 defines that there needs to be a Deployment Constraint created
for every Tenant, every Application Component, and on all relevant Deployment
Levels.

∀t ∈ T ∀ac ∈ AC ∀dl ∈ DL : (ac, dl) ∈ isDeployedOn (4.49)
→ ∃! dc ∈ DC : (dc, ac) ∈ of ∧ (dc, t) ∈ for ∧ (dc, dl) ∈ onLevel

If this constraint would not be true, the DeploymentModel would not capture
all necessary information. Due to incomplete data, it would not be possible to
determine how a specific Application Component needs to be deployed.

66

Section 4.4: Generic Mixed-Tenancy Description Model

4.4.8 Definition of the Deployment Information

Based on the definitions so far, it is now possible to define the Deployment
Information. Before doing so, in a first step a new set of sets shall be created that
allows to define all following constraints more easily. This set of sets is, in fact,
an alternative representation of Deployment Levels. In this new definition each
Deployment Level is not defined as a simple entity but as a set of Application
Components that are deployed on this Deployment Level. This may be defined
as follows.

DLS ={DLSdl1 | DLSdl1 = AC} ∪ {DLSdli ⊆ AC | 2 ≤ i ≤ idl} (4.50)
∀ac ∈ AC ∀i ∈ {2, . . . , idl} : ac ∈ DLSdli → (ac, dli) ∈ isDeployedOn (4.51)

Based on this, it is possible to define the Deployment Informationmore easily.
It has previously been discussed (Section 4.3.3) that the Deployment Informa-

tionmay very well be expressed as graphs. Thus, it is defined as a set of undirected
graphs as follows.

DI = {DIacdl = (V ac
dl , E

ac
dl) | dl ∈ DL ∧ ac ∈ DLSdl} (4.52)

∀dl ∈ DL ∀ac ∈ DLSdl : V ac
dl = T ∧ Eac

dl ⊆ T × T (4.53)

As stated earlier, if two Tenants share an edge in a given graph, these two Tenants
are allowed to share a Unit of the Application Component and the Deployment
Level this graph applies to.
In order to have complete Deployment Information, it is necessary to define

additional trivial Deployment Constraints. The first one is that each Tenantmust
always be allowed to share with themselves. The second is that if there is an edge
between two Tenants, they must both be allowed to share with each other. These
are very obvious constraints that are defined bymaking the set of edges reflexive
and symmetric.

∀dl ∈ DL ∀ac ∈ DLSdl ∀t ∈ T : (t, t) ∈ Eac
dl (4.54)

∀dl ∈ DL ∀ac ∈ DLSdl ∀(t, t′) ∈ Eac
dl : (t′, t) ∈ Eac

dl (4.55)

The last required constraint was discussed in Section 4.3.3. This section defined
that lower Level Deployment Constraints must be equally or less restrictive than
their predecessors. This is due to the structure of a Valid Deployment. If two
Tenants share a Unit of the instance Level, for example, theymust also share all
underlying Units like the virtual machine. This constraint is formalized by the
following.

∀dl, dl′ ∈ DL ∀ac ∈ DLSdl ∩DLSdl′ : dl < dl′ → Eac
dl ⊆ Eac

dl′ (4.56)

Based on these basic definitions of the Deployment Information, it is now pos-
sible to describe how the constraints that are defined in the DescriptionModel
relate to the Deployment Information. It has previously been stated that two
Tenants may only share Units if neither of them has a Deployment Constraint

67

Chapter 4: Capturing Customers’ Deployment Constraints

prohibiting it (Section 4.2.2 and 4.3.3). This means, more specifically, that two
Tenants may only share a given Unit on a given Deployment Level if for both
Tenants the following rules apply.

Private Neither Tenant shall have chosen the private DeploymentModel.

White Hybrid Neither Tenant shall have chosen a white hybrid Deployment
Model without included the other Tenant. If a Tenant would have used the
white hybrid Deployment Model and included the other, sharing would be
allowed (assuming that the other Tenant also expressed a constraint that
permits sharing).

Black Hybrid None of the Tenants shall have chosen a black hybrid Deploy-
mentModel and excluded the other Tenant. If a Tenant would have used
the black hybrid Deployment Model and not excluded the other Tenant,
sharing would be allowed (assuming that the other Tenant also expressed a
constraint that permits sharing).

Gray Hybrid None of the Tenants shall have chosen a gray hybrid Deployment
Model where the other Tenant is not included or is excluded. If a Ten-
ant would have used the gray hybrid Deployment Model but would have
included and not excluded the other Tenant, sharing would be allowed
(assuming that the other Tenant also expressed a constraint that permits
sharing).

All this is expressed by the following constraint.

∀dl ∈ DL ∀ac ∈ DLSdl ∀t, t′ ∈ T : (t, t′) ∈ Eac
dl

→ @dc ∈ DC : (dc, dl) ∈ onLevel ∧ (dc, ac) ∈ of

∧
[
(dc, t) ∈ for ∧ (dc ∈ PR)

∨ (dc ∈ WH ∧ (dc, t′) 6∈ includes∗) (4.57)
∨ (dc ∈ BH ∧ (dc, t′) ∈ excludes∗)
∨ (dc ∈ GH ∧ (dc, t′) ∈ excludes∗ ∧ (dc, t′) 6∈ includes∗)]
∨
[
(dc, t′) ∈ for ∧ (dc ∈ PR)

∨ (dc ∈ WH ∧ (dc, t) 6∈ includes∗)
∨ (dc ∈ BH ∧ (dc, t) ∈ excludes∗)

∨ (dc ∈ GH ∧ (dc, t) ∈ excludes∗ ∧ (dc, t) 6∈ includes∗)
]

4.5 Prototypical Realization

In the previous sections the requirements towards the DescriptionModel and the
Utilization Process have been analyzed. Based on this, the last section presented

68

Section 4.5: Prototypical Realization

a technology-independent, formal Deployment Model that may be used as a
blueprint for implementation.
This section’s purpose is to describe a realization that was created as part of

this work. The implementation is based on using SemanticWeb Technologies.
The advantage of using these particular technologies is that some parts of the
DescriptionModel may very easily be realized by expressing them as an ontology
and applying a piece of software, a so called semantic reasoner, that is able to
infer logical consequences from the description. Furthermore, these technologies
provide a very easy and straight forward way to extract Deployment Information.
Thus, the section is structured as follows. Before introducing the realization,

the Section starts with a selection of a suitable realization technique (Section
4.5.1). Based on this, Sections 4.5.2 and 4.5.3 introduce the prototypical realiza-
tion of the Deployment Model. This Section concludes by describing how the
Deployment Informationmay be extracted from the implemented Deployment
Model (Section 4.5.4).

The results of this section were created in cooperation with HolgerWache. We
also published the results jointly in a paper [RWV13].

4.5.1 Description of Realization Approach

For the realization of the proposed DescriptionModel there aremany approaches
possible. Themost obvious one is the implementation using standard program-
ming languages and a relational databasemanagement system to store themodel.
Using this approach, it would be possible to capture the different entities and
their basic relationships using standard techniques of relational databases [Saa10].
However, more complex relationships such as the defined transitive including
and excluding of Tenants and Groups of Tenants would need to be implemented
manually using a standard programming language.
Another approach would be to use a knowledge representation language that

allows not just to describe the entities and their basic relationships, but also to
model complex relationships. Thus, implementation effort can beminimized.
Due to this fact, theWeb Ontology Language (OWL) has been used for the imple-
mentation. OWL is a family of knowledge representation languages for authoring
ontologies. It was specified by theW3C [W3C12] and is used in academia and
themedical field as well as commercially [AH11].

One additional advantage of using OWL is that there are many libraries, tools,
and documentations available, which allow to use it efficiently. However, there
is a problem that comes with the usage of OWL. OWL utilizes the OpenWorld
Assumption. An open world is one where it is assumed that at any time new
information could come to light and new conclusions may be drawn from it
[RN10, pg. 417][AH11]. The problemwith this is that at some points, it is critical
for the DescriptionModel that the total knowledge is captured since complete
Deployment Information shall be extracted. However, it is quite common to
encounter this problem when OWLmodels shall be utilized in an application.
The usual approach to tackle this problem is to manually close the world at the

69

Chapter 4: Capturing Customers’ Deployment Constraints

points where this is necessary. For this prototype this is done by implementing a
model checker which will be introduced in Subsection 4.5.3.
Besides OWL, the following other technologies and utilities were used for the

implementation of the prototype.

SPARQL Protocol And RDF Query Language (SPARQL) SPARQL is a query
language for databases, able to retrieve and manipulate data stored in a
Resource Description Framework format [W3C13]. For the prototype it is
used to extract the Deployment Information from the DescriptionModel.
Details will be discussed in Section 4.5.4.

Semantic Web Rule Language (SWRL) SWRL is a proposed language for the
SemanticWeb that can be used to express rules as well as logic [W3C04]. It
is used to extract the Deployment Information from the OWLmodel. This
will be further elaborated in Section 4.5.4.

Protégé Protégé is an ontology editor and knowledge-based framework [pro13].
Protégé has been used to create the OWLmodel of the DescriptionModel.

Jena-Framework It is a Java framework that allows to build Semantic Web
applications [Apa13]. In order to do so, it provides a collection of tools and
Java libraries. For the prototype it has been used to access, compute, and
reason based on the OWLmodel.

GraphStream Library GraphStream is a Java library that allows to model and
analyze graphs [The13]. For the Description Model the library has been
used to store and visualize the Deployment Information.

Java Finally, the general-purpose programming language Java has been used for
the implementation of the prototype. The primary reason for this is the
availability of suitable third-party libraries and its platform-independent
nature.

4.5.2 Implementation of the Model using OWL

In Section 4.4 the Deployment Model was proposed which is supposed to be
able to allow to capture Customers’ Deployment Constraints. Figure 4.7 gives an
overview of the DescriptionModel’s realization using OWL. The following dis-
cusses the OWLmodel in more detail. Most of the elements that the Description
Model consists of, directly correspond to their counterparts in the Description
Model of Section 4.4.2. The following are the classes that were created in OWL.

AC represents the Application Components the application consists of (corre-
sponds to setAC).

Level represents the Deployment Levels or the System (corresponds to setDL).

Deployment Constraint - Private, Public, White, Black, Gray Deployment
Constraint (setDC) represents a generic Deployment Constraint. Private

70

Section 4.5: Prototypical Realization

* Transitive

Tenant

Entity

subClassOf subClassOf

Constraint

Private Public White Gray Black
subClassOf subClassOf subClassOf subClassOf subClassOf

of

for

Domain

Domain

Range

Range

Includes*
Domain

Range

Excludes* Domain Range

hasSubset
superProperty

superProperty

Dimension

Group

isRealizedBy
Domain

Range

Range Domain

AC Level

hasSubLvl Domain

isDeployedOn Range Domain

Range

onLevel

Figure 4.7.: Realization of the Description Model using OWL (incomplete)

(set Pr), Public (set Pu), White (setWh), Black (set Bl), and Gray (set Gr)
represent the different Deployment Models that shall be supported by the
system. Furthermore, the DescriptionModel defined (Constraint 4.40) that
each of the five Deployment Models shall also be of type Deployment Con-
straint. This was realized by a subClassOf -property in theOWLmodelwhich
indicated inheritance. Furthermore, it was defined that every Deployment
Constraint shall only have exactly one Deployment Model as type. This
was realized using OWL by defining each of the five Deployment Levels as
disjoint classes to each other. In the DescriptionModel it was stated that a
Deployment Constraint shall be defined as abstract - meaning that there
shall not exist instances of this type. It is not possible to express such a
Constraint in OWL. Thus, this will be realized outside of the OWLmodel
[Rus07]. A description of this realization is given in Section 4.5.3.

Entity, Tenant, Group Entity (set E defined by Constraint 4.29), Tenant (set
T), and Group (setG) directly correspond to their counterparts in the De-
ploymentModel. Those sets were defined to capture the structure between
Tenants and Groups. For this the composite pattern ([GHJ94]) was utilized.
Similar to the deployments, Constraint 4.30 defined to have an inheritance
structure between the Entity-class and the classes Tenant andGroup. Again
this was realized using the disjoint and the subClassOf -property. The defini-

71

Chapter 4: Capturing Customers’ Deployment Constraints

tion of abstract will be discussed in Section 4.5.3.

Furthermore, the OWLmodel consists of the following object properties.

of is a relationship (Constraint 4.12) that associates Application Components
to a Deployment Constraint. Thus, it hasDeployment as domain and AC as
range. It was defined that each Deployment Constraint has one to many
Application Components associated (Constraint 4.13). This has been imple-
mented in OWL using the cardinality restriction. However, due to the open
world assumption, the OWL reasoner will not check this Constraint. How
the desired behavior can still be gained will be discussed in Section 4.5.3.

for implements the Constraints 4.14. The for-property associates Tenants to a
Deployment Constraint. Thus, its domain isDeployment and range Tenant.
In addition, Constraint 4.15 defined that a Deployment Constraint may
only be associated to exactly one Tenant. This is realized using cardinality
restriction. Due to the open world assumption, special means are necessary
to ensure that at least one Tenant is associated (introduced in Section 4.5.3).
However, to ensure that not more than one is associated, it is necessary to
define all Tenants as distinct from each other. If this definition would not
bemade, the reasoner would determine that all Tenants associated are in
fact equal. By introducing the distinct feature the reasoner will be forced
to indicate an inconsistency in the OWLmodel if more than one Tenant is
associated.

onLevel associates Deployment Constraint to the Deployment Levels they shall
apply to. That is why its domain isDeployment and its range Level as defined
by Constraint 4.16. Constraint 4.17 defined that aDeployment may apply
to one to many Levels. Again this is implemented using the cardinality
restriction and the check that will be described in Section 4.5.3.

isDeployedOn is defined to associate Deployment Levels to Application Com-
ponents (Constraints 4.18). Thus, it has the domain Deplyoment and the
range Level. For the isDeployedOn-relation it was defined by 4.19 that every
AC has at least one DL associated. This is covered by OWL cardinality re-
strictions and further by the technique that will be introduced in Section
4.5.3.

isRealizedBy is supposed to allow to associateGroups toDimensions (Constraint
4.35). Thus, it is defined with Dimension as domain and Group as range.
Furthermore, it needs to be defined as transitive (Constraint 4.37).

hasSubLvl is used to create directed graphs for the structure of DLs (Constraint
4.22). Thus, domain and range are defined to be the Level-class. Further-
more, a transitive closure was defined (Constraint 4.24). In the OWLmodel
this was captured by a new second relationship (called hasSubLvlTrans) that
is defined as transitive. It is super property to the regular relation. This
pattern is described by [AH11, pg. 164] and applies very well to this OWL

72

Section 4.5: Prototypical Realization

model. It allows to query for both, direct associations and transitive ones,
based on only one description.

hasSubset has the purpose of modeling the structure betweenGroups and Ten-
ants as graphs in which Tenants will always be leafs (Constraint 4.31). Ac-
cording to this definition the relation has the domainGroup and the range
Entity. Constraint 4.32 defined a transitive closure for this relationship. Due
to this, this relationship is defined as transitive in the OWLmodel.

includes and excludes were defined as relations that allow Deployment Con-
straints to exclude or include Groups or Tenants (Constraints 4.41 and 4.45).
Thus, both properties have the Entity-class as range. The domain differs
depending on the relationship. It was said that only the WhiteHybrid
and the GrayHybird Deployment Model shall be able to include Groups
or Tenants. Thus, the domain for includes isWhite orGray. Furthermore,
since only the Black Hybrid and the Gray Hybrid DeploymentModel shall
be able to exclude Groups and Tenants, Black or Gray are domain to the
excludes-relationship.

With respect to cardinalities, it was stated that every Deployment Con-
straint, that is of type White Hybrid, Black Hybrid, or Gray Hybrid shall
have at least one include and/or exclude (Constraints 4.42 and 4.46). This
was realized by cardinality restrictions and the checkingmechanism that
will be introduced in Section 4.5.3.

Both, includes and excludes, are defined as super property to the hasSubSet-
property. Thus, every usage of hasSubset will also result in the creation of
an exclude and an include. This may then be used to include or exclude
Groups (or Tenants) based on reasoning. Due to this, it is necessary that
includes and excludes have Entity as an additional domain. Otherwise, the
proposed approach would not work since every associated Entitywould be
reasoned to be one of the DeploymentModels.

The final step to define these two properties completely is to define them
as transitive (Constraint 4.44 and 4.48). Thus, it is possible to include or
exclude Groups and Tenants down the hasSubSet-structure.

4.5.3 Model checking

Due to the fact that OWL is a language that uses the open-world assumption, it
was not possible to implement all constraints that were defined in Section 4.4.
However, since it is the goal of this work to provide a complete implementation
of the DeploymentModel, it is necessary to close the world at certain points. This
goal is achieved through the implementation of a model check.
The model checker allows to check if the model applies to even those con-

straints that were not expressible in OWL and those that require a closed-world
assumtion. It was implemented in Java using the Jena library and SPARQL. In
case the check is not all valid, the OWLmodel would not be considered valid and
a Deployment Information extraction would not be performed.

73

Chapter 4: Capturing Customers’ Deployment Constraints

The following checks were implemented in order to cover the entire Descrip-
tionModel completely.

OWL-Model is in a valid state The purpose of the model checker is to de-
termine if the OWL model is in a valid state. This is why the first check
determines if all constraints apply that were defined in the previous subsec-
tion. This is done by having the OWL-reasoner check the OWLmodel and
check if it contains conflicts.

Constraints and Entity are defined abstract In Section 4.4 it was stated that
the classes Constraint and Entity shall be abstract (Constraints 4.40 and
4.30) - meaning that no instances of these classes shall exist. OWL does
not provide a mechanism to create an abstract class. Thus, it is necessary to
check if instances of the two classes exist. If so, the OWLmodel is not valid.

Check of cardinalities At the beginning of the Realization section it was stated
that OWL is based on an open-world assumption. For the object properties
of, for, onLevel, isDeployedOn, isRealizedBy, include, and exclude, it was stated
that there shall be at least (or exactly) one instance of another class asso-
ciated. However, due to the open-world assumption, the reasoner will not
highlight an error if such an instance does not exist in the described OWL
model. Thus, this is the task of this checker.

Deployment Levels-Hierarchy is free of cycles The structure of DLs was
discussed to be a directed acyclic graph. Cycle freeness was defined by
Constraint 4.25. In the previous Section the hasSubLevel-Relationship was
created which allows to define directed graphs. However, similar to the
previous check, this check evaluates if the structure is free of cycles.

Level dl1 is the highest Level in Deployment Level-Hierarchy It has previ-
ously been defined that Level dl1 must be the highest Level in the Deploy-
ment Level hierarchy (Equation 4.28). This is ensured by this check.

All Application Components are associated to Deployment Level dl1 Ac-
cording to Equation 4.19 all Application Components must be deployed on
Level dl1. This is ensured by this check.

All Application Components are associated only to Deployment Levels
of the same Stack It was defined that an Application Component shall
only be deployed on Deployment Levels that belong to the same stack
(Constraints 4.26 and 4.27). Since it was not possible to express this with
OWL, this Constraint is examined by this check.

The Entity-Group-Hierarchy is free of cycles Constraint 4.34 defined that the
Entity-Group-Hierarchy shall be a directed acyclic graph. In the previous
section the subSetOf -Relationship was introduced to create directed graph
structure. This check proves that the structure is free of cycles.

74

Section 4.5: Prototypical Realization

Every Group belongs to exactly only oneDimension It was discussed that
every Group shall be directly or transitively associated to exactly one Di-
mension. This was defined by Constraint 4.38. Thus, this check determines
if the constraint is met.

Every Tenant is associated to one Group per Dimension It was discussed
that Tenants shall be associated to at least one Group per Dimension (Con-
straint 4.39). Whether this constraint is met is determined by this check.

Every Constraint is associated to valid combinations of Levels and Ap-
plication Components Equation 4.21 defined that a Deployment Con-
straintmayonly be associated to those combinations of ApplicationCompo-
nents and Deployment Levels, where at least one Application Component
is actually deployed on the Deployment Level. This is checked here.

Every Tenant has exactly one Constraint defined for every Application
Component, DL In order to have an unambiguous description of Tenants’
Deployment Constraints, it is necessary to ensure that there is only one
deployment defined per Application Component, Deployment Level, and
Tenant. This was defined by Constraint 4.49. This check ensures just that.

4.5.4 Extraction of Deployment Information

The information necessary for the next step (discussed in Chapter 5) is the De-
ployment Information. It captures whether two Tenants are allowed to share
Deployment Units of the same Application Component at the same Deployment
Level. A feasible representation of this information is an undirected graph per
combination of Application Component and Deployment Level. In these graphs,
nodes represent Tenants and edges represent if theymay share infrastructure, as
this has been discussed in Section 4.3.4. The informationmay be extracted from
the OWLmodel with the help of a two-step process.
The first step is to introduce an abstract representation of all requirements by

relating Tenants (andnot onlyGroups) toDeploymentConstraints directlywhere
they are not explicitly excluded. Then, in a second step, a list of Tenant-pairs are
retrieved saying these Tenants may share the same resources.

Step 1: Introduction of “mayDeployTenant”-Property

The first step toward extraction of the Deployment Information is to introduce
one additional property calledmayDeployTenant to the OWLmodel. Its purpose
is to associate the Tenants directly to every Deployment Constraint whichmay
be deployed together.
This additional property is not simply the closure of the transitive property

includes but also requires to remove those Tenants andGroupswhich are excluded
– depending on the Deployment Model. Therefore, the following rules are de-
scribed in a SWRL-like notation of howmayDeployTenant is introduced into the
OWLmodel.

75

Chapter 4: Capturing Customers’ Deployment Constraints

Assigning the Owner Any Deployment Constraint may always deploy the
owner. This may be expressed by the following rule: Deployment(?d) ∧
Tenant(?t) ∧ for(?d,?t)→mayDeployTenant(?d, ?t)

Private A private deployment may only deploy the owner. Since this has been
taken care of with the previous rule, there is nothing more to add at this
point.

Public Apublic deploymentmaydeploy anyTenant that is using the application.
Thus4: Public(?d) ∧ Tenant(?t)→mayDeployTenant(?d, ?t)

White Hybrid A white hybrid deployment may only deploy Tenants that are
explicitly included. This rule uses the closure of the transitive property
includes: WhiteHybrid(?d) ∧ Tenant(?t) ∧ includes(?d, ?t)→mayDeploy-
Tenant(?d, ?t)

Black Hybrid A black hybrid deploymentmay deploy all Tenants that are not
explicitly excluded: BlackHybrid(?d) ∧ Tenant(?t) ∧(not excludes(?d, ?t))→
mayDeployTenant(?d, ?t)

Gray Hybrid Agrayhybrid deploymentmayonly deploy Tenants that are explic-
itly included and not excluded. GrayHybrid(?d) ∧ Tenant(?t) ∧ includes(?d,
?t) ∧ (not excludes(?d, ?t))→mayDeployTenant(?d, ?t)

In the last two rules the negation “not” is used to indicate that the property
excludes (and its transitive closure) cannot be derived between ?d and ?t. However,
this form of negation corresponds to closed-world assumption, i.e. the “not” is
used as negation-as-failure. BecauseOWL follows the open-world assumption, the
negation cannot be implemented as OWL inferences. Therefore, these rules are
implements with the help of Jena and SPARQL. The (closed) pairs of “excludes(?d,
?t)” are retrieved with the help of a SPARQL query and subtracted from the
positive pairs between ?d and ?t (retrieved with a second SPARQL query).

Step 2: SPARQL-Queries to extract graph

Once themayDeployTenant-Property has been inserted in the OWLmodel, the
desired Deployment Information of a given Application Component *AC* and
level *L* may be extracted by using the following SPARQL-Query.
SPARQL Query to extract Deployment Information

PREFIX ns: < nameSpace >
SELECT ?t1 ?t2 WHERE {

?t1 a ns:Tenant .
?t1 ns:isCustomer true .
?t2 a ns:Tenant .

4This rule is not a mistake. Because of the definition of a public Deployment Model, any Tenant
can be deployed to any public deployment.

76

Section 4.6: Evaluation

?t2 ns:isCustomer true .
?deplyomentsOfComponent1 ns:deploymentOf *AC* .
?deplyomentsOfComponent2 ns:deploymentOf *AC* .
?deplyomentsOfComponent1 ns:deploymentFor ?t1 .
?deplyomentsOfComponent2 ns:deploymentFor ?t2 .
?deplyomentsOfComponent1 ns:mayDeployTenant ?t2 .
?deplyomentsOfComponent2 ns:mayDeployTenant ?t1 .
?deplyomentsOfComponent1 ns:onLevel *L* .
?deplyomentsOfComponent2 ns:onLevel *L*

}

The query returns a list of two Tenants per line, similar to this one: SPARQL Query

to extract Deployment Information

| t1 | t2 |
===================
ns:T-2	ns:T-2
ns:T-2	ns:T-1
ns:T-1	ns:T-2
ns:T-1	ns:T-1
...

If two Tenants are represented in one line, this means that they may be deployed
together. It does that with no redundancy. This means if Tenant A and Tenant
B may be deployed together, the query will only return A → B and not B →
A in addition. This line is only gained if both Tenants have agreed to share
infrastructure. In order to be sure that even Tenants are gained that have no
connections to other Tenants, every Tenant will appear at least once associated
to themselves (A→ A).

4.6 Evaluation

This section’s purpose is to discuss and evaluate the presented approach of captur-
ing Customers’ Deployment Constraints towards Mixed-Tenancy Deployments.
This is done by demonstrating that everything that was supposed to be describ-
able (according to requirements analysis of Section 4.2) is describable. It will do
so by creating an example that is based on the requirements analysis, that repre-
sents the full range of what shall be describable. Once created, the scenarios will
be modeled and Deployment Information will be extracted using the prototype
tool that was discussed in the previous Section (Section 4.5).
In order to accomplish this, the section is structured as follows. It starts (Sec-

tion 4.6.1) with a definition of cases for the requirements formulated in Section
4.2. Based on those representative, scenarios are created and the Deployment
Information is extracted. This is discussed in Section 4.6.2. The final Section
4.6.3 will report the results.

77

Chapter 4: Capturing Customers’ Deployment Constraints

4.6.1 Example Environment

The purpose of this subsection is to create an example environment that contains
many cases that shall be describable according to the discussion of Section 4.2.
Based on the environment introduced here, the next section will define three
Scenarios how Customers may express their Deployment Constraints.

Deployment Level Hierarchy

In Section 4.2.1 it was defined that it is possible that not all Application Compo-
nents that compose an application have the same Deployment Level stack. In
fact, it was stated that all Deployment Levels of an application shall be describ-
able as a directed acyclic graph. A single Application Component, however, shall
only be associated to a stack of Deployment Levels that are in this graph. For
this evaluation, the Deployment Level Graph illustrated by Figure 4.8 has been
created. In the example there is one highest Deployment Level, called instance.

Virtual
Machine

Application
Server

Instance

Physical
Server

DBMS

Deployment
Level hasSubLevel

Figure 4.8.: Evaluation Scenario that Includes all Possibilities

This is due to the definition of Section 4.2.1. In the graph, there are multiple
lowest-level Deployment Levels and multiple alternative stacks. Furthermore,
there are cases in which a Deployment Level has multiple successors and those
where there is only one.

Based on the graph it is possible to associate Application Components to the
following Deployment Level stacks:

1. Instance - Application Server - Physical Server

2. Instance - Application Server - Virtual Machine

3. Instance - DBMS - Virtual Machine

4. Instance - Virtual Machine

78

Section 4.6: Evaluation

Application Components

Based on the definition of these Stacks, it is now possible to associate a set of
Application Components to the stacks they shall be deployed on. It is important
that every Application Component may only be deployed on one stack. For the
example there are stacks that are only used by a single Application Component
and others that are used bymultiple ones. How this is done for the example is
illustrated by Table 4.2. For this example a total of five Application Components

Stack Application Component
1 AC-2
2 AC-3, AC-4
3 AC-1
4 AC-5

Table 4.2.: Mapping between Stacks and Application Components

is sufficient to havemultiple cases which associate one or multiple Application
Components to the same stack.

Dimension, Group Hierarchy

In Sections 4.2.3, 4.2.4, and 4.4.5 it was discussed that it shall be possible to
create multiple Dimensions. Each Dimension shall be realized by a set of Groups.
Furthermore, it shall be possible that Groups have Subgroups. In fact, it was
defined that each Dimension shall be the root of a directed acyclic graph. For the
example the Dimensions and Groups illustrated by Figure 4.9 were created. In

Geographic

Europe

Germany Great Britain

European Union

Asia

Japan China

North America

USA

Industry

TC IT Automotive
hasSubset Group Dimension
isRealizedBy

Turkey

Figure 4.9.: Definition of Example Dimensions and Groups

this example two Dimension are created.

Geographic Defines in which country a Tenant has its head quarters. It has a
complex structure of underlying Groups that form a directed acyclic graph.

79

Chapter 4: Capturing Customers’ Deployment Constraints

Industry Determines in which industries a Tenant does business. This Dimen-
sion has only one level of Groups that have no structure.

Tenants

In Section 4.2.5 it was analyzed that there shall be two types of Tenants captured
by the model, Tenants and Virtual Tenants. The difference between them is that
Tenants are Customers of the application andVirtual Tenants are placeholders for
Tenants that are needed for Deployment Constraint definition. For the example
both need to be considered in order to demonstrate the expressiveness of the
model.
According to the definition in Section 4.4.5, it is necessary to associate each

Tenant to at least one Group per Dimension. Table 4.3 depicts how this is done
for the example. Please note that there are cases in which a Tenant is associated to
only one Group per Dimension and a case where they are associated to multiple
ones.

Tenant Geographic Industry
T-A USA IT
T-B Japan Automotive
T-C China Automotive
T-D Turkey IT
T-E Germany IT, TC
T-F Great Britain TC

Table 4.3.: Mapping between Tenants and Groups

4.6.2 Scenario Definition

Based on the environment defined in the previous section, this section defines
three scenarios how Customers may define their Constraints. The first two are
quite simple. The idea of them is to analyze both extremes of how resources may
be shared. Based on this, the third is defined to be a mixture of both.

Scenario 1: All Private In the first scenario, all Customers select the private
Deployment Model for all Application Components on all Deployment
Levels. This means that each Tenant states that they require their own Unit
of all Application Components and all Deployment Levels. In the resulting
Deployment Information, there should not be any edges between nodes in
any graph.

Scenario 2: All Public In the second scenario, all Customers select a Public
Deployment Model for all Application Components and all Deployment
Levels. This means that each Tenant states that they share all Application
Components and all Deployment Levels with all other Tenants. All graphs
of the Deployment Information should be complete.

80

Section 4.6: Evaluation

Scenario 3: Mix In the third scenario all possible Deployment Models are used.
In this scenario each Tenant has different requirements towards the sharing
of resources.

For the first and second scenario, it is not necessary to give any additional de-
scription as it has already been described completely by the simple introduction.
For scenario 3, however, this is different. Here, every Tenant expresses different
Deployment Constraints.

Tenant T-A has no Constraints towards sharing at all, thus, everything is public.
Tenant T-F, on the other hand, is very conscious about sharing, thus, does not
share at all. The other Tenants express their Deployment Constraints somewhere
between those extremes. In general, it is assumed that with ascending numbers
Tenants get more restrictive. Application Components, on the other hand, are
assumed to get less crucial with ascending numbers. Table 4.4 illustrates the
Deployment Constraints expressed by all Tenants in detail.

4.6.3 Analysis of Results

Based on the three scenarios, it is possible to extract the Deployment Information
that will be used as an input for the next step of computing a Valid and Optimal
Deployment. It has been stated before that theDeployment Information contains
an undirected graph for every Application Component and Deployment Level
for which the Application Component is deployed on it. Each of these graphs
expresses which Tenants are allowed to share the Application Component on a
particular Level. For the three scenarios that means the following.

Scenario 1: All Private The Deployment Information of this Scenario will
only contain graphs entirely without edges. This is due to the fact that
none of the Tenants agreed to share Units at all.

Scenario 2: All Public The Deployment Information of this Scenario will only
contain complete graphs. This is due to the fact that all Tenants agreed to
share with all other Tenants by using only the Public DeploymentModel.

Scenario 3: Mix In this Scenario the graphs contained by the Deployment In-
formation are not that easily described. Thus, Figure 4.10 visualizes the
Deployment Information of this scenario.

It has previously been defined that only then two Tenants will be adjacent in a
graph if both have not expressed Constraints that prohibit sharing. This is also
visible in the example, for example, Tenant T-F. They defined to use everything
privately. Thus, this Tenant is not adjacent to any other Tenant in any other
graph, even though other Tenants (e.g. Tenant T-A) have expressed that they
would be willing to share with Tenant T-F.

Concluding the examples, it may be said that everything that was supposed to
be capturable by the DescriptionModel, according to the requirements analysis
of Section 4.2, was capturable in this example.

81

Chapter 4: Capturing Customers’ Deployment Constraints

T
-A

T
-B

T
-C

T
-D

T
-E

T
-F

A
C
-1

In
stan

ce

Pu
blic

B
lack

(excl:
A
uto.,T-3,V

T-8)
B
lack

(excl:
N
orth

A
m
erica)

G
ray

(in
cl:

Eu
rop

e,excl:IT
)

G
ray

(in
cl:EU

,excl:
TC

,IT
)

Private
D
B
M
S

Pu
blic

V
irtu

alM
ach

in
e

Pu
blic

Pu
blic

Pu
blic

A
C
-2

In
stan

ce

Pu
blic

B
lack

(excl:
A
u
to.,T-3)

B
lack

(excl:
N
orth

A
m
erica)

G
ray

(in
cl:

Europe,A
sia

excl:
IT
)

B
lack

(excl:TC
)

Private
A
p
p
lication

Server
Pu

blic
V
irtu

alM
ach

in
e

Pu
blic

Pu
blic

Pu
blic

A
C
-3

In
stan

ce

Pu
blic

Pu
blic

B
lack

(excl:
N
orth

A
m
erica)

G
ray

(in
cl:

Europe,A
sia

excl:
IT
)

B
lack

(excl:TC
)

Private
A
p
p
lication

Server

V
irtu

alM
ach

in
e

Pu
blic

Pu
blic

Pu
blic

A
C
-4

In
stan

ce

Pu
blic

Pu
blic

Pu
blic

Pu
blic

B
lack

(excl:TC
)

Private
A
p
p
lication

Server

V
irtu

alM
ach

in
e

Pu
blic

A
C
-5

In
stan

ce
Pu

blic
Pu

blic
Pu

blic
Pu

blic
Pu

blic
Private

Ph
ysicalServer

Tab
le

4
.4
.:D

ep
loym

entC
onstraints

for
Scenario

3

82

Section 4.6: Evaluation

A
C

-1

A
C

-2

A
C

-3

A
C

-4

A
C

-5

Physical
Server

Virtual
Machine DBMS

App.
Server Instance

F E

A

B

C

D

F E

A

B

C

D

F E

A

B

C

D

F E

A

B

C

D

F E

A

B

C

D

F E

A

B

C

D

F E

A

B

C

D

F E

A

B

C

D

F E

A

B

C

D

F E

A

B

C

D

F E

A

B

C

D

F E

A

B

C

D

F E

A

B

C

D

F E

A

B

C

D

Fi
g
u
re

4
.1
0
.:
D
ep

lo
ym

en
tI
nf
or
m
at
io
n
of

Sc
en

ar
io

3

83

Chapter 4: Capturing Customers’ Deployment Constraints

4.7 Summary

This chapter addressed the open question of howDeployment Constraints may
be captured (research question RQ-1). This was done by defining a Description
Model. The objective of this DescriptionModel is to be applicable to a variety of
applications and not just for a single application.

This goal was achieved by starting with conducting a requirement analysis. In
this analysis it was discussed what the DeploymentModel shall be able to capture.
The following is an overview.

Deployment Levels It was stated that it shall be possible that Tenants express
their Deployment Constraints not just for the Application Components but
also for the underlying infrastructure stack.

Deployment Models Five Deployment Models (Private, Public, White Hybrid,
Black Hybrid, and Gray Hybrid) were defined. Each offers Tenants another
way of expressing with whom they wish to share or not share Deployment
Units.

Groups and Dimensions It shall be possible to categorize Tenants according
to different topics. Thus, the concept of Groups and Dimensions was intro-
duced.

Virtual Tenants In order to allow Tenants to exclude other Tenants that are not
Customers yet, the concept of Virtual Tenants was introduced. This concept
allows Operators to keep their Customer base secret.

Based on the requirements analysis, the Utilization Process was introduced that
describes how the DeploymentModel may be applied for a specific application.
Since the objective of the DescriptionModel is to be application-independent,
the first step of the process is to customize it to the specific application. Once
the DeploymentModel has been customized, the necessary information about
the Tenants and how they shall be groupedmay be captured. This information is
then used by the Tenants to describe their Deployment Constraints. After that
the Deployment Information is extracted for the deployment computation step.

Based on the requirements analysis and the process, the chapter continued by
defining the DescriptionModel. The DeploymentModel and its basic idea was
introduced superficially by using a UML Class diagram (Figure 4.6). Afterward,
the DescriptionModel was defined in all its details using first-order logic.

The formal definition of the Deployment Model was used as a blueprint to cre-
ate a realization. This realization was done using the semantic web technologies
OWL, SPARQL, and SWIRL as well as Java as an implementation language. The
realization is an integral part of the Deployment ConfigurationGenerator, which
is the tool that was introduced in Section 2.2.5.
The chapter concluded with an evaluation of the Description Model. It was

conducted by creating scenarios that consist of all possible cases that may occur
based on the requirements analysis. These scenarios were modeled using the
realization in OWL to show that the Constraints are describable. The result of

84

Section 4.7: Summary

the evaluation is that all requirements, defined in the beginning of this chapter,
may be described using the realization that was created based on the formal
definition of the DescriptionModel. If, however, the requirements defined here
are applicable to real applications thatmay be deployed using theMixed-Tenancy
paradigm, they will be discussed again in a case study presented by Chapter 6.
Considering the results, it can be summarized that this chapter successfully

proposed and implemented an approach that serves to capture Customers’ De-
ployment Constraints towards Mixed-Tenancy deployments. The next chapter
will discuss how the extracted Deployment Informationmay be used to calculate
a Valid and Optimal Deployment.

85

Chapter 5
Computation of a Valid and Optimal Deployment

5.1. Fundamental Concepts andApproaches III 89

5.1.1. Additional Concepts of Graph Theory 89

5.1.2. Concepts in Complexity Theory 90

5.1.3. Introduction of Graph Coloring and Clique Cover 91

5.2. Formal Definition of the Deployment Problems 96

5.2.1. Problem Analysis . 96

5.2.2. Definition of the General Deployment Problem 100

5.2.3. Definition of the Elementary Deployment Problem . . . 106

5.3. Analysis of Elementary Deployment Problem 109

5.3.1. Definition of a Solution as a Set of Clique Covers 109

5.3.2. Minimal Clique Cover on High Level 110

5.3.3. Minimal Clique Cover on Low Level 113

5.3.4. Minimal Clique Cover on Any Level 116

5.3.5. Complexity of the Elementary Problem 117

5.3.6. Introduction of Heuristics 118

5.4. Analysis of General Deployment Problem 120

5.4.1. Complexity of the General Problem 120

5.4.2. Generalization of Elementary Problem 121

5.4.3. Introduction of Heuristics 121

5.5. Evaluation . 124

5.5.1. Experimental Comparison of Heuristics 125

5.5.2. Application on Running Example 127

5.5.3. General Efficiency of Resource Utilization 128

5.6. Summary . 131

The computing scientist’s main challenge is not to get
confused by the complexities of his ownmaking.

EdsgerWybe Dijkstra

87

Chapter 5: Computation of a Valid and Optimal Deployment

In the previous chapter it was analyzed howCustomers’ Deployment Constraints
may be captured using the DescriptionModel. Furthermore, the extraction of
Deployment Information was discussed. The Deployment Information is the
input based on which a Valid and Optimal Deployment shall be computed. This
chapter’s purpose is to analyze the challenges involved with performing this
computation. By doing so, this chapter contributes to the goals of this work by
addressing research question RQ-2. Thus, the following two artifacts are created.

Formal Definition of Optimization Problem The first artifact created in this
chapter is a precise and formal definition of the optimization problem. It
allows to compare the optimization problem of this work to commonly
known problems in literature.

Deployment Computation Algorithm The second artifact is an intuitive al-
gorithm that allows to solve the previously defined optimization problem
in a fast but inaccurate way.

Definition 24 (Deployment Computation Algorithm) TheDeploy-
ment Computation Algorithm allows a fast but inaccurate computation of a
Deployment that is Valid and strives to be Optimal. This algorithm takes
the Deployment Information as input. This means that the computed De-
ployment is Valid but not Optimal. It is one of themajor contributions of
this work.

In order to create these artifacts, the chapter is structured as follows. After an
introduction of fundamental concepts and approaches required by this chapter
(Section 5.1), Section 5.2 starts by discussing and defining the General Mixed-
Tenancy Deployment Problem. Furthermore, based on the formal definition of
the General Problem, a second problem is defined. This is a simplified version
that is referred to as Elementary Mixed-Tenancy Deployment Problem. It is
introduced in order to allow to analyze the structure of a Valid and Optimal
Deployment in amore readable way. This is done in the next section.
Section 5.3 discusses characteristics of a Valid and Optimal Deployment and

determines the complexity of the Elementary Problem. Further, twoDeployment
Computation Algorithms are presented to tackle the Elementary Problem and
their relative performance guarantee is analyzed.

Based on the discussions concerning the ElementaryDeployment Problem, Sec-
tion 5.4 generalizes the gained conclusions to the General Deployment Problem.
This includes the characteristics, complexity, and the Deployment Computation
Algorithms.

However, in order to also gain somemore realistic results, the two Deployment
Computation Algorithms will be compared in Section 5.5 by performing an
experimental evaluation.

Section 5.6 concludes the chapter with a summary and a conclusion. It will do
that by highlighting the contributions of this chapter to the previously defined
research questions.

88

Section 5.1: Fundamental Concepts and Approaches III

Some of the results presented in this section, especially those related to formal-
izations and formal proofs, were developed in cooperation with Steffen Lange
andMarianMargraf. We also jointly published a paper [LMRV14] that contains
some of the results presented in this chapter.

5.1 Fundamental Concepts and Approaches III

Similar to the Fundamental Concepts and Approaches of the previous chapters,
this section introduces fundamental concepts and approaches relevant for this
chapter. In order to do that, additional concepts of graph theory are introduced.
In addition, this section gives a brief introduction to complexity theory as this
will be relevant for the creation of the Deployment Computation Algorithm and
the analysis of the optimization problems. Based on the first two sections, two
well-known problems from graph theory will be introduced that are relevant for
this work.

5.1.1 Additional Concepts of Graph Theory

In the previous Fundamental Concepts and Approaches section (Section 4.1), a
first introduction to graph theory has already been given. However, for this
chapter additional concepts are relevant. These are standard concepts in graph
theory andmay, for example, be found in [KN09;Wal07; BR12; Kub04]. They are

GG

Clique Independent set

Figure 5.1.: Relationship between Clique and Independent set [KN09, pg. 58]

introduced by the following.

Degree of a Vertex The degree of a vertex is the number of edges it is con-
nected to.

Maximum degree of a Graph Themaximum degree of a vertex in a graph is
the maximum degree of a graph. The notation to express the maximum
degree of graphG is ∆(G).

Minimum degree of a Graph On the other hand, the minimum degree of a
graph is theminimumdegree of a vertex in a graph. The notation to express
the minimum degree of graphG is δ(G).

Subgraph A graphG′ is a subgraph of graphG if all vertices and edges of graph
G′ are also in graphG.

89

Chapter 5: Computation of a Valid and Optimal Deployment

Inverse Graph An inverse graph G of graph G contains all vertices of G but
those vertices adjacent inGwill not be adjacent inG and those vertices not
adjacent inGwill be adjacent inG. Figure 5.1 gives an example.

Clique A clique is a complete subgraph of a given graph. What a complete graph
is has been introduced in Section 4.1. Every clique in a given graphG is an
independent set in the inverse graphG.

Independent Set An independent set is a set of vertices belonging to the same
graph where no two vertices are adjacent. Figure 5.1 gives an example.
Obviously, every independent set in a given graph G is a clique in the
inverse graphG.

Cycle Graph A cycle graph or circular graph is a graph that consists of a single
cycle, or in other words, a number of vertices connected in a closed chain.
A graph called odd cycle is a cycle graph with an odd number of nodes
vertices.

Planar Graph A graph is referred to as planar if there is a drawing of the graph
where no edge intersects another edge.

5.1.2 Concepts in Complexity Theory

The following is a brief introductionof concepts known in complexity theory that
are relevant for this work. The first relevant concept is the concept of complexity
classes.

In computational complexity theory, a complexity class refers to a set of prob-
lems that have related resource-based complexity. Many complexity classes are
known. For this work the following well established complexity classes are con-
sidered relevant [CLRS09; JM08]:

P A decision problem1 belongs to class P if there exists at least one deterministic
Turingmachine that solves the problem in polynomial time. This means
the number of steps of the algorithm is bounded by the polynomial in n,
where n is the length of the input. It is commonly defined that a polyno-
mial time algorithm is fast [Wan06]. This definition is used even though
the polynomial execution may be far away from what would informally
considered fast (e.g. O(n1000)).

NP Stands for non-deterministic polynomial time and is the set of all decision
problems for which there exists at least one non-deterministic Turingma-
chine that solves the problem in polynomial time.

NP-complete A decision problem is NP-complete if the problem is in NP and
every problem in NP is reducible to it in polynomial time.

1A decision problem is a problemwhose result is either true or false.

90

Section 5.1: Fundamental Concepts and Approaches III

NP-hard A decision problem is NP-hard if every problem in NP is reducible to
it in polynomial time. An optimization problem is NP-hard if there is an
NP-hard (optimization or decision) problem that may be reduced to the
NP-hard problem in polynomial time.

The P versus NP problem is one of the major unsolved problems in computer
science. It deals with the question of whether all problems in NP are actually
problems in P. If this would be the case, fast algorithms exist to solve these
problems. The answer is not currently known. It is known that P is a subset of NP.
However, it is assumed that P is not NP [JM08].
The second concept relevant for this work is the concept of the relative per-

formance guarantee. For a given optimization problem where the goal is to
minimize, the relative performance guarantee (pA) may be defined as follows.

OPT (I) ≤ A(I) ≤ pA(|I|) ·OPT (I) (5.1)

For this definition OPT (I) stands for the quality of an optimal solution for an
input I, the length of the input |I|, and A(I) for the algorithm used. This means
that the relative performance guarantee is the factor according to which a worst
case solution is worse in relation to the optimal solution [Wan06].

5.1.3 Introduction of Graph Coloring and Clique Cover

Graph coloring or also called vertex coloring is the problem of segmenting a
graph into a number of independent sets of vertices [KN09, pg. 58]. A function
f : V → 1, 2, . . . , k is called vertex coloring with k colors. If two adjacent vertices
(v, v’) will be assigned different values (f(v) 6= f(v′)). Based on this, it may be
defined that χ (G) is called the chromatic number ofG [JT95].

χ (G) = min{k : there is a coloring ofGwith k colors} (5.2)

It describes the minimum number of colors necessary to color a graphG.
The Graph coloring problem is one of the oldest and best-known problems of

graph theory [Kub04]. In fact, the reason why the term coloring is used for this
problemoriginates from coloring the countries of amap [Lon13]. Already in 1852
the observation was documented that coloring the countries on an administra-
tive map of England in a way that adjacent countries were given different colors
could be achievedwith only four colors [Kub04, pg. x]. Amapmay be generalized
as a graph where the countries are vertices and the nodes determine if two coun-
tries are adjacent. In fact, a graph representing a map has a special characteristic:
it is planar. After lots of research and some publications that claimed to have
found a proof only to be dismissed by others, the first complete proof that all
planar graphs may be colored with four colors was presented in [AH77]. In fact, it
was the first major theorem proven using a computer [Kub04]. It is commonly
referred to as the four color theorem2. A major part of the 20th-century research
in graph theory actually originates from the four-color problem [BR12].
2The claim, sometimes found in literature, that the four color theorem is interesting to cartogra-

91

Chapter 5: Computation of a Valid and Optimal Deployment

However, the graph coloring problemmay not just be applied to planar graphs
but also to other simple graphs. The problem of coloring has many applications
under which themost prominent is register allocation in compilers optimization.
Its goal is to assign a large number of target program variables to a small number
of CPU registers [CD06].

Graph coloring contains multiple decision problem and an optimization prob-
lem. The standard decision problem has two inputs, a graph G and a natural
number k. The decision problem is to decide if for there isG a proper vertex col-
oring with k colors. The complexity of this problem is proven to be NP-complete
[Kub04].
Based on this problem, there are other decision problems called k-coloring

problems that each deal with a specific k (e.g. 1-coloring, 2-coloring, etc.). It was
possible to prove that the complexity of the k-coloring problem is in P for k ≤ 2
and for all other cases it is NP-complete. The optimization problem, on the other
hand, is the problem of finding a coloring that only uses theminimal number
of colors. This requires determining the chromatic number. This problem is NP-
hard [Kar72]. However, there are entire classes of graphs for which the chromatic
number can be calculated through a simple formula or an optimal coloring can
be determined in polynomial time [Kub04]. Interval graphs, for example, fall
into this category [SVD03].

However, in order to determine a lower bound for the chromatic number, it is
easy to observe that a graph that has no edges will be 1-colorable, meaning that
it can be colored with only one color. An upper bound, on the other hand, can
be given by considering a complete graph that has n vertices. For this graph the
chromatic number is n. This leads to the obvious conclusion that the chromatic
number of a graphmust be at least 1 but cannot be greater than the number of
vertices it has.

1 ≤ χ (G) ≤ n

An improvement on the lower bound can be done by considering the number of
nodes in the largest clique of a graph (ω). It can be stated that a graph needs at
least as many colors as ω.

ω (G) ≤ χ (G)

However, the problem with this definition is that there is no known fast algo-
rithm to determine the number of vertices of the largest clique in a graph (ω (G))
since the problem is also NP-hard [Kub04].
For the upper bound it may be proven that the chromatic number is equal or

greater than themaximum degree graphG plus one (∆(G) + 1).

χ (G) ≤ ∆(G) + 1

phers, is in fact wrong. This is due to the fact that cartographers see little need to limit how
many colors they use. [Wil02]

92

Section 5.1: Fundamental Concepts and Approaches III

In fact, it has been proven by [Bro41] that for all graphs, except for complete
graphs and odd cycles, the chromatic number is equal or less the maximum
degree of a vertex in graphG. Therefore, ifG is not a complete graph and∆(G) ≥ 3
than it must be true that:

χ (G) ≤ ∆(G)

However, to some classes of graphs, this upper bound is very inaccurate. Such a
class is, for example, the class of stars3. For those graphs the chromatic number is
always 2, while the discussed bound implies χ (G) ≤ ∆(G) [Kub04; BR12].
However, additional definitions for the upper and lower bound are possible

but those presented to this point are sufficient for the purpose of this work.
As stated earlier, the vertex coloring problem has been widely investigated.

Further, it has already been stated that its optimization problem is NP-hard. Thus,
computing an optimal solution is extremely resource intensive. By solving the
k-coloring problem (the decision problem to determine if a graph is colorable
with k colors) it is possible to compute the chromatic number through a brute-
force algorithm. A graph is tested for every k = 1, . . . , n− 1 until a k-coloring is
true. The k-coloring can be decided in timeO(2nn) for any k using the approach
presented in [BHK09].
Due to the complexity of the problem, it is possible to find a huge number

of approximation algorithms in literature. An approximation algorithm is an
algorithm that computes a coloring in polynomial time. Due to the complexity
of the problem the computed coloring is not optimal. However, an approxima-
tion algorithm also states a worst case performance. Furthermore, in [BGS98] it
was shown that the problem is not approximateable within n1/7−ε for any ε > 0.
This means that it is not possible to approximate this problemwith a worst case
performance quality better than n1/7−ε · OPT were OPT is an optimal coloring
(chromatic number) an were n is the number of vertices. The approximation al-
gorithmwith the currently best-known performance quality has been presented
by [Hal93] and has a quality ofO(n(log log n)2/(log n)3) [Kub04].
Besides this very sophisticated algorithm, the following is an introduction of

two very well-known algorithms.

Largest First The largest first algorithm is one of the oldest methods and has
first been introduced by [WP67]. It was created based on the observation
that vertices with low degree usually allow for a more flexible choice of
colors. Because of that, it is beneficial to assign colors to those vertices with
high degree first. In the algorithm this is realized by first sorting all vertices
according to the decreasing value of their degree. Based on this list, the
algorithm assigns the smallest possible color to each vertex starting with
the one with the largest degree and working it way down sequentially.

DSATUR The DSATUR algorithmwas first presented by [Bre79]. This algorithm
is based on the observation that the constraints in coloring result from

3A star is a graph in the shape of a tree with one root and k leaves [BR12].

93

Chapter 5: Computation of a Valid and Optimal Deployment

the number of the uniquely colored neighbors of a vertex. The algorithm
performs a sequential coloring with a dynamic established order of vertices
[Klo02]. In detail, the algorithm starts with sorting the vertices according
to their degree. The vertex with the highest degree will get the first color.
The next step is to choose a vertex with amaximal saturation degree. The
saturation degree of a vertex is the number of different colors at the vertices
adjacent to this vertex [Klo02]. If there should be multiple vertices with
the same saturation degree, any uncolored vertex withmaximum degree
is chosen. The chosen vertex is assigned the lowest possible number. At
this point the algorithm continues with, again, choosing a vertex with
maximum saturation degree until all vertices are colored.

The DSATUR algorithm colors optimally all bipartite graphs, cycles, mono-
and bi-cyclic graphs, trees, necklaces and cacti, as well as all graphs whose
core is a member of one of the aforementioned families [Kub04].

Another problem that is well-known in literature, is the clique cover problem. It
is known as the problem of determining aminimum number of sets of vertices of
a graph, so that all sets are disjoint cliques [Weg03]. This means that there exists
a graph G = (V,E). For this graph a set of disjoint cliques CG is to be found so
that CG shall only contain a minimum number of cliques c. This is defined by
the following.

CG = min{c1 t . . . t cn} (5.3)

This problem is categorized to be NP-hard as well [Kar72]. However, in literature,
this problem is not covered very extensively. This is due to the fact that [Kar72]
reduced vertex coloring to the clique cover problem, which is extensively covered
in literature.

Clique cover and vertex coloring are the same problem since the clique cover of
a given graphG is, in fact, the same as finding a minimal coloring of the inverse
graph G [Kar72]. This is due to the fact that vertices that belong to a clique in
a given graph are an independent set in the inverse graph. Thus, solving the
initial problem of splitting a graph into a disjoint set of cliques may be solved by
determining the chromatic number of the inverse graph. Figure 5.2 illustrated
the approach by applying it to an example. As visible in the figure, the first step
is to create the inverse graph ofG. For this graph (G) the minimum number of
independent sets is determined by assigning a color to every vertex. As visible
in the figure there are two colors necessary: green and red. One is assinged to
the vertices A, B, and C, the other by vertices D and E. Figure 5.2 illustrates one
additional step where the graph is reinverted. This shall only illustrate that, in
fact, the minimal number of cliques was found. This step is not necessary for the
initial problem.
The problem of determining the chromatic number is commonly referred to

as vertex coloring. This problem is among Knarp’s 21 NP-Complete problems
[Kar72]. This means that there is no algorithm to solve this problem in poly-
nomial time unless P = NP . However, as alreadymentioned, this problem has

94

Section 5.1: Fundamental Concepts and Approaches III

A

C D

B

E

Step 1:
Inverse graph

A

C D

B

E

A

C D

B

E

Step 2:
Vertex coloring

Step 3 (optional):
(re-)inverse graph

A

C D

B

E

Figure 5.2.: Solving encountered Clique Cover by Coloring the inverse Graph

intensively been researched in the past. Further, there is a high number of known
algorithms that try to find solutions with different accurateness in polynomial
time and since the two problems are equivalent, all statements made about com-
plexity as well as the lower and upper bounds of the vertex coloring problem
apply to the clique cover problem as well.

When dealing with the clique cover problem, this work will utilize the follow-
ing formal definitions. LetG = (V,E) be an undirected graph. A set C ⊆ V is said
to be a clique forG if and only if the subgraphGC = (C,E(C)) induced by C is a
complete graph. A family C of subsets of V is said to be a clique cover forG if the
following constraints are met.

∀C ∈ C : C is a clique forG (5.4)
∀C,C ′ ∈ C : C 6= C ′ → C ∩ C ′ = ∅ (5.5)⋃

C∈C
C = V (5.6)

Further, within this work, Mcc(G) is the set of all clique covers for G. Finally,
let G = (V,E) and G′ = (V ′, E ′) be undirected graphs with V = V ′ and E ⊆ E ′.
Moreover, let C ∈ Mcc(G) and C ′ ∈ Mcc(G′). The clique cover C is said to be a
refinement of the clique cover C ′, denoted by C v C ′ if the following constraint is
met.

∀C ∈Mcc(G)∀C ′ ∈Mcc(G′) : C v C ′ → ∀C ∈ C : ∃C ′ ∈ C → C ⊆ C ′ (5.7)

This means that C is a refinement of the clique cover C ′ if and only if for all cliques
in C there exists a C ′ in C so that C is a subset of C ′.

95

Chapter 5: Computation of a Valid and Optimal Deployment

5.2 Formal Definition of the Deployment Problems

The goal of this section is to properly introduce the optimization problem of
this work. This problem it referred to as General Mixed-Tenancy Deployment
Problem.

Definition 25 (GeneralMixed-TenancyDeployment Problem) It is the
problem of finding a Valid and Optimal Deployment. It is the primary optimiza-
tion problem that is defined as part of this work.

In order to define this problem, this section will start with a problem analysis
(Subsection 5.2.1) where the objectives of the optimization problem will be
introduced and discussed. Based on this, Subsection 5.2.2 defines the General
Mixed-Tenancy Deployment Problem formally.

Furthermore, Subsection 5.2.3 introduces a second problem. This problem is a
simplified version of theGeneral Problem and, thus, it is referred to as Elementary
Mixed-Tenancy Deployment Problem.

Definition 26 (ElementaryMixed-TenancyDeployment Problem) The
Elementary Mixed-Tenancy Deployment Problem is a simplified version of theMixed-
Tenancy Deployment Problem. The only difference between both problems is
that in the Elementary version there is only one Application Component.

It is introduced in order to allow to analyze the structure of a Valid and Optimal
Deployment in amore readable way in the next section.

5.2.1 Problem Analysis

In Section 2.2.3 it was defined that the general research question of this work is
to find a way how an Operator may still haveminimal cost for IT-infrastructure,
even if Customers’ Deployment Constraints need to be considered. In the pre-
vious chapter it was discussed how those Constraints may be captured and the
Deployment Information is extracted. The next step discussed by this chapter is
how a Valid and Optimal Deployment can be computed.

According to the research questions of this work, a Valid and Optimal Deploy-
ment shall apply to all Deployment Constraints but still cause as little cost as
possible for the Operator. This was stated in the general research question of this
work as well as in research question RQ-2 and the definition of the Valid and
Optimal Deployment. However, before it may be analyzed how the deployment’s
cost can be optimized, it must first be discussed what the Valid Deployment shall
look like inmore detail.
So far it has always been stated that a Valid Deployment shall apply to the

DeploymentConstraints expressed by theCustomers. Thus, this can be expressed
as the characteristic for a Valid Deployment.

Customer Constraints are Considered A Deployment is only Valid if it com-
plies with all Deployment Constraints given by Customers.

96

Section 5.2: Formal Definition of the Deployment Problems

B C E D A

1
1acu 2

1acu 1
2acu 2

2acu 3
2acu 1

3acu

*

1
2u 2

2u 3
2u 4

2u

1
3u

1
4u

1
5u

1ac 2ac 3ac

A

E C

B

D

A

E C

B

D

AS

In
st

an
ce

A

E C

B

D

W
in

 V
M

Li

nu
x

VM

A

E C

B

D

A

E C

B

D H
yp

er
vi

so
r A

E C

B

D

A

E C

B

D
A

E C

B

D

A

E C

B

D

A

E C

B

D

1dl

A

E C

B

D

2dl

3dl

4dl

5dl

Deployment Information Deployment

i
ju Unit i of

of jdl

Hosts

Figure 5.3.: An Example of a Valid and Optimal Deployment

Figure 5.3 illustrates this based on an example. In this example five Tenants are
using an application that is composed of three Application Components. The
input is the Deployment Information visualized as graphs (as it has been dis-
cussed by Sections 4.3.4 and 4.4.8). Furthermore, the Application Components
are deployed on five Deployment Levels, where not all are used by all Application
Components. One constraint that was defined concerning the relationship be-
tween Application Components and Deployment Levels is that all Application
Components must be deployed on the first Level dl1. This is due to the fact that
this Level represents the instantiation of Application Components. As this work
focuses on the deployment of Multi-Tenancy applications, all Application Com-
ponents must be instantiated. In the example (Figure 5.3) the Deployment Levels
stand for the following: dl1 - Instance, dl2 - application server hosting Application
Components, dl3 - virtual machine runningWindows, dl4 - virtual machine run-
ning Linux, and dl5 - hypervisor able to run different virtual machines. Further,
it is visible in the figure that not all Application Components are deployed on
all Levels. Application Component ac1 requires an application server (dl2) and a
virtual machine running Windows (dl3). This may, for example, be due to the
fact that the Application Component requires some special resource only being
available forWindows. The Application Component ac2 and ac3 both require a
Linux virtual machine (dl4) but only ac2 requires an application server (dl2).

97

Chapter 5: Computation of a Valid and Optimal Deployment

On the left hand side of Figure 5.3 it is also visible how Customers are willing
to share Units in the example. For Application Component ac1 and Level dl1, for
example, Tenants A and B would be allowed to share a Unit, Tenant A and C,
on the other hand, would not be allowed to share. Further, it can be said that
ac3 must be a Application Component that handles only insensitive data, as all
Tenants are willing to share this Application Component on all Deployment
Levels. It is important to note that the graphs belonging to the same Application
Component must always get less or equally restrictive from top to bottom (this
has previously been stated in Section 4.4.8).
A Valid and Optimal Deployment for the example is illustrated on the right

hand side of Figure 5.3. As visible for every Deployment Level, Units were cre-
ated. In fact, on Level dl1 there are Units for every Application Component. On
the other Levels there is only one type of Unit per Level. Tenants are directly
connected to those dl1 Level Units they use. Each Tenant uses one Unit of each
Application Component. All dl1 Units are hosted on Units of the lower Levels.
This structure directly corresponds to the structure of Application Components
and the Deployment Levels they are deployed on. Thus, the Units u3

2, u
4
2, and u

1
ac3

are deployed on a Unit of Level dl4 but not on a Unit of Level dl3.
Now that it has been established what a Valid Deployment shall look like, it

is possible to analyze how cost of a Deployment may be optimized. In order to
determine what factors actually have an impact on the cost of a deployment, it
is necessary to take another look to what a Deployment looks like and analyze
what actually causes cost. In general, the cost of a Deployment is determined by
the demand for resources as this is what causes cost.

Definition 27 (Resource) The term Resource is used as a generic term for all
kinds of possible IT resources. Themost obvious are CPU power, RAM size, and
Disk space. However, in this work the term resources refers to everything that
is consumed by a Unit of a Deployment Level and has a potentially infinite
availability.

It is possible to distinguish two types of resource demands, those caused by the
Tenants and those caused by the Units.

Definition 28 (Resource Demand of Tenant) Byusing the applicationpro-
vided by the Operator, each Tenant causes a resource demand. What the resource
demand for a Tenant is depends onmany factors, as for example the number of
Users that shall use the application, or how intensively these Users are using it. In
fact, a Tenant’s resource demandmay vary annually, monthly, or even depending
on the time of the day.

Definition 29 (Resource Demand of Unit) The second resource demand is
the one caused by each Unit itself. It is independent from howmany Tenants
are using the application, it only refers to the overhead cost that comes with
provisioning aUnit. TheResourceDemandofUnits vary, as theymaybe instances
of different Deployment Levels.

98

Section 5.2: Formal Definition of the Deployment Problems

In order to elaborate further onhow infrastructure costmay actually be optimized,
Figure 5.4 illustrates a theoretical experiment. In this experiment the same n
Tenants are set up to either use 1 or n Units. In both cases, the Tenants are the
same and so is their resource demand. Furthermore, in both cases there exists
only one type of Unit. For both cases the total resource demand (TRD) may be

1 2 n …

…

1 2 n …

1 Unit n Units

OptimizationCriteriaExample

1U 1U 2U nU
Figure 5.4.: Extremes how Customers may share Units of one Deployment Level

calculated by adding the Resource Demand caused by Tenants (RCT) and the
Resource Demand caused by the Units (RCU).

TRD1 Unit =
n∑
i=1

RDTi
+RDU1

TRDn Units =
n∑
i=1

RDTi
+

n∑
j=1

RDUj

As visible in the equations, the difference between TRD1 Unit and TRDn Units is the
Resource Demand caused by the Units. Since the Resource Demand caused by
the Tenants may not be altered, this leads to the conclusion that the only way
how infrastructure cost may be optimized is by optimizing the cost caused by
Units. Thus, this is the starting point for the formal definition of the General
Mixed-Tenancy Deployment Problem.
This work is conducted under the assumption that the Resource Demand of

Tenants does not need to be considered when calculating a Valid and Optimal
Deployment. This is due to the fact that in recent years there has been significant
advances in the area of resource virtualization that allows to scale resources
according the demands up and down [Feh+13]. Thus, it is an assumption of this
work that any Unit may run any number of higher Level Units, without having
any restrictions to resource availability. However, there may be cases where this
assumptionmay be false. An example for this is a Software License that allows
only a specific number of users per software installation. These cases should be
avoided in the area ofMixed-Tenancy as they increase complexity of computation
significantly. However, this problem is out of scope for this work. Anyway, it will
be discussed briefly in Appendix C.

99

Chapter 5: Computation of a Valid and Optimal Deployment

5.2.2 Definition of the General Deployment Problem

Based on the analysis of Section 5.2.1, it is now possible to define the General
Mixed-Tenancy Deployment Problem formally. The goal of this section is to do
that in a complete, unambiguous, and formal way. The formalizationwill be used
in future sections to analyze characteristics of a Valid and Optimal Deployment
and to formulate possible algorithms tackling it. This definition is the first artifact
to be created by this chapter.
In order to be able to formulate a lean and understandable formalization, a

representation of a Deployment is used that is slightly different from the one
used in the previous section. This representation is illustrated by Figure 5.5.
The only difference between this representation and the one of the previous

B C E D A

2
1acu

*

2
2u

1
5u

1
4u

1
3u

1
2u

1
1acu 1

2acu 3
2acu 1

3acu

3
2u

2
2acu

4
2u

1dl

2dl

3dl

4dl

5dl

Figure 5.5.: Description of Example’s Solution according to formal Definition

section lies in the associations between Units. Instead of associating each Unit to
the Units it hosts, they are associated to Units of Level dl1 they host. Once the
formalization of the General Problem has been created, it will be obvious that
the representation of the previous section and the one of this section are, in fact,
equivalent.

Definition of Inputs

The first step towards the definition of the General Mixed-Tenancy Deployment
Problem is the definition of the relevant inputs that are given by previous steps.
The first three are, a finite set of Tenants, a finite set of Application Components,

100

Section 5.2: Formal Definition of the Deployment Problems

and a finite set of Deployment Levels. These are captured using the Description
Model. Their formal definitions were given in Section 4.3 and are only posted
here again to increase readability.

T = {t1, . . . , tit} : Tenants (copy of 4.1)
AC = {ac1, . . . , aciac} : Application Components (copy of 4.2)
DL = {dl1, . . . , dlidl} : Deployment Levels (copy of 4.3)

If applied to the example of the previous section, the three sets look as follows.

T = {A,B,C,D,E}, AC = {ac1, ac2, ac3}, DL = {dl1, dl2, dl3, dl4, dl5}

Furthermore, the DescriptionModel, presented in Section 4.4), captured which
Application Components shall be deployed on which Deployment Levels. It was
defined in Section 4.4 that eachApplicationComponentmay be deployed on one
tomany Deployment Levels, but not necessarily on all of them4. This leads to the
conclusion that every Deployment Level actually has a number of Application
Components that it applies to. In Section 4.4.8 the familyDLS was introduced
to be another alternative representation of the Deployment Levels, which were
represented as sets of Application Components. AllDLS were defined to be a set
of Application Components that are deployed on a particular Deployment Level.

DLS = {DLSdl1 | DLSdl1 = AC} ∪ {DLSdli ⊆ AC | 2 ≤ i ≤ idl} (copy of 4.50)

When applying this to the example, introduced in Subsection 5.2.1, the result
looks as follows.

DLS = {DLSdl1 , DLSdl2 , DLSdl3 , DLSdl4 , DLSdl5}

DLSdl1 = {ac1, ac2, ac3}, DLSdl2 = {ac1, ac2}, DLSdl3 = {ac1},
DLSdl4 = {ac2, ac3}, DLSdl5 = {ac1, ac2, ac3}

The next part of the input, that is necessary to be defined, is the Deployment
Information. It is the major output of the previous chapter and describes which
Tenants may share Units. The description is given for every Application Compo-
nent on every Deployment Level it is deployed on. This has previously (Section
4.4.8) been defined as a setDI of graphs.

DI = {DIacdl = (V ac
dl , E

ac
dl) | dl ∈ DL ∧ ac ∈ DLSdl} (copy of 4.52)

This means that if two Tenants are in a setDIacdl , those two Tenants are allowed
to share the combination of Application Component ac and Deployment Level
dl. Furthermore, it was defined in Sections 4.3.3 and 4.4.8 that lower Level
Deployment Constraints are equally or less restrictive than their predecessors.

4This is true for theDeployment Levels dl2– dlidl. It was defined that all ApplicationComponents
must be deployed on Deployment Level dl1

101

Chapter 5: Computation of a Valid and Optimal Deployment

This also still applies. For the problem definition this was defined as follows.

∀dl, dl′ ∈ DL ∀ac ∈ DLSdl ∩DLSdl′ : dl < dl′ → Eac
dl ⊆ Eac

dl′ (copy of 4.56)

Furthermore, Section 4.4.8 defined additional constraints for the Deployment
Information that must be met. These are not repeated at this point.
In order to elaborate the meaning of the definitions further, the following

illustrates the definition of the Deployment Information for the example. Since
there are many Deployment Constraints, the following is limited to the set of
edges contained by the Deployment Information of Level dl1 and Application
Component ac1.

Eac1
dl1 = {(A,B), (A,E), (B,E), (B,C), (C,D)}

It was stated in the previous section that the optimization criteria is to find a
Deployment that causes only minimal cost. Further, it was stated that the only
cost that needs to be considered is the cost that is caused by the Resource Demand
caused byUnits. Thus, the final piece of information that is necessary to define as
input is the cost of each Unit. This input has not been presented so far. However,
it is done in the following by defining two functions that assign a cost to every
Application Component and Deployment Level.

wAC :AC → R>0 (5.8)
wDL :DL \ {dl1} → R>0 (5.9)

According to these definitions the functions allow the following assignments.

• wAC assigns the cost of a Unit of ac1, . . . , aciac.

• wDL assigns the cost of a Unit of dl2, . . . , dlidl.

As visible in Equations 5.8 and 5.9 the Deployment Levels dl1 and dl2, . . . , dlidl are
treated differently. For Deployment Level dl1 the cost of Units must be given for
every Application Component. For the Deployment Levels dl2, . . . , dlidl, on the
other hand, cost of Units is only expressed per Deployment Level. This is due to
the fact that for Deployment Level dl1 it is necessary to create Units per AC. Those
Units may then be deployed on the Units of the dl2.

Based on the previous discussion, it can be concluded that the Mixed-Tenancy
Deployment Problem requires the following input (AC,DL, T,DLS,DI, wAC ,
wDL) . Based on this definition, it is possible to continue by defining a Valid
Deployment.

Definition of a Valid Deployment

Based on the definition of inputs, provided by the previous subsection, the
definition of a Valid Deployment can be given. The first step towards this is to
characterize what itmeans that a Unit of a particular Deployment Level is allowed
to host dl1 Units that are instances of different Application Components. Due

102

Section 5.2: Formal Definition of the Deployment Problems

to the fact that not every Application Component is necessarily deployed on all
Deployment Levels, it is not possible to deploy any two dl1 Units together on the
same lower Unit. The example of Section 5.2.1 illustrates why this is necessary.
If it would be possible to deploy any dl1 Unit with any other dl1 Unit, it would
be possible to distribute the Units of dl1 onto Units of dl2 in the way that both
instances of ac1 and ac2 may share a Unit of dl2. The result is illustrated by Figure
5.6. The Units created in this way would not be deployable on the Levels dl2 and

B C E D A

1
ac1

u 2
ac1

u 1
ac2

u 2
ac2

u 3
ac2

u

1
2u 2

2u

1
3u

1
4u

1dl

2dl

3dl

4dl

Figure 5.6.: Example why ∼dli is Required

dl3 since they are only deploying either ac1 or ac2. This is also indicated by the
figure.
Preventing such problems can be accomplished by introducing restrictions

specifying which Application Components may share Units for every Deploy-
ment Level. Due to the fact that dl1 Units are created for each Application Com-
ponent individually, the definition of the Application Component restrictions
only needs to be defined for the Deployment Levels dl2 - dlidl. This is done in the
following by defining an equivalence relation (∼dli) that determines if dl1 Units
deploying twoApplicationComponentsmay share aUnit on a givenDeployment
Level.

∀dli ∈ DL ∀ac, ac′ ∈ DLSdli : i > 1 ∧ ac ∼dli ac′ → ∀dlj ∈ DL : j > i (5.10)
→ {ac, ac′} ⊆ DLSdlj ∨ {ac, ac′} ∩DLSdlj = ∅

This means that two Application Components are allowed to share a Unit on a
given Level if and only if they are also deployed on the same Deployment Levels
below that. This also means that there is no lower Deployment Level where

103

Chapter 5: Computation of a Valid and Optimal Deployment

only one of the Application Components is deployed. Using this definition and
applying it to the example will result in the following equivalence classes.

[ac1]∼dl2
= {ac1}, [ac2]∼dl2

= {ac2}, [ac3]∼dl2
= {ac3},

[ac1]∼dl3
= {ac1},

[ac2]∼dl4
= {ac2, ac3}, [ac3]∼dl4

= {ac2, ac3},
[ac1]∼dl5

= {ac1, ac2, ac3}, [ac2]∼dl5
= {ac1, ac2, ac3}, [ac3]∼dl5

= {ac1, ac2, ac3}

Using the equivalence relation, it is nowpossible to define aValidDeployment for
a General Mixed-Tenancy Deployment Problem (AC,DL, T,DLS,DI, wAC , wDL)
as a tuple containing a family of Units and a family of two-place functions.

D = (U ,F) (5.11)
U = {Udl1 , . . . , Udlidl

} (5.12)
F = {fdl1 , . . . , fdlidl

} (5.13)

For this solution the following variables are defined as follows.

Udl1 , . . . , Udlidl
each represents a set that contains all Units for the corresponding

Deployment Level.

fdl1 , . . . , fdlidl
each represents a two-place function that assigns to every t ∈ T and

every ac ∈ AC a Unit of the corresponding Deployment Level.

The first step towards defining the constraints for a Valid Deployment is the
definition of the functions fdl1 , . . . , fdlidl

.

fdl1 :T × AC → Udl1 (5.14)
...

fdlidl
:T × AC → Udlidl

(5.15)

This defines that each function assigns a given Tenant and a given Application
Component to a Unit on the concerning Deployment Level. In order to define
the constraints of how Tenants are assigned to Units, it is necessary to distinguish
two cases. This is due to the fact that on Deployment Level dl1 Units are created
per Application Component. On the other Level Units only a single type of Unit
is created per Deployment Level.
It was discussed earlier that on Deployment Level dl1 two Tenants shall only

share a Unit of a given Application Component if they are allowed to according
to the Deployment Information. Further, it has been stated earlier that Units
on Deployment Level dl1 shall only be allowed to host one type of Application
Component. Both constraints are expressed by the following equation.

∀t, t′ ∈ T ∀ac, ac′ ∈ DLSdl1 : fdl1(t, ac) = fdl1(t′, ac′) (5.16)
→ ac = ac′ ∧ (t, t′) ∈ Eac

dl1

104

Section 5.2: Formal Definition of the Deployment Problems

If this definition is applied to the example of Subsection 5.2.1, the following is
the result for Application Component ac1.

fdl1(A, ac1) = u1
ac1 , fdl1(B, ac1) = u1

ac1 , fdl1(C, ac1) = u2
ac1 ,

fdl1(D, ac1) = u2
ac1 , fdl1(E, ac1) = u1

ac1

For the Deployment Levels dl2 – dlidl only a single type of Unit is created per De-
ployment Level. It has been discussed earlier that on these Levels, two Tenants
shall only be allowed to share a Unit if they are allowed to do so according to the
Deployment Information. Since there is only one type of Unit to be created, it is
not sufficient to just check the Deployment Information related to one Applica-
tion Component. In fact, the Deployment Information related to all Application
Components involved need to be checked. Further, it has been discussed earlier
that not all Instances of Application Components shall be allowed to share Units
on all Levels. In order to be able to express this, an equivalence relation was
introduced. The following is a constraint that captures all this.

∀dl ∈ DL \ {dl1} ∀t, t′ ∈ T ∀ac, ac′ ∈ DLSdl : fdl(t, ac) = fdl(t′, ac′) (5.17)

→ ac ∼dl ac′ ∧ (t, t′) ∈ Eac
dl ∧ (t, t′) ∈ Eac′

dl

In order to be able to define what a Valid Deployment looks like, there is only
one constraint left to be defined. This constraint shall express that if two Tenants
are assigned to share a Unit on a high Level, they shall also be assigned to Units
on lower Levels together. This is due to the fact that if two Tenants are assigned
to share the same instance of an Application Component, it is not possible for
them to not share the same virtual machine this instance is deployed on. Thus,
the next constraint expresses just that.

∀t, t′ ∈ T ∀dli, dlj ∈ DL ∀ac, ac′ ∈ DLSdli ∩DLSdlj : (5.18)
i < j ∧ fdli(t, ac) = fdli(t′, ac′)→ fdlj (t, ac) = fdlj (t′, ac′)

Due to this definition, it is possible to say that the representation of aDeployment
used in the formal definition (Figure 5.5) and the one of Section 5.3 (Figure 5.3)
are equivalent.

If all this is applied to the example of the previous section, the following results
may be produced for all Units used by Tenant A.

fdl2(A, ac1) = u1
2, fdl3(A, ac1) = u1

3, fdl5(A, ac1) = u1
5,

fdl2(A, ac2) = u3
2, fdl4(A, ac2) = u1

4, fdl5(A, ac2) = u1
5,

fdl4(A, ac3) = u1
4, fdl5(A, ac3) = u1

5

Definition of a Valid and Optimal Deployment

In the previous subsection it was defined what a Valid Deployment shall look like.
Based on this, it is possible to define the cost a Deployment causes by providing
a cost function. A first step towards this is to define functions that allow to

105

Chapter 5: Computation of a Valid and Optimal Deployment

determine the cost of an entire Deployment Level. Again, it is necessary to treat
the Deployment Level dl1 differently from the others, as Units are created for
every Application Component. This is expressed by the following definitions.

w(Udl1) = Σac∈AC wAC(ac) · |{fdl1(t, ac)|t ∈ T}| (5.19)
∀dl ∈ DL \ {dl1} :w(Udl) = wDL(dl) · |Udl| (5.20)

Based on this function, it is now possible to express the cost function of a com-
plete Deployment.

w((U ,F)) = Σdl∈DLw(Udl) (5.21)

As defined the cost of a Deployment is the sum of all cost caused by the Units it
utilizes. Based on this, it is now possible to formulate the optimization problem
of this work as follows: Given any General Mixed-Tenancy Deployment Prob-
lem (AC,DL, T,DLS,DI, wAC , wDL), determine a Valid Deployment that causes
minimal cost w((U ,F)).

5.2.3 Definition of the Elementary Deployment Problem

In order to be able to analyze characteristics of a Valid and Optimal Deployment,
it is convenient to define a simplified version of the optimization problem. This
problem is referred to as Elementary Mixed-Tenancy Deployment Problem.
The only difference between the General and the Elementary Problem is that

there exists only one Application Component in the Elementary version. In
reality, the ElementaryMixed-Tenancy Deployment Problemmay, for example,
be found if an Operator chooses to offer an Application to Customers that cannot
be split into multiple Application Components. In such a scenario there would
only be one Application Component which is, in fact the, application itself.

For the formalization of the problem there are two implications coming from
the limitation that there shall only be one Application Component. These are
the following.

No unused Deployment Levels In the definitions given in Chapter 4 (Equa-
tion 4.20) it was defined that for every Deployment Level there must at
least be one Application Component that is deployed on it. In the Elemen-
tary Problem there is only one Application Component. This Application
Component is deployed on all Deployment Levels.

All Units are Created Equally In theGeneral version of theDeployment Prob-
lem, it was necessary to distinguish how Units are created on dl1 and the
other Deployment Levels. Since there is only one Application Component,
it is not necessary to make that difference anymore. Thus, for the Elemen-
tary Problem, Units are created the same way for every Deployment Level.

The following is a formal definition of the ElementaryMixed-Tenancy Deploy-
ment Problem.

106

Section 5.2: Formal Definition of the Deployment Problems

Definition of Input

In order to define the ElementaryMixed-Tenancy Deployment Problem, a first
step is the definition of inputs. These are quite similar but not the same as
the input for the General Mixed-Tenancy Deployment Problem. The first two
necessary inputs are a set of Tenants and a set of Deployment Levels. These two
may actually be taken directly from the definitions of Chapter 4.

T = {t1, . . . , tit} : Tenants (copy of 4.1)
DL = {dl1, . . . , dlidl} : Deployment Levels (copy of 4.3)

Further, it is necessary to have the Deployment Information as input. In the
General Mixed-Tenancy Deployment Problem, the Deployment Information
was given per Deployment Level and Application Component. Since there is
only one Application Component in the Elementary Deployment Problem, it
is only necessary to have the Deployment Information once per Deployment
Level. Otherwise the definition is the same as the one given for the General
Deployment Problem (Subsection 4.4.8).

DI = {DIdl = (Vdl, Edl) | dl ∈ DL} (5.22)
∀dl ∈ DL : Vdl = T (5.23)
∀dl ∈ DL : Edl ⊆ T × T (5.24)

Again, the set of edges needs to be defined as reflexive and symmetric.

∀dl ∈ DL ∀t ∈ T : (t, t) ∈ Edl (5.25)
∀dl ∈ DL ∀t, t′ ∈ Edl : (t, t′) ∈ Edl (5.26)

Similar to the General Deployment Problem, it is necessary to define that if two
Tenants may share Units of a high Level, they shall also be allowed to share Units
on lower Levels. Again, this is expressed by a subset definition on theDeployment
Information.

∀dl, dl′ ∈ DL : dl < dl′ → Edl ⊆ Edl′ (5.27)

The only input that is left to be defined is the cost functions that allows to
determine the cost of every Unit. In the General version of the Deployment
Problem it was necessary to define multiple cost functions – one for Deployment
Level dl1 assigning the cost for every Application Component, and one for the
other Deployment Levels assigning cost per Deployment Level. However, since in
the Elementary version of the Deployment Problem there is only one Application
Component, it is sufficient to only define one cost function that assigns cost per
Deployment Level. This is done in the following.

w : DL→ R>0 (5.28)

107

Chapter 5: Computation of a Valid and Optimal Deployment

Based on this discussion, it can be concluded that a given Elementary Mixed-
Tenancy Deployment Problem requires the following inputs (T,DL,DI, w).

Definition of Valid Deployment

Based on the definition of inputs, it is now possible to define what a Valid Deploy-
ment shall look like. Again, this is quite similar to the definition of the normal
Deployment Problem.

ADeployment for an ElementaryMixed-Tenancy Deployment Problem (T,DL,
DI, w) shall be defined as a tuple containing a family of Units and a family of
functions.

D = (U ,F) (5.29)
U = {Udl1 , . . . , Udlidl

} (5.30)
F = {fdl1 , . . . , fdlidl

} (5.31)

Similar to the definition of the General Mixed-Tenancy Deployment Problem,
each Udl1 , . . . , Udlidl

contains a set of Units for the Deployment Level. The func-
tions, on the other hand, are not two-placed functions this time, but are only
simple functions assigning a Unit to every given Tenant.

fdl1 : T → Udl1 (5.32)
... (5.33)

fdlidl
: T → Udlidl

(5.34)

Two Tenants shall only be assigned to share a Unit on a given Deployment Level
if they are allowed to do so according to the Deployment Information. Further,
if two Tenants are assigned the same Unit on a given Level, they must also be
assigned to the same Units on lower Levels. These two constraints are expressed
by the following equations.

∀dl ∈ DL ∀t, t′ ∈ T : fdl(t) = fdl(t′)→ (t, t′) ∈ Edl (5.35)
∀dl, dl′ ∈ DL ∀t, t′ ∈ T : dl < dl′ ∧ fdl(t) = fdl(t′)→ fdl′(t) = fdl′(t′) (5.36)

Based on these definitions, it is clear what a Valid Deployment shall look like.

Definition of Valid and Optimal Deployment

In order to be able to express what a Valid and Optimal Deployment shall look
like, it is necessary to define a cost function, assigning cost to an entire Deploy-
ment. Similar to the definition of the normal Deployment Problem, the cost of a
Deployment shall be the cost of all Units required by it. This is expressed by the
following.

w((U ,F)) = Σdl∈DLw(dl) · |Udl| (5.37)

108

Section 5.3: Analysis of Elementary Deployment Problem

Based on this, the Elementary optimization problem can be formulated as follows.
Given any ElementaryMixed-Tenancy Deployment Problem (T,DL,DI, w), de-
termine a Valid Deployment that causes minimal cost w((U ,F)).

5.3 Analysis of Elementary Deployment Problem

In the previous section the Elementary Mixed-Tenancy Deployment Problem has
been defined in order to serve as a less complex problem to be analyzed. Thus, it
is used in this section in order to analyze characteristics of a Valid and Optimal
Deployment and to determine its complexity.

In order to do that the section is structured as follows. The first step taken is to
present an alternative representation of a Valid and Optimal Deployment based
on concepts from graph theory (Subsection 5.3.1). Based on this definition, the
Subsections 5.3.2, 5.3.3, and 5.3.4 analyze characteristics of a Valid and Optimal
Deployment. Furthermore, Subsection 5.3.5 will determine the computational
complexity of the Elementary Problem. The section concludes with an introduc-
tion of heuristic approaches that allow to approximate a Valid Deployment for
the Elementary Mixed-Tenancy Problem (Section 5.3.6).

5.3.1 Definition of a Solution as a Set of Clique Covers

In order to be able to discuss characteristics of a Valid andOptimal Deployment, it
is necessary to define a second representation of a Valid andOptimal Deployment
based on concepts from graph theory.
In fact, for a given ElementaryMixed-Tenancy Deployment Problem, L shall

be a solution. A solution L shall be defined as a set of clique covers - one per
Deployment Level. Each clique cover shall be a refinement of the clique cover on
lower Levels. This is expressed by the following5.

L = {Cdl ∈Mcc(DIdl) | dl ∈ DL} (5.38)
∀dl, dl′ ∈ DL ∀Cdl, Cdl′ ∈ L : dl < dl′ → Cdl v Cdl′ (5.39)

Finally, the cost of a solution L is defined as follows.

w(L) = Σdl∈DLw(dl) · |Cdl| (5.40)

In order to show that the definition of L is, in fact, a graph-theoretic characteri-
zation of a Valid Deployment, the following Lemma is given.

Lemma 1 Let (T,DL,DI, w) be any Elementary Mixed-Tenancy Deployment Prob-
lem and let L be any solution of it. Then, there is a Valid Deployment (U ,F) for
(T,DL,DI, w) with w((U ,F)) = w(L).

5Please note that the definitions of set Mcc and the refinementvwere given in Subsection 5.1.3.

109

Chapter 5: Computation of a Valid and Optimal Deployment

PROOF Let L = {Cdl | dl ∈ DL} be any solution for (T,DL,DI, w), where Cdl =
{Cdl,1, . . . , Cdl,|Cdl|} for all dl ∈ DL. The resulting Deployment (U ,F) is specified as
follows.

∀dl ∈ DL : Udl = {u1
dl, . . . , u

|Cdl|
dl } (5.41)

∀dl ∈ DL ∀t ∈ T : fdl(t) = uzdl → t ∈ Cz
dl (5.42)

Based on this, it is easily possible to observe that (U ,F) is a Valid Deployment for
(T,DL,DI, w) and that w((U ,F)) equals w(L). �

Summarizing the conclusions that have just been stated, it can be said that
from a theoretical point of view, every Unit in a given Deployment actually
corresponds to a clique in the Deployment Information graph. Thus, a solution
is, in fact, a collection of clique covers, one per Deployment Level.

5.3.2 Minimal Clique Cover on High Level

As discussed in previous section, a Deployment for an ElementaryMixed-Tenancy
Problemmay be represented as a set of Units for every Deployment Level. Each
Deployment Level’s Units needs to fulfill certain constraints that were previ-
ously defined. Further, Lemma 1 showed that an alternative representation of a
deployment is a set of clique covers, one per Deployment Level.
Based on this, it is possible to learn more about the structure of a Valid and

Optimal Deployment. Knowing that the problem at hand is related to the clique
cover problem allows the intuitive assumption that finding a minimal clique
cover is somewhat beneficial towards finding a Valid and Optimal Deployment.

Constraint 4.56 defined that Deployment Information graphs of higher Levels
must be subgraphs of lower Levels. This somewhat promotes the assumption that
finding aminimal clique cover on the highest Deployment Level promotes the
computation of a Valid and Optimal Deployment.
However, this assumption can be contradicted by investigating the example

illustrated by Figure 5.7. In the figure there is an instance of an Elementary
Top-Down

Output: Input

1dl

2dl
A

D

C

F

E

B H

G

A

D

C

F

E

B H

G
B C E D A F G H B C E D A F G H

Counterexample:

1
1u 2

1u 3
1u 4

1u

1
2u 2

2u 3
2u 4

2u

1
1u 2

1u 3
1u 4

1u

1
2u 2

2u

5
1u

Figure 5.7.: Example not utilizing a minimal Clique Cover on highest Level

Deployment Problem illustrated. It has two Deployment Levels and a total of
eight Tenants.

110

Section 5.3: Analysis of Elementary Deployment Problem

In the middle of the figure a Deployment is illustrated that uses a minimal
clique cover on the highest Deployment Level. Based on this, a minimal number
of dl2 Units was determined that may host the created dl1 Units. Assuming that
the cost for all Units is one leads to a Deployment that causes a total cost of eight.

However, this deployment is not a Valid and Optimal Deployment since there
is another Valid Deployment that uses less Units. This deployment is illustrated
on the right hand side of Figure 5.7. It uses a clique cover on Level dl1 that has
onemore clique than theminimal, but this leads to a reduction of two Units on
Level dl2. This way the entire Deployment only causes a total cost of seven instead
of eight.

This leads to the following lemma.

Lemma 2 There is an Elementary Mixed-Tenancy Deployment Problem (T,DL,DI,
w) such that it holds: If L is an optimal solution for (T,DL,DI, w), then L cannot
contain a minimal clique cover for the highest Deployment Level.

In order to gain additional conclusions from this example, the following is a
formal proof for the lemma.

PROOF Let n ≥ 2,X = {x1, . . . , x2n} and Y = {y1, . . . , y2n}. Now, the correspond-
ing ElementaryMixed-Tenancy Deployment Problem (T,DL,DI, w) is defined as
follows.

T =X ∪ Y (5.43)
DL ={dl1, dl2} (5.44)

w(dl1) =w(dl2) = 1 (5.45)
DIdl1 =(Vdl1 , Edl1) (5.46)
DIdl2 =(Vdl2 , Edl2) (5.47)
Vdl1 =Vdl2 = T (5.48)
Edl1 ={{xi, yi} | 1 ≤ i ≤ 2n} ∪ {{xi, xi+1} | 3 ≤ i < 2n} (5.49)

∪ {{yi, yi+1} | 1 ≤ i < 2n}
Edl2 ={{xi, yi} | 1 ≤ i ≤ 2n} ∪ {{x, x′} | x, x ∈ X ∧ x 6= x′} (5.50)

∪ {{y, y′} | y, y′ ∈ Y ∧ y 6= y′}

Figure 5.8 illustrates the graphs that have just been defined for the case that n
equals 2. Furthermore, according to the definition given in Section 5.2.3 it is true
that Edl1 ⊆ Edl2.
Now, consider the following clique covers Cdl1 and C ′dl1 for the graphDIdl1.

Cdl1 ={{xi, yi} | 1 ≤ i ≤ 2n} (5.51)
C ′dl1 ={{x1}, {x2}} ∪ {{x2i−1, x2i} | 2 ≤ i ≤ n} (5.52)

∪ {{y2i−1, y2i} | 1 ≤ i ≤ n}

111

Chapter 5: Computation of a Valid and Optimal Deployment

1x 1y

2x 2y

3x 3y

4x 4y

1x 1y

2x 2y

3x 3y

4x 4y

1dlDI
2dlDI

Figure 5.8.: Corresponding Graphs for n = 2 (Lemma 2)

For the case that n equals 2, this defines the following clique cover.

Cdl1 ={{x1, y1}, {x2, y2}, {x3, y3}, {x4, y4}}
C ′dl1 ={{x1}, {x2}, {x3, x4}, {y1, y2}, {y3, y4}}

It is quite obvious that |Cdl1| = 2n and |C ′dl1| = 2n+ 1. Moreover, it is obvious that
Cdl1 is a minimal clique cover for the graphDIdl1.

Next, consider the following clique covers Cdl2 and C ′dl2 for the graphDIdl2.

Cdl2 =Cdl1 (5.53)
C ′dl2 ={X, Y } (5.54)

For the case that n equals 2, this defines the following clique cover.

Cdl2 ={{x1, y1}, {x2, y2}, {x3, y3}, {x4, y4}}
C ′dl2 ={{x1, x2, x3, x4}, {y1, y2, y3, y4}}

Since Cdl1 v Cdl2 and C ′dl1 v C
′
dl2, it is possible to immediately see that L =

{Cdl1 , Cdl2} and L′ = {C ′dl1 , C
′
dl2} are solutions for the given Elementary Mixed-

Tenancy Problem. Further, it can be stated that w(L) = 4n and w(L′) = 2n+ 3.
It remains to be shown that w(L∗) = 4n for every solution L∗ = {C∗dl1 , C

∗
dl2} of

the given Elementary Mixed-Tenancy Problem that meets C∗dl1 = Cdl1. To verify
this statement, it suffices to show the following claim.

Claim. Let L∗ = {Cd1 , C∗dl2} be any solution for the given Elementary Mixed-
Tenancy Deployment Problem and let C∗dl2,` be any clique in C∗dl2. Then, it holds:
|C∗dl2,`| = 2.

Since Cdl1 v C∗dl2, it is known that there is an i with 1 ≤ i ≤ 2n such that
{xi, yi} ⊆ C∗dl2,`. First, suppose that there is any j with 1 ≤ j ≤ 2n and j 6= i such
that yj ∈ C∗dl2,`. Since {xi, yj} /∈ Edl2, this case cannot occur. Second, suppose that
there is any j with 1 ≤ j ≤ 2n and j 6= i such that xj ∈ C∗dl2,`. Now, Cdl1 v C∗dl2
implies yj ∈ C∗dl2,`. Again, because of {xi, yj} /∈ Edl2, this case cannot occur, too.
Consequently, |C∗dl2,`| = 2. �

112

Section 5.3: Analysis of Elementary Deployment Problem

These results will be of importance once the Deployment Computation Al-
gorithms of this work are going to be proposed. This will be done in Section
5.3.6.

5.3.3 Minimal Clique Cover on Low Level

In the previous section it has been shown that using aminimal clique cover on
a high Deployment Level will not always result in a Valid and Optimal Deploy-
ment. However, following the idea that a minimal clique cover may actually be
beneficial towards finding a Valid and Optimal Deployment, it may be assumed
that using it on the lowest Deployment Level may help.
Figure 5.9 illustrates an example that proves that this assumption is also not

correct for all cases. In this example there is a total of twelve Tenants that express
their constraints for two Deployment Levels. On the right hand side of the figure

Bottom-Up

Output: Input

1dl

2dl

B C E D A F G H

1
1u 2

1u 3
1u 4

1u

1
2u 2

2u 3
2u

A

B

C

E

F

G

I

J

K

D H L

A

B

C

E

F

G

I

J

K

D H L

I J

5
1u

K L

7
1u 8

1u 9
1u 10

1u 11
1u

6
1u

12
1u

Counterexample:

B C E D A F G H I J K L

1
1u 2

1u 3
1u 4

1u

1
2u 2

2u 3
2u 4

2u

Figure 5.9.: Example utilizing minimal Clique Cover on lowest Level

a Valid Deployment is illustrated that uses a minimal clique cover on the lowest
Deployment Level. This clique cover requires a total of three Units. Based on
these three Units, a minimal number of possible dl1 Units was produced. Due to
the constraints of Level dl1, this leads to a total number twelve dl1 Units. Thus,
assuming that the cost of a deployment is one, the entire Deployment causes a
total cost of 15.
However, this Deployment is Valid but not Optimal. This becomes obvious if

the Deployment illustrated by Figure 5.10 is considered. This Deployment uses a
clique cover on Level dl2 that contains one more clique than the minimal one.
Based on this, it is possible to create four dl1 Units to host all Tenants. Thus, the
new Deployment only causes the total cost of eight instead of 15.
This leads to the following lemma.

113

Chapter 5: Computation of a Valid and Optimal Deployment
Bottom-Up

Output: Input

1dl

2dl

B C E D A F G H

1
1u 2

1u 3
1u 4

1u

1
2u 2

2u 3
2u

A

B

C

E

F

G

I

J

K

D H L

A

B

C

E

F

G

I

J

K

D H L

I J

5
1u

K L

7
1u 8

1u 9
1u 10

1u 11
1u

6
1u

12
1u

Counterexample:

B C E D A F G H I J K L

1
1u 2

1u 3
1u 4

1u

1
2u 2

2u 3
2u 4

2u

Figure 5.10.: Alternative Solution - no minimal Clique Cover on lowest Level

Lemma 3 There is an Elementary Mixed-Tenancy Deployment Problem (T,DL,DI,
w) such that it holds: If L is an optimal solution for (T,DL,DI, w), then L cannot
contain a minimal clique cover for the lowest Deployment Level.

In order to gain additional conclusions from this example, the following is a
formal proof for the lemma.

PROOF Let n ≥ 4,X = {x1, . . . , xn}, Y = {y1, . . . , yn}, and Z = {z1, . . . , yn}. Now,
the corresponding Elementary Mixed-Tenancy Deployment Problem (T,DL,DI,
w) is defined as follows.

T =X ∪ Y ∪ Z (5.55)
DL ={dl1, dl2} (5.56)

w(dl1) =w(dl2) = 1 (5.57)
DIdl1 =(Vdl1 , Edl1) (5.58)
DIdl2 =(Vdl2 , Edl2) (5.59)
Vdl1 =Vdl2 = T (5.60)
Edl1 ={{xi, yi} | 1 ≤ i ≤ n} ∪ {{xi, zi} | 1 ≤ i ≤ n} (5.61)

∪ {{yi, zi} | 1 ≤ i ≤ n}
Edl2 =Edl1 ∪ {{x, x′} | x, x′ ∈ X, x 6= x′} ∪ {{y, y′} | y, y′ ∈ Y ∧ y 6= y′} (5.62)

∪ {{z, z′} | z, z′ ∈ Z ∧ z 6= z′}

Figure 5.11 illustrates the graphs that have just been defined for the case that n
equals 4. Consider the following clique covers Cdl1 and C ′dl1 for the graphDIdl1.

Cdl1 ={{x} | x ∈ X} ∪ {{y} | y ∈ Y } ∪ {{z} | z ∈ Z} (5.63)
C ′dl1 ={{xi, yi, zi} | i ≤ n} (5.64)

Obviously, |Cdl1| = 3n and |C ′dl1| = n. For the case that n equals 4, this defines the
following clique cover.

Cdl1 ={{x1}, {x2}, {x3}, {x4}, {y1}, {y2}, {y3}, {y4}, {z1}, {z2}, {z3}, {z4}}
C ′dl1 ={{x1, y1, z1}, {x2, y2, z2}, {x3, y3, z3}, {x4, y4, z4}}

114

Section 5.3: Analysis of Elementary Deployment Problem

1x 1y 1z

2x 2y 2z

3x 3y 3z

4x 4y 4z

1x 1y 1z

2x 2y 2z

3x 3y 3z

4x 4y 4z

1dlDI
2dlDI

Figure 5.11.: Corresponding Graphs for n = 4 (Lemma 3)

Next, consider the following clique covers Cdl2 and C ′dl2 for the graphDIdl2.

Cdl2 ={X, Y, Z} (5.65)
C ′dl2 =C ′dl1 (5.66)

Clearly, |Cdl2| = 3. Moreover, it is obvious that Cdl2 is a minimal clique cover
for the graphDIdl2. For the case that n equals 4, this defines the following clique
cover.

Cdl2 ={{x1, x2, x3, x4}, {y1, y2, y3, y4}, {z1, z2, z3, z4}}
C ′dl2 ={{x1, y1, z1}, {x2, y2, z2}, {x3, y3, z3}, {x4, y4, z4}}

Since Cdl1 v Cdl2 and C ′dl1 v C
′
dl2, it can be concluded that L = {Cdl1 , Cdl2} and

L′ = {C ′dl1 , C
′
dl2} are constitute solutions for the given Elementary Mixed-Tenancy

Deployment Problemwith w(L) = 3n+ 3 and w(L′) = 2n, respectively.
It remains to show that w(L∗) = 3n+ 3 for every solution L∗ = {C∗dl1 , C

∗
dl2} of the

given Elementary Mixed-Tenancy Problem that meets C∗dl2 = Cdl2. To verify this
statement, it suffices to show the following claim.

Claim. Let L∗ = {C∗dl1 , Cdl2} be any solution for the given Elementary Mixed-
Tenancy Deployment Problem and let C∗dl1,` be any clique in C∗dl1. Then, it holds:
|C∗dl1,`| = 1.

First, consider the case that C∗dl1,` ∩ X 6= ∅. So, let xi ∈ C∗dl1,` for some i with
1 ≤ i ≤ n. By the definition ofDIdl1, one immediately sees that C∗dl1,` ⊆ {xi, yi, zi}.
Now, suppose that yi or zi belong to C∗dl1,`. However, this implies C∗dl1,` ∩ Y 6= ∅
and C∗dl1,` ∩ Z 6= ∅, respectively. Thus, the constraint C∗dl1 v Cdl2 is violated.
Consequently, we may conclude that C∗dl1,` equals the singleton set {xi}. Note
that the remaining two cases, i. e. C∗dl1,`∩Y 6= ∅ andC∗dl1,`∩Z 6= ∅, can be handled
in a similar manner. �

These results will be of importance once the Deployment Computation Al-
gorithms of this work are going to be proposed. This will be done in Section
5.3.6.

115

Chapter 5: Computation of a Valid and Optimal Deployment

5.3.4 Minimal Clique Cover on Any Level

In the previous two sections it was discussed that there are cases where aminimal
clique cover on a low or on a high Deployment Level will prevent the creation
of a Valid and Optimal Deployment. However, if the examples are investigated
more closely, it is possible to observe that the counterexample, that proves that
a minimal clique cover on the highest Level may prevent a Valid and Optimal
Deployment, actually uses one on the lowest Level. The same is true for the other
counterexamples that prove that a minimal clique cover on the lowest Level may
prevent a Valid and Optimal Deployment. Here, a minimal clique cover is used
on the highest Level.
Observing this may cause the conclusion that in any case creating a minimal

clique cover for either the highest or the lowest Level will allow to find a Valid
and Optimal Deployment.

However, it is quite trivial to construct a counterexample for this hypothesis as
well. It is only necessary to combine the ElementaryMixed-Tenancy Problems
used in the demonstration of Lemma 2 and Lemma 3. If this is done, it becomes
obvious that the following lemma is true.

Lemma 4 There is an Elementary Mixed-Tenancy Deployment Problem (T,DL,DI,
w) such that it holds: If L is an optimal solution for (T,DL,DI, w), then L cannot
contain a minimal clique cover, neither for the highest nor for the lowest Deployment
Level.

PROOF Let n ≥ 4. Furthermore, let (T1, DL1, DI1, w1) and (T2, DL2, DI2, w2) de-
note the ElementaryMixed-Tenancy Deployment Problems used in the demon-
stration of Lemma 2 and Lemma 3, respectively, where |T1| = 4n, |T2| = 3n,DI1 =
{DI1,dl1 , DI1,dl2} withDI1,dl1 = (V1,dl1 , E1,dl1) as well asDI1,dl2 = (V1,dl2 , E1,dl2), and
DI2 = {DI2,dl1 , DI2,dl2}withDI2,dl1 = (V2,dl1 , E2,dl1) aswell asDI2,dl2 = (V2,dl2 , E2,dl2).
By combining them, it is possible to create an Elementary Mixed-Tenancy

Deployment Problem (T,DL,DI, w) which is defined as follows.

T =T1 ∪ T2 (5.67)
DL ={dl1, dl2} (5.68)

w(dl1) =w(dl2) = 1 (5.69)
DIdl1 =(Vdl1 , Edl1) (5.70)
DIdl2 =(Vdl2 , Edl2) (5.71)
Vdl1 =Vdl2 = T (5.72)
Edl1 =E1,dl1 ∪ E2,dl1 (5.73)
Edl2 =E1,dl2 ∪ E2,dl2 (5.74)

The graphs that are defined by these definitions are illustrated by Figure 5.12 for
the case that n equals 4. When reviewing these graphs, it is obvious that a Valid
and Optimal Deployment for the entire problemwill not utilize a minimal clique
cover on either Levels. Thus, by applying the same argumentations as in the

116

Section 5.3: Analysis of Elementary Deployment Problem

2,1x 2,1y 2,1z

2,2x 2,2y 2,2z

2,3x 2,3y 2,3z

2,4x 2,4y 2,4z

2,1x 2,1y 2,1z

2,2x 2,2y 2,2z

2,3x 2,3y 2,3z

2,4x 2,4y 2,4z

1,1x 1,1y

1,2x 1,2y

1,3x 1,3y

1,4x 1,4y

1,1x 1,1y

1,2x 1,2y

1,3x 1,3y

1,4x 1,4y

1dlDI
2dlDI

Figure 5.12.: Corresponding Graphs for n = 4 (Lemma 4)

proofs of Lemma 2 and Lemma 3, respectively, the correctness of the following
claims can be easily verified.

ClaimA. There is a solutionL for (T,DL,DI, w)withw(L) = (2n+1+n)+(2+n) =
4n+ 3.

Claim B. Let L be any solution for (T,DL,DI, w) which contains a minimal
clique cover at the lowest Deployment Level. Then, it holds: w(L) = (2n+
n) + (2n+ n) = 6n.

Claim C. Let L be any solution for (T,DL,DI, w) which contains a minimal
clique cover at the lowest Deployment Level. Then, it holds: w(L) = (2n+
1 + 3n) + (2 + 3) = 5n+ 6.

�

5.3.5 Complexity of the Elementary Problem

A possible way of determining the complexity of a given problem is to reduce a
problem for which the complexity is well-known to it [Wan06]. For the problem
at hand, this can easily be done by considering the following argumentation.

Let (T,DL,DI, w) be an ElementaryMixed-TenancyDeployment Problemwith
DL = {dl1},DI = {DIdl1} and w(dl1) = 1. As already seen by Lemma 1, a solution
of this problem is a clique cover inDI.

Since there is only oneDeployment Level, a solution for this problem is optimal
if and only if the clique cover is minimal. Thus, the problem of finding a Valid
and Optimal Solution for the given Elementary Mixed-Tenancy Deployment
Problem is equivalent to finding aminimal clique cover.
In subsection 5.1.3 it was discussed that finding a minimal clique cover is

NP-hard, thus, it can be concluded that:

Theorem 1 The Elementary Mixed-Tenancy Deployment Problem is NP-hard, even
in the case of |DL| = 1.

117

Chapter 5: Computation of a Valid and Optimal Deployment

5.3.6 Introduction of Heuristics

In the previous subsection, the structure and complexity of a Valid and Optimal
Deployment was analyzed. It was analyzed, that any Valid Deployment may be
represented as a collection of clique covers, one per Deployment Level (Lemma
1). However, it was proven that there are problems where a Valid and Optimal
Deployment will not utilize a minimal clique cover on the highest Level (Lemma
2), on the lowest Level (Lemma 3), or on any Deployment Level (Lemma 4).

Furthermore, it was possible to prove that the ElementaryMixed-Tenancy De-
ployment Problem is NP-hard and, therefore, may not be solved in a fast way.
Thus, it is this section’s purpose to propose two intuitive and fast algorithms
that strive to approximate a Valid and Optimal Deployment. The idea of those
algorithms is to utilize the known approximation algorithms that allow to ap-
proximate a minimal clique cover. Some of them were introduced in Section
5.1.3.
As stated before, it is already known at this point that they will not produce

optimal results for all problems. However, their results should at least be much
better than simply using the trivial solution of assigning designated Units to all
Tenants. The following introduces them and analyzes their performance.

Top-Down Approach

The first heuristic that is introduced is called top-down approach. Its basic idea is
to approximate a Valid and Optimal Deployment starting from the top working
its way down to the lowest Deployment Level. The following is a description of
the algorithm.
The first step is to construct a minimal clique cover Cdl1 in the graph DIdl1 .

Based on Cdl1, it is possible to define a new graphDIdl2(Cdl1) = (V,E) by reducing
the nodes in each clique of Cdl1 to one node. Furthermore, there is an edge
between two of these nodes if and only if the union of the two corresponding
cliques forms a clique inDIdl2. This means that for the new graph V = Cdl1 and
E = {{C,C ′} | C,C ′ ∈ Cdl1 and C 6= C ′ and C ∪ C ′ are a clique inDIdl2}.
Let C ′dl2 = {C ′1, . . . , C ′n} be a clique cover in DIdl2(Cdl1) and let Ci = ⋃

C∈C′i C for
all 1 ≤ i ≤ n. Then, Cdl2 = {C1, . . . , Cn} is a clique cover in DIdl2 and Cdl1 is a
refinement of Cdl2 .
This construction leads to the following algorithm.

Theorem 2 For all n ∈ N there is an input (T,DL,DI, w) of the Elementary Mixed-
Tenancy Deployment Problem such that Algorithm 1 (top-down) gives a solution with
cost 4n, whereas an optimal solution has cost 2n+ 3. Thus, the algorithm has a relative
performance guarantee not better than 2.

PROOF Consider the ElementaryMixed-Tenancy Deployment Problem (T,DL,
DI, w) constructed in the proof of Lemma 2. LetDIdl1 andDIdl2 be the graphs
with 4n nodes on which this deployment problem is based. In Lemma 2 it was
constructed aminimal clique cover Cdl1 containing 2n cliques. It is easy to see that
the graphDIdl2(Cdl1) forms an independent set. Hence, the top-down algorithm

118

Section 5.3: Analysis of Elementary Deployment Problem

Algorithm1 Top-Down-Algorithm
Input: (T,DL,DI, w) with |DL| = idl
Output: L = {Cd1 , . . . , Cdm}
1: Find aminimal clique cover Cdl1 ofDIdl1
2: for i = 2 to idl do
3: Define the graphDIdli(Cdli−1) based onDIdli and Cdli−1

4: Find aminimal clique cover C ′dli inDIdli(Cdli−1)
5: Construct the clique cover Cdli inDIdli defined by C ′dli
6: end for
7: return L = {Cdl1 , . . . , Cdlidl

}

delivers a solution with cost 4n. Moreover, the proof of Lemma 2 also shows that
an optimal solution has cost 2n+ 3. �

Bottom-Up Approach

The second heuristic that is presented as part of this work is called bottom-up
approach. Its basic idea is to approximate a Valid Deployment starting from the
lowest Deployment Level working its way up. The following is a description of
the algorithm.

The first step is to construct a minimal clique cover for the lowest Deployment
Level graphDIdlidl

. Let Cdlidl
be such a clique cover inDIdlidl

. The next step is to
consider for each clique C ∈ Cdlidl

the graphDIdlidl−1(C), meaning the subgraph
ofDIdlidl−1 induced by C.

Now, we search for clique covers Cdlidl−1,C in all subgraphsDIdlidl−1(C), C ∈ Cdlidl
.

Let Cdlidl−1 be the union of all these clique covers. Cdlidl−1 is a clique cover ofDIdlidl−1

and, by definition, a refinement of Cdlidl
.

This construction leads to the following algorithm.

Algorithm2 Bottom-Up Algorithm
Input: (T,DL,DI, w) with |DL| = idl
Output: L = {Cdl1 , . . . , Cdlidl

}
1: Find aminimal clique cover Cdlidl

ofDIdlidl
.

2: for i = idl − 1 to 1 do
3: for each C ∈ Cdli+1 do
4: Find amin. clique cover Cdli,C inDIdli(C)
5: end for
6: Cdli := ⋃

C∈Cdli+1
Cdli,C

7: end for
8: return L = {Cdl1 , . . . , Cdlidl

}

Theorem 3 For all n ∈ N there is an input (T,DL,DI, w) of the Elementary Mixed-
Tenancy Deployment Problem such that Algorithm 2 (bottom-up) gives a solution with

119

Chapter 5: Computation of a Valid and Optimal Deployment

cost 3(n + 1), whereas an optimal solution has cost 2n. Thus, the algorithm has a
relative performance guarantee not better than 3/2.

PROOF Consider the ElementaryMixed-Tenancy Deployment Problem (T,DL,
DI, w) constructed in the proof of Lemma 3. LetDIdl1 andDIdl2 be the graphs
with 3n nodes on which this deployment problem is based. In Lemma 3 it was
shown that there exists a minimal clique cover Cdl2 which contains 3 cliques
C1, C2, C3 such thatDIdl1(Ci) is an independent set one nnodes for every 1 ≤ i ≤ 3.
Hence, the bottom-up algorithm delivers a solution with cost 3n+ 1. Moreover,
the proof of Lemma 3 also shows that an optimal solution has cost 2n. �

5.4 Analysis of General Deployment Problem

In the previous section the characteristics of a Valid and Optimal Deployment
were analyzed. In order to do so the Elementary Mixed-Tenancy Deployment
Problem was defined and analyzed. It is a simplified version of the General
Mixed-Tenancy Deployment Problem that was introduced in Section 5.2.2. Based
on the conclusion gained about the structure and complexity of the Elemen-
tary Problem, this section is dedicated to analyzing the General Mixed-Tenancy
Deployment Problem.
This is done by first discussing the complexity of the General Problem in

Subsection 5.4.1. Based on this, the section proceeds with Subsection 5.4.2,
where it will be shown that the identified characteristics of the previous section
also apply to the General Problem. The section concludes with a definition of
the already introduced heuristics top-down and bottom-up approaches for the
General Problem. This is done in Subsection 5.4.3.

5.4.1 Complexity of the General Problem

Based on the analysis of the ElementaryMixed-Tenancy Deployment Problem,
it is quite trivial to determine the complexity of the General Mixed-Tenancy
Deployment Problem. The Elementary Problem was introduced as a simplifi-
cation of the General Problem. The only difference between both is that the
Elementary Problem is limited to only one Application Component. Further, in
Subsection 5.3.5 it was proven that the Elementary Problem is NP-hard. This was
accomplished by reducing the clique cover problem to it.

Thus, the complexity of the GeneralMixed-Tenancy Deployment Problemmay
be determined by the following. Let (AC,DL, T,DLS,DI, wAC , wDL) be aMixed-
Tenancy Deployment Problem with |AC| = 1. Then the problem is equivalent
to the Elementary Deployment Problem. Thus, the following theorem can be
concluded.

Theorem 4 The Mixed-Tenancy Deployment Problem is NP-hard.

120

Section 5.4: Analysis of General Deployment Problem

5.4.2 Generalization of Elementary Problem

In Sections 5.3.2, 5.3.3, and 5.3.4 the characteristics of Valid and Optimal De-
ployment of the ElementaryMixed-Tenancy Problemwere discussed. Based on
the examples, it was possible to prove that there are problem instances of the
Elementary Mixed-Tenancy Deployment Problemwhere a Valid and Optimal De-
ployment does not contain a minimal clique cover on the highest Level (Lemma
2), does not contain aminimal clique cover on the lowest Level (Lemma 3), and
does not contain a minimal clique cover at all (Lemma 4).

The Elementary Mixed-Tenancy Deployment Problemwas introduced as a spe-
cial case of theMixed-Tenancy Deployment Problemwhere only one Application
Component exists. Because of that it is obvious that the set of all problem in-
stances of the Elementary Mixed-Tenancy Deployment Problem is a subset of the
set of all problem instances of the General Mixed-Tenancy Deployment Problem.
Thus, the examples used to prove Lemma 2, 3, and 4may also be used to prove
that the same characteristics are true for the GeneralMixed-TenancyDeployment
Problem as well. Due to this, the following Lemmasmay be stated.

Fact 1 There is a Mixed-Tenancy Deployment Problem (AC,DL, T,DLS,DI, wAC ,
wDL) such that it holds: If L is an optimal solution for (AC,DL, T,DLS,DI, wAC ,
wDL), then L cannot contain a minimal clique cover for the highest Deployment Level.

Fact 2 There is a Mixed-Tenancy Deployment Problem (AC,DL, T,DLS,DI, wAC ,
wDL) such that it holds: If L is an optimal solution for (AC,DL, T,DLS,DI, wAC ,
wDL), then L cannot contain a minimal clique cover for the lowest Deployment Level.

Fact 3 There is a Mixed-Tenancy Deployment Problem (AC,DL, T,DLS,DI, wAC ,
wDL) such that it holds: If L is an optimal solution for (AC,DL, T,DLS,DI, wAC ,
wDL), then L cannot contain a minimal clique cover, neither for the highest nor for the
lowest Deployment Level.

5.4.3 Introduction of Heuristics

In Section 5.3.6 two heuristics were introduced that allow to approximate a
Valid and Optimal Deployment for the Elementary Mixed-Tenancy Deployment
Problem. This was done in a very formal way based on the formalization.
It is this section’s purpose to introduce the same two algorithmic approaches

for the General Mixed-Tenancy Deployment Problem. Due to the complexity of
the General Problem, this time this is not done in such a formal as in Section
5.3.6. This time a description in pseudocode is provided. The advantage of this
is that the algorithm is simpler, more readable and may be implemented in a
standard programming language more easily.
Furthermore, instead of introducing both, the top-down approach and the

bottom-up approach in separate algorithms, only one algorithm is introduced.
This algorithm takes the order of Deployment Levels as input. Thus, this algo-
rithm may approximate a Valid and Optimal Deployment following the top-
down approach (using dl1, . . . , dlidl as input), following the bottom-up approach

121

Chapter 5: Computation of a Valid and Optimal Deployment

(using dlidl, . . . , dl1 as input), or any other required order. Even though other or-
ders are not within the primary scope of this work, in Section 5.5.1 they will be
discussed briefly within the evaluation.

In order to increase readability, the entire algorithm is split into two functions,
computeDeployment (displayed by Algorithm 4) and createDistG (displayed by
Algorithm 3). The createDistG-function is a helper function to create a so-called
distribution graph based on the Deployment Information and the previously
computed Units of other Deployment Levels. The basic idea of this graph is to
contain higher Level Units or candidates as nodes. Further, edges are represented
if two Units may be deployed together.
In the illustration of the function (Algorithm 3) lines 3 - 17 determine the

relevant nodes of the distribution graph. This is done by first determining all
possible candidates to become Units. It has previously been stated that for every
given Deployment Level, there are certain Application Components that need to
be deployed on it (earlier represented asDLSdl – Subsection 4.4.8). Further, each
applicable Application Component needs to be deployed for each Tenant. Thus,
line 3 defines the set of all candidates as the Cartesian product of all Tenants and
the Application Components applicable to the current Deployment Level.

The next step is to investigate for every candidates with which other candidate
they already share a Unit on a higher Level. This is due to the requirement that
once deployed together on a given Deployment Level, they must also share all
Units below that for a given Application Component. The result of doing this is
that the nodes of the graph will represent the candidates that are not deployed
on higher Levels and all Units of higher Levels that need to be deployed on the
Level currently investigated. The Units are represented as sets of candidates.
The next step towards the definition of the distribution graph is the creation

of edges. There are three constraints that need to be fulfilled allowing in order
to allow that two higher Level Units or candidates may be deployed on the same
Unit on the current Level. Those are the following.

Application Components must be Deployable Together According to the
formal problem definition given in Subsection 5.2.2, two Application Com-
ponents are allowed to share a Unit on a given Level if and only if they are
also deployed on the same Deployment Levels below that. In order to have
readable means for expressing this, an equivalence relation was defined
(∼dl) which is reused in line 24 of Algorithm 3 to express that.

Tenants must be willing to share Furthermore, Subsection 5.2.2 stated that
Units shall only be shared by Tenants that agreed to it. This is expressed by
line 25.

Units are not Deployed Separately on Lower Levels In order to have Units
represent a Valid Deployment, it is necessary that Units, that are assigned
to separate Units on lower Levels, are also not deployed together on higher
Levels. This is expressed in lines 26 and 27.

Based on this, the createDistG-Function computes a distribution graph. Thus, this
function is required as a helper function for the following function.

122

Section 5.4: Analysis of General Deployment Problem

Algorithm3Description of createDistG-Function

1: V = {}
2: procedure CREATEDISTG(curDL,DI)
3: candidates← {T ×DLScurDL}
4: VcurDL ← {(t, ac)}
5: for each (t, ac) ∈ candidates do
6: Vt,ac ← {(t, ac)}
7: for each (t′, ac′) ∈ candidates do
8: Vdl′ ← Vdl′ ∈ V
9: if ∃v : dl′ < curDL ∧ v ∈ Vdl′ ∧ {(t, ac), (t′, ac′)} ⊆ v then

10: Vt,ac ← Vt,ac ∪ {(t′, ac′)}
11: end if
12: end for
13: VcurDL ← VcurDL ∪ {Vt,ac}
14: candidates← candidates \ {Vt,ac}
15: end for
16: EcurDL ← {}
17: V ← V ∪ VcurDL
18: for each v ∈ VcurDL do
19: for each (t, ac) ∈ v do
20: for each v′ ∈ VcurDL do
21: for each (t′, ac′) ∈ v′ do
22: EDI ← Eac

curDL ∈ DIaccurDL ∈ DI
23: EDI′ ← Eac′

curDL ∈ DIac
′

curDL ∈ DI
24: if (ac ∼curDL ac′)∧
25: ((t, t′) ∈ EDI ∧ (t, t′) ∈ EDI′)∧
26: (@v′′, v′′′ : dl′′ > curDL ∧ v′′, v′′′ ∈ Vdl′′∧
27: (t, ac) ∈ v′′ ∧ (t′, ac′) ∈ v′′′) then
28: EcurDL ← EcurDL ∪ {(v, v′)}
29: end if
30: end for
31: end for
32: end for
33: end for
34: return {VcurDL, EcurDL}
35: end procedure

123

Chapter 5: Computation of a Valid and Optimal Deployment

The primary function that realizes the proposed algorithm is the computeDe-
ployment-function. As illustrated by Algorithm 4 it is, in fact, rather trivial and

Algorithm4Description of computeDeployment Function

1: procedure COMPUTEDEPLOYMENT(DI, dlOrder,DLS)
2: U ← {}
3: for each cdl ∈ dlOrder do
4: distG← CREATEDISTG({DIacdl | dl = cdl ∧ ac ∈ DLSdl},U)
5: CdistG ← COMPUTECLIQUECOVER(distG)
6: Ucdl ← CREATEUNITS(CdistG)
7: U ← {U | U ∈ U ∨ U = Ucdl}
8: end for
9: return U

10: end procedure

only encapsulates one loop. Its purpose is to loop over the input that contains
the order of Deployment Levels and, thus, creates the Deployment Units of each
particular Deployment Level. This is done by first creating the distribution graph
using the createDistG-function that has already been introduced. The next step
is to find a minimal clique cover in this graph. In line 5 of Algorithm 4 this is
indicated by a function call of the computeCliqueCover-function. However, this
function is not discussed in any more detail since, as discussed by Subsection
5.1.3, finding a minimal clique cover is a known problem in literature where
many algorithms for approximation exist – some of them were introduced in
Section 5.1.3.
As discussed in Subsection 5.3.1, a Unit may in fact be seen as a clique in a

graph. Thus, based on the found clique covers, the final step is to create Units
by transforming the cliques into Units. This is the purpose of the createUnits-
function. Since the function’s purpose is quite obvious, there are no additional
details provided about it.

Once Units were computed for all Deployment Levels, U will contain all Units
that are required by the Deployment. Due to the way the distribution graph
is created, the Units will represent a Valid Deployment for the General Mixed-
TenancyDeployment Problemaccording to the definitionprovided by Subsection
5.2.2.

5.5 Evaluation

In previous sections both the Elementary and the General Mixed-Tenancy De-
ployment Problem have been formalized and analyzed. Further, two heuristics,
called top-down and bottom-up approach, were introduced and their perfor-
mance was discussed. This allowed to gain knowledge about their worst-case
performance.

However, based on these results, it is this section’s purpose to do an evaluation
about the presented results. It does that by first, comparing the two heuristics

124

Section 5.5: Evaluation

based on experimental data (Subsection 5.5.1). This way it shall be investigated
which one performs better for realistic scenarios.

Further, the next subsection (Subsection 5.5.2) applies the better performing
heuristic to the running example that was introduced in Subsection 4.6. Further-
more, the different scenarios are discussed.

The section concludes with analyzing the general efficiency of resource utiliza-
tion inMixed-Tenancy scenarios (Section 5.5.3). This is partially done based on
the running example.

5.5.1 Experimental Comparison of Heuristics

In previous sections, two approaches top-down, bottom-up have been proposed
to compute a Valid and Optimal Deployment. This subsection compares both
approaches experimentally. The basic idea is to generate a set of samples that
represent realistic problem instances. Based on these samples, Deployments are
computed using both approaches. The results are compared. This is done for
the Elementary and the General Problem separately. For both experiments the
algorithm introduced in Subsection 5.4.3 was used.

Analysis of Elementary Mixed-Tenancy Problem

For the creation of problems of significance in the real-world, it is defined that
|T | = 50 and |DL| = 5 where each Deployment Level has cost 1. Furthermore, in
order to get a significant amount of problems, problems are defined where the
highest graph has a density6 in the range of 0 to 1 in steps of size 0.1. Further, it
was defined that the density increases for every Level in the range of 0 to 0.5 in
steps of size 0.05. This produces a total number of 121 problems. For each of these
problems, 50 problem instances are randomly generated (in total 6, 050). In order
to construct minimal clique covers, the greedy-algorithm Largest First for node
coloring is utilized (introduced in Subsection 5.1.3).
Based on these samples, the experiments show that for about 70% of all prob-

lem instances the top-down approach outperforms the bottom-up approach.
Thereby, the average improvement is about 24%. Moreover, for only about 1% of
all problem instances the bottom-up approach produces better results, thereby
the average improvement is about 7%. This leaves a total of 29% where both
algorithms produce equal results. These results suggest to prefer the top-down
approach.

However, so far the cost of Units in this experiment have been considered equal
for all Deployment Levels. In real-world applications it is expected that different
Deployment Levels cause different cost. Thus, it is worthwhile to investigate
an approach where the costs of the Deployment Levels determine the order in
which Units of the Deployment Levels are successively computed. This approach
is referred to as mixed-approach.

6Let G = (V, E) be an undirected graph with n nodes and let x ∈ R+ with 0 ≤ x ≤ 1. Then G has
density x, if 2|E|

n·(n−1) = x.

125

Chapter 5: Computation of a Valid and Optimal Deployment

Let (T,DL,DI, w) be an ElementaryMixed-TenancyDeployment Problem. The
idea of the mixed-approach is to solve the problem in an arbitrary order. For
example, letDL = {dl1, . . . , dl5}with w(dl1) > w(dl5) > w(dl3) > w(dl2) > w(dl4).
Hence, the approach starts with determining a minimal clique cover in DId1,
then inDId5,DId3,DId2, andDId4. Obviously, such a sequence of clique covers
must be a refinement to define a solution of the Deployment Problem. To ensure
this, it is necessary to explain how to construct a clique cover Cdlj inDIdlj if there
are already clique covers Cdli inDIdli and Cdlk inDIdlk for i < j < k and Cdli v Cdlk ,
such that Cdli v Cdlj v Cdlk . For this, consider for everyCt ∈ Cdlk the graphDIdli(Ct)
(as in the bottom-up approach). Since Cdli is a refinement of Cdlk , it follows for
every clique in C ∈ Cdli that eitherDIdli(Ct) contains C or C andDIdli(Ct) have
no common node. Let Cdli(Ct) be a set of cliques in Cdli which are contained in
DIdli(Ct). Obviously, Cdli(Ct) is a clique cover of DIdli(Ct). Hence, it is possible
to construct a clique cover Cdlj (Ct) in DIdlj (Ct) as in the top-down approach.
Then, Cdli(Ct) is a refinement of Cdlj (Ct). Moreover, Cdlj (Ct) is a refinement of the
clique cover {Ct}, too. Now, let Cdlk = {C1, . . . , Cm} and Cdlj = ⋃m

t=1 Cdlj (Ct). Then
Cdli v Cdlj v Cdlk .
In order to evaluate this idea, the same test setup as introduced above was

used. In particular, the performance of the top-down, bottom-up, and all 118
remaining versions of the mixed approach were compared (118 is the result of
all permutations of five Deployment Levels, |DL|! = 5! = 120, without top-down
and bottom-up). Among these versions, the order dl1, dl5, dl3, dl2, and dl4 is one
of the best performing versions. Table 5.1 displays the results in detail.

Caseswere Results are: Equal Better (Avg.Imp.)

Top-Down
Bottom-Up 30.7% 68.1% (23.7%)
Best Mixed 55.5% 7.7% (4.1%)

Bottom-Up
Top-Down 30.7% 1.1% (7.4%)
Best Mixed 32.2% 1.2% (7.5%)

Best Mixed
Top-Down 55.5% 36.8% (10.2%)
Bottom-Up 32.2% 66.7% (27.7%)

Table 5.1.: Experimental Comparison of Approaches for Elementary Problem

Analysis of General Mixed-Tenancy Problem

For the comparison of the two heuristics on the General Mixed-Tenancy Deploy-
ment Problem (AC,DL, T,DLS,DI, wAC , wDL), problems are generated similarly
to the way used for the Elementary Problem. In order to get problems that are
realistic, it is assumed that |T | = 50 and |DL| = 5, where each Deployment Level
and Application Component has cost 1. In addition, it is assumed that there are
three Application Components AC = {ac1, ac2, ac3}. These are deployed on the
five Deployment Levels as follows: DLSdl1 = {ac1, ac2, ac3}, DLSdl2 = {ac1, ac2},
DLSdl3 = {ac1},DLSdl4 = {ac2, ac3}, andDLSdl5 = {ac1, ac2, ac3}. This is the same
distribution as used in the introduction example that was given in Subsection
5.2.1.

126

Section 5.5: Evaluation

Furthermore, to generate a significant amount of problems, problems are
defined where the highest graphs have a density in the range between 0 and 1
in steps of size 0.2. Further, it is assumed that density increases on every Level in
the range of 0 to 0.5 in steps of 0.1. Since every combination of those densities
is used for the three Application Components, this leads to a total number of
46, 656 problems (63 · 63). Again, 50 problem instances are randomly generated for
each of these problems. This leads to a total of 2, 332, 800 problem instances.
Based on these samples, the experiments show that for about 67% of all prob-

lem instances the top-down approach outperforms the bottom-up approach
(Elementary Problem: 70%). This is quite similar to the Elementary Problem.
This time, however, there is only an average improvement of 2.4% (Elementary
Problem: 24%). The bottom-up approach outperforms the top-down in 17% of all
problem instances (Elementary Problem: 1%). In this case the average improve-
ment was about 4% (Elementary Problem: 7%). This leaves a rest of about 17%
of problem instances where both approaches performed equally (Elementary
Problem: 29%). Even though the average improvement is not as significant as
with the Elementary Problem, these results still suggest to prefer the top-down
approach.
In addition to the top-down and bottom-up approach the results were also

computed for the mixed-approach using the ordering dl1, dl5, dl3, dl2, dl4. The
approach to do that is quite similar to the one used in the Elementary Problem.
Table 5.2 displays the results in detail for all three approaches. Again, the mixed-
approach outperforms the other two.

Caseswere Results are: Equal Better (Avg.Imp.)

Top-Down
Bottom-Up 16.5% 66.9% (2.4%)
Mixed 59.7% 20.0% (3.3%)

Bottom-Up
Top-Down 16.5% 16.6% (4.1%)
Mixed 20.4% 13.7% (3.2%)

Mixed
Top-Down 59.7% 20.3% (4.0%)
Bottom-Up 20.4% 66.0% (2.2%)

Table 5.2.: Experimental Comparison of Approaches for General Problem

5.5.2 Application on Running Example

In Section 4.6 an example was created based on which the expressiveness of the
Deployment Description Model was evaluated. The example consisted of five
Application Components, five Deployment Levels, two Dimensions, thirteen
Groups, and six Tenants. Furthermore, there were the following three scenarios
defined according to which Tenants expressed their Constraints.

Scenario 1: All Private All Customers stated that they require their own Unit
of all Application Components and all Deployment Levels.

Scenario 2: All Public All Tenants stated that they are willing to share all Ap-
plication Components and all Deployment Levels with all other Tenants.

127

Chapter 5: Computation of a Valid and Optimal Deployment

Scenario 3: Mix In this scenario each Tenant has different requirements to-
wards the sharing of resources. These Deployment Constraints were intro-
duced by Table 4.4.

Section 5.5.2 illustrated the Deployment Information that was created based
on the example for each scenario. Based on the results of this section, it is
now possible to approximate a Valid and Optimal Deployment for each of the
scenarios. These are presented by Figure 5.137. If the computed Deployments
are compared to the corresponding Deployment Information, it is possible to
observe that the Deployment realizes all Deployment Constraints and, thus, is
valid. A manual proof also revealed that the computed Deployments are also
optimal. For the three scenarios it is possible to gain conclusions based on each
scenario separately.

Scenario 1: All Private For the first scenario resource utilization is quite the
obvious. This is the scenario where the most Units are required. This is due
to the fact that every Tenant requires its own set of all Units. This leads to a
total number of 60 required Units.

Scenario 2: All Public As illustrated by Figure 5.13, for the second scenario,
there is only one Unit required of every Application Component and De-
ployment Level, except for Deployment Level dl2. There there need to be
two Unit since the dl1 Units they host rely on different stacks. Thus, the
number of Tenants seems not to have an impact on the required number of
Units. This leads to a total number of 10 required Units.

Scenario 3: Mix For this scenario, a total of 31 Units is required. This is less
than in scenario 1 but more than in scenario 2. This is due to the fact that it
was possible to have some of the Tenants share Units, however, not all of
them. It must be kept in mind that assigning two Tenants to the same Unit
is only possible if both Tenants agreed to it.

5.5.3 General Efficiency of Resource Utilization

In the following the efficiency of resource utilization is discussed for the General
Mixed-Tenancy Deployment Problem. Mixed-Tenancy was proposed as a hybrid
approach between Single and Multi-Tenancy. Thus, the minimal resource de-
mand (lower bound) and the highest possible resource demand (upper bound)
are equal to the resource demand of the Single andMulti-Tenancy deployment.
These trivial bounds will be discussed inmore detail by the following.

To determine the upper bound, a scenario must be considered where the max-
imum number of Units is required. Such a scenario dictates that every Tenant
demands not to share any Unit with other Tenants (purely Single-Tenancy). It is
not possible to create a scenario that requires more Units than that since every

7Please note that Figure 5.13 does not present the full solution for scenario 2 due to limitations
of space. Thus, it only indicates a solution for one Tenant. Every Tenant has the same demand
for Units in this scenario.

128

Section 5.5: Evaluation

1 ac
1

u
3 ac

1
u

4 ac
1

u
1 ac

2
u

2 ac
2

u
2 ac

1
u

1 ac
4

u
2 ac

3
u

*-F

B

C

E

D

A

3 ac
2

u

F

5 ac
1

u
2 ac

4
u

3 ac
3

u
2 ac

5
u

1 ac
3

u
1 ac

5
u*-F

D
ep

lo
ym

en
t L

ev
el

s
2:

 D
B

M
S

3:

 A
pp

lic
at

io
n

S
er

ve
r

4:
 V

irt
ua

l M
ac

hi
ne

5:

 P
hy

si
ca

l S
er

ve
r

1 2u
2 2u

3 2u
4 2u

5 2u
1 3u

2 3u
3 3u

4 3u
5 3u

6 3u
7 3u

1 4u
2 4u

1 5u
2 5u

* ac
2

u
* ac

1
u

* ac
4

u
* ac

3
u

* ac
5

u

* 2u
* 3u

* 3u

* 4u
* 5u

Sc
en

ar
io

 1

Al
l P

riv
at

e
Sc

en
ar

io
 3

M

ix

B

C

E

D

A

F

1 ac
1

u
1 ac

2
u

1 ac
4

u
1 ac

3
u

1 ac
5

u
*
*
*
*
*

1 2u
1 3u

1 4u
1 5u

2 3u

Sc
en

ar
io

 2

Al
l P

ub
lic

*

Fi
g
u
re

5
.1
3
.:
Re

su
lts

of
Ex
am

p
le

In
tr
od

uc
ed

in
Se

ct
io
n
4.
6

129

Chapter 5: Computation of a Valid and Optimal Deployment

Tenantmay only use one Unit of every Application Component and Deployment
Level (other than dl1). Furthermore, it was defined that every Unit must be used
by at least one Tenant. Thus, it is possible to calculate the upper bound for the
total resource demand (TRD) as follows.

TRDupperBound = |T | ·
[
(Σac∈AC wAC(ac)) + (Σdl∈DL\{dl1}wDL(dl))

]
(5.75)

Based on this definition, the upper bound is calculated by adding up the number
of resource demands for all Application Components and the resource demand
of Deployment Levels other than Level dl1 andmultiplying it with the number of
Tenants. This is done since all Tenants require one Unit of each Application Com-
ponent and one of every Deployment Level other than Level dl1. An additional
indication that these considerations are valid is that scenario 1 (All Private) of
the evaluation example behaves accordingly.

In order to determine a lower bound for the total resource demand, a scenario
may be investigated in which all Tenants are willing to share Units with all other
Tenants (purely Multi-Tenancy). Since resource limitations were defined to be
out of scope for this work, in such a scenario the total number of Units would be
independent of the number of Tenants. It would only be necessary to create a
single Unit of every Application Component and every Deployment Level other
than Level dl1. Thus, the lower bound for the total resource demand (TRD) can be
calculated using the following formula.

TRDlowerBound = (Σac∈AC wAC(ac)) + (Σdl∈DL\{dl1}wDL(dl)) (5.76)

Please note that for the lower bound, this is only an estimation since it may be
possible that this lower bound may not be achieved for every problem. This
is due to the fact that in some problems the structure of Deployment Levels
and Application Components may prevent achieving this lower bound. An
example for this is indicated by the example of the previous subsection. Here, the
calculated lower bound would be nine Units but the minimal solution indicated
by scenario 2 (All Public) requires ten Units. This is due to the fact that two
application servers are required because they are deployed on a virtual machine
or a physical server depending on the Application Components they host.

Besides these extremes, however, theMixed-Tenancy approach allows different
flavors in between. Obviously, every time two Tenants are agreeing to share Units,
there is an opportunity for theOperator to use resourcemore efficiently. However,
this agreement has to bemutual. In case only one Tenants agrees to share, not
sharing will be allowed between both Tenants.

Thus, it can be stated that anyMulti-Tenancy Deployment of an application
will have at least as many Units as the lower bound but not more than the upper
bound. This is also consistent with the lower and upper bound of the vertex
coloring problem, as it has been discussed in Section 5.1.3.

TRDlowerBound ≤ TRDany ≤ TRDupperBound (5.77)

130

Section 5.6: Summary

However, the conclusion gained from this is that the cost of a Deployment highly
depends on the Deployment Constraints expressed by Customers. Thus, it would
be in the best interest of an Operator to try to alter the Customers’ behavior to-
wards defining less restrictive Deployment Constraints. This could be achieved by
creating a pricingmodel that offers incentives to Customers with less restrictive
Deployment Constraints. However, these considerations are out of scope for this
work since it focuses entirely on the technical aspects of Mixed-Tenancy.

5.6 Summary

This chapter addressed the research question of how a Valid and Optimal De-
ployment may be computed in a fast way (research question RQ-2). The first
step towards achieving this goal was to discuss what Optimal and Valid actually
means. A Valid Deployment is one that assigns Tenants to Units in a way that
all Deployment Constraints provided by Customers are considered. A Valid and
Optimal Deployment is a Valid Deployment that only utilizes minimal cost. In
order to determine the cost of aDeployment, two types of cost were distinguished,
those caused by the Tenants’ resource demand and those caused by the overhead
of instantiatingmultiple Units of the same type. It is assumed for this work that
the cost caused by the Tenants’ resource demandmay not be altered. Thus, the
actual optimization criteria is tominimize the cost that is caused by the overhead
of every Unit on all Levels. Based on this discussion, a formal and complete
definition of the General Mixed-Tenancy Deployment Problemwas given.
Due to the complexity of the Problem at hand, a less complex version of the

problemwas defined that assumes that there is only one ApplicationComponent.
Based on this, the so-called Elementary Mixed-Tenancy Deployment Problem,
an analysis of solution characteristics was conducted. Thus, it was possible to
prove that every Valid Deploymentmay be represented as a set of clique covers
per Deployment Level. Based on this, it was obvious to assume that searching
for a minimal clique cover may be beneficial to compute a Valid and Optimal
Deployment. However, it was possible to contradict this assumption by proving
that there is an Elementary Mixed-Tenancy Deployment Problem that cannot
contain a minimal clique cover on the highest Deployment Level (Lemma 2),
there is an ElementaryMixed-Tenancy Deployment Problem that cannot contain
a minimal clique cover on the lowest Deployment Level (Lemma 3), and that
there is an ElementaryMixed-Tenancy Deployment Problem that cannot contain
a minimal clique cover at any Deployment Level (Lemma 4). Furthermore, it was
possible to provide a proof that the problem is NP-hard (Theorem 1). This was
achieved by investigating a version of the problem that has only one Deployment
Level. In this case the problem is equivalent to the problem of finding a minimal
clique cover, which is known to be NP-hard.
Knowing about the characteristics, two intuitive Deployment Computation

Algorithms were proposed that allow to approximate a Valid and Optimal De-
ployment for the Elementary Problem. These algorithms are called top-down
approach and bottom-up approach since they compute a Deployment either

131

Chapter 5: Computation of a Valid and Optimal Deployment

from the first Deployment Level down to the last or from the last up to the first.
It was possible to prove that the top-down algorithm have a relative performance
guarantee not better than 2 (Theorem 2) and the bottom-up algorithms has a
relative performance guarantee not better than 3/2 (Theorem 3).
Based on the analysis of the Elementary Deployment Problem, the General

Mixed-Tenancy Deployment Problemwas analyzed. In fact, it possible to prove
that all characteristics that applied to the Elementary Deployment Problem do
also apply to the General Mixed-Tenancy Deployment Problem. Further, the top-
down and bottom-up approaches were introduced for the General Deployment
Problem as well.

The chapter concluded with an evaluation of the presented results. First of all
the two proposed Deployment Computation Algorithms, top-down and bottom-
up, were compared experimentally for both problems. For the Elementary De-
ployment Problem the experiments show that for about 70% of all problem in-
stances the top-down approach outperforms the bottom-up approach (average
improvement is about 24%). In 29% of the problem instances both algorithms
produce equal results. For the General Mixed-Tenancy Deployment Problem,
the experiments show that for about 68% of all problem instances the top-down
approach outperforms the bottom-up approach (average improvement of 2.4%).
In 16% of all problem instances both algorithms performed equally. Thus, the
experiments suggest to prefer the top-down approach.
However, for the experiments it was assumed that every Deployment Level

and Application Component causes the same cost. This is an assumption that
will not be true in real-world. However, the experimental investigations suggest
to consider the costs of the Deployment Levels in order to determine the order
in which Units of the Deployment Levels have to be successively computed.
However, detailed experiments to evaluate the performance of this approach
based on realistic samples is up to future research.

Furthermore, the top-down approachwas applied to the running example that
was introduced in the previous chapter and the general efficiency of resource
utilization was discussed. Quite obviously theMixed-Tenancy approach requires
at least many resources as in a Multi-Tenancy scenario but not more than in a
Single-Tenancy scenario.
The conclusion of this chapter with respect to the research questions is that

research question RQ-2 cannot be solved. This is due to the fact that a Valid
and Optimal Deployment cannot be found in a fast way since this problem is
proven to be NP-hard. However, this chapter proposed two intuitive heuristics
as Deployment Computation Algorithms. Both algorithms were analyzed from
a theoretical and an experimental point of view. Based on experiments, it was
possible to produce data that suggests to prefer the top-down approach.

132

Chapter 6
Case Study: ERP-System as Mixed-Tenancy Cloud Service

6.1. Conceptual Design of aMixed-Tenancy Platform 135

6.1.1. Problem 1: Automated Deployment 135

6.1.2. Problem 2: CommunicationMechanism 137

6.2. Selection of CloudApplication 143

6.2.1. An ERP-System as SaaS Offering - Requirements 143

6.2.2. Analysis of Available Open Source ERP-Systems 144

6.2.3. Introduction of OpenERP 145

6.3. Definition of OpenERP Scenario 146

6.3.1. Introduction of Component-based OpenERP 147

6.3.2. Selection of Application Components 149

6.3.3. Definition of Deployment Levels 150

6.3.4. Creation of Example Scenario 151

6.4. Realization of Deployment Platform for OpenERP . . . 152

6.4.1. Problem 1: Automatic Deployment 153

6.4.2. Problem 2: CommunicationMechanism 155

6.5. Evaluation andDiscussion of Results 156

6.5.1. Evaluation of Mixed-Tenancy OpenERP 157

6.5.2. Discussion of Resource Utilization 158

6.6. Summary . 160

In theory, theory and practice are the same.
In practice, they are not.

Albert Einstein

The purpose of this chapter is to analyze the real-world applicability of theMixed-
Tenancy approach. Thus, it contributes to research question RQ-3. This is done by
investigating if it is possible to deploy an existing real-world application following
the Mixed-Tenancy paradigm without altering the application’s functionality

133

Chapter 6: Case Study: ERP-System as Mixed-Tenancy Cloud Service

and behavior offered to the Customer. In order to investigate this, this chapter
conducts a case study that investigates the utilization of theMixed-Tenancy ap-
proach for the provisioning of a cloud service. In order to be able to do that, it
will be necessary to investigate the challenges involved with creating a Mixed-
Tenancy Deployment Platform. This contributes to research question RQ-3.1.
Once the case study has been completed, it will be possible to present conclu-
sions about the realistic resource demand of theMixed-Tenancy approach. This
contributes to research question RQ-3.2.

In this chapter the following artifacts will be created:

Mixed-Tenancy Deployment Platform A platform that allows to deploy a
composite Multi-Tenancy application as Mixed-Tenancy application. It
uses the Deployment Configuration as input and deploys a suitable applica-
tion according to its definition.

Suitable Application A suitable application will be found and/or created that
is useable in aMixed-Tenancy environment.

The scenario that will be investigated in this chapter is that a Cloud Service
Provider wishes to offer an Enterprise Resource Planning System to their Cus-
tomers following the Software-as-a-Service service model.
In order to conduct the case study, this chapter is structured as follows. Sec-

tion 6.1 starts this chapter by analyzing the twomajor problems that need to be
tackled in order to be able to create a Deployment Platform. For both problems
conceptual solutions are discussed. Section 6.2’s goal is to identify a suitable appli-
cation to be usedwithin the case study. It does that by first defining requirements
and then analyzing if existing applications canmeet these requirements. Based
on the identified application, Section 6.3 deals with the definition of a scenario.
This includes defining the approach howMixed-Tenancymay be introduced to
the selected application, as well as the definition of Application Components,
Deployment Levels, and Customer Constraints. Using the scenario, Section 6.4
describes the realization of the Mixed-Tenancy Deployment Platform suitable
to deploy and run the identified application. This is done for each of the two
problems that were identified. Section 6.5 will discuss the results of the case
study by addressing accomplishments, shortcomings and open challenges. The
chapter will be closed by a summery, that is given in Section 6.6.
Most of the results presented in this chapter were developed in cooperation

withMatthias Reinhardt, Malte Rupprecht, and BjörnMorr. They participated
in the creation of this work in order to create their theses. Matthias wrote his
master’s thesis [Rei13], Malte and Björn their bachelor’s theses (Malte [Rup13b],
Björn [Mor14]). Matthias’ thesis dealt with the creation of a Mixed-Tenancy
Deployment Platform. Björn andMalte worked on the selection of OpenERP and
the conduction of the case study. I supervised all three theses and guided them
through the entire project.
Furthermore, the results presented in this chapter were jointly published in

[Rei+14] (describing the results of Matthias’ thesis) and [Rue+14] (presenting
the entire case study). In addition, we received support from Brian Korduan,

134

Section 6.1: Conceptual Design of a Mixed-Tenancy Platform

who is an apprentice in the area of software engineering. He helped us doing
the software testing in order to evaluate the results according tomy conceptual
guidance.

6.1 Conceptual Design of a Mixed-Tenancy Platform

This section’s purpose is to do a conceptual design of aMixed-Tenancy Deploy-
ment Platform. There are twomajor jobs theMixed-Tenancy Deployment Plat-
form has to perform. These are explained in the following.

Automatic Deployment The platform needs to be able to create a Mixed-Ten-
ancy deployment of a Multi-Tenancy application according to a Deploy-
ment Configuration automatically. The Deployment Configuration is cre-
ated by the Deployment Configuration Generator. The Mixed-Tenancy
deployment shall be provisioned automatically. This is due to the fact that
this case study’s purpose is to utilize theMixed-Tenancy approach in cloud
computing. For cloud computing services, high automation andminimal
human interaction are major characteristics (introduced in Section 2.3.1).

Communication Mechanism As discussed earlier, this work is focused on com-
posite applications. All Application Component instances of the same
Tenant need to be able to communicate with each other. Since there may
be multiple instances available of the same Application Component, the
communication needs to be directed between those instances that serve
the specific Tenant the request belongs to. Thus, the second job theMixed-
Tenancy Deployment Platform shall fulfill, is to manage communication
between the Application Component instances.

Those two problems will be addressed by the following subsections. Each will
further elaborate on the problem and discuss conceptual solutions.

6.1.1 Problem 1: Automated Deployment

This problem deals with the automated deployment of Deployment Units. Based
on the Deployment Configuration, it is the Mixed-Tenancy Deployment Plat-
form’s job to realize this deployment. This requires that Units of every Deploy-
ment Level are created and provisioned automatically. In order to make that
happen, it is necessary to have a steering system that is capable of executing the
necessary tasks. For the remainder of this work, this steering system is called
Execution Engine.

Definition 30 (Execution Engine) The Execution Engine is an integral part of
the Deployment Platform. Its jobs are all central steering tasks.

Figure 6.1 illustrates an example in which only the two Deployment Levels, vir-
tual machine and Application Component instances, are used. The first step to
deploy aMixed-Tenancy deployment of an application is to start deploying the

135

Chapter 6: Case Study: ERP-System as Mixed-Tenancy Cloud Service

Execution
Engine

VM

VM 1 VM 2 VM n

…

Step 1: Creation of Virtual Machines

…

Execution
Engine

VM

VM 1 VM 2

…

VM n

ACI
2.2

ACI
m.1

ACI
2.1

ACI
1.1

… ACI
1.2

…

…

ACI
2.n

ACI
1.n

ACI
m.2

… ACI
m.n

Step 2: Instantiation of Application Components

Figure 6.1.: Automatic Deployment for two Deployment Levels [Rei13]

Units of the lowest Deployment Level. In the example this is the virtual machine
Level. Thus, the first step that is presented in the upper part of Figure 6.1 is to
create the necessary number of virtual machines. Please note that in the figure
the Execution Engine itself runs in a virtual machine. This is not a necessary
requirement. The Execution Engine might just as well be run on a physical server
directly. However, in order to have a homogeneous environment, within this
chapter the Execution Engine is always run on a virtual machine.

Once the lowest Deployment Level has been deployed, the same has to happen
to theDeployment Level(s) that run on the lowest. Thisway the deployment of an
application is created bottom-up. This is the only way how the deployment may
be created, as it was defined (in Section 4.2.1) that Units of one Deployment Level
shall always run on Units of the next lower Level. For the example illustrated
in Figure 6.1 there is only one additional Deployment Level - the Application
Component instance Level. The second step (lower part of the figure) describes
how the different Application Component instances are deployed upon the
virtual machines instantiated in the previous step.

136

Section 6.1: Conceptual Design of a Mixed-Tenancy Platform

Furthermore, besides the automatic generation of Units of all Deployment
Levels, the automatic deployment of the application also requires the configura-
tion of the application. This, for example, requires the creation of all Users the
Tenants require. Only then it is possible that the Tenants’ Users are able to log-on
to the application and use it. This setup may have to be done multiple times,
once per Application Component Instance.
Furthermore, it is necessary to configure each instance the way that commu-

nication can be established. This requires that each Application Component
instance knows the addresses of the other Application Component instances to
be able to communicate. However, with this point, there are more challenges
involved that will be discussed in the next subsection.

6.1.2 Problem 2: Communication Mechanism

It is the goal of this section to create a communicationmechanism that allows the
platform to establish communication betweenApplicationComponent instances
of an existingMulti-Tenant composite application. What thismeans is illustrated
by Figure 6.2. In this figure, three Tenants (Tenant A = red, Tenant B = green,

Application + Platform

Component 1
(Instance 1)

Tenant A

Tenant B

Tenant C
Component 1
(Instance 2)

Component 2
(Instance 1)

Component 2
(Instance 2)

P

Figure 6.2.: Overview of Communication Problem [Rei13]

Tenant C = blue; P = Platform) are using an application that is composed of two
Application Components. There are two instances deployed of each Application
Component. The instances’ border color indicates which Tenants are allowed to
use which instance (e.g. AC-1 Instance 2 is used by green = Tenant B and blue =
Tenant C).

Once Application Component 1 requires communication with an instance of
ApplicationComponent 2, the communicationneeds to be directed to the correct
instance of Application Component 2. This direction of communication needs
to be established based on the Tenant triggering it. For Application Component
1 Instance 2, for example, a communication to Application Component 2, may
have to go to Instance 1 or to Instance 2 depending on the Tenants.

137

Chapter 6: Case Study: ERP-System as Mixed-Tenancy Cloud Service

From this discussion the following two requirements are conducted that need
to be fulfilled by a suitable communicationmechanism.

Decentralized Communication The goal of the novel approach of Mixed-
Tenancy was to allow Customers to express Deployment Constraints that
restrict with whom they share resources. Based on these Deployment Con-
straints the computed Valid Deployment was provisioned – as discussed by
the the previous subsection.

However, the Deployment Constraints shall also be enforced for the com-
munication between Application Component instances. This means that
Tenants that do not wish to share resources shall also not be able share
the same platform components (e.g. the Execution Engine) that establish
communication. This may be realized by creating a communicationmecha-
nism that is distributed without having a central system used by all Tenants.
This idea is further elaborated when discussing the individual candidate
patterns.

Separation of Platform Logic It is the aim of this chapter and research ques-
tion RQ-3 to evaluate if the Mixed-Tenancy approach is applicable to exist-
ing applications. Thus, theMixed-TenancyDeployment Platformmust have
the ability to deploy existing applications according to theMixed-Tenancy
paradigm. In order to have minimal effort needed to migrate an existing ap-
plication onto theMixed-Tenancy Deployment Platform, it would be good
if the existing application’s source code would not have to be altered. This
goal can by achieved by separating the application logic from the platform
logic. This is further elaborated in the following.

In the following different patterns will be introduced and their shortcomings will
be discussed. Figure 6.3 gives an overview of these patterns by illustrating their
structure as well as their sequence (UML sequence diagrams). In order to do that,
each pattern is applied to the same example that shall illustrate the behavior
of the pattern. In this example there are two Tenants and three Application
Components. Of Application Component 1 and 2 there are designated instances
for both Tenants. However, there is only one instance of Application Component
2 that both Tenants share. Furthermore, each pattern relies on the Execution
Engine. The Execution Engine is the central entity that holds the Deployment
Configuration. Thus, it knows which Tenants are allowed to communicate with
which Application Component Instances. However, the Execution Engine will
also take over other jobs depending on the pattern.

Delegator

The first and very obvious pattern identified was called delegator. The structure
and behavior of the pattern is illustrated by 6.3 (left). Within this pattern the
Execution Engine’s job is to delegate communication.
When a User or an Application Component instance wants to call a function

of another Application Component, it asks the delegator which instance of that

138

Section 6.1: Conceptual Design of a Mixed-Tenancy Platform

AC
I 1

.1
 AC

I 2
.1

 AC
I 3

.1

AC
I 1

.2

AC
I 3

.2

EE

Te
na

nt
 A

Te
na

nt
 B

D
el

eg
at

or

AC
I 1

.1
 AC

I 2
.1

 AC
I 3

.1

AC
I 1

.2

AC
I 3

.2

EE

Te
na

nt
 A

Te
na

nt
 B

 M
ed

ia
to

r (
gl

ob
al

)

AC
I 1

.1

AC
I 2

.1

AC
I 3

.1

AC
I 1

.2

AC
I 3

.2

M
ed

ia
to

r 1

M
ed

ia
to

r 2

Te
na

nt
 A

Te
na

nt
 B

M
ed

ia
to

r (
pe

r T
en

an
t)

A
da

pt
er

AC
I 1

.1

AC
I 2

.1

EE

Te
na

nt
 A

do
So

m
et

hi
ng

()
 do

So
m

et
hi

ng
()

ge
tIn

st
an

ce
(a

c2
)

ad
dr

es
s

re
sp

on
se

 re
sp

on
se

AC
I 1

.1

AC
I 3

.1

M
ed

ia
to

r 1

Te
na

nt
 A

do
So

m
et

hi
ng

()

do
So

m
et

hi
ng

()

ac
3_

do
So

m
et

hi
ng

()

re
sp

on
se

re
sp

on
se

re
sp

on
se

AC
I 3

.1

AC
I 1

.1

EE

Te
na

nt
 A

do
So

m
et

hi
ng

()

do
So

m
et

hi
ng

()

ac
1_

do
So

m
et

hi
ng

()

re
sp

on
se

re
sp

on
se

re
sp

on
se

AC
I 1

.1

AC
I 3

.1

A
da

pt
er

 1

Te
na

nt
 A

do
So

m
et

hi
ng

()

do
So

m
et

hi
ng

()

ac
3_

do
So

m
et

hi
ng

()

re
sp

on
se

 re
sp

on
se

re
sp

on
se

Ad
ap

te
r 5

Ad

ap
te

r 4

AC
I 1

.1
 AC

I 2
.1

 AC
I 3

.1

AC
I 1

.2

AC
I 3

.2

Ad
ap

te
r 2

Ad

ap
te

r 3

Ad
ap

te
r 1

Ad
ap

te
r 6

Te
na

nt
 A

Te
na

nt
 B

Fi
g
u
re

6
.3
.:
O
ve
rv
ie
w

of
Pa

tt
er
n
to

Ta
ck
le

th
e
C
om

m
un

ic
at
io
n
Pr
ob

le
m

[R
ei
+1

4]
.

139

Chapter 6: Case Study: ERP-System as Mixed-Tenancy Cloud Service

Application Component belongs to the current Tenant. This control communi-
cation is represented by the dashed arrows in Figure 6.3. The Execution Engine
responds with the whereabouts in form of an address. Thereby, a contact can
be established between the two instances or the User and the instance. This
direct communication is represented by solid lines. Change of the location is not
an issue, because the contact to the Execution Engine will happen before every
function call of another Application Component instance.
With respect to the requirements, there is a problem with the separation of

the platform logic. The single instance of Application Component 2 needs to
knowmultiple instances of another Application Component, because it is shared
bymultiple Tenants. Thus, platform logic is needed in the Application Compo-
nent, which is not desired because it complicates the adaptation process of an
application to the platform. However, the pattern meets the requirement for
decentralized communication and, thereby, applies to Customers’ Deployment
Constraints.

Mediator – Global

Secondly, the mediator pattern provided by [GHJ94] may be utilized. TheMedia-
tor is an object which encapsulates the interaction between an amount of objects.
Thus, the objects are able to communicate without directly connecting to each
other. Based on this investigation, two ways to implement the pattern emerged –
global mediator and onemediator per Tenant.
The global mediator is characterized by a single mediator instance which is

represented by the Execution Engine. The structure and behavior of the pattern is
illustrated by 6.3 (second left). In this figure, the solid lines between the Applica-
tion Component instances and themediator indicate that data communication
between the Application Component instances passes through the global media-
tor This is unlike the delegator pattern, where the data communication happens
directly between the Component instances.
With the use of the global mediator, there is no communication logic inside

the Application Components. They just have to be able to communicate with the
Execution Engine. Thus, there is no problemwith the special case of Application
Component 2, where one instance is used by two Tenants at once. But because of
the passing of the complete data communication through the Execution Engine,
there is a problem with the other requirement. If the Customer requested the
separation from another Customer, it is not legitimate to redirect both their data
communication through a common point of intersection, which here unfortu-
nately is the case. Another negative aspect is a possible overload of the global
mediator in a larger scenario, which could slow down the system as the global
mediator becomes a bottleneck for all communication.

Mediator – per Tenant

As alreadymentioned, there is a second way to implement the mediator pattern.
The structure and behavior of this is illustrated by Figure 6.3 (second right).

140

Section 6.1: Conceptual Design of a Mixed-Tenancy Platform

The idea is to create multiple mediator objects, one mediator per Tenant. In
contrast to the global mediator the data communication which passes through
a mediator is related to the same Tenant. Because of this, the requirement of
decentralized communication has successfully been respected.
In case of Application Component 2, however, there is only one instance

used by both Tenants. The instance has to decide whichmediator to contact if
it wants to call a function of another Application Component. Clearly, there
is communication logic necessary inside the Application Components, which
stands in conflict with the second requirement.

Adapter

Another classic pattern given by [GHJ94] is the adapter pattern. Usually it will
be applied to establish communication despite incompatible interfaces. For
example, when it is required in a project to include third-party components,
without the possibility to adjust the interfaces, an adapter is an appropriate
solution.

In Figure 6.3 it is illustrated that there exists an adapter between every two Ap-
plication Component instances that will eventually need to communicate. Such
adapters encapsulate the functionality of their related Application Component
instances.

This setup follows the requirement of decentralized communication. All data
communication passing through an adapter is related to the same Tenant. With
respect to the second requirement a violation may be noticed for Application
Component 2. Amutually used Application Component instancemust decide
which adapter to address. This decision has to be made depending on the Tenant
currently accessing the Application Component. Thus, communication logic is
necessary inside the Application Components.

Summary and Introduction of Connector Pattern

In the previous paragraphs, multiple patterns were introduced and analyzed
in order to find out if they would satisfy the requirements for a communica-
tionmechanism. A summary of the investigated patterns (Delegator, Mediator -
Global, Mediator - per Tenant, and Adapter) and their applicability is shown in
Table 6.1. None of the aforementioned patterns matches both previously defined

Patterns

Requirements D
el
eg

at
or

M
ed

ia
to
r
-

G
lo
ba

l

M
ed

ia
to
r
-

p
er

Te
n
an

t

A
d
ap

te
r

C
on

n
ec
to
r

Decentralized Communication " % " " "

Separation of Platform Logic % " % % "

Table 6.1.: Summary of presented Patterns

141

Chapter 6: Case Study: ERP-System as Mixed-Tenancy Cloud Service

requirements. Thus, a new pattern, that combines the positive aspects of the pre-
vious patterns, needs to be created. Due to its behavior, it is calledMixed-Tenancy
connector pattern.

The left side of Figure 6.4 describes the structure of the pattern using the same
example as for the other patterns. For every Application Component instance
there is a corresponding connector element. The Application Component in-
stances are solely able to initiate a connection to their connector. This is geared
to the global mediator pattern, where also no platform logic was located in the
Application Component instances. In contrast to the global mediator, this ap-
proach is distributing the platform intelligence intomultiple connector elements
and not into a single object like a mediator. Besides, there is a direct commu-
nication between the connector elements. This works just as in the delegator
pattern. On the right hand side of Figure 6.4 it is demonstrated how the com-

ACI 1.1

ACI 2.1

ACI 3.1

ACI 1.2 ACI 3.2

EE

Connector
1.1

Connector
3.1

C
on

ne
ct

or

2.
1

Connector
1.2

Connector
3.2

Tenant A

Tenant B

ACI 1.2 ACI 3.2 Connector 1.2

Tenant B

doSomething()

doSomething()

ac3_doSomething()

return response

return response

return response

Connector 3.2 EE

getInstance(a)

return address

doSomething()

return response

Figure 6.4.: Overview of the Connector Pattern [Rei13]

munication works. If an Application Component instance, respectively a User,
wants to retrieve data from another Application Component, it is calling the
specific function at the related connector. Thus, here is no platform logic neces-
sary. The Application Component instance treats the function just like a local
one. The connector is now handling the establishment of the connection. The
Execution Engine acts just like in the delegator pattern. The only difference is,
that the connector is requesting the address or the reference of the corresponding
connector of the target Component instance – not of the Component instance
itself. After the actual function call took place, the result will be returned to the
Application Component that was initially calling. As illustrated by the figure, a
connector encapsulates the needed functions of all other components for the
related Component instance and the provided functions to be called by the other
Component instances. This is included the enforcement of the Deployment
Constraints on a communication level
The connector pattern satisfies both previously defined requirements. This

is also indicated in Table 6.1. It will be used to create a Mixed-Tenancy Deploy-
ment Platform that allows both, to deploy existing Multi-Tenancy composite
applications and to enforces Deployment Constraints also on communication
level.

142

Section 6.2: Selection of Cloud Application

6.2 Selection of Cloud Application

This section’s purpose is to select an example application that is going to be
used for this case study. As the primary focus of this chapter is to evaluate the
applicability of the Mixed-Tenancy approach to real-world applications, this
section is very important as it will analyze to which applications the Mixed-
Tenancy approach is applicable and if theymay be found in real-world.

In order to do that the section starts by discussing the domain fromwhich an
application shall be selected and expresses requirements it shall fulfill (Section
6.2.1). Based on this, the available applications from the chosen domain shall be
analyzed and selected (Section 6.2.2). The section concludes with a discussion of
the selected application (Section 6.2.3).

6.2.1 An ERP-System as SaaS Offering - Requirements

As already stated in the introduction of this chapter, the scenario that is about to
be investigated in this chapter, is that a Cloud Service Provider wishes to offer an
Enterprise Resource Planning (ERP) System as a Software-as-a-Service offering to
their Customers. The reason for this case study to focus on ERP-Systems is that
Mixed-Tenancy would allow Customers to specify their Deployment Constraints
for the individual modules or sub-systems of the ERP-System (e.g. Controlling,
Accounting, Procurement, etc.). Furthermore, there may be some Customers for
which an ERP-System, provided to them following the cloud paradigm, may be
very attractive since they will not have to provide their own IT-infrastructure but
get the entire application as a service from the cloud service provider. This may
especially be attractive for small andmedium sized enterprises that do not have
their main area of business in the IT industry.

In order to be able to conduct the case study for this scenario, it is necessary to
select an application. The first step towards this is to define requirements that
shall be met by a suitable application. Since this work has a technical focus, the
definition of requirements does not cover any commercial interests, but is limited
to technical aspects. The following are mandatory requirements for selecting an
application that may be deployed according to theMixed-Tenancy paradigm.

Web-based If an application has a web-based user interface, Customers may
use the application without installing any special software on their client
machines. All they need is a standard web-browser that is pre-installed
on almost all desktop workstations today. Furthermore, a web-based user
interface gives additional freedom toUsers as to fromwhere andwithwhich
device they use the application.

Multi-Tenancy TheMixed-Tenancy requires that an Application Component is
capable of handlingmultiple Customers in aMulti-Tenancy fashion. Thus,
it is a requirement that the application, that is selected within this case
study, has this ability.

Component-based One of the major advantages of the Mixed-Tenancy ap-
proach is that Customers may express their Deployment Constraints not

143

Chapter 6: Case Study: ERP-System as Mixed-Tenancy Cloud Service

just for the entire application but for each Application Component. This is
why it is an essential requirement that an application that shall be provi-
sioned following theMixed-Tenancy approach is component-based. What
this work defines as component-based has been introduced in Subsection
2.1.2. Again, this definition includes that individual Application Compo-
nents, that compose the application, may be deployed independently from
each other.

Open Source As stated in Section 6.1.2, it is the goal of this work to provision a
application without having to alter the application’s code base. However,
when the conduction of the case study was started it was not clear if this
goal may actually be achieved. Thus, the selection of applications shall be
limited to those where the code base is accessible. An additional reason
to consider only applications available under open source licenses is that
those applications do not require an investment into licenses to use the
application.

6.2.2 Analysis of Available Open Source ERP-Systems

Based on the requirements that were introduced in the previous section, it is
the goal of this section to select the most suitable application from the pool
of available ERP-systems. The first thing to do is to identify the available ERP-
systems currently available and being used in the real-world.
Since one of the requirements is that the ERP-system is open source, the re-

searchmay be focused on those. Two intensive reports on available open source
ERP-systems were found. [hei09] dates back to the year 2009 and enlisted a
total of six such systems. The second report was published by the Fraunhofer
Society in 2011 [SES11] and lists a total of fourteen systems including the six of
[hei09]. These systems are ADempiere [ADe14], Apache Ofbiz [Apa14], AvERP
[SYN14], CAO-Faktura [CAO14], Compiere [Com14], Limbas [Lim14], Lx-Office
[Kiv14], Openbravo [Ope14a], OpenERP [Ope14], Opentaps [Ope14b], SQL-Ledger
[SQL14], Tryton [Try14], WebERP [web14], and xTuple [xTu14]. In the time when
the search was conducted, no other reports were found reporting more ERP-
Systems.

In a first phase these fourteen systems were superficially evaluated about how
well they may satisfy the given requirements. This superficial evaluation was
conducted based on the information available on their product/project websites,
communities, online fora, mailing lists, and the two reports themselves. Based
on this first evaluation, it was possible to limit the number of potentially suitable
applications down to six. These are ADempiere, Tryton, Openbravo, OpenERP,
Apache OFBiz, and Opentaps. These six systems were evaluated further in a
second round of evaluation.
This time, each of these systems was installed in their regular (non-Mixed-

Tenancy) way. Based on the experience gained during installation, a more thor-
ough evaluation of the application was performed. Thus, it was investigated
if these systems may be useable for the scope of this case study. The result is

144

Section 6.2: Selection of Cloud Application

illustrated by Table 6.2. Based on the table, it is possible to say that only OpenERP,

Requirements

System W
eb

-b
as
ed

M
u
lt
i-T

en
an

cy

C
om

p
on

en
t-
ba

se
d

O
p
en

So
u
rc
e

ADempiere " " % "

Tryton % " " "

Openbravo " " % "

OpenERP " " " "

Apache OFBiz " " " "

Opentaps " " " "

Table 6.2.: Details about Relevant Applications

Apache OfBiz, and Opentaps may be relevant candidates for this case study.
These three systems were investigated even further. This time they were investi-

gated on a code base level in order to determine if theymay be useable. It must be
noted at this point that Apache OFBiz and Opentaps actually share a significant
part of their code base. When doing the code analysis for these two systems, it
was apparent, that even so they claim to be component-based, they are in fact not
according to the definition of this work. It is true that they arrange their classes in
so called component sets thatmanifest themselves in a folder in the file system and
a component definition in an XML-file. However, between the classes of different
component sets there is very high coupling through Java-import commands. Based
on the analysis conducted by [Rup13b], a Mixed-Tenancy deployment of neither
of those applications is possible due to this high coupling.

OpenERP, on the other hand, still seemed promising after a code review since
at this point it seemed to be fulfilling all previously defined requirements. This is
why for this work OpenERP has been selected for the usage within the case study.

6.2.3 Introduction of OpenERP

OpenERP is, as the name already suggests, an open source enterprise resource
planning system. As for many open source applications, behind OpenERP stands
a company. In case of OpenERP it is OpenERP a.s., a company from Belgium that
was founded in 2005. Nevertheless, OpenERP’s entire source code is available to
the public under the AGPL license. OpenERP a.s. offers additional services like
maintenance and support [Ope14].

OpenERP has won the annual open source award BOSSIES (Best of Open Source
Software) of InfoWold.com twice in a row in 2012 [Inf12] and 2013 [Inf13].

OpenERP itself is built based on a highlymodular architecture. Thismeans that
OpenERP, in fact, only becomes a useable application that offers functionality

145

Chapter 6: Case Study: ERP-System as Mixed-Tenancy Cloud Service

if modules are loaded. This allows Customers to have OpenERP cover only the
functionality they actually require. Currently, there are more than 200 such
modules available for usage in the standard bundle that is available for download.
OpenERP implements Multi-Tenancy following the separated databasemethod
that was introduced in Section 3.1.1. It is primarily written in the programming
language Python.

OpenERP itself, without anymodules, only provides facilities for themost basic
things that are used bymodules. For example, it provides facilities for interacting
with a database in form of a full object-relational mapper. The database used by
OpenERP is PostgreSQL. In addition, it provides communicationmechanisms to
establish communication betweenmodules, and the OpenERP system provides
theweb interface1. Theweb interface is a rich client application that is completely
developed in JavaScript. It interchanges data with the server through XML-RPC
and JSON-RPC services.
Modules are implemented to be stateless. They gain access to the provided

facilities by inheritance of a class called Base_Model. If, for example, module A
needs to communicate withmodule B by inheriting from Base_Model, module
A gains the functionality to request an instance of module B from the central
module registry, simply by calling a function. The OpenERP systemmaintains
the registry with instances of all installed modules.
Since the architecture of OpenERP dictates that each module is run in the

OpenERP system, it is not possible to deploy individual modules independently
from each other. This is in violation with the definition of an Application Com-
ponent used by this work. However, since OpenERP seems to be the best possible
application available, the following section will introduce the scenario how a
case studymay still be conducted.

6.3 Definition of OpenERP Scenario

In the previous section, OpenERP was selected as an example application for the
case study of this work. Based on this, it is this section’s purpose to introduce a
scenario in which Tenants are using OpenERP in aMixed-Tenancy setup.
In order to do that, the section is structured as follows. It starts by analyzing

how theMixed-Tenancy approachmay be introduced to OpenERP (Subsection
6.3.1). Based on this, Subsection 6.3.2 will discuss which Application Compo-
nents were used for the scenario. Once this is done it is possible to introduce the
Deployment Levels that shall be covered in the investigated scenario (Subsection
6.3.3). Finally, Subsection 6.3.4 discusses the definition of Tenants and their
Deployment Constraints.

1In addition to the web interface, OpenERP also offers an additional non-web client. However,
since version 7 of OpenERP it has been recommended to use the web-client. Thus, the old one
is not considered relevant for this work.

146

Section 6.3: Definition of OpenERP Scenario

6.3.1 Introduction of Component-based OpenERP

As discussed in the previous section, it is not possible to apply theMixed-Tenancy
approach directly to OpenERP since the OpenERP’s architecture does not consist
of Application Components according to this work’s definition. It is this sub-
section’s purpose to discuss how it is still possible to apply the Mixed-Tenancy
approach to OpenERP. In order to do that, a minimal example is discussed.
In this minimal example, there are four modules that shall be deployed sepa-

rately from each other. These are themodules idea, email_template, mail, and
base_setup. In Figure 6.5 a standard (nonMixed-Tenancy) deployment is illus-
trated. In this figure, it is illustrated that the previously mentioned four modules

VM

OpenERP Instance

base

web

web_kanban

mail

base_setup

email_template

idea

Figure 6.5.: Example Installation of OpenERP with 4 Modules [Rup13b]

are deployed in a single OpenERP system. This OpenERP system runs in a vir-
tual machine. Besides the previously mentioned four modules, three additional
ones are added. These three are mandatory modules since they deal with things
that are required by all other modules (e.g. user management, module catalog
management, user interface).

Communication between these sevenmodules is established using the mecha-
nism that was introduced in the previous section. Each of thosemodules extends
a class called Base_Model. Thus, it has the functionality to get instances of an-
other module, on which it may directly call functions. This way, communication
betweenmodules can be established.
Figure 6.6 illustrates how the four modules may be deployed separately. As

visible in the figure a virtualmachine hosts four instances of theOpenERP system
this time, instead of just one. Each of these instances hosts one of the four
modules (marked green) and the three mandatory modules. Further, the other
three modules are replaced by a connector according to the pattern that was
introduced in Section 6.1.2. This means that an Application Component, in the
sense it has been used in this work so far, is in fact an instance of OpenERP with
only onemodule, multiple connectors and somemandatory modules.

147

Chapter 6: Case Study: ERP-System as Mixed-Tenancy Cloud Service

VM

OpenERP Instance

base

web

web_kanban

mail

base_setup

email_template

idea

OpenERP Instance

base

web

web_kanban

mail

base_setup

email_template

idea

OpenERP Instance

base

web

web_kanban

mail

base_setup

email_template

idea

OpenERP Instance

base

web

web_kanban

mail

base_setup

email_template

idea

Module

Connector

Figure 6.6.: Mixed-Tenancy Installation of OpenERP with 4 Modules [Rup13b]

Even in theMixed-Tenancydeployment,modules need to communicate among
each other. This is done following the connector pattern. If a module needs to
communicate with another, it uses themechanism offered by Base_Module to
gain an instance of the other. However, this time it does not get an actual in-
stance of the module to be called but only of its connector. The connector has
the same signature as the module that is supposed to be called. Thus, the calling
module does not need to be changed. Once the callingmodule calls a function,
the connector will determine where the actual instance of themodule is running
and will call it using the XML-RPC service each instance OpenERP already offers.
The answers of the actual module are then passed back to the calling module.

Splitting OpenERP in the way that has just been described allows to deploy
modules individually. This makes the altered version in fact a component-based
version of OpenERP, thus, it is from now on referred to as component-based Open-
ERP. However, it produces an overhead since it is necessary to deploy the manda-
tory modules redundantly and include the connectors.

148

Section 6.3: Definition of OpenERP Scenario

6.3.2 Selection of Application Components

The following describes how the Application Components used in the case study
were created.

The first Application Component that is supposed to be defined is the database.
This allows Customers to express their Deployment Constraints for using the
database.
Furthermore, it is the idea of this work that some of the modules of OpenERP

shall become Application Components. It would be possible to create an Applica-
tion Component for every module that shall be part of OpenERP. The approach
making that possible was introduced by the previous section. However, the stan-
dard version of OpenERP, that is available from the project’s website, contains a
total of about 200 modules. This would not be practical due to two reasons. First
of all it would cause significant description effort for the Customer and, secondly,
it would cause very high redundancy due to the way Application Components
are created for the component-based version of OpenERP. Furthermore, many of
those 200 modules are, in fact, very technical and it would not makemuch sense
for Customers to have the ability to express their Deployment Constraints for
those.
Due to this, for the case study of this work, multiple OpenERPmodules were

bundled to an Application Component. The first thing that is important to
understand is that there are different kinds of modules within OpenERP – regular
modules and apps. From a technical perspective the only difference between an
app and amodule is a flag in its description. However, this flag’s result is that apps
are very visible to the Tenants since they are selected and installed by Tenants.
Example apps that come with the standard version of OpenERP are customer
relationship management or human resources. They encapsulate bigger portions
of functionality. In fact, they often require multiple regular modules. Thus,
one Application Component was created for every OpenERP app. In addition,
each Application Component contains those modules that are required by the
OpenERP app. This results in a total of 23 Application Components. When
analyzing the dependency structure between apps andmodules within OpenERP,
it became apparent that theremay bemultiple apps that require the samemodule.
It was decided that in these cases separate copies of the same module would
be included in both Application Components. This ensures that data that is
processed by one app is only processed bymodules that are deployed according
to the same Deployment Constraints.
However, when the Application Components were analyzed, it was apparent

that there were major redundancies between them. It was possible to reduce
them significantly by creating three additional Application Components called
account, portal and procurement. A detailed description of all Application Com-
ponents and themodules they contain can be found in Appendix A.1. Once all
27 Application Components (26 frommodules and 1 from the Database) were
created, about 65 modules were assigned to them. From the original 200 modules
that left 135 not assigned to Application Components. These modules cover
optional functionality. A major part of them, for example, covers localization

149

Chapter 6: Case Study: ERP-System as Mixed-Tenancy Cloud Service

issues like language of the user interface or introducing country specific aspects
to the accounting app. Further, they cover optional functionality that allows to
integrate OpenERP with other systems like Microsoft Outlook or Mozilla Thun-
derbird. Since the goal of this case study is to provide a proof of concept, the
optional modules were not included in the case study. Further, from a technical
perspective the 65 modules that are covered containmore than 65% of the source
code from the 200 modules2. Thus, it is assumed that the case study contains the
major part of the functionality of OpenERP.

Based on the discussion that has just been presented, it can be concluded that
for component-based OpenERP a total of 27 Application Components shall be
considered within this case study. 26 of them are related to apps or modules
of OpenERP, the 27th is the database. These 27 Application Components cover
all apps that belong to the standard version of OpenERP and themodules they
require.

6.3.3 Definition of Deployment Levels

The next step towards the definition of an example scenario is the definition of
the Deployment Levels that shall be considered. It has previously been stated
that in the scenario that there shall be a total of 27 Application Components
defined. In fact 26, of them are Application Components that realize OpenERP
apps and one which is the database.

In the scenario to be investigated, these two types of Application Components
shall require different stacks. However, both, modules and the database shall be
deployed on a virtual machine. In order to cover all this, the following Deploy-

Instance

Python
Run-time

Environment
DBMS

VM

Figure 6.7.: Deployment Level of the investigated Scenario [Mor14]

ment Levels were created. Their structure is illustrated by Figure 6.7.
2This was analyzed by determining the required disc space of the Python source code.

150

Section 6.3: Definition of OpenERP Scenario

Instance According to the definitions given in Chapter 4, the instanceDeploy-
ment Level is the only mandatory Deployment Level. All Application Com-
ponents need to be deployed on it. Thus, depending on the Application
Component, Units are instantiated differently. For those Application Com-
ponents that cover modules, Customers may express their Deployment
Constraints about with whom they want to share instances of these mod-
ules. For the database Application Component, on the other hand, the
instance Level allows Customers to express Deployment Constraints for
sharing the database.

Database Management System The databasemanagement systemDeployment
Level is specific for the database Application Component. It is supposed
to allow Customers to express their Deployment Constraints about with
whom they are willing to share a database management system.

Python Run-time Environment Those Application Components that cover
modules are running within an OpenERP Server. OpenERP, however, re-
quires a Python run-time environment. Such an environment may host
multiple instances of OpenERP. Thus, defining this Deployment Level al-
lows Customers to express their Deployment Constraints about sharing the
Python run-time environment.

Virtual Machine The virtual machine Deployment Level is the lowest Level
and, thereby, hosts all other Levels. The idea of this Level is to have every-
thing related to this scenario deployed on a dynamic infrastructure. Thus,
it is possible to create the entire deployment automatically.

In subsection 4.2.1 requirements were discussed that Deployment Levels need to
fulfill. All of the Deployment Levels just introduced, fulfill these requirements,
with two exceptions. It has been discussed earlier that currently OpenERP im-
plements Multi-Tenancy following the separated databasesmethod. Thus, it is
unfortunately necessary that all Customers use the private-DeploymentModel
on the instance Level of the database Component. Furthermore, as of now, Open-
ERP is not capable of handling more than one DBMS per installation. Thus, it
is necessary that all Customers use the public-DeploymentModel on the DBMS
and the virtual machine Level of the database Component. This will limit the
Customer’s ability to express Deployment Constraints to modules only. This
limitation will be addressed once again when the results of this chapter will be
discussed (Section 6.5).

6.3.4 Creation of Example Scenario

Up to this point it has been discussed how OpenERP was altered in order to be
component-based. Further, the Application Components and the Deployment
Levels were defined.
Based on this, it is now possible to define a scenario in which Tenants use the

component-based version of OpenERP following theMixed-Tenancy approach.

151

Chapter 6: Case Study: ERP-System as Mixed-Tenancy Cloud Service

The objective of this scenario is to encapsulate all expressible Deployment Con-
straints. Such a scenario has already been defined in Section 4.6.2. Thus, instead
of recreating a new scenario, the following only describes how the scenario of
Section 4.6.2 can be applied to the OpenERP Application Components and De-
ployment Levels.
Similar to the scenario of Subsection 4.6.2, six Tenants are created (T-A, T-B,

T-C, T-D, T-E, T-F) for the case study. These Tenants express their constraints for
all 27 Application Components on all relevant Deployment Levels. Again, the 26
Application Components that were created based onmodules are deployed on
the Deployment Levels instance, Python run-time environment, and a virtual
machine. This corresponds very well to the Application Components AC-2, AC-3,
and AC-4 of Section 4.6.2 since they were deployed on instance, application
server, and virtual machine. Thus, for the scenario of this section the six Tenants’
Deployment Constraints were applied to the 26 Application Components of
this section. However, since there were only three Application Components in
Section 4.6.2 but 26 here, all Deployment Constraints were reusedmultiple times.
This way it is possible to ensure that all possible Deployment Constraints were
expressed.

Based on this, there is only one previously defined OpenERP Application Com-
ponent left. This 27th is the database being deployed on Deployment Level in-
stance, database management system, and virtual machine. However, as dis-
cussed earlier, OpenERP implements Multi-Tenancy in the separated database
approach3. Thus, for the six Tenants, it is only possible to express the Deploy-
ment Constraints that they all want a private DeploymentModel on the instance
Level and public for the Levels below.
Based on the Deployment Information that encapsulates all defined require-

ments, the top-down approach was used to create a Valid and Optimal Deploy-
ment and store it in a Deployment Configuration. This Deployment Configu-
ration describes a total of 89 instances of Application Components and seven
Python run-time environments. For the database, obviously, there are six in-
stances and one Database Management System. Furthermore, for the entire
scenario, a total of three virtual machines is required.

6.4 Realization of Deployment Platform for OpenERP

This section’s purpose is to describe how aMixed-Tenancy Deployment Platform
for OpenERPmay be realized. It does that by using the scenario, that was intro-
duced in the previous section, as input. In Section 6.1 it has been analyzed that
creating aMixed-Tenancy Deployment Platform requires solving two problems.
The first is that a Deployment automatically needs to be realized. The second is
that communication between Application Components needs to be established.
Thus, this section will discuss how the problemsmay be solved for OpenERP and,
thereby, realize theMixed-Tenancy Deployment Platform for OpenERP.

3The Separated Database approach was introduced in Section 3.1.1

152

Section 6.4: Realization of Deployment Platform for OpenERP

In order to do that, this section is divided into two subsections. Subsection 6.4.1
discusses howa computedDeploymentmaybe realized automatically. Subsection
6.4.2 introduces how connectors are implemented.

6.4.1 Problem 1: Automatic Deployment

Today, within a company that is Software Vendor and Operator at the same time,
it is quite often the case that development and operations are in conflict with
each other, even though they have the samemission to deliver valuable software
to Customers. This is due to the fact that these two often act as distinct teams
which results in suboptimal collaboration [Hüt12]. DevOps (a portmanteau of
development and operations) is a method that is supposed to close that gap
by stressing communication, collaboration and integration between software
developers and operations [Hüt12].

This subsection will discuss how the first problem of creating aMixed-Tenancy
Deployment Platformmay be tackled by applying techniques from the area of
DevOps. Thus, it starts by introducing configuration management tools and
choosing a useable one. This tool is then introduced and it is presented how it
may be used to automatically deploy a Multi-Tenancy application based on a
Deployment Configuration.

Selection of a Configuration Management Tool

One of the key concepts of DevOps is the automatic deployment and mainte-
nance of a software’s infrastructure. This is achieved through the documentation
of these activities in executable code (commonly referred to as Infrastructure as
Code). For this, configuration management tools provide domain specific lan-
guages that allow to create executable descriptions of management operations
such as deployments [Hüt12]. Thus, using one of these tools seems to be a promis-
ing approach to tackle the challenge of automatically realizing a Deployment
Configuration.
In [PTN13][pg. 28] a total of six configurationmanagement tools were intro-

duced. Of these six only two were considered relevant for this work since only
those were able to be applied to multiple cloud environments. These are Chef
[Ops13] and Puppet [Pup13].
Both tools have a similar feature set [Mor14] and both would have satisfied

all requirements of this case study. However, Chef was chosen since Puppet’s
support for VMware vSphere is limited to the enterprise version of Puppet. The
vSphere support was very important since it is part of the target environment of
this case study. For Chef, on the other hand, VMware vSphere support is available
through an extension for Chef’s open source version. Amore detailed analysis
why Chef was chosenmay be found in [Mor14].

Chef is a configuration management tool developed by a company called
Opscode [Ops13]. It is available in two versions, one is open source, the other
one is an enterprise version. Within this case study the open source version is

153

Chapter 6: Case Study: ERP-System as Mixed-Tenancy Cloud Service

used in version 11.6.0. The following are a few important terms related to Chef
that are relevant for this work.

Cookbook A cookbook contains all the necessary entities for a specific scenario
such as installing and configuring a specific application. A collection of
widely used cookbooks is available for Chef. These are either maintained
by Obscode or by the community around Chef. They include, for exam-
ple, cookbooks for the installation and configuration of PostgreSQL. Each
cookbook contains a collection of recipes dedicated to a specific scenario.

Recipe A recipe is a description of a management operation such as installing or
configuring a specific application. It is created using the Ruby programming
language.

Data Bag Data that is required for the execution of a recipe is stored in data
bags. Such data may be everything that a particular operation needs (e.g.
the address of a server where a database shall be set up). In fact, a data bag
is a collection of data bag items that each store the data necessary for one
execution of recipe. Data bag items are implemented using JSON as data
format.

Knife Knife is a command line tool that is an alternative to Chef’s web interface.
It allows to manage the Chef server and local content such as cookbooks or
data bags. Furthermore, an extension is available to be able to use knife in
order to interact with VMWare vSphere. Using this extension, it is possible
to create a virtual machine by simply calling knife with a set of parameters.

Automatic Deployment using Chef

Obviously, the input for the automatic deployment is the Deployment Con-
figuration that is provided by the Deployment Configuration Generator. The
Deployment Configuration has been realized as XML-file. XML was chosen since
it allows easy exchange between different applications andmay be created manu-
ally for testing purposes. A detailed description of the XML-File may be found in
[Mor14].
As discussed in Section 6.1.1 the Deployment Configuration is read and pro-

cessed by the Execution Engine. Since Chef shall be used as engine to actually
execute the automatic deployment, the Chef server becomes part of the Execu-
tion Engine.
However, since the Deployment Configuration has a structure unknown to

Chef, it is not possible for Chef to directly execute theDeployment Configuration.
Thus, it is the job of the Execution Engine to translate the Deployment Config-
uration into data items on the Chef server. These data items are then accessed
by the Chef server during the deployment process. For this, cookbooks were im-
plemented each containing one recipe for every Deployment Level. Each one of
them contains the description of operations necessary to instantiate this specific
Deployment Level. The recipes are executed using the data items generated from
the Deployment Configuration.

154

Section 6.4: Realization of Deployment Platform for OpenERP

However, before this can be described, the first thing that needs to be done is to
create a template virtualmachine. This virtualmachine is cloned for every virtual
machine that is required by the Deployment Configuration. It was created using
the VMWare vSphere-client application as a virtual machine using the operating
system Ubuntu Linux 12.10 in its 64 bits server version. Furthermore, for the
template virtual machine the options for Memory/CPUHotplug were activated
as this allows to add additional CPUs and memory while the virtual machine
is running. In order to improve the time a cloning and deployment of a virtual
machine takes, the template virtual machine was created with only five gigabytes
of disk space. After the operating systemwas installed, the virtual machine was
equipped with the VMWare tools which allow easier configuration through the
management interface of the hypervisor. Furthermore, some DNS configuration
was done in order to address cloned virtualmachines by their host names and the
entire OpenERP application was placed in a virtual machine. OpenERP was not
installed but only placed there for future use. The reason for this is that once the
virtual machine has been cloned, it will be necessary to instantiate those parts
of OpenERP that are required according to the Deployment Configuration. If
OpenERP is placed on the virtual machine already, it is not necessary to transfer
it over the network, but it may be copied directly within the virtual machine.
Using the configuration management tool Chef it was possible to solve the

automatic deployment problem very efficiently. This is due to the fact that Chef
already provided a huge subset of the needed functionality. Furthermore, the
usage of Chef has the advantage that even if setup procedures of, for example, the
database change, it is not necessary to alter anything but getting new recipes for
Chef. This problem has been solved in a very efficient andmaintainable fashion.

6.4.2 Problem 2: Communication Mechanism

In Section 6.1.2 the Mixed-Tenancy connector pattern was introduced. It al-
lows Application Component instances to communicate with each other. The
following discusses how the pattern can be introduced to OpenERP.
OpenERP is equipped with an XML-RPCweb service so that public methods

of modules can be called remotely. It has been stated earlier that every Applica-
tion Component encapsulates, in fact, its own instance of OpenERP. However,
there is no built-in way for two instances of OpenERP to communicate via this
service. An external application can call an OpenERPmethod through the web
service, but every instance of OpenERP assumes that all installed modules are
locally available. This way of communication is altered by the introduction of
connectors. As discussed, a connector must be implemented tomimic a locally
installed module. It then reroutes method calls by calling the respective method
via XML-RPC on a remote instance. So the connector exposes the same inter-
face as the original module and, thus, is a valid OpenERP module that can be
loaded by the framework just like any other module. As only public methods
can be called via XML-RPC, only those are being rerouted. To achieve interface
compatibility between connector and original instance, all public methods in
the connector must expose the same signature they expose in the original mod-

155

Chapter 6: Case Study: ERP-System as Mixed-Tenancy Cloud Service

ule. Additionally, all fields and private methods from the original module must
be copied to the connector. This is necessary because some fields, that define
themodules database structure, are evaluated against the actual database as the
module is loaded. Also, some private methods may be required by other parts
of the system. As they cannot be called remotely, they need to be copied to the
connector. Finally, some additional private methods for packing and unpacking
parameter data to submit via XML-RPCmust be added, as well as a method called
_remote_call. Instead of performing their original business logic, all public meth-
ods in the connector are implemented to call _remote_call, which in turn provides
the necessary facilities to request the URL of the required remote instance from
the EE via REST and thenmake the remote method call via XML-RPC.

Because of the number of OpenERPmodules available and the fact that a con-
nector is required for every module that is to be used in Mixed-Tenancy mode,
manual implementation of the connectors is not feasible. Since all connectors
share the interface with their original modules and the communication facility
with the other connectors, however, automatic connector generation is the best
way to go. Due to the fact that OpenERP is implemented using Python, the
connector generator was implemented in Python as well. It can load OpenERP
modules by importing the original module loading component of OpenERP.
Once amodule is loaded, the connector generator iterates over all submodules,
classes and class members using Python reflection. All public methods are re-
placed with code in order to call the method _remote_callwhereas all other parts
of the module are left unchanged. Additionally, the method _remote_call, some
other utilitymethods, and imports required by themare inserted at the beginning
of the connector.

The connector generator can either generate a single connector or load all mod-
ules of an OpenERP installation and create connectors for all installedmodules at
once. Using the connector generator it was possible to minimize the effort neces-
sary to create the connectors to a minimum. Further, if new versions of OpenERP
are released, there should be very little effort necessary to create connectors for
these as well.

6.5 Evaluation and Discussion of Results

In the previous sections, it has been presented how a Deployment Platform for
OpenERP was created and OpenERP was migrated onto it. This section’s purpose
is to evaluate the presented solution and gain conclusions from this case study.

In order to do that this section is split into two parts. The first one evaluates
the correctness of the introduction of Mixed-Tenancy to the component-based
version of OpenERP. Based on this, conclusions related to resource utilization are
discussed. Both parts include answering the related research questions (research
question RQ-3.2 and research question RQ-3.2).

156

Section 6.5: Evaluation and Discussion of Results

6.5.1 Evaluation of Mixed-Tenancy OpenERP

In the introductionof this chapter itwas stated that the objective of this chapter is
to investigate if it is possible to deploy an existing real-world application following
theMixed-Tenancy paradigmwithout altering functionality and behavior offered
to the Customer. This leads to the conclusion that if a successful migration is
achieved, the application’s behavior and functionality is the same nomatter if it
has been deployed following theMixed-Tenancy approach or the way it is meant
to be deployed.

In the previous sections it has been discussedhow theMixed-Tenancy approach
has been introduced to OpenERP. However, so far it has not been possible to
provide evidence that this migration was actually successful. Thus, the success of
the migration has been investigated. This was done by deploying two versions of
OpenERP with identical test data and Tenants. The first version was deployed in
the standard way according to the OpenERP documentation. The second version
was deployed following theMixed-Tenancy paradigm by realizing the scenario
developed in Section 6.3.

These two versions were compared to each other based on defined test cases.
Since the OpenERP system is huge and offers a lot of functionality, it was not pos-
sible to test the entire application in all its details. Instead, it was intended to test
the entire application on a superficial level. This was done due to the assumption
that differences in the behavior of the application may only be caused by the
Deployment Platform and the connector pattern. Following this assumption,
doing broad testing that involves all deployed Application Components would
probably expose errors. Thus, about 150 test cases were defined and executed to
cover the entire application with all its Application Components. In Appendix
A.2 a full list of all executed test cases can be found.

During the test phase, the implementation of the connectors was improved
by fixing errors discovered by the testers. Furthermore, at some point, it was
noticed that a known bug in OpenERP ([Fay13]) did occur in the normal version,
but not in theMixed-Tenancy version. This was not expected and, thus, it was
investigated. This investigation revealed that the known bug was caused by an
error in the XML-RPC communication. Since this has been altered for the Mixed-
Tenancy version, the bug did not occur in this version. A bug report was filed
in the OpenERP bug tracking tool also including a patch [Rup13a]. After the
development of the Deployment Platformwas completed, both versions of the
application behaved identical for all test cases.

To the extent of the test cases it is possible to say that the Mixed-Tenancy
approach has successfully been introduced to the component-based version of
OpenERP. Based on this, it is possible to conclude that in reality, there are cases
where the Mixed-Tenancy approachmay successfully be introduced, especially if
applications’ architecture is component-based.

157

Chapter 6: Case Study: ERP-System as Mixed-Tenancy Cloud Service

6.5.2 Discussion of Resource Utilization

In the previous subsection it has been discussed that it was possible to apply the
Mixed-Tenancy approach to OpenERP. However, in Section 6.3 it was analyzed
that the original version of OpenERP is not a component-based application ac-
cording to the definition of this work. Thus, it was discussed howOpenERP was
split into Application Components that satisfy the requirements of this work.
Unfortunately, this caused significant overhead and also caused the component-
based version of OpenERP to require much more resources. In detail, a single
instance of an OpenERP Application Component, created from modules, de-
mands about 70 MB of RAM and 240 MB of disk space.
As stated earlier, in the investigated scenario there are a total of 89 instances

of Application Components, 7 Python run-time environments, and 3 virtual
machines required. This leads to a total resource demand of 6, 998 MB of RAM
and 36, 892 MB of disk space to deploy the analyzed scenario (including Python
run-time environments and virtual machines). These figures are also illustrated
by Table 6.3. However, if these figures are compared to the upper bound (every
Customer requires designated resources) and lower bound (all Customers share
everything) that were introduced in Subsection 5.5.3, the results are as follows.
The investigated scenario only requires about 54%of disc space and about 56%
of RAM compared to resources required by the upper bound. Compared to the
lower bound, the scenario requires about 326%more disc space and about 337%
more RAM. A full overview of all figures, including the detailed figures for the
individual Deployment Levels are illustrated by Table 6.3. This leads to the
conclusion that resources may indeed be usedmore efficiently than in a Single-
Tenancy deployment of the component-based OpenERP.

However, besides these discussions, another possible deployment that would
satisfy all Deployment Constraints, is a designated deployment of 6 normal
instances of the regular version of OpenERP – one per Tenant. This way every
Tenant gets their own instance and, thus, all Deployment Constraints would be
satisfied as well. This would require a total of 1, 956 MB of RAM and a total of
31, 896 MB of disc space. Compared to the deployment of the component-based
version of OpenERP using the proposed scenario, this designated deployment
requires only about 28% of RAM and 86% of disc space. As the connectors and
Mixed-Tenancy Deployment Platform cause significant overhead with respect
to run-time, it can further be assumed that deploying the original version of
OpenERP this way also requires less CPU power.
All this leads to the conclusion that a component-based application that ap-

plies to the definitions of this work may indeed be used as a Mixed-Tenancy
application. In fact, theMixed-Tenancy approachmay be introduced beneficially,
meaning that it allows the Operator to save on operational cost. However, in such
cases where the application is not component-based, altering it may lead to an
application that does not allow the Operator to utilize resources more efficiently.
In such cases, however, it would still be an option to have Customers express

their Deployment Constraints for the entire application. In such a scenario, the
required number of instances of OpenERP would be lower than the number of

158

Section 6.5: Evaluation and Discussion of Results

Instance PRE VirtualMachine Σ

C
om

p
on

en
t-
ba

se
d
O
p
en

ER
P

A
ll
Pr
iv
at
e

∑
Instance 156 6 6

∑
Disk space 37,440 456 30,000 67,896

∑
RAM 10,920 0 1,536 12,456

M
ix
ed

Sc
en

ar
io ∑

Instance 89 7 3

∑
Disk space 21,360 532 15,000 36,892

∑
RAM 6,230 0 768 6,998

A
ll
Pu

bl
ic

∑
Instance 26 1 1

∑
Disk space 6,240 76 5,000 11,316

∑
RAM 1,820 0 256 2,076

O
p
en

ER
P

A
ll
Pr
iv
at
e

∑
Instance 6 6 6

∑
Disk space 1,440 456 30,000 31,896

∑
RAM 420 0 1,536 1,956

M
ix
ed

Sc
en

ar
io ∑

Instance - - -

∑
Disk space - - -

∑
RAM - - -

A
ll
Pu

bl
ic

∑
Instance 1 1 1

∑
Disk space 240 76 5,000 5,316

∑
RAM 70 0 256 326

PRE = Python Runtime Environment

Table 6.3.: Resource Demand for Mixed-Tenancy and Single-Tenancy scenario
(Required storage in mega bytes)

159

Chapter 6: Case Study: ERP-System as Mixed-Tenancy Cloud Service

Tenants if some Customers permit sharing with a community they trust. Further,
there is no extra overhead in deploying OpenERP since it may be used as it was
designed. Table 6.3 also stated the lower and upper bound for this scenario.

6.6 Summary

In this chapter the question was analyzed if theMixed-Tenancy approach is ap-
plicable for real-world applications. By doing so, this chapter addressed research
question RQ-3. In order to do that a case study was conducted that applied the
Mixed-Tenancy approach to an existingMulti-Tenancy application.

The first step taken was to do a conceptual analysis of the challenges involved
with creating a Deployment Platform. The following two challenges were identi-
fied and conceptual solutions were proposed.

Automatic Deployment The platform needs to be able to create a Mixed-Ten-
ancy deployment of a Multi-Tenancy application according to a Deploy-
ment Configuration. The problemwas analyzed and it was concluded that
a Mixed-Tenancy Deployment needs to be provisioned bottom-up (starting
with the lowest Deployment Level working its way up).

Communication Mechanism All instances of an Application Component of
the same Tenants need to be able to communicate with each other. Since
there may bemultiple instances available of the same Application Compo-
nent, the communication needs to be directed to this instance that serves
the specific Customer that initiated the request. For this a behavioral pat-
tern was created that allows to realize the communication by applying to
the Deployment Constraints and not requiring to alter an existing applica-
tion. The later point was achieved through separating platform logic from
application logic.

These challenges need to be tackled specifically for every application for which a
Mixed-Tenancy Deployment Platform shall be created.
However, the next step towards the analysis of applicability was to identify

an application to which the Mixed-Tenancy approach shall be applied. The
search for such an application was limited to open source ERP-systems that have
a web-based user interface, are Multi-Tenant aware, and have a component-based
architecture. After a detailed analysis, OpenERP was selected.

In a detailed analysis, it was concluded that OpenERP is in fact not component-
based according to the definition of this work. Thus, a concept was presented of
howMixed-Tenancymay be introduced to OpenERP. This resulted in the creation
of a new version of OpenERP that is Mixed-Tenancy enabled and is composed of
27 Application Components and has four Deployment Levels.

For these 27 Application Components a evaluative scenario was defined. In
this scenario, there are six Tenants expressing their Deployment Constraints for
all available Application Components and Deployment Levels. It was the goal of
the scenario to cover all possible Deployment Constraints. Thus, the example
that was used to perform the evaluation in Chapter 4 was used as basis.

160

Section 6.6: Summary

As a next step, it was discussed how aMixed-Tenancy Deployment Platform
was developed for theMixed-Tenancy version of OpenERP. Doing this included
to solve the conceptual challenges that were identified. For the realization of the
automatic deployment problem, Chef, a tool from the area of DevOps, was used.
The connector pattern was implemented using Python. Furthermore, a con-
nector generator was developed that allows to generate the required connectors
automatically. This eliminates manual effort required for deploying a standard
version of OpenERP following theMixed-Tenancy paradigm.

Based on theMixed-Tenancy Deployment Platform, it was possible to deploy
the Mixed-Tenancy enabled version of OpenERP according to the defined sce-
nario. Furthermore, based on about 150 test cases it was ensured that the ap-
plication actually behaves just like a version that is deployed as it is meant to
be deployed. This leads to the conclusion that it is possible to introduce the
Mixed-Tenancy approach successfully to an application that is component-based
according to the definition of this work.

With respect to resource utilization, it is possible to conclude that if the appli-
cation is component-based, the Mixed-Tenancy approach allows the Operator
to use resources more efficiently than following a Single-Tenancymodel. If the
application needs to be altered, however, this may cause significant overhead
and, thereby, eliminate benefits for resource utilization.
In such cases, however, it would still be an option to have Customers express

their Deployment Constraints for the entire application. In such a scenario, the
required number of instances of OpenERP would be lower than the number of
Tenants if some Customers permit sharing with a community they trust.

161

Chapter 7
Summary and Conclusion

7.1. Discussion of Results . 163

7.1.1. Contributions . 164

7.1.2. Limitations and FutureWork 166

7.2. Summary . 170

There is no real ending. It’s just the place
where you stop the story.

Frank Herbert

This chapter concludes this work by first discussing the contributions and limi-
tations of this work. Starting from those, the opportunities for future research
are being presented. The final section of this chapter will conclude this work by
summarizing the overall thesis.

7.1 Discussion of Results

Chapter 2 analyzed the problem to be addressed by this work. From this analysis
the general research question for this work was derived.

How can Customers’ demand for expressing their Deployment Constraints
and Operator’s demand for having minimal infrastructure cost, both be
satisfied at the same time?

The next step was that more precise research questions were created to answer
the general question. Those were first introduced in Subsection 2.2.3 and were
repeated again for reference in the following discussions of contribution.

Research Question 1 (RQ-1) How can Customers’ Deployment Constraints
towards Mixed-Tenancy be described?

Research Question 1.1 (RQ-1.1) What shall be capturable in order to be
able to describe Deployment Constraints?

163

Chapter 7: Summary and Conclusion

Research Question 1.2 (RQ-1.2) How is the descriptionbeingperformed
by the participating stakeholder?

Research Question 1.3 (RQ-1.3) What does a model look like that is
capable of capturing Customers’ Deployment Constraints?

Research Question 2 (RQ-2) How can a Valid and Optimal Deployment be
found in a fast way?

Research Question 3 (RQ-3) Is it possible to apply the Mixed-Tenancy ap-
proach to existing composite Multi-Tenancy applications?

Research Question 3.1 (RQ-3.1) How can a platform realizing Mixed-
Tenancy be created?

Research Question 3.2 (RQ-3.2) DoesMixed-Tenancy allow an Opera-
tor to use resources more efficiently as with Single-Tenancy?

The following subsections will discuss the contributions to those research ques-
tions and the limitations involved with the approach of this work.

7.1.1 Contributions

The novel contribution of this work is theMixed-Tenancy approach. It is a hybrid
approach between Single andMulti-Tenancy, which allows bridging the struggle
between Customers that are hesitant to share resources with other Tenants and
Operators that want to use resources as efficiently as possible. In order to realize
the Mixed-Tenancy approach, the following are primary contributions produced
by this work.

Description Model The DescriptionModel allows Customers to express their
Deployment Constraints. The objective of the Model was that it shall be
generic in order to be applicable to awide range of different applications. For
the definition of Deployment Constraints, the DescriptionModel provides
four Deployments Models – Private, Public, White Hybrid, Black Hybrid,
and Gray Hybrid. Using these Deployment Models it is possible for Cus-
tomers to express if or with whom they are willing to share resources in a
complex way by still allowing the Operator to keep its Customer base secret.
This expressionmay be done for each Application Components on every
applicable Deployment Level. The Description Model itself was defined
completely and formally using first-order logic.

Deployment Computation Algorithm Within this work, two intuitive heu-
ristics were introduced that allow approximating a Valid and Optimal De-
ployment. These are, the top-down approach that computes a Deployment
starting from the highest Deployment Level down to the lowest, and the
bottom-up approach that computes a Deployment starting from the lowest
Deployment Level up to the highest. Based on a theoretical discussion,
it was possible to prove that the top-down approach has a relative per-
formance guarantee not better than 2 and the bottom-up approach has

164

Section 7.1: Discussion of Results

a relative performance guarantee not better than 3/2. However, in addi-
tion, an experimental evaluation was performed that compared the two
approaches’ performance based on example problems. These experiments
suggest preferring the top-down approach when computing a Deployment
as it outperformed the bottom-up approach inmost cases.

Mixed-Tenancy Deployment Platform This work gave a conceptual analysis
of the challenges involved with creating a Mixed-Tenancy Deployment
Platform. The two primary challenges are the automatic deployment ac-
cording to a computed Deployment Configuration and the establishment
of communication among the deployed Application Component Instances.
A realization of a Deployment Platform highly depends on the specific
composite Multi-Tenancy application that shall be provided to Customers.
Within this work, OpenERP was identified as an example application and
a Deployment Platform was realized. Based on the successful execution
of about 150 test cases, it is possible to conclude that the realization was
successful.

Based on these three primary results, it was possible to realize aworking prototype
that allows capturing Customers Deployment Constraints, approximating a Valid
Deployment using the top-down approach and deploying OpenERP as a sample
application according to the computed Deployment Configuration. Further,
based on test cases, it was possible to determine that OpenERP worked properly
and theMixed-Tenancy approach was realized successfully.
In addition to the very high-level discussion of contributions, it is possible to

give a more detailed description of contributions by discussing the results for the
individual research questions. This is done in the following.

This work addressed research question RQ-1 by proposing a DescriptionModel
that has the primary objective to be as generic as possible. In response to research
question RQ-1.1 an analysis was conducted and relevant entities were identified.
In addition, the preliminary states of themodelwere continuously discussedwith
experts both from industry as well as from academia. Based on these discussions,
the model was improved continuously. Finally, the model contained the fol-
lowing entities and their relationships to each other: Application Components,
Deployment Levels, Tenants, Groups, and Dimensions. Based on these entities,
it is possible for Operators and Customers to capture the application’s structure
and the Customers’ Deployment Constraints. Amore detailed description of how
the model may be applied to a specific application was given by providing the
description of a high-level process. This process is also the response to research
question RQ-1.2. Themodel itself is the response to research question RQ-1.3. An
incomplete representation of it is illustrated in Figure 4.6 using UML notation.
Furthermore, Subsection 4.4 defines it formally.
In response to research question RQ-2, it was proven that the problem of

computing a Valid and Optimal Deployment is NP-hard. This means there is
no fast algorithm to compute a Valid and Optimal deployment unless P = NP .
However, two heuristics were proposed that allow computing Valid and Optimal

165

Chapter 7: Summary and Conclusion

Deployments. As already stated, they were evaluated both theoretically and
experimentally.
In order to address research question RQ-3, a case study was conducted. The

goal of this case study was to introduce the Mixed-Tenancy approach to a real-
world open source ERP-System. After an analysis of available systems, OpenERP
was selected. In response to research question RQ-3.1, the challenges involved
with creating a Deployment Platform were discussed that allow introducing
theMixed-Tenancy approach to an existingMulti-Tenancy application without
having to alter its source code. Based on this discussion, the platform has been
realized for OpenERP. In order to validate that it is working properly, a total of
about 150 test cases were defined and executed on a normal and aMixed-Tenancy
version of OpenERP. This allows concluding that it was possible to introduce the
Mixed-Tenancy approach to an existing real-world application without having to
alter the application’s source code. Based on the investigated case, it is possible to
respond to research question RQ-3.2 by stating that theMixed-Tenancy approach
allows using resources as efficiently as in a Single-Tenancy deployment if the
application is component-based. If the application needs to be altered to fulfill
this characteristic, however, this may cause significant overhead and, thereby,
eliminates benefits for resource utilization. In such cases it would still be an
option to have Customers express their Deployment Constraints for the entire
application. This way it may be stated that there are cases where Mixed-Tenancy
will allow Operators to use resources more efficiently.

7.1.2 Limitations and Future Work

In the previous section the contributions of this work were introduced. When
they were created within this work, it was necessary, at some points, to propose
assumptions in order to simplify the problems at hand. Obviously, these as-
sumptions limit the contributions’ applicability. The following mentions and
introduces these limitations and discusses them. Further, each of these limita-
tions bears the opportunity for future research. Thus, they will be addressed as
well.

In Section 2.2 the scope of this work was defined. Part of this definition was
the description of problems which are not to be addressed by this work. The
following restates them briefly and discusses their impact on the contributions
of this work and discusses opportunities for future research.

Changes over Time Within this work only the initial deployment of a Mixed-
Tenancy application has been addressed. In reality, however, it is very likely
that an initially provisioned deployment will have to be altered due to
changing requirements (e.g. changing Customer base, changing Deploy-
ment Constraints). All challenges involved with doing that have not been
addressed by this work and are still open for future research. The only ex-
ception is Appendix B of this work. It gives an initial analysis and solution
approach for the problem of transforming a provisioned deployment into a
new one while causingminimal cost. This appendix is based on [OY13], a
Master’s thesis that was created and supervised as part of this work.

166

Section 7.1: Discussion of Results

Functional Variability In real-world, it is usually the case that different Cus-
tomers have different requirements towards the same application. This
work, however, assumed that a Mixed-Tenancy application provides the
same features to all Customers. This assumption was made in order to be
able to focus on the aspects specific to Mixed-Tenancy. Thus, it was possible
to state that every Customer is always using instances of all Application
Components – which decreases complexity. However, as discussed in Chap-
ter 3 there is research conducted concerning the introduction of functional
variability of Multi-Tenancy applications. Combining the conclusion’s con-
tributions created by this work with the techniques from related work is
open for future research.

Collaboration It may be possible that theMixed-Tenancy approach is used to
enable collaboration betweenmultiple Tenants by assigning them to the
same instance of an Application Component and deactivating isolation.
This would extend the approach to the possibility of allowing Customers to
explicitly express with whom they want to share resources (instead of just
naming the Tenants they would feel comfortable with) and a Deployment
Computation Algorithm that is capable of realizing these Deployment
Constraints. These questions have not been addressed by this work so far
and, thus, are open for future research.

Deployment Variability In this work it was assumed that every Application
Component requires one specific infrastructure stack. This assumption was
made in order to decrease complexity. An alternative would be to allow that
an Application Component has multiple alternative infrastructure stacks
it may be deployed on. This opens up new opportunities for optimization
since the number of different Units may be decreased. There has been
research in this area (e.g. [FLM10]) connecting it to Mixed-Tenancy which,
however, is still open for future research.

Implementation of Additional Security Measures TheMixed-Tenancy ap-
proach was motivated as an approach to decrease the risk of a Tenant’s data
being accessed by other Tenants. The basic idea was that if two Tenants
do not share resources, it is possible to establish additional security mech-
anisms so separate their data. There are many suchmechanisms possible
(e.g. on a network level). However, they have not been explicitly analyzed
within this work. The reason for this is that it is assumed that they are very
specific to a given scenario. Thus, a detailed analysis of possible techniques
to enforce Mixed-Tenancy is open for future research.

Other non-functional Requirements This work was solely focused on giving
Customers the ability to express their Deployment Constraint about with
which other Tenants they feel comfortable to share resources. It did not
cover any other aspects like non-functional requirements such as the geo-
graphic location of the servers or guaranteed availability. There is related

167

Chapter 7: Summary and Conclusion

research that focuses on these aspects but combining it with the Mixed-
Tenancy approach is still open for future research.

Pricing Models In Section 5.5.3 it has been discussed that it is in the interest of
the Operator to provide incentives to Customers that allow sharing. Such
incentives may come through a pricing model that promotes sharing by
still allowing the Operator to earn a profit. The creation of such amodel is
out of scope for this work and, thus, an opportunity for future research.

Besides these general limitations and opportunities for future work, there are
additional limitations for every research question. For research question RQ-1
the following limitations and opportunities for future research exist.

Validation Techniques for Customer Grouping Oneof themajor shortcom-
ings of the DescriptionModel is that it requires the categorization of Ten-
ants (e.g. associating all German Tenants to the GermanGroup). If this data
is not accurate and up to date, the entire approach suffers as Deployment
Constraints expressed by Customer may not be met anymore. This work
did not propose any techniques to ensure accuracy of data. Thus, this is up
for future research. An interesting idea might be the creation of a collabora-
tive model where Customers maintain the data jointly. Another approach
would be to allow every Customer to maintain their view of the world and
aggregate the information for Deployment Computation. Both ideas may
actually promote the usage of technologies from the semantic web – which
have already been used within this work.

Constraint Definition User Interface Within this work the DescriptionMo-
del was proposed for the capturing of Deployment Constraints. It is not,
however, an intuitive way for Customers to express their Deployment Con-
straints. For this, it would be beneficial to have a special user interface.
Such a user interface may actually generalize the Deployment Constraints
to a more abstract level. It would be possible, for example, to provide the
abstract Deployment Constraints high, medium and low security. These
abstract Deployment Constraints may then be mapped to specific lower
level Deployment Constraints like high to having everything private, low
to having everything public andmedium to sharing the virtual machine
with everyone but the Application Component’s instance only with com-
panies from the Tenant’s continent but not with competitors. For the case
study conducted in Chapter 6, it was not possible to express for the database
Application Component other Deployment Constraints than the Private
one. Such a limitationmay not be covered by the DescriptionModel in its
current state. However, it may be covered by the user interface and such
mandatory constraints may be pre-filled.

With respect to research question RQ-2 this work has the following limitations.

Resource demand of Tenants When defining the General Mixed-Tenancy
Deployment Problem, two types of resource demands were defined. Those

168

Section 7.1: Discussion of Results

caused by Tenants and those cause by the Units. This work was limited to
optimization of the Resource Demand of Units since it was assumed that
the Resource Demand of Tenants may be handled through virtualization
technologies. However, this assumption is still open for validation, and if
it should be proven to not be true, may cause a significant opportunity for
future research.

Unlimited Resource Availability In the definition of the General Mixed-Ten-
ancy Deployment Problem, it was assumed that any lower Level Unit may
host an infinite number of Units on higher Levels. This assumption was
made in order to decrease the complexity of the problem. However, in
reality it may be wrong. Thus, addressing this issue is another opportunity
for future research. An initial analysis of the problem and a first indication
for a solution is given in Appendix C.

Deployment Computation Algorithm In this work two intuitive algorithmic
approacheswere proposed to approximate aValid andOptimalDeployment.
Further, it was proven that these approaches have a relative performance
guarantee not better than 2 (top-down approach) and 3/2 (bottom-up ap-
proach). Finding an algorithm with better performance is up to future
research. Furthermore, it may prove useful to apply techniques from the
area of artificial intelligence (e.g. simulated annealing [RN10]) to solve the
problem. This is, however, up to future research as well.

Finally, for research question RQ-3 the following opportunities for future research
have been identified.

Suitable Application The case study conducted in Chapter 6 was conducted
based on OpenERP. As discussed, due to its architecture, OpenERP was not
a very good application to be used in the case study. It is open for future
research to find another, more suitable application that allows deploying
individual Application Components independently from each other.

Communication Overhead Chapter 6 analyzed the problems of creating a
Mixed-Tenancy Deployment Platform. One of the problems identified,
was the development of a mechanism to establish communication among
Application Component instances. Thus, the Mixed-Tenancy connector
pattern was introduced. Within the description of the pattern, it was stated
that for every communication the Execution Engine is requested to return
the required destination. Since this is done every time, this causes overhead
and increases run-time. Thus, it is up for future research to optimize this
behavior. One possible way of doing that would be to store the requested in-
formation locally in the connectors and only update this information if the
deployment changed. To come up with a smart way of managing this, the
observer pattern ([GHJ94]) may be beneficial. It may allow extending the
pattern the way that only minimal communication needs to be established.

169

Chapter 7: Summary and Conclusion

7.2 Summary

This chapter summarized the entire work’s results by outlining its contributions,
limitations, and opportunities for future work.
Multi-Tenancy is an approach that promotes sharing of resources between

multiple Tenants. On the one hand, this allows Operators to exploit economies
of scale. On the other hand, the threat of data breachesmakesCustomers hesitant
to use Multi-Tenancy applications. In order to satisfy both, the Operator and the
Tenants, this work introduced theMixed-Tenancy approach to allowOperators to
utilize resources as efficiently as possible even if Customers express Deployment
Constraints that are to be considered. This work addressed some of the major
challenges involved with realizing theMixed-Tenancy approach.
It proposed a Description Model that allows Customers to express their De-

ployment Constraints about if or with whom they are willing to share specific
Application Components on specific Deployment Levels. This model was de-
signed to be very generic in order to be reusable for a wide variety of composite
Multi-Tenancy applications.
Based on all Deployment Constraints that are captured by the Description

Model, it is possible to extract the aggregation information about which Ten-
ants are allowed to share which Application Components on which Deployment
Level. This information is called Deployment Information. It is the input for
the Deployment Computation Algorithm, whose job is to compute a Valid and
Optimal Deployment. A Deployment is Valid if it applies to all Deployment
Constraints expressed by Customers. Furthermore, it is Valid and Optimal if it
only utilizes minimal cost. Within this work it was proven that the problem of
computing a Valid and Optimal deployment is NP-hard. Thus, it is not possible
to do that in polynomial time. However, two intuitive approaches were intro-
duced – top-down and bottom-up. They were analyzed both theoretically and
experimentally. The theoretical analysis revealed that they only have a relative
performance guarantee not better than 2 and 3/2. The experimental analysis
revealed that in most cases the top-down approach outperforms the bottom-up
approach. However, due of the complexity of the problem, it was not possible to
evaluate the overall quality of both approaches compared to an optimal solution.
The final step of the work was to evaluate the applicability of the Mixed-

Tenancy approach to existing real-world applications. This was done by per-
forming a case study where the approach was introduced to OpenERP, an open
source ERP-System. Based on this case study, it is possible to conclude that there
are cases where the Mixed-Tenancy approach may successfully be applied in
real-world.

Furthermore, even though the approach has only been applied to applications,
it is possible to apply the approach also to systems that are used to deliver the
other cloud computing service models Infrastructure-as-a-Service and Platform-
as-a-Service (e.g. Customers may choose with which other Customers their
virtual machines would be allowed to use the same hypervisor). Due to the lower
complexity of these cases, both the Description Model and the Deployment
Computation Algorithmmay be utilized without having to alter them.

170

Appendix A
Details related to Case Study

A.1. Description of Application Components 171

A.2. Evaluated Test Cases . 178

Not everything that can be counted counts and not
everything that counts can be counted.

Albert Einstein

This appendix’s purpose is to provide additional details for the case study con-
ducted in Chapter 6. In Section A.1 a detailed description of the created Appli-
cation Components may be found. Further, the test cases that were used for the
evaluationmay be found in Section A.2.
As already stated in the introduction of Chapter 6, the case study was con-

ducted in cooperation withMatthias Reinhardt, Malte Rupprecht, BjörnMorr,
and Brian Korduan.

A.1 Description of Application Components

It is the purpose of this section to give an overview of the 26 Application Com-
ponents that were created within the case study of this work. It was stated in
6.3.2 that Application Components were created based on the OpenERP apps the
standard version comes with. Thus, they are listed in the following style.

{technical app name} ({app name visible to Customers}) { brief descript-
ion of provided functionality based on [Ope13]} {(contains xx modules)}
{technical name of module 1}, {technical name of module 2}, {technical
name of app}, {technical name of module 3}

The following is the complete list of the created Application Components. De-
scription text of apps are direct quotes from the description of apps that are part
of the OpenERP documentation [Ope14].

171

Appendix A: Details related to Case Study

account (eInvoicing) Accounting and Financial Management. Financial and
accountingmodule that covers: * General Accounting * Cost/Analytic ac-
counting * Third party accounting * Taxes management * Budgets * Cus-
tomer and Supplier Invoices * Bank statements * Reconciliation process by
partner Creates a dashboard for accountants that includes: * List of Cus-
tomer Invoice to Approve * Company Analysis * Graph of Treasury The
processes like maintaining of general ledger is done through the defined
financial Journals (entry move line orgrouping is maintained through jour-
nal) for a particular financial year and for preparation of vouchers there is a
module named account_voucher. (Contains 7 modules)
account, base_setup, product, analytic, process, board, edi

account_accountant (Accounting and Finance) Accounting Access Rights
It gives the Administrator user access to all accounting features such as
journal items and the chart of accounts. It assigns manager and user access
rights to the Administrator and only user rights to the Demo user. (Contains
2 modules)
account_accountant, account_voucher

account_voucher (eInvoicing & Payments) Invoicing and Payments by Ac-
counting Voucher and Receipts The specific and easytouse Invoicing system
in OpenERP allows you to keep track of your accounting, even when you are
not an accountant. It provides an easy way to follow up on your suppliers
and Customers. You could use this simplified accounting in case you work
with an (external) account to keep your books, and you still want to keep
track of payments. The Invoicing system includes receipts and vouchers
(an easy way to keep track of sales and purchases). It also offers you an
easy method of registering payments, without having to encode complete
abstracts of account. This module manages: * Voucher Entry * Voucher
Receipt [Sales & Purchase] * Voucher Payment [Customer & Supplier] (Con-
tains 2 modules)
account_voucher, account

sale (Sales Management) Manage sales quotations and orders This applica-
tion allows you to manage your sales goals in an effective and efficient
manner by keeping track of all sales orders and history. It handles the
full sales workflow: * **Quotation** > **Sales order** > **Invoice** Prefer-
ences (only with Warehouse Management installed) If you also installed
theWarehouseManagement, you can deal with the following preferences: *
Shipping: Choice of delivery at once or partial delivery * Invoicing: choose
how invoices will be paid * Incoterms: International Commercial terms
You can choose flexible invoicingmethods: * *On Demand*: Invoices are
created manually from Sales Orders when needed * *On Delivery Order*:
Invoices are generated from picking (delivery) * *Before Delivery*: A Draft
invoice is created andmust be paid before delivery The Dashboard for the
Sales Manager will include * My Quotations * Monthly Turnover (Graph)

172

Section A.1: Description of Application Components

(Contains 2 modules)
sale, account_voucher

purchase (Purchase Management) Manage goods requirement by Purchase
Orders easily Purchase management enables you to track your suppliers
price quotations and convert them into purchase orders if necessary. Open-
ERP has several methods of monitoring invoices and tracking the receipt
of ordered goods. You can handle partial deliveries in OpenERP, so you
can keep track of items that are still to be delivered in your orders, and you
can issue reminders automatically. OpenERP’s replenishment management
rules enable the system to generate draft purchase orders automatically, or
you can configure it to run a lean process driven entirely by current produc-
tion needs. Dashboard / Reports for Purchase Management will include:
* Request for Quotations * Purchase Orders Waiting Approval * Monthly
Purchases by Category * Receptions Analysis * Purchase Analysis (Contains
4 modules)
purchase, procurement, process, stock

mail (Social Network) Business oriented Social Networking The Social Net-
workingmodule provides a unified social network abstraction layer allowing
applications to display a complete communication history on documents
with a fullyintegrated email andmessage management system. It enables
the users to read and send messages as well as emails. It also provides a
feeds page combined to a subscription mechanism that allows to follow
documents and to be constantly updated about recent news. Main Features
* Clean and renewed communication history for any OpenERP document
that can act as a discussion topic * Subscriptionmechanism to be updated
about newmessages on interesting documents * Unified feeds page to see
recentmessages and activity on followed documents * User communication
through the feeds page * Threaded discussion design on documents * Relies
on the global outgoing mail server an integrated email management sys-
tem allowing to send emails with a configurable schedulerbased processing
engine * Includes an extensible generic email composition assistant, that
can turn into a massmailing assistant and is capable of interpreting simple
placeholder expressions that will be replaced with dynamic data when
each email is actually sent. (Contains 3 modules)
mail, base, base_setup

hr_expense (Expense Management) Manage expenses by Employees This
application allows you tomanage your employees daily expenses. It gives
you access to your employees’ fee notes and give you the right to complete
and validate or refuse the notes. After validation it creates an invoice for
the employee. Employee can encode their own expenses and the validation
flow puts it automatically in the accounting after validation bymanagers.
The whole flow is implemented as: * Draft expense * Confirmation of the
sheet by the employee * Validation by his manager * Validation by the
accountant and receipt creation This module also uses analytic accounting

173

Appendix A: Details related to Case Study

and is compatible with the invoice on timesheet module so that you are
able to automatically reinvoice your Customers expenses if your work by
project. (Contains 4 modules)
hr_expense, account_accountant, hr, account_voucher

hr_timesheet_sheet (Timesheets) Record and validate timesheets and atten-
dances easily This application supplies a new screen enabling you tomanage
both attendances (Sign in/Sign out) and your work encoding (timesheet) by
period. Timesheet entries are made by employees each day. At the end of
the defined period, employees validate their sheet and themanager must
then approve his teams entries. Periods are defined in the company forms
and you can set them to runmonthly or weekly. The complete timesheet
validation process is: * Draft sheet * Confirmation at the end of the period
by the employee * Validation by the project manager The validation can be
configured in the company: * Period size (Day, Week, Month) * Maximal
difference between timesheet and attendances (Contains 4 modules)
hr_timesheet_sheet, process, hr_timesheet_invoice, hr_timesheet

event (Events Organisation) Organization andmanagement of Events. The
event module allows you to efficiently organise events and all related tasks:
planification, registration tracking, attendances, etc. Key Features * Manage
your Events and Registrations * Use emails to automatically confirm and
send acknowledgements for any event registration (Contains 4 modules)
event, board, base_setup, email_template

base_calendar (Calendar) This is a fullfeatured calendar system. It supports:
Calendar of events Recurring events If you need tomanage your meetings,
you should install the CRMmodule. (Contains 5 modules)
base_calendar, base, mail, base_action_rule, base_status

stock (Warehouse Management) Managemultiwarehouses,multi and struc-
tured stock locations The warehouse and inventory management is based
on a hierarchical location structure, fromwarehouses to storage bins. The
double entry inventory system allows you tomanage Customers, suppliers
as well as manufacturing inventories. OpenERP has the capacity to manage
lots and serial numbers ensuring compliance with the traceability require-
ments imposed by themajority of industries. Key Features * Moves history
and planning, * Stock valuation (standard or average price, ...) * Robustness
faced with Inventory differences * Automatic reordering rules * Support for
barcodes * Rapid detection of mistakes through double entry system * Trace-
ability (Upstream / Downstream, Serial numbers, ...) Dashboard / Reports
for Warehouse Management will include: * Incoming Products (Graph) *
Outgoing Products (Graph) * Procurement in Exception * Inventory Analy-
sis * Last Product Inventories * Moves Analysis (Contains 3 modules)
stock, product, account

contacts (Address Book) This module gives you a quick view of your address
book, accessible from your home page. You can track your suppliers, Cus-

174

Section A.1: Description of Application Components

tomers and other contacts. (Contains 2 modules)
contacts, mail

crm (CRM) The generic OpenERP Customer Relationship Management This
application enables a group of people to intelligently and efficientlymanage
leads, opportunities, meetings and phone calls. It manages key tasks such
as communication, identification, prioritization, assignment, resolution
and notification. OpenERP ensures that all cases are successfully tracked
by users, Customers and suppliers. It can automatically send reminders,
escalate the request, trigger specific methods andmany other actions based
on your own enterprise rules. The greatest thing about this system is that
users dont need to do anything special. The CRM module has an email
gateway for the synchronization interface between mails and OpenERP.
That way, users can just send emails to the request tracker. OpenERP will
take care of thanking them for their message, automatically routing it to
the appropriate staff and make sure all future correspondence gets to the
right place. Dashboard for CRMwill include: * Planned Revenue by Stage
and User (graph) * Opportunities by Stage (graph) (Contains 11 modules)
crm, base_setup, process, mail, base_action_rule, email_template, resource,
base_calendar, board, base_status, fetchmail

fleet (Fleet Management) Vehicle, leasing, insurances, cost With this mod-
ule, OpenERPhelps youmanaging all your vehicles, the contracts associated
to those vehicle as well as services, fuel log entries, costs andmany other fea-
tures necessary to the management of your fleet of vehicle(s) Main Features
* Add vehicles to your fleet *Manage contracts for vehicles * Reminder when
a contract reach its expiration date * Add services, fuel log entry, odometer
values for all vehicles * Show all costs associated to a vehicle or to a type of
service * Analysis graph for costs (Contains 1 modules)
fleet

hr (Employee Directory) Human ResourcesManagement This application en-
ables you to manage important aspects of your companys staff and other
details such as their skills, contacts, working time... You can manage: *
Employees and hierarchies : You can define your employee with User and
display hierarchies * HR Departments * HR Jobs (Contains 5 modules)
hr, resource, base_setup, mail, board

hr_evaluation (Employee Appraisals) Periodical Employees evaluation and
appraisals By using this application you canmaintain the motivational pro-
cess by doing periodical evaluations of your employees performance. The
regular assessment of human resources can benefit your people as well your
organization. An evaluation plan can be assigned to each employee. These
plans define the frequency and the way youmanage your periodic personal
evaluations. You will be able to define steps and attach interview forms
to each step. Manages several types of evaluations: bottomup, topdown,

175

Appendix A: Details related to Case Study

selfevaluations and the final evaluation by themanager. Key Features * Abil-
ity to create employees evaluations. * An evaluation can be created by an
employee for subordinates, juniors as well as his manager. * The evaluation
is done according to a plan in which various surveys can be created. Each
survey can be answered by a particular level in the employees hierarchy.
The final review and evaluation is done by the manager. * Every evaluation
filled by employees can be viewed in a PDF form. * Interview Requests are
generated automatically by OpenERP according to employees evaluation
plans. Each user receives automatic emails and requests to perform a peri-
odical evaluation of their colleagues. (Contains 4 modules)
hr_evaluation, base_calendar, hr, survey

hr_holidays (Leave Management) Manage leaves and allocation requests.
This application controls the holiday schedule of your company. It allows
employees to request holidays. Then, managers can review requests for
holidays and approve or reject them. This way you can control the overall
holiday planning for the company or department. You can configure several
kinds of leaves (sickness, holidays, paid days, ...) and allocate leaves to an
employee or department quickly using allocation requests. An employee
can also make a request for more days off by making a new Allocation. It
will increase the total of available days for that leave type (if the request
is accepted). You can keep track of leaves in different ways by following
reports: * Leaves Summary * Leaves by Department * Leaves Analysis A
synchronization with an internal agenda (Meetings of the CRMmodule)
is also possible in order to automatically create a meeting when a holiday
request is accepted by setting up a type of meeting in Leave Type. (Contains
5 modules)
hr_holidays, resource, hr, process, base_calendar

hr_recruitment (Recruitment Process) Manage job positions and the re-
cruitment process This application allows you to easily keep track of jobs,
vacancies, applications, interviews... It is integrated with the mail gateway
to automatically fetch email sent to <jobs@yourcompany.com> in the list
of applications. Its also integrated with the document management system
to store and search in the CV base and find the candidate that you are look-
ing for. Similarly, it is integrated with the survey module to allow you to
define interviews for different jobs. You can define the different phases of
interviews and easily rate the applicant from the kanban view. (Contains 7
modules)
hr_recruitment, hr, survey, decimal_precision, base_calendar, base_status,
fetchmail

lunch (Lunch Orders) The base module to manage lunch. Many companies
order sandwiches, pizzas and other, from usual suppliers, for their employ-
ees to offer themmore facilities. However lunches management within the
company requires proper administration especially when the number of
employees or suppliers is important. The “Lunch Order” module has been

176

Section A.1: Description of Application Components

developed tomake thismanagement easier but also to offer employeesmore
tools and usability. In addition to a full meal and supplier management,
this module offers the possibility to display warning and provides quick
order selection based on employee’s preferences. If you want to save your
employees time and avoid them to always have coins in their pockets, this
module is essential. (Contains 2 modules)
lunch, base

mrp (MRP) Manage theManufacturing process in OpenERP Themanufactur-
ing module allows you to cover planning, ordering, stocks and the man-
ufacturing or assembly of products from raw materials and components.
It handles the consumption and production of products according to a
bill of materials and the necessary operations on machinery, tools or hu-
man resources according to routings. It supports complete integration and
planification of stockable goods, consumables or services. Services are com-
pletely integrated with the rest of the software. For instance, you can set up
a subcontracting service in a bill of materials to automatically purchase on
order the assembly of your production. Key Features * Make to Stock/Make
to Order * Multilevel bill of materials, no limit * Multilevel routing, no limit
* Routing and work center integrated with analytic accounting * Periodical
scheduler computation * Allows to browse bills of materials in a complete
structure that includes child and phantom bills of materials Dashboard /
Reports for MRP will include: * Procurements in Exception (Graph) * Stock
Value Variation (Graph) *Work Order Analysis (Contains 7 modules)
mrp, resource, product, process, purchase, stock, procurement

procurement (Procurements) This is the module for computing Procure-
ments. In the MRP process, procurements orders are created to launch
manufacturing orders, purchase orders, stock allocations. Procurement
orders are generated automatically by the system and unless there is a prob-
lem, the user will not be notified. In case of problems, the systemwill raise
some procurement exceptions to inform the user about blocking problems
that need to be resolvedmanually (like, missing BoM structure or missing
supplier). The procurement order will schedule a proposal for automatic
procurement for the product which needs replenishment. This procure-
ment will start a task, either a purchase order form for the supplier, or a
production order depending on the products configuration. (Contains 5
modules)
procurement, base, process, product, stock

project (Project Management) Track multilevel projects, tasks, work done
on tasks This application allows an operational projectmanagement system
to organize your activities into tasks and plan the work you need to get the
tasks completed. Gantt diagrams will give you a graphical representation of
your project plans, aswell as resources availability andworkload. Dashboard
/ Reports for Project Management will include: * My Tasks * Open Tasks *
Tasks Analysis * Cumulative Flow (Contains 9 modules)

177

Appendix A: Details related to Case Study

project, base_setup, product, analytic, mail, web_kanban, resource, board,
base_status

note (Notes) This module allows users to create their own notes inside Open-
ERP Use notes to write meeting minutes, organize ideas, organize personnal
todo lists, etc. Each user manages his own personnal Notes. Notes are avail-
able to their authors only, but they can share notes to others users so that
several people can work on the same note in real time. Its very efficient to
share meeting minutes. Notes can be found in the Homemenu. (Contains 2
modules)
note, mail

point_of_sale (Point of Sale) Quick and Easy sale process This module allows
you tomanage your shop sales very easilywith a fullywebbased touchscreen
interface. It is compatible with all PC tablets and the iPad, offeringmultiple
payment methods. Product selection can be done in several ways: * Using
a barcode reader * Browsing through categories of products or via a text
search. Main Features * Fast encoding of the sale * Choose one payment
method (the quick way) or split the payment between several payment
methods * Computation of the amount of money to return * Create and
confirm the picking list automatically * Allows the user to create an invoice
automatically * Refund previous sales (Contains 2 modules)
point_of_sale, sale_stock

portal (Portal) Customize access to your OpenERP database to external users
by creating portals. A portal defines a specific user menu and access rights
for its members. This menu can ben seen by portal members, anonymous
users and any other user that have the access to technical features (e.g. the
administrator). Also, each portal member is linked to a specific partner.
Themodule also associates user groups to the portal users (adding a group
in the portal automatically adds it to the portal users, etc). That feature is
very handy when used in combination with the module share. (Contains 4
modules)
portal, base, share, auth_signup

project_issue (Issue Tracker) Track Issues/BugsManagement for Projects This
application allows you tomanage the issues youmight face in a project like
bugs in a system, client complaints or material breakdowns. It allows the
manager to quickly check the issues, assign them and decide on their status
quickly as they evolve. (Contains 4 modules)
project_issue, base_status, crm, project

A.2 Evaluated Test Cases

The following lists the test cases that were created to evaluate if it was possible to
apply theMixed-Tenancy approach to OpenERP successfully.

178

Section A.2: Evaluated Test Cases

ID Description Steps

TCMMI0001 read a inboxmessage 1. left click module Messaging
2. left click Inbox
3. left click on amessage

TCMMI0002 compose a newmessage 1. left click module Messaging
2. left click Inbox
3. left click compose a newmessage
4. fill in Recipients(hans@hans.de)
5. click create hans@hans.de
6. fill in subject :hans
7. fill in message :hans
8. left click :send

TCMMTM0001 open to:memessages 1. left click module Messaging
2. left click to: me

TCMMTM0002 mark a to: memessage as to: do 1. left click module Messaging
2. left click to: me
3. left click at Mark as todo (Button
seems like a favorite star)

TCMMTD0001 open to-do list 1. left click module Messaging
2. left click to: do

TCMMTD0002 completing a to-do task 1. left click module Messaging
2. left click to: do
3. left click done (checkmark on the
right side)

TCMMTD0003 repeating TCM-0006: complet-
ing a to-do task

1. left click module Messaging
2. left click to: do
3. left click done (checkmark on the
right side)

TCMOCA0001 open calender 1. left click module Messaging
2. left click Calender

TCMOCA0002 create meeting in calender 1. left click module Messaging
2. left click Calender - go to list view
3. left click Create
4. fill in Meeting Subject :Betrieb-
srat13&14
5. fill in attendees :hans@hans.de
6. set starting at 11/13/2013 10:00:14
7. create and set the tag :Betriebsrat
8. fill in location :Darmstadt
9. fill in duration :2
10. fill in Description :Hallo 11&13
11. left click save

TCMONO0001 open notes 1. left click module Messaging
2.left click notes

TCMONO0002 create a new note 1. left click module Messaging
2.left click notes
3. left click create
4. fill in tag :Hans
5. fill in text BlaBla
6. save

TCMMGJAG0001 open join a group 1. left click Messaging
2. left click join a group

179

Appendix A: Details related to Case Study

ID Description Steps

TCSSCU0001 open Customers 1. left click module Sales
2. left click Customers

TCSSCU0002 create Customer 1. left click module Sales
2. left click Customers
3. left click create
4. fill in Name:Peter
5. left click save

TCSSLE0001 open leads 1. left click module Sales
2. left click leads

TCSSLE0002 read a lead 1. left click module Sales
2. left click leads
3. select a lead

TCSSLE0003 convert lead to oppertunity 1. left click module Sales
2. left click leads
3. select a lead
4. left click convert to opportunity
5. select Conversion Action :Convert
to opportunity
6. select Related Customer :Create a
new Customer
7. left click Create Opportunity

TCSSQU0001 select Quotations 1. left click module Sales
2. left click Quotations

TCSSQU0002 create a Quotation 1. left click module Sales
2. left click Quotations
3. left click create
4. select Customer:Agrolait
5. select Contract/Analytic :Your
Company/Internal/Administrative
6. left click save

TCSSSO0001 select Sales Orders 1. left click module Sales
2. left click Sales Orders

TCSSSO0002 cancel an order 1. left click module Sales
2. left click Sales Orders
3. select an order
4. left click Cancel Order

TCSSCO0001 create a contract 1. left click module Sales
2. left click contracts
3. click create
4. fill in datas
5. click save

TCSASSCL0001 create a claim 1. left click module Sales
2. left click Claims
3. click create
4. fill in datas
5. click save

TCSASSCL0002 settle a claim 1. left click module Sales
2. left click Claims
3. select Claim
4. click Settle

180

Section A.2: Evaluated Test Cases

ID Description Steps

TCSASSCL0003 Reject a claim 1. left click module Sales
2. left click Claims
3. select Claim
4. click Reject

TCSICTR0001 create a contract to renew 1. left click module Sales
2. left click contracts to renew
3. click create
4. fill in datas
5. click save

TCWRDBOIS0001 create a incomming Shipment 1. left click moduleWarehouse
2. select Incomming Shipments
3. left click create
4- fill in test datas
5. left click save

TCWRDBOIS0002 confirm and receive a incom-
ming Shipment

1. left click moduleWarehouse
2. select Incomming Shipments
3.choose a incomming Shipment
4. left click confirm and receive

TCWRDBODO0001 create a delivery order 1. left click moduleWarehouse
2. select Delivery Orders
3. left click create
4. fill in test datas
5. click save

TCWRDBODO0002 force availability of a delivery or-
der

1. left click moduleWarehouse
2. select Delivery Orders
3. choose a delivery order
4. left click Force Availability

TCWRDPIP0001 share incomming products 1. left click moduleWarehouse
2. select incomming products
3. mark incomming products
4. left click more
5. left click share
6. choose Email as sharing option
7. fill in text
8. left click send

TCWRDPDP0001 create deliver product 1. left click moduleWarehouse
2. select Deliver Products
3. left click create
4. fill in test datas
5. click save
6. click process later

TCWICPI0001 create a physical inventory 1. left click moduleWarehouse
2. select physical inventory
3. left click create
4. left click save
5. left click confirm inventory

181

Appendix A: Details related to Case Study

ID Description Steps

TCWSPE0001 compute stockminimum rules 1. left click moduleWarehouse
2. select Procurement Exceptions
3. mark products
4. left click more
5. select Compute Stock minimum
Rules
6. click Compute Stock in popup win-
dow

TCWPP0001 create a product 1. left click moduleWarehouse
2. select Products
3. left click create
4. fill in Testdatas
5. left click save

TCWPP0002 print created product 1. after step 4 of TCW-0010
select print
2. click product labels

TCEEOE0001 create an event 1. left click module Events
2. select Events
3. left click create
4. fill in datas
5. left click save

TCEEOR0001 confirm a registration 1. left click module Events
2. select Registrations
3. choose and select a registration
4.left click confirm

TCRDMD0001 select My Dashboard 1. left click module Reporting
2. select My Dashboard

TCRDC0001 select CRM 1. left click module Reporting
2. select CRM

TCRDS0001 select Sales 1. left click module Reporting
2. select Sales

TCRDPU0001 select Purchases 1. left click module Reporting
2. select Purchases

TCRDW0001 selectWarehouse 1. left click module Reporting
2. selectWarehouse

TCRDM0001 select Manufacturing 1. left click module Reporting
2. select Manufacturing

TCRDPR0001 select Project 1. left click module Reporting
2. select Project

TCRDE0001 select Events 1. left click module Reporting
2. select Events

TCRDA0001 select Accounting 1. left click module Reporting
2. select Accounting

TCRDF0001 select Fleet 1. left click module Reporting
2. select Fleet

TCRDHR0001 select Human Resources 1. left click module Reporting
2. select Human Resources

TCRSUPS0001 select Print Surveys 1. left click module Reporting
2. select Print Surveys

182

Section A.2: Evaluated Test Cases

ID Description Steps

TCRSUSS0001 select Surveys Statistics 1. left click module Reporting
2. select Surveys Statistic

TCRSUSA0001 select Surveys Answers 1. left click module Reporting
2. select Surveys Answers

TCRSUBA0001 select Browse Answers 1. left click module Reporting
2. select Browse Answer

TCRSLA0001 select Leads Analysis 1. left click module Reporting
2. select Leads Analysis

TCRSOA0001 select Opportunities Analysis 1. left click module Reporting
2. select Opportunities Analysis

TCRSSA0001 select Sales Analysis 1. left click module Reporting
2. select Sales Analysis

TCRSPCA0001 select Phone Calls Analysis 1. left click module Reporting
2. select Phone Calls Analysis

TCRPUPA0001 select Purchase Analysis 1. left click module Reporting
2. select Purchases Analysis

TCRWRA0001 select Receptions Analysis 1. left click module Reporting
2. select Receptions Analysis

TCRWLPI0001 select Last Product Inventories 1. left click module Reporting
2. select Product Inventories

TCRWMA0001 select Moves Analysis 1. left click module Reporting
2. select Moves Analysis

TCRWIA0001 select Inventory Analysis 1. left click module Reporting
2. select Inventory Analysis

TCRPRTA0001 select Tasks Analysis 1. left click module Reporting
2. select Tasts Analysis

TCRPRCF0001 select Cumulative Flow 1. left click module Reporting
2. select Cumulative Flow

TCRPRCA0001 select Claims Analysis 1. left click module Reporting
2. select Claims Analysis

TCRPRIA0001 select Issues Analysis 1. left click module Reporting
2. select Issues Analysis

TCREEA0001 select Events Analysis 1. left click module Reporting
2. select Events Analysis

TCRAIA0001 select Invoices Analysis 1. left click module Reporting
2. select Invoices Analysis

TCRAEA0001 select Entries Analysis 1. left click module Reporting
2. select Entries Analysis

TCRATA0001 select Treasury Analysis 1. left click module Reporting
2. select Teasury Analsyis

TCRASRA0001 select Sales Receipts Analysis 1. left click module Reporting
2. select Sales Receipts Analysis

TCRAAEA0001 select Analytic Entries Analysis 1. left click module Reporting
2. select Analytic Entries Analysis

TCRHRRA0001 select Recruitment Analysis 1. left click module Reporting
2. select Recruitment Analysis

183

Appendix A: Details related to Case Study

ID Description Steps

TCRHREA0001 select Expenses Analysis 1. left click module Reporting
2. select Expenses Analysis

TCRHRAA0001 select Appraisal Analysis 1. left click module Reporting
2. select Appraisal Analysis

TCRHRET0001 select Employee Timesheet 1. left click module Reporting
2. select Employee Timesheet

TCRHRTA0001 select Timesheet Analysis 1. left click module Reporting
2. select Timesheet Analysis

TCRHRTSA0001 select Timesheet Sheet Analysis 1. left click module Reporting
2. select Timesheet Sheet Analysis

TCRHRLA0001 select Leaves Analysis 1. left click module Reporting
2. select Leaves Analysis

TCRHRR0001 select Reports 1. left click module Reporting
2. select Reports

TCRFCA0001 select Costs Analysis 1. left click module Reporting
2. select Costs Analysis

TCRFICA0001 select Indicative Costs Analysis 1. left click module Reporting
2. select Indicative Costs Analysis

TCRPOSOA0001 select Orders Analysis 1. left click module Reporting
2. select Orders Analysis

TCRPOSSD0001 select Sale Details 1. left click module Reporting
2. select Sale Details

TCMAMMO0001 creat a manufacturing order 1. left click module Manufacturing
2. select Manufacturing Orders
3. left click create
4. left click save
5. left click Confirm Production

TCMAPBOM0001 share bills of materials 1. left click module Manufacturing
2. select Bill of Materials
3. mark some bills
4. left click more
5. left click share
6. choose share method Email
7. fill in text
8. left click share

TCLLNO0001 order a newmeal 1. left click module Lunch
2. select NewOrder
3. choose a produkt
4. save orders

TCLLYLA0001 create a new lunch account 1. left click module Lunch
2. select Your Lunch Account
3. Left click Create

TCLCP0001 create meal 1. left click module Lunch
2. select Products
3. Left click Create
4. fill in datas
5. left click save

184

Section A.2: Evaluated Test Cases

ID Description Steps

TCLCPC0001 create product categories 1. left click module Lunch
2. select Product Categories
3. Left click Create
4. fill in datas
5. left click save

TCACCI0001 select Customer invoices 1. left click select module:Accounting
2. choose a Customer invoice

TCACCI0002 validate a Customer invoice 1. left click select module:Accounting
2. choose a Customer invoice
3. left click validate

TCACCR0001 create a Customer refund 1. select module : Accounting
2. select Customer Refunds
3. click create
4. fill in datas
5. click save

TCACC0001 select Customer 1. left click select module:Accounting
2. select Customers

TCACC0002 create a new Customer 1. left click select module:Accounting
2. select Customers
3. left click create
4. fill in name :Hans
5. left click save

TCASSR0001 Validate supplier refund 1. left click module Accounting
2. select Supplier Refund
3. choose a supplier refund
4. left click validate

TCASPR0001 create purchase receipts 1. left click module Accounting
2. select Purchase Receipts
3. left click create
4. fill in fields
5. save

TCASPR0002 validate purchase receipts 1. left click module Accounting
2. select Purchase Receipts
3. choose a purchase receipt
4. click validate

TCASSP0001 create a supplier payment 1. left click module Accounting
2. select supplier payment
3. fill in datas
4. click save

TCABACBS0001 create a bank statement 1. left click module Accounting
2. select Bank Statements
3. click create
4. fill in datas
5. click save

TCAJEJE0001 create journal entries 1. left click module Accounting
2. select Journal Entries
3. left click create
4. fill in fields
5. left click save

185

Appendix A: Details related to Case Study

ID Description Steps

TCACCOA0001 open a charts of account 1.openmodule :Accounting
2.select Charts of Accounts
3. choose fiscal year
4. click open Charts

TCAPPRE0001 create recurring entries 1. select module Accounting
2. select Recurring Entries
3. select Define Recurring Entries
4. click create
5. fill in datas
6. click save

TCACA0001 create a bank account 1. click module Accounting
2. select accounts
3. select Setup Your Bank Account
4. click create
5.choose Bank Type Account
6.fill in account number
7. click save

TCACT0001 create Texas 1. left click module Accounting
2. select Texas under Configurations
3. left click create
4. fill in fields
5. save texas

TCTSS0001 create a survey 1. left click module Tools
2. select Surveys
3. left click create
4. fill in datas
5. left click save

TCTSSR0001 create a survey request 1. left click module Tools
2. select Survey Requests
3. left click create
4. fill in datas
5. left click save

TCTSSP0001 create survey page 1. left click module Tools
2. select Survey Pages
3. left click create
4. fill in datas
5. left click save

TCPUPQ0001 creating a quotation 1. left click module Purchases
2. left click Quotations
3. left click create
4. fill fields
5. left click safe

TCPUPQ0002 delete all quotations 1. left click module Purchases
2. left click Quotations
3. mark all Quotations
4. left click more
5. left click delete

186

Section A.2: Evaluated Test Cases

ID Description Steps

TCPUPPO0001 embed a purchase order 1. left click module Purchase
2. select Purchase Orders
3. mark a purchase order
4. left click more
5. left click embed
6. choose sharingmessage :Email
7. left click save

TCPUIPIS0001 receive incomming shipments 1. left click module Purchase
2. select incomming Shipments
3. open a incomming shipment
4. click receive

TCPUICODI0001 confirm draft invoices 1. left click module Purchase
2. select on draft invoices
3. mark a draft invoice
4. click more
5. click confirm draft invoice

TCPUICOIS0001 return an incoming shipment 1. left click module Purchase
2. select Incoming Shipment
3. mark the shipments, you want to
return
4. click more
5. click return Shipments
6 fill in datas
7 click return

TCPUPP0001 create a product 1. left click module Purchase
2. select products
3. left click create
4. fill in fields
5. left click safe

TCHRHRE0001 create a employee 1. left click module Human Resources
2. select Employees
3. left click create
4. fill in datas
5. left click save

TCHRHRE0002 delete employees 1. left click module Human Resources
2. select Employees
3. mark some employees
4. click more
5. click delete

TCHREE0001 create expenses 1. left click module Human Resources
2. select Expenses
3. left click create
4. fill in Datas
5. left click save

TCHRLAR0001 approve a allocation request 1. left click module Human Resources
2. select Allocation Requests
3. choose a request
4. left click approve

187

Appendix A: Details related to Case Study

ID Description Steps

TCHRAA0001 create a appraisal 1. left click module Human Resources
2. select Appraisal
3. click create
4. choose fields
5. click save

TCHRCJP0001 create a Job Position 1. left click module Human Resources
2. select Job Positions
3. left click create
4. fill in datas
5. left click save

TCHRCD0001 create a department 1. left click module Human Resources
2. select Department
3. left click create
4. fill in datas
5. left click save

TCPOSDOYS0001 open Your Session 1. left click module Point of Sale
2. left click Your Session

TCPOSDOYS0002 creating new session 1. left click module Point of Sale
2. left click Your Session
3. left click New Session

TCPOSDOYS0003 close session 1. left click module Point of Sale
2. left click Your Session
3. left click Close Session
4. left click Validate closing & post
entries

TCPOSDOAS0001 put money in a session 1. left click module Point of Sale
2. select All Sessions
3. mark the sessions where you want
to put money in
4. click more
5. click Put Money in

TCPOSPPC0001 open Product Catogories 1. left click module Point of Sale
2. left click Product Catogories

TCPOSPP0001 export Products 1. left click module Point of Sale
2. left click Products
3. mark products
4. click more
5. click export
6. click export to file

TCPOSCPOS0001 create a point of sale 1. left click module Point of Sale
2. left click Point of Sales
3. left click create
4. fill in datas
5. click save

TCPOSCPOS0002 set the created point of sale
from TCPOS-0007 to inactive

1. left click module Point of Sale
2. left click Point of Sales
3. select a point of sale
4. click Set to Inactive

188

Section A.2: Evaluated Test Cases

ID Description Steps

TCPOSCPM0001 embed Payment method 1. left click module Point of Sale
2. left click PaymentMethods
3. mark payment method
4. click more
5. click embed
6. sharing method direct link or em-
bed code
5.click share

TCPRPP0001 open Projects 1. left click module:Project
2. left click Projects

TCPRPP0002 create a new project 1. left click module:Project
2. left click Projects
3. fill in project name :test
4. left click save

TCPRPT0001 select Tasks 1. left click module:Project
2. left click Tasks

TCPRPT0002 create a new task 1. left click module:Project
2. left click Tasks
3.left click create
4. fill in taskname :taskname
5. left click save

TCPRPI0001 select Issues 1. left click module Project
2. left click Issues

TCPRPI0002 create a issue 1. left click module Project
2. left click Issues
3. left click create
4. fill in Issuename Issue
5. left click save

TCPRPI0003 mark issue as done 1. left click module Project
2. left click Issues
3. select the Issue :Issue
4. left click done

TCPRPI0004 cancel issue 1. left click module Project
2. left click Issues
3. select the Issue :Issue
4. left click Cancel Issue

TCPRLTPPP0001 Create project phase 1. left click module Project
2. left click Project Phases
3. left click create
4. fill in datas
5. left click save & close

TCPRLTPTP0001 Create team planing 1. left click module Project
2. left click Team Planning
3. left click create
4. fill in datas
5. left click save & close

TCPRSSP0001 Schedule Phases 1. left click module Project
2. left click Schedule Phases
3. fill in datas
4. left click compute

189

Appendix A: Details related to Case Study

ID Description Steps

TCPRSST0001 Schedule Tasks 1. left click module Project
2. left click Schedule Tasks
3. fill in datas
4. left click compute

TCPRICTR0001 create a contract to renew 1. left click module Project
2. left click Contracts to Renew
3. left click create
4. fill in datas
5. left click save

TCPRIIT0001 create a invoice task 1. left click module Project
2. left click Invoice Task
3. left click create
4. fill in datas
5. left click save

TCPRCR0001 Create resource 1. left click module Project
2. unfold Resources
3. left click Resources
4. left click create
5. fill in datas
6. left click save

TCPRCRL0001 Create resource leave 1. left click module Project
2. unfold Resources
3. left click Resource Leaves
4. left click create
5. fill in datas
6. left click save

TCPRCWT0001 Create working time 1. left click module Project
2. unfold Resources
3. left clickWorking Time
4. left click create
5. fill in datas
6. left click save

TCFVV0001 create a vehicle 1. left click module Fleet
2. select Vehicles
3. Left click Create
4. fill in datas
5. left click save

TCFVVCON0001 delete vehicle contracts 1. left click module Fleet
2. select Vehicle Contracts
3. mark vehicles
4. left click more
5. left click delete

TCFVVCOS0001 set vehicle costs 1. left click module Fleet
2. select Vehicle Costs
3. Left click Create
4. set costs
5. left click save

Table A.1.: Successfully Executed Test Cases

190

Appendix B
Mixed-Tenancy: Changes over Time

B.1. ProblemAnalysis . 191

B.2. Computation of aMigration Plan 194

B.2.1. Abstraction on a Problem of Graphs Theory 195

B.2.2. Complexity of Finding aMigration Plan 196

B.2.3. Computation of a Migration Plan 197

B.3. Conclusion . 199

Any change, even a change for the better, is always
accompanied by drawbacks and discomforts.

Arnold Bennett

So far, this work has only dealt with the computation and realization of an initial
deployment. In reality, however, it is very likely that a deployment that has been
created at some point will need to change. This need to changemay be caused, for
example due to a changing customer base. This appendix presents some initial
concepts for tackling this challenge.

This appendix is structured as follows. Section B.1 starts this appendix by ana-
lyzing the problem that shall be addressed. Based on this, Section B.2 discusses
how the problem at handmay be tackled by abstracting it to a problem of graph
theory. However, at this point it will be become evident that problem is in fact
very complex andmay not be solved easily. Thus, this section will also introduce
an approach that allows to approximate an optimal solution for the problem.
Section B.3 will close this appendix by drawing a conclusion.

The results, that are presented by this appendix, have been created in coopera-
tion with Candide Orou-Yorouba. Candide created the results of this appendix
in his Master’s Thesis [OY13]. I supervised his thesis and guided him throughout
the project.

B.1 Problem Analysis

So far in this work it has only been discussed how a Customer may express their
Deployment Constraints, how a Valid and Optimal Deployment may be com-

191

Appendix B: Mixed-Tenancy: Changes over Time

puted, and how this Deployment may initially be created. However, once created
it is certain that the Deployment will have to change at some point. The need for
changing the provisioned Deployment may be caused by the following triggers.

Changes of Customer base At some point it is very likely that the Customer
base changes. This may either be since new Tenants want to use the applica-
tion or existing Tenants choose not to use the application anymore.

Changes of Existing Deployment Constraints At some point it may be pos-
sible that a Tenants chooses to change their Deployment Constraints. Rea-
sons for this may bemanifold.

Customers Grouping Changes It may also be possible that the assignment
of Tenant to Groups changes. This, for example, may be necessary since
a Customer extends their area of business into a new industry or starts
operating in a new geographic region.

The three reasons that have just been introduced may all require that a new
Deployment is computed and realized.

Please note that it is not necessary to change the Deployment if new Users are
introduced to the system or old ones are removed. This is due to the fact that it
was one assumption of this work that it is possible to scale the infrastructure up
and down according to the resource demand of Tenants.
However, once the Deployment Constraints have changed, the first step is to

actually compute a new Valid and Optimal Deployment that applies to the new
DeploymentConstraints. This newdeployment is captured by a newDeployment
Configuration. For this work, the two deployments are referred to as Initial
Deployment and Target Deployment.

Definition 31 (Initial Deployment) The deployment that has been realized
and is running at the point of time when Deployment Constraints change, is
referred to as Initial Deployment. It is the Deployment that shall be transformed
into the Target Deployment.

Definition 32 (Target Deployment) The Target Deployment is the new De-
ployment that shall be created based on the new Deployment Information.

Once the Target Deployment has been computed, the next step is to actually
introduce it.
When taking into consideration that the running application shall not be

stopped, there are two strategies to do that. The first one realizes the Target on
new infrastructure and migrate the Tenants from the old Deployment to the
new one. The disadvantage of this strategy is that it will require the Operator to
utilize lots of resources since at some point in time there will be two complete
Deployments running. The second and favorable strategy is to sequentially
transform the Initial Deployment into the Target Deployment through a series of
Migration Operations. The advantage of this is that it is not necessary to create
an entire new Deployment of the application.

192

Section B.1: Problem Analysis

Definition 33 (Migration Operations) A Migration Operation is a single,
atomic activity that transforms aDeployment. EachMigrationOperationhas cost
that is specific to the Operation, the Unit it is applied to, and the environment in
which it is executed1.

When conducting the research, it was possible to gain the conclusion that it is
only necessary to distinguish the following six Migration Operations.

Creation of Unit A new Unit is created of a specific Deployment Level. This
shall only be done if there exists no other Unit of this Deployment Level
that has just been created and is not in use yet.

Deletion of Unit AUnit of a specific Deployment Level is withdrawn or deleted.
This shall only be possible if there exist no higher Level Units that are hosted
by the Unit to be deleted.

Movement of Unit A Unit of a specific Deployment Level is moved from one
lower Level Unit to another. If this is done, all Units that are deployed on
themoving Unit are moved as well.

Creation of new Tenant A new Tenant is registered at the application and the
Units this Tenant is supposed to use.

Deletion of existing Tenant An existing Tenant is removed from the System.
All its data is deleted or archived.

Movement of existing Tenant A Tenant’s data is moved from one Unit to an-
other. This may, obviously, only be done between Units of the same De-
ployment Level (and Application Components in case of Deployment Level
dl1).

For the realization of these Operations there are known patterns in literature.
Some of them were defined and discussed as part of this research in [Feh+13].
However, the more interesting challenge withinMixed-Tenancy is to determine
the necessary operations and their order to transform the Initial Deployment
into the Target one. This is in fact the problem of creating theMigration Plan.

Definition 34 (Migration Plan) AMigrationPlan is a sorted list ofMigration
Operations that migrate an Initial Deployment into the Target Deployment in an
optimal way.

For theMigration Plan there are two things that shall be considered.

Target Constraints At any point of time the deployment of the application
shall apply to the Deployment Constraints of the Target Deployment.

1Since the cost is specific to the environment, for this work it has been assumed that the cost is
given from a cost function that needs to be implemented specifically for an environment.

193

Appendix B: Mixed-Tenancy: Changes over Time

Minimal Migration Cost In order to contribute to the Operator’s interest, the
optimization criteria for the algorithm computing the Migration Plan shall
be that a Migration Plan only causes minimal cost. The cost of a Migration
Plan is the sum of costs of all Migration Operations.

Figure B.1 gives a trivial example. In the Initial Deployment of the example
there are two Tenants each using their own Unit of an Application Component.
In the Target Deployment both Tenants share the same Unit. To perform this

B A

2
ac1

u1
ac1

u

B A

1
ac1

u

Initial Deployment Target Deployment

Figure B.1.: Trivial Example Migration

transformation, there are three Migration Plans possible.

1. Migrate Tenant A to Unit u2
ac1.

2. Migrate Tenant B to Unit u1
ac1.

3. Create a new Unit u3
ac1.

Migrate both Tenants to this Unit u3
ac1.

All three Plans would be possible Migration Plans to perform the transformation.
When thinking about which one would be themost optimal, it is quite obvious
that Migration Plan 3 will always require more cost than 1 and 2. However,
whether Migration Plan 1 or 2 is the less costly one, may depend onmany factors
(e.g. data volume attached to Tenants).

Thus, the question to be addressed by this appendix is how an optimal Migra-
tion Plan can be found for a given scenario.

B.2 Computation of a Migration Plan

Based on the problem analysis of the previous section, this section will present
a solution approach. The idea of this approach is to abstract the introduced
problem of finding a Migration Plan to a graph. However, if this is done, a
problem of significant complexity arises.

The section starts with the discussion how the problem of finding an optimal
Migration Planmay be abstracted to a graph (Subsection B.2.1). Based on this, the
complexity of solving the problem is analyzed by Subsection B.2.2. Concluding
this section, Subsection B.2.3 introduces an algorithm that strives to find an
optimal Migration Plan.

194

Section B.2: Computation of a Migration Plan

B.2.1 Abstraction on a Problem of Graphs Theory

In the problemanalysis a trivialmigration examplewas given (Figure B.1). For this
example, a total of three possible Migration Plans would be possible and it was
stated that which one is the optimal Migration Plan depends on the cost of the
Migration Operations. It is quite obvious that the number of possible Migrations
Plans will rise with amore complex example. Furthermore, the trivial example
only consisted of a single Deployment Level. However, as it was discussed in this
work, there may bemultiple Deployment Levels.

In order to investigate this further, Figure B.2 illustrates a more complex ex-
ample. In this example there is a total of five Tenants. The Tenants A, B, and

1
2u

B A

2
ac1

u1
ac1

u

B A

1
ac1

u

Initial Deployment Target Deployment

D D

1
2u

C

2
2u

2
ac1

u

E

Figure B.2.: A more complex Example Migration

D are in both, the Initial and the Target Deployment. Tenant C is only in the
Initial Deployment. Thus, it appears like they have canceled their subscription
and will stop using the application. Tenant E, on the other hand, starts using
the application with the Target Deployment as they are not part of the Initial
Deployment.

AMigration Planmay be created by executing the following steps.

Deletion of existing Tenants The first step that can be taken is to delete those
existing Tenants that are not contained in the Target Deployment. It is
reasonable to do that as a first step since once deleted, these Tenants do not
need to be considered anymore for further steps.

Transform of Deployment Once the Tenants that have unsubscribed, it is nec-
essary to transform the Initial Deployment into the Target one. This is
done by not only considering those Tenants that are part of both the Initial
Deployment and the Target Deployment. This step will be analyzed inmore
detail shortly.

Creation of new Tenants The last step should be to create the new Tenants
(Tenant E in the example). This should be done last since otherwise it would

195

Appendix B: Mixed-Tenancy: Changes over Time

be necessary to deal with their Deployment Constraints when rearranging
the Deployment.

Based on this the open question is how can an optimal Migration Plan be found
for the Tenants that are using both, the Initial as well as the Target Deployment.
The idea to do that is to create a graph that contains all possible Migration Plans.
This graph is calledMigration Graph.

Definition 35 (MigrationGraph) AMigration Graph is a directed weighted
multigraph inwhichDeployments are represented as vertices and edges represent
Migration Operations that transform a Deployment into its neighbor. Each edge
has the cost of the Operation attached as weight.

Of course, theMigration Graph only contains thoseMigration Plans that apply
to the Deployment Constraints of the Target Deployment2. This contributes to
the introduced condition that while the running Deployment is changed, it shall
never go through a state that does not apply to the Deployment Constraints of
the Target Deployment.
Once aMigration Graph has been created, it is possible to determine the op-

timal Migration Plan by determining the cheapest path between the Initial De-
ployment and the Target Deployment. Finding the cheapest path in a graph is a
well-known problem in graph theory and there are many algorithms available
(e.g. Dijkstra, A* [RN10]). In Figure B.3 the cheapest path between the Initial and
the Target Deployment introduced assuming that the cost of all Migration Op-
erations are equal3. This path is the optimal transformation of the deployment
and is part of the Migration Plan. It consists of the following steps if it is assumed
that all Migration Operations cause equal cost.
An algorithm that is capable of creating the entire graph with considering

the Deployment Information of the Target Deployment may be found in [OY13].
Unfortunately, this approach will only work for small scenarios. This will be
further elaborated in the next subsection.

B.2.2 Complexity of Finding a Migration Plan

In the previous section an approach has been presented to compute an optimal
Migration Plan by creating aMigration Graph that includes all possible Deploy-
ments. Unfortunately, this approach will only work for small examples since
the number of vertices increases very fast with a rising number of Tenants. In
[OY13] a mathematical model was presented that allows to calculate an upper
bound for the number of vertices based on a number of Tenants and Deployment
Levels. Figure B.4 illustrates howmany vertices are generated based on a num-
ber of Tenants in a setting that has only two Deployment Levels. As visible in
2Please note that this is not considered in the example, as it would require a more detailed
discussion. The goal of this appendix is to only give an overview. A full discussion of it can be
found in [OY13]

3Please note that in the final step illustrated by Figure B.3 there is also a renaming of the
Units done. This step is actually not necessary since it does not change the structure of the
deployment. Thus, it is not specifically marked.

196

Section B.2: Computation of a Migration Plan

1
2u

B A

2
ac1

u1
ac1

u

B A

1
ac1

u

Initial Deployment

Target Deployment

D

D

1
2u

C

2
2u

2
ac1

u

E

B A

2
ac1

u1
ac1

u

D

1
2u 2

2u

B A

2
ac1

u1
ac1

u

D

1
2u 2

2u

B A

2
ac1

u1
ac1

u

D

1
2u

B A

2
ac1

u1
ac1

u

D

1
2u

Delete C Move 2
ac1

u Delete 2
2u

Add E Move A

Figure B.3.: Optimal Migration Plan for more Complex Example

the figure the number of Tenants increases exponentially. To be more precise
a deployment with ten Tenants will generate a Migration Graph that contains
about 68,000,000 Vertices. Keeping such a huge graph inmemory will not work
especially considering the growth rate. Even if it was possible to come up with
enoughmemory, the problemwould still not be solvable by this approach since
the run-time increases proportionally to the growth of the graph as well. Thus, it
will not be possible to address this issue by usingmore hardware.

In fact, it is necessary to come up with an approach that does not require
the computation of the entire Migration Graph. Such an approach is briefly
presented in the next subsection.

B.2.3 Computation of a Migration Plan

In the previous subsection, it has been analyzed that the problem of computing
a Migration Plan may be solved by abstracting the problem to a problem of
graph theory. In fact, it was possible to show that the problemmay be solved by
computing the cheapest path in a directed multigraph. Unfortunately, however,
it was also possible to show that the size of the graph grows exponentially, and,
thus, it is not possible to perform an extensive/brute force search.

In literature, online algorithms are algorithms that allow to solve a given prob-

197

Appendix B: Mixed-Tenancy: Changes over Time

Figure B.4.: Vertices vs. Tenants (two Deployment Levels) [OY13]

lemwithout having the entire necessary input available from the start [BEY98].
This may, for example, be due to the fact that the entire input is far to huge
in order too be processed at once. Thus, in [OY13], Candide analyzed several
available online algorithms to tackle the problem of finding a Migration Plan.
He identified the Real-Time A* algorithm ([Kor90]) as the most suitable of the
investigated algorithms.
Real-Time A* is a heuristic that strives to find a cheapest path on an unknown

map. Therefore, it makes use of a merit function f(n) = g(n) + h(n) to evaluate
a given node n. For this function h(n) represents the heuristic function which
indicates the estimated cost of reaching the target node from the current node
n. g(n) represents the actual cost of reaching any given node n from the current
node, rather than from the root node as it is the case with the well-known offline
A* Algorithm.

Using the merit function, Real-Time A* determines the f(n) of all neighboring
nodes andmoves to the neighbor with the best results. This means that the new
n is set to be the neighbor with the best f(n). In fact, that is not just done for the
direct neighboringnotes but for all neighborswithin a certain lookahead depth of
the current node (e.g. in case of lookahead depth 2, all nodes are reachable by two
moves – along the edges). These steps are repeated until the Target Deployment
is found. This was only a very primitive description of the approach, a detailed
onemay be found in [OY13].

In Figure B.5 the execution time of Real-Time A* is compared to the naive brute
force approach of creating the entire graph and applying the A* algorithm. This

198

Section B.3: Conclusion

is done based on examples with two to ten Tenants. As visible in the figure at

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12

C
om

pu
ta

tio
n

tim
e

in
 s

ec
on

ds

Number of tenants

RTA* in seconds BruteForce in seconds

Figure B.5.: Real-Time A* (Lookahead depth = 1) vs. Brute-Force [OY13]

a lower number of Tenants (up to five), computation time is quite the same.
However, already for six Tenants the Real-Time A* algorithm performs much
faster. Thus, the Real-Time A* approach allows to solve bigger problems than
the brute force approach. However, even for the Real-Time A* execution time
increases significantly at a given point.
With respect to quality the Real-Time A* and the brute force algorithm have

been compared based on a single problem instance (introduced in [OY13]). For
this example, a lookahead depth of one to be used for the Real-Time A*. This
revealed that in the context of the example, the average competitive ratio of 1.2
was achieved by Real-Time A*. This means that in average the Migration Plan
created using Real-Time A* causes 20%more cost than the brute force Migration
Plan for the given problem instance.

B.3 Conclusion

This appendix summarized the results that were created in cooperation with Can-
dide Ourou-Yorouba. In his Master’s Thesis ([OY13]) Candide addressed the issue
that Deployments have to change due to changingDeployment Constraints. This
was focused on the creation of aMigration Plan describing how a Deployment
that has been realized and is running (Initial Deployment) may be transformed
into a Deployment that applies to the new Constraints (Target Deployment).
This transformation shall be executed in the way that there is no point in time
where the running Deployment does not apply to the Deployment Constraints

199

Appendix B: Mixed-Tenancy: Changes over Time

of the Target Deployment. Furthermore, it is the optimization criteria that the
transformation shall be done by causingminimal cost for the Operator.

As discussed, it is possible to abstract the problem of finding an optimal Migra-
tion Plan to the problem of finding a cheapest path in theMigration Graph. The
Migration Graph is a directed weightedmultigraph that represents Deployment
as vertices and Migration Operations (e.g. creation of a Unit, movement of a
Unit) as edges.

However, the problemwith this approach is that the number of vertices in the
Migration Graph raises exponentially. Thus, it is not possible to create the entire
MigrationGraph inmemory andperforma cheapest path searchon it. A reviewof
available online algorithms was conducted. It revealed that from the investigated
approaches, Real-Time A* is themost suitable. A comparison to the brute force
approach revealed that for one given investigated problem instance, Real-Time A*

produces an average competitive ratio of 1.2. With respect to execution time, it
was analyzed that it is quite the same for problems with up to four Tenants. After
that, the Real-Time A* is significantly faster. However, so far the biggest problems
instances investigated contained a total of ten Tenants. Creating algorithms for
tackling problems withmore Tenants is up to future research. Furthermore, so far
evaluation has purely been based on a single problem instance. It is up to future
research to investigate the problem of Migration Plan creationmore thoroughly.
In order to be able to alter the application’s deployment according to the

Migration Plan it would be necessary to change the Deployment Platform. Since
theMixed-Tenancy Deployment Platform proposed by this work utilizes Chef,
the necessary changes would beminimal. However, if this is actually possible is
still open for further investigation.
Another shortcoming of the approach presented in this appendix is that it

takes the Target Deployment as input. An alternative for this would be that
the Target Deployment is actually determined by the algorithm computing the
Migration Plan. This would allow to search for a Valid and Optimal Target De-
ployment that can be reached withminimal cost. However, since computing a
Valid and Optimal Deployment is already a very complex problem, this has not
been considered by this appendix and is still up for future research.

200

Appendix C
Optimization considering limited Resource Availability

C.1. ProblemAnalysis . 201

C.2. Introduction of Bin-Packaging (with Conflicts) 204

C.3. Conclusion . 205

Simplicity is a great virtue but it requires hard work
to achieve it and education to appreciate it.
And tomakematters worse: complexity sells better.

EdsgerWybe Dijkstra

Chapter 5 analyzed the challenge of computing a Valid andOptimal Deployment
based on the Deployment Information. In Section 5.2.1, which analyzed the
Mixed-TenancyDeployment Problem, it was stated that for this work it is assumed
that any Unit may host any number of higher Level Units without having a
restriction to resource availability. It is the purpose of this appendix to give
some insight on how not making this assumption would alter the optimization
problem. It is not the purpose of this appendix to discuss the problems in detail
but only to give some insight.
In order to do that the appendix starts with a problem analysis presented by

C.1. Based on this analysis, Section C.2 discussed the challenges involved with
computing an optimal solution if resource limitations shall be considered. This
appendix is closed by Section C.3 with a description of a conclusion.

C.1 Problem Analysis

When the problem of computing a Valid and Optimal Deployment was analyzed
in Section 5.2.1, it was stated that it is assumed for this work that there are no
resource limitations. This means that any Unit may host an infinite number of
higher Level Units. It is still the case that a Valid and Optimal Deployment is
optimal if it utilizes minimal resources.
Even though the definition of optimal does not need to change, it is neces-

sary to redefine what a Valid Deployment is. The only characteristic a Valid
Deployment has had to realize so far was that it has to apply to all Deployment

201

Appendix C: Optimization considering limited Resource Availability

Constraints. However, if resource limitations shall be considered there is a second
characteristic that determines if a Deployment is a Valid Deployment.

Resource Constraints are Considered Every piece of infrastructure (or Unit
of a Deployment Level) only provides a limited amount of resources. Thus,
the demand for hosted resources of upper Deployment Level Units shall not
be higher than the amount of resources that can be provided.

In order to be able to verify if this characteristic is actually met, it is necessary to
define new inputs for the newMixed-Tenancy deployment problem. These are
described by the following. In this description the number of resources or the
resource demand is always represented by a positive real number.

Resource Limitation This input defines the maximum number of resources
a Unit may host. Since this may be different for every type of Units, it is
necessary that it is being defined for every Application Component and all
Deployment Levels (except Level dl1).

Resource Demand of Tenant Each Tenant has a certain resource demand for
using every Application Component. It has previously been defined in
Section 5.2.1. This demand depends, for example, on the number of Users
of this Tenant. Since it is specific to a Tenant, it must be expressed per
Tenant for every Application Component.

Resource Demand of Unit Similar to the demand of Tenants, also every Unit
has a resource demand. It has previously been defined in Section 5.2.1.
This demand refers to the overhead cost. Since it is specific to each type of
Unit, it is necessary to define it for every Application Component and all
Deployment Levels (except Level dl1).

In order to determine the number of resources a Unit is hosting, it is necessary to
sum up the resource demand all hosted Units and add the resource demand of
the Tenants that are using the Level dl1 Units.

Furthermore, there is onemore thing that needs to bementioned. It is assumed
at this point that a single Tenant’s resource demand of may always bemet by a
single Unit. This leads to the conclusion that the Resource Limitation of every
type of Unit is at least as big as the Resource Demand of the Tenant with the
highest Resource Demand.

In order to elaborate on the structure of a deployment and its resource demand
further Figure C.1 and the Tables C.1, C.2, and C.3 illustrate an example. In
Table C.1 it is stated for example that a Unit of Application Component ac1 may
only host up to 10 resources and a Unit of Level dl2 may only host a total of 11
resources. Table C.2 states the resource demand of all Tenants for every Applica-
tion Component. For example, the Tenants A and B both require five resources of
Application Component ac1, for Application Component ac2 all Tenants require
one resource. In Table C.3 the Resource Demands for every type of Unit is stated.
In order to have a simple and intuitive example, the Resource Demand of all types
of Units is assumed to be one. These were the inputs that were required for the

202

Section C.1: Problem Analysis

dl1 dl2

ac1 10 11
ac2 5

Table C.1.: Example Resource Limitation

A B C D
ac1 5 5 2 2
ac2 1 1 1 1

Table C.2.: Example Resource Demand of Tenant

new characteristic of a Valid Deployment. However, it is also necessary to have
the Deployment Information as an input. It is visualized on the left hand side of
Figure C.1. One possible Valid and Optimal Deployment that was created based

B C D A

Input Output

1
ac1

u 2
ac1

u 1
ac2

u

1
2u 2

2u

A

C

B

D

A

C

B

D

A

C

B

D

A

C

B

D

*
1ac 2ac

1dl

2dl

Figure C.1.: An Example for a Valid and Optimal Deployment

on all these inputs, is illustrated on the right hand side of Figure C.1. As visible
it applies to the Deployment Information. Furthermore, it also applies to all
resources’ constraints. As an example, take Unit u2

1. According to Table C.1, a Unit
of this type may host a total of 11 resources. It does host one Unit of Application
Component ac1 (resource demand: 1), one Unit of Application Component ac2
(resource demand: 1), Tenant C and D for Application Component ac2 (resource
demand: 4) and all Tenants for Application Component ac2 (resource demand: 4).
If the individual resource demands are summed up, the total resource demand
hosted on the Unit is 10. Since the Unit may host 11 resources, the Deployment is
Valid at this point according to the resource characteristic.

Besides being Valid, the Deployment is also Optimal. This has manually been
checked.

203

Appendix C: Optimization considering limited Resource Availability

dl1 dl2

ac1 1 1
ac2 1

Table C.3.: Example Resource Demand of Unit

C.2 Introduction of Bin-Packaging (with Conflicts)

In Chapter 5 it was possible to show that the problem of assigning Tenants to
Units is in fact the well-known NP-hard graph theory problem called clique
cover (Lemma 1). However, clique cover can only solve the problem of finding a
minimal number of Units with respect to the Deployment Information. It does
not cover any constraints with respect to resource consumption.

In literature there exists another well-known NP-hard problem called bin-
packaging [AM98; CJGJ96]. In the bin-packing problem, there is a set of objects
each haveing a certain volume. These objects are to be packed into finite number
of bins or containers that eachmay only hold a certain volume of objects. The
optimization problem of bin-packaging is to minimize the number of bins.

Bin-packaging allows to assign Tenants to a minimal number of Units by only
considering to the resource limitation constraint. The only thing to do is to think
of Units as bins. Each binmust have a maximum volume it may hold. So does a
Unit – it only offers a certain amount of resources. The objects in bin-packaging
correspond to the Tenant. Where the objects have a certain volume, Tenants
have a certain Resource Demand. Thus, it is possible to say that the problem
of assigning Tenants to aminimal number of Units by applying to the resource
limitation constraint is, in fact, the bin-packaging problem.

Unfortunately, this only solves half of the problem as it only allows to apply to
the resource limitation constraint. The Deployment Information has not been
considered yet. In the thinking of bin-packaging the Deployment Constraints
would correspond to the idea that there are constraints that permit or prohibit
certain objects to share a bin. Bin-packaging with these special constraints is,
in fact, also known in literature as a special version of bin-packaging called bin-
packaging with conflicts [JÖ97; Jan99]. Conflicts refer to the constraints that
someobjectsmaynot be assigned to the samebin. In the context of this appendix,
this translates to the constraint that some combination of Tenants may not be
ascending to the same Unit.

All this leads to the conclusion that the problem of assigning Tenants to Units
by considering both, the resource limitation constraint and the Deployment
Information, is in fact the same problem as bin-packaging with conflicts. Since
bin-packaging with conflicts is a special more complicated version of the normal
bin-packaging problem, it is also NP-hard [JÖ97]. There are known approxi-
mation algorithms known in literature (e.g. [Gup+08; Fer+11; SVD03; SV13]).
However, due to the fact that the problem is much less known, there are no
implementations of them available in standard graph frameworks.

204

Section C.3: Conclusion

C.3 Conclusion

In Chapter 5 the problem of computing a Valid and Optimal Deployment based
on the Deployment Information was analyzed. In this chapter it was assumed
that there are no resource restrictions to consider and, thus, it is possible that any
Unit may host an infinite number of higher Level Units. In this appendix it was
presented that by not having this assumption will increase the complexity of the
optimization problem.
The first step towards doing this was to analyze the problem. Based on this

problem analysis, it was possible to show that the problem of assigning Tenants
by considering both, the Deployment Information and resource restrictions, is
in fact the problem called bin-packaging with conflicts. Bin-packaging with
conflicts is known in literature and is proven to be NP-hard.
However, the impact of the identification of the bin-packaging with conflicts

problem is open for future research.

205

Bibliography

[ADG02] R. Anzböck, S. Dustdar, and H. Gall. “Software configuration, distribution,
and deployment of web-services.” In: Proceedings of the 14th international
conference on Software engineering and knowledge engineering. SEKE ’02. ACM
ID: 568872. NewYork, NY, USA: ACM, 2002, 649–656. ISBN: 1-58113-556-4.
DOI: 10.1145/568760.568872 (cited on page 34).

[AGI12] M. Almorsy, J. Grundy, and A. Ibrahim. “TOSSMA: A Tenant-Oriented
SaaS Security Management Architecture.” In: 2012 IEEE 5th International
Conference on Cloud Computing (CLOUD). 2012, pp. 981–988. DOI: 10.1109/
CLOUD.2012.146 (cited on page 32).

[AH11] D. Allemang and J. Hendler. Semantic Web for theWorking Ontologist: Effec-
tive Modeling in Rdfs and Owl. 2nd revised edition. Morgan Kaufmann, July
2011. ISBN: 0123859654 (cited on pages 69, 72).

[AH77] K. Appel andW. Haken. “Every planar map is four colorable. Part I: Dis-
charging.” In: Illinois Journal of Mathematics 21.3 (1977), 429–490 (cited
on page 91).

[AK12] M. R. Aswin andM. Kavitha. “Cloud intelligent track - Risk analysis and
privacy data management in the cloud computing.” In: 2012 International
Conference on Recent Trends In Information Technology (ICRTIT). April 2012,
pp. 222–227. DOI: 10.1109/ICRTIT.2012.6206752 (cited on page 39).

[AM98] S. Albers and M. Mitzenmacher. “Average-case analyses of first fit and
random fit bin packing.” In: Proceedings of the ninth annual ACM-SIAM
symposium on Discrete algorithms. 1998, 290–299 (cited on page 204).

[Arm+09] M. Armbrust, A. Fox, R. Griffith, A. D Joseph, R. H Katz, A. Konwinski, G.
Lee, D. A Patterson, A. Rabkin, I. Stoica, et al. “Above the clouds: A berkeley
view of cloud computing.” In: EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2009-28 (2009) (cited on page 23).

[Aul+08] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger. “Multi-tenant
databases for software as a service: schema-mapping techniques.” In: Pro-
ceedings of the 2008 ACM SIGMOD international conference on Management
of data. SIGMOD ’08. New York, NY, USA: ACM, 2008, 1195–1206. ISBN:
978-1-60558-102-6 (cited on page 32).

[BAT12] W. Brown, V. Anderson, and Q. Tan. “Multitenancy - Security Risks and
Countermeasures.” In: 2012 15th International Conference on Network-Based
Information Systems (NBiS). 2012, pp. 7–13. DOI: 10.1109/NBiS.2012.142
(cited on page 32).

207

http://dx.doi.org/10.1145/568760.568872
http://dx.doi.org/10.1109/CLOUD.2012.146
http://dx.doi.org/10.1109/CLOUD.2012.146
http://dx.doi.org/10.1109/ICRTIT.2012.6206752
http://dx.doi.org/10.1109/NBiS.2012.142

Bibliography

[BEY98] A. Borodin and R. El-Yaniv.Online Computation and Competitive Analysis.
New York, NY, USA: Cambridge University Press, 1998. ISBN: 0-521-56392-
5 (cited on page 198).

[BGS98] M. Bellare, O. Goldreich, andM. Sudan. “Free Bits, PCPs, and Nonapprox-
imability—Towards Tight Results.” In: SIAM Journal on Computing 27.3
(1998), 804–915 (cited on page 93).

[BHK09] A. Björklund, T. Husfeldt, andM. Koivisto. “Set partitioning via inclusion-
exclusion.” In: SIAM Journal on Computing 39.2 (2009), 546–563 (cited on
page 93).

[BR12] R Balakrishnan and K Ranganathan. A Textbook of Graph Theory. English.
NewYork, NY: SpringerNewYork : Imprint: Springer, 2012. ISBN: 97814614-
45296 1461445299 9781461445289 1461445280 (cited on pages 44, 89, 91,
93).

[Bre79] D. Brelaz. “Newmethods to color the vertices of a graph.” In: Communica-
tions of the ACM 22.4 (1979), 251–256 (cited on page 93).

[Bro41] R. L. Brooks. “On colouring the nodes of a network.” In: Mathematical
Proceedings of the Cambridge Philosophical Society. Vol. 37. 1941, 194–197
(cited on page 93).

[Buy+09] R. Buyya, C. S Yeo, S. Venugopal, J. Broberg, and I. Brandic. “Cloud com-
puting and emerging IT platforms: Vision, hype, and reality for delivering
computing as the 5th utility.” In: Future Generation Computer Systems 25.6
(2009), 599–616 (cited on page 23).

[BZ10] C.-P. Bezemer and A. Zaidman. “Multi-tenant SaaS applications: mainte-
nance dream or nightmare?” In: Proceedings of the Joint ERCIMWorkshop
on Software Evolution (EVOL) and International Workshop on Principles of
Software Evolution (IWPSE). IWPSE-EVOL ’10. New York, NY, USA: ACM,
2010, 88–92. ISBN: 978-1-4503-0128-2. DOI: 10.1145/1862372.1862393
(cited on pages 1, 13, 14).

[Cao+11] N. Cao, Z. Yang, C.Wang, K. Ren, andW. Lou. “Privacy-Preserving Query
over Encrypted Graph-Structured Data in Cloud Computing.” In: 2011
31st International Conference onDistributed Computing Systems (ICDCS). June
2011, pp. 393–402. DOI: 10.1109/ICDCS.2011.84 (cited on page 38).

[Cao+14] N. Cao, C. Wang, M. Li, K. Ren, andW. Lou. “Privacy-Preserving Multi-
Keyword Ranked Search over Encrypted CloudData.” In: IEEE Transactions
on Parallel and Distributed Systems 25.1 (January 2014), pp. 222–233. ISSN:
1045-9219. DOI: 10.1109/TPDS.2013.45 (cited on page 38).

[CC06] F. Chong and G. Carraro. “Architecture Strategies for Catching the Long
Tail.” In: Microsoft MSDN (April 2006). URL: http://msdn.microsoft.
com/en-us/library/aa479069.aspx (visited onMarch 4, 2010) (cited on
pages 1, 2, 12–14).

[CCW06] F. Chong, G. Carraro, and R.Wolter. “Multi-tenant data architecture.” In:
MSDN Library, Microsoft Corporation. 2006 (cited on pages 14, 30, 31).

[CD06] K. D. Cooper and A. Dasgupta. “Tailoring graph-coloring register alloca-
tion for runtime compilation.” In: Proceedings of the International Sympo-
sium on Code Generation and Optimization. 2006, 39–49 (cited on page 92).

208

http://dx.doi.org/10.1145/1862372.1862393
http://dx.doi.org/10.1109/ICDCS.2011.84
http://dx.doi.org/10.1109/TPDS.2013.45
http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://msdn.microsoft.com/en-us/library/aa479069.aspx

[Cha+11] D. Chadwick, S. Lievens, J. Den Hartog, A. Pashalidis, and J. Alhadeff.
“My Private Cloud Overview: A Trust, Privacy and Security Infrastructure
for the Cloud.” In: 2011 IEEE International Conference on Cloud Computing
(CLOUD). July 2011, pp. 752–753. DOI: 10.1109/CLOUD.2011.113 (cited on
page 38).

[CJGJ96] E. G. Coffman Jr, M. R. Garey, and D. S. Johnson. “Approximation algo-
rithms for bin packing: A survey.” In: Approximation algorithms for NP-hard
problems. 1996, 46–93 (cited on page 204).

[CLRS09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms. English. Cambridge, Masachusetts; London: The MIT Press,
2009. ISBN: 0262033844 (cited on page 90).

[CSL09] X. Cheng, Y. Shi, and Q. Li. “Amulti-tenant oriented performancemon-
itoring, detecting and scheduling architecture based on SLA.” In: 2009
Joint Conferences on Pervasive Computing (JCPC). December 2009, pp. 599–
604. DOI: 10.1109/JCPC.2009.5420114 (cited on page 33).

[DBV05] E. Dolstra, M. Bravenboer, and E. Visser. “Service configurationmanage-
ment.” In: 12th InternationalWorkshop on Software Configuration Manage-
ment (SCM-12). 2005 (cited on page 34).

[DM11] C. Dabrowsk and K. Mills. “VM Leakage and Orphan Control in Open-
Source Clouds.” In: 2011 IEEE Third International Conference on Cloud Com-
puting Technology and Science (CloudCom). November 2011, pp. 554–559.
DOI: 10.1109/CloudCom.2011.84 (cited on page 38).

[Fay13] A. Fayolle. Bug #1030795 “stock_picking.action_invoice_create: calling by x...”
: Bugs : OpenERP Server. November 2013. URL: https://bugs.launchpad.
net/openobject-server/+bug/1030795 (visited on November 9, 2013)
(cited on page 157).

[Feh+13] C. Fehling, F. Leymann, S. T. Ruehl, M. Rudek, and S. Verclas. “Service
Migration Patterns – Decision Support and Best Practices for theMigration
of Existing Service-Based Applications to Cloud Environments.” In: 2013
IEEE 6th International Conference on Service-Oriented Computing and Applica-
tions (SOCA). December 2013, pp. 9–16. DOI: 10.1109/SOCA.2013.41 (cited
on pages 99, 193).

[Feh+14] C. Fehling, F. Leymann, R. Retter,W. Schupeck, and P. Arbitter.Cloud Com-
puting Patterns - Fundamentals to Design, Build, and Manage Cloud Applica-
tions. English. Springer, 2014. ISBN: 978-3-7091-1568-8 (cited on page 10).

[Feh09] C. Fehling. Provisioning of software as a service applications in the cloud.
Tech. rep. University of Stuttgart, October 2009. URL: http://elib.uni-
stuttgart.de/opus/volltexte/2009/4766/ (visited on September 22,
2012) (cited on pages 21, 33).

[Fer+11] A. Fernández, C.Gil, A. L.Márquez, R. Baños,M.G.Montoya, andM. Parra.
“Amemetic algorithm for two-dimensional multi-objective bin-packing
with constraints.” In: Proceedings of the 13th annual conference companion
on Genetic and evolutionary computation. GECCO ’11. New York, NY, USA:
ACM, 2011, 341–346. ISBN: 978-1-4503-0690-4. DOI: 10.1145/2001858.
2002016 (cited on page 204).

209

http://dx.doi.org/10.1109/CLOUD.2011.113
http://dx.doi.org/10.1109/JCPC.2009.5420114
http://dx.doi.org/10.1109/CloudCom.2011.84
https://bugs.launchpad.net/openobject-server/+bug/1030795
https://bugs.launchpad.net/openobject-server/+bug/1030795
http://dx.doi.org/10.1109/SOCA.2013.41
http://elib.uni-stuttgart.de/opus/volltexte/2009/4766/
http://elib.uni-stuttgart.de/opus/volltexte/2009/4766/
http://dx.doi.org/10.1145/2001858.2002016
http://dx.doi.org/10.1145/2001858.2002016

Bibliography

[FLM10] C. Fehling, F. Leymann, and R. Mietzner. “A Framework for Optimized
Distribution of Tenants in Cloud Applications.” In: 2010 IEEE 3rd Interna-
tional Conference on Cloud Computing (CLOUD). July 2010, pp. 252 –259.
DOI: 10.1109/CLOUD.2010.33 (cited on pages 21, 33, 167).

[GHJ94] E.Gamma, R.Helm, andR. E. Johnson.Design Patterns. Elements of Reusable
Object-Oriented Software. 1st ed., Reprint. Addison-Wesley Longman, Ams-
terdam, October 1994. ISBN: 0201633612 (cited on pages 59, 63, 71, 140,
141, 169).

[GKS13] T. Garg, R. Kumar, and J. Singh. “A way to cloud computing basic to
multitenant environment.” In: International Journal of Advanced Research
in Computer and Communication Engineering Vol. 2 Issue 6, June 2013 (June
2013) (cited on page 14).

[GRV04] R. L. Glass, V. Ramesh, and I. Vessey. “An analysis of research in computing
disciplines.” In: Communications of the ACM 47.6 (2004), 89–94 (cited on
pages 4, 5).

[GS06] J. Gebauer and F. Schober. “Information system flexibility and the cost ef-
ficiency of business processes.” In: Journal of the Association for Information
Systems 7.3 (2006), 122–147 (cited on pages 33, 34).

[Guo+07] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao. “A Framework for
NativeMulti-Tenancy Application Development andManagement.” In:
The 9th IEEE International Conference on E-Commerce Technology and The
4th IEEE International Conference on Enterprise Computing, E-Commerce and
E-Services (CEC-EEE 2007). Tokyo, Japan, July 2007, pp. 551–558. DOI:
10.1109/CEC-EEE.2007.4 (cited on page 32).

[Gup+08] R. Gupta, S. Bose, S. Sundarrajan, M. Chebiyam, and A. Chakrabarti. “A
Two Stage Heuristic Algorithm for Solving the Server Consolidation Prob-
lemwith Item-Item and Bin-Item Incompatibility Constraints.” In: IEEE
International Conference on Services Computing, 2008. SCC ’08. Vol. 2. 2008,
pp. 39–46. DOI: 10.1109/SCC.2008.39 (cited on page 204).

[GVR02] R. L. Glass, I. Vessey, and V. Ramesh. “Research in software engineering:
an analysis of the literature.” In: Information and Software technology 44.8
(2002), 491–506 (cited on pages 4, 5).

[Hal93] M. M. Halldórsson. “A still better performance guarantee for approximate
graph coloring.” In: Information Processing Letters 45.1 (1993), 19–23 (cited
on page 93).

[Hut11] M. Huth. Logic in computer science: modelling and reasoning about systems.
English. Cambridge [u.a.: Cambridge Univ. Press, 2011. ISBN: 052154310X
9780521543101 (cited on pages 7, 44).

[Hüt12] M. Hüttermann.DevOps for developers. English. [New York]: Apress : Dis-
tributed to the book trade worldwide by Springer Science+Business Media
New York, 2012. ISBN: 9781430245698 1430245697 (cited on page 153).

[Jan99] K. Jansen. “An Approximation Scheme for Bin Packing with Conflicts.”
en. In: Journal of Combinatorial Optimization 3.4 (December 1999), pp. 363–
377. ISSN: 1382-6905, 1573-2886. DOI: 10.1023/A:1009871302966 (cited
on page 204).

210

http://dx.doi.org/10.1109/CLOUD.2010.33
http://dx.doi.org/10.1109/CEC-EEE.2007.4
http://dx.doi.org/10.1109/SCC.2008.39
http://dx.doi.org/10.1023/A:1009871302966

[JM08] K. Jansen andM.Margraf. Approximative Algorithmen und Nichtapproximier-
barkeit. German. Berlin; New York, NY: De Gruyter, 2008. ISBN: 978311020-
3165 3110203162 (cited on pages 19, 90, 91).

[JT95] T. R. Jensen and B. Toft. Graph coloring problems. Vol. 39. John Wiley &
Sons, 1995 (cited on page 91).

[JÖ97] K. Jansen and S. Öhring. “Approximation algorithms for time constrained
scheduling.” In: Information and Computation 132.2 (1997), 85–108 (cited
on page 204).

[Kar72] R. M. Karp. Reducibility among combinatorial problems. Tech. rep. Springer,
1972. (Visited on July 17, 2013) (cited on pages 92, 94).

[Klo02] W. Klotz. “Graph coloring algorithms.” In:Mathematics Report (2002), 1–9
(cited on page 94).

[KM08] T. Kwok and A. Mohindra. “Resource Calculations with Constraints, and
Placement of Tenants and Instances for Multi-tenant SaaS Applications.”
In: Service-Oriented Computing – ICSOC 2008. Ed. by A. Bouguettaya, I.
Krueger, andT.Margaria. LectureNotes inComputer Science 5364. Springer
Berlin Heidelberg, January 2008, pp. 633–648. ISBN: 978-3-540-89647-0
(cited on page 32).

[KMMG13] C. Kalloniatis, V. Manousakis, H. Mouratidis, and S. Gritzalis. “Migrating
into the Cloud: Identifying theMajor Security and Privacy Concerns.” In:
Collaborative, Trusted and Privacy-Aware e/m-Services. Springer, 2013, 73–87
(cited on pages 1, 26).

[KN09] S. O. Krumke and H. Noltemeier. Graphentheoretische Konzepte und Algo-
rithmen. German.Wiesbaden: Vieweg+Teubner Verlag / GWV Fachverlage
GmbH,Wiesbaden, 2009. ISBN: 9783834895929 383489592X (cited on
pages 89, 91).

[Kor90] R. E. Korf. “Real-time heuristic search.” In: Artificial Intelligence 42.2–3
(March 1990), pp. 189–211. ISSN: 0004-3702. DOI: 10.1016/0004-3702(90)
90054-4 (cited on page 198).

[Koz11] H. Koziolek. “The SPOSAD Architectural Style for Multi-tenant Software
Applications.” In: 2011 9thWorking IEEE/IFIP Conference on Software Archi-
tecture (WICSA). 2011, pp. 320–327. DOI: 10.1109/WICSA.2011.50 (cited
on page 32).

[Kub04] M. Kubale.Graph Colorings. en. AmericanMathematical Soc., 2004. ISBN:
9780821856871 (cited on pages 89, 91–94).

[LDPS10] F. Lombardi, R. Di Pietro, and C. Soriente. “CReW: Cloud Resilience for
Windows Guests throughMonitored Virtualization.” In: 2010 29th IEEE
Symposium on Reliable Distributed Systems. October 2010, pp. 338–342. DOI:
10.1109/SRDS.2010.48 (cited on page 38).

[LHLP10] C. Lizhen, W. Haiyang, J. Lin, and H. Pu. “Customizationmodeling based
onmetagraph for multi-tenant applications.” In: 5th International Confer-
ence on Pervasive Computing and Applications. Maribor, Slovenia, December
2010, pp. 255–260. DOI: 10.1109/ICPCA.2010.5704108 (cited on page 34).

211

http://dx.doi.org/10.1016/0004-3702(90)90054-4
http://dx.doi.org/10.1016/0004-3702(90)90054-4
http://dx.doi.org/10.1109/WICSA.2011.50
http://dx.doi.org/10.1109/SRDS.2010.48
http://dx.doi.org/10.1109/ICPCA.2010.5704108

Bibliography

[LMRV14] S. Lange, M. Margraf, S. T. Ruehl, and S. A. W. Verclas. “On Valid and
OptimalDeployments forMixed-Tenancy Problems in SaaS-Applications.”
In: 2014 IEEE 10thWorld Congress on Services (Services). July 2014 (cited on
page 89).

[Lon13] M. d. Longueville. “Graph-Coloring Problems.” en. In: ACourse in Topolog-
ical Combinatorics. Universitext. Springer New York, January 2013, pp. 37–
68. ISBN: 978-1-4419-7909-4, 978-1-4419-7910-0 (cited on page 91).

[LZL10] M. Luo, L.-J. Zhang, and F. Lei. “An InsuanranceModel for Guranteeing
Service Assurance, Integrity and QoS in Cloud Computing.” In: 2010 IEEE
International Conference on Web Services (ICWS). July 2010, pp. 584–591.
DOI: 10.1109/ICWS.2010.113 (cited on page 39).

[MG11] P. Mell and T. Grance. “The NIST Definition of Cloud Computing. Na-
tional Institute of Standards and Technology.” In: Information Technology
Laboratory, Version 15 (September 2011), 10–7 (cited on pages 23, 24, 27).

[MG95] J. Morrison and J. F. George. “Exploring the software engineering compo-
nent inMIS research.” In: Communications of the ACM 38.7 (1995), 80–91
(cited on pages 4, 5).

[Mie08] R. Mietzner. Using variability descriptors to describe customizable SaaS appli-
cation templates. Tech. rep. Technical Report 2008/01, Fakultät Informatik,
Universität Stuttgart, 2008 (cited on page 33).

[Mie10] R. Mietzner. “A Method and Implementation to Define and Provision
Variable Composite Applications, and its Usage in Cloud Computing.”
PhD thesis. July 2010 (cited on pages 10, 35).

[MK11] C.MommandR. Krebs. “AQualitative Discussion of Different Approaches
for ImplementingMulti-Tenant SaaS Offerings.” In: Software Engineering
(Workshops). Vol. 11. 2011 (cited on page 32).

[Mor14] B. Morr. Untersuchung der Anwendbarkeit von Mixed-Tenancy auf Enterprise
SaaS-Applikationen. Tech. rep. University of Applied Sciences Darmstadt,
February 2014, p. 95 (cited on pages 134, 150, 153, 154).

[MUTL09] R. Mietzner, T. Unger, R. Titze, and F. Leymann. “Combining Different
Multi-tenancy Patterns in Service-Oriented Applications.” In: Enterprise
Distributed Object Computing Conference, 2009. EDOC ’09. IEEE International.
2009, pp. 131–140. ISBN: 1541-7719. DOI: 10.1109/EDOC.2009.13 (cited on
page 33).

[Nit09] Nitu. “Configurability in SaaS (software as a service) applications.” In:
Proceedings of the 2nd India software engineering conference. ISEC ’09. ACM
ID: 1506221. New York, NY, USA: ACM, 2009, 19–26. ISBN: 978-1-60558-
426-3. DOI: 10.1145/1506216.1506221 (cited on page 34).

[Okt+12] K. Oktay, V. Khadilkar, B. Hore, M. Kantarcioglu, S. Mehrotra, and B. Thu-
raisingham. “Risk-Aware Workload Distribution in Hybrid Clouds.” In:
2012 IEEE 5th International Conference on Cloud Computing (CLOUD). June
2012, pp. 229–236. DOI: 10.1109/CLOUD.2012.128 (cited on page 38).

212

http://dx.doi.org/10.1109/ICWS.2010.113
http://dx.doi.org/10.1109/EDOC.2009.13
http://dx.doi.org/10.1145/1506216.1506221
http://dx.doi.org/10.1109/CLOUD.2012.128

[OY13] C. Orou-Yorouba.Mixed-Tenancy Platform provisioning SaaS-Applications:
System Alteration Over Life Cycle. Tech. rep. University of Applied Sciences
Darmstadt - University of Wisconsin Platteville, December 2013 (cited on
pages 166, 191, 196, 198, 199).

[PB10] S. Pearson and A. Benameur. “Privacy, Security and Trust Issues Arising
from Cloud Computing.” In: 2010 IEEE Second International Conference
on Cloud Computing Technology and Science (CloudCom). November 2010,
pp. 693–702. DOI: 10.1109/CloudCom.2010.66 (cited on pages 1, 14).

[PBL10] K. Pohl, G. Böckle, and F. J. v. d. Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. 1st Edition. Springer, November
2010. ISBN: 3642063640 (cited on page 35).

[PKZ11] K. P. N. Puttaswamy, C. Kruegel, and B. Y. Zhao. “Silverline: Toward Data
Confidentiality in Storage-intensive Cloud Applications.” In: Proceedings
of the 2Nd ACM Symposium on Cloud Computing. SOCC ’11. New York, NY,
USA: ACM, 2011, 10:1–10:13. ISBN: 978-1-4503-0976-9. DOI: 10 . 1145 /
2038916.2038926 (cited on page 38).

[PP05] D. Pilone and N. Pitman. UML 2.0 in a Nutshell: A Desktop Quick Reference
(In a Nutshell. 1st ed. O’Reilly Media, June 2005. ISBN: 0596007957 (cited
on page 58).

[PTN13] S. Patnaik, P. Tripathy, and K. Naik. New paradigms in internet comput-
ing. English. Heidelberg; New York: Springer, 2013. ISBN: 9783642354618
3642354610 (cited on page 153).

[RA11] S. T. Ruehl and U. Andelfinger. “Applying software product lines to create
customizable software-as-a-service applications.” In: ACM Press, August
2011, p. 1. ISBN: 9781450307895. DOI: 10.1145/2019136.2019154 (cited on
pages 21, 33).

[RARV12] S. T. Ruehl, U. Andelfinger, A. Rausch, and S. A.W. Verclas. “Toward Real-
ization of Deployment Variability for Software-as-a-Service Applications.”
In: 2012 IEEE 5th International Conference on Cloud Computing (CLOUD).
June 2012, pp. 622 –629. DOI: 10.1109/CLOUD.2012.93 (cited on pages 7,
21).

[Rei+14] M. Reinhardt, S. T. Ruehl, S. A. W. Verclas, U. Andelfinger, and A. Schütte.
“Architectural Design of aDeployment Platform to ProvisionMixed-tenan-
cy SaaS-Applications.” In: 4th International Conference on Cloud Computing
and Services Science (CLOSER 2014). April 2014 (cited on pages 134, 139).

[Rei13] M. Reinhardt. Konzeption und Realisierung einer Mixed-Tenancy -fähigen Plat-
tform zur Bereitstellung von SaaS-Applikationen. Tech. rep. University of
Applied Sciences Darmstadt, March 2013 (cited on pages 134, 136, 137,
142).

[RH09] P. Runeson andM. Höst. “Guidelines for conducting and reporting case
study research in software engineering.” en. In: Empirical Software Engi-
neering 14.2 (April 2009), pp. 131–164. ISSN: 1382-3256, 1573-7616. DOI:
10.1007/s10664-008-9102-8 (cited on page 5).

213

http://dx.doi.org/10.1109/CloudCom.2010.66
http://dx.doi.org/10.1145/2038916.2038926
http://dx.doi.org/10.1145/2038916.2038926
http://dx.doi.org/10.1145/2019136.2019154
http://dx.doi.org/10.1109/CLOUD.2012.93
http://dx.doi.org/10.1007/s10664-008-9102-8

Bibliography

[RN10] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 3rd ed.
Prentice Hall, February 2010. ISBN: 0136042597 (cited on pages 69, 169,
196).

[RTSS09] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. “Hey, You, Get off
of My Cloud: Exploring Information Leakage in Third-party Compute
Clouds.” In: Proceedings of the 16th ACMConference on Computer and Com-
munications Security. CCS ’09. New York, NY, USA: ACM, 2009, 199–212.
ISBN: 9781605588940. DOI: 10.1145/1653662.1653687 (cited on page 38).

[Rue+14] S. T. Ruehl, M. Rupprech, B. Morr, M. Reinhardt, and S. A. W. Verclas.
“Mixed-Tenancy in the Wild - Applicability of Mixed-Tenancy for Real-
World Enterprise SaaS-Applications.” In: 2014 IEEE 7th International Con-
ference on Cloud Computing (CLOUD). July 2014 (cited on page 134).

[Rup13a] M. Rupprech. Bug #1249355 “XML-RPC object service tries to return non-
XML-RP...” : Bugs : OpenERP Server. November 2013. URL: https://bugs.
launchpad.net/openobject-server/+bug/1249355 (visited on Novem-
ber 9, 2013) (cited on page 157).

[Rup13b] M. Rupprecht. Einführung von Mixed-Tenancy in eine existierende Enterprise
SaaS Applikation durch automatisierte Portierung. Tech. rep. University of
Applied Sciences Darmstadt, August 2013 (cited on pages 134, 145, 147,
148).

[Rus07] T. Russ. [protege-owl] "Abstract" class in OWL. September 2007. URL: https:
//mailman.stanford.edu/pipermail/protege- owl/2007- September/
003823.html (visited on April 24, 2013) (cited on page 71).

[RWV13] S. T. Ruehl, H. Wache, and S. A. W. Verclas. “Capturing Customers’ Re-
quirements towards Mixed-tenancy Deployments of SaaS-Applications.”
In: 2013 IEEE 6th International Conference on Cloud Computing (CLOUD).
June 2013, pp. 462–470 (cited on pages 7, 43, 69).

[Saa10] G. Saake.Datenbanken Konzepte und Sprachen. German. Heidelberg; Mün-
chen; Landsberg; Frechen; Hamburg: mitp, 2010. ISBN: 9783826690570
3826690575 (cited on page 69).

[Sch+12a] J. Schroeter, P. Mucha, M. Muth, K. Jugel, and M. Lochau. “Dynamic
ConfigurationManagement of Cloud-based Applications.” In: Proceedings
of the 16th International Software Product Line Conference - Volume 2. SPLC
’12. New York, NY, USA: ACM, 2012, 171–178. ISBN: 978-1-4503-1095-6.
DOI: 10.1145/2364412.2364441 (cited on page 35).

[Sch+12b] J. Schroeter, S. Cech, S. Götz, C.Wilke, and U. Aßmann. “Towards model-
ing a variable architecture for multi-tenant SaaS-applications.” In: Proceed-
ings of the Sixth InternationalWorkshop on Variability Modeling of Software-
Intensive Systems. VaMoS ’12. New York, NY, USA: ACM, 2012, 111–120.
ISBN: 9781450310581. DOI: 10.1145/2110147.2110160 (cited on pages 10,
35).

[SES11] A. Schatz, P. Egri, and M. Sauer. “Open Source ERP - Reasonable Tools
for Manufacturing SMEs?” In: Fraunhofer Institute for Manufacturing
Engineering and Automation IPA, May 2011 (cited on page 144).

214

http://dx.doi.org/10.1145/1653662.1653687
https://bugs.launchpad.net/openobject-server/+bug/1249355
https://bugs.launchpad.net/openobject-server/+bug/1249355
https://mailman.stanford.edu/pipermail/protege-owl/2007-September/003823.html
https://mailman.stanford.edu/pipermail/protege-owl/2007-September/003823.html
https://mailman.stanford.edu/pipermail/protege-owl/2007-September/003823.html
http://dx.doi.org/10.1145/2364412.2364441
http://dx.doi.org/10.1145/2110147.2110160

[SGB05] M. Svahnberg, J. van Gurp, and J. Bosch. “A taxonomy of variability re-
alization techniques: Research Articles.” In: Software—Practice & Experi-
ence 35 (July 2005). ACM ID: 1070905, 705–754. ISSN: 0038-0644. DOI:
10.1002/spe.v35:8 (cited on page 35).

[Sil+13] C. M. R. da Silva, J. L. C. da Silva, R. B. Rodrigues, L. M. d. Nascimento, and
V. C. Garcia. Systematic Mapping Study On Security Threats in Cloud Comput-
ing. arXiv e-print 1303.6782. (IJCSIS) International Journal of Computer
Science and Information Security, Vol. 11, No. 3, March 2013. March 2013
(cited on pages 1, 26, 36, 37, 39).

[SK11] S. Subashini and V. Kavitha. “A survey on security issues in service de-
livery models of cloud computing.” In: Journal of Network and Computer
Applications 34.1 (January 2011), pp. 1–11. ISSN: 1084-8045. DOI: 10.1016/
j.jnca.2010.07.006. URL: http://www.sciencedirect.com/science/
article/pii/S1084804510001281 (visited on February 12, 2012) (cited on
pages 1, 2, 14, 25, 26).

[SKP13] S. W. Schütz, T. Kude, and K. M. Popp. “The Impact of Software-as-a-
Service on Software Ecosystems.” In: Software Business. From Physical Prod-
ucts to Software Services and Solutions. Springer, January 2013, 130–140
(cited on page 25).

[SLW12] J. Schroeter, M. Lochau, and T.Winkelmann. “Multi-perspectives on Fea-
ture Models.” In:Model Driven Engineering Languages and Systems. Ed. by
R. B. France, J. Kazmeier, R. Breu, and C. Atkinson. Lecture Notes in Com-
puter Science 7590. Springer Berlin Heidelberg, January 2012, pp. 252–268.
ISBN: 978-3-642-33665-2, 978-3-642-33666-9 (cited on page 35).

[SMS10] Z. Song, J. Molina, and C. Strong. “Trusted Anonymous Execution: A
Model to Raise Trust in Cloud.” In: 2010 9th International Conference on
Grid and Cooperative Computing (GCC). November 2010, pp. 133–138. DOI:
10.1109/GCC.2010.37 (cited on page 38).

[SR11] B. Sengupta and A. Roychoudhury. “Engineeringmulti-tenant software-
as-a-service systems.” In: Proceedings of the 3rd InternationalWorkshop on
Principles of Engineering Service-Oriented Systems. PESOS ’11. New York, NY,
USA: ACM, 2011, 15–21. ISBN: 978-1-4503-0591-4. DOI: 10.1145/1985394.
1985397 (cited on pages 1, 2, 32).

[Sri+12] M. K. Srinivasan, K. Sarukesi, P. Rodrigues, M. S. Manoj, and P. Revathy.
“State-of-the-art Cloud Computing Security Taxonomies: A Classification
of Security Challenges in the Present Cloud Computing Environment.”
In: Proceedings of the International Conference on Advances in Computing,
Communications and Informatics. ICACCI ’12. New York, NY, USA: ACM,
2012, 470–476. ISBN: 978-1-4503-1196-0. DOI: 10.1145/2345396.2345474
(cited on pages 1, 14).

[SS90] A. K. Sethi and S. P. Sethi. “Flexibility in manufacturing: A survey.” In: In-
ternational Journal of FlexibleManufacturing Systems 2.4 (July 1990), pp. 289–
328. DOI: 10.1007/BF00186471 (cited on page 33).

215

http://dx.doi.org/10.1002/spe.v35:8
http://dx.doi.org/10.1016/j.jnca.2010.07.006
http://dx.doi.org/10.1016/j.jnca.2010.07.006
http://www.sciencedirect.com/science/article/pii/S1084804510001281
http://www.sciencedirect.com/science/article/pii/S1084804510001281
http://dx.doi.org/10.1109/GCC.2010.37
http://dx.doi.org/10.1145/1985394.1985397
http://dx.doi.org/10.1145/1985394.1985397
http://dx.doi.org/10.1145/2345396.2345474
http://dx.doi.org/10.1007/BF00186471

Bibliography

[Sun+08] W. Sun, X. Zhang, C. J. Guo, P. Sun, and H. Su. “Software as a Service:
Configuration and Customization Perspectives.” In: Services Part II, IEEE
Congress on. Los Alamitos, CA, USA: IEEE Computer Society, 2008, pp. 18–
25. ISBN: 978-0-7695-3313-1. DOI: http : / / doi . ieeecomputersociety .
org/10.1109/SERVICES-2.2008.29 (cited on page 34).

[SV13] R. Sadykov and F. Vanderbeck. “Bin Packing with Conflicts: A Generic
Branch-and-Price Algorithm.” en. In: INFORMS Journal on Computing 25.2
(March 2013), pp. 244–255. ISSN: 1091-9856, 1526-5528. DOI: 10.1287/
ijoc.1120.0499 (cited on page 204).

[SVD03] K. Satyendra, R. V. Venkata, and T. Devanath. A heuristic procedure for
one dimensional bin packing problem with additional constraints. Tech. rep.
Indian Institute of Management Ahmedabad, Research and Publication
Department, 2003 (cited on pages 92, 204).

[Szy02] C. Szyperski. Component Software: Beyond Object-Oriented Programming.
2nd ed. Addison-Wesley Professional, November 2002. ISBN: 0201745720
(cited on page 11).

[WA11] K. Wood andM. Anderson. “Understanding the Complexity Surrounding
Multitenancy in Cloud Computing.” In: 2011 IEEE 8th International Con-
ference on e-Business Engineering (ICEBE). 2011, pp. 119–124. DOI: 10.1109/
ICEBE.2011.68 (cited on page 1).

[Wai08] P.Wainewright.Many degrees of multi-tenancy. June 2008. URL: http://www.
zdnet.com/blog/saas/many-degrees-of-multi-tenancy/533 (visited on
October 3, 2013) (cited on page 33).

[Wal07] W. D. Wallis. Beginner’s Guide to Graph Theory, Second Edition. English.
[S.l.]: Birkhäuser Boston, 2007. ISBN: 9780817644840 0817644849 (cited
on pages 44, 89).

[Wan+11] R. Wang, Y. Zhang, S. Liu, L. Wu, and X. Meng. “A Dependency-Aware
Hierarchical Service Model for SaaS and Cloud Services.” In: 2011 IEEE
International Conference on Services Computing (SCC). July 2011, pp. 480–
487. DOI: 10.1109/SCC.2011.17 (cited on page 35).

[Wan06] R.Wanka.Approximationsalgorithmen eine Einführung. German.Wiesbaden:
B.G. TeubnerVerlag /GWVFachverlage,Wiesbaden, 2006. ISBN: 97838351-
90672 3835190679 (cited on pages 19, 90, 91, 117).

[Weg03] I.Wegener.Komplexitatstheorie. de. SpringerDE,March 2003. ISBN: 978354-
0001614 (cited on page 94).

[Wil02] R. J. Wilson. Four colors suffice: how the map problem was solved. English.
Princeton, NJ: Princeton University Press, 2002. ISBN: 0691115338 978069-
1115337 0691120234 9780691120232 (cited on page 92).

[WP67] D. J. A. Welsh and M. B. Powell. “An upper bound for the chromatic
number of a graph and its application to timetabling problems.” en. In:
The Computer Journal 10.1 (January 1967), pp. 85–86. ISSN: 0010-4620,
1460-2067. DOI: 10.1093/comjnl/10.1.85 (cited on page 93).

216

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/SERVICES-2.2008.29
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/SERVICES-2.2008.29
http://dx.doi.org/10.1287/ijoc.1120.0499
http://dx.doi.org/10.1287/ijoc.1120.0499
http://dx.doi.org/10.1109/ICEBE.2011.68
http://dx.doi.org/10.1109/ICEBE.2011.68
http://www.zdnet.com/blog/saas/many-degrees-of-multi-tenancy/533
http://www.zdnet.com/blog/saas/many-degrees-of-multi-tenancy/533
http://dx.doi.org/10.1109/SCC.2011.17
http://dx.doi.org/10.1093/comjnl/10.1.85

[Zha+07] K. Zhang, X. Zhang,W. Sun, H. Liang, Y. Huang, L. Zeng, and X. Liu. “A
Policy-Driven Approach for Software-as-Services Customization.” In: E-
Commerce Technology and the 4th IEEE International Conference on Enterprise
Computing, E-Commerce, and E-Services, 2007. CEC/EEE 2007. The 9th IEEE
International Conference on. 2007, pp. 123–130. DOI: 10.1109/CEC-EEE.
2007.9 (cited on page 35).

[Zha+12] O. Zhang, R. Ko, M. Kirchberg, C. H. Suen, P. Jagadpramana, and B. S.
Lee. “How to Track Your Data: Rule-Based Data Provenance Tracing Algo-
rithms.” In: 2012 IEEE 11th International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom). June 2012, pp. 1429–
1437. DOI: 10.1109/TrustCom.2012.175 (cited on page 39).

[ZJRR12] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. “Cross-VM side channels
and their use to extract private keys.” In: Proceedings of the 2012 ACM
conference on Computer and communications security. CCS ’12. New York,
NY, USA: ACM, 2012, 305–316. ISBN: 978-1-4503-1651-4. DOI: 10.1145/
2382196.2382230 (cited on page 26).

[ZSLB09] K. Zhang, Y. Shi, Q. Li, and J. Bian. “Data Privacy PreservingMechanism
Based on Tenant Customization for SaaS.” In: International Conference on
Multimedia Information Networking and Security, 2009. MINES ’09. Vol. 1.
2009, pp. 599–603. DOI: 10.1109/MINES.2009.256 (cited on pages 14, 25).

[Ama13] Amazon. Amazon Elastic Compute Cloud (Amazon EC2). October 2013. URL:
http://aws.amazon.com/de/ec2/ (visited on April 10, 2010) (cited on
page 24).

[Apa13] Apache Foundation. Apache Jena. March 2013. URL: http://jena.apache.
org/ (visited on April 11, 2013) (cited on page 70).

[Apa14] Apache OFBiz. Apache OFBiz, The Apache Open For Business Project - Open
Source E-Business / E-Commerce, ERP, CRM, POS, SCM, MRP, CMMS/EAM.
2014. URL: http://ofbiz.apache.org/ (visited on April 18, 2014) (cited
on page 144).

[Clo13a] Cloud Security Alliance. About : Cloud Security Alliance. June 2013. URL:
https://cloudsecurityalliance.org/about/ (visited on July 6, 2013)
(cited on page 25).

[Clo13b] Cloud Security Alliance. The Notorious Nine: Cloud Computing Top Threats
in 2013. Tech. rep. February 2013. URL: https://cloudsecurityalliance.
org/download/the-notorious-nine-cloud-computing-top-threats-
in-2013/ (visited on April 30, 2013) (cited on pages 1, 14, 25).

[Com14] Compiere Open Source ERP.Compiere Open Source ERP - AModern, Low-cost
ERP Software Solution. 2014. URL: http://www.compiere.com/ (visited on
April 18, 2014) (cited on page 144).

[Goo13] Google.Google App Engine - Google Code. October 2013. URL: http://code.
google.com/intl/en-NE/appengine/ (visited on April 10, 2010) (cited on
page 24).

[Kiv14] Kivitendo. Kivitendo: kivitendo. 2014. URL: http://www.kivitendo.de/
(visited on April 18, 2014) (cited on page 144).

217

http://dx.doi.org/10.1109/CEC-EEE.2007.9
http://dx.doi.org/10.1109/CEC-EEE.2007.9
http://dx.doi.org/10.1109/TrustCom.2012.175
http://dx.doi.org/10.1145/2382196.2382230
http://dx.doi.org/10.1145/2382196.2382230
http://dx.doi.org/10.1109/MINES.2009.256
http://aws.amazon.com/de/ec2/
http://jena.apache.org/
http://jena.apache.org/
http://ofbiz.apache.org/
https://cloudsecurityalliance.org/about/
https://cloudsecurityalliance.org/download/the-notorious-nine-cloud-computing-top-threats-in-2013/
https://cloudsecurityalliance.org/download/the-notorious-nine-cloud-computing-top-threats-in-2013/
https://cloudsecurityalliance.org/download/the-notorious-nine-cloud-computing-top-threats-in-2013/
http://www.compiere.com/
http://code.google.com/intl/en-NE/appengine/
http://code.google.com/intl/en-NE/appengine/
http://www.kivitendo.de/

Bibliography

[Lim14] Limbas.LimbasWiki. 2014. URL: http://www.limbas.org/wiki/Hauptseite
(visited on April 18, 2014) (cited on page 144).

[Ope14a] Openbravo. Openbravo, the preferred Commerce and ERP Platform. 2014.
URL: http://www.openbravo.com/ (visited on April 18, 2014) (cited on
page 144).

[Ope14b] Opentaps. Opentaps. 2014. URL: http://www.opentaps.org/ (visited on
April 18, 2014) (cited on page 144).

[Ops13] Opscode. Chef | Opscode. November 2013. URL: http://www.opscode.com/
chef/ (visited on November 14, 2013) (cited on page 153).

[Pup13] Puppet Labs. Puppet Labs: IT Automation Software for System Administrators.
November 2013. URL: http://puppetlabs.com/ (visited on November 14,
2013) (cited on page 153).

[The13] The GraphStream Team.GraphStream - A Dynamic Graph Library. October
2013. URL: http://graphstream- project.org/ (visited on October 6,
2013) (cited on page 70).

[Try14] Tryton. Tryton. 2014. URL: http : / / www . tryton . org / de/ (visited on
April 18, 2014) (cited on page 144).

[hei09] heise open. Quelloffene Kür: Open-Source-ERP-Systeme im Vergleich. Kom-
plexe Geschäftsanwendungen auf Open-Source-Basis sind in Deutschland
eine Ausnahmeerscheinung – dennoch gibt es sie. Sechs der bekannteren
ERP-Systeme können als ernstzunehmende Kandidaten gelten. September
2009. URL: http://www.heise.de/open/artikel/Quelloffene- Kuer-
Open - Source - ERP - Systeme - im - Vergleich - 763963 . html (visited on
November 3, 2013) (cited on page 144).

[pro13] protégé team. The Protégé Ontology Editor and Knowledge Acquisition System.
October 2013. URL: http://protege.stanford.edu/ (visited onOctober 6,
2013) (cited on page 70).

[sal13] salesforce.CRM - salesforce.com. October 2013. URL: http://www.salesforce.
com/ (visited on April 10, 2010) (cited on page 24).

[ADe14] ADempiere. ADempiere. 2014. URL: http://www.adempiere.com (visited on
April 18, 2014) (cited on page 144).

[CAO14] CAO-Faktura.CAO-FakturaWarenwirtschaftsystem | CAO-Faktura. 2014. URL:
http://www.cao-wawi.de/ (visited on April 18, 2014) (cited on page 144).

[Inf12] InfoWorld. Bossie Awards 2012: The Best of Open Source Software Awards.
September 2012. URL: http : / / www . infoworld . com / d / open - source -
software/bossies-2012-the-best-of-open-source-software-awards-
202465 (visited on November 3, 2013) (cited on page 145).

[Inf13] InfoWorld. Bossie Awards 2013: The best open source applications - InfoWorld.
September 2013. URL: http://www.infoworld.com/slideshow/119652/
bossie- awards- 2013- the- best- open- source- applications- 226975
(visited on November 16, 2013) (cited on page 145).

[OMG13a] OMG.OCL. April 2013. URL: http://www.omg.org/spec/OCL/ (visited on
April 11, 2013) (cited on page 59).

218

http://www.limbas.org/wiki/Hauptseite
http://www.openbravo.com/
http://www.opentaps.org/
http://www.opscode.com/chef/
http://www.opscode.com/chef/
http://puppetlabs.com/
http://graphstream-project.org/
http://www.tryton.org/de/
http://www.heise.de/open/artikel/Quelloffene-Kuer-Open-Source-ERP-Systeme-im-Vergleich-763963.html
http://www.heise.de/open/artikel/Quelloffene-Kuer-Open-Source-ERP-Systeme-im-Vergleich-763963.html
http://protege.stanford.edu/
http://www.salesforce.com/
http://www.salesforce.com/
http://www.adempiere.com
http://www.cao-wawi.de/
http://www.infoworld.com/d/open-source-software/bossies-2012-the-best-of-open-source-software-awards-202465
http://www.infoworld.com/d/open-source-software/bossies-2012-the-best-of-open-source-software-awards-202465
http://www.infoworld.com/d/open-source-software/bossies-2012-the-best-of-open-source-software-awards-202465
http://www.infoworld.com/slideshow/119652/bossie-awards-2013-the-best-open-source-applications-226975
http://www.infoworld.com/slideshow/119652/bossie-awards-2013-the-best-open-source-applications-226975
http://www.omg.org/spec/OCL/

[OMG13b] OMG. UML. April 2013. URL: http://www.omg.org/spec/UML/ (visited on
April 11, 2013) (cited on page 58).

[OWA13a] OWASP.Category:OWASPCloud - 10 Project - OWASP. June 2013. URL: https:
//www.owasp.org/index.php/Category:OWASP_Cloud_- _10_Project
(visited on June 29, 2013) (cited on pages 1, 26).

[OWA13b] OWASP. Cloud-10 Multi Tenancy and Physical Security - OWASP. June 2013.
URL: https://www.owasp.org/index.php/Cloud-10_Multi_Tenancy_
and_Physical_Security (visited on June 29, 2013) (cited on page 26).

[Ope13] OpenERP. OpenERP descripiton of Apps. November 2013. URL: https://www.
openerp.com/apps/ (visited on November 17, 2013) (cited on page 171).

[Ope14] OpenERP. OpenERP - Beautiful Business Applications. March 2014. URL:
https://www.openerp.com/ (visited onMarch13, 2014) (cited onpages 144,
145, 171).

[SQL14] SQL-Ledger ERP. SQL-Ledger ERP. 2014. URL: http://www.sql-ledger.com/
(visited on April 18, 2014) (cited on page 144).

[SYN14] SYNERPY GmbH. Open Source ERP AvERP -Warenwirtschaftssystem der SYN-
ERPY GmbH. 2014. URL: http://www.synerpy.de/cm/ (visited on April 18,
2014) (cited on page 144).

[W3C04] W3C. SWRL: A SemanticWeb Rule Language Combining OWL and RuleML.
May 2004. URL: http : / / www . w3 . org / Submission / SWRL/ (visited on
October 6, 2013) (cited on page 70).

[W3C12] W3C.OWL 2Web Ontology Language Document Overview (Second Edition).
December 2012. URL: http://www.w3.org/TR/owl2-overview/ (visited on
April 11, 2013) (cited on page 69).

[W3C13] W3C. SPARQL 1.1 Query Language. March 2013. URL: http://www.w3.
org/TR/2013/REC-sparql11-query-20130321/ (visited on April 19, 2013)
(cited on page 70).

[web14] webERP. webERP Home. 2014. URL: http://www.weberp.org/ (visited on
April 18, 2014) (cited on page 144).

[xTu14] xTuple. xTuple | Open Source ERP for Mac, Linux andWindows. 2014. URL:
https://www.xtuple.com/ (visited on April 18, 2014) (cited on page 144).

219

http://www.omg.org/spec/UML/
https://www.owasp.org/index.php/Category:OWASP_Cloud_-_10_Project
https://www.owasp.org/index.php/Category:OWASP_Cloud_-_10_Project
https://www.owasp.org/index.php/Cloud-10_Multi_Tenancy_and_Physical_Security
https://www.owasp.org/index.php/Cloud-10_Multi_Tenancy_and_Physical_Security
https://www.openerp.com/apps/
https://www.openerp.com/apps/
https://www.openerp.com/
http://www.sql-ledger.com/
http://www.synerpy.de/cm/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.weberp.org/
https://www.xtuple.com/

	Cover Page
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Definitions
	1 Introduction
	1.1 Motivation
	1.2 Goals and Contributions of this Work
	1.3 Structure and Content
	1.4 Research Methodology

	2 Towards Mixed-Tenancy - A Problem Analysis
	2.1 Fundamental Concepts and Approaches I
	2.1.1 Relevant Stakeholders
	2.1.2 Component-Based Software
	2.1.3 Single-Tenancy and Multi-Tenancy

	2.2 Scope of this Work
	2.2.1 Introduction of Mixed-Tenancy
	2.2.2 Challenges of Mixed-Tenancy
	2.2.3 Research Questions of this Work
	2.2.4 Limitations of Scope
	2.2.5 Deployment Configuration Generator

	2.3 Application of Mixed-Tenancy in Cloud Computing
	2.3.1 Introduction to Cloud Computing
	2.3.2 Application of Mixed-Tenancy in Cloud Computing

	2.4 Summary

	3 State of the Art
	3.1 Research related to Multi-Tenancy
	3.1.1 Realization of Multi-Tenancy
	3.1.2 Variability of Multi-Tenancy Applications

	3.2 Related Approaches tackling Security Issue
	3.2.1 Introduction of the Underlying Mapping Study
	3.2.2 Related Work tackling Data Breach

	3.3 Summary

	4 Capturing Customers' Deployment Constraints
	4.1 Fundamental Concepts and Approaches II
	4.1.1 First-order Logic
	4.1.2 Introduction of Graph Theory

	4.2 Conceptual Analysis based on Requirements
	4.2.1 Levels of Deployment
	4.2.2 Deployment Models
	4.2.3 Groups
	4.2.4 Dimensions
	4.2.5 Virtual Tenants

	4.3 Process of Deployment Constraint definition
	4.3.1 Customizing
	4.3.2 Tenant Grouping
	4.3.3 Constraint Definition
	4.3.4 Deployment Information Extraction

	4.4 Generic Mixed-Tenancy Description Model
	4.4.1 Introduction of the Fundamental Idea
	4.4.2 Foundations of the Formal Model
	4.4.3 Application Components and Deployment Levels
	4.4.4 Deployment Level Hierarchy Description
	4.4.5 Structure of Dimensions, Groups, and Tenants
	4.4.6 Description of Deployment Models
	4.4.7 Completeness of Deployment Constraints
	4.4.8 Definition of the Deployment Information

	4.5 Prototypical Realization
	4.5.1 Description of Realization Approach
	4.5.2 Implementation of the Model using OWL
	4.5.3 Model checking
	4.5.4 Extraction of Deployment Information

	4.6 Evaluation
	4.6.1 Example Environment
	4.6.2 Scenario Definition
	4.6.3 Analysis of Results

	4.7 Summary

	5 Computation of a Valid and Optimal Deployment
	5.1 Fundamental Concepts and Approaches III
	5.1.1 Additional Concepts of Graph Theory
	5.1.2 Concepts in Complexity Theory
	5.1.3 Introduction of Graph Coloring and Clique Cover

	5.2 Formal Definition of the Deployment Problems
	5.2.1 Problem Analysis
	5.2.2 Definition of the General Deployment Problem
	5.2.3 Definition of the Elementary Deployment Problem

	5.3 Analysis of Elementary Deployment Problem
	5.3.1 Definition of a Solution as a Set of Clique Covers
	5.3.2 Minimal Clique Cover on High Level
	5.3.3 Minimal Clique Cover on Low Level
	5.3.4 Minimal Clique Cover on Any Level
	5.3.5 Complexity of the Elementary Problem
	5.3.6 Introduction of Heuristics

	5.4 Analysis of General Deployment Problem
	5.4.1 Complexity of the General Problem
	5.4.2 Generalization of Elementary Problem
	5.4.3 Introduction of Heuristics

	5.5 Evaluation
	5.5.1 Experimental Comparison of Heuristics
	5.5.2 Application on Running Example
	5.5.3 General Efficiency of Resource Utilization

	5.6 Summary

	6 Case Study: ERP-System as Mixed-Tenancy Cloud Service
	6.1 Conceptual Design of a Mixed-Tenancy Platform
	6.1.1 Problem 1: Automated Deployment
	6.1.2 Problem 2: Communication Mechanism

	6.2 Selection of Cloud Application
	6.2.1 An ERP-System as SaaS Offering - Requirements
	6.2.2 Analysis of Available Open Source ERP-Systems
	6.2.3 Introduction of OpenERP

	6.3 Definition of OpenERP Scenario
	6.3.1 Introduction of Component-based OpenERP
	6.3.2 Selection of Application Components
	6.3.3 Definition of Deployment Levels
	6.3.4 Creation of Example Scenario

	6.4 Realization of Deployment Platform for OpenERP
	6.4.1 Problem 1: Automatic Deployment
	6.4.2 Problem 2: Communication Mechanism

	6.5 Evaluation and Discussion of Results
	6.5.1 Evaluation of Mixed-Tenancy OpenERP
	6.5.2 Discussion of Resource Utilization

	6.6 Summary

	7 Summary and Conclusion
	7.1 Discussion of Results
	7.1.1 Contributions
	7.1.2 Limitations and Future Work

	7.2 Summary

	A Details related to Case Study
	A.1 Description of Application Components
	A.2 Evaluated Test Cases

	B Mixed-Tenancy: Changes over Time
	B.1 Problem Analysis
	B.2 Computation of a Migration Plan
	B.2.1 Abstraction on a Problem of Graphs Theory
	B.2.2 Complexity of Finding a Migration Plan
	B.2.3 Computation of a Migration Plan

	B.3 Conclusion

	C Optimization considering limited Resource Availability
	C.1 Problem Analysis
	C.2 Introduction of Bin-Packaging (with Conflicts)
	C.3 Conclusion

	Bibliography

